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Gyrokinetic-ion drift-kinetic-electron simulation of the (m 5 2, n 5 1)
cylindrical tearing mode

Y. Chen,a) J. Chowdhury, N. Maksimovic, S. E. Parker, and W. Wan
University of Colorado at Boulder, Boulder, Colorado 80309, USA

(Received 19 November 2015; accepted 7 December 2015; published online 4 March 2016)

Particle-in-cell simulations of ðm ¼ 2; n ¼ 1Þ tearing mode in cylindrical plasmas are carried out

with kinetic electrons using the split-weight control-variate algorithm [Y. Chen and S. E. Parker, J.

Comput. Phys. 220, 839 (2007)]. Radially, global simulation shows global mode structure in agree-

ment with reduced-magnetohydrodynamic eigenmode calculation. Simulations of the tearing layer

are verified with analytic results for the collisionless, semi-collisional, and drift-tearing mode.
VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4943105]

I. INTRODUCTION

Electron kinetic effects are essential for an accurate

description of the tearing mode in present day tokamak plas-

mas. In such plasmas, the high electron temperature leads to

a low electron collision rate, which makes any fluid model,

such as resistive magnetohydrodynamics (MHD), a poor

approximation for the tearing layer. Even if a closure scheme

based on linear kinetic theory is used in the fluid model, as is

done in gyrofluid theory, the validity of such a model for the

nonlinear evolution of the tearing mode is not guaranteed

and is to be verified with a kinetic model. At the present

time, the most promising approach to modeling the neoclass-

ical tearing mode (NTM) is a hybrid approach, in which the

macroscopic quantities, e.g., the quasi-steady magnetic equi-

librium and the density/temperature profiles, are evolved

using fluid models, and the plasma current is obtained with a

kinetic model. This is a multiple-time-scale approach, where

it is assumed that the macroscopic time scale for the island

growth is well separated from the microscopic time scale of

ion and electron kinetic response to the magnetic equilibrium

and the formation of electric current. The kinetic problem in

such a multiple-scale approach is that of computing the neo-

classical current and transport coefficients in a three-

dimensional (3D) magnetic field, which comes from magne-

tohydrodynamic simulations. The neoclassical current can

then be used in the MHD simulation to evolve the magnetic

configuration. An axisymmetric version of such an integrated

modeling has been attempted by Lyons et al.1 This multiple-

scale approach is, however, not valid for the initial growth of

the seeding island, as at the initial stage, the island size is

small (less than the ion Larmor radius), and kinetic effects

are essential for the island dynamics. In the linear and early

nonlinear phase of the mode, a direct kinetic model is there-

fore needed.

In this paper, we extend the gyrokinetic particle-in-cell

(PIC) code GEM, initially developed for drift-wave turbu-

lence simulations, to the n¼ 1 tearing mode. Part of this

extension has been recently reported for the gyrokinetic ion/

mass-less fluid electron model,2 where new field solvers and

discretization schemes are developed that avoid the usual

high-n approximations when using the field-aligned coordi-

nates. The same extension has now been carried over to the

fully drift-kinetic electron model of GEM that is based on the

split-weight control-variate algorithm.3,4 Although gyroki-

netic simulations with kinetic electrons have been used to

study tearing modes by many authors,5–11 most of the studies

are for small scale tearing modes such as the micro-tearing

modes. Low-n tearing modes in present day tokamaks pose a

special challenge to simulations with kinetic electrons, as high

resolution is needed to resolve the thin tearing layer and long

time simulations are needed due to the small mode growth

rate. In addition to these requirements mandated by physical

mode characteristics, modes with small perpendicular wave-

number k?qi (qi is the ion Larmor radius) also incur numeri-

cal difficulties (constraint on the time step and accuracy

problems) that are particularly challenging to the PIC method.

