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A second order implicit δ f Lorentz ion hybrid model with sub-cycling and orbit averaging 
has been developed to study low-frequency, quasi-neutral plasmas. Models using the full 
Lorentz force equations of motion for ions may be useful for verifying gyrokinetic ion 
simulation models in applications where higher order terms may be important. In the 
presence of a strong external magnetic field, previous Lorentz ion models are limited to 
simulating very short time scales due to the small time step required for resolving the 
ion gyromotion. Here, we use a simplified model for ion Landau damped ion acoustic 
waves in a uniform magnetic field as a test bed for developing efficient time stepping 
methods to be used with the Lorentz ion hybrid model. A detailed linear analysis of 
the model is derived to validate simulations and to examine the significance of ion 
Bernstein waves in the Lorentz ion model. Linear analysis of a gyrokinetic ion model is 
also performed, and excellent agreement with the dispersion results from the Lorentz 
ion model is demonstrated for the ion acoustic wave. The sub-cycling/orbit averaging 
algorithm is shown to produce accurate finite-Larmor-radius effects using large macro-
time steps sizes, and numerical damping of high frequency fluctuations can be achieved 
by formulating the field model in terms of the perturbed flux density. Furthermore, a 
CPU–GPU implementation of the sub-cycling/orbit averaging is presented and is shown to 
achieve a significant speedup over an equivalent serial code.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Modern research on low-frequency, ion-Larmor-radius scale fluctuations in magnetized plasmas is based on gyrokinetic 
ion models. One advantage for using gyrokinetic ion models, as opposed to models using the full Lorentz force equations of 
motion, is that the analytical elimination of the ion gyration time-scale in gyrokinetic models relaxes time step size con-
straints in numerical implementations. Additionally, gyrokinetic simulations accurately model k⊥ρi ∼ O (1) effects without 
introducing noise associated with ion Bernstein waves, where k⊥ is the wavenumber perpendicular to B and ρi is the ion 
gyroradius. Gyrokinetic theory, however, is based on a number of ordering assumptions which must hold to ensure the 
accuracy of the model. In certain applications where gyrokinetic ordering assumptions may be in questions, for example, in 
the tokamak edge pedestal region where gradient scale lengths can be comparable to the ion-Larmor-radius, higher order 
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terms may be important. Extending gyrokinetic ion models for such applications, however, can be non-trivial and can lead 
to challenging numerical implementations [1–4].

There has been recent interest in developing models using the full Lorentz force equations of motion for ions [5–7]. 
Such models offer formal simplicity over gyrokinetic models and can provide an important validation tool or replacement 
for gyrokinetic ion models in applications where higher order terms may be important. Since time step size restrictions in 
simulation models which include kinetic electrons often require modern gyrokinetic codes to be run with time step sizes 
�i�t ∼ 1, the use of models which fully resolve the ion gyromotion may be feasible without a large increase in computa-
tional effort. Furthermore, recent efforts in optimizing particle-in-cell (PIC) algorithms for modern computing architectures, 
such as graphics processing units (GPUs), holds promise for handling the more expensive particle integration of the Lorentz 
ion model [8–11].

In this paper, we explore an implicit orbit averaging/sub-cycling (OASC) time stepping algorithm which may be useful for 
extending the ability of Lorentz force ion models to simulate longer time scales. This algorithm is shown to accurately pro-
duce finite-Larmor-radius (FLR) effects at perpendicular wave numbers k⊥ρi ∼ O (1) while advancing the fields on a macro 
time step �T larger than that required to resolve the ion gyromotion. The accuracy of the ion gyromotion is preserved by 
sub-cycling the computational particles on a micro time step �t chosen such that �i�t � 1. The algorithm is applied to 
a model problem for ion Landau damped ion acoustic waves in a magnetized plasma. This model problem may be easily 
extended to model the ion temperature gradient (ITG) instability in slab geometry as in [7]. Linear theory for the model 
is derived to validate simulation results. Comparisons are also made with a linear dispersion relation obtained from the 
analysis of a gyrokinetic ion model. The dispersion results show very good agreement between the two models for the low 
frequency ion acoustic wave.

A notable effect in simulations using Lorentz force ions is the introduction of ion Bernstein waves near harmonics 
of the ion gyro-frequency [12,13]. These are electrostatic normal modes, which are analytically eliminated in gyrokinetic 
models, but are present when full ion dynamics are included. Linear theory based on the Laplace transform method is 
presented to determine the amplitudes of the normal modes relative to the initial perturbation size. The theory predicts ion 
Bernstein wave amplitudes which are comparable to the ion acoustic wave amplitude. Since the ion Bernstein waves are 
not damped, their presence in simulations may be undesirable for studies of low-frequency fluctuations. It is demonstrated 
that formulating the electrostatic field equation in terms of the ion particle flux density results in numerical damping for 
the ion Bernstein waves.

This paper is organized as follows. In Section 2, our model problem for ion Landau damped ion acoustic waves in a 
magnetized plasma is presented. Section 3 gives the linear theory for the model problem, including an analysis to derive 
information on the amplitudes of the normal modes. Section 4 gives the numerical methods used in our simulation model. 
In Section 5, simulation results are presented to demonstrate the numerical propertied of the implicit OASC algorithm and 
the accurate production of FLR effects at large macro time step sizes. Here, a comparison with the gyrokinetic ion model is 
also presented. A hybrid CPU–GPU implementation of our simulation model is discussed in Section 6 and is shown to achieve 
a speedup factor of ∼ 48 compared to an equivalent serial CPU implementation. Section 7 contains further discussion and a 
summary.

