ABET Self-Study Report

for the

Bachelor of Science in Architectural Engineering

at the

University of Colorado Boulder

Boulder, Colorado

July 1 2017

CONFIDENTIAL

The information supplied in this Self-Study Report is for the confidential use of ABET and its authorized agents, and will not be disclosed without authorization of the institution concerned, except for summary data not identifiable to a specific institution.

Table of Contents

BAC	KGROUND INFORMATION	. 5
А.	Contact Information	5
В.	Program History	5
C.	Options	6
D.	Program Delivery Modes	6
E.	Program Locations	7
F.	Public Disclosure	7
	Deficiencies, Weaknesses or Concerns from Previous Evaluation(s) and the tions Taken to Address Them	7
CRIT	ERION 1. STUDENTS	10
A.	Student Admissions	.10
B.	Evaluating Student Performance	.11
C.	Transfer Students and Transfer Courses	.13
D.	Advising and Career Guidance	.15
E.	Work in Lieu of Courses	.18
F.	Graduation Requirements	.19
G.	Transcripts of Recent Graduates	.21
CRIT	ERION 2. PROGRAM EDUCATIONAL OBJECTIVES	22
A.	Mission Statement	.22
B.	Program Educational Objectives	.22
C. Ins	Consistency of the Program Educational Objectives with the Mission of the titution	.23
D.	Program Constituencies	.23
	Process for Review of the Program Educational Objectives	
CRIT	ERION 3. STUDENT OUTCOMES	25
CRIT	ERION 4. CONTINUOUS IMPROVEMENT	27
A.	Student Outcomes	.27
(Dutcomes Assessment Methods Summary	27
(Dutcome 1 (a). Apply knowledge of math, science, and engineering fundamentals	30
(Dutcome 2 (b). Design and Conduct Experiments	33
(Dutcome 3 (b). Analyze and Interpret Data	36
(Dutcome 4 (c). Design a System or Component	38
(Dutcome 5 (d). Multidisciplinary Teamwork	44
(Outcome 6 (e). Identify, formulate, and solve engineering problems	48

Outcome 7 (f). Professional and Ethical Responsibility	50
Outcome 8 (g). Effective Communication through Writing and/or Drawings	52
Outcome 9 (g). Effective Communication through Oral Presentations	56
Figure 9.1 – Rubric for oral presentation	58
Outcome 10 (h). Understand the impact of engineering on society	59
Outcome 11 (i). Necessity to Engage in Life-Long Learning (LLL)	61
Outcome 12 (j). Contemporary Issues	64
Outcome 13 (k). Modern engineering techniques, skills, and tools	66
C. Continuous Improvement	69
D. Additional Information	71
CRITERION 5. CURRICULUM	72
A. Program Curriculum	72
Table 5-1 Curriculum: Architectural Engineering – All Students	75
Table 5-1b Curriculum: Architectural Engineering – Construction Engineering	
Management Option *	
Table 5-1c Curriculum: Architectural Engineering – Lighting & Electrical Systems Option *	
Table 5-1d Curriculum: Architectural Engineering – Mechanical Systems Option *	82
Table 5-1e Curriculum: Architectural Engineering – Structures Systems Option * .	84
Curriculum Alignment with Program Educational Objectives	86
Mapping Curriculum to Student Educational Outcomes	88
Curricular Areas and General and Program Criteria	92
Major Design Experience	92
Cooperative Education	97
Course Syllabi	97
CRITERION 6. FACULTY	98
A. Faculty Qualifications	98
B. Faculty Workload	99
C. Faculty Size	99
D. Professional Development	.104
E. Authority and Responsibility of Faculty	.106
Table 6-1. Faculty Qualifications – Architectural Engineering	.110
Table 6-2. Faculty Workload Summary – Architectural Engineering	.113
CRITERION 7. FACILITIES	118
A. Offices, Classrooms and Laboratories	.118

B. Computing Resources	120
C. Guidance	126
D. Maintenance and Upgrading of Facilities	127
E. Library Services	128
F. Overall Comments on Facilities	130
CRITERION 8. INSTITUTIONAL SUPPORT	. 131
1. Leadership	131
2. Program Budget and Financial Support	131
3. Staffing	133
4. Retention	134
5. Support of Faculty Professional Development	134
PROGRAM CRITERIA	. 136
Appendix A – Course Syllabi	. 144
Appendix B – Faculty Vitae	. 219
Academic Affairs Committee, Boulder Faculty assembly (2007-2012)	. 257
Appendix C – Equipment	. 318
Appendix D – Institutional Summary	. 321
1. The Institution	321
2. Type of Control	322
3. Educational Unit	322
4. Academic Support Units	322
5. Non-academic Support Units	323
6. Credit Unit	323
7. Tables	323
Table D-1. Program Enrollment and Degree Data	324
Table D-2. Personnel	325
APPENDIX E –Rubrics related to outcome 2(b) Design and Conduct Experiments	. 326
Signature Attesting to Compliance	333

Program Self-Study Report for EAC of ABET Reaccreditation

BACKGROUND INFORMATION

A. Contact Information

Balaji Rajagopalan Professor and Chair Civil, Environmental, & Architectural Engineering (CEAE) 428 UCB University of Colorado Boulder Boulder, CO 80309-0428 Phone 303-492-5968, fax 303-492-7317 E-mail: <u>balajir@colorado.edu</u> primary pre-visit contact person for the program

Sandra Vásconez Senior Instructor Phone 303-492-7614, fax 303-492-7317 E-mail: <u>Sandra.Vasconez@colorado.edu</u> *primary author of this self-study*

B. Program History

The Bachelor of Science in Architectural Engineering (AREN) degree at the University of Colorado Boulder (CU) is offered through the Department of Civil, Environmental, and Architectural Engineering (CEAE), which resides within the College of Engineering and Applied Science (CEAS). The Architectural Engineering program was established in 1925, awarded its first degree in 1929, and has been continuously accredited since 1936. In the 2011-2012 general review by the Engineering Accreditation Commission of ABET, our program received a Next General Review with accreditation through Sept. 30, 2018.

Soon after the last AREN ABET accreditation in 2012, a revised curriculum was implemented for the 2012-2013 academic year. The 2012 AREN Joint Evaluation Committee (JEC) sanctioned the change indicating that the committee "takes no exception of the recommended AREN curriculum change for 2012-13". The JEC role and process is described in Criterion 2E.

There were significant changes to the curriculum. These were primarily driven by feedback from the JEC process, student surveys, and recent changes to the ABET EAC architectural engineering program criteria. Educational research on student autonomy and motivation (self-

determination theory) was also taken in to account, which in our case meant adding flexibility to the curriculum. The four most significant change were:

- AREN proficiency courses. In the pre-2012 AREN curriculum, all AREN students were required to take five proficiency courses (AREN 4550 Illumination II, CVEN 4545 or CVEN 4555 Structural Design, CVEN 3256 Construction Equipment & Methods, AREN 4110 HVAC Design, and AREN 4570 Electrical Systems for Buildings.) In the current curriculum students are required to take only two proficiency courses, one related to their concentration track, and one of their choosing.
- 2. Within their tracks, students are now required to take two concentration courses instead of one.
- 3. Dedicated lab courses were eliminated, but their content was distributed through various courses in the curriculum. In their place, a fourth technical elective was added. Additional information on lab content is provided on Criterion 4, Outcome 2b.
- 4. A free elective was added. Students can take a course of their choosing with minimal restriction.

Examples of other changes are:

- 1. AREN 1316 Introduction to Architectural Engineering (1 credit) was combined with Introduction to Civil and Environmental Engineering and changed to 2 credits."
- 2. GEEN 1400 Engineering Projects is required for all AREN first-year students.
- 3. AREN 2406 Intro to Building Construction was eliminated as a course but content was included in AREN 2050 Engineering Systems for Buildings. The new combined course is now called Building Materials and Systems.
- 4. ARCH 4010 Architectural Design changed from 3 credits to 5 credits. This course along with AREN 4317 Architectural Engineering Design form a 10-credit senior capstone experience.

The current block diagram that reflects the changes above can be found in Criterion 5A.

C. Options

Graduates of the AREN program are expected to acquire a broad education in architectural engineering as well as a specialization in one of four engineering disciplines—structural, mechanical, electrical/lighting, or construction. Each specialization is a separate option within the program, defined by 18 credit hours of upper division technical courses. Within the curriculum, students declare their concentration in one of these four areas, each of which has a separate set of required concentration courses (listed below) and suggested technical electives. Students must satisfy the requirements of one of these four options to graduate: Construction Engineering and Management, Electrical and Lighting Systems, Mechanical Systems and Structural Systems.

D. Program Delivery Modes

The bulk of the required Architectural Engineering curriculum is provided to students via courses offered between 8 am -5 pm on weekdays on the Boulder campus as traditional lecture/laboratory/recitation courses. Humanities and social science electives may be taken as

web-based or distance education courses through CU Continuing Education, but that is not common. Some technical electives could also potentially be taken as web-based or distance education courses. The program offers the opportunity for students to participate in a Cooperative Education ("Co-Op") program, but co-ops do not fulfill any of the curriculum requirements and few students participate.

E. Program Locations

The program is regularly offered at the University of Colorado Boulder main campus. Students may participate in Study Abroad programs offered by the University and transfer some of these credits into the major. Students also sometimes take summer courses from other institutions that can be transferred into the major, subject to the approval of the departmental transfer course evaluator.

F. Public Disclosure

The program education objectives and student outcomes are published in the catalog of the University of Colorado Boulder. These are also published on the website of the CEAE Department (<u>http://www.colorado.edu/ceae/current-students/undergraduate-studies/educational-objectives-outcomes</u>). The annual student enrollment and graduation data is posted on the College of Engineering & Applied Science (CEAS) website (<u>http://www.colorado.edu/engineering/about/rankings-facts-figures?qt-</u>

<u>funding_enrollment_degrees_quick=2#qt-funding_enrollment_degrees_quick</u> - scroll down for the "Degrees" and "Enrollment" tabs).

G. Deficiencies, Weaknesses or Concerns from Previous Evaluation(s) and the Actions Taken to Address Them

The previous ABET Final Statement included three program concerns. These concerns are directly quoted below, followed with statements related to the program progress in these areas over the past six years.

Program Concerns

1. <u>Criterion 4. Continuous Improvement</u> This criterion requires the program to regularly use appropriate, documented processes for assessing and evaluating the extent to which the program educational objectives and student outcomes are being attained. The program has not clearly established the expected levels of attainment for student outcomes and relies heavily on student survey data, which may not be an effective measure of attainment, in its assessment and evaluation process. While it appears that the outcomes are being attained, the evaluation process may not consistently document the extent of attainment, which could result in future noncompliance with this criterion.

Response: The Architectural Engineering program has various methods to determine levels of attainment for student outcomes. These are:

- 1. Fundamentals of Engineering (FE) exam results
- 2. AREN 4317 Architectural Engineering Design, the senior capstone class that provides a major design experience
- 3. Specific courses that contain assignments, projects, lab write-ups, and/or exams, which are used as embedded indicators of outcome attainment.
- 4. Joint Evaluation Committee (JEC) evaluation and feedback related to student outcomes. Their input is carefully evaluated by AREN faculty and suggestions are implemented wherever possible.
- 5. Faculty Course Questionnaires (FCQs), which provide valuable data related to how students perceive a particular course contributing to specific learning objectives.
- 6. Senior survey administered by the College of Engineering, where recent graduates rate their achievement of the 13 student outcomes.

Data collected using these various methods are shown in Criterion 4. Not all methods are used for all outcomes.

2. <u>Criterion 6. Faculty:</u> The criterion requires the faculty to be of sufficient number and competencies to cover all curricular areas. The Joint Evaluation Council has clearly noted a lack of strength in the building electrical systems area and the program has noted difficulty in hiring a lead design faculty member in this area. A class has been added, but without additional faculty it may be difficult to sustain the area.

Response: Since the last ABET review in 2012, the AREN group has conducted four faculty searches. All search descriptions included language such that a candidate with expertise in the area of building electrical systems would be welcome. The latest search (2017) was successful; the CEAE department will be adding an electrical engineer to its roster.

Since this new hire will join the AREN group in fall 2017, it is important to note:

- 1. The lighting instructor hired in 2012 had a degree in Architectural Engineering. He had sufficient fundamental knowledge and experience of electrical systems to cover the electrical building design portion in the senior capstone class while the professor who normally covers this topic was on sabbatical (AY 2014-15). In addition, an electrical engineer with extensive professional experience and PE licensure covered the Electrical Systems for Buildings course, also taught by the professor on leave.
- 2. The Lighting and Electrical Systems track requires students to take the following courses: ECEN 3030 Electrical Circuits, AREN 4570 Electrical Systems for Buildings, and AREN 4317 Architectural Engineering Design. In the latter, students have ample practical exposure designing an electrical system for a 15,000 to 30,000 square-foot building. They have access to one-on-one meetings with professional electrical engineers who act as their mentors.

<u>Program Criteria</u>. Program criteria for architectural engineering require the program to demonstrate that faculty teaching courses that are primarily engineering design in content

are qualified to teach the subject matter by virtue of professional licensure or by education and design experience. Of the department's 46 faculty members, only 10 are licensed professionals, only six of those are licensed to practice in Colorado, and there are no licensed faculty members in the construction engineering area. The limited number of licensed professional engineers may reduce flexibility in assigning design courses and in the development of design depth within students' programs of study.

Response: As of spring 2017, of the department's 48 faculty members, 14 are licensed professionals and seven are licensed to practice in Colorado

Specifically, as it relates to the AREN program, nine faculty are licensed professionals and five of these are licensed to practice in Colorado:

- Two dedicated AREN faculty, one is CO licensed
- Two CEM faculty who teach in both AREN and CVEN programs, one is CO licensed
- One structures faculty who teaches in both AREN and CVEN programs is CO licensed.
- Four cover various AREN fundamental, proficiency and/or AREN technical elective courses, two are CO licensed.

Courses that are primarily design in content such as AREN 4110 HVAC Design, AREN 4570 Electrical Systems for Buildings, CVEN 4545 Steel Design, CVEN 4555 Reinforced Concrete Design, CVEN 3256 Construction Equipment & Methods are all taught by licensed professionals.

To learn more about faculty who teach other design courses but are not licensed professionals, refer to Program Criteria, section 2.1 (faculty qualifications to teach design). This section highlights the ample experience of non-PE faculty and instructors, who contribute to the teaching and development of design depth in the AREN curriculum.

Finally, since the 2012 ABET accreditation, the AREN faculty roster gained one faculty (growth) and lost one faculty (retirement). Since 2012, the AREN group has conducted four searches: AY 2012-2013 where a materials science and engineering faculty was hired; AY 2014-2015 and AY 2015-2016 were both unsuccessful, and AY 2016-2017 where an electrical engineering faculty was hired. The language of such searches has been consistent with the wider effort to increase the number of professionally licensed engineers who are faculty members in the CEAE department. Advertisements to hire CEAE faculty members have routinely included language that: "Professional registration or an ability to become registered as professional engineer is desired."

CRITERION 1. STUDENTS

A. Student Admissions

At the University of Colorado Boulder, students apply using an online application to a specific major. The campus-wide Office of Admissions in conjunction with the Engineering Director of Access and Recruiting handles the admission process and admission decisions for all engineering majors. While there are not set minimum requirements for admission, the College seeks to admit applicants with a high probability of successfully completing their undergraduate engineering degree program at the University of Colorado Boulder. The Office of Admissions and the College consider the following factors in making admission decisions:

- Evidence of scholastic ability and accomplishment as demonstrated by grade point averages, tests of scholastic aptitude and achievement (ACT or SAT), class rank, grades earned in courses directly applicable to an engineering academic program, and essays.
- Personal motivation and academic success as demonstrated by trends in the student's academic record, rigor and challenge of coursework, success in the academic community, ability to balance academic and personal interests, and letters of recommendation.

The College is committed to increasing the quality of its programs, in part by increasing the holistic diversity of its students (ethnic, gender, geographical, cultural, socio-economic, and first-generation students). This commitment is reflected in the admissions process and the special programs established to support these students.

The following mean average information is provided from prior first-year classes in this College:

New Studs Entering in	High School Rank	HS GPA	ACT Math	ACT Engl.	SAT Math	SAT Crit. Read	# of New Studs
Fall 2016	88%	3.91	31	30	677	615	1032
Fall 2015	89%	3.91	30	30	679	625	900
Fall 2014	88%	3.90	30	30	673	617	909
Fall 2013	89%	3.88	30	29	677	615	838
Fall 2012	87%	3.87	30	29	673	613	778

Mean Averages, First-Year Classes

For more information about first-year admissions, see http://www.colorado.edu/admissions

Due to large increases in the size of the incoming freshman classes, and heightened student interest in specific majors, the College has implemented several enrollment management policies over time. Currently, when students apply to the College of Engineering and Applied Science from high school, they may indicate to enter the College as "open option" (unsure of engineering major), or they may select a preliminary engineering major.

Sometime after completion of the first semester, and by the eighth week of the second semester, all students should finalize their choice of major in the College. Students wishing to make a major change within the College use the Change of Major Form to finalize their choice of major.

Students with a CU cumulative GPA of at least 2.250 after their first semester will receive immediate confirmation of their major choice. See <u>http://www.colorado.edu/engineering-advising/get-your-degree/first-year-freshmen/confirming-your-major</u> for details.

B. Evaluating Student Performance

Students are evaluated on a course-by-course basis. For each course, students earn grades A through F, A being the highest grade and F indicating failing. Depending on the course, students are evaluated on the basis of assignments, examinations, and projects.

The following grading system is standardized for all colleges and schools of the university. Each instructor is responsible for determining the requirements for a class and for assigning grades on the basis of those requirements.

Standard grade points per hour of credit:

```
A = superior/excellent, 4.0

A- = 3.7

B+ = 3.3

B = good/better than average, 3.0

B- = 2.7

C+ = 2.3

C = competent/average, 2.0

C- = 1.7

D+ = 1.3

D = 1.0

D- = minimum passing, 0.7

F = failing, 0.0
```

The average GPA of students graduating from the AREN program is approximately 3.1 (calculated from May 2013-December 2016 graduates). The course dossiers available during the ABET visit will contain information describing how individual courses are graded.

Students remain in good academic standing in the College if their semester and cumulative Grade Point Averages are at least a minimum of 2.250. These GPAs are reviewed by the College twice a year, following the fall semester and following the spring semester. Students are placed on academic alert, recovery, and/or suspension if they fail to maintain these levels. The AREN program faculty and staff do not have a role in determining the students who are placed on alert, recovery, or suspension. See the Academic Standing website at http://www.colorado.edu/engineering-advising/academic-standing for details.

Many courses have prerequisites, corequisites, or class standing requirements. It is program policy that all prerequisite and corequisite courses must be completed with a grade of C- or higher. Required prerequisites, corequisites, and other restrictions are coded into the CU student information system (CU-SIS). This system prevents students from registering for a course unless all requirements are either completed or in progress (in which case enrollment is conditional, pending successful completion of the requirements). Final authority over prerequisite and corequisite requirements rests with the faculty—any student requesting a waiver to these requirements must obtain permission from the course instructor. The CEAE Department requires students to obtain such permission in writing, either via e-mail or a hard copy petition form. Other departments may have different procedures for their own courses.

After final grades are posted each semester, departments can run reports in CU-SIS showing whether students successfully completed the prerequisites for the following semester's courses. Students who do not successfully complete a prerequisite may be administratively dropped from the course—the system then prevents the student from re-enrolling until they meet the requirements, or obtains a waiver from the instructor. Administrative drops are the purview of the department in charge of the course—the AREN undergraduate academic advisor handles this process for the CEAE Department, and has control over civil, environmental, and architectural engineering courses only.

In addition to prerequisite checks done by the department in charge of each course, the AREN undergraduate academic advisor tracks students' progress each semester. Each student has a copy of the AREN block diagram in their departmental file—the academic advisor updates this document after grades are posted every semester, indicating which courses have been completed, and which courses the student is enrolled in for the following semester. During this process, the academic advisor contacts students about prerequisites not fulfilled, courses which need to be retaken, courses that the student is missing to stay on track for graduation, or any other issues they may identify.

The staff advisor also conducts individual meetings with all students placed on academic alert or academic recovery. The purpose of these meetings is to make sure the student understands the requirements they must meet in order to return to good academic standing, discuss factors affecting the student's academic performance, and provide guidance, resources, and/or referrals to other academic support services.

Students can access an online degree audit via their online student portal, MyCUInfo. This online degree audit pulls the student's program information, grades, and course schedule directly from CU-SIS, and is updated in real time. Students can run a degree audit on their own from any computer and at any time. The AREN undergraduate academic advisor also checks the online degree audit every semester, and makes any necessary adjustments.

C. Transfer Students and Transfer Courses

External Transfers

External transfer students are admitted to the AREN program through the CU Boulder Admissions Office, based on criteria set by the College. Similar to the first-year freshman admission process, the College seeks to admit external and internal transfer applicants with a high probability of successfully completing their undergraduate engineering degree program at the University of Colorado Boulder.

To qualify for admission as a new transfer student, the applicant must have completed a minimum of two semesters of college-level calculus and two semesters of science (college chemistry and/or calculus-based physics). If the applicant has less than 24 semester credit hours, an ACT or SAT test score is also required.

To be most competitive, transfer applicants should have a minimum cumulative college GPA of 3.0. Grades of B or higher are expected in math, science, and engineering courses.

Additionally, The College of Engineering and Applied Science guarantees admission to any of its baccalaureate degree programs to students transferring from Colorado public institutions of higher education who meet the following requirements:

- At least two full-time semesters (or 24 semester credit hours) at a Colorado public institution must be satisfactorily completed immediately prior to the transfer
- A cumulative GPA of 3.3 or higher from a Colorado public institution
- Grades earned in individual mathematics, science, engineering and language arts courses must all be B or higher
- Completion, with final grades, of a minimum of two semesters of college-level calculus, along with two semesters of calculus-based physics and/or college-level chemistry, before an admission decision is rendered.
- Completion of admissions application and submission of all required documents by published deadlines

CU Boulder and the Colorado Community College System have an articulation agreement for both admission, as well as general transfer equivalencies of certain engineering courses. The Guaranteed Admission Criteria is designed with the following parameters:

- At least two full-time semesters (or 24 credit hours) at a Colorado public institution must be satisfactorily completed immediately prior to the transfer
- Colorado public institution GPA of at least 3.30
- Grades in math, science, engineering, communications and writing courses must be B or better
- Must complete two semesters of college-level calculus and two semesters of calculusbased physics and/or college-level chemistry.

There are also a number of direct equivalent engineering courses that are part of the articulation agreement and allow community college students to transfer basic math, science and certain

engineering courses to CU Boulder. The participating institutions agree to the agreement's policies governing the transfer of credit among Colorado public institutions for students pursuing baccalaureate majors in the College of Engineering and Applied Science. See http://highered.colorado.gov/Academics/Transfers/ for details. The University of Colorado Boulder Pre-Engineering Transfer Agreement for Community College Students is posted at http://highered.colorado.gov/Academics/Transfers/Agreements/UCB-Pre-Engineering-Transfer-Agreement.pdf. This agreement, and additional information posted at http://www.colorado.edu/engineering/future-students/transferring-cu/colorado.community-colleges, can be used by prospective transfer students to see which specific Colorado community college courses apply towards degree requirements for each of our undergraduate programs.

External transfer courses are reviewed by the CU Boulder department applicable to each subject. This process is coordinated by the CU Boulder Admissions Office transfer credit unit. Course equivalencies are entered into u.achieve, the university's degree audit and transfer credit system. This allows equivalent transfer courses to automatically populate the appropriate requirements in a student's online degree audit. In addition, prospective transfer students can use a free online service, Transferology, to look up transfer credit equivalencies, and run a degree audit showing how their current coursework will apply to the AREN curriculum.

Transferable courses that have not been deemed equivalent are up to the student's department to apply to degree requirements as they see fit. These courses are reviewed by the CEAE Department's Faculty Transfer Credit Evaluator. The AREN undergraduate academic advisor prepares a transfer credit evaluation for each transfer student, showing how all transfer coursework is being applied to degree requirements. This form is signed by the Faculty Transfer Credit Evaluator and kept in the student's file.

Current AREN students who want to take a transfer course (typically over the summer) can also use Transferology, or ask the AREN undergraduate academic advisor if the course has been reviewed for equivalence. If not, students are encouraged to have the course reviewed in advance to ensure that it will be accepted. Pre-approval for these courses is also handled by the CEAE Faculty Transfer Credit Evaluator.

Internal Transfers

Internal transfer applicants (degree-seeking students from another college/school at the CU Boulder campus) are admitted by the College, either via the Pre-Engineering Program or the Intra-University Transfer (IUT) process.

The IUT process allows CU Boulder students to transfer into the College if they complete a set of requirements which demonstrate their ability to be successful in an engineering curriculum. As with external transfers, IUT students must complete a minimum of two semesters of calculus and two semesters of science. CU cumulative and technical GPAs of at least 2.7 are required. The full set of IUT requirements is posted at <u>http://www.colorado.edu/engineering-advising/transfer-within-cu</u>.

The Pre-Engineering Program is a specialized IUT program serving qualified students who initially applied for direct admission to the College of Engineering and Applied Science, but were alternatively offered admission to the College of Arts and Sciences. The program is

designed to facilitate the successful transition of qualified first-year students into the College. The program provides a structured pathway of CU Boulder coursework combined with academic advising support from both the College of Engineering and Applied Science and the College of Arts and Sciences.

Pre-Engineering students are generally required to complete the same IUT requirements to transfer into the College. The program requirements are posted at <u>http://www.colorado.edu/pre-engineering/how-pre-engineering-works</u>. However, Pre-Engineering students also have an accelerated transfer option, for students who earn cumulative and technical GPAs of 3.3 or higher in their first semester and meet the other requirements posted at <u>http://www.colorado.edu/pre-engineering/how-pre-engineering/how-pre-engineering-works/step-3-transferring-engineering/accelerated-transfer-option</u>.

D. Advising and Career Guidance

The College of Engineering and Applied Science understands the importance of good advising in supporting student development and engagement. Undergraduate advisors meet regularly to share best practices and identify ways in which the College can support and improve advising. A collection of best practices and advising tools has been developed to support current advisors, and for use in training new advisors. The College annually recognizes exceptional advisors with an Outstanding Faculty Advisor Award and an Outstanding Staff Advisor Award.

Over the course of their AREN program, students are likely to receive academic and career guidance from both college and departmental faculty and staff. The First-Year Experience Director serves as advisor for the College's Open Option students (first-year freshmen who have not yet declared a specific engineering major). These students are typically expected to declare a major during their second semester in the College. The College also provides advising to Pre-Engineering and prospective IUT students, until they are admitted to an engineering major. Students who have been admitted to the College and have declared an engineering major receive academic advising within their department.

Academic Advising

All new AREN students are given an AREN Advising Guide including the current curriculum, graduation requirements, department policies and procedures, and information about curricular and extra-curricular opportunities. This information is also available on the department website at http://www.colorado.edu/ceae/current-students/undergraduate-studies/architectural-advising-curriculum. The AREN undergraduate advisor reviews the information in the advising guide at mandatory new student informational meetings each semester.

The College also maintains a comprehensive advising website at:

<u>http://www.colorado.edu/engineering-advising/</u>, including policies, procedures, forms, etc. Examples of topics covered include:

- 1. Minimum Academic Preparation Standards (MAPS)
- 2. Humanities, Social Science, and Writing requirements
- 3. Four-year graduation guarantee
- 4. Academic standing and grading policies
- 5. Registration information

Within the CEAE Department, academic advising is performed by faculty and staff advisors.

The AREN undergraduate academic advisor is a full-time staff member who maintains all student files, each of which contains a complete record of the academic activity of the student. The files are updated every semester and are used during academic advising session each semester. The files contain the following:

- 1. Current transcript, listing course history, grades received and cumulative/semester GPAs.
- 2. Log of advising sessions held with student, including date, advisor signature, notes and date an advising hold was removed.
- 3. AREN block diagram. Schematic layout of all courses, showing which aspects of the curriculum have been satisfied.
- 4. Transfer Credit Evaluation Form (if applicable). Listing of courses taken at other institutions and how they are counted in the AREN curriculum, including the equivalent course number and credit hours counted.
- 5. Copy of all petitions, approved and disapproved, governing variances from the curriculum.
- 6. Copy of any Special Action Forms and/or Change of Record Forms: course withdrawal, change of grade and other administrative actions.
- 7. Graduation Certification Form. Completed by student and faculty advisor two semesters before anticipated graduation, and signed by both.
- 8. Graduation Check Form. Official degree audit with verification that all degree requirements are met, signed by CEAE Operations Committee.

In addition, the academic advisor maintains certain electronic records for each student. These include the online degree audit, and advising logs. The university online advising platform, MyCUHub, allows the academic advisor to log detailed notes after each appointment. This system allows for continuity in advising, as the advisor can save important e-mail conversations with students, and refer to notes from previous meetings. In addition, advisors in different departments can share information about students, which provides better service—for example, when meeting with a student who wants to change majors, the academic advisor can see what the other advisor has already discussed with them.

AREN students are required to have academic advising every semester, prior to registration for the next semester's courses. A hold on the student's electronic record prevents course registration until the hold is removed by the AREN undergraduate academic advisor.

During their first two years in the program, when most students are following the typical curriculum and do not require career guidance, students are advised by the AREN undergraduate academic advisor (staff advisor). The academic advisor holds 30-minute individual meetings with each student to discuss the student's academic progress and their planned courses for the following semester. In addition, the academic advisor provides guidance and referrals regarding academic support, extracurricular activities, study abroad, etc.

AREN underclassmen also have access to faculty advising if needed. If students have questions or need advice beyond the scope of the staff advisor, they will be referred to an appropriate faculty member. The AREN Faculty Director serves as the default faculty advisor for these

students, but students may be referred elsewhere if they have questions relating to a particular faculty member's area of expertise.

In their third year, students choose a faculty advisor at the same time as they declare their area of concentration within the AREN curriculum. The faculty advisor typically teaches in the same area as the student's concentration. From this point forward, the student meets with their faculty advisor for mandatory advising each semester. This meeting is scheduled by the student during a designated two-week advising period and is 20 minutes long. The advising program is such that faculty make extra time available during these two weeks, so that all students are accommodated. Students bring their departmental file to the advising session so that both student and faculty advisor have the most current information. Typically, the curriculum block diagram is annotated to show student progress and current status.

The advising sessions between student and faculty involve both academic and career guidance. The faculty member typically helps the student select relevant technical electives, establish contact with industry professionals, and identify internship opportunities.

AREN upperclassmen who meet with their faculty advisor for mandatory academic advising continue to meet with the staff advisor on an as-needed basis. These meetings are typically for graduation progress checks, study abroad planning, or administrative issues (petitions, independent study agreements, or other paperwork). In addition, the staff advisor conducts a final graduation meeting with each graduating senior, to review graduation processes and deadlines.

Academic Support

In addition to academic support programs offered by the campus (e.g., Student Academic Services Center, Department of Housing Academic Support Program, Office of Disability Services), the College of Engineering and Applied Science provides several substantial academic support programs. Among these are the Engineering Ambassadors peer advising and mentoring program, the Engineering Fellows Program, and advising and tutoring offered by the Broadening Opportunity through Leadership and Diversity (BOLD) Center Student Success Center. For more information on these programs, see <u>http://www.colorado.edu/engineering-advising/resources-support/academic-support-tutoring</u>.

Career Advising

In addition to the career advising provided by CEAE faculty advisors, Career Services, within the Division of Student Affairs, provides career counseling, internship coordination, career fairs, on-campus interviewing, and job postings for students in the College of Engineering and Applied Science. In addition to the generalists in the central Career Services office, two professional staff members are housed in the College, dedicated to providing more specialized assistance in career and professional development, identifying internships, advocating co-op programs, designing engineering-specific career development programs, liaising with employers, and answering questions. Students within the College are encouraged to participate in all career development and on-campus recruiting programs across campus. For more information, see http://www.colorado.edu/career/.

Other Advising

The CEAE Department has a faculty Enrichment Program Coordinator who is available to meet with students about enrichment activities—study abroad, internships, undergraduate research, and service.

In Fall 2016, the CEAE Department piloted a peer mentoring program, through which new AREN students can sign up to be assigned a junior or senior peer mentor. Peer mentors are not intended to provide academic advising or tutoring, but can provide advice based on their own experiences in the program. In addition, peer mentors help students navigate campus life and the transition from high school to college.

E. Work in Lieu of Courses

University and College policy on awarding college credit for work in lieu of courses is summarized here:

Advanced Placement (AP) Examinations

College credit may be granted on the basis of the College Board's Advanced Placement tests, for students who have taken an advanced placement course in high school and who make the required score in the College Board's Advanced Placement examination. See the Advanced Placement Chart at

<u>http://www.colorado.edu/admissions/undergraduate/apply/freshman/credit</u> to determine what examination score is required to earn CU-Boulder Course Equivalent college credit.

International Baccalaureate (IB) Examinations

College credit may be granted for approved IB examinations with minimum scores. See the International Baccalaureate Chart at

http://www.colorado.edu/admissions/undergraduate/apply/freshman/credit to determine what examination score is required to earn CU-Boulder Course Equivalent college credit.

College-Level Examination Program (CLEP)

Credit for College Board subject examinations of the College-Level Examination Program (CLEP) in general biology, general chemistry, general psychology, introductory macroeconomics, introductory microeconomics, introductory sociology, and calculus may be granted for a score at or above the 67th percentile. CLEP general examinations are not accepted for credit at CU-Boulder.

Military Credit

Credit for military schooling is evaluated upon receipt of Form DD 214, Service Separation Certificate, or the Joint Services Transcript (JST). Only work that has received an upperdivision baccalaureate recommendation by the American Council on Education (ACE) can be awarded credit. This work, however, is transferred and recorded at the lower-division level. Foreign language credit taken through the State Department, Department of Defense, or Defense Language Institute is assigned the recommended ACE credit.

Work Experience

It is the academic policy of the College of Engineering and Applied Science that credits accrued in the official records of a student that were awarded for work or co-op experience do not apply toward degree requirements.

F. Graduation Requirements

To be eligible for a Bachelor of Science degree in Architectural Engineering from the University of Colorado Boulder, a student must meet the following minimum requirements:

- 1. The satisfactory completion of the prescribed and elective work in the AREN BS curriculum. A student must complete a minimum number of 128 semester hours, of which the last 45 shall be earned after admission to the College of Engineering and Applied Science as a degree student.
- 2. A minimum cumulative grade point average of 2.250 for all courses attempted and for all courses that count toward graduation requirements, excluding P grades for courses taken Pass/Fail. (Pass/Fail courses do not count for graduation credit.)
- 3. A minimum cumulative grade point average of 2.250 for all CEAE course work. This "Major GPA" is computed separately from the student's cumulative grade point average and includes only AREN and CVEN courses.
- 4. Successful completion of all Minimum Academic Preparation Standards (MAPS) requirements of the College.
- 5. Successful completion of WRTG 3030, *Writing on Science and Society* or an approved alternate writing course (HUEN 1010, HUEN 3100, WRTG 3035, or PHYS 3050). Any other exceptions to the WRTG 3030 requirement must be approved via petition by the Assistant Dean for Students.
- 6. Completion of the Fundamentals of Engineering (FE) Examination during the student's senior year. Graduation is not contingent upon passing.
- 7. Submission of a completed graduation application, online via MyCUInfo.

To be eligible for a Baccalaureate Degree from the College of Engineering and Applied Science on the Boulder Campus, a student must meet the following minimum requirements:

- 1. The satisfactory completion of the prescribed and elective work in any curriculum as determined by the college and the appropriate academic department/program. A student must complete a minimum number of semester hours, not less than 128, of which the last 45 must be Boulder coursework earned after admission to the University and the College.
- 2. A University of Colorado cumulative grade point average of 2.250 for all courses attempted.
- 3. A separately computed grade point average, Major GPA, of at least 2.250. The way the Major GPA is computed is to take the most recently earned grade in all courses designated by the major department/program.
- 4. The satisfactory completion of all Minimum Academic Preparation Standards (MAPS) deficiencies.

Students should meet with their academic advisor to discuss progress towards degree requirements, and then if appropriate, apply for graduation via the online Student Center according to the timelines posted on the Registrar's website http://www.colorado.edu/registrar/students/graduation/apply). The CEAE department reviews individual student records and utilizes degree audits to confirm baccalaureate degree requirements have been met. Confirmation of Graduates meetings are convened by the Assistant Dean for Students of the College with to approve a certified list of graduates by representatives of degree-granting departments and programs following the close of the fall and spring semesters and the final summer term.

The process for ensuring and documenting that each graduate completes all graduation requirements largely rests in the Department and is managed by both faculty and staff. The process includes the following elements:

- 1. Each student is required to receive academic advising every semester of their academic career.
- 2. Students can perform an online degree audit to check their progress toward graduation at any time.
- 3. Students request a graduation check in the semester before they intend to graduate. The AREN undergraduate academic advisor then completes the graduation check form, and indicates incomplete requirements.
- 4. At the student's final academic advising appointment (prior to registration for their final semester of classes), the student and faculty advisor review the graduation check and complete a CEAE Graduation Certification Form listing all remaining coursework needed for graduation. Both student and faculty member sign the certification form. The AREN undergraduate academic advisor reviews the certification form and ensures that the requirements listed are correct.
- 5. Prior to the student's final semester, the AREN undergraduate academic advisor reviews the student's course schedule and ensures that they are enrolled in all required courses. The academic advisor notifies the student of any barriers to expected graduation.
- 6. A member of the Operations Committee, a standing CEAE Department faculty committee responsible for review of student records for graduation, performs an independent preliminary audit of the student's record.
- 7. At the beginning of the student's final semester, the AREN undergraduate academic advisor sends out a graduation checklist to all graduating seniors, and asks each student to come in for a final graduation appointment to review any incomplete graduation requirements, processes, and deadlines for completion.
- 8. After completion of the final semester, the AREN undergraduate academic advisor updates the graduation check form with final grades and GPAs. The academic advisor confirms that all graduation requirements have been met, including successful completion of all required courses, MAPS requirements, the FE Exam, and minimum GPA requirements. The academic advisor also reviews the online degree audit and confirms that it shows all requirements met. The academic advisor updates the student's file with a printout of the online degree audit and an updated transcript showing all coursework.
- 9. The Operations Committee Chair performs a final review of the student's file and officially signs off on the graduation check form.