Verification of a kinetic electron algorithm for drift waves

(including the rTe-driven micro-tearing modes) does not

warrant its applicability for low-n tearing modes, as the sever-

ity of numerical problems changes with wavenumber. Our

first goal is to verify GEM’s kinetic electron algorithm for

low-n tearing modes, specifically tearing modes in the colli-

sionless and semi-collisional regime,12 where kinetic effects

are known to be important and analytic scaling laws are avail-

able for simulation/theory comparison. It turns out quite chal-

lenging to use analytic scaling laws for verification, as one

needs to ensure that the validity criteria for the scaling behav-

iour be fulfilled. For instance, the semi-collisional scaling of

c � �1=3 (c is the growth rate and � is the collision rate) is not

observed in a recent study with the Eulerian code GKW;10

instead a much weaker scaling, c � �1=7, is seen. This dis-

agreement can be understood by checking the mode character-

istics with the assumptions used to derive the scaling laws; in

some cases, one can show that the constant-W approxima-

tion13 is not valid. The global feature of the mode (the exter-

nal solution that is to be matched to the tearing layer

solution), on the other hand, is largely determined by the

MHD model and does not involve kinetic electron effects.

Ideally, we would like to carry out simulations in the full ra-

dial domain and verify the simulation with both the global
Note: Paper PI3 5, Bull. Am. Phys. Soc. 60, 262 (2015).
a)Invited speaker.
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mode structure and the analytic scaling laws; this would pro-

vide a very strong verification of the code. But such simula-

tion is found to be impractical with the present code using

uniformly spaced radial grids. This difficulty is overcome by

using a radial domain much smaller than the minor radius,

with an imposed boundary condition that generalizes the tear-

ing mode parameter D0.2 Using a reduced radial size allows us

to fully resolve the tearing layer and choose equilibrium pa-

rameters that satisfy the criteria for the analytic scaling

results. We are now able to observe the correct scaling behav-

iors in both the collisionless regime and the semi-collisional

regime. All simulations in this paper are linear, and a cylindri-

cal equilibrium is used to facilitate direct comparison with

analytic theory. Nonlinear simulations and toroidal effects

will be presented in a forthcoming paper.

This paper is organized as follows. In Section II, we test

the GEM algorithm for the long wavelength shear Alfven

waves in a 3D slab and summarize our previous findings on

how to include kinetic electrons in gyrokinetic simulations.

Tearing mode simulations are presented in Section III, and

summary is given in Section IV.

II. COMMENTS ON KINETIC ELECTRON ALGORITHMS

The small electron mass incurs a constraint on the time

step (vaguely termed as “the Courant condition”) and an ac-

curacy problem (called the “Cancellation Problem”3,14). The

accuracy problem occurs only in simulations with magnetic

field perturbations, as in shear Alfven waves and tearing

modes. Our first task is to test the split-weight control-variate

algorithm3 for shear Alfven waves in the long wavelength

limit. For convenience, we briefly summarize the GEM algo-

rithm as follows. The field is represented by the electric

potential / and the parallel component of the vector poten-

tial, Ak, obtained from the quasi-neutrality condition and the

parallel Ampere’s equation, respectively. The parallel canon-

ical momentum pk ¼ vk þ ðq=mÞAk is used as the parallel

velocity coordinate. The electron distribution is split as fe ¼
f0ðpkÞ þ �ðe/=TeÞf0 þ h (Te is the equilibrium electron tem-

perature), and h is directly represented by the electron

weights. The split-weight parameter is usually chosen to be

�¼ 1 in this paper. The explicit appearance of / in fe leads to

an additional field equation for _/ � @/=@t, derived from the

quasi-neutrality condition and called as the vorticity equa-

tion. Using pk as the velocity coordinate leads to a stiff form

of the Ampere’s equation, which is solved with the control-

variate method.3,15 This scheme is initially developed in a

flux-tube, later extended to general geometry. It has been

extensively benchmarked with Eulerian codes for high-n

drift waves, such as the ion-temperature-gradient-driven

modes (ITG) and the trapped electron modes.16 Here, as a

first step toward applying the algorithm to the n¼ 1 tearing

mode, we test it for the long wavelength shear Alfven waves

in a shearless 3D slab. The mode has a wavenumber k?qu

¼ 0:01 and kkqu ¼ 0:000714. Here qu ¼ mpvu=eB is the pro-

ton Larmor radius in the uniform magnetic field with magni-

tude B and at a reference temperature Tu ¼ mpv2
u, in this

paper taken to be the electron temperature at the mode loca-

tion. The corresponding Larmor frequency xu ¼ eB=mp is

used to normalize frequency and time. Drift waves typically

have k?qu > 0:1, and k?qu ¼ 0:01 roughly corresponds to

the m¼ 2 mode in a DIII-D17 plasma. The numerical diffi-

culty with kinetic electrons scales as �1=k2
?.