2. Kinetic model for magnetized ion acoustic waves

Here we introduce the equations for the ion Landau damped ion acoustic wave model. We consider a uniform equilib-
rium distribution ∇ f0 = 0 in a straight, uniform magnetic field B = B0 ẑ and a self generated electrostatic field E = −∇φ, 
where φ is the electrostatic potential. The model is 2D-3V, meaning it is defined over two spatial dimensions and three 
velocity dimensions. The spatial dependence of quantities is over the two dimensional domain (y, z) ∈ [0, L⊥) × [0, L‖) and 
periodicity is assumed in both y and z outside the domain with periods L⊥ and L‖ respectively. The velocity dependence 
of quantities is over (vx, v y, vz) ∈R

3. The ion distribution function f i is taken to follow the Vlasov equation:

∂ f i

∂t
+ v · ∇ f i + qi

mi
(E + v × B) · ∇v f i = 0, (1)

where qi and mi are the ion charge and mass respectively. The electrons are assumed to be adiabatic, with number density 
ne following:

ne = n0

(
1 + eφ

Te

)
, (2)

where n0 is the equilibrium density, e is the electron charge, and Te is the electron temperature. Finally, quasi-neutrality is 
assumed:

n ≡ ne = ni =
∫
R3

f idv. (3)

Equations (1)–(3), along with the periodicity assumptions form a closed model. In particular, Eq. (1) can be solved for the 
ion distribution function f i , Eq. (3) then used to provide an electron number density ne , and finally Eq. (2) provides a way 
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to calculate φ. A Maxwellian equilibrium distribution is taken, in which case the normal modes of the model are a low 
frequency, magnetized ion acoustic waves and high frequency ion Bernstein waves.

3. Linear analysis of the model problem

The linearized Vlasov equation is

∂δ f

∂t
+ v · ∇δ f + (v × �i) · ∇vδ f = − qi

mi
E · ∇v f0, (4)

where the full ion distribution function is given as f i = f0 + δ f and we have defined �i = qi B0/mi ẑ. We consider a 
Maxwellian equilibrium distribution function

f0(v) = n0

(2π)3/2 v3
th

e
− |v|2

2v2
th , (5)

where vth is the ion thermal velocity. The field model couples to Eq. (4) through the perturbed number density δn. We 
have

eφ

Te
= δn

n0
= 1

n0

∫
R3

δ f dv. (6)

3.1. Model parameters

An analysis of the model equations shows that there are three dimensionless parameters which determine the behavior 
of the system. These are the parallel and perpendicular system lengths normalized by the thermal ion gyroradius

L‖
ρi

,
L⊥
ρi

, (7)

and a ratio involving charges and temperatures

θ ≡ qi Te

eTi
. (8)

We define the thermal ion gyroradius by ρi = vth/�i and the ion temperature by Ti = mvth . For the linear analysis, we are 
interested in the propagation of plane waves through the plasma, assuming spatial and time dependent quantities vary as:

ψ(x, t) = ψ̃(k,ω)ei(k·x−ωt) (9)

where k = k‖ ẑ+k⊥ ŷ is the wave number and ω is the frequency, which may be complex valued. In this case, it is convenient 
to use the parameters k‖ρi and k⊥ρi in place of the first two. We consider cases where k‖ρi � 1 and k⊥ρi ∼ O (1) in order 
to work in a regime where the validity of gyrokinetic ion models should overlap with the Lorentz ion model. A rough 
estimate for the time scale separation is also determined by these parameters. Defining the ion sound speed by c2

s ≡
qi Te/eTi , the time scale for an ion acoustic wave propagating nearly parallel to B is then roughly csk‖ . The ion gyromotion 
and Bernstein waves evolve on the time scale of �i . In terms of our parameters, we have

√
θk‖ρi = csk‖

�i
� 1. (10)

3.2. Linear theory

The normal modes for the system are studied for the linearized model. The resulting dispersion relation is given by

ε(k,ω) = 1 − θ

2

∞∑
n=−∞

Z′
(

ω/�i + n√
2k‖ρi

)
In(k

2⊥ρ2
i )e−k2⊥ρ2

i = 0 (11)

where Z is the plasma dispersion function of Fried and Conte [14] and In is the nth modified Bessel function of the first 
kind. The solutions of Eq. (11) give the normal modes of the model, which include a low-frequency, ion Landau damped ion 
acoustic wave and undamped ion Bernstein waves near harmonics of the ion gyro-frequency. The ion Bernstein waves are 
a unique feature of the full Lorentz ion model and are not present in gyrokinetic ion models. In our numerical simulations 
with finite k⊥ρi , it was found that the Bernstein waves had amplitudes comparable to the ion acoustic wave. Since the 
Bernstein waves are undamped, they were found to quickly become dominant in the time histories of φ. To validate that 
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Fig. 1. Contour deformation for obtaining Eq. (15). The figure on the left (a) illustrates the original contour used in the inverse Laplace transform. The figure 
on the right (b) illustrates the deformed contour.

this feature of our simulations was consistent with the continuous model, we have further developed the linear theory 
using the Laplace transform in time.