G. Transcripts of Recent Graduates

The program will provide transcripts under separate cover as supplemental materials. The transcript specifies Bachelor of Science in Architectural Engineering. For each student transcript, we will provide a degree audit for the option each student chose to pursue (e.g. Construction Engineering and Management, Mechanical Systems, Lighting and Electrical Systems, Structural Systems), as well as a curricula guide for the Architectural Engineering degree, which shows each of these options.

CRITERION 2. PROGRAM EDUCATIONAL OBJECTIVES

A. Mission Statement

CU-Boulder's vision is grounded in its statutory mission as a national public research university. In Colorado statute, the university is defined as the "comprehensive graduate research university with selective admissions standards . . . offer(ing) a comprehensive array of undergraduate, master and doctoral degree programs" of what is now designated the University of Colorado System.

CU-Boulder recognizes the exceptional opportunities associated with its role as a research university, and values the unique strength and character research achievements bring to undergraduate education. It is keenly aware of its responsibility for educating the next generation of citizens and leaders, and for fostering the spirit of discovery through research. Indeed, CU-Boulder believes that its students, both graduate and undergraduate, benefit from the comprehensive mix of programs and research excellence that characterize a flagship university. Thus, CU-Boulder's statutory mission is relevant today and will remain relevant tomorrow. (http://www.colorado.edu/about/mission)

The mission of the College of Engineering & Applied Science is:

The college's mission is to generate new knowledge in engineering and related fields, and to equip students from diverse backgrounds to become leaders and citizens responsible for the betterment of individuals and society. Our vision is to be a recognized world leader for excellence and innovation in engineering research and education, with an emphasis on inclusive excellence, active learning and global society. (http://www.colorado.edu/engineering/about/mission-vision)

"The Civil, Environmental and Architectural Engineering Department's mission is the education of undergraduate and graduate students to become leaders in the professional practice of engineering, contributing to technological advances that benefit humankind while enhancing the earth's physical and biological resources." (<u>http://www.colorado.edu/ceae/welcome</u>)

B. Program Educational Objectives

The educational objective of the architectural engineering program is for graduates to:

- Attain a broad knowledge and skills necessary to successfully begin and sustain a career
- Become leaders who advance the state-of-the art, in one of four core disciplines of the building industry: electrical and lighting systems; heating, ventilating, and air conditioning (HVAC) systems; structural systems; construction engineering and management.

These objectives are published on the departmental website: <u>http://www.colorado.edu/ceae/current-students/undergraduate-studies/educational-objectives-outcomes</u>

The objectives are also published in the University of Colorado catalog: <u>https://catalog.colorado.edu/undergraduate/colleges-schools/engineering-applied-</u>

science/programs-study/civil-environmental-architectural-engineering/architectural-engineeringbachelor-science-bs/

C. Consistency of the Program Educational Objectives with the Mission of the Institution

The overall themes in these mission statements include the education of professionals who exhibit technological knowledge, leadership, and responsible citizenship; these are reflected strongly in the educational objectives of the Architectural Engineering program.

D. Program Constituencies

The primary constituents of the AREN program are the students and alumni of the program, and the employers of our graduates. The departmental faculty members are also a constituency.

The AREN students and alumni are served through the program objectives by having employable skills that will help them find and advance in rewarding careers, building from their foundational skills in architectural engineering. The alumni are invited to provide feedback to the program objectives formally via the online alumni survey distributed each summer. Alumni about five and/or eight years after earning their Bachelor's degree are invited to participate in the alumni survey.

Employers of our graduates are served through the program objectives by having employees with competence and commitment to keeping their technical skills up-to-date.

Alumni and employers of our graduate are invited to serve on advisory boards (i.e. the Joint Evaluation Committees, JECs) through which they can review and provide additional input to the educational objectives.

The departmental faculty members can use the program objectives to guide their teaching and mentoring activities of architectural engineering students moving through the program. The faculty can revise these objectives if they believe that they are no longer serving our students, alumni, and the engineering profession.

E. Process for Review of the Program Educational Objectives

There are two primary mechanisms that review the program educational objectives, and provide input into revisions. First, the Joint Evaluation Committee (JEC) process reviews the educational objectives and the associated feedback from alumni. Each JEC is comprised of the program constituencies: practicing, professional engineers who are employers of our graduates and/or program alumni; one or more current students; and departmental faculty representatives. Each JEC focuses on a sub-discipline of the CEAE department. Typically, one or two JECs meet each academic year. There are three JECs that review elements related to AREN: building systems, construction engineering and management, and structural engineering & mechanics. Each JEC reviews the program educational objectives. JECs for each sub-discipline reconvene every 3 years. The JECs that have met since the last ABET review are summarized below. The JECs are required to review the educational objectives and recommend changes.

Focus	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17
Building Systems	Х			Х		
Construction						
Engineering and			Х			Х
Management						
Structural						
Engineering &		Х			Х	
Mechanics						

Second, alumni have formal input into the program objectives through an alumni survey instrument. Each summer, alumni five years (and recently also eight years) after graduation are asked to evaluate the appropriateness and their accomplishment of the program objectives. The feedback from the alumni is provided to the JECs for their consideration.

All constituents also have informal but important input through ongoing contacts with the program faculty. Potential changes to the program objectives arising from input from program constituents or assessment information are discussed and approved by the CEAE faculty. The discussion process is often facilitated via the departmental curriculum committee, which has representatives from the major faculty groups in the department. The potential changes are also discussed by the faculty at large and must be approved by a majority vote.

The 2015 AREN JEC report expressed concern with the low response-rate by CEAE alumni to the survey. As such, it has recommended that AREN initiates a "specific 'guerilla' survey utilizing the existing professional networks of the faculty." AREN faculty agreed to develop a short 5-minute survey to be sent to alumni and to personally invite individual alumni to take the survey to yield a higher response rate. Although a specific AREN questionnaire was not used in 2016, one of the AREN faculty sent personal e-mails to all AREN students to solicit response to the survey sent by the college.

CRITERION 3. STUDENT OUTCOMES

A. Student Outcomes

The outcomes that students are expected to have attained upon graduation with a bachelor of science degree in architectural engineering are listed below; a mapping to the ABET (a) to (k) Student Outcomes is shown in brackets:

- 1. [a] the ability to apply knowledge of mathematics, science and engineering
- 2. [b] the ability to design and conduct experiments
- 3. [b] the ability to analyze and interpret data
- 4. [c] the ability to design a system or component to meet desired needs
- 5. [d] the ability to function on multidisciplinary teams
- 6. [e] the ability to identify, formulate and solve engineering problems
- 7. [f] an understanding of professional and ethical responsibilities
- 8. [g] the ability to communicate effectively through writing and/or drawing
- 9. [g] the ability to communicate effectively through oral presentations
- 10. [h] an understanding of the impact of engineering on society
- 11. [i] an understanding of the necessity to engage in lifelong learning
- 12. [j] a knowledge of contemporary issues in civil, environmental and architectural engineering
- 13. [k] the ability to use modern engineering techniques, skills and tools

These outcomes have remained consistent since the previous ABET review.

These outcomes are published on the departmental website:

http://www.colorado.edu/ceae/current-students/undergraduate-studies/educational-objectivesoutcomes

The outcomes are also published in the University of Colorado catalog: https://catalog.colorado.edu/undergraduate/colleges-schools/engineering-appliedscience/programs-study/civil-environmental-architectural-engineering/architecturalengineering-bachelor-science-bs/

B. Relationship of Student Outcomes to Program Educational Objectives

The architectural engineering program objectives map to the 13 student outcomes of our program, as shown below where an "x" indicates that the accomplishment of the related outcome is an important ingredient for accomplishing the objective. Table 3.1 below illustrates that the two program educational objectives are linked to two or more outcomes, so that processes that are used to assess the outcomes indirectly help to ensure that the overall objectives are being accomplished. Philosophically, consistency between the architectural engineering program objectives and the general educational outcomes for engineering students is desirable for ensuring the professional success of our graduates.

		Student Outcomes											
Program Objectives	1	2	3	4	5	6	7	8	9	10	11	12	13
1. Successfully begin and sustain a career	х	х	х	Х	х	Х	х	Х	Х	х	х	Х	х
2. Become leaders who advance the state-													
of-the art in 1 of 4 core disciplines of				х									x
building industry													

Table 3.1: Mapping of Student Outcomes to the Program Objectives

CRITERION 4. CONTINUOUS IMPROVEMENT

A. Student Outcomes

Outcomes Assessment Methods Summary

The table below provides a summary of the multiple direct and indirect methods that are used to assess achievement of each of the student outcomes. Not all methods are used for all outcomes. The highlighting in green indicates that the outcomes have been consistently met at a sufficient level. Yellow indicates variable fulfillment and/or marginal fulfillment of the outcome based on the metric in question. Red indicates that we failed to meet our goal for that indicator of the outcome. Each of the assessment methods is described in more detail in the paragraphs below.

The FE exam is the national NCEES Fundamentals of Engineering exam. It is a direct evaluation method that is used to assess 7 of the 13 student outcomes. All CU AREN students are required to take the exam before they graduate; they typically take the exam during one of their last two semesters. There is no exam specific to architectural engineering, so most of the AREN students take the "Other Disciplines" exam; a few students also take the Civil Engineering exam. Data are provided from the NCEES summarizing the performance of our students twice per year (returned to the university about three months after the students take the exam). The FE exam topics have been mapped to our student outcomes. Outcomes are flagged as a concern if CU AREN students have a ratio score relative to national AREN students at 0.92 or lower (with the old exam format, the threshold for concern was performing 5% or more below the national average for AREN students). Data highlights including the overall pass rate and any weaknesses identified are presented to the CEAE faculty at an at-large meeting once per semester. Any problems are also discussed by the CEAE curriculum committee.

The capstone course offers an opportunity to evaluate the cumulative knowledge of students on many of the outcomes. Five faculty and/or PhD students representing each AREN discipline (CEM, lighting/electrical, mechanical, structures) grade their respective project deliverables. Up until 2016, each instructor has used their own rubric to directly assess student performance on the outcomes based on required deliverables specified at each design phase (conceptual, schematic, design development). All faculty graded on a 100-point scale, where superior = 90%or more, adequate = 80%-90%, needs improvement = 70-80%, and poor = below 70%. In 2017 all senior capstone faculty have adopted a similar rubric that clearly describes on a scale from 5 to 1 what constitutes professional (5), adequate (4), needs improvement (3), poor (2), and unacceptable (1) work. The content of the rubric is tailored to the assignment within a discipline. This rubric yields grades based on a 100-point system. In addition, faculty along with industry mentors grade two oral presentations (conceptual and schematic). Each team also receives specific feedback with suggestions for improvement. The 5-point rubric described above has been consistently employed to assess the quality of reports (written and drawing communication). Individual assignments related to professional issues are used as evidence of achievement of some student outcomes. A graduate student serving as teaching assistant (TA) grades the individual homework assignments. Examples of rubrics mentioned here will be presented below with the evidence of student outcomes.

Within specific courses, various assignments (or questions on assignments), projects, lab writeups, or exams are used as embedded indicators to directly measure student learning of some outcomes. Frequently, the normal grades on a particular assignment or question on an assignment are converted to a four-point scale, where: superior = 90% or more, adequate = 80%-90%, needs improvement = 70-80%, and poor = below 70%. The target is for 80% or more of our students to be rated adequate or above on each embedded indicator. These data are presented to the JEC for evaluation, and the JECs often directly examine student work during their assessments. Thus, the JEC feedback can also be considered a direct assessment.

Two indirect assessment methods are also used to evaluate each of the 13 student outcomes. First, at the end of each semester, CU students are asked to evaluate the extent to which each of the AREN and CVEN undergraduate courses contribute to their achievement of the 13 student learning outcomes. These are questions that have been added to the university-wide Faculty Course Questionnaires (FCQs) that are administered by the campus. We expect that student ratings (on a scale of *not applicable* = 0 to 6) should be 4 or higher for a minimum of three or more required courses. The data for relevant courses are presented to the JECs. Data from selected courses targeted for each outcome are presented for each outcome in the following sections. Each academic year, the data from required courses are compiled in a spreadsheet to ensure that our targets are being met. In addition, the student evaluation data are compared to faculty ratings of how their courses contribute to the learning outcomes.

The second indirect assessment method used to evaluate each of the 13 student outcomes is the senior survey. The senior survey is administered by the College of Engineering & Applied Science; students graduating in May, August and December are emailed invitations to participate in the survey, which is administered via Qualtrics. Response rates are typically very high (over 90%) for AREN students. In one section of the survey, students rate their achievement of the 13 student outcomes, using a scale of 1 to 5. Achievement should be rated at 3.5 or higher to be satisfactory. The college previously returned data twice per year; it now combines the data for an academic year into a single report. The 2016/2017 graduates data is not included, since due to quality checks it is not expected to be distributed to departments until September/October (following the historical schedule). The senior survey data are presented to the JECs for evaluation. They are also examined and summarized in an annual report written by the Assessment Coordinator and reviewed by the Department Chair, and then posted on the College assessment website.

Student Outcomes Assessment Methods Summary $[^{N/A} = not applicable; green = outcomes consistently met at a sufficient level; yellow = variable fulfillment and/or marginal fulfillment of the outcome]$

	Indirect A	ssessment			
CU AREN Student Outcomes [ABET a-k]	NCEES FE exam	AREN 4317 Design course	Other course direct assessment JEC review	Student FCQ ratings, avg top 3	Senior survey avg. rating
1. apply knowledge of math, science, & engineering [a]	4 topics	N/A	College-wide service level courses	5.2	<mark>4.2</mark>
2. design & conduct experiments [b]	N/A	N/A	AR2120, 3540 CV3161	<mark>4.4</mark>	<mark>3.7</mark>
3. analyze and interpret data [b]	statistics	N/A	AR3010, 3540 CV 3161	5.0	<mark>4.2</mark>
4. design a system or component to meet desired needs [c]	N/A	Final report	Proficiency Courses	5.2	<mark>4.1</mark>
5. function on multi- disciplinary teams [d]	N/A	Peer evaluations	AR1316 CV3246	5.0	<mark>4.4</mark>
6. identify, formulate, and solve engineering problems [e]	4 topics	Final Report	Most courses	5.1	<mark>4.3</mark>
7. professional and ethical responsibilities [f]	ethics	Reflection Essay	AR1316 CV3246	5.0	<mark>4.0</mark>
8. communicate by writing and/or drawing [g]	N/A	Final report	<i>WRTG3030;</i> AREN 1027, 3540	4.5 <mark>/5.0</mark>	<mark>4.0</mark>
9. oral communication [g]	N/A	Presentatio ns	AR1316	<mark>4.7</mark>	<mark>4.0</mark>
10. impact of engineering on society [h]	N/A	Programmi ng Final report	AR1316 CV3246	<mark>4.9</mark>	<mark>3.8</mark>
11. necessity to engage in life-long learning [i]	Overall FE pass rate	Reflection Essay	AR1316 CV3246	<mark>4.8</mark>	<mark>4.2</mark>
12. knowledge of contemporary issues [j]	Eng. economics	Final Report	<mark>AR1316,</mark> CV3246	<mark>4.7</mark>	<mark>3.8</mark>
13. modern engrg techniques, skills, tools [k]	Computers/ data & instrument	Final report	AR1027, 3540 CV2012, 3161	<mark>4.9</mark>	<mark>4.1</mark>

The data for each outcome will be presented in detail in the following sections.

Outcome 1 (a). Apply knowledge of math, science, and engineering fundamentals

Outcome 1 (a): FE exam

Direct assessment of this outcome is largely conducted by student performance on the NCEES Fundamentals of Engineering (FE) exam. Since the revision of the exam in January 2014 from an 8-hour format to a \sim 5-hour online format, we have decided to rely on 4 topics from the Other Disciplines exam to evaluate this outcome: math, chemistry, statics, and dynamics. Data across an academic year have been combined, due to very low student numbers in some semesters (example: fall 2014 and fall 2015, only 3 students each term). Ratio scores are reported, representing the ratio of the average percentage of questions on a topic that CU AREN students answer correctly divided by the average percentage of questions on a topic that AREN students nationally answer correctly. Academic year weighted averages are reported, since some semesters have a low number of test takers. The goal is to equal or exceed a ratio score of 0.92. We successfully met this goal for all topics individually except in fall 2016 for two of the topics. Most AREN students take the FE exam in the spring. Because data from spring 2017 will not be available in time to include it in this report, it is not possible to combine data across the academic year as done for the two previous years. It is conceivable that the overall averages would be higher once the data from spring 2017 is included. Green highlights indicate where on average CU students performed better than their peers nationally. Averaged across the four topics, CU AREN students performed above national AREN peers in two evaluation cycles. Thus, no deficiency is evident.

Academic Year/Term:	Sp 14	F2014-S15	F2015-S16	F2016			
п	18	28	21	7			
FE Exam Topic	Ratio Scores of CU performance vs. National						
Math	0.97	0.98	<mark>1.07</mark>	0.96			
Chemistry	0.98	0.95	<mark>1.02</mark>	0.93			
Statics	<mark>1.06</mark>	<mark>0.92</mark>	<mark>1.01</mark>	0.91			
Dynamics	1.03	0.97	<mark>1.07</mark>	0.89			
Average Outcome 1	1.01	0.95	<mark>1.04</mark>	<mark>0.92</mark>			

Previously, with the old format of the FE exam we used student performance on 7 topics to assess students' ability to apply knowledge of math, science, and engineering fundamentals. These were topics on the morning part of the exam that did not map to another outcome and for which CU AREN students take at least 1 required course. The average percentage of questions on each topic that CU AREN students answered correctly was compared to the average for AREN students nationwide; the difference is shown. If the CU students were not more than 5% below their national peers, the performance was considered acceptable. In one academic year performance in strength of materials failed to meet this goal; in one semester with a low number of examinees (fall 2013) both statics and strength of materials failed to meet our minimum standard. Averaged across the 7 FE topics of interest, in all evaluation cycles we met our minimum goal. The results show that CU AREN students are adequately able to apply knowledge of math, science, and engineering fundamentals.

Academic Year/Term:	F2011-S12	F2012-S13	Fall 2013
п	44	34	9
Topic on the FE exam	CU % co	orrect – Natl %	correct
Math	<mark>+1</mark>	<mark>0</mark>	<mark>+8</mark>
Chemistry	-2	-2	<mark>+2</mark>
Statics	<mark>-5</mark>	-2	-18
Strength Materials	<mark>-5</mark>	-7	-13
Electricity & Magnetism	<mark>+3</mark>	-1	<mark>+5</mark>
Fluid mechanics	<mark>+5</mark>	<mark>+1</mark>	<mark>-4</mark>
Thermodynamics	<mark>+3</mark>	-1	<mark>+5</mark>
Average Outcome 1	0	-2	-2

Outcome 1 (a): Courses

Many of the service level courses taken by AREN majors along with most other engineering majors build the foundation for this outcome: Calculus 1, 2, 3; Linear Algebra and Differential Equations; Chemistry for Engineers; General Physics 1; General Physics 2; Experimental Physics I. These courses are required for many different engineering majors and are therefore reviewed by specially convened "Task Forces" of the CEAS Undergraduate Education Council.

A review of the calculus courses through Applied Math (APPM) was conducted in 2014-2016, with several math surveys conducted. The students who pass through the calculus sequence have strong knowledge and competency. The concern is the high percentage of students who are not passing these courses on the first try. No deficiency related to calculus knowledge is evident.

In 2014, a response was submitted to the chemistry review committee's 2010 report. Prof. Joe Ryan from CEAE served on the chemistry review committee. The review concerns did not relate to a lack of student knowledge upon passing the course, but rather the generally poor student experience in the course. Course changes included smaller lectures, a recitation, incorporation of active learning, and on-line homework. No deficiency related to basic chemistry knowledge was evident.

In addition, almost all AREN and CVEN courses also include this outcome to some extent, since math and science fundamentals are being applied. Given the strength of direct assessment via the FE exam, additional direct assessment evidence is not gathered to assess this outcome.

Outcome 1 (a): JEC Review

The JECs have not noted any weaknesses in the areas of math, science, and engineering knowledge.

Outcome 1 (a): Student Ratings on Course FCQs (0-6)

This outcome had the second highest overall average rating by students across all required courses in the architectural engineering curriculum, averaging 4.5-4.7 across all courses and all semesters of data. In all, 9 required courses were at or above 4.0 for an average student

rating. Therefore, the student FCQ ratings indicate no weaknesses in this outcome. The table below presents average student ratings for three representative courses; these courses were offered both fall and spring semester, so two sets of FCQ values per year are shown. This outcome is one of the strengths of CU AREN students.

Wath, Science, Eng	gineering Outcome	. Average Student	Ratings on Course	ruc
Academic	CVEN 2121	CVEN 3161	CVEN 3525	
Year	Analytical	Mechanics of	Structural	
	Mechanics 1	Materials 1	Analysis	
2012-13	^{N/A} , <mark>4.7</mark>	^{N/A} , <mark>5.1</mark>	^{N/A} , <mark>4.7</mark>	
2013-14	<mark>5.2, 4.8</mark>	<mark>5.1, 5.6</mark>	<mark>5.1, 5.0</mark>	
2014-15	<mark>4.6, 5.3</mark>	<mark>4.4, 5.5</mark>	<mark>5.1, 5.1</mark>	
2015-16	<mark>5.3, 5.6</mark>	<mark>5.3, 5.6</mark>	<mark>5.5</mark> , 3.5	
2016-17	<mark>5.0, 4.6</mark>	<mark>4.9</mark> , 4.0	<mark>4.4, 5.6</mark>	

Math, Science, Engineering Outcome: Average Student Ratings on Course FCQs (0-6 scale)

 $^{N/A}$ = the university left the question off the FCQ form that term

Outcome 1 (a): Senior Survey

On the survey distributed to all graduating senior students, students are asked to rate their personal achievement and the importance of the outcome "ability to apply knowledge of math, science, and engineering" using a Likert-scale from 1 to 5. These achievement ratings all exceeded 3.5 by a safe margin and indicate no weaknesses for this outcome.

Senior Survey	Year	2011	2012	2013	2014	2015
Avg rating 1-5 scale		-12	-13	-14	-15	-16
# responses		43	39	34	38	31
Math, Science, and Engineering		<mark>4.1</mark>	<mark>4.2</mark>	<mark>4.4</mark>	<mark>4.4</mark>	<mark>4.1</mark>

Summary: Even though FE performance is uneven between academic years, the average for this outcome is never lower than the set goal of 0.92. All other direct and indirect assessment measures met our targets in each academic year. Therefore, this outcome has been sufficiently achieved.

Outcome 2 (b). Design and Conduct Experiments

Outcome 2 (b) Course Direct Assessments

The primary required AREN courses with laboratory experiments are: CVEN 3161 Mechanics of Materials 1, AREN 2120 Fluid Mechanics and Heat Transfer, and AREN 3540 Illumination I. Example data are shown below. Each professor determines the rubric and criteria for scoring the lab reports. Rubric samples are provided Appendix E. In general, 90% and above is considered superior, 80-90% adequate, and less than 80% below adequate. The goal is to have these lab grades serve as embedded indicators of students' abilities to design and conduct experiments.

CVEN 3161 Mechanics of Materials 1

Student grades on the final lab report of the semester were used to indicate adequate ability to design and conduct experiments (and analyze and interpret the data). The performance of AREN students was tracked separately from Civil Engineering (CVEN) students enrolled in the course from 2014 through 2016. Data from previous years indicate performance for both AREN and CVEN students combined.

The final laboratory of CVEN 3161 is titled 'Background and Theory for the Concrete Flexure Test'. In this lab, students mix concrete following a specific proportion of cement and aggregates, place the concrete mix in molds and let it cure. Students write a formal report that includes among other things the experimental procedure and results. As part of their analysis, students plot the load vs. displacement curves for five specimens, calculate the flexural modulus of elasticity and maximum tensile stress, plot the actual w/c ratio vs. both the 28-day flexural strengths and average modulus of elasticity, and calculate the upper and lower bound of compressive strengths. Students also need to consider similarities and differences between samples, explain deviation from anticipated results, identify any large errors and attempt to explain the possible causes, and discuss their own visual observations.

Term	# students	Percentage of Students at Each Level					
		% below adequate	% adequate	% superior			
S2017	20	5	20	75			
<mark>S2016</mark>	16	0	0	100			
<mark>S2015</mark>	11	0	0	100			
<mark>S2014</mark>	24	5	26	68			
F2014	35	6	6	89			
F2013	34	0	11	89			
F2012	52	2	17	81			
<mark>S2012</mark>	90	3	24	72			
F2011	40	33	37	30			

Design and Conduct Experiments: Student Performance on Laboratory Portion of Course

' spring used for evaluation due to larger enrollment

For this course with a lab component, the data (up to this point) indicate sufficient fulfillment of this outcome, since >80% of the students possessed an adequate ability to conduct the experiments in 7 out of the 8 semesters.

AREN 2120 Fluid Mechanics and Heat Transfer

In this class, students design and build a model house with comfortable indoor air temperature for both day and night. Specific physical and performance constraints are given. After groups of three design and build their house, they measure, analyze, interpret and document its thermal performance.

Term	# students	Percentage of Students at Each Level				
		% below adequate % adequate		% superior		
S2017	36	17	44	39		
S2016	37	0	5	95		
S2015	30	7	53	40		
S2014	35	6	37	57		
S2013	45	13	42	44		
S2012	41	0	0	100		

Design and Conduct Experiments: Student Performance on Laboratory Portion of Course

For this course, the data indicate sufficient fulfillment of this outcome, since >80% of the students possessed an adequate ability to conduct the experiments.

AREN 3540 Illumination I

Students conduct an illuminance survey where students determine horizontal illuminances of at least 40 positions at work plane height. Students then produce an iso-illuminance plot using Excel. The deliverable is a report that shows among other things the data summary (average illuminance in the space along with the mean deviation), contour plot and an AutoCAD drawing (to scale) of the room showing where the measurements were taken.

Term *	# students	Percentage of Students at Each Level				
		% below adequate	% adequate	% superior		
F2013	38	8	18	74		
F2014	34	0	26	74		
F2015	38	24	18	58		
F2016	39	0	38	62		

Design and Conduct Experiments: Student Performance on Laboratory Portion of Course

* Only 4 semesters are available as the instructor of record began teaching this particular lab in 2013.

For this class, the data indicate sufficient fulfillment of this outcome for all years except in 2015 where 76% of the students possessed an adequate ability to conduct the experiments.

Outcome 2 (b) JEC

The JEC process often focuses significant attention on laboratory-based courses, including review of student work. Indeed, the 2015 AREN JEC report indicates that "in general the curriculum seems light on laboratory classes" and refers to GEEN 1400 First-Year Engineering Projects as a course to emulate (interdisciplinary hands-on design/build/test course.) The faculty response corroborated the information shown above for Mechanics of Materials I, Fluid Mechanics and Heat Transfer, and Illumination I, and affirmed that sufficient and relevant laboratory work is embedded in AREN courses.

Outcome 2 (b) Student Course FCQs

At the end of the semester, students rate the extent to which a course improved their ability to design and conduct experiments; data for the six required courses in the curriculum with the highest ratings are summarized below. Some large variation in the responses between semesters is evident, which appears primarily driven by the course instructor and changes in course content over time. In 2013-14 the goal of having three or more courses rated at 4.0 or higher for this outcome was just achieved since some of the courses in this academic years met the minimum standard. In general, though, we met this requirement.

Design and Conduct Experiments Outcome: Student Ratings on Course FCQs (0-6 scale)								
Academic	AREN	AREN	AREN	CVEN 3161	CVEN	CVEN		
Year	1027	2120	3540	Mech of	3246	2012		
	Eng	Fluids	Illum I	Materials 1	Intro	Geomatics		
	Drawing	Heat Xfer	IIIuIII I		Const	Geomatics		
2012-13	<mark>4.0</mark>	<mark>4.7</mark>	3.9	<mark>4.0</mark> , <mark>4.3</mark>	3.1, 3.6	<mark>4.4</mark>		
2013-14	2.3	<mark>4.0</mark>	NO	3.8, <mark>4.3</mark>	3.6, <mark>4.0</mark>	3.2		
2014-15	<mark>4.4</mark>	<mark>4.5</mark>	3.4	<u>3.7, <mark>4.4</mark></u>	3.2, <mark>4.0</mark>	3.5		
2015-16	<mark>4.4</mark>	<mark>4.8</mark>	<mark>4.4</mark>	<mark>5.0, 4.5</mark>	3.9, <mark>4.4</mark>	3.9		
2016-17	3.3	<mark>5.3</mark>	<mark>4.5</mark>	<mark>4.6</mark> , 3.6	<mark>4.0</mark> , <mark>4.6</mark>	3.6		

 NO = course not offered in fall 2013 or spring 2014; taught spring 2013 and fall 2014

Outcome 2 (b) Senior Survey

The seniors rated their personal achievement of the ability to design and conduct experiments at an adequate level, as shown in the table below. However, as achievement was marginal in three assessment cycles, we will explore ways to infuse more experiments into the curriculum.

Senior survey	Year	2011	2012	2013	2014	2015
Avg ratings 1-5 scale		-12	-13	-14	-15	-16
# responses		43	39	34	38	31
Design and conduct experiments		<mark>3.6</mark>	<mark>3.6</mark>	<mark>3.9</mark>	<mark>4.1</mark>	<mark>3.5</mark>

Summary: The indirect assessment methods are the weakest data in terms of meeting our goal. While courses taught back to back in an academic year show uneven results, overall, our minimum criteria is met. Given the totality of the direct and indirect assessment data, the students are sufficiently meeting the outcome to design and conduct experiments.

Outcome 3 (b). Analyze and Interpret Data

Outcome 3 (b) FE Exam

Student performance on the NCEES Fundamentals of Engineering exam on the topic of probability and statistics is an indicator of our students' abilities to analyze and interpret data. In three academic years, CU AREN students performed better than national peers; one academic year was below peers but within acceptable levels (above ratio scores of 0.92, less than 5% below peers); one academic year performance did not meet our minimum criteria. The unstable performance results in flagging this as an area of concern.

FE topics	Year	11-12	12-13	F13	Sp14	14-15	15-16	Fall 16
	n CU students	44	35	9	18	28	21	7
Probability	Ratio score				0.98	0.89	1.01	<mark>1.16</mark>
& statistics	% Difference	<mark>6</mark>	<mark>8</mark>	<mark>-3</mark>				

Outcome 3 (b) JEC

The JEC reviews have not noted any weaknesses of the students in the ability to analyze and interpret data. However, the 2016 Structures JEC committee provided "general observations on the curriculum." Specifically, they note that a probability and statistics course is not required for AREN students. They recommended that "AREN students should be exposed to some probability and statistics elsewhere in the coursework. For example, basic concepts should be introduced in LRFD topics of steel and reinforced concrete design courses". The faculty indicates that CVEN 3256 Construction Equipment and Methods is a prerequisite for some areas of concentration and covers some basics of probability and statistics. However, not all AREN students take this course. The structures faculty "will wait and see how the AREN faculty handle this, and then reassess whether we need to provide some material in the concrete and steel design courses, but this would take valuable time, and be merely a review for civil engineering students."

Outcome 3 (b) Student Ratings on Course FCQs

Students are expected to analyze and interpret data in several required AREN courses. The students' ratings for the five courses with the most content related to this outcome are summarized below. Students consistently gave strong ratings to four courses. This is indirect evidence of fulfillment of this outcome.

Analyze and I	Interpret Data (Jutcome: Stude	ent Ratings on H	Required Course	e FCQs (0-6 sc	ale
Academic	AREN 2120	AREN 3540	AREN 3010 CVEN 2012		CVEN	
Year	Fluids Heat	Illum 1	Mech Sys	Geomatics	3161Mech	
	Xfer		Meen Sys		Matls	
2012-13	<mark>4.7</mark>	<mark>4.8</mark>	<mark>5.3</mark>	<mark>4.9</mark>	<mark>4.6, 4.9</mark>	
2013-14	3.7	NO	<mark>4.7</mark>	<mark>4.3</mark>	<mark>4.8, 5.3</mark>	
2014-15	<mark>4.3</mark>	<mark>5.3</mark>	<mark>4.4</mark>	<mark>4.3</mark>	<mark>4.2, 5.1</mark>	
2015-16	<mark>4.9</mark>	<mark>5.1</mark>	<mark>4.1</mark>	<mark>4.8</mark>	5.3, 5.1	
2016-17	<mark>5.4</mark>	<mark>5.2</mark>	3.8	<mark>4.7</mark>	<mark>4.8, 4.2</mark>	
NO	00 1 2 0	11 0 0 1 0	a a 4 4 1		1 0 11 0 0 1 1	•

1 Internet Data Outcomer Student Datings on Required Course FCOs (0-6 so ale)

 NO = course not offered in fall 2013 or spring 2014; taught spring 2013 and fall 2014

Outcome 3 (b) Senior Survey

The ability to analyze and interpret data was rated at an adequate level by seniors in all assessment cycles. No weakness is evident from these data.

Senior survey	Year	2011	2012	2013	2014	2015
Avg ratings 1-5 scale		-12	-13	-14	-15	-16
# responses		43	39	34	38	31
Analyze & interpret data		<mark>4.1</mark>	<mark>4.2</mark>	<mark>4.4</mark>	<mark>4.4</mark>	<mark>3.8</mark>

Summary: In total, the direct evidence from the FE exam and indirect data from students' self-assessments indicates that architectural engineering students graduate with sufficient ability to analyze and interpret data.

Outcome 4 (c). Design a System or Component

Outcome 4 (c) Senior Design Rubric

Direct evidence of students' ability to design a system to comply with a variety of constraints and criteria is documented in the capstone senior design course. Students design the structural, HVAC, and lighting and electrical systems along with construction management processes for a small to medium-size commercial building. Students are organized in teams; each team contains one or two representatives of each discipline. Students submit project reports at the conceptual, schematic, and design development phases of design. At each phase, students of each discipline are graded on a 100-point scale where 90% and above is considered superior, 80-90% adequate, less than 80% below adequate. The table below presents a compilation of grades organized by discipline and then by design phase. The intent is to show formative improvement from one phase to the next (conceptual and schematic phases) and summative progress evidenced in the final report (design development phase).

In 2017, all senior capstone faculty used a similar rubric that clearly describes on a scale from 5 to 1 what constitutes professional (5), adequate (4), needs improvement (3), poor (2), and unacceptable (1) work. The content of the rubric is tailored to the assignment within a discipline. Because the rubric yields grades based on a 100-point system, 2017 percentages below are congruent with percentages from all previous years. An example of 2017 rubric is shown in Table 4-1 (below).

Discipline	Design Phase	Year	# Students	Percentage of Students at Each Level		
				% below adequate	% adequate	% superior
		<mark>S2012</mark>	49	10	61	29
		S2013	37	0	62	38
	Conceptual	S2014	36	28	44	28
	Phase	S2015	40	13	63	25
		S2016	32	0	88	13
		S2017	32	0	38	62
		S2012	49	10	43	47
		S2013	37	14	51	35
CEM	Schematic Phase	<mark>S2014</mark>	36	0	14	86
CEIVI		S2015	40	0	0	100
		<mark>S2016</mark>	32	0	0	100
		S2017	32	0	0	100
		S2012	49	0	0	100
	During	S2013	37	0	0	100
	Design Development	<mark>S2014</mark>	36	0	14	86
	Phase	S2015	40	0	0	100
	Thase	S2016	32	0	0	100
		<mark>S2017</mark>	32	0	0	100
		S2012	49	10	51	39
HVAC	Conceptual	S2013	37	0	38	62
ΠνΑ	Phase	<mark>S2014</mark>	36	0	28	72
		S2015	40	0	0	100

Design Outcome by Discipline

Discipline	Design Phase	Year	# Students	Percentage of Students at Each Level		
				% below adequate	% adequate	% superior
		S2016	32	13	38	50
		S2017	0	0	50	50
		S2012	49	0	41	59
		S2013	37	0	0	100
	Schematic	S2014	36	0	28	72
	Phase	S2015	40	0	13	88
		<mark>S2016</mark>	32	0	50	50
		S2017	32	0	38	62
		S2012	49	10	20	69
	During	S2013	37	11	14	76
	Design	S2014	36	0	14	86
	Development Phase	S2015	40	0	0	100
	Thase	S2016	32	13	38	50
		S2017	32	0	13	87
		S2012	49	10	31	59
		<mark>S2013</mark>	37	0	38	62
	Conceptual	S2014	36	0	42	58
	Phase	S2015	40	0	25	75
		S2016	32	0	50	50
		S2017	32	0	38	62
		<mark>S2012</mark>	49	0	51	49
Lighting		<mark>S2013</mark>	37	0	22	78
and	Schematic	<mark>S2014</mark>	36	0	72	28
Electrical	Phase	<mark>S2015</mark>	40	0	20	80
*		S2016	32	0	50	50
		S2017	32	0	25	75
		S2012	49	0	10	80
	Design	S2013	37	0	8	92
	Development	S2014	36	8	28	64
	Phase	S2015	40	0	0	100
		<mark>S2016</mark>	32	0	13	88
		S2017	32	0	25	75
		S2012	49	10	10	80
		S2013	37	0	46	54
	Conceptual	S2014	36	0	14	86
	Phase	S2015	40	13	25	63
		S2016	32	0	38	63
Structures		S2017	32	0	88	12
		S2012	49	0	31	69
		S2013	37	0	59	41
	Schematic	S2014	36	0	14	86
	Phase	S2015	40	0	25	75
		S2016	32	0	13	88
		S2017	32	0	0	100

	S2012	49	10	31	49
During	S2013	37	0	46	54
Design	S2014	36	0	42	58
Development Phase	S2015	40	0	13	88
T hase	S2016	32	0	0	100
	S2017	32	0	13	87

* Lighting and Electrical grades have been averaged.