Fig. 1 shows the simulated shear Alfven wave frequency

in comparison with the shear Alfven dispersion relation.

They agree very well for beta values up to b ¼ 25%. Here,

b ¼ 2ðniTi þ neTeÞ=l0B2, and Ti¼ Te is the ion and electron

temperature, ni¼ ne is the density. The time step is

xuDt ¼ 0:5. The mode propagates in the y� z plane and the

number of spatial grids is ðNx;Ny;NkÞ ¼ ð4; 128; 128Þ, with

512 particles per cell per species. Resolution in both the

velocity space (measured by the number of particles per spa-

tial cell) and the real space is unusually high for a single

wave simulation, as one expects a spatial resolution of �16

per wavelength to give an accurate description of the wave.

The fine resolution is necessary as a consequence of the low

wavenumber; a grid number of Ny¼ 32 leads to a frequency

nearly double the dispersion relation result for the b ¼ 0:25

case. The fields Ak=/ are filtered after each field solving so

that only the wave of interest is retained, and no grid-scale

modes are possible, yet the small time step is needed for nu-

merical stability, despite the use of the split-weight scheme.

Without the split-weight scheme, i.e., setting �¼ 0, the simu-

lation appears to be unconditionally unstable at high b val-

ues. These observations reveal the challenging aspects of

gyrokinetic simulations applied to long wavelength modes.

Much recent progress has been made in this area by

Mishchenko et al.,15 whose mixed-variable algorithm15

appears to be an alternative to the split-weight scheme for

achieving numerical stability.

Both Mishchenko’s mixed-variable algorithm and the

GEM algorithm can be viewed as direct methods for the

gyrokinetic Maxwell system of equations. These algorithms

are direct in the sense that the quasi-neutrality condition and

the Ampere’s equation are directly solved for / and Ak,
respectively. We have also explored an alternative scheme

based on closing a fluid-electron model with kinetic particles

(the “closure” scheme).16,18 The closure scheme is not direct

FIG. 1. Shear Alfven wave frequency vs. beta, k?qu ¼ 0:01. Points are sim-

ulation results, dashed line for dispersion relation. xc ¼ xu is the proton cy-

clotron frequency.
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in that the vorticity equation is used instead of the quasi-

neutrality condition, and the Ampere’s equation is solved

“backwards” to obtain the electron flow from a known Ak. In

principle, the closure scheme can be exact, i.e., the electron

pressure terms in the fluid equations are calculated from the

particle distribution without approximations; in this case, the

closure scheme and the direct methods are mathematically

equivalent. We have considered the closure scheme for the

present study, but now prefer the direct method. The reason

is that for tearing modes, accurate calculation of the parallel

electric field in the tearing layer is crucial; therefore, an

intrinsic difficulty due to the fast electron parallel motion is

unavoidable. When the accuracy problem is present, solving

it in the direct method is much easier than solving it in a

non-direct method. It is useful to summarize our current

understanding of these alternate algorithms as follows:

(1) If kinetic electron effects are to be calculated exactly,

then a cancellation problem cannot be avoided. It is eas-

ier to solve this problem in the Ampere’s equation than

in the generalized Ohm’s law;

(2) In simple geometry, the cancellation problem can be

solved by replacing the field equation with the form with

finite grid-size corrections in the large particle number

limit.19 In general, the problem is best solved with the

control-variate method, as in addition to finite-grid-size

errors, there might be a systematic deviation between the

actual marker distribution and the assumed equilibrium

distribution in a complex geometry, where particle trap-

ping/drift is important. Systematic error due to this effect

will be cancelled with the control-variate method;

(3) The split-weight scheme is mainly a technique for nu-

merical stability and can be replaced by other methods

such as the mixed-variable approach;

(4) For some kinetic-MHD phenomena such as the ener-

getic-particle-driven Alfven eigenmodes, an accurate

calculation of the parallel electric field is not essential. In

this case, the closure scheme with an approximate kinetic

closure, or even a fluid electron model, can be used for

better computational efficiency.

