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Trimming the UCERF3-TD Hazard Tree with 

a New Probabilistic Model-Reduction 

Technique 

Keith Porter,a) Edward Field,b) and Kevin Milnerc) 

The size of the logic tree within the Uniform California Earthquake Rupture 

Forecast Version 3, Time-Dependent (UCERF3-TD) poses a challenge to risk 

analyses of large portfolios, especially when multiplied by multiple ground-motion 

prediction equations and site-effect models. An insurer or catastrophe risk modeler 

concerned with rare, catastrophic losses to a portfolio of California assets would 

today have to evaluate a portfolio 57,600 times to create a loss exceedance curve 

that explores the entire possibility space. Which branches matter most, and which 

can be ignored? We employed two model-reduction techniques to find a subset of 

UCERF3-TD parameters that must vary and fixed baseline values for the remainder 

such that the reduced model produces approximately the same distribution of loss 

that the full model does. The two techniques are (1) a tornado-diagram approach 

we employed previously for UCERF2, and (2) an apparently novel probabilistic 

sensitivity approach that appears better suited to functions of nominal random 

variables. The newer approach produces a smaller reduced model with only 60 

leaves. Results can be used to reduce computational effort in loss analyses by 

several orders of magnitude.  

INTRODUCTION 

Probabilistic seismic hazard analyses (PSHA) and probabilistic seismic risk analyses 

(PSRA) have grown in complexity since their introduction by Esteva (1967) and Cornell 

(1968). They can involve many analytical stages, each with multiple competing models that 

attempt to idealize nature, such as how to relate rupture area to magnitude. One cannot be sure 
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which competing model best reflects reality, so analysts sometimes accept multiple models and 

arrange them in a logic tree, as in the case of the Uniform California Earthquake Rupture 

Forecast versions 2 (UCERF2, Field et al. 2009) and its time-dependent version-3 successor, 

UCERF3-TD (Field et al. 2015).  

In such a logic tree, each modeling choice represents an independent variable—one subject 

to the user’s choice—and is used as an input parameter for the evaluation of an dependent 

variable. If the logic tree is used in PSHA or PSRA, the dependent variable typically measures 

hazard (such as the exceedance frequency of various levels of peak ground acceleration) or risk 

(such as the exceedance frequency of various levels of building repair cost). Each possible 

value of each independent variable is assigned a weight (the term used by people who hold a 

frequentist or classical viewpoint of probability) or probability (from the Bayesian viewpoint; 

we will use the Bayesian terminology here). Probabilities of all the allowable values of one 

independent variable sum to unity. The dependent variable is evaluated for every allowable 

combination of values of the independent variables, that is, for every possibility in the 

possibility space. The probability of each possibility is taken as the product of the probabilities 

of the independent variable values that led to that value of the dependent variable. One can 

think of each such combination as a leaf on the logic tree, each leaf associated with one value 

of the dependent variable and one probability that it is the correct value. One can then evaluate 

the cumulative distribution function (CDF) of the dependent variable at any given value by 

sorting the leafs in increasing order and summing the probabilities of outcomes less than or 

equal to that value.  

Because the number of leafs in the logic tree increase exponentially with the number of 

independent variables, a large model can make the evaluation of hazard or risk computational 

costly, even on a supercomputer. We address here the question of whether and how one can 

reduce the computational effort without significantly changing the estimate of hazard or risk. 

Here are some reasons to believe one can do so. Not all branches equally affect the CDF of the 

dependent variable—some branches matter less than others. In the cases of UCERF2 and 

UCERF3-TD, some model elements matter less than others because they deal with 

geographically localized issues that don’t matter much at the statewide level. Some values of 

some independent variables matter less because they have less weight attached to them, that is, 

because modelers believe those values are less likely to be correct or applicable. Some branches 



 

3 

 

matter less because, despite qualitative differences, alternative values produce only slightly 

different values of the dependent variable.  

To the extent that one can prune the logic tree of these low-impact branches, one may be 

able to greatly reduce the size of the logic tree and thus the computational effort with little 

impact on the resulting hazard or risk estimates. That is our goal for UCERF3-TD: to find a 

subset of its parameters—its independent variables—that have the least overall impact on 

statewide risk, and trim them from the UCERF3-TD logic tree, leaving a smaller model 

comprising only the important parameters, a smaller model that requires less computational 

effort for a PSHA or PSRA.  

MODEL ORDER REDUCTION TECHNIQUES 

Let us begin by examining the literature pertaining to the general problem of reducing the 

complexity and large size (that is, the dimension) of mathematical simulations of real-life, 

nonlinear processes. The general problem is called model order reduction. Model order 

reduction addresses many different situations. We focus on a subclass of problems whose state 

space—that is, whose degrees of freedom or independent variables—is entirely composed on 

all nominal numbers, that is, quantities without scale or order.  

To explain nominal numbers: the student identification numbers of children in a classroom 

are examples; they are merely labels. A second class of numbers called ordinal tell of order but 

not scale. For example, if we were to assign the number 1 to the tallest child in the classroom, 

the number 2 to the second tallest, etc., the number assigned to any given child is an ordinal 

number. A third class called cardinal numbers measure relative quantity, such as the height of 

the same schoolchildren in centimeters. The distinction will be important because most model-

order-reduction techniques deal with functions of uncertain cardinal numbers, and rely on 

mathematical operations that are only defined for cardinal numbers.  

UCERF3-TD represents a model whose state space is comprised of all nominal numbers: 

all of its logic-tree branches represent choices among competing models that we identify 

merely with labels such as the names of publications that offer relationships between rupture 

area and earthquake magnitude. This particular class of problem is less commonly dealt with 

than models whose state space is all comprised of cardinal numbers.  