The design data indicate sufficient fulfillment of this outcome, since >80% of the students (except for in 2014 CEM conceptual phase) possessed an adequate ability to design a system or component.

Outcome 4 (c) JEC

The recommendation from the 2015 JEC AREN report to "strongly consider an integrated course with a CU Denver architecture course where architectural students play the role of the architect and generate the building design" could be argued relates to the students' ability to design a system or component. In 2016, an experimental course between AREN students and the environmental design (architecture) students at CU Boulder took place. The faculty is assessing the success of such experiment and "consider a more permanent solution in collaboration with the ENVD [Environmental Design] students in the future."

Outcome 4 (c) Student Ratings on Course FCQs

Students were asked to rate this statement "The course improved my ability to design a system or process to meet desired needs." Design was highly rated by the students as an outcome in four required architectural engineering courses. The results indicate strong design content, and no weakness in this area.

Design Outcome. Student Ratings on Required Course PCQs (0-0 scale)							
Academic Year	AREN 2120	AREN 3010	AREN 3540	AREN 4317			
	Fluids Heat Xfer	Mech Systems	Illum 1	Capstone Dsn			
2012-13	<mark>4.7</mark>	<mark>5.2</mark>	<mark>5.2</mark>	<mark>5.5</mark>			
2013-14	<mark>4.6</mark>	<mark>4.9</mark>	NO	<mark>5.3</mark>			
2014-15	<mark>5.0</mark>	<mark>4.7</mark>	<mark>5.5</mark>	<mark>5.1</mark>			
2015-16	<mark>5.0</mark>	<mark>4.1</mark>	<mark>5.5</mark>	<mark>5.0</mark>			
2016-17	<mark>5.4</mark>	<mark>4.5</mark>	<mark>5.5</mark>	<mark>5.7</mark>			

Design Outcome: Student Ratings on Required Course FCQs (0-6 scale)

^{NO} = course not offered in fall 2013 or spring 2014; taught spring 2013 and fall 2014

Outcome 4 (c) Senior Survey

The senior survey included three questions related to design ability; results are summarized below. First the students rated their "ability to design a system, component or process to meet desired needs within realistic constraints", based on how well they individually achieved this outcome. The ratings are 4.0 and higher which indicate adequate fulfillment of this outcome.

The students also indicated their level of agreement (1-Strongly Disagree, 2-Disagree, 3-Neither Agree Nor Disagree, 4-Agree, 5-Strongly Agree) to two statements:

My (major) capstone/senior design project reinforced the concepts I learned in my College of Engineering education My (major) capstone/senior design project prepared me for an engineering career The senior responses to both questions show that students generally agree with these statements. No deficiency in this outcome was identified based on these data.

Senior Survey Avg ratings 1-5 scale	Year	2011 -12	2012 -13	2013 -14	2014 -15	2015 -16
# responses		42-43	37-39	33-34	37-38	30-31
Ability to design a system to meet desired needs		<mark>4.0</mark>	<mark>4.3</mark>	<mark>4.3</mark>	<mark>4.4</mark>	<mark>4.0</mark>
Senior design project reinforced the concepts I learned in engrg		<mark>4.3</mark>	<mark>4.3</mark>	<mark>4.1</mark>	<mark>4.0</mark>	<mark>4.1</mark>
Senior design project prepared me for an engineering career		<mark>4.0</mark>	<mark>4.0</mark>	<mark>4.0</mark>	<mark>3.8</mark>	<mark>4.1</mark>

Summary: The direct assessment data from capstone design is supported by the indirect assessment data, and demonstrates that the students have adequate abilities to design when they graduate.

	Levels of Achievement								
	Professional	Adequate	Needs Improvement	Poor	Unacceptable				
Item	5	4	3	2	1				
Space-by- space programming	The report provides a complete and thorough program for the public interior spaces and exterior main features. This means that the report addresses all of the architectural, psychological, and task and physiological factors; all factors are explained or justified.	The program analysis is complete but brief and may lack some detail.	The program is complete but is not well developed or is hard to follow; some factors are not explained or justified.	Factors are presented as a list without any explanation or justification; factors may be missing.	The overall programming is inadequate or missing entirely.				
Light concept and visual support	The concept statement is clear, concise, and reasonable; the concept is congruent with the type and style of building and supports the purpose and activities set by the library; the images provided show the desired lighting effects; therefore they fully support the concept.	The concept statement is somewhat vague but the images provided help clarify it; the lighting concept is congruent with the style of the building and supports the activities.	The concept statement is vague and the images provided may not help clarify the concept statement; the reader may question the adequacy of the concept with respect to the style of the building or its support to the library's activities.	The concept statement is vague and the images provided do not clarify the concept statement; the concept is not congruent with the style of the building nor supports the library's activities.	The concept is unintelligible, unreasonable, farfetched, or missing entirely. The images provided do not relate at all to the concept statement or are entirely missing.				
Light Maps	The light maps/plans clearly reflect the proposed lighting concept and lighting effects. This means that they communicate visually and through text if necessary the location and distribution of the proposed light.	The maps/plans reflect the proposed lighting concept and lighting effects, but the graphic representation of such effects may be lacking.	The maps/plans may not fully reflect the proposed lighting concept or desired lighting effects; the maps/plans do not communicate the desired lighting effects clearly.	The light map/plans are incomplete; the lighting effects presented do not relate to the lighting concept; the visual representation of the lighting effects is confusing.	The light maps/plans are unprofessional, incomprehensive, do not communicate the concept at all, or are missing entirely.				

Table 4.1 – Rubric for conceptual design submittal for lighting discipline

Lighting design criteria	The lighting design criteria is thorough and complete: the text includes horizontal/vertical Illuminances for all spaces. The student understands the need for multiple illuminance values based on use of the space, occupancy needs, and/or layers of light; the text provides accent illuminance ratios and luminance ratios where appropriate as well as building and space-by-space lighting power allowances for ASHRAE 2010, ASHRAE mandatory controls, and CU Boulder outdoor lighting standards.	The lighting design criteria includes horizontal/vertical Illuminances for all spaces. The student may not provide illuminance values based on use of the space, occupancy needs, and/or layers of light; the text may not provide all accent illuminance ratios or luminance ratios or luminance ratios it provides building and space-by-space lighting power allowances for ASHRAE 2010. Mandatory ASHRAE controls are included and CU Boulder outdoor lighting standards, but details are missing.	The lighting design criteria includes horizontal/vertical Illuminances for all spaces. The student does not provide multiple illuminance values; the text does not provide all accent illuminance ratios or luminance ratios; building and space-by- space lighting power allowances for ASHRAE 2010, mandatory ASHRAE controls and/or CU Boulder outdoor lighting standards are incomplete.	The text lists recommended Illuminances for some required spaces; it is apparent that the student has chosen illuminances without discernment for why those values are necessary or appropriate; building and space-by- space lighting power allowances may not be complete. Mandatory controls and outdoor lighting compliance are missing.	The overall lighting design criteria is inadequate or missing entirely.
--------------------------------	---	--	--	---	--

Outcome 5 (d). Multidisciplinary Teamwork

Outcome 5 (d) Senior Design Rubric

Students often work in teams in courses throughout the AREN program, beginning in their first year with courses such as GEEN 1400 Engineering Projects. In addition to the required courses, many of the upper-level elective courses also have teamwork as an integral part of the course project work. While the teamwork experience in the first three years of the curriculum provides continuous opportunity for students to collaborate on complex projects, most of these efforts are not multidisciplinary. By comparison, AREN 4317 Architectural Engineering Design provides a true multidisciplinary experience in which teams of up to five students, each working in a different discipline of the AREN program, work together to develop a building design. Students in this course are fully exposed to the collaborative and integrated design environment in which they work to a common goal, but with disciplinespecific and often competing objectives, requirements, and schedules. In addition, they must interact with a team of faculty and professionals throughout the project. To understand how well students work in their teams, they all must participate in a confidential assessment developed by CATME¹. They rate themselves and their peers after the completion of each design phase. The sub-categories for teamwork varied somewhat each year. In general, these include: contribution to work, interaction with teammates, keeping team on track, and expecting quality.

CATME results are used in three ways:

- 1. The instructor of record provides guidance and mentoring to the student teams, and intervene as needed with teams that are dysfunctional.
- 2. CATME generates an adjustment factor which "attempts to show the contribution of a given student relative to the other members of their team" (CATME.org). This factor is applied to students' final grades to better reflect the individual contribution of a given student within the team and throughout the semester. CATME caps the factor at 1.05 and values above 0.95 are rounded up to 1.00 as values in this range are considered noise. Adjustment factors used in this class include the students' self-ratings. The data shown below are averages of adjustment factors from the three design phases, where above 1.02 = superior, between 0.95 and 1.02 = adequate, and below 0.95 = below adequate.

		Percentage of Students at Each Level				
Veen	# Ct- 1	% below adequate	% Adequate	% superior		
Year	# Students	< 0.95	>1.02-<0.95	>1.02		
2012	49	18	37	45		
2013	37	14	41	46		
2014	36	19	44	36		

¹ CATME is a web-based tool developed by Purdue University designed to, among other things, enhance "team learning by teaching students how to contribute effectively to teamwork and creating accountability for teammember contributions." More information can be found at <u>https://info.catme.org/</u>.

<mark>2015</mark>	40	8	48	45
2016	32	22	38	41
<mark>2017</mark>	32	3	66	31

The minimum level for sufficient achievement of this outcome is that 80% or more of the students are adequate or higher on each aspect of teamwork. This goal was achieved in all years except in 2016 where 78% of the students achieved the minimum level of adequate or above.

3. CATME results are shared with all students and they are asked to reflect on their experience as part of the team and provide specific steps for improvement. Reflection essays are required for the conceptual and schematic phases. Students are graded on a 10-point scale where 9 and above = superior, 8-9 = adequate, and less than 8 = below adequate.

		Percentage of Students at Each Level				
Phase	Year	# Students	Non-	% below	%	%
rnase	i cai		compliance	adequate	Adequate	superior
	<mark>S2012</mark>	49	12	0	4	84
	S2013	37	0	5	0	95
Concentual	S2014	36	6	0	0	94
Conceptual	S2015	40	13	0	3	85
	S2016	32	9	6	13	72
	S2017	32	3	0	0	97
	S2012	49	12	4	0	84
	S2013	37	16	0	0	84
Calcon atia	S2014	36	19	8	17	56
Schematic	S2015	40	5	3	8	85
	S2016	32	9	6	9	75
	S2017	32	9	0	6	84

CATME Reflection Essays

The minimum level for sufficient achievement of this outcome was achieved in all years except in the schematic phase in 2014 where 73% of the students achieved the minimum level.

In addition to CATME peer reviews and self-analysis, the course also requires teams to produce meeting minutes to foster team communication. Team members are asked to record meeting minutes every time they meet. Prior to 2016, students were instructed to take turns recording minutes to ensure that everybody in the team contributed. Because some students took this assignment more seriously than others, the level of effort was uneven. Starting in 2016 every student in the team is required to file a minimum of three minutes (one per design phase) for a total of 12 to 15 minutes per team to ensure team interaction. The data below shows the number of meeting minutes generated by students each semester.

Year	# Students	Non-compliance	Number of Meeting Minute			linutes		
			1	2	3	>3		
2012	49	2	21	13	10	3		
2013	37	3	25	7	2	0		
2014	36	1	10	18	5	2		
2015	40	5	8	12	10	5		
2016	32	0	0	2	18	12		
2017	32	0	0	4	13	15		

Meeting Minutes

Outcome 5 (d) Student Ratings on Course FCQs

The ability to function on multidisciplinary teams was rated at 4 or higher in ~6 courses, although only intermittently in some of the courses; examples of the FCQ ratings from four routinely strong courses are shown below. The most truly "multidisciplinary" experience occurs in the GEEN 1400 First Year Engineering Projects course, where each section includes students from all engineering majors. Civil and architectural engineering students work together on teams in AREN 1316 (from 2012-2016), CVEN 2012 Geomatics, and CVEN 3246 Introduction to Construction. In the senior capstone design course, architectural engineering students take on different roles in the project (building systems, structural, and construction).

Each year, a minimum of three courses were rated at 4 or higher, so no weakness in this outcome was found based on this indirect evidence of course ratings by students.

Multidiscipi	Multidisciplinary Teamwork. Student Ratings on Required Course FCQs							
Academic	AREN 1316	CVEN 2012	CVEN3246	AREN 4317				
Year	Intro AREN	Geomatics	Intro Constr	Senior Design				
2011-12	3.2	<mark>4.4</mark>	<mark>4.8, 5.3</mark>	<mark>5.4</mark>				
2012-13	3.9	<mark>4.3</mark>	<mark>5.0, 4.9</mark>	<mark>5.7</mark>				
2013-14	<mark>4.2</mark>	<mark>4.3</mark>	<mark>4.9, 5.0</mark>	<mark>5.3</mark>				
2014-15	<mark>4.6</mark>	3.9	<mark>4.8, 4.9</mark>	<mark>5.1</mark>				
2015-16	<mark>5.0</mark>	<mark>4.6</mark>	5.3 , 5.1	<mark>5.5</mark>				
2016-17	<mark>4.1</mark>	<mark>4.4</mark>	<mark>5.1, 5.3</mark>	<mark>5.8</mark>				

Multidisciplinary Teamwork: Student Ratings on Required Course FCQs

Outcome 5 (d) Senior Survey

The ability to function on a multidisciplinary team was the highest-rated outcome by AREN students, with ratings at and above 4.3. No weakness is evident from these data.

Senior Survey	Year	2011	2012	2013	2014	2015
(avg ratings 1-5 scale)		-12	-13	-14	-15	-16
# responses		42	39	34	36	31
Function on multidisciplinary team		<mark>4.3</mark>	<mark>4.5</mark>	<mark>4.3</mark>	<mark>4.5</mark>	<mark>4.7</mark>

<u>Summary</u>: The direct and indirect assessments provide sufficient evidence that our students reliability graduate with the ability to function on multidisciplinary teams.

Outcome 6 (e). Identify, formulate, and solve engineering problems

Outcome 6 (e) FE Exam

Student performance on the FE exam on four topic areas that are taught within the CU AREN curriculum were selected to represent students' ability to solve engineering problems. Our goal is to be not more than 5% below the performance of national AREN peers (when percentage correct was reported on the old exam format for the *other disciplines* exam administered in the afternoon) or a ratio score not lower than 0.92 (given that previously ~60% of the questions were answered correctly, thus CU 0.55 / natl 0.60 =0.92). Except for fall 2016, we met our goal in all topics, and in four academic years CU AREN students performed above their national AREN peers. Overall, no weakness in this outcome is evident.

FE Topic	YEAR	11-12	12-13	F13	Sp14	14-15	15-16	F16
ī	# CU students	44	35	9	18	28	21	7
Strength Matls	Ratio				.95	.95	.99	.94
Engrg Matls	% vs. Natl	<mark>-3</mark>	-1	<mark>-4</mark>				
Fluids - Gases	Ratio				1.01	.95	<u>1.04</u>	.91
Fluids	% vs. Natl	+0.5	<mark>+2</mark>	+2				
Elect power magn	n Ratio				1.02	.96	1.03	<mark>1.05</mark>
Electricity & mag	% vs. Natl	+10	+2	+2				
Heat mass e xfer	Ratio				1.06	.99	1.03	.94
Thermo / heat	% vs. Natl	<mark>+3</mark>	<u>+1</u>	-2				
4-topic avg	Ratio				<u>1.01</u>	.96	<u>1.02</u>	.96
	% vs. Natl	<mark>+3</mark>	<mark>+1</mark>	-0.5				

Outcome 6 (e) Student Ratings on Course FCQs

The ability to solve engineering problems was the highest rated outcome by the students of the required courses in the curriculum overall, with an average rating of 4.6-4.7 across all courses in the curriculum. Thus, practically any course could be used to assess this outcome. Data from two engineering science courses (statics and fluids/heat transfer) and two fundamental building systems courses were selected for illustrative purposes, shown below. The data show that our goal of three or more courses rated at 4 or higher was met each year. Therefore, this provides indirect evidence that student knowledge for this outcome is sufficient.

Problem Solving Outcome: Student Ratings on Required Course FCQs (0-6 scale)

robien solving outcome. Student Ratings on Required Course roots (0.0 seale)							
Academic	AREN 2120	CVEN 2121	AREN 3010	AREN 3540			
Year	Fluids Heat Xfer	Analytical Mech1	Mech Systems	Illumination 1			
2011-12	<mark>5.0</mark>	<mark>5.4,</mark> 3.8	<mark>5.0</mark>	<mark>4.7</mark>			
2012-13	<mark>5.0</mark>	<mark>4.9, 4.2</mark>	<mark>4.8</mark>	<mark>4.7</mark>			
2013-14	<mark>4.6</mark>	<mark>5.3, 4.9</mark>	<mark>4.7</mark>	NO			
2014-15	<mark>5.0</mark>	<mark>4.5, 5.5</mark>	<mark>4.0</mark>	<mark>5.3</mark>			
2015-16	<mark>5.1</mark>	<mark>5.5, 5.7</mark>	3.4	<mark>5.4</mark>			
2016-17	<mark>5.3</mark>	<mark>5.2, 4.4</mark>	<mark>4.4</mark>	<mark>5.5</mark>			

^{NO} = course not offered in fall 2013 or spring 2014; taught spring 2013 and fall 2014

Outcome 6 (e) Senior Survey

The ability to identify, formulate, and solve engineering problems was rated at a sufficient level of average achievement by AREN students, with ratings at or above 4.2. No weakness is evident from this data.

Senior Survey	Year	2011	2012	2013	2014	2015
(avg ratings 1-5 scale)		-12	-13	-14	-15	-16
# responses		43	38	34	36	31
ID, formulate, solve eng problems		<mark>4.2</mark>	<mark>4.3</mark>	<mark>4.2</mark>	<mark>4.4</mark>	<mark>4.3</mark>

<u>Summary</u>: The direct assessment data from the FE exam, strong student ratings in several required undergraduate architectural engineering courses, and self-ratings by students on the senior survey all support that CU AREN students have adequate ability to identify, formulate, and solve engineering problems when they graduate.

Outcome 7 (f). Professional and Ethical Responsibility

Outcome 7(f) FE Exam

There are questions on the FE exam that relate to professional and ethical responsibility. In all evaluation cycles, except in fall 2016, we met or exceeded our minimum goal. In three academic years, CU AREN students performed better than their national peers. Thus, no weakness in students' knowledge of professional and ethical issues was found.

FE Topic	Year	11-12	12-13	F13	Sp14	14-15	15-16	F16
	n CU students	44	35	9	18	28	21	7
Profession	Ratio score				.96	<mark>.94</mark>	1.05	.87
& ethics	% Difference	+1	+0.5	-2				

Outcome 7 (f) Direct Assessment: Student Performance on Homework

In the Introduction to Architectural Engineering course, one assignment related specifically to ethics and professional licensure. Students' knowledge of ethics evidenced on the homework assignment is summarized below, where a score of >90% was rated superior, 80-80% adequate, 70-80% needs improvement, and <70% poor. Each year, expect in fall 2016, over 80% of the students demonstrated adequate knowledge of ethics, meeting our goal for this outcome.

Percentage of Students at Each Performance Leve							
Year	n	Poor	Needs Improvement	Adequate	Superior		
F2012	35	3	0	9	88		
F2013	33	12	3	6	79		
F2014	36	14	3	8	75		
F2015	26	8	0	0	92		
F2016	33	24	0	9	67		
	F2012 F2013 F2014	F201235F201333F201436F201526	YearnPoorF2012353F20133312F20143614F2015268	Year n Poor Needs Improvement F2012 35 3 0 F2013 33 12 3 F2014 36 14 3 F2015 26 8 0	YearnPoorNeeds ImprovementAdequateF201235309F2013331236F2014361438F201526800		

Outcome 7 (f) Student Ratings on Course FCQs

The understanding of ethics and professional responsibility is a focus in a small number of courses. The emphasis on ethics is focused in three locations in the curriculum: beginning in the first semester with the Introduction to Architectural Engineering course (starting in fall 2012), in the middle with the Introduction to Construction course (for most students, spring of sophomore year), and in the end with Senior Design. As these three courses were reliably rated by students at over 4 on the FCQs, adequate fulfillment of this outcome based on indirect evidence was found.

		0		
Academic Year	AREN 1316 Intro AREN	CVEN 3246 Intro Construction	AREN 3540 Illumination 1	AREN 4317 Design
2011-12	3.9	<mark>4.9, 5.3</mark>	3.3	<mark>4.7</mark>
2012-13	<mark>4.7</mark>	<mark>5.0, 4.6</mark>	3.3	<mark>5.4</mark>
2013-14	<mark>5.1</mark>	5.1, 4.6	NO	<mark>4.7</mark>
2014-15	<mark>5.2</mark>	<mark>5.4, 4.6</mark>	<mark>4.3</mark>	<mark>4.2</mark>
2015-16	<mark>5.4</mark>	5.3, 5.2	<mark>4.4</mark>	<mark>4.6</mark>
2016-17	<mark>4.9</mark>	<mark>5.3, 4.9</mark>	<mark>4.4</mark>	<mark>5.5</mark>

Professional and	Ethical Responsi	ibility: Student Ratin	ngs on Required	Course FCOs
		2	0	

 NO = course not offered in fall 2013 or spring 2014; taught spring 2013 and fall 2014

Outcome 7 (f) Senior Survey

Two survey items were used to evaluate this outcome: an understanding of professional responsibilities of an engineer and understanding of the ethical issues confronting an engineer. Both were rated at a sufficient level of average achievement by AREN students, although ethical issues were rated at the lowest acceptable level in one assessment cycle and both items were marginally rated most recently. These data indicate that we met our minimum goal for this outcome; however, we will strive to increase attention given to these outcomes in our curriculum.

Senior Survey	Year:	2011	2012	2013	2014	2015
(avg ratings 1-5 scale)		-12	-13	-14	-15	-16
# responses		42	39	34	38	31
Professional responsibilities		<mark>3.9</mark>	<mark>4.2</mark>	<mark>4.2</mark>	<mark>4.2</mark>	<mark>3.7</mark>
Ethical issues		<mark>3.5</mark>	<mark>4.0</mark>	<mark>4.1</mark>	<mark>4.1</mark>	<mark>3.6</mark>

Summary: Both the direct and indirect data are supportive that architectural engineering students at CU have sufficient knowledge of ethical and professional issues.

Outcome 8 (g). Effective Communication through Writing and/or Drawings

Outcome 8 (g) Senior Design Rubric

Communication through drawing is a key outcome for our program. This outcome is emphasized from the very beginning when students take an engineering drawing class their first year. Subsequent courses expect students to be able to interpret and produce simple Revit documents (e.g. AREN 3010 Mechanical Systems for Building, AREN 3540 Illumination I). The upper-level discipline-specific design electives further develop our students' drawing and graphical communication skills, and the senior design course (AREN 4317) provides the final proof of achievement of this outcome as the students in that course must produce complete sets of design development drawing documents.

Communication through writing is similarly emphasized throughout the AREN curriculum. In the first-year introductory course (AREN 1316), students write a series of reflective essays. Similarly, in GEEN 1400 Engineering Projects students write a technical report related to their semester-long project. Assignments in courses such as AREN 3010, AREN 3540 and CVEN 3161 Mechanical of Materials I require students to prepare formal technical reports. The students also take a technical writing course required of all Engineering students. It is common for project reports to be submitted online as single PDF files, requiring students to develop skills in electronic document assembly and organization.

In the senior capstone class, teams produce formal technical reports along with architectural and engineering related drawings at each phase of the design process. Students are given feedback and graded on report formatting, style, organization, syntax and grammar as well as drawing quality and style compliance. An example of a rubric is shown on Table 8.1. Students are graded on a 100-point scale where 90 and above = superior, 80-90 = adequate, and less than 80 = below adequate.

		8-	Percentage of Students at Each Level								
Phase	Year	# Students	% below adequate		% superior						
	S2012	49	0	20	80						
	S2013	37	0	0	100						
Conceptual	S2014	36	0	44	56						
	S2015	40	0	63	38						
	S2016	32	0	13	88						
	S2017	32	0	0	100						
	S2012	49	0	20	80						
	S2013	37	0	24	76						
Schematic	S2014	36	0	14	86						
Schematic	S2015	40	0	38	63						
	S2016	32	0	38	63						
	S2017	32	0	38	63						

Quality of Report and Drawings

			Percentage of Students at Each Level			
Phase	Year	# Students	% below adequate	% adequate	% superior	
	S2012	49		31	69	
	S2013	37	0	0	100	
Design	S2014	36	0	0	100	
Development	S2015	40	0	0	100	
	S2016	32	0	0	100	
	S2017	32	0	0	100	

The minimum level for sufficient achievement of this outcome (80%) was achieved in all years. In the Design Development phase, it is not unusual for students to receive the maximum grade for their reports as feedback from the previous phases is taken seriously and students understand what is required of a professional report.

Outcome 8 (g) JEC Review

Some of the JECs have commented on written communication abilities. The 2014 Construction Engineering & Management (CEM) JEC recommended placing a greater emphasis on technical writing; faculty noted that "CVEN 3246 involves a project where 30% of the score is writing, and the students also receive direct one-on-one feedback from the instructor on their draft reports."

The 2015 AREN JEC provided several recommendations specific to communication through writing and/or drawings:

- 1. Use REVIT in a project class; faculty noted that REVIT is taught in AREN 1027 and that all senior design projects are in REVIT.
- 2. Provide a "general understanding of architectural graphic standards including symbols and line weights; and how to use a drawing and illustration to convey a design concept". The faculty indicated that "this could be achieved with an AREN 1316 refocus." A potential option, which will be revisited in the design of a new curriculum, is to replace architectural history with a junior design studio.
- 3. Obtaining "a full REVIT model of a small stand-along building" for student review in senior capstone so that students can use it as a reference. This practice was implemented in the senior capstone class in 2016.
- 4. "Introduce Construction Specifications Institute (CSI) specifications and CSI writing standards and format in the WRTG 3030 (Writing on Sci/Soc.) technical writing class." The faculty replied that in addition to having the REVIT model as a reference, the drawings and specifications are analyzed by the project teams. Furthermore, a full class period on writing specifications led by industry professionals occurs in senior design.

Outcome 8 (g) Student Ratings on Course FCQs

The ability to communicate effectively via writing and drawing were separately rated items by the students, and different courses emphasize these outcomes. Written communication is the focus of an entire required junior-level writing course; but it is offered outside the department and AREN students are spread across numerous sections. Written communication is a strong focus in the senior capstone design course (as described above), somewhat of a focus in Introduction to Architectural Engineering and Introduction to Construction (less so recently), and also a focus in courses that require laboratory write-ups, such as CVEN 3161. However, the extent to which instructors focus on quality writing as part of the labs varies, as shown below for CVEN 3161. In 2011-12 and 2016-17, we just met our goal of three or more required courses with average ratings by students of 4 or higher, since some of the courses in these academic years met the minimum standard.

8)
AREN 1316	AREN 3540	CVEN 3246	CVEN 3161	AREN 4317
Intro AREN	Illum I	Intro Constr	Mech Matls	Design
2.9	3.9	<mark>4.1, 4.1</mark>	2.8, 3.5	<mark>5.2</mark>
<mark>4.2</mark>	3.5	<mark>4.1, 4.2</mark>	2.8, <mark>4.2</mark>	<mark>5.3</mark>
3.9	NO	3.8, 4.2	3.4, <mark>4.7</mark>	<mark>4.8</mark>
<mark>4.4</mark>	<mark>4.2</mark>	3.4, 3.8	2.6, <mark>4.1</mark>	<mark>4.6</mark>
<mark>4.6</mark>	<mark>4.2</mark>	4.2, 4.4	4.3, 4.4	<mark>4.7</mark>
<mark>4.0</mark>	<mark>4.1</mark>	3.8, <mark>4.4</mark>	3.5, 3.0	<mark>5.5</mark>
	Intro AREN 2.9 4.2 3.9 4.4	Intro AREN Illum I 2.9 3.9 4.2 3.5 3.9 NO 4.4 4.2	Intro ARENIllum IIntro Constr2.93.94.1, 4.14.23.54.1, 4.23.9NO3.8, 4.24.44.23.4, 3.84.64.24.2, 4.4	Intro ARENIllum IIntro ConstrMech Matls2.93.94.1, 4.12.8, 3.54.23.54.1, 4.22.8, 4.23.9NO3.8, 4.23.4, 4.74.44.23.4, 3.82.6, 4.14.64.24.2, 4.44.3, 4.4

Communicate in writing: Student Ratings on Required Course FCQs (0-6 scale)

^{NO} = course not offered in fall 2013 or spring 2014; taught spring 2013 and fall 2014

Students take a full 3-credit course on engineering drawing. Drawing is also a focus in Geomatics, Introduction to Construction, and senior design. Each year, at least three courses had a rating of 4 or higher, indicating satisfactory fulfillment of this outcome based on indirect evidence.

Communicate via drawings outcome: Student Ratings on Required Course FCQs (0-6 scale)

Academic Year	AREN 1027 Drawing	CVEN 2012 Geomatics	CVEN 3246 Intro Construction	AREN 4317 Senior Design
2011-12	5.3	4.2	4.2, 4.1	<mark>5.3</mark>
2012-13 2013-14	<mark>4.7</mark> 4.6	<mark>4.2</mark> 2.8	4.4, 4.4 4.6 <mark>, 4.0</mark>	5.6 5.2
2014-15	<mark>5.0</mark>	3.3	4.6, <mark>4.1</mark>	<mark>4.9</mark>
2015-16	5.0 5.2 4 5	<mark>4.4</mark> 2.0	4.9, 5.1	<mark>4.7</mark>
2016-17	5.2.4.5	2.9	5.0, 4.7	5.3

Outcome 8 (g) Senior Survey

The ability to communicate effectively in writing (reports, etc.) and using drawings were rated at a sufficient level of average achievement by AREN students, with marginal performance for written communication in one evaluation cycles. No weakness is evident from this data.

Senior Survey	Year:	2011	2012	2013	2014	2015
(avg ratings, 1-5 scale)		-12	-13	-14	-15	-16
# responses		43	39	34	38	31
Communicate in writing		<mark>3.7</mark>	<mark>3.9</mark>	<mark>4.1</mark>	<mark>3.9</mark>	<mark>3.8</mark>
Communicate using drawings		<mark>4.2</mark>	<mark>4.3</mark>	<mark>4.0</mark>	<mark>4.3</mark>	<mark>4.0</mark>

Summary: While the focus on communication through writing varies from course to course, it is clear that once senior design is completed, students have the ability to communicate in writing, which is confirmed by the senior survey data. Based on this, this outcome is being met.

		L	evels of Achievement		
	Professional	Adequate	Needs Improvement	Poor	Unacceptable
Item	5	4	3	2	1
Site & floor plans, elevations	A complete set of drawings is provided (site plans, floor plans, and elevations). The drawings contain all the required architectural formatting elements, which are consistent throughout: title block revised to include the information relevant to this project; standard architectural sheet numbering; scale; north arrow; drawing titles, drawing legends.	A complete set of drawings is provided; the drawings contain most of the required architectural formatting elements; there are slight inconsistencies from sheet to sheet.	A complete set of drawings is provided but some of the required architectural formatting elements are poorly executed or missing; there are inconsistencies from sheet to sheet.	Some drawings are missing; many of the required architectural formatting elements are poorly executed or missing; there are obvious inconsistencies from sheet to sheet.	Most or all drawings are missing; the required architectural formatting elements have been ignored; there is no coordination between drawings.
Report Quality: formatting and overall quality	The report looks like a professional document in that it contains all the elements of a professional document (cover page, executive summary, table of contents, introduction, section titles, appendix titles, formatting elements such as page numbers, titles on charts and table, captions on illustrations and images, cross- reference between text and images where appropriate), it is well organized and easy to navigate. In addition, the report is well written, easy to understand, grammatically correct, and free of spelling errors.	The report looks like a professional document but is missing a few formatting elements; it is well organized and easy to navigate; the text can be followed without much difficulty; it contains a few grammar and/or spelling errors.	The report fails to include important formatting elements; the organization is lacking and therefore it is not easy to navigate; some effort is required to understand the text; there are grammar and/or spelling errors.	The report looks like a school report in that it contains only the basic elements of a professional document; the text is difficult to follow and there are obvious grammar and/or spelling errors.	There is not attempt to follow any of the formatting guidelines. The report is poorly organized and poorly written.

Table 8.1 - Rubric for report and drawing set

Outcome 9 (g). Effective Communication through Oral Presentations

Outcome 9 (g) Senior Design Rubric

For architectural engineers, oral presentations do not only occur in a formal, large-group setting, but also in less formal settings such as design team meetings and client presentations. This diversity of settings for oral communication is reflected in the AREN program. Practice at this outcome begins in the first semester, as students in both AREN 1316 Intro to Architectural Engineering and GEEN 1400 Engineering Projects courses must present their projects to the class. Although there is little coaching and feedback at this level, it is still an important exercise for our students. Student presentations in the main engineering science courses are infrequent, though presentations are much more common in the sixth through eighth semesters as students take design courses with more project deliverables.

Architectural Design (ARCH 4010), which is a required class for all AREN students, places a large emphasis on oral communication, including the less formal communication that is very common during the design process. Students meet regularly in small groups with faculty and external reviewers, and must present their design ideas in this smaller group context. Often, students are required to compose presentation "boards" for these sessions, and they receive feedback on the design content and the effectiveness of the presentation.

Other upper-level design courses also place an emphasis on oral communication practice. AREN 4317 Architectural Engineering Design is the main assessment opportunity for oral communication. In addition to regular design review meetings with faculty members and professional mentors, the conceptual, schematic design phases involve a formal presentation. Each team delivers a 15-20-minute presentation with an additional 5-10 minutes for questions and feedback. At the end of the presentation, the faculty and industry mentors evaluate the presentations using a rubric. Students are graded on a 100-point scale where 90 and above = superior, 80-90 = adequate, and less than 80 = below adequate. The rubric (see Figure 9.1) may somewhat change in the level of detail depending on the design phase being evaluated.

			Percentage of	Students at Each	Level
Phase	Year	# Students	% below adequate	% adequate	% superior
	S2012	49	0	31	69
	S2013	37	0	11	89
Concentual	S2014	36	0	14	86
Conceptual	S2015	40	0	63	38
	S2016	32	0	13	88
	S2017	32	0	19	81
	S2012	49	0	20	80
	S2013	37	0	51	49
Schematic	S2014	36	0	44	56
Schematic	S2015	40	0	38	63
	S2016	32	0	0	100
	S2017	32	0	0	100

Communication through Oral Presentations

The minimum level for sufficient achievement of this outcome (80%) was achieved in all years.

Outcome 9 (g) JEC Review

Some of the JECs have commented on oral communication abilities. The 2014 Construction Engineering & Management (CEM) JEC recommended improving the oral and presentation skills of the students. The CEM faculty responded: "greater emphasis on oral presentation has recently been introduced throughout the CEM curriculum. …students do give presentations on their bridge projects in CVEN 3246."

Outcome 9 (g) Student Ratings on Course FCQs

The ability to communicate effectively via oral presentations is only included within a few courses in the curriculum, based on student evaluation data. The largest emphasis is in the senior design course. Oral presentation has had a variable focus in other courses, such as historically higher in Introduction to Construction. In two years, we missed our goal in not having at least three courses rated as 4.0 or higher by the students for oral presentations. Thus, the oral presentations outcome did not reliably meet our indirect criteria for student FCQs

Academic Year	AREN 1316 Intro AREN	AREN 1027 Eng Drawing	AREN 2406/2050 Bldg Matls*	CVEN 3246 Intro Constr	AREN 4317 Design
2011-12	1.4	1.6	<mark>5.0</mark> ,	3.0, <mark>4.0</mark>	<mark>5.0</mark>
2012-13	3.4	3.7	<mark>4.9</mark> ,	3.7, <mark>4.2</mark>	<mark>5.7</mark>
2013-14	3.9	3.7	, <mark>5.1</mark>	$3.0, \overline{3.5}$	<mark>5.2</mark>
2014-15	<mark>4.1</mark>	<mark>4.7</mark>	, 2.3	2.7, 2.5	<mark>4.8</mark>
2015-16	3.9	<mark>4.5</mark>	, 2.3	3.2, 2.8	<mark>5.2</mark>
2016-17	2.6	<mark>5.0</mark> , 3.8	, <mark>4.5</mark>	2.8, 2.9	<mark>5.6</mark>

Communicate via oral presentations: Student Ratings on Required Course FCQs

* old curriculum required course; new curriculum required course

Outcome 9 (g) Senior Survey

The ability to communicate effectively via oral presentations showed improvement over time, increasing from a marginal level of achievement rating of 3.7 in 2011-12 to 4.2 in 2014-15. These data indicate a sufficient level of average achievement by AREN seniors.