III. CYLINDRICAL (2, 1) TEARING MODE SIMULATIONS

We consider a cylindrical equilibrium with the safety fac-

tor profile qðrÞ ¼ 1:5ð1þ ðr=aÞ2Þ and a constant density. The

plasma has a single hydrogen ion species. The on-axis plasma

beta is bð0Þ ¼ 0:004. The aspect ratio is fixed at R0=a ¼ 4,

but the size is varied from a ¼ 50qu to a ¼ 370qu. The q-

profile and the self-consistent equilibrium electron flow profile

are the same as in the previous work,2 where the extension of

the fluid electron model to low-n is described in detail. The

extension of the direct method to low-n is similar. The equilib-

rium parallel electron flow is modeled by a driving term in the

electron weight equation. Electrons are loaded according to

the unshifted Maxwellian, regardless of the magnitude of the

equilibrium flow. The field variables Ak=/ are decomposed

poloidally and toroidally, and, in the radial direction, discre-

tized pseudo-spectrally in the case of quasi-neutrality condi-

tion, and with the finite-difference method in the case of

Ampere’s equation. A mapping between the toroidal coordi-

nates and the field-aligned coordinates is explicitly constructed

to facilitate the transformation in coordinates between particle

pushing and field solving. In the cylindrical equilibrium, there

is no poloidal coupling. We study the ðm; nÞ ¼ ð2;�1Þ tearing

mode, which has a tearing layer located near the q¼ 2 surface

at r=a ¼ 0:577. Our main goal is to verify the simulation for

the collisionless and semi-collisional tearing mode, for which

the kinetic electron effects are crucial and the ions are neither

physically important nor causing any computational problem.

In the following simulations, we frequently neglect ion dy-

namics other than the polarization effect, as is also done in the

theoretical analysis.12

Analytical results used for comparison include the colli-

sionless tearing mode growth rate

ck ¼ kyveðD0aÞ=2k2
0als

ffiffiffi
p
p

; (1)

the collisionless characteristic length of the tearing layer

Dk ¼ ðD0aÞ=2
ffiffiffi
p
p

k2
0a; (2)

the semi-collisional tearing mode growth rate

csc ¼
3p1=4

4C 11=4ð Þ

 !2=3

c2=3
k �1=3

c ; (3)

the semi-collisional characteristic length of the tearing layer

Dsc ¼
�c

ck

� �2=3

Dk; (4)

the collisionless drift-tearing mode real frequency

x1 ¼ x�n þ x�T=2; (5)

and the characteristic length of the collisionless drift-tearing

mode,

D ¼ 1þ x�21

c2
k

 !1=2

Dk: (6)

These results are taken from Drake and Lee.12 Here, ky ¼
m=rs is the mode wavenumber at the resonance location r¼ rs,

k0 ¼ xpe=c; xpe is the electron plasma frequency, c is the light

speed; the thermal speed is defined as ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Te=me

p
, me is

the electron mass; the magnetic shear length is ls ¼ R0q2
0=rq0

at the tearing layer; �c is the electron collision frequency;

x�n ¼ kyTe=eBjrne=nej and x�T ¼ kyTe=eBjrTe=Tej; and the

tearing mode parameter D0 is defined to be the jump of A0kðrÞ
across the tearing layer. We do not attempt to verify simula-

tions for the collisional regime, because it is difficult to find

cases where the validity condition for the collisional regime is

satisfied, and numerically a large collision rate requires small

time steps and a large number of particles to reduce noise.