There are at least eight common approaches to model order reduction that involve 

projection or transformation of the state space to fewer degrees of freedom, but all are limited 
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to models of cardinal numbers. The eight include: (1) proper orthogonal decomposition (POD), 

also known as principal component analysis (PCA; see Chatterjee 2000); (2) balanced 

truncation and (3) approximate balancing by iteration (e.g., Gugercin and Antoulas 2004 and 

Sorensen and Antoulas 2002 respectively); matrix interpolation (e.g., Amsallem and Farhat 

2008); (4) matrix interpolation (Benner et al. 2015); (5) transfer function interpolation (also 

Benner et al. 2015); (6) Loewner framework (Mayo and Antoulas 2007); (7) cross Gramian 

(e.g., Antoulas 2009); (8) Krylov subspace techniques (Bai 2002). All apply to linear functions 

of real numbers, and are therefore inapplicable to UCERF3-TD.  

These approaches are not applicable to models whose independent variables are nominal 

numbers because the independent variables cannot be arranged into a vector space that one can 

then project into an alternate, reduced-order space. All eight approaches require the application 

of differential calculus or other mathematical operations that are only defined for cardinal 

numbers to project the independent variables into a different, lower-order space. The only 

cardinal number we have to operate on here is the dependent variable, so the math all has to 

operate on the (cardinal) dependent variable rather than on the (nominal) independent 

variables.  

Instead of a projection approach, we seek instead to separate the independent variables into 

those that contribute strongly to the dependent variable and those that do not, and to find 

baseline values of the latter at which one may fix them to reduce computational effort in future 

loss estimates. Let us refer to the first group (the independent variables that contribute strongly 

and we therefore allow to vary) as the varying set, the latter group (the ones we will fix) as the 

fixed set, and the combination as the full set. Let us refer to a model that allows the full set to 

vary as the full model, and let us refer to a model that allows the varying set to vary and fixes 

the fixed set at its baseline values as the reduced-order model.  

Let us refer to the number of combinations of model-parameter values as the size of the 

model. (One usually refers to the number of parameters as the dimension of the model, but size 

is more useful when the model has a discrete number of possible values of each parameter, and 

when that number varies from parameter to parameter). Let us refer to any particular 

combination of values of the independent variables as a leaf in the logic tree. The number of 

leaves is the size of the model. We care less about the reduction in dimension—how many 

independent variables there are—than about the size of the model. For example, if we can fix 

one parameter with five possible values at one of those values, that is more desirable than fixing 
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two parameters each with two possible values to one value each. The former is preferable 

because it reduces the size of the model (the computational effort) by a factor of 5, the latter 

by 4, even though the former reduces the model dimension by 1 and the latter by 2.  

We found no literature on model order reduction techniques that apply to state spaces 

whose dimensions are all nominal numbers. In past research (Porter et al. 2012), we modified 

a method of deterministic sensitivity study called a tornado-diagram analysis that seems to 

originate in the field of decision analysis (Howard 1988). We used the modified approach as a 

model order reduction technique to reduce the size of the Uniform California Earthquake 

Rupture Forecast version 2 (Working Group on California Earthquake Probabilities [WGCEP], 

2007; Field et al., 2009). See Porter et al. (2012) for details of the modified tornado-diagram 

analysis, which we briefly recap later, along with an apparently new approach that we present 

and apply here for the first time.  

UCERF3-TD 

Let us now describe the problem that motivated this research. The ongoing Working Group 

on California Earthquake Probabilities (WGCEP) is responsible for developing authoritative 

earthquake forecasts for California on behalf of the United States Geological Survey (USGS), 

the Southern California Earthquake Center (SCEC), and the California Geological Survey 

(CGS).  The most recent WGCEP model is known as the third Uniform California Earthquake 

Rupture Forecast (UCERF3), which was developed with support from California Earthquake 

Authority.  As with our analysis of the previous model, UCERF2, the objective here is to 

identify the logic-tree parameters that contribute most strongly to uncertainty in statewide loss 

estimates. 

The long-term, time-independent model (UCERF3-TI; Field et al., 2015 and references 

therein), provides the long-term rate of all possible earthquakes throughout the region (at some 

level of discretization and above magnitude 5.0).  The primary achievements for UCERF3-TI 

were a relaxation of fault-segmentation assumptions and the inclusion of multi-fault ruptures, 

both of which were acknowledged limitations of the previous model (UCERF2). The rates of 

all earthquakes were solved for simultaneously, and from a broader range of data, using a 

system-level “grand inversion” that is both conceptually simple and extensible. This new 

approach is more derivative and less prescriptive than that taken previously; for example, rather 

than assuming a magnitude-frequency distribution (MFD) on most faults, the inversion solves 
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for the MFD that is most consistent with available data. The inverse problem is generally large 

and underdetermined, so a range of solutions was sampled using an efficient simulated 

annealing algorithm. The model also made more explicit use of geodetic data via three new 

deformation models, which not only provide alternative fault slip-rate constraints, but also 

enabled the inclusion of 150 fault sections that were previously excluded due to lack of 

geologic data.  These additions served to fill out and expose the interconnectivity of the fault 

system, thereby revealing more multi-fault rupture possibilities.  For example, the number of 

fault-based ruptures increased from 10,000 in UCERF2 to more than 250,000 in UCERF3. 