Senior Survey	Year:	2011	2012	2013	2014	2015
Avg rating 1-5 scale		-12	-13	-14	-15	-16
# responses		43	39	34	38	31
Oral communication		<mark>3.7</mark>	<mark>4.0</mark>	<mark>4.2</mark>	<mark>4.2</mark>	<mark>4.2</mark>

<u>Summary</u>: The strongest measure that students have sufficient ability to make oral presentations is based on direct evaluation via the co-instructors and industry mentors of the senior design course. The students make two formal oral presentations in the course and the data shows strong evidence of good oral presentation abilities by most students. Thus, strong focus in that single course outweighs the fact that many courses do not emphasize oral communication. The direct assessment measurement supports sufficient attainment of this outcome.

Figure 9.1 – Rubric for oral presentation

AREN 4317 – Architectural Engineering Design Schematic Design Presentations Friday March 24, 2017

Faculty / Mentor:

Feam:	Discipline:
	- I <u></u>

Overall Group Presentation See grade equivalents on separate		* Letter Grade: A, A-, B+	
nandout	Overall Group Presentation	See grade equivalents on separate handout	

General Comments:

Student Presentation (40%)	Possible Points	Points Earned	TOTAL
Content is clearly organized and supports purpose	15		
• Presenters are professional in dress, language, and style. Presenters speak with appropriate pace and volume	15		
• Visuals are clear, consistent, readable, and understandable	10		
General Comments:			

Technical Content (60%) – Discipline Mentors & Faculty	Possible Points	Points Earned	TOTAL
Topic mastery, including technical correctness	20		
Appropriate level of detail	20		
Completeness of analysis and interpretation of data	20		

General Comments (use back if additional space is needed):

Adapted from Rubric by Dr. Lisa Bullard, Dept. of Chemical & Biomolecular Engineering, N.C. State University.

Adapted from Rubric by Dr. Lisa Bullard, Dept. of Chemical & Biomolecular Engineering, N.C. State University.

Outcome 10 (h). Understand the impact of engineering on society

Outcome 10 (h) Direct Assessment: Course Assignments

In the Introduction to Architectural Engineering course, much of the content is focused on the impact of engineering in a global, economic, environmental, and societal context. For example, the second homework encompassed sustainability, including the three pillars of sustainability (social, environmental, and economic). Using student performance on this assignment as an embedded indicator, students routinely demonstrated adequate knowledge of this outcome, with over 80% at the adequate or higher level.

Intro AREN Course Percentage of Students at Each Performance Lev								
Homework	Year	n	Poor	Needs Improvement	Adequate	Superior		
	F2012	35	9	6	14	71		
Environmental,	F2013	33	12	0	18	70		
economic, social	F2014	36	3	6	14	78		
impacts	F2015	26	4	4	23	69		
-	F2016	33	9	3	45	42		

In addition, courses that cover building energy systems (mechanical and electrical/lighting) include discussions related to energy use, environmental effect in building design and the impact of those systems on the use of energy resources. The senior capstone class requires students to demonstrate code and standard compliance for all four disciplines. Teams are also encouraged to pursue LEED points for their designs and demonstrate compliance. Elective courses in the humanities and social sciences are intended to broaden our students' understanding of the broader social context of engineering practice. The large number of elective classes available makes formal assessment of this outcome for those courses difficult. However, the required History and Theories of Architecture courses (ENVD 3114 and 3134), which partially fulfill our students' humanities requirements, provide a broader perspective on the role of building design and construction in society.

Outcome 10 (h) Student Ratings on Course FCQs

The impact of engineering on society was routinely rated by AREN students as a strong outcome for three required courses, at the beginning, middle, and end of the curriculum.

inpacts on Society. Student Ratings on Required Course (COS (0-0)									
Academic Year	AREN 1316	CVEN 3246 Intro	AREN 4317						
	Introduction AREN	Construction	Design						
2011-12	<mark>4.6</mark>	<mark>4.7, 5.0</mark>	<mark>4.7</mark>						
2012-13	<mark>4.7</mark>	<mark>4.8, 5.0</mark>	<mark>4.8</mark>						
2013-14	<mark>5.2</mark>	<mark>4.9, 5.0</mark>	<mark>4.3</mark>						
2014-15	<mark>5.2</mark>	<mark>4.9, 4.9</mark>	<mark>4.4</mark>						
2015-16	<mark>5.4</mark>	<mark>4.9, 5.5</mark>	<mark>4.0</mark>						
2016-17	<mark>4.8</mark>	<mark>5.6, 5.2</mark>	<mark>5.1</mark>						

Im	pacts on	Society:	Student I	Ratings on	Required	Course]	FCQs (0-6)

Outcome 10 (h) Senior Survey

The impacts of engineering solutions in a global, economic, environmental, and social context was rated at a sufficient level of average achievement by AREN students, with ratings at or above 3.6 (on a 1-5 scale, with target over 3.5). Although this is one of the lower-rated outcomes by AREN seniors, adequate achievement was found.

Senior Survey	Year	2011	2012	2013	2014	2015
Avg rating 1-5 scale		-12	-13	-14	-15	-16
# responses		43	39	34	38	31
Societal context		<mark>3.6</mark>	<mark>3.9</mark>	<mark>3.8</mark>	<mark>4.2</mark>	<mark>3.7</mark>

<u>Summary</u>: Both indirect measures were consistently strong in students' self-reported understanding of the impact of engineering in a global, economic, environmental, and social context. The direct measure in the first-year introductory course was also consistently strong.

Outcome 11 (i). Necessity to Engage in Life-Long Learning (LLL)

Outcome 11 (i) FE Exam

We believe that students' overall performance on the FE exam is indicative of their motivation, ability, and willingness to engage in lifelong learning, given that this is a first step on the path to become a licensed PE, and PE licensure requires additional learning. CU AREN student performance has been highly variable, perhaps because there is no disciplinary exam for these students—AREN students primarily take the "other disciplines" exam, which is not a good fit to the topics in our curriculum. A few students take the civil engineering exam, but generally do poorly. In one academic year, we failed to meet our goal with only 63% of CU AREN students passing the exam, 11% fewer than national peers. In fall 2016, only 43% of CU AREN students passed the exam, 31 % fewer than national peers. It is important to note, that only 7 students took the exam, which appears worse than it is. In fact, while spring 2017 official results will not be available in time for this report, we know from student records that out of 24 students who have taken the FE exam as of May 31, 2017, 22 passed. Therefore, we anticipate that the results for 2106-17 academic year will be positive. Overall, CU AREN students performed above national peers in three academic years, with 87% of the 2015-16 CU AREN students passing the FE exam, 16% more than national peers. Thus, we continue to monitor this outcome due to failure to reliably meet our goal.

Year	11-12	12-13	F13	Sp14	14-15	15-16	F16
n CU students	53	40	11				7
New exam % difference				<mark>+2</mark>	-11	<mark>+16</mark>	-31
Old exam % Difference	<mark>+4</mark>	<mark>+3</mark>	<mark>-5</mark>				

Outcome 11 (i) Direct Assessment: Course Assignments

Life-long learning for architectural engineers takes several forms. To achieve this outcome, AREN students should be aware of the various professional societies related to AREN practice, since much of the learning that occurs after graduation takes place through those organizations. This awareness includes a familiarity with some of the publications offered by the professional and trade organizations. As students size and select equipment for their designs, they need to know the primary manufacturers of the products used in buildings, and must understand how to access information from those manufacturers, because much of the advancement in knowledge that is needed relates to the technologies used in these building products. Students also must understand that the codes, standards, and rating systems that guide building design evolve over time, and that continuing education is required to stay abreast of the latest requirements.

Achievement of this objective begins in our first-year Introduction to Architectural Engineering course, AREN 1316. The professional societies are introduced and their primary publications shown; students are strongly encouraged to become involved in one of the student chapters of these societies. Guest speakers from the profession in this class often discuss their personal methods for staying up-to-date on building practices and technologies, reinforcing for the students the necessity of life-long learning. In the second and third years, courses across the AREN curriculum require students to access information from manufacturers' websites as part of their regular assignments. Use of the internet for obtaining product information is reinforced through many of the upper-level discipline specific courses, including AREN 3540 Illumination I and 3010 Mechanical Systems for Buildings. The role of life-long learning is further reinforced in the AREN 4317 capstone design class through a lecture specific to the importance of life-long learning. Students are assigned a short essay to describe their understanding of the importance of life-long learning on their careers. Students are graded on a scale of 10 points, where above 9 = superior, 8-9 = adequate, below 8 = below adequate.

	5 6	Percentage	Percentage of Students at Each Performance Level						
Year	# Students	Non-compliance	% below adequate	% adequate	% superior				
S2012	49	16	0	0	84				
S2013	37	8	0	0	92				
S2014	36	6	0	0	94				
S2015	40	20	0	15	65				
S2016	32	47	3	22	28				
S2017	32	3	0	3	94				

Life-Long Learning Reflection Essay

The minimum level for sufficient achievement of this outcome is that 80% or more of the students are adequate or higher. This goal was achieved in all years except in 2016 where, for this year alone, the assignment was offered as extra credit. The instructor determined that many students were not going to comply with the assignment due to back-to-back deliverables; however, some would if an incentive was provided. As such, 53% of the students achieved the minimum level; 47% of the students did not take advantage of it.

Outcome 11 (i) Student Ratings on Course FCQs

The *need for* and *ability to* engage in lifelong learning were both rated as potential course outcomes. These two outcomes are shown below. Three required courses in the AREN curriculum routinely had average ratings for both aspects above 4.0: Introduction to AREN, Introduction to Construction, and capstone design. Thus, we met our target for student ratings of this outcome.

Need for/ability to engage in melong learning: Student Ratings on Required Courses (0-0)							
Year	AREN 1316 Intro AREN	CVEN 3246 Intro Constr	AREN 4317 Design				
2011-12	4.6 / 4.5	4.4 / 4.3, 5.1 / 5.0	<mark>5.1 / 4.8</mark>				
2012-13	<mark>4.4 / </mark> 4.1	4.3 / 4.3, 4.7 / 5.1	<mark>5.4 / 5.4</mark>				
2013-14	4.5 / 4.3	4.4 / 4.4, 4.8 / 4.7	<mark>4.7 / 4.6</mark>				
2014-15	<mark>4.6 / 4.3</mark>	4.2 / 4.2, 4.3 / 4.1	<mark>4.5 / 4.4</mark>				
2015-16	<mark>5.0 / 4.7</mark>	4.7, 5.0 / 4.7, 4.7	<mark>4.6 / 4.7</mark>				
2016-17	<mark>4.6 / 4.4</mark>	5.2, 5.0 / 5.0, 4.9	<mark>5.3 / 5.3</mark>				

Need for/ability to engage in lifelong learning: Student Ratings on Required Courses (0-6)

Outcome 11 Senior Survey

Two survey items were used to evaluate this outcome: motivation, ability, and willingness to engage in lifelong learning, and ability to use the Internet, library, or other sources to

research an issue. The second item relates to the ability to engage in lifelong learning on one's own. Both were rated at a sufficient level of average achievement by AREN students. No weakness is evident from these data.

Senior Survey	Year	2011	2012	2013	2014	2015
Avg rating 1-5 scale		-12	-13	-14	-15	-16
# responses		43	39	34	38	30-31
Lifelong learning		<mark>3.8</mark>	<mark>4.2</mark>	<mark>4.0</mark>	<mark>4.2</mark>	<mark>4.1</mark>
Research an issue		<mark>4.1</mark>	<mark>4.5</mark>	<mark>4.3</mark>	<mark>4.3</mark>	<mark>4.3</mark>

<u>Summary</u>: We believe that students have an awareness of the importance of LLL and an ability to engage in LLL. The indirect assessment data is consistently strong while the multiple direct measures is variable. At present, efforts are underway to explore ways to bolster the commitment of the students to lifelong learning as evidenced by commitment to pursue professional licensure, though many AREN students simply do not have professional licensure in their future plans.

Outcome 12 (j). Contemporary Issues

Outcome 12 (j) FE Exam

There are questions on the FE exam that measure students' knowledge of engineering economics topics. We believe that economic issues are contemporary issues relevant to architectural engineering, and thus consider this a direct assessment related to this outcome. In no assessment cycle did CU AREN students fail to meet our minimum standard (-5% or 0.92 ratio score). In two academic years, CU AREN students performed better than national AREN peers. Thus, the FE data show that we are meeting this outcome.

FE Topic	Year	11-12	12-13	F13	Sp14	14-15	15-16	F17
	n CU students	44	35	9	18	28	21	
Engineering	Ratio score				<mark>.93</mark>	<mark>.93</mark>	1.15	1.03
Economics	% Difference	+7	-2	+ <i>3</i>				

Outcome 12 (j) Direct Assessment: Course Assignments

The Introduction to Architectural Engineering course focuses on contemporary issues, including needs for infrastructure. In 2014-2016, the first question on the first assignment asked students to describe a contemporary challenge in architectural engineering that inspired their career goals; the problem was worth 15 points. Similarly, in 2012 and 2013, question 3c on the first assignment had students describe a current project that they found in the news that would involve an architectural engineer. If students received >90% of the points their performance was deemed superior, 80-90% adequate, 70-80% needs improvement, and <70% poor. Student performance demonstrated an acceptable level of knowledge of contemporary issues, with consistently over 80% of the students rated as adequate or higher.

Intro AREN Course Percentage of Students at Each Performance Lev									
Homework 1	Year	n	Poor	Needs Improvement	Adequate	Superior			
	F2012	35	6	9	23	63			
Q1/3c.	F2013 ⁺	34	3	3	0	94			
Contemporary	F2014	36	6	3	25	67			
issue	F2015	26	8	0	23	69			
	F2016	38	0	5	26	68			

⁺ In 2013, the normal professor was on sabbatical; the instructor that year did not log student performance on question 3c distinct from the rest of homework 1.

Within the AREN professional community, sustainability and building information modeling (BIM) have been the dominant contemporary issues over the past decade. Students begin their exposure to these topics in their first year in AREN 1027 Engineering Drawing, where they begin using the Autodesk Revit building information modeling tool. Sustainability concepts are also introduced in AREN 1316 Intro to Architectural Engineering and are reinforced throughout the curriculum in the building systems and construction courses. In senior design, students develop their integrated designs in the context of the LEED rating system and real-world budget constraints, with guidance from professional mentors, using modern tools such as AGI32, EQuest and Navisworks. In addition, the use, implementation,

and compliance documentation of ASCE 7-10, ANSI/ASHRAE; IBC, IES, NEC codes and standards are paramount in this class. These are used as minimum standards for building design and are also used in AREN 3010 Mechanical Systems, AREN 4110 HVAC Design and AREN 4550 Illumination II accordingly.

Outcome 12 (j) Student Ratings on Course FCQs

An understanding of current events and contemporary issues was achieved in a few required courses as the student ratings show below. The minimum criterion was met in all years except 2011-2012 (prior to the new format of AREN 1316).

	, and company		
Academic	AREN 1316	AREN 2406/2050	CVEN 3246
Year	Intro AREN	Bldg Matls	Intro Constr
2011-12	3.4	<mark>4.1</mark> ,	<mark>4.4, 4.8</mark>
2012-13	<mark>4.4</mark>	<mark>4.9</mark> ,	<mark>4.9, 4.6</mark>
2013-14	<mark>4.2</mark>	, <mark>5.1</mark>	<mark>5.0, 4.6</mark>
2014-15	<mark>4.7</mark>	, <mark>4.4</mark>	<mark>4.9,</mark> 3.9
2015-16	<mark>4.8</mark>	, <mark>4.5</mark>	5.2, 5.4
2016-17	<mark>4.2</mark>	, <mark>5.3</mark>	5.6, <mark>4.1</mark>

Current Events and Contemporary Issues: Student Ratings on Required Course FCQs (0-6)

Outcome 12 (j) Senior Survey

Two questions relate to outcome 12: "an understanding of current events and contemporary issues" and "apply the principles of sustainability to design." The average student rating for understanding current events failed to meet our minimum goal among the 2011-12 seniors, and remained marginal in the other assessment cycles. However, the students were much more positive in rating the specific example of sustainability as a contemporary issue. The data indicate that this outcome is of concern, but has met a minimum acceptable level of fulfillment in recent years.

Senior Survey	Year	2011	2012	2013	2014	2015
Avg rating 1-5 scale		-12	-13	-14	-15	-16
# responses		43	39	34	38	31
Current events		2.9	<mark>3.6</mark>	<mark>3.6</mark>	<mark>3.6</mark>	3.3
Sustainability		<mark>4.0</mark>	<mark>4.5</mark>	<mark>4.1</mark>	<mark>4.2</mark>	<mark>4.0</mark>

Summary: Direct assessment data from the FE exam showed that CU students have adequate knowledge of engineering economics. Direct assessment data from the first-year introduction to architectural engineering course found that students have adequate knowledge of contemporary issues in 2012-2016, based on performance on a related homework assignment. Among the indirect assessment data, most courses met our target of being assessed by students at 4.0 or higher, while the graduating senior survey data shows borderline success on the area of current events, but strong results on the area of sustainability. Overall, we feel that this objective is met.

Outcome 13 (k). Modern engineering techniques, skills, and tools

Outcome 13 (k) FE Exam

CU AREN student performance on the instrument and data acquisition section of the current FE Other Disciplines exam and previously the computers questions are believed to be a direct assessment method for the modern techniques outcome. CU AREN performance has been consistently very strong, exceeding national peers in all assessment cycles. This is strong direct evidence of achievement of this outcome.

FE Data	Year	11-12	12-13	F13	Sp14	14-15	15-16	F16
	n CU students				18	28	21	7
Instr & Data	Ratio score				1.11	1.08	1.10	<mark>0.92</mark>
Computers	% Difference	+5	<mark>+6</mark>	<mark>+4</mark>				

Outcome 13 (k) Senior Design Rubric

For AREN students, "modern engineering techniques, skills and tools" must begin with drawing and the use of building information modeling (Revit)—the fundamental beginning point for today's practitioner. AREN students complete the required three-credit AREN 1027 Engineering Drawing in the first year to develop their skills in this area. CVEN 2012 Geomatics offers another opportunity to use state-of-the-art tools such as GPS and GIS technology.

Beyond drawing and surveying, professionals in AREN practice also rely on skills with computer analysis of engineering systems. While almost all students entering the AREN program are proficient in spreadsheet analysis tools, their abilities are expanded in CHEN 1310 with additional computer programming skills. In addition, several discipline-specific engineering software tools are used in AREN practice and are included in the coursework in the third and fourth years. For example, students are introduced to the eQUEST building energy modeling software in AREN 3010 and use the Trane TRACE700 software for HVAC system design in AREN 4110 HVAC Design. AREN 4550 Illumination II requires that students learn and use the AGI32 and Visual lighting related-programs. The Department has arrangements in place with vendors of many of these programs that allow for student licenses and for site licensing in our Bechtel Computing Lab, described in Criterion 7 Facilities.

In the AREN 4317 design class students use many of the tools and programs described above and starting in 2017 students will perform drawing coordination and clash detection using REVIT Architecture. Before 2017, students performed clash detection manually. Nevertheless, the result is the same in that students use this technique to ensure that building systems are designed and placed appropriately. The data shown below relates to clash detection mini-reports produced by representatives of the teams (all team members have specific duties in addition to their discipline submittals. Depending on the year allocated responsibilities are mini-reports on clash detection, LEED, report quality assurance, BUG rating compliance for outdoor lighting, and so forth). If students received >90% of the points their performance was deemed superior, 80-90% adequate, 70-80% needs improvement, and <70% poor.

		Percentage of Students at Each Performance Level					
Year	# Students	Non-compliance	% below adequate	% adequate	% superior		
S2012	10	10	0	20	70		
S2013	9	0	11	11	78		
S2014	7	0	0	57	43		
S2015	10	0	10	10	80		
<mark>S2016</mark>	8	0	0	13	88		
S2017	8	0	13	13	75		

Students have achieved the minimum level for sufficient achievement as 80% or more of the students rated adequate or higher.

Outcome 13 (j) JEC Review

The 2014 Construction Engineering & Management (CEM) JEC was concerned about diminished CAD/Drawing content in the curriculum and stated that "CEM students need to be comfortable using modern CAD modeling programs." The faculty indicated that an assignment requiring the use of CAD would be introduced into CVEN 3256 Construction Equipment and Methods. That course is the proficiency course for CEM; therefore, not all CVEN students take the course, but those interested in CEM certainly enroll.

The 2015 AREN JEC report indicates that since BIM is becoming a significant tool for facility design and construction and is used for facility maintenance by tracking material, age of components, energy performance and preventative maintenance, a course on BIM should be provided in lieu of geomatics. The AREN faculty agreed and will be coordinating with other faculty in the department to consider alternatives to the Geomatics course to be implemented when a revised AREN curriculum comes into effect (see pages 68-9).

In addition, the report advises to "ensure students are comfortable with concept and graphic presentation, including program (Photoshop, InDesign/Illustrator, SketchUp, etc.)" The faculty asserts that these are taught in the environmental design studio classes that all AREN students must take in their senior year.

Outcome 13 (k) Student Ratings on Course FCQs

An ability to use modern tools necessary for engineering practice routinely receives high ratings from students in four required courses. Thus, we have met our target and have indirect evidence that AREN students have met this outcome.

Modern engineering tools: Student Ratings on Required Course FCQs (0-6)							
Academic	CVEN 2012	AREN 1027	AREN 3540	AREN 4317			
Year	Geomatics	Eng Drawing	Illumination 1	Design			
2011-12	<mark>5.2</mark>	<mark>5.4</mark>	<mark>4.8</mark>	<mark>5.1</mark>			
2012-13	<mark>5.0</mark>	<mark>5.0</mark>	<mark>4.8</mark>	<mark>5.3</mark>			
2013-14	<mark>4.6</mark>	<mark>4.7</mark>	NO	<mark>4.7</mark>			
2014-15	<mark>4.4</mark>	<mark>4.7</mark>	<mark>5.2</mark>	<mark>4.4</mark>			
2015-16	<mark>4.8</mark>	<mark>4.4</mark>	<mark>4.9</mark>	<mark>4.9</mark>			
2016-17	<mark>4.9</mark>	<mark>4.3</mark>	<mark>5.3</mark>	5.3			

Modern engineering tools: Student Ratings on Required Course FCQs (0-6)

^{NO} = course not offered in fall 2013 or spring 2014; taught spring 2013 and fall 2014

Outcome 13 (k) Senior Survey

Students rated their achievement of the outcome 'ability to use the techniques, skills, and modern engineering tools such as common software programs necessary for engineering practice'. AREN seniors rated this outcome at an adequate level of achievement in all assessment cycles; thus, we met our goal for this outcome.

Senior Survey	Year	2011	2012	2013	2014	2015
Avg rating 1-5 scale		-12	-13	-14	-15	-16
# responses		43	39	34	38	31
Modern tools		<mark>4.0</mark>	<mark>4.2</mark>	<mark>4.1</mark>	<mark>4.4</mark>	<mark>3.9</mark>

<u>Summary</u>: Both direct and indirect assessment data show good knowledge of CU student of modern engineering techniques and tools. CU architectural engineering students have satisfied this outcome.

C. Continuous Improvement

Major Curriculum Revisions

After the previous ABET review, the curriculum changed to its current format. The majority of these changes were motivated by feedback from the JEC process and student surveys, as well as recent changes to the ABET EAC architectural engineering program criteria. Another important motivator was aligning the AREN curriculum with similar programs around the country where more freedom was afforded to students when it came to choosing upper level courses. The changes were explored for nearly a year by the curriculum committee and approved by a vote of the faculty at a special retreat that was held in May 2012. The changes increased the Introduction to Architectural Engineering course to two-credits, allowing us to bolster students' knowledge around outcomes 7f ethics and professional responsibility, 10h societal context, 11i lifelong learning, and 12j contemporary issues. Further, the curriculum added GEEN 1400 First Year Engineering Projects. This gave students a design experience in a multidisciplinary teamwork setting in their first year (5d), as well as practice with written reports and oral presentations (8g, 9g). Historical data from the Engineering College have shown that students who take GEEN 1400 are more likely to persist in engineering. Including this course in the AREN curriculum seemed important given the declining enrollment in AREN after the recession. The revisions made to the curriculum also added flexibility as it eased the number of required proficiency level courses to two sub-discipline areas of AREN (rather than requiring students to take proficiency courses in all four sub-disciplines.) It also added one 3-credit free elective. This gave students the freedom to choose courses of interest, in alignment with educational motivation literature on self-determination theory.

AREN faculty have regularly shared with each other observations related to how students have responded to the 2012 revised curriculum. For example, senior capstone faculty have noted that students are able to perform well in their own tracks but they are lacking the overarching familiarity of building systems interaction (the senior capstone class fills this gap, but in the past students came to the class with that understanding). The faculty have also noted through student advising that many third-year students are anxious about choosing their proficiencies as they feel they do not have a strong enough basis for choosing one over the other. Through 2015, the AREN faculty discussed measures to address these concerns. The 2015 AREN JEC report concurred with the need to study curriculum options as follows:

- 1. Knowledge on how to design AREN systems does not come until the fundamental courses during semester 5. Choosing two proficiency classes in semester 6 does not leave a complete impression on the student of how a building is designed (i.e. statics, dynamics and mechanics of materials alone do not prepare the student to understand basic structural design in a building. That understanding comes from steel/concrete design.)
- 2. The faculty mentioned that the two-track proficiency system gives students more choice. Is it more choice, or is it the illusion of choice? A negative aspect is that the two-track system creates student apprehension in choosing a path.

- 3. By choosing two proficiency classes in semester 6, there is not enough semester time to recover from a bad "choice." How do students shore up the knowledge missed in the other two tracks?
- 4. Realign the concept of the two-track proficiency choice to align with the objectives stated in the Areas of Knowledge section of the Architectural Engineering Educational Objectives & Outcomes.
- 5. How does the two-track proficiency system during semester 6 impact the Capstone course in asymmetric student interest regarding discipline distribution? Curriculum will need a solution for how to approach senior design without pushing students to do a discipline that is not their emphasis.

In spring 2016, the AREN faculty began the process of revising the curriculum. A preliminary draft of the revised curriculum has been sent to the CEAE Curriculum Committee for initial comments. If approved, implementation may occur during the 2018 academic year.

Major Changes Proposed

- 1. Require basic design courses for all AREN students (AREN4110, AREN4570, CVEN4545 or CVEN4555, and AREN 4550)
- 2. Require two concentration courses for each track
- 3. Develop a new junior level Studio course to replace ENVD 3134, which would be pre-requisite for ARCH 4010, which in turn remains a pre-requisite for AREN Senior Design (AREN 4317).
- 4. Remove CVEN 2012 Introduction to Geomatics from the AREN curriculum.

The 2015 AREN JEC report also recommended an overhaul of AREN 1316 Introduction to Architectural and AREN 2050 Engineering Systems for Buildings to a) ensure that students are equally acquainted with all AREN disciplines and professors, b) reinforce the student's choices as architectural engineers in coming semesters, and c) expose students to more industry professionals representing all AREN areas of practice. This recommendation led the AREN faculty to propose the separation the separation of AREN 1316 Intro to Architectural Engineering from CVEN 1317 Intro to Civil & Environmental Engineering so that content is dedicated and specific to either Architectural or Civil engineering (1 credit each). The intent is to provide more exposure to the various concentrations within architectural engineering. Such exposure kicks off the AREN educational objective of producing leaders in one of the four core AREN disciplines. The proposal was approved and voted by the CEAE Faculty in spring 2016. Implementation begins in fall 2017.

Specific Student Outcome Improvements

8[g] Written Communication

The 2014 Construction Engineering and Management JEC mentioned that they believe that the communication skills of the students are weak and the curriculum should do more to encourage improved writing skills. This topic has been discussed in CEAE faculty meetings,

and upon a proposal from CEAE is now being reviewed College-wide by the Undergraduate Engineering Council (UEC). In the meantime, individual CEAE faculty are trying to increase their emphasis on written communication within their CEAE courses. Introduction to Construction includes a project with 30% of the grade based on writing (and includes instructor feedback on a draft of the report), and Prof. Lupita Montoya includes a small writing assignment within the required Thermodynamics course. It is hoped that this infusion approach to writing-in-context may yield gains as students move through the curriculum.

11[i] Lifelong Learning

The pass rates of architectural engineering students on the FE exam have intermittently failed to meet our goal to be within 5% of the pass rates for AREN students nationally. This has been a concern among the AREN and CEAE faculty, with discussion in numerous faculty meetings, and our Joint Evaluation Committees. Therefore, practice FE exams were added as a required element in the AREN capstone design course. Interestingly, the 2015 AREN JEC report takes exception to this practice by saying that "the committee all agree that there is an importance in emphasizing taking the FE exam but feel that preparation for the exam should not take the place of critical class time in the AREN 4317 Capstone course. Exam preparation can be short night courses, or student organized study sessions outside the AREN curriculum." This comment refers in part to the fact that prior to 2015, several lecture periods in senior design were dedicated to the review of FE topics. However, in 2015 the department began offering online review modules, which has reduced the amount of class time spent on FE exam preparation. Having students go through mock practice exams in senior capstone has proven to yield positive results because students collectively feel the need to do well.

In addition, there is a lecture and a homework assignment that emphasize the importance of professional licensure, which reinforces the content in the first-year Introduction to Architectural Engineering course. In AREN 2120 Fluid Mechanics and Heat Transfer, an FE-style review session has been added to get the student exposure to the types of questions they would encounter in the FE exam and to review the material.

D. Additional Information

The FE exam serves as a direct assessment method for 7 of our 13 student outcomes. The 'other disciplines' engineering exam requirements from the NCEES, performance reports from the NCEES on the performance of CU architectural engineering students and the full FE summary spreadsheet will be available for examination at the time of the visit.

Student reports and presentations in the senior capstone design course are used as direct assessments for four student outcomes. The course dossier will include current and historical data from the course rubric.

Assignments in other courses that are used to assess student outcomes, including laboratory reports and homework assignments from the Introduction to Architectural Engineering course will be available for examination in files compiled for each relevant outcome, as well as the course dossiers.

CRITERION 5. CURRICULUM

A. Program Curriculum

The Architectural Engineering curriculum is commonly presented to students, faculty, and other constituents via a so-called "Block Diagram". The block diagram lays out the expected and recommended order of courses to complete the requirements for the program in eight semesters (four academic years). The first semester is shown in the bottom row of the diagram, and subsequent semesters build to the final semester at the top. The block diagram indicates courses that are part of pre-requisite and co-requisite sequences in their proper order. Some courses are also offered only fall or spring semester, and those courses are shown in an appropriate location (and also denoted with a #). Students have opportunities to select courses, including two Architectural Engineering proficiency courses, three humanities/social science courses (H&SS elective), four CEAE technical electives, and one free elective. There are lists of acceptable courses for each of these choices. The AREN proficiency courses come from a list of four options. The technical elective list is quite extensive; it is periodically reviewed by the curriculum committee and published online for students

(http://www.colorado.edu/ceae/sites/default/files/attached-files/ceae_tech_elective_list_-_march_2015.pdf). HH&SS electives are vetted by the H&SS subcommittee of the CEAS and approved by the Undergraduate Education Council of the College. It, which can then vote to approve them. These H&SS electives include courses offered by the Herbst Program of Humanities. It also includes courses approved as part of the core curriculum of the College of Arts & Sciences in the topic areas of contemporary societies, human diversity, foreign language, historical context, ideals & values, literature & the arts, and United States context. Additional courses have been approved (<u>http://www.colorado.edu/engineering-advising/get-yourdegree/degree-requirements/humanities-social-sciences-and-writing-requirements</u>). Finally, the curriculum also includes one free minimally elective.

We have included below the 2016-17 Block Diagram, which illustrates the curriculum completed by the majority of 2016 AREN graduates and the 2017-18 Block Diagram which contains revisions that will take effect in fall 2017.

After the Block Diagram, the curriculum has also been shown in Table 5-1. Courses have been listed from first to eighth semester, in the same recommended order shown in the Block Diagram. The maximum section enrollments for all courses in the program for the last two terms the course was taught have been included. Many courses only have a lecture. Other courses also include recitations or laboratories, so the enrollment for those types of scheduled meetings is also shown.

ARCHITECTURAL ENGINEERING BLOCK DIAGRAM

Sem	CR						
8 SPR	17	Tech Elective-3	Tech Elective-3		AREN 4317-5 # AREN Design (ARCH 4010*)	ENVD 3134-3 # History and Theory of ENVD: Precincts	HSS Elective-3
7 FALL	17	Concentration II AREN/CVEN XXXX-3***	AREN/CVEN Tech Elective-3	5		ENVD 3114-3 # History and Theory of ENVD: Buildings	HSS Elective-3
6 SPR	15	Concentration I AREN/CVEN XXXX-3***	AREN/CVEN Tech Elective-3	Proficiency I*** CVEN 4545/4555-3 Structural Design AREN 4110-3 HVAC Design AREN 4550/4560/4570-3 Light./Elec. CVEN 3256-3 Const. Equip./Methods		Proficiency II***	<u>College-Appr.</u> <u>Writing</u> <u>Course-3**</u>
5 FALL	15		AREN 3540-3 # Illumination 1 (CHEN 1310, APPM 2350)	AREN 3010-3 # Mech. Systems (AREN 2050, 2110, 2120)	ECEN 3030-3 # Electrical Circuits (APPM 2360)	CVEN 3525-3 Structural Analysis (CVEN 3161)	Free Elective-3
4 SPR	16	APPM 2360-4 Introduction to Linear Algebra & Differential Equations (APPM 1360)	CHEN 1310-3 Engrg. Computing (co-req. APPM 1350)	AREN 2120-3 # Fluid Mech. & Heat Transfer (APPM 2350, AREN 2110, co- req. APPM 2360)	CVEN 3246-3 Introduction to Construction (4 th -semester standing)	CVEN 3161-3 Mechanics of Materials I (CVEN 2121, co- req. APPM 2360)	
3 FALL	17	APPM 2350-4 Calculus III for Engineers (APPM 1360)	PHYS 1120-4 Gen. Physics II (PHYS 1110, co- req. APPM 1360)	AREN 2110-3 Thermodynamics (PHYS 1110, co- req. APPM 1360)	AREN 2050-3 # Building Materials and Systems (Soph. standing)	CVEN 2121-3 Analytical Mechanics I (PHYS 1110, co- req. APPM 2350)	
2 SPR	17	APPM 1360-4 Calculus II for Engineers (APPM 1350)	PHYS 1110-4 Gen. Physics I (co-req. APPM 1350)		CVEN 2012-3 # Introduction to Geomatics	GEEN 1400-3 Engrg. Projects <u>OR</u> Basic Engineering Elective	HSS Elective-3**
1 FALL	14	APPM 1350-4 Calculus I for Engineers (APPM 1235 or ALEKS score 76+)	CHEN 1211-4 Gen. Chem. for Engineers (1 yr. HS chem. or CHEM 1021)	CHEM 1221-1 General Chemistry Lab for Engineers (co-req. CHEN 1211)	AREN 1316-2 # Introduction to Architectural Engineering	AREN 1027-3 Engineering Drawing <u>OR</u> AREN 1037-3	

Course is offered only once per year (FALL or SPRING as shown).

() Prerequisite and co-requisite requirements for course listed.

* Other prerequisites: AREN 3010, AREN 3540, CVEN 3246, CVEN 3525, ECEN 3030.

** College-approved writing courses: HUEN 1010 (taken in first two semesters of college only); or HUEN 3100, WRTG 3030, WRTG 3035, or PHYS 3050 (junior standing).

*** Some Proficiency and Concentration courses are offered in different semesters (fall and/or spring) than shown on the block diagram.

ARCHITECTURAL ENGINEERING BLOCK DIAGRAM – Effective Fall 2017

Sem	CR						
8 SPR	17	Tech Elective-3	Tech Elective-3		AREN 4317-5 # AREN Design (ARCH 4010*)	ENVD 3134-3 # History and Theory of ENVD: Precincts	HSS Elective-3
7 FALL	17	Concentration II AREN/CVEN XXXX-3***	<u>AREN/CVEN</u> <u>Tech Elective-3</u>		ARCH 4010-5 # Arch. Design (Senior standing)	ENVD 3114-3 # History and Theory of ENVD: Buildings	HSS Elective-3
6 SPR	15	<u>Concentration I</u> AREN/CVEN XXXX-3***	AREN/CVEN Tech Elective-3	CVEN 4545/4555- AREN 4110-3 AREN 4550/4560/	ncy I*** 3 Structural Design HVAC Design 4 570-3 Light./Elec. st. Equip./Methods	Proficiency II***	<u>College-Appr.</u> <u>Writing</u> <u>Course-3**</u>
5 FALL	15		AREN 3540-3 # Illumination 1 (CSCI 1320, APPM 2350)	AREN 3010-3 # Mech. Systems (AREN 2050, 2110, 2120)	ECEN 3030-3 # Electrical Circuits (APPM 2360)	CVEN 3525-3 Structural Analysis (CVEN 3161)	Free Elective-3
4 SPR	17	APPM 2360-4 Introduction to Linear Algebra & Differential Equations (APPM 1360)	CSCI 1320-4 Computer Sci. 1: Engineering Applications (APPM 1350)	AREN 2120-3 # Fluid Mech. & Heat Transfer (APPM 2350, AREN 2110, co- req. APPM 2360)	CVEN 3246-3 Introduction to Construction (4 th -semester standing)	CVEN 3161-3 Mechanics of Materials I (CVEN 2121, co- req. APPM 2360)	
3 FALL	17	APPM 2350-4 Calculus III for Engineers (APPM 1360)	PHYS 1120-4 Gen. Physics II (PHYS 1110, co- req. APPM 1360)	AREN 2110-3 Thermodynamics (PHYS 1110, co- req. APPM 1360)	AREN 2050-3 # Building Materials and Systems (Soph. standing)	CVEN 2121-3 Analytical Mechanics I (PHYS 1110, co- req. APPM 2350)	
2 SPR	14	APPM 1360-4 Calculus II for Engineers (APPM 1350)	PHYS 1110-4 Gen. Physics I (co-req. APPM 1350)		AREN 1027-3 Engineering Drawing	GEEN 1400-3 Engrg. Projects <u>OR</u> Basic Engineering Elective	
1 FALL	16	APPM 1350-4 Calculus I for Engineers (APPM 1235 or placement)	CHEN 1211-4 Gen. Chem. for Engineers (1 yr. HS chem. or CHEM 1021)	CHEM 1221-1 General Chemistry Lab for Engineers (co-req. CHEN 1211)	AREN 1316-1 # Introduction to Architectural Engineering	CVEN 2012-3 # Introduction to Geomatics	<u>HSS Elective-3**</u>

Course is offered only once per year (FALL or SPRING as shown). #

() *

Prerequisite and co-requisite requirements for course listed. Other prerequisites: AREN 3010, AREN 3540, CVEN 3246, CVEN 3525, ECEN 3030.