The linear system is studied as an initial value problem using the Laplace transform to determine the amplitudes of each 
normal mode. The Laplace transform method applied to the one dimensional Landau problem as an initial value problem is 
presented in a number of plasma physics texts. See for example, Chapter 8 of [15]. The initial condition for the perturbed 
distribution function is taken to be

δ f (x,v, t = 0) = A0 f0(v)eik·x. (12)

The Laplace transform pair for a time dependent quantity ϕ(t) is

ϕ(p) =
∞∫

0

ϕ(t)e−ptdt, ϕ(t) = 1

2π i

σ+i∞∫
σ−i∞

ϕ(p)eptdp (13)

where p is complex valued and σ can be chosen as any real number which is to the right of all singularities of ϕ(p) in 
the complex p-plane. The complex variable p is related to the complex frequency of a plane wave ω simply by p = −iω. 
Equations (4)–(6) with an initial condition given by Eq. (12) can be solved for the transformed electrostatic potential. The 
solution of the Laplace (in time) and Fourier (in space) transformed electrostatic potential in terms of p is

eφk

Te
(p) = A0

i
√

2k‖ρi

∞∑
n=−∞

Z

(
ip/�i+n√

2k‖ρi

)
In(k2⊥ρ2

i )e−k2⊥ρ2
i

ε(k, ip)
. (14)

The time dependent solution of the electrostatic potential can be obtained from the inverse Laplace transform of Eq. (14), 
which is given by the contour integral in Eq. (13). The evaluation of this contour integral is simplified by deforming the 
contour of integration as shown in Fig. 1 with a possible set of poles of φk(p), corresponding to the zeros of ε(k, ip). 
Justification for the contour deformation is given in Appendix B.

By examining the deformed contour in Fig. 1(b), the time dependent solution of the electrostatic potential can be written 
as

eφk

Te
(t) =

∑
j

A je
p jt + 1

2π i

⎛
⎝ −α−i∞∫

σ−i∞

eφk

Te
(p)eptdp +

−α+i∞∫
−α−i∞

eφk

Te
(p)eptdp +

σ+i∞∫
−α+i∞

eφk

Te
(p)eptdp

⎞
⎠ (15)

where {p j} in the first term are the simple roots of ε(k, ip), and

A j = Res

[
eφk

Te
(p), p j

]
. (16)

The main contribution in Eq. (15) comes from the first term. Provided that φk(p) decays rapidly as Im(p) → ±∞, the 
second and fourth terms in Eq. (15) will vanish. Furthermore, the third term becomes exponentially small compared to the 
contributions from the poles as t → ∞, leaving the normal modes given by the first term as the time asymptotic solution. 
In Section 5, we numerically solve for the amplitudes of the normal modes relative to the initial perturbation size A0
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and compare with the amplitudes found in our simulations. This is accomplished by first solving the dispersion relation 
Eq. (11) numerically for the complex frequencies and then evaluating the corresponding residues in Eq. (16) to obtain the 
amplitudes A j .

4. Numerical methods

A number of numerical methods are used to obtain stable, accurate, and low noise simulations of the low frequency 
ion acoustic wave at large time step sizes. Key features of our 2D-3V simulation model include the δ f method which 
reduces discrete particle noise levels by solving for small perturbations from a Maxwellian equilibrium, a perturbed flux 
density formulation of the field model which introduces numerical damping of high frequency modes, orbit averaging and 
sub-cycling (OASC) using separate time step sizes for the particles and fields, a second order implicit integrating scheme to 
advance the particle orbits and weight equations, and a Picard iterative process to solve the implicit equations.

4.1. δ f method

The δ f method is utilized, which is effective in reducing discrete particle noise by solving for departures from an 
known equilibrium distribution [16–20]. The assumption is made that f can be separated into a known, time independent 
equilibrium part and an unknown perturbed part as f = f0 + δ f . Particle weights are defined for each computational 
particle as w p = δ f p/ f p ≈ δ f p/ f0p , where the subscript p indicates an evaluation at the phase space location of particle p. 
The particle weights evolve according to the weight equation, which for linear simulations is

dw p

dt
= − qi

mi
Ep · ∇vp ln f0 p . (17)

For the linear δ f scheme, the particles’ phase space locations evolve according to their equilibrium trajectories:

dxp

dt
= vp (18)

dvp

dt
= vp × �i (19)

Once the particle weights and phase space locations are known, the perturbed number and flux densities at grid point X j
can be calculated as follows:

δn j = 1

|�X|
∑

p

w pS(X j − xp) (20)

δ(nu) j = 1

|�X|
∑

p

w pvpS(X j − xp) (21)

where |�X| is the cell size and S is the “shape” function [21], which we take to be linear splines.