Overall, UCERF3-TI has a lower rate of M 6.5-7.0 earthquakes, reflecting an explicit 

regional MFD constraint added to avoid a UCERF2 over-prediction at these magnitudes.  The 

rate of larger, multi-fault ruptures generally increased as a consequence, reflecting a tradeoff 

that was effectively brokered by the grand inversion in satisfying all data constraints.  In other 

words, the previous over-prediction problem in UCERF2 was turned into part of the solution 

with respect to the rate of multi-fault ruptures, although rates of the latter were also effectively 

minimized in UCERF3-TI, so if anything, it under predicts the frequency of such events (Field 

et al., 2015).  Following extensive review, UCERF3-TI was used in the 2014 update of the 

USGS National Seismic Hazard Maps (Petersen et al., 2014; Powers and Field, 2015). 

Building on UCERF3-TI, the WGCEP subsequently defined a time-dependent model 

(UCERF3-TD) that uses renewal models to represent elastic-rebound-implied rupture 

probabilities (Field et al., 2015, and references therein). A new methodology was developed, 

which solved applicability issues in the previous UCERF2 approach with respect to 

unsegmented models. The new algorithm also supports magnitude-dependent aperiodicity in 

the renewal model, and accounts for the historic open interval on faults that lack a date-of-last-

event constraint. In general, UCERF3-TD probabilities are relatively low compared to 

UCERF3-TI on faults where a recent large event has occurred, and relatively high where the 

time since last event is greater than roughly half the average recurrence interval. 

A number of modeling choices are represented in UCERF3-TD, as shown in the logic tree 

depicted in Figure 1. The two alternative fault models represent uncertainty in the existence 

and/or geometry of several faults.  The four deformation models represent alternative sets of 

fault slip rates, reflecting both methodological differences and the degree of influence from 

geodetic versus geologic constraints.  The five scaling relationships represent viable 

relationships between average slip versus fault length and/or magnitude versus area, where 
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differences reflect uncertainties with respect to the depth penetration of large earthquakes 

and/or whether surface displacement observations are representative of slip at mid-seismogenic 

depths (~7 km).  The branches labeled “slip along rupture” represent the average slip as you 

go from one end of a fault rupture to the other, with one option applying a taper and the other 

keeping slip uniform (on average, meaning averaged over many realizations of a rupture).  The 

total M≥5 event rate defines the total long-term rate of earthquakes in the entire forecast region 

(California plus a buffer zone), with the three options reflecting uncertainties in historical- and 

instrumental-catalog inferences due to potential intrinsic rate variability, the influence of 

aftershocks, and catalog magnitude-completeness questions.  𝑀𝑚𝑎𝑥
𝑜𝑓𝑓−𝑓𝑎𝑢𝑙𝑡

 represents the largest 

magnitude that can occur in the background-seismicity component of the model (off explicitly 

modeled faults), with the alternative values representing expert judgment.  The branches 

labeled “off-fault spatial seis PDF” reflect the degree of smoothing applied to historical 

seismicity in defining the spatial distribution of background seismicity rates, where the 

“UCERF3 smoothed seis” option reflecting much less smoothing than the “UCERF2 smoothed 

seis” alternative, the latter of which was applied exclusively in UCERF2.  Finally, the 

earthquake probability models reflect the degree of elastic-rebound predictability in the model, 

as defined by the aperiodicity of the renewal model; the “low”, “med” and “high” choices 

reflect increasing predictability, with the “Poisson” option implying none. 

All combined, UCERF3-TD has 5,760 logic-tree branches, each representing a viable 

model with an associated weight, or probability, of being correct. A variety of logic-tree 

sensitivity analyses, as well as comparisons with UCERF2, are given in the UCERF3-TI and 

UCERF3-TD reports for several different evaluation metrics (e.g., the probability of 

occurrence for one or more M≥6.7 earthquakes; 2%-in-50-year ground-motion exceedance). 

However, and as emphasized repeatedly in those reports, the relative importance of logic-tree 

branches depends strongly on the chosen evaluation metric and the geographic location of the 

site(s) of interest.  This, coupled with assumptions and approximations in the model, means 

that UCERF3 applicability should be evaluated on a case-by-case basis.  The purpose of this 

paper is to explore logic-tree sensitivity with respect to statewide loss estimates, with the hope 

of prioritizing which uncertainties should get focused on in future studies. 
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Figure 1. UCERF3 logic-tree branches 

OBJECTIVES 

To find a reduced-order UCERF3-TD model we use a statewide loss measure: expected 

annualized loss (EAL) in terms of cost to repair earthquake damage to a building portfolio that 

approximates the California building stock. We could have considered other portfolios, for 

example, portfolios representing buildings in a smaller geographic region such as Los Angeles 

County, or buildings sharing a particular set of features such as highrise pre-1994 welded steel 

moment-frame buildings, or assets other than buildings such as human casualties. Other 

portfolios could produce different results, such as displaying as greater sensitivity to UCERF3 

branches that particularly affect Los Angeles or that particular affect long-period motion. The 

methodology presented here can be readily applied to those other portfolios, but we have 

selected this one for its statewide relevance. 

We seek to find a reduced-order model that approximates the full model such that the 

probability distribution of EAL with the reduced-order model adequately approximates the 
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probability distribution of EAL with the full model. In particular, we will require that the 

reduced model and full model pass a two-sample Kolmogorov-Smirnov test at the 1% 

significance level as in Equation (1). We will also apply what one might call a main-effects 

test and a variance test, where the mean and coefficient of variation of the reduced model 

differs from those of the full set by less than 5%, as in Equations (2) and (3): 

   (1) 

   (2) 

   (3) 

The error terms in Equations (1) through (3) are defined in Equations (4) through (6): 

   (4) 

   (5) 

   (6) 

In the equations, Dn is referred to as the Kolmogorov-Smirnov statistic, FEAL(eal) denotes the 

cumulative distribution function (CDF) of EAL under the full model evaluated at any particular 

value eal, as in Equation (7). Fi
EAL(eal) is that of the reduced-order model after fixing i of its 

parameters, NB is the size of the full model (the number of its leafs, which here is 57,600), Ni
B 

is the size of the reduced-order model, μ denotes the expected value of the EAL of the full 

model per Equation (8), μi denotes that of the reduced-order model, δ is the coefficient of 

variation of the full model per Equation (9), δi is that of the reduced-order model, and eμ and 

eδ are error terms for the mean and coefficient of variation. Equation (1) is not exactly how the 

Kolmogorov-Smirnov test works because samples in the test are supposed to be equiprobable 

and here they are not. Still, Equation (1) seems close enough for practical purposes.  