** College-approved writing courses: HUEN 1010 (taken in first two semesters of college only); or HUEN 3100, WRTG 3030, WRTG 3035, or PHYS 3050 (junior standing).

*** Some Proficiency and Concentration courses are offered in different semesters (fall and/or spring) than shown on the block diagram.

	Indicate Whether		Subject Area (C	Credit Hours)			Maximum
Course (Department, Number, Title) List all courses in the program by term starting with the first term of the first year and ending with the last term of the final year. [1 = first semester; 8 = final semester]	Course is Required, Elective or a Selected Elective by an R, an E or an SE. ¹	Math & Basic Sciences	Engineering Topics Check if Contains Significant Design (√)	General Education	Other	Last Two Terms the Course was Offered: Year and, Semester, or Quarter	Section Enrollment for the Last Two Terms the Course was Offered ²
[1] AREN 1316 Introduction to Architectural Engineering	R		2			2016F, 2015F	74, 81
[1] APPM 1350 Calculus 1 for Engineers	R	4				2017S, 2016F	L 104, 123 R 26, 26
[1] CHEN 1211 General Chemistry for Engineers	R	4				2017S, 2016F	L 100, 384 R 35, 35
[1] CHEM 1221 Engineering General Chemistry Lab	R	1				2017S, 2016F	Lb 20, 21
[1] AREN 1027 Engineering Drawing	R		1			2017S, 2016F	L 66, 72 Lb 44, 46
[2] APPM 1360 Calculus 2 for Engineers	R	4				2017S, 2016F	L 133, 118 R 26, 26
[2] PHYS 1110 General Physics 1	R	4				2017S, 2016F	L 316, 339 R 28, 29
[2] GEEN 1400 Engineering Projects or Basic Engineering Elective	R		3√			2017S, 2016F	32, 33
[2] CVEN 2012 Introduction to Geomatics	R		3			2017S, 2016S	L 97, 105 Lb 20, 20
[2] Humanities or social science elective	SE			3			~200
[3] APPM 2350 Calculus 3 for Engineers	R	4				2017S, 2016F	L 115, 133 R 26, 26
[3] PHYS 1120 General Physics 2	R	4				2017S, 2016F	-
[3] AREN 2050 Building Materials and Systems	R	1	2			2017S, 2016F	44, 7(summer)

Table 5-1 Curriculum: Architectural Engineering – All Students

	Indicate Whether		Subject Area ((Credit Hours)			Maximum
Course	Course is		Engineering			Last Two Terms	Section
(Department, Number, Title)	Required,	Math &	Topics			the Course was	Enrollment
List all courses in the program by term starting with the first term of the first year	Elective or a	Basic	Check if	General	Other	Offered:	for the Last
and ending with the last term of the final year. [1 = first semester; 8 = final semester]	Selected Elective by an R, an E or	Sciences	Contains	Education	other	Year and, Semester, or	Two Terms the Course
[1 – first semester, 8 – final semester]	an SE. ¹		Significant Design $()$			Quarter	was Offered ²
[3] CVEN 2121 Analytical Mechanics 1	R		3			2017S, 2016F	
[3] AREN 2110 Thermodynamics	R		3			2017S, 2016F	56, 72
[4] APPM 2360 Intro. to Differential Equations with Linear Algebra	R	4				2017S, 2016F	L 145, 148
							R 26, 27
[4] AREN 2120 Fluid Mechanics & Heat Transfer	R	1	3			<i>S2017, S2016</i>	37, 30
[4] CVEN 3161 Mechanics of Materials 1	R		3			2017S, 2016F	L 79, 38
							Lb 53, 38
[4] CHEN 1310 Engineering Computing	R		3			S2017, F2016	
							R 25, 25
[4] CVEN 3246 Introduction to Construction	R		3			S2017, F2016	49, 62
[5] AREN 3540 Illumination 1	R	2	1			2016F, 2015F	39, 36
[5] AREN 3010 Mechanical Systems	R		3√			2016F, 2015F	30, 24
[5] CVEN 3525 Structural Analysis	R		3			2017S, 2016F	30, 83
[5] ECEN 3030 Electrical Circuits	R	1	2			2016F, 2015F	30, 33
[5] Free Elective	E				3		
[6] Architectural Engineering Proficiency Course 1*	SE		3				
[6] Architectural Engineering Proficiency Course 2 *	SE		3				
[6] WRTG 3030 Writing on Science & Society	SE			3		2017S, 2016F	19, 19
[6] AREN/CVEN concentration course 1 *	SE		3				
[6] AREN/CVEN xxxx technical elective	SE		3				~70, 80
[7] AREN/CVEN concentration course 2 *	SE		3				
[7] AREN/CVEN xxxx technical elective	SE		3				~70, 80
[7] ARCH 4010 Architectural Design	R		5			2016F, 2015F	31, 35
[7] ENVD 3114 History and Theory of ENVD: Buildings	R			3		2017S, 2006F	240
[7] Humanities or social science elective	SE			3			~200

	Course (Department, Number, Title) he program by term starting with the first term of the first year d ending with the last term of the final year. [1 = first semester; 8 = final semester]	Indicate Whether Course is Required, Elective or a Selected Elective by an R, an E or an SE. ¹	Math & Basic Sciences	Subject Area (C Engineering Topics Check if Contains Significant Design (√)	Credit Hours) General Education	Other	Last Two Terms the Course was Offered: Year and, Semester, or Quarter	Maximum Section Enrollment for the Last Two Terms the Course was Offered ²
	Architectural Engineering Design	R		5			2017S, 2016S	32, 32
[8] Technical elec		SE		3				~100, 100
[8] Technical elec	tive	SE		3				~100, 100
[8] ENVD 3134 H	History and Theory of ENVD: Precincts	R			3		2017S	219, 134
[8] Humanities or	social science elective	SE			3			~200
TOTALS-ABET BAS	SIC-LEVEL REQUIREMENTS		34	73	18	3		
OVERALL TOTAL	CREDIT HOURS FOR COMPLETION OF THE PROGRAM							
PERCENT OF TOTA	PERCENT OF TOTAL		27%	57%	14%	2%		
5	Minimum Semester Credit Hours		32 Hours	48 Hours				
either credit hours or percentage	Minimum Percentage		25%	37.5 %				

1. Required courses are required of all students in the program, elective courses (often referred to as open or free electives) are optional for students, and selected elective courses are those for which students must take one or more courses from a specified group.

2. For courses that include multiple elements (lecture, laboratory, recitation, etc.), indicate the maximum enrollment in each element. For selected elective courses, indicate the maximum enrollment for each option.

* The four AREN specializations require different courses (proficiency, concentration) depending on specialization. See Tables 5-1b, c, d, e.

AREN Proficiency, select two of the following 4 options:

AREN 4110-3 HVAC Design CVEN 3256 Construction Equipment and Methods CVEN 4545 or CVEN 4555 Structural Design – Steel Design or Reinforced Concrete Design AREN 4550, AREN 4560, or AREN 4570 – Illumination 2 or Luminous Radiative Transfer or Building Electrical Systems Design

AREN Concentration required courses:

CEM: AREN 4506 Project Management I, AREN 4606 Project Management II Lighting & Electrical: AREN 4560 Luminous Radiative Transfer, AREN 4570 Building Electrical Systems (whichever not used to fulfill proficiency requirement) Mechanical: AREN 4010 HVAC System Modeling and Control, AREN 4890 Sustainable Building Design Structures: CVEN 4161 Mechanics of Materials I, CVEN 4545 Steel Design or CVEN 4555 – Reinforced Concrete (whichever not used to fulfill proficiency requirement)

Instructional materials and student work verifying compliance with ABET criteria for the categories indicated above will be required during the campus visit.

Course (Department, Number, Title) List all courses in the program by term starting with the first term of the first year and ending with the last term of the final year. [1 = first semester; 8 = final semester]	Indicate Whether Course is Required, Elective or a Selected Elective by an R, an E or an SE. ¹	Math & Basic Sciences	Subject Area (C Engineering Topics Check if Contains Significant Design (√)	Credit Hours) General Education	Other	Last Two Terms the Course was Offered: Year and, Semester, or Quarter	Maximum Section Enrollment for the Last Two Terms the Course was Offered ²
Semester 6		-			-		
[6] CVEN 3256 Construction Equipment & Methods (Proficiency 1)	SE		3			2016F, 2015F	55, 54
[6] Proficiency 2 (Choose 1)	SE		3				
AREN 4110 HVAC Design						2017S, 2016S	16, 8
AREN 4550 Illumination II OR						2017S, 2016S	25, 22
AREN 4560 Luminous Radiative Transfer OR						2016S, 2015S,	16, 9
AREN 4570 Electrical Systems						2016F, 2015F	15, 10
CVEN 4545 Steel Design OR						2017S, 2016S	45, 39
CVEN 4555 Reinforced Concrete Design						2016F, 2015F	44, 54
[6] WRTG 3030 Writing on Science & Society	SE			3		2017S, 2016F	19, 19
[6] AREN 4506 Project Management I (Concentration 1)	SE		3			2016F, 2016S	30, 27
[6] AREN/CVEN xxxx technical elective	SE		3			2017S, 2016F	~70, 80
Semester 7							
[7] AREN/CVEN xxxx technical elective	SE		3			2017S, 2016F	~70, 80
[7] Technical elective	SE		3				~100, 100
[7] ARCH 4010 Architectural Design	R		5			2016F, 2015F	31, 35
[7] ENVD 3114 History and Theory of ENVD: Buildings	R			3		2016F	240
[7] Humanities or social science elective	SE			3			~200
Semester 8							
[8] AREN 4317 Architectural Engineering Design	R		5			2017S, 2016S	32, 40
[8] AREN 4606 Project Management II (Concentration 2)	SE		3			2017S, 2016S	43, 45
[8] Technical elective	SE		3				~100, 100

Table 5-1b Curriculum: Architectural Engineering – Construction Engineering Management Option *

Course (Department, Number, Title) List all courses in the program by term starting with the first term of the first year and ending with the last term of the final year. [1 = first semester; 8 = final semester]	Indicate Whether Course is Required, Elective or a Selected Elective by an R, an E or an SE. ¹	Math &	Subject Area (C Engineering Topics Check if Contains Significant Design (√)	<i>Credit Hours)</i> General Education	Other	Last Two Terms the Course was Offered: Year and, Semester, or Quarter	Maximum Section Enrollment for the Last Two Terms the Course was Offered ²
[8] ENVD 3134 History and Theory of ENVD: Precincts	R			3		2017S, 2016S	219, 134
[8] Humanities or social science elective	SE			3			~200

	Indicate Whether	Å	Subject Area (C	Credit Hours)		_	Maximum
Course (Department, Number, Title) List all courses in the program by term starting with the first term of the first year and ending with the last term of the final year. [1 = first semester; 8 = final semester]	Course is Required, Elective or a Selected Elective by an R, an E or an SE. ¹	Math & Basic Sciences	Engineering Topics Check if Contains Significant Design (√)	General Education	Other	Last Two Terms the Course was Offered: Year and, Semester, or Quarter	Section Enrollment for the Last Two Terms the Course was Offered ²
Semester 6							
[6] Proficiency 1 (Choose 1)	SE		3√				
AREN 4550 Illumination II OR						2017S, 2016S	25, 22
AREN 4560 Luminous Radiative Transfer OR						2016S, 2015S,	16, 9
AREN 4570 Electrical Systems						2016F, 2015F	15, 10
[6] Proficiency Course 2 (Choose 1)	SE		3				
CVEN 3256 Construction Equipment & Methods						2016F, 2015F	
AREN 4110 HVAC Design						2017S, 2016S	16, 8
CVEN 4545 Steel Design OR						2017S, 2016S	45, 39
CVEN 4555 Reinforced Concrete Design						2016F, 2015F	44, 54
[6] WRTG 3030 Writing on Science & Society	SE			3		2017S, 2016F	19, 19
[6] Concentration 1	SE		3				
AREN 4550 Illumination II OR AREN 4560 Luminous Radiative						See above	See above
Transfer OR AREN 4570 Electrical Systems (whichever two not selected as proficiency)							
[6] AREN/CVEN xxxx technical elective	SE		3			2017S, 2016F	~70, 80
Semester 7							
[7] Concentration 2	SE		3				
AREN 4550 Illumination II OR AREN 4560 Luminous Radiative Transfer OR AREN 4570 Electrical Systems (whichever two not selected as proficiency)						See above	See above
[7] AREN/CVEN xxxx technical elective	SE		3			2017S, 2016F	~70, 80
[7] ARCH 4010 Architectural Design	R		5			2016F, 2015F	31, 35

Course (Department, Number, Title) List all courses in the program by term starting with the first term of the first year and ending with the last term of the final year. [1 = first semester; 8 = final semester]	Indicate Whether Course is Required, Elective or a Selected Elective by an R, an E or an SE. ¹	Math & Basic Sciences	Subject Area (C Engineering Topics Check if Contains Significant Design (√)	<i>Credit Hours)</i> General Education	Other	Last Two Terms the Course was Offered: Year and, Semester, or Quarter	Maximum Section Enrollment for the Last Two Terms the Course was Offered ²
[7] ENVD 3114 History and Theory of ENVD: Buildings	R			3		2016F	240
[7] Humanities or social science elective	SE			3			~200
Semester 8							
[8] AREN 4317 Architectural Engineering Design	R		5			2017S, 2016S	32, 40
[8] Technical elective	SE		3			2017S, 2016F	~100,100
[8] Technical elective	SE		3			2017S, 2016F	~100,100
[8] ENVD 3134 History and Theory of ENVD: Precincts	R			3		2017S, 2016S	219, 134
[8] Humanities or social science elective	SE			3			~200

Table 5-1d Curriculum: Architectural Engineering – Mechanical	Systems Option *
---	------------------

	Indicate Whether		Subject Area (C		_	Maximum	
Course (Department, Number, Title) List all courses in the program by term starting with the first term of the first year and ending with the last term of the final year. [1 = first semester; 8 = final semester]	Course is Required, Elective or a Selected Elective by an R, an E or an SE. ¹	Math & Basic Sciences	Engineering Topics Check if Contains Significant Design $(\sqrt{)}$	General Education	Other	Last Two Terms the Course was Offered: Year and, Semester, or Quarter	Section Enrollment for the Last Two Terms the Course was Offered ²
Semester 6							
[6] AREN 4110 HVAC Design (Proficiency 1)	SE		3√			2017S, 2016S	16, 8
[6] Proficiency Course 2 (Choose 1)	SE		3√				
CVEN 3256 Construction Equipment & Methods						2016F, 2015F	55, 54
AREN 4550 Illumination II OR						2017S, 2016S	25, 22
AREN 4560 Luminous Radiative Transfer OR						2016S, 2015S,	16, 9
AREN 4570 Electrical Systems						2016F, 2015F	15, 10
CVEN 4545 Steel Design OR						2017S, 2016S	45, 39
CVEN 4555 Reinforced Concrete Design						2016F, 2015F	44, 54
[6] WRTG 3030 Writing on Science & Society	SE			3		2017S, 2016F	19, 19
[6] AREN 4830 Computer Simulation of Building Systems	SE		3			2017S, 2016S	0 ⁺ , 2
(Concentration 1)							
[6] AREN/CVEN xxxx technical elective	SE		3			2017S, 2016F	~70, 80
Semester 7							
[7] AREN 4890 Sustainable Building Design (Concentration 2)	SE		3			2016S	16
[7] AREN/CVEN xxxx technical elective	SE		3			2017S, 2016F	~70, 80
[7] ARCH 4010 Architectural Design	R		5			2016F, 2015F	31, 35
[7] ENVD 3114 History and Theory of ENVD: Buildings	R			3		2016F	240
[7] Humanities or social science elective	SE			3			~200
Semester 8							
[8] AREN 4317 Architectural Engineering Design	R		5			2017S, 2016S	32, 40
[8] Technical elective	SE		3			2017S, 2016F	~100, 100
[8] Technical elective	SE		3			2017S, 2016F	~100, 100

Course (Department, Number, Title) List all courses in the program by term starting with the first term of the first year and ending with the last term of the final year. [1 = first semester; 8 = final semester]	Indicate Whether Course is Required, Elective or a Selected Elective by an R, an E or an SE. ¹	Math & Basic Sciences	Subject Area (C Engineering Topics Check if Contains Significant Design (√)	Credit Hours) General Education	Other	Last Two Terms the Course was Offered: Year and, Semester, or Quarter	Maximum Section Enrollment for the Last Two Terms the Course was Offered ²
[8] ENVD 3134 History and Theory of ENVD: Precincts	R			3		2017S, 2016S	219, 134
[8] Humanities or social science elective	SE			3			~200

⁺ No undergraduates took this course

Table 5-1e Curriculum:	Architectural	Engineering -	- Structural Systems	Option *
------------------------	---------------	---------------	----------------------	----------

	Indicate Whether	Å	Subject Area (C	Credit Hours)	-		Maximum
Course (Department, Number, Title) List all courses in the program by term starting with the first term of the first year and ending with the last term of the final year. [1 = first semester; 8 = final semester]	Course is Required, Elective or a Selected Elective by an R, an E or an SE. ¹	Math & Basic Sciences	Engineering Topics Check if Contains Significant Design (√)	General Education	Other	Last Two Terms the Course was Offered: Year and, Semester, or Quarter	Section Enrollment for the Last Two Terms the Course was Offered ²
Semester 6							
[6] Proficiency 1	SE		3√				
CVEN 4545 Steel Design OR						2017S, 2016S	,
CVEN 4555 Reinforced Concrete Design						2016F, 2015F	44, 54
[6] Proficiency 2 (Choose 1)	SE		3√				
CVEN 3256 Construction Equipment & Methods						2016F, 2015F	
AREN 4110 HVAC Design						2017S, 2016S	
AREN 4550 Illumination II OR						2017S, 2016S	
AREN 4560 Luminous Radiative Transfer OR						2016S, 2015S,	
AREN 4570 Electrical Systems						2016F, 2015F	
[6] WRTG 3030 Writing on Science & Society	SE			3		2017S, 2016F	,
[6] Concentration 1	SE		3			2016F, 2015F	
[6] AREN/CVEN xxxx technical elective	SE		3			2017S, 2016F	~70, 80
Semester 7							
[7] CVEN 4161 Mechanics of Materials II (Concentration 2)	SE		3				
CVEN 4545 or 4555 (whichever not selected as proficiency – see						See above	See above
above)							
[7] AREN/CVEN xxxx technical elective	SE		3			2017S, 2016F	~70, 80
[7] ARCH 4010 Architectural Design	R		5			2016F, 2015F	31, 35
[7] ENVD 3114 History and Theory of ENVD: Buildings	R			3		2016F	240
[7] Humanities or social science elective	SE			3			~200
Semester 8							
[8] AREN 4317 Architectural Engineering Design	R		5			2017S, 2016S	32, 40

Course (Department, Number, Title) List all courses in the program by term starting with the first term of the first year and ending with the last term of the final year. [1 = first semester; 8 = final semester]	Indicate Whether Course is Required, Elective or a Selected Elective by an R, an E or an SE. ¹	Math & Basic Sciences	Subject Area (C Engineering Topics Check if Contains Significant Design (√)	· · · · · · · · · · · · · · · · · · ·	Other	Last Two Terms the Course was Offered: Year and, Semester, or Quarter	Maximum Section Enrollment for the Last Two Terms the Course was Offered ²
[8] Technical elective	SE		3			2017S, 2016F	~100, 100
[8] Technical elective	SE		3			2017S, 2016F	~100, 100
[8] ENVD 3134 History and Theory of ENVD: Precincts	R			3		2017S, 2016S	219, 134
[8] Humanities or social science elective	SE			3			~200

Curriculum Alignment with Program Educational Objectives

The overall philosophy of the architectural engineering curriculum is to provide all students with a broad foundation in engineering, architecture, and architectural engineering, then to provide each student with the opportunity for in-depth study in a specific discipline within architectural engineering. As such, the program provides both breadth and depth; breadth in that each AREN student must take courses in two specialty areas as well as general architecture, fundamental engineering and architectural engineering courses; depth in that each student must select an area for specialization and complete a core curriculum of courses for that area. The four areas from which students select one "track" are mapped to the four core disciplines—Construction Engineering & Management, Mechanical Systems, Lighting & Electrical Systems, and Structural Systems. Each track is defined by two concentration courses and four technical electives. Students may take up to 6 credits of technical electives outside of the department in consultation with their faculty advisor. All students pursuing the architectural engineering degree must take a common, 5-credit senior capstone design course that provides a culminating design experience.

The program objectives are linked to the desired outcomes, as shown previously in section 3B. The outcomes are fulfilled by various required courses in the curriculum, as described more fully below. For example, all courses contribute to successfully begin and sustain a career (objective 1). The alignment of the curriculum with the program educational objectives is summarized in the table below.

Objective	1 st yr	2 nd yr courses	3 rd year	4 th year	Notes
	courses		courses	courses	
1. Successfully begin and sustain a career	All provide foundation	All provide foundation	All provide foundation	All provide foundation	Proficiency structure
2.Become leaders who advance the state-of-the arte in 1 of 4 core disciplines of building industry	Intro to AREN	Building Materials and Systems	AREN fundamental, proficiency, and concentration courses	AREN concentration courses Senior design	

Throughout the program, a series of required "overview" style courses serve to provide the foundation for either of the four core disciplines of the building industry (objective 2). In the very first semester the AREN 1316: Introduction to Architectural Engineering introduces students to the nature of professional practice in the building industry. The presentations in this class enable students to better understand the ultimate "end-point" and objective of the AREN program. The first year of the program also includes a course in engineering drawing, with introductions to Revit and building information modeling, to begin building some of the professional communication skills required for achieving the program objectives.

In the second year, students begin their exposure to the core four disciplines with AREN 2050 Building Materials and Systems which investigates the broad subject of building materials, sustainability, building assembly details, and systems and methods of building construction. Students explore codes and classifications, construction contract types, foundations, wood, steel, concrete, masonry, cladding, doors and windows, interiors, finishes, mechanical, electrical, plumbing, life safety and conveyance systems. Upon completion of the course, students have a foundational understanding of building systems and the process required to construct a building. Other courses in the second year provide the required fundamentals for later study of building structural, mechanical, and lighting systems, and provide the skills in computing needed for upper-level coursework and for professional practice.

During the second semester of the second year and the first semester of the third year, students take five required engineering courses that span the four sub-disciplines of architectural engineering: AREN 3010 Mechanical Systems, AREN 3246 Introduction to Construction, AREN 3540 Illumination I, ECEN 3030 Electrical Circuits, and CVEN 3525 Structural Analysis. During this time, students must give serious thought to their area of specialty within the program, as students choose their area of concentration by the spring semester of the third year and must be ready to take both the proficiency course and the first concentration course within their area.

Upon completion of the third year, students have had a design courses in two of the AREN disciplines (one as part of their concentration and the second of their choosing), which provide both a breadth and depth that prepares students for meaningful summer internships during the summer after their third year. The second AREN educational program objective is fully accomplished through both the concentration courses and the block of technical electives that students take in the last three semesters. These courses enable students to develop sufficient depth in an area of interest to complete their preparation for career in the building engineering fields.

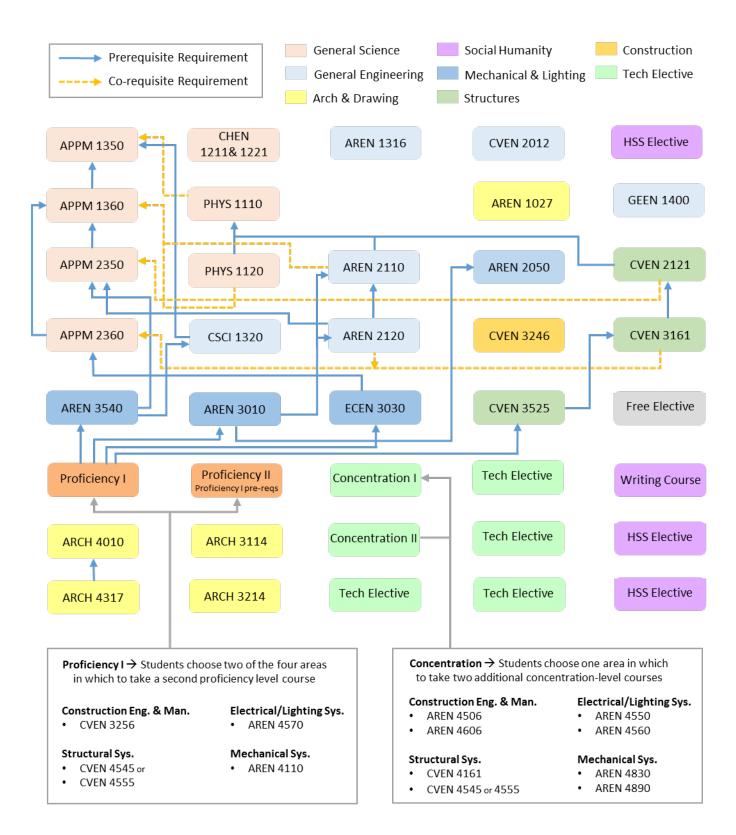
In the design-oriented electives, students gain experience with the techniques and software tools used in professional practice, and usually gain further experience in presenting design ideas in a professional setting. The fourth year also sees our students continuing to develop their professional communication skills, through oral presentations in many of the smaller technical elective classes and through the required technical writing course. While working on their specialty areas in the fourth year, students also gain greater breadth in their professional preparation through 11 credits of study in Architecture. During the final semester, students take a required course that represents the final steps in their preparation for professional practice: AREN 4317 Architectural Engineering Design. The AREN Design course serves as the culminating integrative experience for AREN students, in which they work in teams to complete the design of all the engineering systems for a small commercial building. The architectural design for the building is completed by the students during the ARCH 4010 course in the penultimate semester, so that by the completion of this 10-credit, yearlong sequence, the students have experienced the building design process from initial concept to final engineering of systems. The AREN 4317 course emphasizes the documentation and presentation of design that is expected of practicing professionals, and involves design professionals in the mentoring, evaluation, and assessment for the project. The AREN Design course also covers a series of topics related to professional practice and serves as a final review for the Fundamentals of Engineering (FE) examination. As emphasized above, the AREN curriculum is designed to enable students to achieve the overall program objective that students "attain a broad knowledge and skills necessary to successfully begin and sustain a career, and to become leaders who advance the state-of-the art, in one of four core disciplines of the building industry."

Mapping Curriculum to Student Educational Outcomes

All engineering courses in the AREN curriculum have been mapped to the extent to which they contribute to each of the 13 student outcomes, based on faculty ratings: large contribution (red), medium (orange), small (yellow), none.

Missing from the table are required courses in the curriculum outside of engineering. They primarily contribute to outcome 1 [4 semesters of calculus and math; 2 semesters of physics, 1 semester of chemistry], outcome 13 [Engineering Computing], and outcome 8 [writing course]. The humanities and social science electives [15 credits] contribute to outcome 10.

The two proficiency courses, two concentration courses, and four technical electives taken by the students also contribute significantly to the achievement of the outcomes. But these will vary based on the specific courses selected by the students. The mapping of the proficiency courses and common AREN/CVEN electives to the 13 outcomes is shown in an additional table below.


Alignment of Required engineering courses in the AREN degree with Outcomes [faculty ratings: red = large, orange = medium, yellow = small; average student ratings on a scale from 0 to 6 shown as the numbers in each cell]. N/A = data not available.

						Stu	dent Ou	tcomes					
Courses [semester]	1a	2b	3b	4c	5d	6e	7f	8g	9g	10h	11i	12j	13k
AREN 1027-3 [1]													
AREN 1316-2 [1]													
CVEN 2012-3 [2]													
AREN 2050-3 [3]													
AREN 2110-3 [3]													
CVEN 2121-3 [3]													
AREN 2120-3 [4]													
CVEN 3161-3 [4]													
CVEN 3246-3 [4]													
AREN 3010-3 [5]													
AREN 3540-3 [5]													
CVEN 3525-3 [5]													
AREN 4317-5 [8]													
Total # L courses	9L	0L	3L	3L	3L	5L	1L	4L	0L	1L	1L	1L	6L
Total # M courses	1M	3M	1M	3M	0M	3M	3M	5M	3M	4M	6M	4M	4M

Alignment of selective elective engineering courses in the AREN degree with Outcomes [faculty ratings: red = large, orange = medium, yellow = small; average student ratings on a scale from 0 to 6 shown as the numbers in each cell] N/A = data not available

							Stude	nt Out	comes					
Discipline	Courses	1 a	2b	3b	4 c	5d	6e	7f	8g	9g	10h	11i	12j	13k
	Proficiencies (select 2)													
CEM	CVEN 3256-3													
	AREN 4550-3 OR													
Light & Electrical	AREN 4560-3 OR													
	AREN 4570-3													
Mechanical	AREN 4110-3													
CEM	CVEN 4545-3 OR													
CEM	CVEN 4555-3													
	Concentrations:													
CEM	AREN 4506-3													
CEM	AREN 4606-3													
Light & Electrical	AREN 4550/60/70-3	Same as	in Profici	encies										
M. 1	AREN 4830-3													
Mechanical	AREN 4890-3													
G	CVEN 4161-3													
Structures	CVEN 4545/55-3	Same as	in Profici	encies										
Total # L course	es	3L	0L	L	7L	2L	2L	1L	3L	3L	0L	1L	1L	5L
Total # M courses		5M	1M	2M	2M	1M	4M	2M	3M	1M	5M	4M	1M	4M

Flowchart illustrating prerequisite structure of AREN required courses (based on 2017-18 Block Diagram)

Curricular Areas and General and Program Criteria

The ABET basic-level general criteria require that a minimum of 32 credit hours or 25% of the total credit hours must be in the curricular area of math and basic sciences and that a minimum of 48 credit hours or 37.5% of the total credit hours must be in the curricular area of engineering topics. Table 5-1 shows that the AREN curriculum meets these requirements.

<u>Math and basic sciences</u>: Table 5-1 shows that the program contains sufficient coverage of the math and basic science requirements, with 34 credits or 25% of the curriculum. These are courses from applied math (APPM), chemistry, physics, and basic science courses such as Building Materials and Systems, Fluid Mechanics, and Electrical Systems.

<u>Engineering topics and design</u>: Table 5-1 also shows that the program contains sufficient coverage to meet the engineering topics requirement, with 73 credit hours or 57% of the curriculum devoted to these topics. The table also shows which of these courses contain a large amount of design. See evidence in the colored mapping tables.

<u>General education</u>: The curriculum provides 18 credits of humanities and social sciences coursework (H&SS), including 6 credits that are upper-division and an upper-division writing course. The College provides a listing of approved courses for these electives (see <u>http://www.colorado.edu/engineering-advising/get-your-degree/degree-requirements/humanitiessocial-sciences-and-writing-requirements</u>) to ensure that the courses have sufficient quality and complement the technical portions of the curriculum; in general, courses that are "skills" oriented are not approved for these electives. Instead, the College's list focuses on courses with a broad view of history, literature and the humanities. The majority of these courses are approved as College of Arts & Sciences (A&S) core courses, and as such undergo scrutiny from A&S to ensure quality. Courses beyond this A&S core that are approved for engineering students are reviewed by the H&SS subcommittee of the CEAS and then approved by the Undergraduate Education Council. Students are encouraged to pick a particular area of humanities or social science and devote their humanities electives to courses in that single area. Many also choose to take advantage of the College's Herbst Program of Humanities for Engineers, described in Appendix D.

<u>Other</u>: The curriculum revisions that were voted in by the CEAE faculty in 2012 included three credits of free electives. These credits were classified as "other". They may be technical or non-technical courses. They provide students with a small amount of autonomy to customize their college experience. They may include study abroad courses, courses that contribute to a minor or certificate, etc.

Major Design Experience

The AREN curriculum has elements throughout the four years that are focused on preparing students for engineering practice. The program culminates in a major design experience in the required AREN 4317Architectural Engineering Design course. The course builds directly on previous courses with architectural and engineering design content. Before taking AREN 4317, students take ARCH 4010 Architectural Design, four fundamental engineering analysis courses and at least two proficiency courses (design) all related to the four building disciplines.

Fundamental engineering analysis courses:

- CVEN 3525 Structural Analysis
- AREN 3010 Mechanical Systems for Buildings
- ECEN 3030 Electrical Circuits
- AREN 3540 Illumination 1
- AREN 3246 Intro to Building Construction

Proficiency courses:

- CVEN 4545 Steel Design or CVEN 4555 Reinforced Concrete Design
- AREN 4110 HVAC Design
- AREN 4570 Building Electrical System Design or Illumination 2 or Luminous Radiative Transfer
- CVEN 3246 Construction Equipment & Methods

In addition, students are required to take two concentration courses within each discipline:

- Structural Systems:
 - CVEN 4161 Mechanics of Materials II
 - CVEN 4545 Steel Design or CVEN 4555 Reinforced Concrete Design (whichever two are not selected as proficiency)
- Mechanical Systems:
 - AREN 4830 Computer Simulation of Building Systems
 - AREN 4890 Sustainable Building Design
- Lighting and Electrical Systems:
 - AREN 4570 Building Electrical System Design or Illumination 2 or Luminous Radiative Transfer (whichever two are not selected as proficiency)
- Construction Engineering Management:
 - o AREN 4506 Project Management I
 - AREN 4606 Project Management II

In these discipline-specific design courses, students are introduced to methods of analysis and software tools widely used in the industry. They are also exposed to codes and standards that guide and constrain designs, including the International Building Code (IBC), the National Electric Code (NEC), ASCE/SEI 7 Minimum Design Loads for Buildings and Other Structures, ANSI/ASHRAE/IESNA Standard 90.1 Energy Efficiency for Buildings Except Low-Rise Residential Buildings, ANSI/ASHRAE Standard 62.1 Ventilation for Acceptable Indoor Air Quality, and the USGBC LEED Rating System.

The final-year design experience begins with ARCH 4010 Architectural Design, offered in the fall semester. This course is taught by faculty from the College of Architecture and Planning, and is a 5-credit studio-based course. Students gain an overview of the architectural design process, and apply this process to a series of design projects. The final project in that course entails the architectural design for a small to medium two-story building such as a museum, library, or research and design collaborative building, with a floor area of approximately 15,000 ft² to 30,000 ft². Realistic constraints are placed on this project, as the building is developed for a specific site with relevant life safety and local codes considered. The result of the project is a comprehensive program and a set of architectural plans for the building.

Students bring the architectural design for their building in ARCH 4010 into AREN 4317 Architectural Engineering Design in their final spring semester. In this course, students work in small teams (4-5 people) to refine the architectural design and to design all the engineering systems for the building: structural, mechanical, lighting and electrical, as well as develop construction costs and a schedule for project delivery. The student teams are formed based on specialty areas and are multi-disciplinary in nature, with at least one team member focusing on structural, mechanical, electrical/lighting, and construction engineering deliverables. While the course is organized and managed by the faculty member in charge, it is not uncommon for over a dozen professionals to be involved in the course. Other program faculty in the four disciplines serve as the discipline-specific experts who provide review lectures, meet regularly with the individual student teams, and evaluate the work in their particular disciplines. Partnered with each faculty member are at least three industry mentors from the local engineering community, who present case studies of their work, meet with students to help guide the integrated design process, and participate in evaluating and providing feedback on project deliverables. There are also lectures by building professionals throughout the semester on topics such as sustainable design, professional ethics, teamwork, and building information modeling. Students must again face realistic constraints on their design ideas, as they seek to integrate the various systems in the project and address code-related issues.

Throughout the course, students demonstrate their progress through a series of interim submittals and presentations, following the typical professional progression of programming, conceptual design, schematic design, and design development. The final deliverables for the course are complete sets of documents and drawings for the various engineering systems of the building. Successful completion of the AREN 4317 course represents the achievement of many of the program's outcomes.