Tearing modes in present day tokamaks are in the semi-

collisional regime.12

The difficulty in simulating a global tearing mode can

be appreciated by estimates based on these formulas. For a

056101-3 Chen et al. Phys. Plasmas 23, 056101 (2016)



tokamak with a ¼ 200qu; b ¼ 0:004, and D0a ¼ 6, the m¼ 2

mode has a collisionless growth rate of ck=xu ¼ 1:5� 10�6

and a tearing layer width of Dk=qu ¼ 0:0046. The growth rate

is about 100 times smaller than typical drift wave growth rate,

and the tearing layer width is much smaller than the electron

Larmor radius (�qi=50). At this scale, the drift-kinetic elec-

tron model used in theoretical analysis is not valid, and the

electrons must be treated with gyrokinetics. This observation

is relevant for most of the cases studied here, including the

semi-collisional tearing modes and the drift-tearing modes

where the tearing layer width is significantly broadened. This

observation, however, does not affect the comparison between

simulation and analytic results, as the drift-kinetic electron

model is also used in the simulations. It is also clear that for

most plasmas of interest, it is impractical to simulate the entire

plasma cross-section. Assume that 10 radial grid points are

needed to resolve the tearing layer, the total number of radial

grids would be 4� 105! Including collisions and x� effect

will greatly reduce the number of radial grids, but for a DIII-D

sized plasma, the computational requirement is still prohibi-

tive. In the following simulations, a much reduced radial do-

main will be used, with the radial boundary conditions for Ak
obtained from global reduced-MHD eigenmode calculations.2

Nevertheless, it is important to carry out a global simulation,

even if only for a small size plasma, with reasonable radial re-

solution, and compare the global mode structure with the

eigenmode result to ensure that the global mode structure is

adequately captured with the kinetic electron algorithm.

The global mode structure from simulation is shown in

Fig. 2, for a plasma with a ¼ 50qu. This is a case of pure tear-

ing mode with x� ¼ 0, and a collision rate of �c=xu

¼ 1:04� 10�4. The semi-collisional tearing layer width is

calculated to be Dsc=qu ¼ 0:065. The tearing mode parameter

is taken to be D0a ¼ 6. The time step is xuDt ¼ 5, the radial

domain is 0:1 < r=a < 0:9 with the number of grids

ðNx;Ny;NkÞ ¼ ð2048; 64; 64Þ in each dimension, so that

Dsc=Dx � 3. The number of particles is 8/cell. The simulation

yields a mode growth rate of c=xu ¼ 1:9� 10�4, compared

with the theoretical semi-collisional growth rate of csc

� 1� 10�4. As will soon to be shown, this case is not in the

asymptotic regime even for the collisionless tearing mode

where the tearing layer width is much smaller (hence, asymp-

totic analysis is more likely to be valid). The global mode

structure from the simulation agrees well with the eigenmode

result. This is expected, as both the eigenmode analysis and

the simulation use the same cylindrical equilibrium, and the

reduced-MHD model is a good approximation to the kinetic

model in the external region. One might conjecture that the

global mode structure is insensitive to the numerical resolu-

tion in the tearing layer, and the same global mode structure

will emerge with reduced radial resolution as long as the

mode is unstable, although the growth rate will change with

the resolution. This is borne out to some extent. We have car-

ried out global simulations with 0:1 < r=a < 0:9 for plasma

sizes of a ¼ 100qu and a ¼ 200qu. With increased resolution

in y – z with Ny ¼ Nk ¼ 128, but with reduced radial resolu-

tion, mode structures similar to Fig. 2 are obtained. It is

mainly the global mode structure, which has small k?, that

requires the improved accuracy of the control-variate method

in solving the Ampere’s equation. Without the control-variate

method, the global tearing eigenmode structure is not repro-

duced in simulations. The global simulations attempted here,

though limited in scope, serve as an important verification of

the algorithm for low-n tearing modes. The main challenge in

applying full radius simulations to the linear n¼ 1 tearing

mode in present tokamaks is not posed by getting the global

mode structure accurate, but posed by the fine resolution near

the resonance layer and the weak instability grow rate.

In the rest of the paper, we reduce the simulation domain

to a narrow layer with Lx=a � 0:01, around the resonance

surface at r=a ¼ 0:57735 where q¼ 2. Here, Lx is the size of

the simulated radial domain. On this short scale, the ion

response is assumed to be adiabatic, dni ¼ �en0/=Ti. (Ion

current response is neglected.) The boundary condition for

dAkðrÞ=dr at the inner and outer boundaries is taken from the

eigenmode structure. We scan over a chosen parameter for

the collisionless pure tearing mode, the semi-collisional pure

tearing mode, and the collisionless drift-tearing mode, and

compare simulation results with the analytical results, Eqs.