   (7) 
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   (9) 

In Equations (7) through (9), I(x) = 0 if x ≤ 0, 1 if x > 0 and P[b] is the weight (the Bayesian 

probability) of leaf b, evaluated as the product of all the conditional probabilities that lead to it 

(here, the probabilities in ). When one fixes a branch in the reduced model, its conditional 

probability is taken as 1.0 rather than the weight shown in Figure 1. When applied to the 

reduced-order model, the summations in Equations (7) through (9) only include the leafs in 

that model.  

METHOD 

COMPUTING THE DEPENDENT VARIABLE 

Let us first define the terms in Equation (10) then detail the modeling assumptions. 

   (10) 

In the equation, EALb denotes the expected value (the average) loss in a year. Here, we 

acknowledge that EAL can be uncertain. It depends in part on one’s assumptions about seismic 

hazard, which leaf b of the UCERF3 logic tree one is using to calculate EAL. The parameter i 

is an index to a particular asset—in this case, a group of collocated buildings having a common 

vulnerability function, that is, a common relationship between shaking intensity (denoted by s 

and measured using any convenient intensity measure) and loss. The portfolio contains I assets. 

The parameter Vi denotes the value of asset i, which we measure here as the estimated 

replacement cost new (RCN, a term of art borrowed from property valuation for tax assessors), 

of the group of buildings. We denote by yi(si) the seismic vulnerability function for asset i 

evaluated at the shaking it experiences, si. In a portfolio risk analysis, one almost always 

employs a set of seismic vulnerability functions that define assets in terms of a small set of 

readily observable features such as structural material, lateral force resisting system, range of 

heights, and era of construction. The term G(s) here denotes the hazard curve, by which we 

mean the mean rate at which the location of asset i experiences shaking equal to or greater than 

s, in events per year.  

   
1

2 2

0

BN

b

b

EAL P b 








 
  

 




 
 1

,

0

I
i b

b i i

i

dG s
EAL V y s ds

ds





 



 

11 

 

Let us approach the problem of finding the reduced-order model two ways: first, the same 

as in Porter et al. (2012)—by tornado-diagram analysis—and also a new way. Let us refer to 

the new way as a probabilistic model-order-reduction search.  

MODEL ORDER REDUCTION METHOD 1, TORNADO DIAGRAM  

As described by Howard (1988), a tornado diagram analysis operates on a function of real 

numbers, meaning numbers that have order and scale. One estimates a best-estimate, lower-

bound, and upper-bound value of each input parameter. The vector of best-estimate parameter 

values is referred to as the baseline vector. One calculates the dependent variable by evaluating 

the function at the baseline vector, then twice for each independent variable: the baseline vector 

except that one independent variable at its lower-bound value and again the baseline vector 

except with that one independent variable at its upper-bound value. The absolute value of the 

difference between the dependent variable at the lower- and upper-bound value for a given 

independent variable is a measure of the sensitivity of the dependent variable to that 

independent variable. It is referred to as the swing associated with that independent variable. 

Independent variables are sorted in decreasing order of swing and a horizontal bar chart is 

created. The horizontal axis measures the dependent variable. Each bar corresponds to one 

independent variable. The topmost bar represents the independent variable with the highest 

swing, and the others arranged below in decreasing order of swing. The left and right ends of 

each bar are placed at the values of the dependent variable corresponding to the lower- and 

upper-bound values of the independent variable that was varied. A vertical line is drawn 

through the value of the dependent variable corresponding to the baseline vector.  

In the case of a function of nominal numbers (as opposed to real numbers), Howard’s 

(1988) approach does not work: without order or scale, the input parameters have no lower or 

upper bound or best estimate. One has to find a different way to select the baseline vector and 

the bounds of each independent variable. In our adaptation of Howard’s approach, one 

calculates the dependent variable at all positions in the possibility space, associates each with 

a probability (the products of the Bayesian probability of each parameter value), calculates the 

cumulative distribution function of the dependent variable under the full model, and selects as 

the baseline vector the position in the possibility space that produces a value of the dependent 

variable that is closest to its the mean value. Notice how we select the baseline vector based on 

the dependent variable rather than based on the independent variables, which have no means.  
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One then fixes all parameter values but one at their baseline value, varies the remaining 

parameter through all its possible values, and finds the difference between the maximum and 

minimum value of the performance measure in this small subset. That difference is taken as 

the swing to represents the sensitivity of the dependent variable to the varied parameter. Recall 

that under Howard’s approach one would have selected upper- and lower-bound values of each 

independent variables and then evaluated the swing in the dependent variable as the difference 

in the function evaluated under each bound. Instead, one evaluates the dependent variable at 

all the possible values of one independent variable, finds the minimum and maximum values 

of the dependent variable, and identifies the values of the independent variable that produced 

those extrema. One applies the minimum and maximum functions, defined only for ordinal and 

cardinal numbers, on the dependent variable rather than independent variables. 