The following represents a typical deliverable package (final report) required from each group:

- a. Project abstract and introduction
- b. Program (project parameters)
 - i. Site
 - ii. Building
 - iii. Story
 - iv. Architectural drawings
- c. Written narratives describing process and design calculations per discipline:
 - i. Construction
 - 1. Base cost estimate
 - 2. Risk and contingency analysis
 - 3. Schedule
 - 4. Cost monitoring and reporting
 - 5. Value engineering
 - 6. Codes
 - ii. Structures
 - 1. Codes
 - 2. Applicable loads

- 3. Structural system and material selection
- 4. Framing and LLRS narrative
- 5. Moment frame design
- 6. Moment frame connection
- iii. Mechanical
 - 1. Benchmark and EUI targets
 - 2. Ventilation and thermal comfort requirements
 - 3. Zoning plan
 - 4. HVAC system research and selection
 - 5. Load calculations
 - 6. Equipment sizing
 - 7. Design methodology
- iv. Electrical
 - 1. Electrical load calculations
 - 2. Emergency systems
 - 3. Codes
- v. Lighting
 - 1. Design concept
 - 2. Lighting design criteria
 - 3. Luminaire selection
 - 4. Daylighting study
 - 5. Electric lighting compliance
 - 6. Code discussion and compliance
 - 7. Renderings
- d. Drawings, calculations, and specifications set presented in appendix form
 - i. Architecture
 - 1. Site plan
 - 2. Floor plans
 - 3. Sections
 - 4. Elevations
 - 5. 3D models
 - ii. Construction
 - 1. Site plan
 - 2. Estimate table
 - 3. Schedule
 - 4. Risk analysis table
 - 5. Industry quote table
 - iii. Structural
 - 1. Calculations:
 - a. Joist and deck
 - b. Beams
 - c. Columns
 - d. Lateral loads
 - e. Overturning moment
 - f. Moment frame
 - g. Moment frame connections (shear / flange)

- h. Shear wall
- 2. Drawings:
 - a. Dead and live loads
 - b. Snow loads
 - c. Wind loads
 - d. Floor loads
 - e. Column layouts
 - f. Governing beams/columns
 - g. Lateral load distribution
 - h. Stairway design
 - i. Moment frame detail
 - j. Shear wall detail
- iv. Mechanical
 - 1. Zoning plans
 - 2. Duct layout
 - 3. Single line
 - 4. Mechanical equipment cut sheets
- v. Electrical
 - 1. One-line/riser diagram
 - 2. Site and floor electrical plans
 - 3. Site and floor lighting circuiting plan
 - 4. Site and floor electrical HVAC plans
 - 5. Enlarged electrical rooms
 - a. Main service entrance section
 - b. Main distribution panel schedule
 - 6. Power panel schedules
 - 7. Lighting panel schedules
- vi. Lighting
 - 1. Lighting concept boards
 - 2. Site and floor lighting plans
 - 3. Lighting elevations and sections
 - 4. Interior and exterior luminaire schedules
 - 5. Luminaire cut sheets
- e. Various mini reports done by individual team members. Topics change from year to year. Examples of some of the topics are LEED compliance and clash detection.

The deliverables above are consistent with the specific objectives for the course:

- 1. Integrate the technical sub-disciplines of structural, mechanical, lighting and electrical, and construction engineering management to create a professional-level solution to a 30,000 +/- square-foot building.
- 2. Gather relevant data; understand "client" needs (as defined by Architectural Engineering faculty and industry mentors); identify budgetary, environmental and ethical constraints; and identify and use applicable regulations, codes and standards.
- 3. Create feasible alternative designs--where appropriate, and carry out value engineering analysis.

- 4. Prepare increasingly detailed designs and construction planning that satisfies the project's constraints while also conforming to relevant codes, regulations and established sustainable practices.
- 5. Prepare design documentation including design rationale and intent, design details and integrated project planning, scheduling and construction cost analysis to support each design stage.
- 6. Communicate effectively both through oral presentations and written reports/drawings the design intent, proposed solutions, and engineering details.
- 7. Work in multi-disciplinary teams and in interdisciplinary formats as appropriate during different phases of the project.
- 8. Realize the importance of obtaining professional credentials and engaging in life-long learning throughout their careers as engineers.
- 9. Understand the professional and ethical responsibilities they must exercise as students and as future practicing engineers.

Cooperative Education

Cooperative education is not allowed to satisfy curricular requirements addressed by the general or program criteria.

Course Syllabi

In Appendix A, a syllabus is included for each course used to satisfy the mathematics, science, and discipline-specific requirements required by Criterion 5 and applicable program criteria. Further, courses that are commonly taken by architectural engineering students, including all courses that count as proficiency courses and some additional courses are included.

CRITERION 6. FACULTY

A. Faculty Qualifications

There are 43 tenured/tenure-track faculty (24 Professors, 8 Associate Professors and 11 Assistant Professors), 5 Senior/Full-time Instructors in the CEAE department. These faculty members are distributed among six specialty "groups" (see table below). See Table 6-1 for the qualifications of these faculty members, presented alphabetically with the exception of the environmental and water resources faculty, who are listed last due to their small contribution to the architectural engineering degree program. (Table 6-2 gives the approximate percentage each individual devotes to architectural engineering, again with the environmental and water resources faculty presented last). The building systems faculty contributes almost solely to Architectural Engineering. The construction and structures faculty contribute about equally to both the Civil and Architectural Engineering programs. A small number of geotechnical and environmental faculty contribute to Architectural Engineering. All CEAE faculty vote on objectives, outcomes, and curriculum matters, and as such have some contribution to the architectural engineering program.

SHOWIT DEIDW.					
Specialty	Approx.	Full	Associate	Assistant	Senior / Full
	% to	professors	Professors	Professors	Time
	AREN				Instructors
Building Systems	100	3	0	1	2^{+}
Construction	50	3	2	0	1
Geotechnical	10	4	1	3*	0
Structures	50	3	2	3	0
Environmental	20	7	2	2	2
Water Resources	5	4	1	2	0
Total		24	8	11	5

CEAE faculty members are grouped according to their specialization, with groupings shown below.

⁺ Includes Walter Beamer who resigned in Jan. 2017; position filled starting in Aug. 2017 * One started January 2017

Four of the tenured/tenure-track faculty have their salaries rostered in the graduate school, and have differential teaching responsibilities as a result (2 Professors, 1 Associate Professor, 1 Assistant Professor). One new faculty member started in January 2017. Six faculty members are affiliated with Research Institutes as Fellows or affiliated faculty (2 CIRES, 3 INSTAAR, RASEI 1 fellow/3 affiliates). The faculty includes high diversity, with 11 women T/TT (26%) and 1 senior instructor (20%) on the faculty, and three faculty from underrepresented minority population (7%). Currently, seven faculty members in CEAE hold endowed chairs (e.g. K. Stanton Lewis Chair of Construction Engineering and Management; Mortenson Chair in Global Engineering) and one professor and one Senior Instructor have professorships (Denver Business Challenge Professorship; Petry Professorship). Five faculty members have received NSF CAREER awards. Three faculty members are in the National Academy of Engineering (NAE). Twenty faculty members are fellows of major professional societies nationally, and three are fellows internationally. (Note: research professors (2) and scholars-in-residence that are associated only with the graduate program (2) are not included.)

Our faculty have been recognized for teaching excellence and educational research. Roseanna Neupauer received the 2006 ExCEED New Faculty Excellence in Teaching Award from the American Society of Civil Engineers (ASCE), the 2008 Charles A. Hutchinson Memorial Teaching Award, the 2010 Peebles Innovation in Teaching Award from CU's College of Engineering and Applied Science (CEAS), and the 2011 Boulder Faculty Assembly Excellence in Teaching Award from the CU-Boulder campus. Prof. Joseph Ryan won the 2010 Outstanding Faculty Advisor Award from the CU CEAS. Professor Bielefeldt won the Best Overall Conference Paper Award from the American Society for Engineering Education (ASEE) twice for her papers presented at the 2009 and 2015 annual conference.

B. Faculty Workload

The normal tenure-track faculty member in the College is evaluated based on an allocation of 40% research, 40% teaching, and 20% service. These weightings can be changed if desired by the faculty member and approved by the Department Chair and Dean. The standard teaching load in CEAE for research-active tenure-track faculty is three courses per year (for typical 3-credit courses). It is expected that these courses include at least one undergraduate course. The faculty members with appointments rostered in the graduate school teach two courses per year (Goosef, Livneh, McKnight, Pfeffer). The full-time senior instructors typically teach five courses per year. CEAE faculty instructional offerings generated 13,726 undergraduate and graduate student credit hours in the 2015-2016 academic year. The courses taught by our faculty comprise the majority of three different undergraduate majors: Civil Engineering, Architectural Engineering, and Environmental Engineering. The faculty workload is summarized in Table 6-2.

The annual research expectations of a tenure-track faculty member in CEAE with a typical research: teaching: service allocation would typically include 4 reviewed journal publications, 3-4 conference or invited presentations, \$150,000-\$200,000 in research expenditures, and 4-6 supervised graduate students (these are the approximate median values for T/TT faculty in CEAE in the 2016 calendar year). The annual service expectations would typically include contributions to several internal committees within the departmental, college, or campus, participation in national and international professional societies, and editorial review for professional journals.

C. Faculty Size

Faculty Size and Undergraduate Teaching

There is an adequate faculty size to teach and mentor architectural engineering students as shown above. The table below shows the number of Full Time Equivalent (FTE) Faculty, student credit hours (SCH) taught by CEAE faculty, and total number of undergraduate students. CEAE has been below the CU CEAS average for number of student credit hours (SCH) per faculty from 2013 and forward; CEAE is currently at our lowest level in 6 years. SCH are a good metric since our faculty teach courses that serve civil engineering, architectural engineering, and the bulk of the environmental engineering degree.

Fall Semester:	2011	2012	2013	2014	2015	2016
Full Time Equivalent faculty	36.5	39.0	39.5	40.0	40.0	42.0
SCH, all CEAE	17,366	16,394	15,425	13,497	13,666	13,164
CEAE SCH/Faculty	476	420	391	337	342	313
CU CEAS College SCH/Faculty	419	396	410	435	457	474
# architectural engineering undergraduate students	185	149	152	153	143	143

As shown in the table below, the number of FTE faculty in the CEAE department has increased steadily over the past six years. The number of tenure line faculty budgeted elsewhere has remained fairly constant at 3 to 5, while the number of tenure-line faculty (w/o tenure line budgeted elsewhere) has increased from a low of 33 in 2012 to the current high of 38. The number of instructional faculty increased the most, from only 2 in 2011 to 8 currently. This includes instructors to fill vacancies due to sabbatical or in-process hires.

Fall Semester	2011	2012	2013	2014	2015	2016
# Faculty FTE Budgeted						
(Fac)	36.5	39.0	39.5	40.0	40.0	42.0
# Tenure-line Faculty						
(w/o TBE)	34	33	36	38	37	38
# Tenure-Line Budgeted						
Elsewhere (TBE)	5	3	3	3	4	4
# Instructional Faculty	2	5	5	7	8	8

In addition to faculty and senor instructors, some individuals are hired to teach specific courses. Occasionally, post-doctoral researchers or Ph.D. students who are building their teaching skills will teach courses under the mentoring supervision of their advisor. More often, highly qualified senior individuals have been hired to teach courses (such as PEs Billington and Keeley). The table below summarizes the individuals who have been hired to teach specific courses in recent years, their qualifications, courses that they have taught, which semester(s), and average student ratings on the FCQs. The FCQ ratings are on a scale of 1-6 [1 = lowest, 6 = highest], and results for two questions are reported below: course overall and instructor overall.

Name	Qualifications	Courses Taught (type), dates [FCQs on scale of 1-6]
Max Billington, PE	 BS Architectural Engineering, University of Colorado Boulder, 1976 PE in Colorado, California, Nevada, Oklahoma, and Texas Chief Electrical Engineer, 37 yrs. experience NCEES certification LEED AP Building Design + Construction, 	AREN 4570, Electrical Systems for Buildings, Spring 2014 [Course 2.5, Instructor 2.8]
Lance Cayko	 Master's Architecture 2008 from North Dakota State University Licensed architect in CO 2015 Project Manager with Studio H:T (1 yr) Owner and co-founder of F9 Productions (2009) residential BIM projects 	AREN 1027 Engineering Drawing (required), Fall 2013-Spring 2016 [Course 4.1-5.2, Instructor 4.3-5.2]
Alex Gore	 Masters of Architecture Masters Degree in Construction Management, North Dakota State University Founder and co-owner of F9 Productions (2009-present) serving as designer and project manager for multiple residential and commercial BIM projects. 	AREN 1027 Engineering Drawing (required), Fall 2013-Spring 2016 [Course 4.1-5.2, Instructor 4.3-5.2]
Milan Halek	 Senior instructor emeritus 40 yrs teaching experience at CU Licensed Land Surveyor in Colorado Returned from retirement to teach. 	CVEN 2012 Intro to Geomatics, Spring 2016 [Course 4.5, Instructor 5.1]
Jeff Keely, PE	 BS and MS Civil Engineering Univ. Washington Colorado Dept. of Transportation (since 2007) Design and consulting engineer (12 yrs) 	CVEN 2121 Analytical Mechanics I, Summer 2015,Ssummer 2014 [Course: 4.7-5.0, Instructor: 5.2-5.3]

Name	Qualifications	Courses Taught (type), dates [FCQs on scale of 1-6]
Ryan Novak	 BS Civil Engineering University Wisconsin, MS Civil Engineering CU 2005; Project manager at UOP (4 yrs) and ERDMAN (3 yrs); Assistant Professor of Building Construction Management, University of Wisconsin – Platteville (4 yrs) 	CVEN 3246 Intro to Construction, Spring 2015 [Course: 4.3, Instructor: 4.0] CVEN 3256 Construction Equipment and Methods, Summer 2015 [Course: 4.7, Instructor: 4.9]
Lan Nguyen, PE	 PhD in structural engineering from CU in May 2014. Structural engineer at Aero Solutions LLC from 2011-2013, including designing tower structural elements such as foundations and upgrades for stability. Graduate research assistant she design reinforced concrete frames and masonry shear wall panels. 	CVEN 4555 Steel Design, Fall 2014 [Course: 4.9, Instructor: 5.5]
In Ho Cho	 PhD Civil Engineering, California Institute of Technology BS & MS Civil Engineering, Seoul National University, South Korea Instructor during Willis Research Fellowship at CU Expertise in computational science, structural analysis, seismology, and big data approaches to earthquake engineering 	CVEN 2121 Analytical Mechanics, Fall 2013 [Course: 5.0, Instructor 5.4] CVEN 3161 Mechanics of Materials I, Spring 2013 [Course: 4.9, Instructor: 5.3] CVEN 3525 Structural Analysis, Spring 2014 [Course: 4.2, Instructor 4.9]

Name	Qualifications	Courses Taught (type), dates [FCQs on scale of 1-6]
Mark Jongewaard	 Master of Science, Civil Engineering, Illumination Emphasis, University of Colorado, May 1991. President & Principal, LTI Optics, LLC Adjunct Professor, University of Colorado Board Member, Rocky Mountain Lighting Academy and Council for Optical Radiation Measurements. Extensive experience in lighting software development, lighting and optical analysis, illumination optical design and training. 	AREN 4130 Optical Design, Fall 2015, Fall 2014, Spring 2013 [Course: 4.7-5.0-5.4, Instructor: 4.9, 5.3-5.6]
Joseph Wujek	 M. A. Industrial Arts (Technology) University of Northern Iowa (UNI), Cedar Falls, IA CEO/founder of Advanced Building Consultants; Department Chair, FRCC; Advanced Technologies Department. Professor (emeritus) and Program Director, Architectural Engineering Technology and Construction Management, FRCC; Author of three university-level textbooks in structures, architectural engineering (MEP) systems and sustainability. 	AREN 2050 Building Materials and Systems, Spring 2016, Fall 2014, Fall 2013, Spring 2013, Fall 2012, [Course: 5.1-5.1-5.3-4.1-4.2, Instructor: 5.3-5.3-5.7-4.3- 4.6] AREN 4010 HVAC Design, Spring 2015 [Course: 4.4, Instructor: 4.8]

Faculty-Student Interactions

CEAE faculty members are actively involved in advising and mentoring students in the civil, architectural, and environmental engineering programs. Normally each CEAE faculty member advises 6 to 20 undergraduate students, meeting individually with each advisee in each semester of their junior and senior year. Details of the student academic advising have been provided earlier in Section B1. Faculty help students prepare for engineering careers by finding internships, reviewing student's resumes and bringing professional colleagues to meetings of student societies, special seminars and to classes as guest speakers. Through supervision of undergraduate Architectural Engineering students to continue their studies at the Masters level in accordance to the expectations imposed by industry (e.g. the structures field expects students to have earned master's degree upon graduation), either at the University of Colorado or other universities.

Faculty members advise student chapters of professional societies such as Association of General Contractors (AGC), Illuminating Engineering Society of North America (IESNA), Architectural Engineering Institute (AEI), and Society of Women Engineers (SWE). One Civil Engineering faculty member founded Engineers Without Borders (EWB), with the first student chapter at the University of Colorado Boulder. EWB has engaged students to work with practitioners to help communities in developing countries with projects for sustainable infrastructure for water, sanitation, housing, and transportation. This concept of outreach education and service started here at the University of Colorado Boulder has captured the enthusiasm of many engineering students, and there are now EWB student chapters at about half of all engineering programs throughout the US.

University Service Activities

Each faculty member serves on at least one standing Department Committee (Graduate, Curriculum, Operations, Computers, Facilities, Executive). In addition, faculty members serve on dozens of committees at the College and University level for developing curriculum, program evaluation, searches for new faculty and administrators, promotion, awards and fellowships, etc. Of special note, a CEAE faculty member recently served as the Interim Provost and Executive Vice Chancellor for Academic Affairs (Sture) until May 2010 when a permanent Provost was named. The Director of the Campus Diversity Initiative (Hernandez), which includes two NSF-sponsored programs to increase participation of underrepresented minority students in science and engineering research programs, is also a CEAE faculty member. Another CEAE faculty member serves as the Director of the College's interdisciplinary Environmental Engineering BS program (Summers, 2012-present). Faculty resumes in Appendix I-B show the diversity of faculty service to the University community.

Professional Service and Interaction with Practitioners

Most CEAE faculty members are involved in 2 to 10 committees for national professional engineering societies, involving such diverse activities as evaluating revisions in building and material codes, peer review of proposed environmental and health regulations, and development of national research programs. Some examples are: American Society for Testing Materials (ASTM) and American National Standards Institute (ANSI) code-evaluation committees, specialty committees for ASCE, the IESNA, ASHRAE, WEF, and AWWA. Faculty members chair sessions at national and international technical conferences and have themselves been conference directors. Many faculty members volunteer their professional expertise to community boards and public groups such as the Colorado municipalities and state agencies. All these activities regularly bring faculty in contact with their practicing colleagues in Civil and Architectural Engineering. Details of these activities are in the faculty resumes in Appendix B.

D. Professional Development

Support for excellent teaching in Civil and Architectural Engineering is strong. Typically teaching is at least 40% of a professor's activities, and also 40% of annual evaluation of merit assessment used for raises, and is of equal importance as research in promotion and tenure decisions. The nominal teaching load for research-active faculty in Civil and Architectural Engineering is three semester courses per year, including both graduate and undergraduate

classes, which is consistent with other departments in the College of Engineering and Applied Science. Faculty members are encouraged to participate in programs to develop their teaching. Many take advantage of support to participate in workshops on engineering curriculum development and teaching methods sponsored by the NSF and professional societies.

The college supports the professional development of faculty through the Faculty Excellence Program (see http://www.colorado.edu/engineering-facultystaff/awards-incentives/college-awards/faculty-excellence-program), which provides a number of financial support opportunities. This program includes:

Dean's Faculty Fellowships - Selected faculty members are given one semester off from teaching a course, to focus on a major initiative in research and scholarly work or development of substantial educational materials or initiatives

Dean's Seed Funds for Novel Ideas - Discretionary funds up to \$10,000 provide seed support for new ideas, and are matched 1:1 by the department or program

Dean's Performance Awards - \$5,000 awards are given for top performance in categories such as research, teaching, professional progress, and overall performance of junior faculty, based on the annual performance evaluations for the prior calendar year

Matching funds for research grants, laboratory renovation funds, and travel to funding agencies **Sabbatical Supplement Program -** This program offers an additional 20% of the academic-year salary to faculty members taking full-year sabbaticals, on top of the normal 50% of the academic-year salary that they receive on sabbatical. The department then retains the remaining 30% of the academic-year salary, and the faculty member is responsible for raising (or forgoing) 30% of her or his salary. In addition, the Dean will provide \$4000 in discretionary funds for research, travel, etc. to each faculty member who successfully applies for this program.

The Department encourages professional development through attendance of conferences and workshops. Data are collected on faculty attendance of these events through the annual reporting and evaluation process. If faculty members are not participating in these events, it is noted by the chair. New faculty members have significant start-up packages with moneys designated for travel and professional development. Senior faculty members typically raise their own funds for travel to these events, but they can also make requests for funds from the Department or College.

The College provides overarching guidelines for faculty mentoring. The College holds a new faculty orientation program at the start of the academic year. The Dean delivers a mentoring workshop at orientation and new faculty and their mentors are invited to attend. Assignment of faculty mentors for new faculty is tracked by the Chair and the Dean. In addition, the former Dean has written a document on mentoring for faculty, Tips for Faculty Mentoring (see http://www.colorado.edu/engineering-facultystaff/tips-faculty-mentoring).

The University of Colorado Boulder has a campus-wide Faculty Teaching Excellence Program (FTEP) to help faculty develop new teaching and learning methods. CEAE Engineering faculty have served on FTEP panels to discuss educational innovations and participated in FTEP workshops on special topics such as using the Internet for teaching. FTEP also maintains a classroom visitation program to give teachers feedback and assistance in improving teaching methods for individual courses. Two CEAE faculty have recently participated in the ASCE ExCEEd teaching workshops. Historically, CEAE faculty have received teaching awards from the College and national awards from ASEE (Young Faculty Award), the Association of Environmental Engineering and Science Professors (Outstanding Teaching), the Illuminating Engineering Society, and the Society of Women Engineers (Distinguished Engineering Educator). Five faculty (Crimaldi, Hernandez, McCartney, Neupauer, Rajaram) have received NSF's prestigious Early Career Development (CAREER) award, which is partially based on the awardee's education plan.

Faculty have developed significant external funding for educational innovations, including NSF education grants to develop a unique teaching flume for fluid mechanics and hydraulics courses, a laboratory geotechnical centrifuge for soil mechanics laboratory projects, and planning for curriculum in service and outreach learning in an initiative called Engineering for Developing Communities. Private industry funding has been obtained to support development of a unique design experience in lighting engineering. In addition to the significant impact of these activities on Civil and Architectural Engineering students' education at the University of Colorado Boulder, publications in journals and presentations at ASEE and other conferences have contributed to new educational efforts at other universities.

For newly hired faculty, the College has a New Faculty Program, which focuses on mentoring and supporting new tenure-track faculty during their first few years.

In addition to teaching-related professional development, most CEAE faculty also routinely attend professional conferences where they present their research findings and learn about the latest developments in their area. Travel to these conferences is most often supported directly from the same grants that fund the research. For example, NSF requires dissemination of research results, and therefore funding to attend a conference to present the results is expected and normal.

E. Authority and Responsibility of Faculty

CEAE Department

The specific CVEN degree requirements are controlled fully by the CEAE faculty and senior instructors, within the constraints of the College of Engineering and Applied Science (CEAS). All changes to required courses in the curriculum must be voted on by the CEAE faculty as a whole. All changes to the program educational objectives and student outcomes are also voted on by the faculty as a whole. Changes are passed if approved by a simple majority of the faculty present at the meeting, if a quorum is present (half plus one of the voting members of the Department). Voting members of the department include those with a full-time University of Colorado appointment in the ranks of Instructor, Senior Instructor, Assistant Professor, Associate Professor, and Professor; Research Assistant Professor, Research Associate Professor and Research Professor. Instructors must have held the position for two years.

The CEAE faculty set up the JEC (Joint Evaluation Committee) process for on-going review of program objectives, student outcomes, and curriculum. Each JEC is aligned with one or two of the six CEAE faculty groups, and at least one JEC meets every year to evaluate the civil and/or architectural engineering programs. One or more faculty serve on each JEC. Two or more faculty

are involved in writing the self-study report that is provided to the JEC in advance of its meeting. The departmental Assessment Coordinator provides assessment data for the self-study. After the JEC submits its report of recommendations, the faculty in the reviewed sub-discipline area(s) meet to discuss the recommendations and respond. The responses are then passed to the curriculum committee in the Department, which discusses any recommended changes at the curriculum-level. The curriculum committee is composed of faculty representatives from each of the six groups, and an additional representative from the Engineering for Developing Communities (EDC) program. The curriculum committee reviews assessment data on the program, evaluations by the JEC, and reviews curriculum elements. It can approve content changes within courses, and recommend curriculum changes to the faculty.

Assignments to teach specific courses are generally determined by recommendations to the department chair based on consensus within the appropriate CEAE sub-discipline group. These course assignments take into account instructor interest and expertise, and student FCQs.

A representative from architectural engineering sits on the CEAS Undergraduate Education Council. This individual is appointed by the Chair of CEAE and has been a member of the curriculum committee; for many years, this representative was also the CEAE Assessment Coordinator. The Undergraduate Education Council is chaired by the Associate Dean for Education. Voting members include faculty representatives from each degree program, the Associate Dean for Education, the Assistant Dean for Students, and any other stakeholder granted voting rights by the Associate Dean for Education. Staff representatives from each degree granting program and the directors of the programs and services for student support and learning also participate on the committee. The Undergraduate Education Council is responsible for developing and coordinating undergraduate educational initiatives as described in the College's Strategic Plan and such other activities related to undergraduate education within the College as may be brought before the committee. Additional faculty may also serve on subcommittees that review specific service-level courses as well as other ad hoc task forces.

The CEAE faculty are also represented on the CEAS assessment committee. The purpose of this committee is to consider/develop ongoing assessment measures used at the college and to act in an advisory capacity to the Director of Assessment and Accreditation for surveys that are administered by the Dean's office on behalf of the college's departments and programs. These surveys include the graduating senior survey, first-year student survey, summer internship survey, alumni survey, and employer survey. The CEAE Assessment Coordinator represents CEAE on this committee.

College of Engineering and Applied Science (CEAS)

The following is copied from the College Rules:

Approved: February 8, 2017

The Faculty. The members of the faculty shall consist of all Professors, Associate Professors, Assistant Professors, Teaching Professors, Scholars in Residence, Senior Instructors, Instructors, Research Professors, Research Associate Professors, and Research Assistant Professors in the College of Engineering and Applied Science on the Boulder campus. The Dean may also appoint members to one-year renewable terms from departments outside the College involved in degree granting programs such as Engineering Physics and Applied Mathematics. These additional

members may be recommended for membership at the start of each academic year by their respective department chairs. Other additional members from outside the College may be appointed by the Dean for one-year renewable terms.

- Voting Members. The voting membership of the faculty shall consist of all Professors, Associate Professors, Assistant Professors, Research Professors, Research Associate Professors, Research Assistant Professors, Teaching Professors, Scholars in Residence, Senior Instructors, and full-time Instructors in the College of Engineering and Applied Science, plus any additional members appointed by the Dean. Faculty with such titles as adjoint, adjunct, visiting, lecturer, research associate, etc., are not voting members of the College but may be voting members of a department (or program) based on the rules of that unit.
- **Powers.** The college faculty shall collaborate with the Dean in the governance of the College of Engineering and Applied Science in all matters that concern only the college (in accordance with the Laws of the Regents, Article 4.A.5). In particular, through shared governance with the administration, the faculty shall have principal responsibility for academic and scholastic policy and ethics, and the faculty shall act jointly with the administration in areas of faculty appointment and review, regulation of student conduct and activities, budgeting review and resource recommendations, selection of academic administrators, determination of candidates for degree, and other policies concerning the general academic welfare of the College (in accordance with the Laws of the Regents, Article 5.E.5).
- Secretary. A Secretary shall be appointed by the Dean, to record any decisions and votes.
- **Faculty Meetings.** Faculty meetings shall be held at least once during each of the fall and spring semesters. Special meetings may be called by the dean or shall be called by the dean upon the written request of five members of the faculty. Twenty-four hours' notice of a special meeting will be given. The members present at any regular or special meeting shall constitute a quorum.

Dean of the College of Engineering and Applied Science. The dean of the college shall be its administrative head. The dean shall be responsible for the enforcement of admission requirements and for the general efficiency of the college and its departments and programs, and has overall responsibility for budgetary planning and allocation of funds, space and other resources, faculty assignments and workloads, recommendations on personnel actions, planning, accountability and reporting (in accordance with the Laws of the Regents Article 4.A.2). The dean shall enforce rules and regulations of the college. The dean shall confer with the department chairs about departmental needs. The dean shall make regular reports to the provost of the Boulder campus, and to the faculty of the college.

The Dean of the College of Engineering and Applied Science reports to the Provost. The Provost leads the Division of Academic Affairs at the University of Colorado Boulder. The Division of Academic Affairs is responsible for administering the academic programs and policies of the Boulder campus, and for providing intellectual leadership for excellence in

teaching, scholarship, and creative work. The division recruits faculty, deans, and other academic leaders, and allocates resources to ensure high-quality teaching, research and creative work, and service. The Provost reports to the Chancellor, who in turn reports to the President of the University of Colorado.

Table 6-1. Faculty Qualifications – Architectural Engineering

The full CEAE roster is shown below since all faculty votes on curriculum issues regardless of the program. The table is organized by program starting with AREN followed by CVEN whose various faculty contribute to AREN. Last is EVEN.

			S			ears (peries)		ttion/		el of Ac gh, M,	ctivity ⁴ L= low
Faculty Name	Highest Degree Earned- Field and Year	Rank ¹	Type of Academic Appointment ² T, TT, NTT	FT or PT^3	Govt./Ind. Practice	Teaching	This Institution	Professional Registration/ Certification	Professional Organizations	Professional Development	Consulting/summer work in industry
Amadei, Bernard	PhD Civil Engineering, 1982	Р	Т	FT	1	35	29	PE Europe	Н	Η	М
Balaji, Rajagopalan	PhD Stochastic Hydrology & Water Resources, 1995	Р	Т	FT	0	20	17		Н	Н	L
Beamer, C. Walter IV*	PhD Civil Engineering, 2005	Ι	NTT	FT	10	5	5		L	М	М
Bielefeldt, Angela	PhD Civil Engineering, 1996	Р	Т	FT	1	21	21	PE ^{co}	Н	Η	L
Chinowsky, Paul	PhD Civil Engineering, 1991	Р	Т	FT	3	23	15		Н	Η	М
Corotis, Ross	PhD Civil Engineering, 1971	Р	Т	FT	1	46	23	PE ^{CO,IL,MD}	Н	Η	М
Dashti, Shideh	PhD Geoengineering, 2009	AST	TT	FT	0	6	6		L	Μ	L
Goodrum, Paul	PhD Civil Engineering, 2001	Р	Т	FT	3	16	5	PE ^{KY}	Н	L	L
Hallowell, Matthew	PhD Construction Eng & Mgmt, 2008	ASC	Т	FT	5	9	9		Н	Μ	L
Hearn, George	DES Civil Engineering 1989	ASC	Т	FT	10	28	28	PE ^{CO,NY}	Μ	L	М
Henze, Gregor	PhD Civil Engineering, 1995	Р	Т	FT	4	18	9	PE^{NE}	Μ	L	М
Hubler, Mija	PhD Civil & Environ Engineering, 2013	AST	TT	FT		2	2		М	М	L
Javernick-Will, Amy	PhD Civil Engineering, 2009	ASC	Т	FT	7	7	7		Н	М	L
Krarti, Moncef	PhD Civil Engineering, 1987	Р	Т	FT	3	26	26	PE ^{co}	Н	Η	М
Liel, Abbie	PhD Civil & Env. Engineering, 2008	ASC	Т	FT	0	9	9	PE ^{CA}	Μ	Η	М
Molenaar, Keith	PhD Civil Engineering, 1997	Р	Т	FT	7	20	18		Н	Η	М

Morris, Matthew	MS Civil Engineering, 2002	Ι	NTT	FT	14	8	5	PE ^{co}	М	L	М
Pak, Ronald	PhD Applied Mechanics, 1985	Р	Т	FT	1	32	32		Н	Н	L
Pfeffer, William (Tad)	PhD Geophysics, 1987	Р	Т	FT	9	19	18		Η	Н	L
Pourahmadian, Fatemah	PhD Civil Engineering, 2016	AST	TT	FT	0.5	0.5	0.5		L	L	L
Regueiro, Richard	PhD Civil & Environ Engrg, 1998	ASC	Т	FT	7	12	12		М	Н	L
Saouma, Victor	PhD Civil Engineering, 1980	Р	Т	FT	0	33	33		М	М	L
Sideris, Petros	PhD Civil Engineering, 2012	AST	TT	FT	0	5	4	PE ^G FE ^{MI}	Η	М	L
Song, Jeong-Hoon	PhD Theoretical Appl Mechanics, 2008		TT	FT					Η	L	L
Srubar, Wil V.	PhD Civil Engineering, 2013	AST	TT	FT		3	3		Μ	М	L
Vasconez, Sandra	MS Lighting 2000; MA Art Hist. 2005	Ι	NTT	FT	14	10	10		L	L	L
Xi, Yunping	PhD Structural Engineering, 1991		Т	FT	3	21	20		Μ	Н	L
Zhai, Zhiqiang	PhD Building Technology, 2003		Т	FT	2	14	14		Η	Н	М
Zhang, Yida	PhD Civil & Environ Engineering, 2016	AST	TT	FT	0	1	1		L	L	L
Znidarcic, Dobroslav	PhD Civil Engineering, 1982		Т	FT	0	35	31		L	L	L
Water and Environmental Engineering											
Cook, Sherri	PhD Environmental Engineering, 2014	AST	TT	FT	0	2	2		Μ	Μ	L
Corwin, Chris	PhD Civil Engineering, 2010	Ι	NTT	FT	13	3	3	PE ^{co}	L	Μ	М
Crimaldi, John	PhD Civil & Environm Engrg, 1998	Р	Т	FT	4	18	18		L	Μ	L
Gooseff, Michael	PhD Civil Engineering, 2001	ASC	Т	FT					Η	Μ	L
Hernandez, Mark	PhD Environmental Engrg, 1994	Р	Т	FT	8	22	22	PE ^{CA}	Н	Μ	L
Kasprzyk, Joseph	PhD Civil Engineering, 2013	AST	TT	FT					Μ	Μ	L
Linden, Karl	PhD Civil & Environm Engrg, 1997	Р	Т	FT	1	22	12		Μ	Н	М
Livneh, Ben	PhD Civil Engineering, 2012	AST	TT	FT					L	Μ	L
McKnight, Diane	PhD Environmental Engrg, 1979	Р	Т	FT	17	21	21		Н	Н	L
Montoya, Lupita	PhD Civil & Env. Engineering, 1999	AST	TT	FT	1	14	7		Μ	Н	L
Neupauer, Roseanna	PhD Hydrology, 2000	ASC	Т	FT	0	17	12	PE ^{VA, NM}	Η	Н	L
Rajaram, Harihar	ScD Civil Engineering, 1991	Р	Т	FT	0	18	18		L	Н	L
Ren, Zhiyong (Jason)	PhD Civil & Environ Engineering, 2008	ASC	Т	FT	2	9	4		Η	М	L

Rosario-Ortiz, Fernando	D.Env. Environ Science & Eng, 2006	ASC	Т	FT	4	9	9		Н	Н	М
Ryan, Joseph	PhD Civil & Environm Engrg, 1992	Р	Т	FT	3	24	24		М	Η	М
Silverstein, JoAnn	PhD Civil Engineering, 1982	Р	Т	FT	2	35	35	PE ^{co}	Н	М	L
Summers, R. Scott	PhD Environmental Eng & Sci, 1986	Р	Т	FT	2	29	18		М	Н	М
Walker, Mike	PhD Chemical Engineering, 2012	Ι	NTT	FT	4	3	3		М	Н	L

1. Code: P = Professor ASC = Associate Professor AST = Assistant Professor I = Instructor A = Adjunct O = Other

2. Code: TT = Tenure Track T = Tenured NTT = Non Tenure Track

4. The level of activity, high, medium or low, reflects an average over the year prior to the visit plus the two previous years.

* No longer at this institution

Table 6-2. Faculty Workload Summary – Architectural Engineering

The full CEAE roster is shown below since all faculty votes on curriculum issues regardless of the program. The table is organized by program starting with AREN followed by CVEN whose various faculty contribute to AREN. Last is EVEN.