(1), (3), and (5). To our knowledge, these analytic results

have not been directly used to verify tearing mode simula-

tions and verified with simulations. Previous GEM simula-

tions of the collisionless and semi-collisional tearing modes

are done in a slab geometry and verified directly with kinetic

eigenmode results.6

A. Collisionless pure tearing mode

We first study the collisionless tearing mode by scanning

over the electron mass and compare the simulation growth

rate with Eq. (1). The electron mass enters the expression for

ck through the electron thermal velocity ve and the magnetic

skin depth k�1
0 , such that ck �

ffiffiffiffiffiffi
me
p

. The size of the plasma is

FIG. 2. Top: radial mode structure for /. Bottom: radial mode structure for

Ak, the green line is from reduced-MHD eigenmode calculation. The minor

radius is a ¼ 50qu, the number of radial grid points is Nx¼ 2048.
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a ¼ 50qu, and the electron mass is scaled down to 16 times

smaller than the physical value. Alternatively, one can choose

a larger plasma size and scale up the electron mass. The radial

domain is Lx=a ¼ 0:01, centered at the q¼ 2 surface, with the

boundary conditions a� ¼ �0:408 and aþ ¼ �0:312. Here,

a� � A0k=Ak gives the radial slope of the vector potential at

the inner boundary; aþ is similarly defined. The values of aþ
and a� at a fixed r/a scale inversely proportional to the plasma

size. These boundary conditions are obtained from the

reduced-MHD eigenmode structure. The number of grids is

ðNx;Ny;NkÞ ¼ ð512; 64; 64Þ, and the number of particles is

8=cell. Since ions are assumed to be adiabatic, the simulation

is numerically stable without the split-weight scheme. As the

electron mass is scaled down, the electron velocity is

increased (the electron temperature is fixed), so the time step

is also reduced. A time step of xuDt ¼ 0:5 is used for the

smallest me. The results are plotted in Fig. 3. Simulations with

both the adiabatic ion response (green) and with / set to zero

(blue) are shown. The solid line shows the analytic results of

Eq. (1) with D0a ¼ 6. All the analytic results are derived

neglecting the effect of /.12

The scaling of simulation results apparently approaches

the analytical scaling as the electron mass decreases. The nu-

merical values of simulations with / ¼ 0 are also in reasona-

ble agreement with the analytic results as me decreases. The

deviation from the theoretical scaling at large electron mass

can be attributed to the failure of the constant-W approxima-

tion. Fig. 4 shows the mode structure from the simulation

with the smallest electron mass of mp=me ¼ 29392. The col-

lisionless tearing layer width is Dk � 0:0011qu, assuming

D0a ¼ 6. The simulation domain is about 9Dk. The full layer

width is to be understood as the layer width in which the

mode structure deviates from the MHD mode structure. If

we assume this layer width is about 5Dk ¼ 0:005qu (see the

/ mode structure of Fig. 4), then the value of Ak changes by

about 10% over the layer width. At larger electron mass, the

layer width is larger, and the constant-W approximation will

be violated by larger amounts. This explains the increasing

deviation from the theoretical scaling at larger electron mass

in Fig. 3.

B. Semi-collisional pure tearing mode

We now include an energy-dependent pitch-angle scat-

tering collision operator in the electron kinetic equation.

Collisions are implemented as scattering of the pitch-angle

of the simulation particle and as a source term in the particle

weight equation.3 The random change to the pitch-angle dur-

ing a time step is proportional to
ffiffiffiffiffiffiffiffiffi
�cDt
p

. For accuracy, this

random change must be much smaller than unity, which lim-

its the time step at large collision rates. The collisional PIC

algorithm is best suited for plasmas with weak collisions

(�c=xu � 10�2), such as in the core of present day tokamaks.

Drake and Lee12 have shown that tearing modes in such plas-

mas are usually in the semi-collisional regime.