One repeats the process for all of the independent variables, each time varying only one 

and leaving all the others at their baseline value, and determines the swing associated with each 

parameter. As before, independent variables are ordered in decreasing swing and a horizontal 

bar chart is constructed, each horizontal bar bounded by the minimum and maximum values of 

the dependent variable associated with varying that particular independent variable. The bar 

with the greatest swing is topmost, the one with the smallest swing at the bottom.  

One then constructs cumulative distribution functions of the dependent variable allowing 

only the topmost independent variable to vary, then allowing the top 2 to vary, then the top 3, 

etc. The probability mass of each leaf is taken as the product of the Bayesian probabilities of 

just the values of the independent variables that are allowed to vary. The aim is to find the 

smallest set of independent variables for which the dependent variable’s cumulative 

distribution function resembles that of the full model. The resemblance is adequate when the 

mean and coefficient of variation of the reduced-order model are within some small difference 

of those of the full model, say 5%, and the two CDFs pass a Kolmogorov-Smirnov goodness 

of fit test at say the 5% significance level. 

In our analysis of UCERF2, we produced the tornado diagram duplicated in Figure 2A and 

selected a reduced-order model that varies only the top 3 independent variables, producing the 

cumulative distribution functions in Figure 2B. The figures show that when we applied our 

modification of Howard’s tornado-diagram method to UCERF2, we found that if one were 

interested in the PDF of statewide annualized economic loss or loss of life, a PSRA that varies 

only the probability model, ground motion prediction equation, and magnitude-area 
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relationship (representing only 2% of the branches) produced essentially the same result as 

using the full tree, in terms of the mean and standard deviation of the PDF of loss. 

A B  

Figure 2. A. Example tornado diagram. B. K-S test (Porter et al. 2012) showing expected annualized loss (EAL) under 

the full model (labeled “1,920 branches”) and the reduced-order model (labeled “40 branches”) 

MODEL ORDER REDUCTION METHOD 2, PATH SEARCH 

We now introduce a new search algorithm. It is intended for a model whose parameters are 

all nominal numbers. It is also intended to select the baseline vector more systematically than 

a tornado diagram analysis with all nominal numbers. The new algorithm starts by varying all 

independent variables, then fixes one, then another, etc., until one has fixed all but one 

independent variable. This approach resembles so-called one-at-a-time (OAT) sampling, but 

with a deliberate and ordered selection of the independent variables to be fixed. The sequence 

of independent variables that are fixed is called the path. One selects the smallest reduced 

model along that path that still satisfies Equations (1) through (3). One does not fix the last 

independent variable because with only one leaf, one cannot satisfy Equation (3). Here is how 

the path search works. 

1. Evaluate the full model at each leaf in the logic tree. 

2. Evaluate the CDF, mean, and coefficient of variation for the full model. Here, that 

means Equations (7) through (9).  

3. List the independent variables. Fix the first at one if its possible values, allowing 

other independent variables to vary. Evaluate Equations (7) through (9) of the 

reduced model. Let i denote an index to independent variables and j denote an index 

to possible values of an independent variable. For each (i, j) pair, calculate Di,j
max, 
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defined as in Equation 12, as well as eμ and eδ. We operate on the maximum 

difference rather than some average because we aim to satisfy Equation (1), that is, 

because we are applying the Kolmogorov-Smirnov goodness-of-fit test. 

   (11) 

4. Select the (i, j) pair with the lowest value of Di,j
max. Fix independent variable i at 

value j. 

5. Repeat steps 2 through 4 starting with reduced model, successively fixing each of 

the still-varying parameters at each possible value.  

6. Repeat step 5 until all but one branch is fixed.  

7. Find the smallest model (i.e., the one with the fewest varying parameters) that 

satisfies the objectives, which here means Equations (1) through (3). 

MODEL ORDER REDUCTION METHOD 3, GRID SEARCH 

One could in principle try a third option for finding the best reduced-order model: one could  

search every possible reduced-order model and select the one with the leaves that still satisfies 

the objectives, which here means satisfying Equations (1) through (3). Such a grid search 

would require evaluating N reduced-order models: 

   (12) 

where ni is the number of possible values of parameter i and B is the number of parameters. 

The first summand (1) represents the number of models with 0 fixed parameters, that is, with 

all parameters allowed to vary; it is the number of full models in the full model, which is one. 

The second summand represents the number of models with 1 fixed parameter and all the others 

allowed to vary. If we only fix parameter b, there are nb reduced-order models to evaluate. The 

third summand represents the number of models with 2 fixed parameters, and so on.  

APPLICATION 

TWO MORE HAZARD PARAMETERS, SOFTWARE, AND PORTFOLIO  

In addition to the UCERF3 logic-tree branches, we considered two models of Vs30: that of 

Wills and Clahan (2006), which is based on Vs30 measurements of various geologic units, and 

that of Wald and Allen (2007), which is based on an empirical relationship between 

topographic slope and Vs30. We considered five NGAWest-2 ground motion prediction 
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equations: Abrahamson et al. (2014, abbreviated here as “ASK2014”), Boore et al. (2014, 

“BSSA2014”), Campbell and Bozorgnia (2014, “CB2014”), Chiou and Youngs (2014, 

“CY2014”), and Idriss (2014, “IDR2014”).  

We used the OpenSHA EAL calculator to evaluate Equation (10) for a portfolio of 

California buildings, measuring loss in terms of building repair cost. The calculator estimates 

the average loss in a year to a specific set of buildings (catastrophe risk modelers usually refer 

to the set of buildings as a portfolio). Let us look back again at Equation (10), and discuss 

modeling assumptions involved in evaluating I, Vi, yi(s), and Gi,b(s). We will not vary the 

portfolio here or otherwise address any uncertainty in I, V, or y because we are primarily 

interested in learning more about hazard Gi,b(s).  