	DT		Program	Activity Distri	bution ³	% of Time Devoted to the Program ⁵
Faculty Member (name)	PT or FT ¹	Classes Taught (Course No./Credit Hrs.) Term and Year ²	Teaching	Research or Scholarship	Other ⁴	
Amadei, Bernard	FT	CVEN 3698 Engineering Geology, 3 cr, F 2016 CVEN 4/5837 Sp Tpc – Syst App Global Engrg, 3 cr, S 17 CVEN 5929 Sustainable Community Dev 2, 3 cr, S 2017 CVEN 5939 SCD Practicum, 3 cr, S 2017	25	40	35	5
Balaji, Rajagopalan Department Chair	FT	CVEN 6393 Water Resources Seminar, 1 cr, F/S 2016/17 CVEN 6833 Advanced Data Analysis, 3 cr, F 2016 CVEN 5454 Statistical Methods for Nat/Eng Sys, 3 cr, S 17	40	40	20	20
Beamer, C. Walter IV *	FT	AREN 3540 Illumination 1, 3 cr, F 2016 AREN 4580/5830 Daylighting, 3 cr, F 2016 CVEN 5830 Sp Tpc – Bldg Energy Sys, 1 of 3 cr, F 2016 [resigned from CU effective January 2017]	55	20	25	95
Bielefeldt, Angela	FT	AREN 1316 Intro to Arch. Eng., 2 cr, F 2016 CVEN 1317 Intro to Civil & Env Eng., 2 cr, F 2016 CVEN 4897 Prof Issues in Civil Eng, 2 cr, F 2016 SUST 2800 Sp Tpc: Intro Sust, 1 cr, F 2016	34	33	33	30
Chinowsky, Paul	FT	Admin Role – Assoc Vice Provost Student Success	15	25	60	10
Corotis, Ross	FT	Fall SABBATICAL CVEN 5565 Life-cycle Engineering, 3 cr, S 2017	25	50	25	40
Dashti, Shideh	FT	CVEN 4/5728 Foundation Engineering, 3 cr, F 2016 CVEN 5818 Geotech Earthquake Engrg, 3 cr, S 2017	40	40	20	5
Goodrum, Paul	FT	CVEN 5286 Design Construction Operations, 3 cr, F 2016 CVEN 3256 Construction Equipment & Mths, 3 cr, S 2017 CVEN 5836 Sp Tpc – Discrete Event & BIM, 3 cr, S 2017	40	40	20	50
Hallowell, Matthew	FT	CVEN 3256 Construction Equipment & Mthds, 3 cr, F 2016 CVEN 5226 Quality and Safety, 3 cr, F 2016	25	60	15	50

	DT		Program	Activity Distril	bution ³	% of Time Devoted to the Program ⁵
Faculty Member (name)	PT or FT ¹	Classes Taught (Course No./Credit Hrs.) Term and Year ²	Teaching	Research or Scholarship	Other ⁴	
		CVEN 3246 Introduction to Construction, 3 cr, S 2017				
Hearn, George	FT	CVEN 4555 Reinforced concrete Design, 3 cr, F 2016 CVEN 5575 Advanced Steel Design, 3 cr, F 2016 CVEN 4545 Steel Design, 3 cr, S 2017	53	27	20	50
Henze, Gregor	FT	AREN 4/5890 Sustainable Building Design, 3 cr, F 2016 AREN 4/5010 HVAC System Modeling Control, 3 cr, S 17 AREN 4/5110 HVAC Design, 3 cr, S 2017	40	40	20	95
Hubler, Mija	FT	CVEN 3161 Mechanics of Materials 1, 3 cr, F 2016 Family Leave spring 2017	40	40	20	40
Javernick-Will, Amy	FT	SABBATICAL – full academic year	25	60	15	50
Krarti, Moncef	FT	AREN 4570/5830 Electrical Systems, 3 cr, F 2016 CVEN 5830 Sp Tpc – Bldg Energy Systems, 3 cr, F 2016 AREN 5020 Building Energy Audits, 3 cr, S 2017	25	60	15	95
Liel, Abbie	FT	CVEN 4/5525 Matrix Structural Analysis, 3 cr, F 2016 CVEN 5835 Sp Tpc – Risk Landsc Ind Seism, 3 cr, F 2016 CVEN 3227 Probability Statistics and Decision, 3 cr, S 17	40	40	20	30
Molenaar, Keith	FT	AREN 4056 Project Management 1, 3 cr, F 2016 CEAS Associate Dean for Graduate Programs	20	30	50	50
Morris, Matthew	FT	AREN 2050 Building Materials and Systems, 3 cr, F 2016 CVEN 3246 Introduction to Construction, 3 cr, F 2016 CVEN 5836 Sp Tpc – CEM Fundamentals, 3 cr, F 2016 AREN 4606 Project Management 2, 3, S 2017 CVEN 4899 Civil Engrg Senior Project Design, 4, S 2017	80	0	20	55
Pak, Ronald	FT	CVEN 5798 Dynamics of Soils/Foundations, 3 cr, F 2016 CVEN 3708 Geotechnical Engineering 1, 3 cr, S 2017 CVEN 5131 Continuum Mechanics & Elasticity, 3 cr, S 17	40	40	20	20
Pfeffer, William (Tad)	FT	FALL SABBATICAL CVEN 2012 Introduction to Geomatics, 3, S 2017	25	60	15	30
Pourahmadian, Fatemah	FT	STARTED JANUARY 2017 CVEN5831 Sp Tpc: Wave-Based Methods&Appl, 3, S2017	40	40	20	5

	DT		Program	Activity Distril	bution ³	% of Time Devoted to the Program ⁵
Faculty Member (name)	PT or FT ¹	Classes Taught (Course No./Credit Hrs.) Term and Year ²	Teaching	Research or Scholarship	Other ⁴	
Regueiro, Richard	FT	CVEN 3708 Geotechnical Engineering 1, 3 cr, F 2016 CVEN 7511 Comp Finite Inelast Multiph Mech, 3 cr, F2016 CVEN 5788 Computational Modeling in Geotech, 3 cr, S17	40	40	20	20
Saouma, Victor	FT	CVEN 7161 Fracture Mechanics, 3 cr, S 2017 CVEN 3525 Structural Analysis, 3 cr, S 2017	25	60	15	20
Sideris, Petros	FT	CVEN 2121 Analytical Mechanics 1, 3 cr, F 2016 CVEN 5111 Intro Structural Dynamics, 3 cr, F 2016 CVEN 5835 Sp Tpc – Exper Methods Str Eng, 3 cr, S 2017	40	40	20	20
Song, Jeong-Hoon	FT	CVEN 4/5511 Finite Element Analysis, 3 cr, F 2016 CVEN 3111 Dynamics, 3 cr, S 2017	40	40	20	30
Srubar, Wil V.	FT	AREN 4/5830 Sp Tpc – Sustain. Matls & Str, 3 cr, F 2016 AREN 4/5830 Sp Tpc – Forensic Engineering, 3 cr, F 2016 CVEN 4565 Timber Design, 3 cr, S 2017	40	40	20	70
Vasconez, Sandra	FT	AREN 4530 Advanced Lighting Design, 3 cr, F 2016 AREN 4830 Sp Tpc – Arch. Lighting Design, 3 cr, F 2016 AREN 4550 Illimunation II, 3 cr, S 2017 CVEN 5830 Sp Tpc – Illumination II, 3 cr, S 2017	70	0	30	95
Xi, Yunping	FT	CVEN 4/5161 Adv Mechanics of Materials 1, 3 cr, F 2016 CVEN 4535 Construction Materials, 1 or 3 cr, F 2016 CVEN 3161 Mechanics of Materials 1, 3 cr, S 2017 AREN 4317 Architectural Engineering Design, 1 cr S 2016	40	40	20	30
Zhai, Zhiqiang	FT	AREN 3010 Mechanical Sys for Buildings, 3 cr, F 2016 CVEN 5830 Sp Tpc – Bldg Energy Systems, 3 cr, F 2016 AREN 2120 Fluid Mechanics & Heat Transfer, 3 cr, S 2017	40	40	20	95
Zhang, Yida	FT	CVEN 5708 Soil Mechanics, 3 cr, F 2016 CVEN 7718 Engineering Properties of Soils, 3 cr, S 2017	40	40	20	10
Znidarcic, Dobroslav	FT	CVEN3718 Geotechnical Engineering 2, 3 cr, S 2017 CVEN 5748 Design of Earth Structures, 3 cr, S 2017		40	20	20
Water and Environmenta	al Engin	eering				
Cook, Sherri	FT	CVEN 5534 Wastewater Treatment, 3 cr, F 2016	40	40	20	5

	DT		Program	Activity Distril	oution ³	% of Time Devoted to the Program ⁵
Faculty Member (name)	PT or FT ¹	Classes Taught (Course No./Credit Hrs.) Term and Year ²	Teaching	Research or Scholarship	Other ⁴	
		CVEN 5834 Sp Tpc – Environm Sustainability, 3 cr, F 2016 CVEN 4834 Sp Tpc – Sustainability Princip Eng, 3 cr, S 17				
Corwin, Chris	FT	CVEN 3414 Fundls Environm Eng, 3 cr, F/S 2016/17 CV/EVEN 4464 Environm Engrg Processes, 3 cr, F 2016 CVEN 3424 Water/WW treatment, 3 cr, S 2017 CV/EV4434 Env Engrg Design, 4 cr, S 2017	80	0	20	5
Crimaldi, John	FT	CVEN 5313 Environm Fluid Mechanics, 3 cr, F 2016 CVEN 3313 Fluid Mechanics, 3 cr, S 2017	25	50	25	5
Gooseff, Michael	FT	CVEN 5333 Physical Hydrol/Hydroclimatol, 3 cr, F 2016 CVEN 5833 Sp Tc – Init. Academic Career, 1 cr, F 2016 CVEN 4/5833 Sp Tpc – Open Channel Hydraulics, 3 c, S 17 CVEN 5833 Sp Tpc – Surface Water Qual Model, 3 cr, S 17	40	40	20	5
Hernandez, Mark	FT	AREN 2110 Thermodynamics, 3 cr, F 2016 CVEN 5484 Applied Microbiology & Toxicol., 3 cr, S 2017 EVEN 1001 Environmental Engineering 101, 3 cr, S 2017	25	60	15	20
Kasprzyk, Joseph	FT	CVEN 5423 Water Resources Engrg, 3 cr, F 2016 CVEN 4333 Engineering Hydrology, 3 cr, S 2017 CVEN 5393 Water Resources Develop/Mgmt, 3 cr, S 2017	40	40	20	5
Linden, Karl	FT	FALL SABBATICAL CV/EVEN 4/5834 Sp Tpc - WASH	20	60	20	5
Livneh, Ben	FT	CVEN 4333 Engineering Hydrology, 3 cr, F 2016	25	60	15	5
McKnight, Diane	FT	On loan to NSF	10	20	70	5
Montoya, Lupita	FT	CVEN 4/5554 Fundamentals of Air Quality, 3 cr, F 2016 AREN 2110 Thermodynamics, 3 cr, S 2017 COEN 1410 Sust Community Design, 3 cr, S 2017		40	20	30
Neupauer, Roseanna	FT	CVEN 3323 Hydraulic Engineering, 3 cr, F 2016 CVEN 4/5353 Groundwater Engineering, 3 cr, F 2016 CVEN 4/5383 Groundwater Modeling, 3 cr, S 2017	40	40	20	5
Rajaram, Harihar	FT	CVEN 5537 Numerical Methods in Civil Eng, 3 cr, F 2016 CVEN 6383 Flow & Transport Porous Media, 3 cr, F 2016	40	40	20	5

	DT		Program	Activity Distri	bution ³	% of Time Devoted to the Program ⁵
Faculty Member (name)	PT or FT ¹	Classes Taught (Course No./Credit Hrs.) Term and Year ²	Teaching	Research or Scholarship	Other ⁴	
		SPRING 2017 ON SABBATICAL				
Ren, Zhiyong (Jason)	FT	CVEN 5614 Bioenergy & Bioresource Recov, 3 cr, F 2016 CVEN 4/5834 Environmental Microbiology, 3 cr, S 2017 CVEN 5834 Sp Tpc – Emerg Tech: Microb Elctchm, 3, S17	40	40	20	5
Rosario-Ortiz, Fernando	FT	CVEN 4404 Water Chemistry, 3 cr, F 2016 CVEN 4414 Water Chemistry Lab, 1 cr, F 2016 CVEN 5424 Environm Organic Chemistry, 3 cr, S 2017	25	60	15	5
Ryan, Joseph	FT	EVEN 4100 Environml Sampling & Analysis, 3 cr, F 2016 CVEN 5404 Environm Engrg Chemistry, 3 cr, F 2016 CV/EVEN 4424 Environm Organic Chemistry, 3 cr, S 2017	40	40	20	5
Silverstein, JoAnn	FT	CVEN 4/5147 Civil Engineering Systems, 3 cr, F 2016 CVEN 5834 Sp Tpc – Small System W/WW Tmt, 3 cr, S 17	30	40	30	5
Summers, R. Scott	FT	EVEN 1000 Introduction to Environm. Engrg, 1 cr, F 2016 CVEN 5464 Environm Engrg Processes, 3 cr, F 2016 CVEN 5524 Water Treatment, 3 cr, S 2017	25	40	35	5
Walker, Mike	FT	CV/EVEN 4/5434 Environmental Engrg Design, 4 cr, S17 EVEN 4830 Sp Tpc – Env Eng Process Model, 3 cr, F 2016 MCEN 3032 Thermodynamics 2, 3 cr, F/S 2016/17	80	0	20	5

1. FT = Full Time Faculty or PT = Part Time Faculty, at the institution

2. For the academic year for which the Self-Study Report is being prepared.

3. Program activity distribution should be in percent of effort in the program and should total 100%.

4. Indicate sabbatical leave, etc., under "Other."

5. Out of the total time employed at the institution. Most faculty are less than 100% to the Architectural Engineering program due to time devoted to Civil Engineering (CVEN) or Environmental Engineering (EVEN) students via course instruction and/or advising.

* No longer at this institution

CRITERION 7. FACILITIES

A. Offices, Classrooms and Laboratories

The CEAE department is housed primarily in the Engineering Center, where the main office, undergraduate advisor, and most faculty offices are located. All architectural engineering faculty offices and research space along with offices used by Teaching Assistants to hold office hours are located in the Engineering Center.

The majority of the undergraduate architectural engineering classes are offered in centrallyscheduled classrooms in the Engineering Center and the Fleming Building. Working with the campus IT organization, the college ensures that the open computer labs in the engineering center are configured with software tools needed by engineering students.

The CEAE program has three classrooms for which it controls scheduling: ECCE 1B41 (up to 49 students), ECCE 1B43 (up to 25 students), ECCE 1B52A (up to 20 students). Undergraduate courses and office hours are held in ECCE 1B41 and ECCE 1B43. Only office hours have been held in ECCE 1B52A (which is a classroom space within the structural engineering laboratory). ECCE 1B41 was recently extensively renovated (Spring 2016) to allow teaching simultaneously a local group of students and off-site students. This classroom includes state of the art A/V equipment including two 80" monitors and 2- 6' erasable black boards on the east wall and a 50" monitor on the west wall. Architectural engineering has access to these rooms.

The CEAE Department on behalf of the AREN program maintains specialized teaching laboratories for undergraduate courses in building mechanical systems, lighting systems, mechanics and structural engineering. Undergraduate teaching laboratories feature state-of-the-art equipment such as a novel small-scale geotechnical centrifuge, two independently controlled test rooms for the indoor thermal environment and HVAC systems (under renovation), a lighting demonstration and test room with a moveable ceiling system, computer-controlled material testing equipment. In addition, laboratories have enough small instruments and supplies dedicated to courses with laboratory components to permit simultaneous hands-on laboratory experiments and independent data collection by 4-6 student teams working simultaneously in both the CEAE laboratories and the College's Integrated Teaching and Learning Laboratory (ITLL).

a) Building Systems Laboratory: Up until 2015, the Larson Building Systems laboratory consisted of a full-size commercial HVAC system, four representative commercial building zones, a system for producing repeatable and controllable loads on the HVAC system, and sophisticated data acquisition and control systems. Activities at the Laboratory included evaluation and testing of control algorithms and hardware for HVAC components and systems, interactions between multiple control functions of HVAC systems, the dynamic interactions between building thermal response and HVAC system controls, ventilation control for indoor air quality, and HVAC system diagnostics. The Larson laboratory was a dual-purpose facility for research and teaching about building mechanical systems. In teaching, it was used primarily by students in AREN 3130 Building Energy Laboratory and AREN 4010 HVAC System Controls. The larger equipment in the lab has been disposed of to make room for current state-of-the art technologies. A plan for renovation is underway.

- b) Lighting Laboratory: The Lighting Laboratory is a learning and research space for lighting students in the AREN program. The lab has a dynamic ceiling such that the height can be adjusted through wallbox control gear, allowing for a wide range of academic and research exploration. Although the lab has full wall north facing windows, there are blackout curtains installed to eliminate external light when it is undesirable as with certain types of research projects. In addition, this lab houses a goniophotometer. This apparatus is used to measure the intensity of light leaving a luminaire at various vertical and horizontal angles. From this information, the photometric light distribution of the luminaire is derived, and quantities such as total lumen output, luminaire luminance, zonal lumen summary and other information that is included in a photometric report can be computed. Students use the goniophotometer in classes such as AREN 3540 Illumination I and AREN 4130 Optical Design. This piece of equipment will be updated in 2017. The lab also houses a small lighting sphere, which allows testing of lumen output of small LED luminaires and LED chips. The sphere is used mainly by graduate students. In addition to the main lab space there is studio space. This space is used primarily for lighting research. The lab has an extensive aluminum open ceiling grid that allows for quick electrical and physical connection of light sources and luminaires for research. In addition, a series of custom 4 lamp indirect luminaires fill the lower room cavity and are controlled by Lutron Ecosystem with Quantum Software. For lighting design oriented classes such as AREN 4550 Illumination II and AREN 4350 Advanced Lighting Design, students have access to theatrical-type and programmable color-changing luminaires to do mock-ups and study lighting effects.
- c) Structural engineering and materials laboratory: There are laboratory components in mechanics of materials I (CVEN 3161) and advanced mechanics of materials (CVEN 4161), and laboratory demonstrations and experiments are carried out both in the ITLL and in the structures laboratory in the CE wing of the Engineering Center. The Department has a site in the NSF-funded George E. Brown Jr., Network for Earthquake Engineering Systems, the Fast Hybrid Test Facility, which has enabled major equipment upgrades in the structures laboratory, which in turn will benefit undergraduate students in courses with demonstrations as well as opportunities for hands-on experiments. There are 110 kip and 1,000 kip Universal Testing machines with automated data acquisition, and facilities for fabrication of concrete and steel structural elements and sensors for testing (<u>http://www.colorado.edu/ceae/research/structural-engineering-structural-mechanics/facilities</u>).
- d) Sustainable Infrastructure Materials Laboratory (SIMLab): The SIMLab is a departmental laboratory facility that supports teaching and research activities related to innovative construction materials. Because this is a new laboratory, it has not been used by undergraduate students yet, but it will begin supporting AREN and CVEN undergraduate courses in the near future. It is equipped with ovens, microbalances, fume hoods, glove boxes, and other standard laboratory equipment that support polymer-, foam-, and cement-based materials experiments at the laboratory scale. Additional soft materials characterization equipment include a Fourier-Transform Infrared (FT-IR) Spectrometer, an X-ray Diffraction (XRD) system, a thermogravimetric analyzer (TGA), nano-scale mechanical testing equipment, Raman and mass spectroscopy, environmental chambers with temperature and moisture controls, X-ray computed microtomography, a dynamic mechanical analyzer (DMA), and an atomic force microscope (AFM). Activities in the SIMLab also utilize university-wide shared experimental facilities in the Integrated Teaching and Learning Laboratory (ITLL) and the Chemical and

Biological Engineering Biotechnology Laboratories for physicochemical characterization of soft and hard materials. Micrography resources (e.g., SEM, TEM) are also available as part of this facility.

e) Surveying-Geomatics laboratory: Plane Surveying (CVEN 2012) is taken by all students in Civil and Architectural Engineering. In 2004 the curriculum was broadened to incorporate GPS hardware and software and GIS software in a course that will be renamed Geomatics. Laboratory work, field measurements, and computer lab assignments comprise the majority of the course work by student teams. Sufficient surveying instruments are available for six student crews to work in the field simultaneously. These include traditional transits, theodolites and levels. Modern instruments used are EDM, total stations, and a digitized level. There are six PCs and a plotter to allow each student crew to download and analyze field data immediately. The lab also has bench space for minor repairs and adjustments to equipment. In addition, GPS and GIS software are available on the Bechtel Lab (see below) server for both in-class instruction and student projects.

The students also rate the overall quality of the facilities on the graduating senior survey. The facilities are rated on a scale of 1 = poor, 2 = marginal, 3 = fair, 4 = good, and 5 = excellent. Results are summarized below. All ratings are 3 or higher, which is adequate. The weakest ratings are for classrooms and the lobby, over which the department has no control.

			8		/
Year	2015-2016	2014-2015	2013-2014	2012-2013	2011-2012
Department	3.35	3.68	3.17	3.23	3.86
experimental labs					
Classrooms	2.90	3.21	3.20	2.74	3.53
ITLL	4.25	4.26	4.17	4.12	4.38
Idea Forge	4.20				
Engineering Library	3.35	3.74	3.57	3.36	4.06
Engineering Lobby	2.76	3.08	2.90	2.71	3.39

Facilities Ratings on the Graduating Senior Survey (average of AREN respondents)

B. Computing Resources

Campus-wide/Institutional Computing Resources

The majority of campus-wide computing resources are provided by the Office of Information Technology (OIT), which provides CU-Boulder with innovative, customer-focused IT support and core IT services. Under the leadership of the Office of the Associate Vice Chancellor for IT and CIO, OIT partners and collaborates with academic, research, and administrative units in order to create a robust, best-in-class IT environment.

Computing resources are provided by OIT as well as colleges, departments, institutes, centers, etc. OIT provides coordinated, centralized IT support as well as core IT services in areas such as academic technologies, communication technologies, enterprise IT services, infrastructure, Research Computing and IT security.

Networking

The University of Colorado has a robust, enterprise-level network that serves both wired and wireless Internet access to nearly every corner of the campus, as well as providing VPN opportunities for off-campus connections.

- Wired connectivity 1 Gigabit/secs Ethernet, 13 distribution routers, 700 switches, servicing ~23,000 hardwire attached devices
- Wireless connectivity 802.11a/b/g/n/ac, 85,000 registered wireless devices
- VPN connectivity
- Institutional network backbone 10 Gigabit/sec Ethernet and multiple 10 Gigabit/sec Internet connectivity.
- ScienceDMZ 80 GigaBit/sec core with no firewalls and 10 Gigabit/sec Internet connectivity managed jointly by Research Computing and OIT networking

Teaching and Learning Spaces

Students, faculty, and staff have access to a variety of OIT Technology Enhanced Learning Spaces. OIT maintains over 200 technology-equipped classrooms campus wide, which includes most (but not all) College of Engineering and Applied Science's classrooms. Each technologyequipped classroom and lecture hall contains at minimum a video display (LCD or Data Projector), audio reinforcement, and wireless networking capability. Classroom sizes range from 12 to 375 seats. Most classrooms on campus have an audience response system, CU iClicker. All OIT supported spaces have an assigned CU iClicker frequency posted.

Computer Labs

There are forty-two centrally-managed labs on campus. Eight of them are in Engineering buildings. The University maintains a three or four year hardware replacement schedule for most workstations. Software on the machines is upgraded every semester with new or updated versions of important Engineering software packages. The hours of availability and access vary according to the policies of individual buildings and departments. However, most Engineering labs are open 24 hr./day, 7days/week to students in the College of Engineering.

Engineering Labs

There are eight centrally-managed labs in the Engineering complex. These labs are configured with similar workstation hardware and software in all locations. Current configurations and software availability can be found on the OIT website: <u>http://webdata.colorado.edu/labs/map/</u> (Click on individual labs to view load sets.)

Open student engineering lab locations and resources include the following rooms:

- ECCE 141 (CadLab)
- ECCE 152 (Soils)
- ECCR 143 (APPM)
- ECCR 235
- ECCR 239
- ECCR 252
- ECES 107
- JCSB A205

In addition to a much larger set of software available in Engineering labs, the following engineering-related software is also installed on many Open Student Engineering Labs

A variety of software compilers	LabView
Abaqus	Mathcad with Prime
Ansys	Mathematica
ArcGIS	MATLAB
AspenONE Suite	OriginPro
AutoCAD	R
EES (Engineering Equation Solver)	Revit
EQS	SAS
IDL	SolidWorks
JMP PRO	

Classrooms

OIT maintains Technology Enhanced Learning Spaces.

Smart Classrooms (S) - 0 to 155 seats.

These classrooms contain the features listed below:

- Digital image display, projection screen or video monitor
 - Laptop inputs could include VGA, HDMI and\or MiniDisplay
- Most rooms have DVD players
- Content audio reinforcement, wall or ceiling speakers
- UCB Wireless and UCB Guest wireless connectivity
- iClicker frequency assigned
 - Not all rooms are assigned a base station
- Manual writing surface such as chalkboard or dry erase board
- Student seat and table types vary greatly from room to room
 - Rooms with tables could be fixed or modular with modular chairs
 - Rooms without tables have student seats which could be fixed or modular style seating with armchair writing surfaces
- All rooms are supplied with an instructor table/lectern
 - This may range from a large lectern, small lectern, table-top lectern or a table
 - AV room control (source routing) system
 - Button controllers
 - Remote handheld monitor control (only few LCD TV monitor rooms)

Large Lecture Halls (L) – Over 155 seats.

These classrooms contain the features listed below:

- ADA accessible lectern with height adjustment
- Digital image display, projection screen(s) or video monitor(s)
 - Laptop inputs could include VGA, HDMI and or MiniDisplay
- Minimum of DVD players, some have Blu-Ray

- Content audio reinforcement
- Multiple wireless microphones for voice audio reinforcement
 - Minimum of one handheld and one lapel microphone
- Assisted listening technology for hard of hearing compliancy
 - Full-room T-coil hearing loop or
 - Individual listening receiver systems
- Document camera
- UCB Wireless and UCB Guest wireless connectivity
- iClicker frequency assigned
 - Not all rooms are assigned a base station
- Manual writing surface such as chalkboard or dry erase board
- Student seats are fixed with armchair writing surfaces
- Lecture capture features available by request
- Some rooms are equipped with software-based Video Conference capability through USB connection using a user supplied laptop
- Minimum of one pan/tilt/zoom video camera with multiple pre-set camera selections
- Audio Visual room control system
 - Interactive multiple video source routing touch panel (Crestron)

Distance Learning Spaces (D) – 10 to 100 seats.

These classrooms contain the features listed below:

- ADA accessible lectern with height adjustment
- Dedicated lectern Windows-based computer
- Multiple digital image displays, projection screens and/or video monitors
 - Primary lecture content
 - Secondary lecture content
 - Rear wall confidence LCD monitor
 - Laptop inputs include VGA, HDMI and MiniDisplay
- DVD player
- Content audio reinforcement
- Multiple wireless microphones for voice audio reinforcement
 - Minimum of one handheld and one lapel microphone
- Assisted listening technology for hard of hearing compliancy
 - Full-room T-coil hearing loop or
 - Individual listening receiver systems
- Document camera
- UCB Wireless and UCB Guest wireless connectivity
- iClicker frequency assigned
 - Not all rooms are assigned a base station
- Manual writing surfaces such as chalkboard, dry erase board and interactive LCD monitor
- Student seats are fixed or modular with fixed or modular tables or armchair writing surfaces
- Lecture capture features available by request
- Hardware-based Video Conference/Synchronous Participation capability through codec

- Multiple pan/tilt/zoom video cameras with multiple pre-set camera selections
- Audio Visual room control system
 - Interactive multiple video source routing touch panel (Crestron)
- Operator supported for distance education courses only
- Redundant lecture capture system
- WACOM annotation over content
- Audience microphones for recording purposes only
- Some rooms have stage lighting for recording
- USB connectivity for the dedicated PC and the Laptop input to allow annotation to either device from the WACOM or Touch LCD monitors where available

Computer Labs (Lab) – 6 to 50 seats.

These classrooms contain the features listed below:

- Some rooms are outfitted with Smart Classroom (S) technology
- PC or Macintosh computing devices with a single display

Additional Administrative Systems

Additionally, administration of the campus is supported by a central portal (my.cu.edu), a learning management system (Desire2Learn), and various database software applications. This includes, but is not limited to: web presentation and content services through Google Apps for Education, course schedules, grades, billing information, employment listings, Registrar forms, announcements, news, and events, online file access, e-mail, calendaring, the college catalog, financial aid, online-registration, student academic records, and Faculty Report of Professional Activity (FRPA) information. Our library system uses technology that includes a digital catalog with 300 citation indexes, full-text databases, 23 academic, public and special libraries, 20 million books, journals DVDs, CDs, videos, and is linked to thousands of libraries across the world.

Academic Technologies

Besides ubiquitous Internet connectivity and laboratory space, students are provided with many other computing services and software. Students are offered 2 walk-in desktop support centers for software and hardware support. Teaching and learning technologies include Desire2Learn, CUClickers, Lynda.com, Google Apps for Education, Microsoft 365, and some Lecture Capture possibilities. Captioning guidelines and consultation are provided to all campus constituents while media captioning is provided to meet accommodation requests.

Faculty members using technologies in the classroom are supported by both dispatched and walk-in desktop support, robust phone and email support, and a team of Technology Learning Assistants who provide 1:1 support and workshops for teaching and learning technology use in the classroom.

Additionally, the College of Engineering and Applied Science is served along with the larger campus by the Academic Technology Design Team, a group consisting of media, universal, and learning designers, social media experts, and data analytics professionals. College leaders

partner with the ATDT to define strategic and complex learning problems and pilot solutions through the creative application of new technologies. Three of the showcase campus projects were partnerships with the College of Engineering and Applied Science, including the launch of two Coursera engineering MOOCs (one from the Department of Computer Science), the ambitious redesign of Introduction to Engineering, and forward-looking flipped redesign of a senior/graduate level statistics course.

CEAE Department Computing Facilities

The CEAE Department has access to two large computing facilities for use by Civil and Architectural Engineering courses and individual students, the CAD laboratory (described above, ECCE 141), which is maintained by the Office of Information Technology (OIT) and the Bechtel laboratory (ECCE 157 and ECCE 161) which is controlled by the Department and maintained via a contract to OIT. The computers and peripheral hardware in the CAD lab are replaced approximately every three years. Both rooms have laser printers (color laser in Bechtel) and student print jobs are subsidized by the Department. All these computers are Auto-CAD/Revit workstations and contain general spreadsheet, word processing and Internet access software. The drawing class (AREN 1027) is taught in the CAD lab. The Bechtel lab contains professional-level software in classes, as well as general software, including those shown in the table below. Undergraduate required courses that periodically use the Bechtel lab include: CVEN 1317 Introduction to Architectural Engineering, AREN 2120 Fluid Mechanics & Heat Transfer, CVEN 3161 Mechanics of Materials II, AREN 3540 Illumination I, AREN 4317 Architectural Design; proficiency courses such as: AREN 4550 Illumination II, AREN 4560 Optical Design, AREN 4010 HVAC Design, AREN 4317 Architectural Engineering Design, and electives such as AREN 4580 Daylighting, AREN 4606 Project Management 2.

Priority for both the CAD-Lab and Bechtel Lab computing facilities is undergraduate classroom use, with use by individual students and student teams from Civil and Architectural Engineering heavy during non-teaching hours. The Department has contracted with OIT to maintain the Bechtel Lab.

ECCE 157 houses the Bechtel Computer Aided Design Laboratory (West). This facility is accessible to CEAE students via card-swipes programmed to their Buff One ID cards, 24 hours/day, 7 days/week. The lab includes 29 Dell Precision T3500, Intel Xeon/6GB, E520, 2.27 GHz with Windows 7 operating systems, and numerous applications including: Abaqus, ACI, Adobe Dreamweaver, ArcGIS, AutoCAD 2011, AutoCAD Civil 3D, Revit Architecture, BioWin, Caterpillar FPC, DesignBuilder, F-Chart APSS, FLOWNETz, GeoStudio, GW Chart (MODFLOW GUI), HEC-HMS Hydrologic Modeling System, HEC-RAS River Analysis System , HYDRUS-1D 4.14, Mathcad 14, Mathematica 7, Matlab R2010a, McTrans HCS+ 5.2, MT3DMS 4.3 , Plaxis 2D, Plaxis 3D Foundation 2.1, Plaxis 3D Tunnel 2.4 , Processing Modflow 5.3.1 , R 2.11.x , RETScreen International, Storm Water Management Model, 5.0, TESS TRNSYS 16, Trane TRACE 700 v6.2 , US EPA BIOCHLOR 2.2 , US EPA REMChlor 1.0 , Visual MINTEQ 3.0, VisualDOE 4 , West Point Bridge Designer 2015.

ECCE 161 Bechtel Computer Aided Design Laboratory (East) includes 33 workstations that generally mirror those in Bechtel West. Access to the lab is identical to Bechtel West.

Example of specific software used primarily by the different sub-groups within AREN engineering are listed in the table below.

Туре	Programs	Locations
Lighting	Excel, Matlab, Mathematica, Notepad, AGI32, Visual 2016, Licaso, Rhino, Diva, Daysim, Radiance, Photopia	Bechtel Lab, except for Licaso
Mechanical	EQUEST, EnergyPlus, DesignBuilder, Homer, Sam, Phoenix, beopt, Trane Trace 700, Matlab Simulink, EES	Bechtel Lab
CEM	Primavera P6, Trimble WinEst, Bluebeam	Bechtel Lab
Geotechnical	PLAXIS, SEEP_W, SIGMA_W, SLOPE_W	Bechtel Lab
Geomatics / surveying	Quicksurf; Horizon Solutions – Plane Surveying, GPS software; ARCVIEW 3.3 and ARCGIS 9.0	CAD lab Bechtel lab
Structural Engineering	ALGOR, SAP90, SAP 2000 (nonlinear), SODA, FEAP, ABAQUS, Linear Stress and Vibrations	Bechtel lab
Miscellaneous	West Point Bridge Designer (CVEN 1317);	Bechtel Lab
Miscellaneous	Math tools: Mathematica, MatLab, SPSS	All computing labs

Examples of software used primarily by different civil engineering groups

On the graduating senior survey, AREN students rate the quality of the computer facilities on a scale of 1 = poor, 2= marginal, 3=fair, 4=good, and 5=excellent. Results are summarized below. All ratings for both campus centrally controlled (OIT) computing facilities and departmental computing facilities were adequate, at 3.08 and higher.

Graduating	Senior Sur	vev Average	Ratings for	Computer Facilities
010000000			1	

Studuuting Semior Survey Trefuge Rutings for Computer Fuenties					
	2015-2016	2014-2015	2013-2014	2012-2013	2011-2012
OIT computer	3.33	3.74	3.14	3.27	4.00
facilities					
Department	3.68	3.59	3.08	3.47	4.13
computer					
facilities					

C. Guidance

The Department provides students with guidance on the use of the computing tools, resources, and labs discussed in this section via a variety of means. In courses where students will be using

laboratory facilities (e.g. Mechanics of Materials, Illumination II), the instructor and/or teaching assistants (TAs) describe the relevant equipment to students. Important health and safety requirements and precautions are described. Safe equipment use is monitored during the laboratory sessions by the TA and/or faculty. User guides and/or instructions for each laboratory and necessary equipment are provided to the students. The students work with the laboratory equipment during supervised laboratory times, with immediate access to teaching assistants and/or faculty to answer their questions.

The primary methods of guidance include leveraging University-wide OIT training resources, semester-length tooling courses, online and video documentation, extracurricular training sessions, and peer-tutoring. Each method is discussed in greater detail below. Many of the computer resources leveraged by the Department are provided by the University-wide Office of Information Technology (OIT). OIT provides training and guidance for such resources to students directly via their website, walk-in support desk, and phone and email support center. OIT provides a range of support service to AREN students, staff, and faculty including:

- Campus Single-Sign-On (SSO) and Directory (LDAP) Support
- OSX and Windows end-user software licensing, installation, and training
- Email, contacts, and calendaring support (Google Apps or Microsoft Exchange)
- Classroom technology upkeep and training
- Backup services, hosted servers, etc.
- Wireless, wired, and VPN network access
- Phone and telecommunication services

Beyond the general IT support provided by OIT, the department also has a designated individual for desktop support.

D. Maintenance and Upgrading of Facilities

Larson Building Systems Laboratory

The Larson Building Systems laboratory has served the AREN program well for 40 years. However, in order to enhance the research and teaching capacity, attract students and faculty, and provide hands-on education, a plan to modernize it is in the works. This will be a \$400,000 renovation, which CU will cover. The CEAE Department will provide \$15,000 annually for its maintenance.

CEAE Departmental Experimental Laboratories

The faculty who teach courses using the undergraduate teaching laboratories monitor the equipment used and generally perform basic maintenance. The department collects student fees, and the money is used to maintain, repair, and replace the laboratory equipment, when needed. The relevant course instructor simply informs the department chair of any needs, and makes the necessary purchases or contracts for needed service. Instructors can also request new equipment as they keep laboratory experiences up-to-date with current practice. Major equipment requirements are often cost-shared between the College (via a request for funding to the Engineering Excellence Fund) and the Department. One example of recent updates to equipment is the CVEN 2012 Introduction to Geomatics course, which purchased a variety of new equipment specified by Prof. Tad Pfeffer.

OIT Controlled Computing Facilities

The computer hardware in the centrally-managed computer labs are configured to meet the high-end demands of the software specific to Engineering disciplines. The labs are outfitted with workstation-class hardware that provides the necessary CPU, memory and GPU to support these applications. The hardware is purchased with a 3-year warranty, and the machines are refreshed at the end of the three years to ensure that the labs can stay current with the demands of new and updated software. All the hardware is managed centrally using management tools like Microsoft SCCM and AppSense. These tools allow us to deploy software, manage the user environment, and monitor the security and performance of the machines. Microsoft security updates are applied weekly after-hours to ensure they do not impact the availability of the machines during classes or while students are using the machines. In addition, because these machines are used in multi-user environments, we ensure that changes made by previous users are not maintained across logins. This ensures a consistent and familiar environment for the students and faculty that use them. The machines are all configured with antivirus software to protect the students and other machines from viruses, and logins and application usage data is tracked to help us make decisions about software licensing and machine availability.