4.2. Field equation formulations

Recent numerical analysis of implicit δ f models has shown that numerical damping can depend on the velocity moments 
used in the field model equations [22]. Here, we consider two formulations of Eq. (6) to be used in the simulation model. 
These formulations are equivalent in the continuous limit �X → 0, �t → 0 but exhibit different properties in the discrete 
models. The first formulation uses the perturbed number density directly, and the second formulation uses the continuity 
equation to give the field model in terms of the perturbed flux density. We will refer to these formulations as the perturbed 
number density form (PND) and the perturbed flux density form (PFD). Simulation results presented in Section 5 show that 
the PFD form introduces numerical damping of the ion Bernstein waves, where as, the PND form leaves the Bernstein waves 
undamped. For the PND form, we have simply

eφν
j

Te
= δnν

j

n0
, (22)

where ν is the time step index. To derive the PFD form, the partial derivative with respect to time is taken in Eq. (6) and 
the continuity equation is used to give

∂

∂t

(
eφ j

Te

)
= −∇ · δ(nu) j

n0
(23)

Our baseline time stepping method for the PFD form, without OASC, uses the trapezoidal rule to discretize Eq. (23) in time 
as
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eφν
j

Te
= eφν−1

j

Te
− �t

2

(
∇ · δ(nu)νj + δ(nu)ν−1

j

n0

)
(24)

where the divergence is taken spectrally in Fourier space. The electric field for both field models is also computed by 
taking the gradient of φν spectrally from the discrete Fourier transform. Simulation results using these two field equation 
formulations are presented in Section 5.

4.3. Baseline time stepping algorithm

Our baseline time stepping algorithm to which we apply OASC uses a second order implicit scheme to advance the par-
ticle positions, velocities, and weight equations. Our motivation for using implicit schemes is for the greater stability that is 
generally offered. In the process of designing our numerical schemes, we keep in mind future applications using more com-
plex models that may involve higher frequency modes posing severe constraints on the time step size for explicit schemes. 
For example, in [6], it is known that the compressional Alfven wave can be the source of a numerical instability when it 
is not well resolved. This can be restrictive since ω/�i � 1 in low-β plasmas. The following implicit time discretization 
scheme is applied to the ion equations of motion and weight equation to address these difficulties

xν = xν−1 + �t

2

(
vν + vν−1

)
(25)

vν = R · vν−1 (26)

wν = wν−1 − �t

2

[
Gν(xν,vν) + Gν−1(xν−1,vν−1)

]
. (27)

In Eq. (26), the rotation matrix R is defined as

R =
⎡
⎣ cos (�i�t) sin (�i�t) 0

− sin (�i�t) cos (�i�t) 0
0 0 1

⎤
⎦ (28)

which produces the correct gyrophase at each time step, and in Eq. (27) we have

Gν = q

m
Eν(xν) · ∇vν ln f0(vν), (29)

where the evaluation of the electric field at a particle’s position is performed through interpolation as

Eν(xν) =
∑

j

Eν
j S(X j − xν). (30)

The velocity advance may be extended for nonlinear simulations by including half accelerations due to Eν−1(xν−1) and 
Eν(xν) before and after the rotation, respectively, similar to the Boris push [23,21]. Modification to the weight equation is 
also needed for nonlinear simulations as in [16].

4.4. Orbit averaging and sub-cycling

For the OASC scheme, the electric field and the computational particles are advanced on separate time steps [24]. The 
long term goal of this research is to model low frequency (ω � �i ) well magnetized plasma physics where gyrokinetics is 
applicable using a direct Lorentz force method. The main issue at hand is to accurately model the ion FLR effects without 
including the ion Bernstein waves which are a source of high frequency noise. Because we are interested in low frequency 
phenomena, we will sub-cycle to resolve the ion cyclotron motion, then orbit-average numerically to accurately resolve ion 
FLR effects. Orbit averaging and sub-cycling have been explored previously in the context of multi-scale implicit PIC. Besides 
the seminal orbit-averaging work of B. Cohen and co-workers [25,24,26], a multi-scale method was developed to advance 
particles depending on their local accuracy in phase space [27,28]. More recently an exact charge and energy-conserving 
scheme incorporates a “sub-stepping” in time algorithm to avoid particles tunneling through an electrostatic potential bar-
rier and improves momentum conservation [29,10,30]. In our algorithm, the micro time step �t is used to resolve the fast 
gyromotion of the ions and the macro time step �T is used to resolve the low-frequency fields. These are chosen such that 
�i�t � 1, �i�T � 1, and �T /�t = M for M ∈ N. The particle trajectories and weights are sub-cycled on the micro time 
step according to Eqs. (25)–(29) where Eν is replaced with E(N,ν) for 1 ≤ ν ≤ M − 1. We define E(N,ν) as the electric field 
interpolated in time to the micro time step t(N,ν) from the fields defined at the macro time steps tN−1 and tN . A simple 
linear interpolation is used

E(N,ν) = (1 − ν
)EN−1 + ν

EN . (31)

M M
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Fig. 2. Illustration of the OASC algorithm. Particle quantities (x, v, w) are advanced on the micro time steps using a time interpolated electric field. The flux 
density δ(nu) is deposited from the particles at each micro time step to obtain the orbit averaged flux density 〈δ(nu)〉, which is used to advance φ over 
the macro time step.

The orbit averaging scheme is derived for the flux form of the field equation Eq. (23). Integrating Eq. (23) between macro 
time steps tN−1 and tN , we have

eφN

Te
= eφN−1

Te
− ∇ ·

tN∫
tN−1

δ(nu)

n0
dt. (32)

The integral on the right hand side is then approximated using the composite trapezoidal rule

tN∫
tN−1

δ(nu)dt ≈ �T

2M

(
δ(nu)N−1 + 2δ(nu)(N,1) + 2δ(nu)(N,2) + . . . + 2δ(nu)(N,M−1) + δ(nu)N

)
, (33)

where the perturbed flux densities δ(nu)(N,ν) are deposited using particle trajectories and weights on the micro time 
step t(N,ν) . We will refer to the right hand side of Eq. (33) as the orbit averaged flux density and denote it as 〈δ(nu)〉N−1/2. 
In this notation, our discretized field model is

eφN

Te
= eφN−1

Te
− ∇ · 〈δ(nu)〉N−1/2. (34)

The OASC algorithm is illustrated in Fig. 2. Note that the OASC algorithm reduces to the baseline time stepping algorithm 
with the PFD form of the field equation when M = 1.