We use a portfolio that approximates most (though not all) of the building stock in 

California. The portfolio was constructed using FEMA’s Hazus-MH 2.1 software, the same 

portfolio used in Porter et al. (2012), with some updates. That earlier portfolio was based on 

the Hazus-MH 2002 inventory and reflected 2002 prices. We factored up values to account for 

population growth. California’s population increased between 2010 and 2013 from 35,116,033 

to 38,041,430, an increase of 8.3%. We also factored up values to account for price changes. 

RSMeans’ 30-city historical cost index in January 2013 was 197.6. Its January 2002 value was 

126.7, suggesting a price increase over 2002 of 56%. Thus, the portfolio was scaled up from 

2002 to approximate 2013 values by 69% (1.56 ∙ 1.083 = 1.69). The update does not reflect 

changes in the geographic distribution of the population. To reduce computational effort, we 

omitted from analysis any asset (combination of census tract and vulnerability function) with 

a value less than $1 million, which reduces the number of assets and the computational effort 

by 90% and the total value by 10%. We used the vulnerability functions yi(s) presented in 

Porter (2009).  

COMPUTATIONAL EFFORT 

The calculation of EAL for the CEA proxy portfolio for all branches including four 

probability models, five ground-motion prediction equations, and two site-class models took 

275,000 CPU hours on TACC Stampede (150 wall clock hours). Note that the analysis does 

not scale with the number of probability models. The software calculates expected portfolio 

loss on a rupture-by-rupture basis and postmultiplies by event rates. This new efficient 

approach only duplicates work when key rupture properties (magnitude, area due to 

aseismicity, and rake) change. Only five branch levels affect these quantities: fault model, 
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deformation model, scaling relationships, ground-motion prediction equation, and site-class 

model. All of the other branch levels are in effect free (not requiring additional calculation of 

shaking or portfolio loss) as they only affect rupture rates, which is handled in post processing. 

Although computational time is not a simple function of logic tree branches in the most 

recent version of the software, it is worthwhile measuring reductions in computation effort for 

the brute-force method of treating each branch independently, since that is what many 

UCERF3 users are likely to do. 

FINDINGS 

GENERAL FINDINGS 

Hazard uncertainties make EAL appear approximately lognormal. Uncertainties in 

UCERF3, selection of ground motion prediction equation, and choice of Vs30 model make 

statewide EAL uncertain. Its uncertain quantity is reasonably approximated by a lognormal 

random variable, as illustrated in Figure 3. The lognormal distribution has a median value of 

$4.21 billion and the natural logarithm of EAL has a standard deviation equal to 0.21. The $4.2 

billion figure generally agrees with the FEMA (2008) figure of $3.5 billion per year. The higher 

value is largely attributable to the fact that we have updated the portfolio value to account for 

population growth and inflation to 2013, and to differences in the hazard models.  

(Here and henceforth the EAL to which we refer represents loss to 90% of the estimated 

statewide building replacement cost, so a better estimate of statewide earthquake repair cost 

EAL would be a lognornal random variable with median value of $4.67 billion and logarithmic 

standard deviation of 0.21, but let us leave that detail aside. This paper is about UCERF3, not 

EAL, and the constant underestimate by a factor of 0.9 seems unimportant.)  
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Figure 3. Marginal cumulative distribution function (red) is approximately lognormal (black), passing the Lilliefors 

goodness-of-fit test at the 5% significance level. 

Background sources contribute substantially to loss. UCERF3 fault-based sources (as 

opposed to gridded background seismicity) contribute an estimated 73% to 89% of EAL, 

depending on logic-tree leaf, with a weighted average contribution of 82% and no obviously 

similar parametric probability distribution. See Figure 4. The implication is that background 

sources contribute significantly to EAL and with an uncertain degree of contribution. 

Background sources must be included in the full model. 

 

Figure 4. Contribution to EAL from fault-based sources (excluding background gridded seismicity). 

FINDINGS OF THE TORNADO-DIAGRAM ANALYSIS 

The tornado-diagram analysis indicates that the top contributors to uncertainty in statewide 

EAL are the total rate of M 5 earthquakes, the probability model, the scaling relationship, and 

selection of ground motion prediction equation, at least when one selects the baseline values 

shown in Figure 5. Baseline values are shown in italics. The least important uncertainties with 
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these baseline values are the fault model, the distribution of slip along rupture, the deformation 

model, and the spatial seismicity probability density function. Yellow italics (baseline values 

of total M 5 rate, probability model, and deformation model) indicate that the baseline is the 

parameter value with the highest Bayesian probability in the logic tree weighting—its 

probability in Bayesian terms. Other baseline values have probability approximately equal to 

their alternatives.  

 

Figure 5. Tornado diagram suggests the top contributors to uncertainty in expected annualized loss are total magnitude 

5 rate, ground motion prediction equations, scaling relationship, and probability model.  

If one allows only the top 5 independent variables in Figure 5 to vary according to the 

Bayesian probabilities, fixing the other 5 at their baseline value with 100% Bayesian 

probability, one can evaluates the resulting cumulative distribution function of EAL and 

compare it with that of the full tree. See Figure 6. In the figure, θ and β denote the parameters 

of the lognormal distribution (median and standard deviation of the natural logarithm 

respectively), and μ and δ denote the mean and coefficient of variation respectively. The 

reduced model exhibits error terms Dn = 0.046, eμ = 2% and eδ = -4%, satisfying Equations (1)

through (3). All of which suggests low bias and reasonable agreement between this particular 

subset model and a full model, for 2% of the computational effort. 
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Figure 6. Cumulative distribution function of EAL with the full model (black, smooth curve) and the reduced model 

(red, steps). The reduced model passes a two-parameter Kolmogorov-Smirnov goodness of fit test for agreement with 

the full model, despite the slight bias high.  