The semi-collisional scaling of Eq. (3) has not been

observed in the previous gyrokinetic simulations.10 Typically

much weaker scaling such as c � �1=7 is observed. From the

above collisionless simulations, we already see that the con-

stant-W approximation can be easily violated even in the colli-

sionless regime. Collisions greatly broaden the tearing layer

width and make it more difficult for this approximation to be

valid. We have found it indeed very difficult to observe the

c � �1=3 scaling. However, collisions are very important for

tearing modes, and it is desirable to verify simulations with

Eq. (3) for a case where the analytic result is expected. We

therefore have carried out collision rate scan for equilibria with

three different sizes, namely, a ¼ 100qu; 200qu; and 370qu.

The grid resolution is ðNx;Ny;NkÞ ¼ ð128; 64; 64Þ, with 32

particles per cell. The size of the radial domain for the three

plasma sizes is varied, roughly in accordance with the expected

tearing layer width.

FIG. 3. Pure collisionless tearing mode growth rate vs. electron mass. Solid

line from Eq. (1). Points are from simulation, green with adiabatic ions, blue

with / ¼ 0. As the electron mass becomes small, the growth rate approxi-

mately scales as c � m1=2
e .

FIG. 4. Mode structure for the case of Fig. 3 with mp=me ¼ 29392 showing

that Ak changes by about 10% across the tearing layer.
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The results are shown in Figs. 5–7. For the small size

case, Fig. 5, a smooth transition from the collisionless re-

gime to the semi-collisional regime can be seen. Here “semi-

collisional” is used in a loose sense, it refers to any scaling

of the mode growth rate with the collision rate weaker than

the classical resistive tearing mode scaling. The theoretical

semi-collisional results, from Eq. (3), are shown in green

line. One might suspect that the simulation results will

approach theory if the collision rate is further increased, but

this is not done, as the eigenmode structure (not shown) al-

ready indicates that the constant-W approximation is broken

for the high collision rates in Fig. 5. Because of this, it is

impossible to estimate D0a from the simulation mode struc-

ture, and D0a ¼ 6 is used in the theoretical results of Fig. 5.

The collision rate scan for the case of a ¼ 200qu in Fig. 6

is more clearly separated from the collisionless limit and

shows an approximate power law scaling of c � �1=5
c , much

weaker than the theoretical scaling of c � �1=3
c . Similar weak

scaling has been reported in Eulerian simulations,10 where

toroidal effects are included and the choice of the grid size is

guided by the electron skin depth de ¼ c=xpe, much larger

than Dk and Dsc for the present cases. Since the present plasma

is strictly cylindrical, which is the same equilibrium used in

the analytical study,12 the disagreement with theory should not

be overlooked. This consideration leads to the simulation of a

plasma with a ¼ 370qu, roughly the size (in term of the minor

radius) of DIII-D, as shown in Fig. 7. It should be noted that

the simulation domain is very small for this case, Dr=a ¼
0:0027 or Dr ¼ qu. This is still larger than the semi-

collisional layer width, Eq. (4), which gives Dsc ¼ 0:75qu for

the largest collision rate in Fig. 7. Examination of the simula-

tion mode structure indicates that Ak changes by less than

10% across the tearing layer for all the cases in Fig. 7.

Simulation with such a small radial domain is possible only in

linear simulations with cylindrical (or slab) geometry, where

there is no particle radial motion. In toroidal geometry, a sig-

nificant amount of the electrons will drift across the radial

boundaries, and the simulation will be strongly affected by

boundary effects. The analytic results of Fig. 7 are obtained

with D0a ¼ 8:5 estimated from the simulation Ak mode struc-

ture. Fig. 7 shows good agreement between simulation and the

analytical results in the scaling behavior, and the numerical

values are also in reasonable agreement. This agreement pro-

vides an important verification of the collisional algorithm.