4.5. Solution method for the implicit equations

The OASC scheme is implicit and therefore requires the self consistent solution of the particles and electric field at the 
macro time step tN . There has been recent progress made in efficient solution methods for fully implicit PIC. These efforts 
have focused on the use of Jacobian-free Newton–Krylov (JFNK) solvers [31,32,29] and preconditioning to accelerate the 
convergence of the GMRES iterations [33]. The use of a JFNK solver has not been explored in this work but may hold future 
promise for increased computational efficiency of the algorithm. For our simulation model, we adopt a Picard iteration 
scheme to solve the implicit equations. An initial guess is made for φN and successive corrections to φN are made by 
repeatedly advancing the sub-cycled particle system. This process is carried out until the L2 norm of the residual in Eq. (34)
is reduced to a specified tolerance. For our simulations, we have taken both the absolute and relative tolerances to be 
5.0 × 10−7. For the initial guess, we take the value of φ at the previous time step. In the tests performed in Section 5, the 
Picard scheme typically converged in 4–8 iterations, with the number of iterations increasing as expected with larger values 
of �T and k⊥ρi .

5. Simulation results

To demonstrate the numerical properties of the algorithms discussed in Section 4 applied to the Lorentz ion model, 
linear simulations are performed and compared to the theory derived in Section 3. Of interest are the use of the PFD form 
to damp the high frequency ion Bernstein waves, the accurate production of FLR effects in the OASC algorithm, and the 
effects of the sub-cycling parameter M in producing accurate simulations over long time scales.
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Fig. 3. Amplitudes from simulations using the PND form of the field model are compared to theory for the ion acoustic wave, AIAW , and the first three 
Bernstein waves, (AB1, AB2, AB3). The amplitudes are given relative to the initial perturbation size, A0.

5.1. Effects of the field equation formulation on ion Bernstein waves

A notable feature of the Lorentz ion simulation model is the presence of ion Bernstein waves near harmonics of the 
ion gyrofrequency, which are superimposed on the ion acoustic wave. Although consistent with the physical model, these 
are undamped high frequency modes and their presence may be undesirable for studies of low frequency phenomena. In 
addition, Berstein waves are eliminated in gyrokinetic models, which may cause difficulty for comparisons with Lorentz ion 
models. In simulations using the PND form of the field model, ion Bernstein waves with large amplitudes were found to be 
present for finite k⊥ρi and to quickly obscure the low frequency ion acoustic wave as this parameter was increased.

In Fig. 3, simulations are performed using the PND form of the field model. The amplitudes for the ion acoustic wave 
and the first three Bernstein waves are measured relative to the initial perturbation size A0 for increasing values of k⊥ρi
and compared to the theoretical amplitudes from Eq. (16). We use the model parameters θ = 5 and k‖ρi = 6.28 × 10−3. 
The simulations are performed using the baseline time stepping algorithm from Section 4.3 with 131072 computational 
particles, a mesh size of ny × nz = 16 × 32, and a time step size �i�t = 0.125. Both theory and simulations, using the PND 
form of the field model, show Bernstein waves with amplitudes comparable to or exceeding that of the ion acoustic wave 
for finite k⊥ρi .

In Fig. 4, we compare simulations at k⊥ρi = 0.3 between the PND and PFD forms of the field model. The physical and 
numerical parameters are taken the same as in Fig. 3. The time history of the first Fourier mode is plotted, demonstrating 
the numerical damping of the ion Bernstein waves which is achieved only for the PFD form. The difference in the numerical 
behaviors of the two field model formulations is consistent with the numerical analysis in [22]. In this paper, it is shown 
that numerical dissipation which is normally present when using implicit schemes can be absent in the δ f method when 
the field model used contains only the perturbed number density as a source term.

5.2. FLR effects for the orbit averaging/sub-cycling algorithm

An important measure of success for the OASC algorithm is the ability to accurately model FLR effects at large time step 
sizes. This is demonstrated for the ion acoustic wave using the model parameters θ = 5, k‖ρi = 1.61 × 10−3 and scanning 
over values of k⊥ρi ∼ O (1). For these simulations, we use 262144 computational particles, a mesh size of ny ×nz = 64 × 64, 
a macro time step size of �i�T = 0.75, and sub-cycling parameter M = 18, which corresponds to a micro time step size of 
�i�t = 4.17 × 10−2. In Fig. 5, the dispersion results of the simulations are compared to the exact linear dispersion theory 
for the Lorentz ion model given by Eq. (11). Comparisons are also made with the linear dispersion theory for a gyrokinetic 
ion model, which is presented in Appendix A. The simulations show excellent agreement with the Lorentz ion dispersion 
theory using a macro time step size larger than that required to resolve the gyromotion of the ions. Furthermore, the 
dispersion relation for the gyrokinetic ion model yields nearly identical results to that of the Lorentz ion model for the ion 
acoustic wave.