Allowing additional independent variables to vary does not necessarily cause eμ to 

asymptote to zero. Notice how the bar for the spatial PDF in Figure 5 has its baseline value 

coincident with its upper bound value, and how the swing is nearly as high as that of the next-

higher independent variable. These observations suggest that if we allow the spatial PDF to 

vary, eμ should decrease. It does, from +2% to -4%, as shown Table 1. Allowing additional 

independent variables to vary does seem to cause eδ to approach asymptote to zero as shown 

in Table 1.  

 

 

Why do the two bias measures not monotonically asymptote to zero as more parameters 

are allowed to vary? Two explanations suggest themselves: (1) particular parameter values will 

invariably produce higher or lower results than do other values of the same parameter, or they 

will produce higher or lower variability. One might fix one parameter at a value that tends to 

produce higher mean results, and another at a value that tends to produce lower mean results. 

The two fixed parameters would tend to offset each other, resulting in a low mean bias. If one 

then frees one of those two parameters to vary, the result will tend to shift higher or lower, 

increasing mean bias. A similar statement can be made about uncertainty bias. (2) More 

generally, parameters might interact, so allowing more of them to vary could produce 

unpredictable interactions. Finding a good fixed set and good baseline values for it—values 

that result in low mean bias and low uncertainty bias—can require some luck. 
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Table 1. Allowing more parameters to vary does not cause bias to monotonically decrease 

 Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Full set 

Leaves 3 12 60 300 1,200 2,400 4,800 14,400 28,800 57,600 

Effort 0.01% 0.02% 0.10% 0.52% 2.1% 4.2% 8.3% 25.0% 50.0% 100% 

E[EAL]  $4.44   $4.23   $3.86   $4.22   $4.31   $4.04   $4.27   $4.27   $4.23  $4.23  

  $0.62   $0.70   $0.67   $0.76   $0.89   $0.88   $0.95   $0.95   $0.92  $0.91  

  0.14   0.17   0.17   0.18   0.21   0.22   0.22   0.22   0.22  0.22  

  $4.40   $4.17   $3.80   $4.15   $4.22   $3.95   $4.17   $4.18   $4.13   $4.14  

  0.14   0.17   0.17   0.18   0.20   0.21   0.21   0.21   0.21         0.21  

Dn  0.45   0.91   0.28   0.05   0.05   0.11   0.02   0.02   0.02  0.00    

e 5% 0% -9% 0% 2% -4% 1% 1% 0% 0% 

e -36% -23% -20% -16% -4% 0% 3% 3% 1% 0% 

  

Perhaps because parameters interact, the order of contributors from top to bottom in a 

tornado diagram displays sensitivity to the selection of the baseline vector values. We checked 

several reasonable baseline vectors from samples whose EAL was near the mean of the 

distribution shown in Figure 3. See two of the resulting alternative tornado diagrams in Figure 

7. The alternative diagrams show that the order of parameters, while it does vary from baseline 

vector to baseline vector, does tend to have the same top parameters and the same bottom 

parameters.  

  

Figure 7. Tornado diagrams are sensitive to the baseline vector. Shown here are two alternative tornado diagrams 

selected from leaves whose EAL was near the median 

The difference between these diagrams begs the question, is there a better way to select the 

baseline vector? “Better” would be that it produces a reduced model whose bias more reliably 

asymptotes to zero as more parameters are allowed to vary, or whose baseline vector can be 

selected more systematically. The question led to our developing the probabilistic model-

reduction search algorithm, whose results are discussed next. 
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FINDINGS OF THE PATH SEARCH  

The smallest reduced model that satisfies all three of the similar-distribution, main-effects, 

and variance tests in Equations (1) through (3) fixes six of ten parameters. The parameters were 

fixed in the following order, and at these values: 

1. Max M off fault:  7.6 (solution 1) or 7.9 (solution 2, better) 

2. Fault model:  FM3.1 

3. Slip along rupture:  boxcar 

4. Deformation model:  NeoKinema 

5. Ground motion prediction: ASK2014 

6. Probability model:  mid 

Fixing these parameters allows the following to vary: 

7. Scaling relationship: 5 values 

8. Total M ≥ 5.0 rate:  3 values 

9. Spatial PDF:  2 values 

10. Vs30:  2 values 

The reduced model has 60 leaves (0.1% of the size of the full model), Dn = 0.14, eμ = 3.5% 

and eδ = 4.9%, satisfying Equations (1) through (3). It also passes the two-parameter K-S test 

at both the 1% and 5% significance levels. The resulting CDF is shown in Figure 8A. The 

solution has a slight bias toward higher EAL. Is it necessarily the best 60-leaf solution? 

Probably not, since the search was not exhaustive, which the grid search would have been. In 

fact, we found a slightly better solution by examining the tornado diagrams (Figure 7) and 

noticing that mean EAL can be reduced by selecting maximum magnitude off fault = 7.9 rather 

than 7.6. That solution has the same number of leaves (60) but lower error terms: Dn = 0.051, 

eμ = 1.3% and eδ = 3.8%. See Figure 8B for its CDF.   

