Crustal Deformation
AKA – Structural geology
(adapted from Brunkel, 2012)
Study the architecture and processes responsible for deformation of Earth’s crust.

Folding and Faulting
How Rocks Deform: 4 Controls

- Rock Type – i.e., sandstone is more brittle than shale.
- Temperature – higher T = more ductile
- Confining Pressure – high lithostatic stress = more ductile
- Time – more time = more ductile (i.e., karate chop)
Stress and Strain Relationships

The result of rock deformation can be seen at the surface as folds and faults.
A few things we need to know

• Law of original horizontality
• Superposition
• Cross-cutting relationships
• Strike and dip
Law of original Horizontality
Superposition

- Youngest on the top
- Oldest on the bottom
i.e., These sandstone beds were deposited as horizontal layers before they were faulted.
Strike and Dip - when rocks are no longer horizontal
Strike and Dip- how do we describe their orientation
Strike and dip rules

• Strike is the direction on the surface of the rock formation – described by two directions ie. N-S, E-W, NE-SW
• Dip is always perpendicular to strike and is described by only one direction – N, S, E, W or NW, SE etc.
• Often it is easier to find the dip of a rock unit first and then describe the strike
Strike and Dip

Dip and Strike
(Courtesy of Dresser Atlas)
Folds

- How do rocks fold?
- Ductile deformation
- What environments lead to ductile deformation?
Folds

- **Folds** wave-like undulations in rock that form mainly from compressional stress that shortens and thickens the crust.
Fold Parts

- **Limbs** – the two planar sides of a fold
- **Axis** – imaginary line marking the crest or trough of each layer
- **Axial plane** – an imaginary plane of symmetry through the center of the fold
Types of folds

• Anticlines – “A” shape
Folds

Syncline - think of a sink
Paired and tilted anticline and syncline
folds
folds
Overturned folds
folds
Folding on a large scale to produce large landforms
Sheep Mountain, WY: **Plunging Anticline & Syncline**

- Note Outcrop “V”s, Plunge Arrows, Anticline Symbol, Syncline Symbol
- Note Oldest & Youngest Layers

- Mississippian Rocks
- Triassic Rocks
- Jurassic Rocks
- Cretaceous Rocks
Plunging folds

- Fold axis dips below the surface
• **Anticline** – upfold
 – Oldest rock in center
 – Point of mapped outcrop “V” in the direction of plunge.

• **Syncline** - downfold
 – Youngest rock in center
 – Open end of mapped outcrop “V” is in the direction of plunge.

arrow on end of fold axis symbol indicates plunge direction
DOME

Oldest formation exposed on the surface

Youngest formation

Gas

Oil
Sinclair Dome, WY

oldest rocks

younger rocks
Folds in map view

Anticlines - eroded tops of anticlines reveal a characteristic map pattern of rock ages

- Oldest rocks exposed in the middle with bands getting younger as you go out
- The direction of dip of the bed will provide clues to what type of structure it is
Folds in map view

Synclines - eroded synclines reveal a characteristic map pattern of rock ages

- Youngest rocks exposed in the middle with bands getting older as you go out
- The direction of dip of the bed will provide clues to what type of structure it is
Geologic Maps

A. Map view

anticline axis symbol syncline axis symbol

Strike & dip symbol

30° Sandstone 85° Sandstone 40° Sandstone

Red shale Limestone Red shale Limestone

contact between rock units of different ages

B. Block diagram
Faults

- **Faults** - fractures in rocks along which appreciable displacement has taken place – brittle deformation of the rock or layers of rock

- 2 basic Types:
 - **Dip Slip** – Movement is mainly parallel to the dip of the fault surface
 - **Strike Slip** - Movement is mainly parallel to the strike of the fault surface
Dip-Slip Faults

- Two main types –
- **Normal** – Hanging wall moves down in relation to foot wall
- **Reverse or Thrust** – Hanging wall moves up relative to foot wall
Faults

- **Tensional forces cause normal faulting**
Normal Faults
Scarps
Normal Faults

• Form **fault-block mountains**

• **Horst** = high upthrown block

• **Graben** = low downthrown block
Grand Tetons, WY - fault block mountains
Reverse Faults

Reverse Fault

Thrust Fault
Faults

- **Thrust Faults** are a low angle reverse fault.
Overlapping thrust sheets build up mountain ranges.

Thrusted sheets

Thrusted are low angle reverse faults.
The Canadian Rockies were built up as a series of thrust sheets
Faults

- Shear stresses cause **strike-slip faulting**
Strike-Slip Faults

- **Right-lateral** — as you face the fault, the block on the opposite side of the fault moves to the right
- **Left-lateral** — as you face the fault, the block on the opposite side of the fault moves to the left
SAN ANDREAS FAULT

large right lateral offset in drainage pattern

small-scale drainage pattern also shows right lateral offset
Engineering and Faults

- Fractures to Faults
- Shear Zones