5.3. Effects of the sub-cycling parameter

In order to produce accurate simulations over long time scales, sufficient resolution of the ion gyromotion on the micro 
time step is necessary. Convergence tests are performed, varying the sub-cycling parameter, M . In the first test, the macro 
time step is kept fixed at �i�T = 1.0 and the sub-cycling parameter, M , is increased from M = 1, which corresponds to 
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Fig. 4. Time histories of the first Fourier mode amplitude of φk . The PND form is used on the left and the PFD form is used on the right. Numerical damping 
of the ion Bernstein waves occurs only for the PFD form of the field model, leaving a clean simulation of the low frequency ion acoustic wave.

Fig. 5. Dispersion results showing FLR effects on the ion acoustic wave using the parameters θ = 5.0, k‖ρi = 1.61 × 10−3, �i�T = 0.75, and M = 18 in the 
OASC algorithm. Data points obtained by solving the gyrokinetic dispersion relation given in Appendix A are also shown.

the baseline time stepping algorithm (without OASC) over the macro time step, up to M = 16 which well resolves the ion 
gyromotion. The time histories of the first Fourier mode amplitude of φ for increasing values of M in the first test are given 
in Fig. 6(a). As expected, the quality of the simulations improves as the sub-cycling parameter is increased. When M is 
taken too small, large inaccuracies in the simulations develop quickly in time. In the second test, the micro time step size is 
kept fixed at �i�t = 6.25 × 10−2 and M is increased to give larger values for the macro time step. The time histories of the 
first Fourier mode amplitude of φ for increasing values of M in the second test are given in Fig. 6(b). It is observed that the 
time histories are nearly identical in each case, demonstrating the robustness of the algorithm for large macro time steps, 
provided there is sufficient resolution at the micro time step. For both tests, the same model parameters, particle number, 
and mesh size are used as in Fig. 5 and k⊥ρi = 0.4.

6. CPU–GPU implementation

One promising aspect of the OASC algorithm presented here is that it is amenable to implementation on hybrid archi-
tecture utilizing graphics processing units (GPUs) or many integrated core co-processors. The reason for this is that the 
particle pushing over the micro time steps and the orbit averaging can be done locally on the GPU. The resulting velocity 
moments can be copied to the CPU memory where a global field solve is done. This eliminates the need for communication 
of particle data between the CPU and GPU. Many applications of gyrokinetic simulation are for situation where �i�t ∼ 1. 
Additionally, the direct Lorentz ion method presented here can take advantage of hybrid architectures, as we show below. 
Similarly [10] implemented their energy and charge conserving scheme with sub-stepping and saw speedups over a factor 
of 100 compared to an equivalent serial CPU implementation. To demonstrate the feasibility of utilizing hybrid architectures 
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Fig. 6. Time histories of the first Fourier mode amplitude of φk . On the left (a), the macro time step size is fixed at �i�T = 1.0 and the sub-cycling 
parameter M is increased to improve accuracy for long time periods. On the right (b), the micro time step size is fixed at �i�t = 6.25 × 10−2 and M is 
increased to give a larger macro time step size.

with sub-cycling and orbit averaging, we have implemented our test bed code on one node of the Titan supercomputer 
at Oak Ridge National Laboratory. We note this is simply a first step to show the promise of the algorithm. Many node 
parallelization using MPI is not implemented. Future implementations of the algorithm for solving more realistic turbulence 
problems will require many nodes (> 100). We also note that MPI optimization is well understood and widely used in PIC 
codes.

Our CPU–GPU version of the OASC algorithm is implemented in single-precision using CUDA Fortran. Interpolation of 
field values, particle pushes, and deposits are all performed locally on the GPU, and the field solve is performed on the CPU. 
The particle data is deposited to arrays stored in global memory using the atomicadd function to avoid race conditions, 
which can occur when more than one thread simultaneously tries to access the same memory location [34]. Although 
the use of atomic functions can delay the parallel executions in the code, the reduced communication cost between the 
device and host which is gained by keeping the particle data on the GPU outweighs the serialization that results from the 
atomic additions. Optimizations to the deposits, including the use of particle sorting, storing multiple copies of the domain 
in shared memory, and partitioning the grid space into “tiles” have been explored in [11,10]. As a first step in utilizing 
GPUs, we focus on simplicity of implementation; however, these optimizations are promising for future work to reduce the 
run-time of the deposit phase in our algorithm.

To benchmark the CPU–GPU implementation, we compare run-times between the single-precision CPU–GPU code and 
an equivalent single-precision serial CPU code running on the Titan supercomputer. Both codes are compiled with the 
PGI 15.3.0 compiler using the -fast optimization flag. The GPU used is an NVIDIA Tesla K20X, which utilizes the NVIDIA 
KeplerTM architecture and has a peak theoretical compute performance of 3.95 TFLOPs in single-precision. The host machine 
is a 16-core 2.2 GHz AMD OpteronTM 6274 processor, for which one core is utilized for both the CPU–GPU and CPU serial 
implementations.

In Fig. 7, the time per particle per sub-cycle is reported in nano-seconds for the CPU–GPU and CPU serial codes as 
the number of particles is increased. The test problem uses parameters θ = 5.0, k‖ρi = 1.61 × 10−3 and k⊥ρi = 0.4. The 
mesh size is ny × nz = 64 × 64, and the time step size is �i�t = 6.25 × 10−2 for a sub-cycling parameter M = 1, which 
corresponds to the baseline time stepping algorithm. The largest speedup observed is a factor of 46.9 when 222 particles 
are used.