C. Collisionless drift-tearing mode

We now study the collisionless tearing mode with a

finite electron temperature gradient. The starting case is the

mp=me ¼ 14 696 case of Fig. 3 for the small plasma size of

a ¼ 50qu. The density profile is flat, but an electron tempera-

ture profile of the form

Te rð Þ ¼ T0 exp �a
d

LTe

tanh
s� s0

d

� �� �
(7)

is used, with s ¼ r=a; s0 ¼ 0:57735 at the q¼ 2 surface,

d ¼ 0:5, and LTe is the temperature scale length. With the

small simulation domain, this temperature profile yields nearly

a constant temperature and constant gradient in the simulation

domain. We vary the temperature scale length and compare

FIG. 5. Growth rate vs. collision rate for a plasma with a ¼ 100qu showing

the transition from the collisionless result (labeled “�¼ 0 theo”) to the semi-

collisional regime. The scaling with collision rate is weaker than the theoret-

ical prediction with D0a ¼ 6 (green).

FIG. 6. Growth rate vs. collision rate for a plasma with a ¼ 200qu, green

line from Eq. (3) with D0a ¼ 6.

FIG. 7. Growth rate vs. collision rate for a plasma with a ¼ 370qu, showing

agreement between simulation and theory with D0a ¼ 8:5 (green).
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the simulation frequency and growth rate with theory. The

results are shown in Fig. 8. The simulation mode frequency

with / ¼ 0 (blue points) agrees well with Eq. (5) (solid line).

The mode growth rate is insensitive to the temperature gradi-

ent for weak gradient values and approaches the pure tearing

mode growth rate (corresponding to LTe ¼ 1). This is also in

agreement with theory. The stabilization of the mode at lower

LTe values is again caused by the failure of the constant-W
approximation; as according to Eq. (6), the tearing layer width

of the drift tearing mode is proportional to x�T / 1=LTe. The

simulation results with adiabatic ions (green points) deviate

from the results with / ¼ 0 more drastically with a finite tem-

perature gradient. Compared with Fig. 3, the destabilization

effect of ions is more pronounced as the temperature gradient

increases. Moreover, the mode frequency becomes much

smaller and independent of the temperature gradient for small

LTe values. These observations suggest strong interaction

between the drift effect and the electrostatic potential.

We can summarize the simulation/theory comparison.

The theoretical analysis is based on the constant-W approxi-

mation. In general, weaker instability (narrower tearing layer

width) leads to better validity of this approximation. When

this approximation is valid, the main analytic results are all

verified.

IV. SUMMARY

The main purpose of this paper is verification. Direct

simulation of low-n tearing modes with fully kinetic elec-

trons is carried out for the first time with the particle-in-cell

df -method. Problems in various limits, such as strict cylin-

drical geometry, a thin radial domain, small electron mass,

and adiabatic ion responses, are used, so that the simulation

results can be directly compared with the analytic theory.

The constant-W approximation is heavily used in theoretical

studies. We have shown that, in cases of weak instabilities

where this approximation is valid, simulation results agree

with the theoretical predictions. The growth rate of the colli-

sionless tearing mode scales with the electron mass as

c � ffiffiffiffiffiffi
me
p

; in the semi-collisional regime, the growth rate

scales with the electron collision rate as c � �1=3
c ; and in the

collisionless drift tearing mode, frequency is proportional to

the drift frequency x�, with the growth rate insensitive to x�

for weak instabilities. All these are in agreement with the

theory. The global mode structure also agrees very well with

MHD eigenmode calculations, even if the tearing layer is not

sufficiently resolved. The experience gained from this study

will be a guide to future toroidal nonlinear simulations, in

choosing simulation parameters such as grid resolution, time

step, and the number of particles. Some conclusions can be

drawn based on the present study. It is impractical to carry

out radially global simulations of the collisionless tearing

modes due to the large number of radial grid points (assum-

ing uniformly spaced), similarly for the pure tearing mode in

the semi-collisional regime with low collisionality. One way

to alleviate the problem is to use a reduced radial domain, as

in most of the simulations in this paper. The boundary condi-

tions on the reduced domain are obtained from the external

solution that can be computed with fluid models. This

method is useful for the linear stage and the early nonlinear

stage where the island width is small. A natural solution to

the resolution problem is to use nonuniform radial grids, i.e.,

use fine grids only near the tearing layer. We will explore

this approach in the future.
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