We considered the grid-search option after completing the incremental search. In light of 

the apparent success of the incremental search, and considering the computational effort 

required for the grid search, we did not pursue the grid-search option. We may pursue it in 

future research. 
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A B  

Figure 8. Cumulative distribution function of the full model (black) and reduced models (red) by incremental 

probabilistic model-reduction search: (a) solution 1, and (b) slightly superior solution 2 

FINDINGS OF THE GRID SEARCH 

In the present problem, the grid search would require examining N = 1,166,402 reduced-

order models. That is, to find the best reduced-order model, one would evaluate the CDF, mean, 

and coefficient of variation of EAL for more than a million reduced-order models and choose 

the smallest model that satisfies Equations (1) through (3). We have identified this third option, 

shown how to calculate the size of the problem, and calculated it for the present application, 

all of which seem useful. We have not yet performed the grid search, reserving that work for a 

later study, when we will have leisure to address a number of related questions, such as, if the 

path search produces the same answer as the grid search, why? If not, why not? Under what 

conditions will the two produce the same or different answers?  

CONCLUSIONS 

The UCERF3 logic tree contains eight uncertain modeling decisions, often referred to as 

branches, each of which involves a choice between two or more discrete model elements. Each 

option of each branch has an associated weight (or probability in Bayesian terms) assigned by 

the UCERF3 developers. The combinations of branch choices—one can think of them as leaves 

in the logic tree—total 5,760. If one wishes to use the UCERF3 model to estimate seismic 

hazard (in the sense of exceedance frequency of various levels of ground motion at a particular 

location), one most likely must also choose a ground motion prediction equation and a model 

of the average shearwave velocity in the upper 30 meters of soil, denoted here by Vs30. (An 

alternative is to use physics-based modeling, which requires a 3-D crustal velocity model rather 
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than a ground motion prediction equation like those of NGAWest-2.) If one selects among five 

NGAWest-2 ground motion prediction equations and two models of Vs30, then one must deal 

with a total of 10 branches and 57,600 leaves.  

The size of the full UCERF3 model and the added Vs30 and ground motion prediction 

equation uncertainties creates a problem. To perform a probabilistic seismic hazard analysis of 

even a few sites and account for these 10 modeling uncertainties can take a prohibitive amount 

of time. To perform a probabilistic risk analysis of even a modest portfolio of assets can 

similarly take an impractical amount of time.  

We therefore sought to reduce the model (that is, to trim the UCERF3-TD hazard tree) to 

find just those parameters that really matter, allowing them to vary and fixing the other 

parameters at a single baseline value each. By “really matter” we mean those that contribute 

significantly to uncertainty in hazard. We do not mean anything about their scientific 

importance. In particular, we set out to find the smallest subset of varying parameters that, 

when the other parameters are fixed at baseline values, produces a reduced model that closely 

resembles the full model, at least in one uncertain output. In our case, we selected as the output 

measure the expected annualized building repair cost to an inventory that approximates all the 

buildings in California. We applied three tests to check the similarity of the reduced model to 

the full model: a main-effects test to ensure low bias in the mean of the reduced model relative 

to the full model; a variance test to ensure low bias in the coefficient of variation of the reduced 

model relative to the full model, and a test of the similarity of distribution.  

We used a statewide inventory derived from the Hazus-MH estimate of 2002, updated to 

2013 to account for population growth and inflation. We used a set of vulnerability functions 

derived from the Hazus-MH model. All of the EAL calculations were performed in an 

OpenSHA calculator, not in Hazus-MH.  

We employed two alternative model-reduction methods: a tornado-diagram analysis, which 

is a kind of deterministic sensitivity study, and a new incremental probabilistic model-

reduction search algorithm (generically called a one-at-a-time or OAT approach), which we 

introduce here. Our model-reduction algorithm is unusual in that it works for a model that 

comprises only nominal parameters, that is, parameters that are neither cardinal (having 

measure) nor ordinal (having order), but are merely labels (for example, fault models 3.1 and 

3.2). The algorithm appears to be new; at least we could not find a similar one in the literature.  
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The new algorithm produced a smaller model with just four varying parameters and six 

fixed ones, for a total of 60 leaves (0.1% of the size of the full model of 57,600 leaves), 

compared with the five-parameter, 1,200-leaf model that we found using a tornado diagram. 

These parameters vary: 

1. Scaling relationship: 5 values 

2. Total M ≥ 5.0 rate:  3 values 

3. Spatial PDF:  2 values 

4. Vs30:  2 values 

These parameters are fixed: 

5. Max M off fault:  7.9 

6. Fault model:  FM3.1 

7. Slip along rupture:  boxcar 

8. Deformation model:  NeoKinema 

9. Ground motion prediction: Abrahamson et al. (2014) 

10. Probability model:  mid 

The reduced model has a Kolmogorov-Smirnov statistic Dn = 0.051 (less than the allowable 

maximum of 0.17 for samples of 60 and 57,600 at the 5% significance level), mean bias 

(difference between mean loss under the reduced model as a fraction of that of the full model) 

eμ = 1.3% and bias in the coefficient of variation (again as a fraction of that of the full model) 

eδ = 3.8%. See Figure 8B for a comparison of the two CDFs.      

LIMITATIONS 

We trimmed the UCERF3-TD logic tree using a statewide loss measure. The trimmed tree 

may only be appropriate for portfolios that are distributed similarly to the statewide population. 

We make no value judgments about the scientific importance of the fixed parameters, only 

about how they affect statewide building-repair-cost EAL. For simplicity, we apply the two-

sample Kolmogorov-Smirnov test to CDFs of the full population of two uncertain discrete 

variables, whereas it is meant to test CDFs constructed from equiprobable samples of 

continuous variables. We have not increased the uncertainty in any model element (e.g., ground 

motion prediction equations) to account for the possibility that nature may actually behave 

outside the bounds of the modeled options. We do not speculate on the possible consequences 

of ignoring such exogenous uncertainties. 
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