In Fig. 8, we examine the effects of the sub-cycling parameter, M , on the run-time of the two implementations. We run 
with a macro time step size of �i�T = 0.75 for 217–219 particles, keeping all other parameters the same as for Fig. 7. 
An additional speedup is observed in the CPU–GPU code as M is increased, due to the increased amount of computation 
that can be performed on the GPU per communication to the CPU. This speedup is more significant for lower numbers 
of particles, for example, when using 217 particles, a speedup factor of 3.9 is observed in the CPU–GPU code for M = 32
compared to M = 1. The serial CPU code; however, is near peak performance for all tests shown in Fig. 8. The largest 
speedup factor observed between the CPU–GPU and serial CPU codes when increasing M is 47.9 for 219 particles at M = 32.

7. Summary and conclusions

In this study, we have explored an implicit δ f particle-in-cell method with orbit averaging and sub-cycling algorithm, 
which is applied to a magnetized plasma simulation model for ion acoustic waves using the full Lorentz force equations of 
motion for the ions. This algorithm shows promise to extend efforts in the development of direct Lorentz force methods to 
model low frequency phenomena in well magnetized plasmas. In particular, we were able to produce accurate FLR effects 
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Fig. 7. Benchmarks of the CPU–GPU and serial CPU implementations. The test problem uses sub-cycling parameter M = 1, which corresponds to the baseline 
time stepping algorithm. A speedup factor of 46.9 is observed for 222 particles.

Fig. 8. The sub-cycling parameter, M , is increased and an additional speedup is observed for the CPU–GPU code. The serial CPU code is near peak perfor-
mance.

over long time scales in our simulations using a full Lorentz force ion model. Additionally, theory has been derived to study 
the significance of ion Bernstein waves in our model. Ion Bernstein waves are of interest, since they are unique to models 
using the full Lorentz force equations of motion and are analytically eliminated from gyrokinetic ion models. It is found that 
the ion Bernstein waves can have a significant effect on simulations, however, numerical damping can be introduced to the 
ion Bernstein waves when the field equation is formulated in terms of the perturbed flux density in the δ f method. This 
can be beneficial for simulations of low-frequency fluctuations, since the ion Bernstein waves have significant amplitudes 
for finite k⊥ρi , and can obscure physics on longer time scales. Finally, a CPU–GPU implementation of the OASC algorithm 
has been developed and has achieved a speedup by a factor of ∼ 48 compared to an equivalent serial CPU only code. Low 
communication between the CPU and GPU can be achieved by transferring only grid quantities, making the OASC algorithm 
well suited to implement on hybrid architectures. Our testbed model of the ion acoustic wave is of interest, since a similar 
model has been used in the study of the ITG instability in slab geometry [7]. Extending the OASC algorithm to simulate the 
ITG instability in a toroidal flux tube geometry will be the subject of future work.
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Appendix A. Gyrokinetic dispersion relation

We consider a gyrokinetic model similar to Eq. (1) in order to compare the linear theory with that of the Lorentz ion 
model. For the gyrokinetic model, we consider the ion guiding center distribution function f i(R, μ, u‖, t), where R is the 
guiding center coordinate, μ is the magnetic moment, and v‖ is the velocity component parallel to the magnetic field. 
The gyrokinetic Vlasov equation [35] for f i written in these coordinates and keeping only the terms relevant for a straight, 
uniform B field is

∂ f i

∂t
+

(
v‖b̂ + Ē × b̂

B

)
· ∂ f i

∂R
+ qi

mi
Ē · b̂

∂ f i

∂v‖
= 0, (A.1)

where Ē is defined in terms of a gyroaveraging operator as

Ē(R) = 1

2π

∮
E(x = R − ρ)dρ, (A.2)

and ρ is parameterized by the gyrophase as

ρ =
√

2Bμ

�i

(
sinϕ x̂ + cosϕ ŷ

)
(A.3)

for 0 ≤ ϕ < 2π . The gyrokinetic quasi-neutrality condition is

ne(x) = n̄i(x) − qi

Ti

(
φ(x) − φ̃(x)

)
, (A.4)

where

n̄i(x) = 1

2π

∮ ⎛
⎝ ∞∫

0

∞∫
−∞

f i(R = x − ρ, v‖,μ)dv‖Bdμ

⎞
⎠dρ (A.5)

and

φ̃(x) = 1

2π

∮
φ̄(R = x − ρ)dρ (A.6)

φ̄(R) = 1

2π

∮
φ(x = R + ρ)dρ. (A.7)

We assume an adiabatic response for the electrons as Eq. (2) to solve for the electrostatic potential. Taking f i = f0 + δ f , 
with

f0(v‖,μ) = n0

(2π)3/2 v3
th

e
− v2‖

2v2
th e

− Bμ

v2
th (A.8)

and linearizing, we have

∂δ f

∂t
+ v‖b̂ · ∂δ f

∂R
= − qi

mi
Ē · b̂

∂ f0

∂v‖
. (A.9)

To derive the gyrokinetic dispersion relation, we take a plane wave ansatz for all spatial and time dependent quantities and 
use the following identities when evaluating the gyroaveraging operators:

1

2π

2π∫
0

eia cos ϕdϕ = 1

2π

2π∫
0

eia sin ϕdϕ = J0(a) (A.10)

where J0 is the zeroth Bessel function of the first kind. The resulting dispersion relation for the gyrokinetic model is given 
by

ε(k,ω) = 1 − θ

2
Z′

(
ω/�i√

2k ρ

)
I0(k

2⊥ρ2
i )e−k2⊥ρ2

i + θ
(

1 − I0(k
2⊥ρ2

i )e−k2⊥ρ2
i

)
= 0. (A.11)
‖ i
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The first two terms are identical to the first two terms of Eq. (11), and the third term is O (k2⊥ρ2
i ), coming from the 

polarization response in the quasi-neutrality condition. Ion Bernstein waves are no longer present in the gyrokinetic model. 
The gyrokinetic dispersion relation is solved numerical to make comparisons to the Lorentz ion model in Fig. 5.

Appendix B. Justification for contour deformation in the inverse Laplace transform

The justification for the contour deformation used to obtain Eq. (15) follows from the analyticity of the function G
defined by the sum

G(u;a,b) =
∞∑

n=−∞
Z(u + an)In(b)e−b, (B.1)

where u is a complex variable and a and b are real parameters. Here Z is the plasma dispersion function of Fried and Conte, 
which is analytic over the whole complex plane, and In is the nth modified Bessel function of the first kind. To prove the 
analyticity of G , we begin with the following lemma.

Lemma B.1. The plasma dispersion function is bounded by a function depending only on Im(w) as

|Z(w)| ≤ 2(1 + √
πeIm(w)2

) (B.2)

for all w ∈C.

Proof. We begin with an integral definition for Z, which is valid for all complex arguments

Z(w) = 2ie−w2

iw∫
−∞

e−t2
dt. (B.3)

Setting w = x + iy and taking the contour to be the straight path from w = −∞ to w = −y along the real axis, joined with 
the straight path from w = −y to w = −y + ix parallel to the imaginary axis, we have

Z(x + iy) = 2ie−(x+iy)2

⎛
⎝ −y∫

−∞
e−s2

ds + i

x∫
0

e−(y−is)2
ds

⎞
⎠ . (B.4)

From this expression, the following bound is readily obtained:

|Z(x + iy)| ≤ 2

−y∫
−∞

e y2−s2
ds + 2

|x|∫
0

es2−x2
ds. (B.5)

The first integral can be bounded by extending the upper limit of integration to +∞. For the second integral, we have

|x|∫
0

es2−x2
ds ≤

|x|∫
0

esx−x2
ds = 1 − e−x2

|x| . (B.6)

This function remains bounded at x = 0, since 1 − e−x2 ∼ O (x2). In addition, it remains bounded for all x ∈ R, since

1 − e−x2

|x| =
∫ |x|

0 2te−t2
dt

|x| ≤ √
2e−1/2 < 1. (B.7)

The inequality then follows. �
Theorem B.1. The series of analytic functions

∞∑
n=−∞

Z(u + an)In(b)e−b (B.8)

with a, b ∈ R is uniformly convergent over the domain in the complex plane defined by D = {u ∈ C : −y0 < Im(u) < y0} for any 
y0 > 0. Since uniform convergence of a series of analytic functions guarantees analyticity of the sum, the function G is an analytic 
function of u over D. Furthermore, the series of analytic functions
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Fig. B.1. The domain D ′ = {p ∈C : −R0 < Re(p) < R0}, where R0 > max(α,σ ).

∞∑
n=−∞

Z′(u + an)In(b)e−b, (B.9)

also converges to an analytic function in D, which is equal to the derivative of G.

Proof. The proof follows from Lemma B.1 and the Weierstrass M-test. Each term in the series is bounded as

|Z(u + an)In(b)e−b| ≤ 2(1 + √
πeIm(w)2

)In(b)e−b ≤ 2(1 + √
πe y2

0)In(b)e−b (B.10)

in D . Furthermore, the modified Bessel function series gives

∞∑
n=−∞

2(1 + √
πe y2

0)In(b)e−b = 2(1 + √
πe y2

0) < ∞. (B.11)

The Weierstrass M-test therefore guarantees uniform convergence of the series. The analyticity of G in D follows directly 
from the uniform convergence of its series definition. Uniform convergence of the series also allows term by term differ-
entiation to obtain a series which converges to the derivative of the sum in D . This follows from a standard theorem in 
complex analysis. See, for example, Chapter 5 of [36]. �

The contour deformation is justified since φk(p) can be expressed as:

eφk

Te
(p) = A0

i
√

2k‖ρi

G(
ip/�i√

2k‖ρi
; 1√

2k‖ρi
,k2⊥ρ2

i )

1 + θ
2 G ′( ip/�i√

2k‖ρi
; 1√

2k‖ρi
,k2⊥ρ2

i )
. (B.12)

Since the proof in Theorem B.1 applies to an arbitrarily large portion of the complex plane, we consider in particular the 
domain D ′ = {p ∈ C : −R0 ≤ Re(p) ≤ R0}, where R0 is chosen such that R0 > max(α, σ), as illustrated in Fig. B.1. Then 
D ′/{p j} defines a domain in which the contour of Fig. 1(a) can be continuously deformed into that of Fig. 1(b), without 
crossing any singularities of φk .
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