E. Library Services

The Leonard Gemmill Engineering, Mathematics & Physics Library², opened in 1992, is an 18,000 square foot facility. In 2016, during fall semester approximately 242,945 user visits were recorded, and during spring semester approximately 227600 user visits were recorded. The library is open 83 hours per week when fall and spring semesters are in session and 40 hours per week during the summer session. Additionally, it provides 24/7 access to a substantial electronic collection. Additionally, college students have access to collections in four other libraries on campus, one of them being Norlin Library, which houses the science collection, as well as regional and world-wide interlibrary loan services free of charge.

Three paraprofessional and two professional librarians, as well as several trained student assistants, are available to answer reference questions in several modalities. Research help is available by dropping by the circulation desk or making an appointment with a subject specialist, as well as by telephone, email, and synchronous chat services. Typically, these services are fully staffed from eight to five pm, with chat service available into the evening hours. Further, librarians in the sciences department, which serves computers science, are available to provide in-class information literacy instruction, online tutorials, and workshops. We offer course-integrated instruction, designed around finding information resources for particular assignments or projects in a class, as well as workshop series known as Science Learner's Lunches, which focus on information literacy skills needed for lifelong learning, as well as associated technology skills.

The Gemmill Library spaces are designed to facilitate student success and academic engagement. The Gemmill provides 22 OIT-managed computers with a full range of office, design, and statistical-analysis software for students, faculty and staff, as well as several public

² For more information on the Gemmill Library, please see <u>http://www.colorado.edu/libraries/libraries/engineering-math-physics-library</u>

computers with more limited software. Printers and two scanners are available, as well as a large screen designed to facilitate group work. Seven study rooms are available for group study; four are reservable in advance and three are available for drop in use. A library instruction room, Math 150, can accommodate up to 20 people for libraries classes, group study and student events. This room, with its large presentation screen and modular furniture, is available for student group study whenever it is not in use for library instruction or by affiliate events (which could include events or tutoring sponsored by the computer science department). The Gemmill strives to develop spaces that are flexible and promote student learning; the upper floor featuring movable furniture is available for collaborative work and discussion, while the lower floor is a quiet area for individual study.

The libraries continue our efforts to provide access to important collections, particularly electronic collections and discovery platforms, as budgets remain tight. The Gemmill Library provides over 155,000 print monographs and 100,000 microform technical reports. Access to online materials includes bibliographic indexes, such as *Compendex* and *INSPEC* on the *Engineering Village* platform, as well as searchable full text providers, such as *IEEE Xplore* and *ACM Digital Library*. A comprehensive list of electronic tools and databases is available³. These journals, and engineering and computer science handbooks and manuals from many publishers, are available 24 hours per day from any location via proxy access. Book purchase requests can be submitted to any member of the Library staff, or by using an online form⁴. The vast majority of monograph suggestions are purchased. Moreover, the libraries use a patron driven acquisition model that allows us to provide access to a wide variety of e-books, and instantly purchase those that our campus community uses.

The Gemmill Library is committed to building an evidence-based, user-centered library. Various assessments gathered by the Library (including an international benchmark survey known as *LibQUAL*+) over the last 10-12 years have led to several completed and planned changes. LibOUAL+ feedback, for example, was used to instigate and guide the redesign of the libraries web sites. It also led to the provision of a proxy service for off-campus access in addition to the VPN. Other assessment data has led to the Library reconfiguring its space to provide flexible study areas. As journals shift to electronic access and bound journals were moved to an off-campus space with 24-hour turnaround scanning, this opened space for student study. We turned to students to discover how best to shape this new space: nearly every year, the Gemmill Library works with an upper-division technical writing and design course project team to assess space use, user needs, and more. This feedback is quickly turned around and applied to the library's spaces. Recent changes have included adding wheels to existing furniture, providing more whiteboards, and adding chalkboard walls, for example. We gather and respond to feedback from students but also attend to the larger institutional context. The Head of the Engineering Library sits on the College's Undergraduate and Graduate Education Councils and uses information gathered from those councils to help guide library decisionmaking, as well. In short, this library is envisioned as one where students can access information, information professionals, faculty, productivity tools, and one another in one facility; a place where ABET criteria regarding engineering tools and lifelong learning skills can be pursued.

³ See <u>http://libguides.colorado.edu/az.php?a=all</u>

⁴ Accessible at <u>http://www.colorado.edu/libraries/services/suggest-library-purchase</u>

F. Overall Comments on Facilities

All of the classrooms, offices, labs, equipment, and facilities that are housed within university buildings conform to standard fire, safety, building, and health codes.

The Environmental Health and Safety (EH&S) department at the University of Colorado at Boulder (<u>http://www.colorado.edu/ehs</u>) provides comprehensive environmental, health and safety services to minimize health and safety impacts to the campus and the greater Boulder community. EH&S accomplishes this through training, emergency planning, consultation and partnership with members of the campus community as well as with local, state and federal agencies. Environmental Health and Safety provides regular training programs for UCB faculty, staff and students. These classes are mandatory for those who handle, manage or come into contact with potentially hazardous materials. EH&S has a substance disposal service in which hazardous waste or expired chemicals are removed from laboratories and disposed of according to state and federal regulations, ensuring a safe laboratory environment.

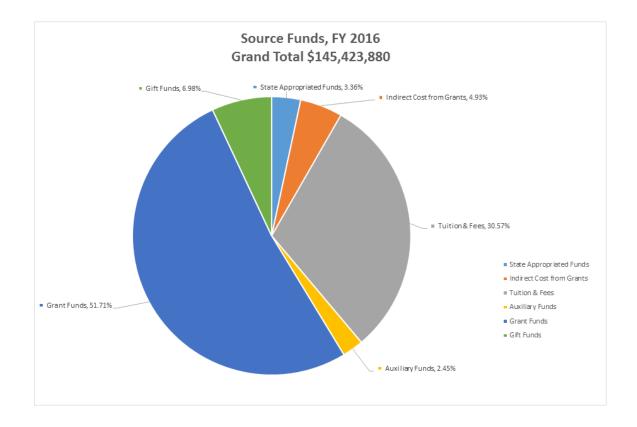
Facilities Management at the University of Colorado at Boulder

(<u>http://www.colorado.edu/facilitiesmanagement/</u>) further ensures a safe working environment. The Mission of Facilities Management is "To plan for and provide a physical and operational environment that supports the University of Colorado at Boulder's mission of education, research and outreach." One of the core values of Facilities Management is "A safe environment" and Facilities Management supports this value by providing waste removal, custodial services, pest management, recycling, the fire alarm and fire sprinkler systems, landscaping, snow removal, and safe steam and electricity generation. All of these support services contribute to the overall safety of students in the program.

The Engineering Center is generally open Monday-Thursday from 7 a.m. to 1 a.m., Friday from 7 a.m. to 10 p.m. and Saturday and Sunday 8 a.m. to 10 p.m. The Discovery Learning Center (DLC) is open Monday-Friday from 7 a.m. to 7 p.m.; and the Integrated Teaching and Learning Lab (ITLL) is open Monday-Thursday 8 a.m. to 11 p.m., Friday 8 a.m. to 5 p.m., and Sunday 1 p.m. to 11 p.m.

CRITERION 8. INSTITUTIONAL SUPPORT

1. Leadership

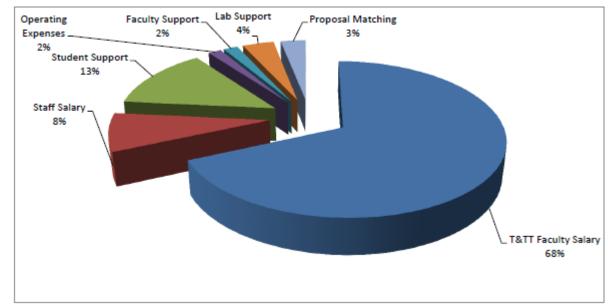

The CEAE department is the sole home for the architectural engineering Bachelor's degree; it also is the sole home of the civil engineering Bachelor's degree and supports the environmental engineering degree (which is a college-wide program with various affiliated faculty that is administratively supported by CEAE). Faculty members in the CEAE department are represented in six traditional civil/architectural engineering groups for administrative purposes:

- building systems (devoted to architectural engineering)
- construction engineering & management (with equal commitment to civil and architectural engineering),
- environmental (with commitment to civil and environmental engineering),
- geotechnical (fully devoted to civil engineering),
- structural engineering & mechanics (with equal commitment to civil and architectural engineering),
- water resources (committed to civil engineering, and some support environmental engineering)

The CEAE department has a democratic governance structure with collaborative planning and decision-making. The Department chair is elected by the faculty, with final appointment by the Dean; until now the Dean has not gone against the wishes of the faculty. The department chair is the chief administrative officer. The CEAE Department is led by the Chair and the Executive Committee. Professor Keith Molenaar was elected in 2010 and served one 4-year term until 2014. Professor Balaji Rajagopalan was elected in 2014 and is still serving. Faculty members in the CEAE department are represented in six traditional civil/architectural engineering groups for administrative purposes: building systems, construction engineering & management, environmental, geotechnical, structural engineering & mechanics, and water resources. The sub-group nominates a member for the executive committee, who is then approved (or not) by a vote of the entire CEAE faculty for a three-year term. CEAE faculty are also assigned to standing committees which are considered sub-committees of the Executive Committee: Curriculum (chaired by the Associate Chair for Undergraduate Education), Graduate (chaired by the Associate Chair for Graduate Education), Facilities, Personnel (Promotion) and Operations. Ad hoc committees can be formed by the faculty to serve special purposes. Current ad hoc committees include Awards, Mentoring, Research, and Computing. Rostered instructors and research professors are voting members of the faculty and serve on the standing committees of the department, including the Executive Committee. The faculty governance structure is one of the strengths of the department. The representative structure of each sub-discipline area on the executive committee ensures that all faculty have a voice in the direction of the program. The leadership structure is adequate to ensure the direction, continuity, and quality of the architectural engineering program.

2. Program Budget and Financial Support

The expenditures by the College of Engineering and Applied Science for FY16 were \$145.4 M from the following sources:



The College distributes the general fund budget (monies from tuition and fees, state funds, and indirect costs from grants) to the departments and programs in specific categories (ex., faculty salaries, staff salaries, TA stipends, operating funds) using well-defined formulas, established by the dean with advice from and discussion with the department chairs. These formulas are based on input data such as enrollments, student credit hours, and research expenditures.

The Department receives its budget from the College of Engineering and Applied Science through (1) allocation of faculty positions, (2) funds to cover staff and teaching assistant salaries and operating expenses, and (3) recovery of indirect costs from grants and contracts. In addition, the Department has several gift endowments totaling approximately \$2.5 million, which generate about \$100,000 per year in income for support of educational equipment and student activities. The staff, teaching assistant, and operating budgets are determined based primarily on student credit hour (SCH) generation, the number of undergraduate and graduate students in the Department's programs, and the number of faculty in the Department. Funds for additional teaching support are added when the SCH generation per faculty member exceeds the College average. The CEAE department chair and staff, with inputs from the Executive Committee, creates budget based upon teaching, research, and administrative needs. The budget is presented to the Executive Committee for approval each fall with updates throughout the year as necessary.

A portion (approximately 15%, plus 8% embedded in staff salaries) of the indirect costs recovery (ICR) from faculty's sponsored research activities is returned to the Department to augment its operating budget. In addition, the endowments to the Department also produce an income stream that is used for purposes specified in the original donations, such as acquisition

of instructional equipment, funding of student scholarships, and funding of named lecture series.

Breakdown of the Department expenditures for FY2016 were \$6.9 M from the sources shown below.

Funding of senior instructors and lecturers has increased 68% from \$313,142 in 2010 to \$524,434 in 2016. Although resources have been strained largely due to increasing student enrollment in our courses, they continue to be sufficient to enable us to meet our student outcome goals.

3. Staffing

The CEAE department has an excellent staff to support the architectural engineering program, consisting of an administrative manager, an undergraduate advisor/program coordinator for Architectural Engineering, a graduate program coordinator, an office receptionist/program assistant, one accounting professional, an accounting technician and a web design specialist; a part-time communications specialist also serves the program. As well, the undergraduate advisors/program coordinators for Civil Engineering can fill-in when the Architectural Engineering advisor is absent. Part-time student assistants are hired on an as-needed basis to assist with special activities demanding more staff time.

The Department has a contract with the University's Office of Information Technology (OIT) to provide desktop support to faculty and staff, and to its Bechtel Lab Computer Lab. This OIT contract is equivalent to approximately a half-time position. The Department supports the Laboratory positions through its operating budget. The OIT contract is supported through program fees.

The staff budget allocation from the College has increased by 94% (\$268,872 in 2010 to \$522,329 in 2017), as a reflection of the overall growth in research expenditures and student

enrollment. The Department hopes to add staff in coming years to accommodate growth in student enrollment.

The Department participates in the College's Staff Excellence Program. This program funds - (i) opportunities for staff training and professional development, (ii) performance-recognition awards, (iii) a peer-mentoring program, and (iv) engagement in social events and college activities. The Department financially supplements the College's program to assist in professional development for the staff. Professional development and training strengthens staff members' capabilities to take on additional responsibilities, (e.g. the latest upgrade of the Human Resources and Financial Systems, CU Marketplace, CU-SIS student information system, and the new graduate application system). Staff are also given the opportunity to enroll in job-related or career enhancing classes on campus, taking advantage of the tuition benefit of 9 credit hours per academic year. Staff arrange work time, if necessary, with their supervisor, to take these classes.

4. Retention

The Dean, with advice from and discussion with the department chairs, assigns new and replacement (losses due to retirements, resignations, etc.) faculty lines to departments. Each department is required to produce a recruiting plan for each faculty line for which the department will be searching. The department is responsible for advertising for the position, forming the search committee, selecting candidates for interviews, etc. In some cases, the search will be for an interdisciplinary faculty member. In those cases, the search committee will have members from several departments. Detailed information about the procedures for faculty hiring are found at http://www.colorado.edu/engineering-facultystaff/hiring. When the department has selected its preferred faculty hire, the Dean must then approve the individual. Note that if a faculty is being hired with tenure, the individual must be reviewed through the entire standard tenure process (review by primary unit, first level review, Dean, Vice Chancellor's Advisory Committee, and eventually approved by the Regents).

To retain current qualified faculty, the University benchmarks its salary and benefits against peer institutions. Per the availability of the raise pool determined for the campus each year, raises are awarded based on merit, as established by annual ratings in research, service, and teaching. The CEAE Department, in coordination with the College and University, can also offer a retention package if a faculty member has a competing offer from another university. Retention packages vary, but typically include salary increases, student support, lab space or other items to entice the faculty to stay. Raises can also be awarded if a faculty member demonstrates that their salary lags behind peers in CEAE with similar merit ratings.

5. Support of Faculty Professional Development

The University offers excellent opportunities to grow one's teaching abilities through the Faculty Teaching Excellence Program (FTEP; <u>http://www.colorado.edu/ftep/</u>). FTEP has two programs targeted specifically at helping new tenure-track faculty: the New Assistant Professor Program and the Early Career Faculty Program: Faculty Learning Communities. FTEP offers a variety of workshops and seminar events open to any faculty member each semester. They also offer one-on-one consultations such as classroom learning interviews, videotape consultation,

and teaching portfolio consultations. FTEP coordinates the President's Teaching Scholars Program to promote the scholarship of teaching and learning; CEAE participants have included Matt Hallowell (2013) and Lupita Montoya (2011). FTEP coordinates the President's Teaching Scholars Program (PTSP), of which two CEAE faculty are members (Roseanna Neupauer and Hari Rajaram).

The College supports the professional development of faculty through the Faculty Excellence Program (see http://www.colorado.edu/engineering-facultystaff/awards-incentives/college-awards/faculty-excellence-program), which provides a number of financial support opportunities. This program includes:

- Dean's Faculty Fellowships Selected faculty members are given one semester off from teaching a course, to focus on a major initiative in research and scholarly work or development of substantial educational materials or initiatives
- Dean's Seed Funds for Novel Ideas Discretionary funds up to \$10,000 provide seed support for new ideas, and are matched 1:1 by the department or program
- Dean's Performance Awards \$5,000 awards are given for top performance in categories such as research, teaching, professional progress, and overall performance of junior faculty, based on the annual performance evaluations for the prior calendar year
- Matching funds for research grants, laboratory renovation funds, and travel to funding agencies are supported
- Sabbatical Supplement Program This program offers an additional 20% of the academic-year salary to faculty members taking full-year sabbaticals, on top of the normal 50% of the academic-year salary that they receive on sabbatical. The department then retains the remaining 30% of the academic-year salary, and the faculty member is responsible for raising (or foregoing) 30% of her or his salary. In addition, the Dean will provide \$4000 in discretionary funds for research, travel, etc. to each faculty member who successfully applies for this program. http://www.colorado.edu/engineering-facultystaff/sabbatical-supplement-program

The Department encourages professional development through the attendance of conference and workshops. Data are collected on faculty attendance of these events through the annual reporting and evaluation process. If faculty members are not participating in these events, it is noted by the chair. New faculty members have significant start-up packages with moneys designated for travel and professional development. Senior faculty members typically raise their own funds for travel to these events, but they can also make request of the Department or College on a case-by-case basis. For example, the department paid for the ABET assessment coordinator to attend the Spring ABET symposium. All faculty members are encouraged to use the significant on-campus resources for professional development as well.

PROGRAM CRITERIA

The program criteria for architectural engineering programs include requirements for both curriculum and faculty. Each of these requirements and how the CU Architectural Engineering program fulfills the requirement are explained below.

1.1 The curriculum must demonstrate that graduates can apply mathematics through differential equations, calculus-based physics, and chemistry.

All Architectural Engineering students in the BS program take 32 credits of math and basic sciences, including three semesters (12 credits) of calculus, one semester of differential equations and linear algebra (4 credits), two semesters of calculus-based physics (8 credits), and one semester of basic chemistry with a laboratory (5 credits). [These courses are shown on the block diagram in section 5.A and associated Table 5-1.]

Performance in subsequent engineering courses both depends on and reinforces students' basic knowledge in mathematics, physics, and chemistry. Calculus and differential equations (APPM 1350, 1360, 2350, 2360) and Physics 1 (PHYS 1110) are prerequisites for the fundamental engineering science courses (thermodynamics, analytical mechanics 1, fluid mechanics & heat transfer). These courses are in turn pre-requisites for the various AREN fundamentals courses, which in turn are pre-requisites for proficiency courses and AREN/CVEN technical elective courses.

Measures of students' attainment of proficiency in math and basic science depends on internal measures such as student work in architectural engineering courses requiring application of these fundamentals, and on external measures such as the Fundamentals of Engineering (FE) Examination. As described above in section 4B for student outcome 1, our direct and indirect evidence indicates adequate student fulfillment of this outcome.

1.2 The four basic architectural engineering curriculum areas are building structures, building mechanical systems, building electrical systems, and construction/construction management. Graduates are expected to reach the synthesis (Design) level in one of these areas...

All AREN students select one concentration area from among these four AREN areas; students take two three-credit proficiency course focused on design, two three-credit concentration courses that may be design or technical in nature. Technical-elective-related courses provide depth within each of the four basic AREN curriculum areas.

1.3 ... the application level in a second area...

The current curriculum requires all AREN students to select two AREN areas from which to take a proficiency course. The proficiency level courses map to the application level. One proficiency area is built on as the concentration area (described above).

1.4 ...and the comprehension level in the remaining two areas.

There are five fundamental courses that all AREN students are required to take that cover all four areas of AREN as shown below:

Area	Fundamental Courses (comprehension)
Building structures	CVEN 3525-3 Structural Analysis
Building mechanical systems	AREN 3010-3 Mechanical Systems
Building electrical systems	ECEN 3030-3 Electrical Circuits AREN 3540-3 Illumination 1
Construction/construction management	CVEN 3246-3 Introduction to Construction

1.5 The engineering topics required by the general criteria shall support the engineering fundamentals of each of these four areas at the specified level.

The five fundamental courses are supported by the following required general engineering topics:

Engineering Fundamentals	Pre-Requisite General Engineering Courses			
CVEN 3525-3 Structural Analysis	CVEN 3161-3 Mechanics of Materials I			
AREN 3010-3 Mechanical Systems	AREN 2110-3 Thermodynamics, AREN 2120-3 Fluid Mechanics & Heat Transfer, AREN 2050-Engineering Systems for Buildings			
ECEN 3030-3 Electrical Circuits	APPM 2360-3 Intro Differential Equations			
AREN 3540-3 Illumination 1	APPM 2350-3 Calculus III for Engineers, COEN 1300-4 Intro to Engineering Computing			
CVEN 3246-3 Introduction to Construction	Restricted to students with 57-180 credits (Junior or Senior)			

1.6 Graduates are expected to discuss the basic concepts of architecture in a context of architectural design and history.

All AREN students are required to take 2 courses (6 credits) of the history and theory of architecture (ENVD 3114 and 3134). In addition, they must take ARCH 4010 Architectural Design, a 5-credit course on architectural design that precedes and feeds into the AREN 4317 capstone design course. Syllabi for these courses are found in Appendix E.

- 1.7 The design level must be in a context that:
 - a. Considers the systems or processes from other architectural engineering curricular areas

The AREN4317 senior capstone is a project-based course aimed at having students synthesize and apply the knowledge acquired in previous courses. Only students in their fourth year may take this course and they must have taken the fundamentals or architectural engineering as pre-requisites:

- AREN 3010: Mechanical Systems for Buildings
- ECEN 3030: Electrical Circuits
- AREN 3246: Introduction to Construction
- CVEN 3525: Structural Analysis
- AREN 3540: Illumination I
- ARCH 4010: Architecture Appreciation and Design

Students must petition entrance to the course if they don't meet a requirement.

In addition, since students are divided in teams whereby each discipline is represented. Students hoping to lead their own discipline should meet their respective proficiency course, that is:

- CVEN 3256 Construction Equipment & Methods
- AREN 4550 Illumination 2 or AREN 4570 Electrical Systems
- AREN 4110 HVAC Design
- CVEN 4545 Steel Design or 4555 Reinforced Concrete

Students may need to be paired in a group with another person of the same discipline if deficiencies are encountered. Students may also volunteer to do a different discipline. An example of this is with the HVAC discipline. In the last few years, there have not been enough HVAC students in the class and in order to form a complete group (with all four disciplines) students choose to work on HVAC.

b. Works within the overall architectural design,

The AREN curriculum is designed so that all students take a 10-credit design experience in their senior year. Five of those credits are spent in Environmental Design where students learn architectural principles and design. Students also design a building (typically 15,000 to 30,000 ft. sq. commercial building) which they will bring to the engineering design class. It is to these buildings that students apply architectural engineering processes and systems.

c. Includes communication and collaboration with other design or construction team members

Students work in teams for the duration of the course. The teams are multidisciplinary as all four architectural engineering tracks are represented. Collaboration within the teams is not only encouraged but necessary in particular during the schematic and design development phases as students need to coordinate with each other to ensure a cohesive design and one that meets specific constraints like LEED, codes, budgets, and equipment placement. Lectures, workshops, and assignments related to LEED, value engineering and clash detection help ensure communication and collaboration between team members.

d. Includes computer-based technology and considers applicable codes and standards

Starting with the programming phase, students begin their re-acquaintance with the codes and standards that govern their buildings. Specific discipline lectures by industry professionals kick off this process. In the conceptual phase, students explore and synthesize in their reports the codes and standards that apply to their respective disciplines. In the schematic students are asked to provide some kind of corroboration that they are meeting the most relevant codes and standards. By the design developing phase, students use software to perform calculations to demonstrate compliance.

e. Considers fundamental attributes of building performance and sustainability

Students receive specific assignments per discipline that helps them develop, from the ground up, systems that will be functional and sustainable. Students are required to show, not only that their buildings meet codes and standards, but that these also comply with minimum standards of care, function, and comfort. Lectures on these topics are provided by industry professionals. In addition, students are assigned professional mentors who review their work, provide feedback and share with them current techniques and practices related to building performance and sustainability.

2.1 Faculty Qualifications to Teach Design

"The program shall demonstrate that those faculty members teaching courses that are primarily design in content are qualified to teach the subject matter by virtue of education and experience or professional licensure." (ABET, EAC, 2017-2018... p. 9-10)

For the capstone design course in AREN, a team of 4 faculty routinely teach the course. For the last 9 years, the course has been coordinated and led by Sandra Vásconez who is a Senior Instructor in the Department. While she is not a licensed Professional Engineer or Registered Architect, she has extensive experience with lighting design since 1998. As manager of program development at the Lighting Research Center at Rensselaer Polytechnic Institute, she was heavily involved in research, testing, and design projects with the lighting industry. She was the manager of the DELTA (Demonstration and Evaluation of Lighting Technologies and Applications) Program. As such, she published 8 lighting studies demonstrating best-practices and lessons learn in lighting design. From 2004-2007, she worked on design and installation of museum exhibits at a lighting design firm in Boulder, CO. She continued to freelance in this area until 2010. Other instructors vary somewhat each term. Each term the course includes a minimum of 1 instructor who is a licensed PE. Instructors are summarized below:

AREN 4317 Instructors

Term	Instructor Team
Fall 2012	Molenaar (CEM), Brandemuehl (HVAC PE), Krarti (electrical PE) Vásconez (lighting), Xi (structures)
Fall 2013	Kaminsky (CEM), Zhai (HVAC), Krarti (electrical PE) Vásconez (lighting), Xi (structures)
Fall 2014	Molenaar (CEM), Henze (HVAC PE), Beamer (electrical) Vásconez (lighting), Xi (structures)
Fall 2015	Arneson (CEM), Zhai (HVAC), Krarti (electrical PE) Vásconez (lighting), Xi (structures)
Spring 2016	Albattah (CEM), Currie (HVAC), Krarti (electrical PE) Vásconez (lighting), Xi (structures)
Spring 2017	Arneson (CEM), Currie (HVAC), Jadaan (structures) Krarti (electrical PE) Vásconez (lighting)

For the instructors who are not PEs (as noted in the table above), design experience is summarized below with more detail provided in the individual resumes in Appendix B (full-time faculty). CVs for Ph.D students are provided in the supplemental materials available during the site visit.

Mohammed Albattah, Ph.D. Student - graduated in 2016

Experience in construction management in Saudi Arabia (AlSuwaidi Industrial Services Co. LTD) and the United States (HOAR Construction). Responsible for project site visits to check accuracy of drawings and equipment accessibility, pricing of construction change orders and to develop competitive bids for new projects and coordinate sub-contractors.

Erin Arneson, Ph.D. Student – present

Worked as an architect and construction project manager for over 7 years at an international design firm in Seattle, WA. Specifically, worked on commercial retail projects, both renovation and new shell construction. Coordinated projects during: early contract phase (negotiating and reviewing tenant leases for clients); construction documents (conceptual drawings thru permit drawings); project bid and schedule reviews; project financials (RFIs, change orders, submittals, billings); on-site management; and Closeout.

Walter Beamer, Ph.D., CEAE Senior Instructor

Spent 6 years in the architectural lighting design field working for Robert Singer Lighting Associates (Aspen, CO) and Light'n Up (Washington, DC). Lighting projects ranged from small homes to high-end multimillion dollar homes all over the country, he also worked with museum projects, and memorials in Washington, DC. Dr. Beamer spent 6 years in the architectural acoustics industry as an acoustics consultant with Kirkegaard Associates (Boulder, CO) and then Shen Milsom & Wilke (Denver, CO). His acoustics projects ranged

in scale from single family homes to sky scrapers, churches to performing arts complexes, high-end hotels to college campuses, and his work took him to the Middle East and Asia.

Samuel Currie, Ph.D. Student - present

Extensive experience using energy modeling to inform design decisions, including in the design of a net-zero energy laboratory for Purdue University's biology department and a building integrated photovoltaic/thermal collector as part of ongoing research at Purdue University. Additionally, Mr. Currie has designed and built several software applications to aid architects and engineers in the design of Title 24, Part 6 compliant buildings and performed consulting work for the California Energy Commission and investor owned utility companies in California on implementation aspects of the energy code.

Dhafer Jadaan, Ph.D. Student - present

Structural designer at the Reconstruction Department, University of Anbar 2006- 2014. Consultant engineer at the Provincial Reconstruction Team-American Army- Iraq: June 2013-Dec 2013.

Jessica Kamisnky, Ph.D. Student - graduated in 2013

Six years working for CH2M HILL as a staff engineer. Performed traffic analyses, travel demand modelling, preliminary pipeline design, and some preliminary wastewater treatment plant design. Significant hydraulic pipeline work (building computerized network models for a major urban utility)

Keith Molenaar, Ph.D., CEAE Professor

Practitioner and researcher in engineering design and construction. Designated Design-Build Professional from the Design-Build Institute of America (DBIA) and serves as the Chair of the national DBIA Design-Build Certification Board. Worked on design and in design support services for Architectural Research Consultants. Work examples: Denver Performing Arts Center Renovation, Sunspot Lodge and Lutheran Medical Center Emergency Room and Surgery Center Expansion. Has worked on 48 funded research projects, many of which support design and involve the design of experiments. Keeps an active consulting practice. Works on preconstruction services and design for major infrastructure and science projects including the Panama Canal Expansion, the San Francisco-Oakland Bay Bridge, the ITER Fusion Generator and the Long Baseline Neutrino facility.

Yunping Xi, Ph.D., CEAE Professor

Worked as structural engineer at Beijing Central Research Inst. of Building and Construction and Beijing Design Institute of Building and Construction. In these institutions participated in many projects designing high-rise apartment buildings, a middle school, a movie theater, and rehabilitation projects for steel mills. Conducts research and evaluation projects related to highway bridges, DIA radar control building, and containment structures of nuclear power plants.

John Zhai, Ph.D., CEAE Professor

Combined degree in Mechanical Engineering and Architecture with both research and practice interest and experience in sustainable building design. Leads the evaluation and

development of a few building systems and associated code developments sponsored by ASHRAE (such as for active chilled beam system, hospital and data center ventilation systems etc.). Serves as full-time senior fellow and project manager for RMI, participating/leading over 10 design and retrofit projects in 2011. Recently, has served as green building consultant for several major projects in China, such as the 452m tall Suzhou International Finance Square project, designed by KPF.

The instructors for other proficiency and concentration courses in the curriculum with large design elements are shown below.

Proficiency:

Course	AREN 4110	AREN	AREN 4570	CVEN 3256	CVEN 4545	CVEN
	HVAC	4550	Electrical	Constr Equip &	Steel Design	4555
	Design	Illumination	Systems for	Methods		Reinforced
	_	II	Buildings			Concrete
						Design
Instructor	Brandemuehl (PE)	Vasconez	Krarti (PE)	Goodrum (PE)	Hearn (PE)	Hearn (PE)
	Henze (PE)		Billington (PE)	Hallowell		Nguyen
			、 <i>、 、</i>	Novak		
	Zhai					

Concentration:

Course	AREN	AREN	AREN 4570	AREN	AREN	CVEN	CVEN
	4550	4570	Luminous	4830	4890	4545 Steel	4555
	Illuminatio	Electrical	Transfer	Computer	Sustainable	Design	Reinforced
	n II	Systems		Simulation	Building	_	Concrete
		for		of Building	Design		Design
		Buildings		System	_		_
Instructor	Vasconez	Krarti (PE)	Jongewaard	Krarti (PE)	Henze (PE)	Hearn	Hearn (PE)
			-			(PE)	
		Billington					Nguyen
		(PE)					

A brief summary of the design experience for individuals without a PE license who have not been described already above is provided here.

Matthew Hallowell, PhD

President and lead engineer at Modular Design solutions in Corvalis, OR; Structural engineer at Penn Lyon Homes in Selinsgrove, PA; Project engineer at Pine Tree Engineering in Bath, ME (highway design)

Lan Nguyen, PhD

Earned her PhD in structural engineering from CU in 2014. Worked as a structural engineer at Aero Solutions LLC from 2011-2013, including designing tower structural elements such as foundations and upgrades for stability. As a graduate research assistant she design reinforced concrete frames and masonry shear wall panels. She served as an Adjunct

Instructor for the Reinforced Concrete Design class in fall 2014. She has since earned her P.E. license

Ryan Novak, MS

Project manager for Erdman and project industrial manager for UOP within a design-build delivery system (oversaw the design, fabrication, and installation of variety of mechanical product lines)

Mark Jongewaard, MS

Extensive experience in lighting software development, lighting and optical analysis, illumination optical design and training. Broad experience in lighting analysis and algorithm development influenced the calculation modules in all of LTI's products including Photopia, Lumen-Micro and Lumen Designer. Works on optical design projects and is a training seminar instructor. Maintains close personal relationships with the R&D departments of lighting manufacturers around the world. Responsible for 10 patents from various optical design projects.

2.2 It must demonstrate that the majority of the faculty members teaching architectural design courses are qualified to teach the subject matter by virtue of professional licensure, or by education and design experience.

The ARCH 4010 Architectural Design course is taught by faculty from the College of Architecture and Planning, which has ample experience with design and teaching. The CVs for these instructors will be provided in the supplemental materials available during the site visit.

Year	Instructors
Fall 2012	Amir Alrubaiy – Master of Architecture, Master of Landscape Architecture Don Russell – Licensed Architect
Fall 2013	Justin Bellucci – BA Environmental Design, MS Civil Engineering Marcus Farr, Master of Architecture, LEEP AP
Fall 2014	Shawhin Roudhari, P.E., LEED AP Justin Bellucci – BA Environmental Design, MS Civil Engineering Kevin Kemp, Licensed Architect
Fall 2015	Shawhin Roudhari, P.E., LEED AP Justin Bellucci – BA Environmental Design, MS Civil Engineering
Fall 2016	Shawhin Roudhari, P.E., LEED AP Justin Bellucci – BA Environmental Design, MS Civil Engineering

Shawhin Roudhari = 2006 PE California; 200 LEED Accredited Professional

APPENDICES

Appendix A – Course Syllabi

Course descriptions are provided for each of the following courses in the AREN program. Each course could be required for graduation, depending on the track pursued within the program.

APPM 1350 Calculus 1 for Engineers APPM 1360 Calculus 2 for Engineers APPM 2350 Calculus 3 for Engineers APPM 2360 Introduction to Differential Equations with Linear Algebra ARCH 4010 Architectural Design AREN 1027 Engineering Drawing **AREN 1316 Introduction to Architectural Engineering AREN 2050 Building Materials and Systems AREN 2110 Thermodynamics** AREN 2120 Fluid Mechanics and Heat Transfer AREN 3010 Mechanical Systems for Buildings AREN 3540 Illumination 1 AREN 4110 HVAC Design 1 **AREN 4317** Architectural Engineering Design AREN 4506 Project Management 1 AREN 4550 Illumination 2 **AREN 4560 Luminous Radiative Transfer** AREN 4570 Building Electrical Systems Design 1 AREN 4606 Project Management 2 **AREN 4830 Computer Simulation of Building Systems** AREN 4890 Sustainable Building Design CHEM 1211 General Chemistry for Engineers CHEM 1221 Engineering General Chemistry Lab CHEN 1310 Introduction of Engineering Computing **CVEN 2012 Introduction to Geomatics CVEN 2121 Analytical Mechanics 1** CVEN 3161 Mechanics of Materials 1 **CVEN 3246 Introduction to Construction CVEN 3256 Construction Equipment and Methods CVEN 3525 Structural Analysis** CVEN 4161 Mechanics of Materials 2 **CVEN 4545 Steel Design CVEN 4555 Reinforced Concrete Design** ECEN 3030 Electrical/Electronic Circuits for Non-Majors ENVD 3114 History and Theory of Environmental Design: Buildings ENVD 3134 History and Theory of Environmental Design: Precincts **GEEN 1400 Engineering Projects** PHYS 1110 General Physics 1 PHYS 1120 General Physics 2 WRTG 3030 Writing on Science and Society

APPM 1350 - Calculus 1 for Engineers

Course Syllabus

- 1. Course number and name APPM 1350 - Calculus 1 for Engineers
- 2. Credits and contact hours 4 credit hours/4 contact hours
- 3. Instructor's or course coordinator's name Coordinator: Anne Dougherty
- 4. **Textbook, title, author, and year** *Essential Calculus 2nd edition, James Stewart, 2013*
 - a. **other supplemental materials** WebAssign online homework system (requires subscription)
- 5. Specific course information
 - a. brief description of the content of the course (catalog description)
 - Topics in analytical geometry and calculus including limits, rates of change of functions, derivatives and integrals of algebraic and transcendental functions, and applications of differentiation and integration. Students with credit in APPM 1350 may not receive credit for MATH 1080, 1081, 1090, 1100, 1300, 1310, or ECON 1088

b. prerequisites or co-requisites

Requires prerequisite course of APPM 1235 or MATH 1021 or MATH 1150 or an ALEKS math score or 76% or greater.

c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program. required

6. Specific goals for the course

a. specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.

(1) Understand the concepts, techniques and applications of differential and integral calculus, and (2) improve problem solving and critical thinking.

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.

7. Brief list of topics to be covered

Limit of a Function; Continuity; Derivatives and Rates of Change; Basic Differentiation Formulas; Chain Rule; Implicit Differentiation; Related Rates; Linear Approximations and Differentials; Maximum and Minimum Values; Mean Value Theorem; Curve Sketching; Optimization Problems; Newton's Method; Antiderivatives; Areas and Distances; Definite Integral; Fundamental Theorem of Calculus; Substitution Rule; Inverse Functions; Natural Logarithmic Function; Exponential Functions; Exponential Growth and Decay; Inverse Trigonometric Functions; Hyperbolic Functions; Indeterminate Forms and l'Hospital's Rule

APPM 1360 - Calculus II for Engineers

Course Syllabus

- 1. Course number and name APPM 1360 - Calculus II for Engineers
- 2. Credits and contact hours 4 credit hours/4 contact hours
- 3. **Instructor's or course coordinator's name** Coordinator: Brian Zaharatos
- 4. **Textbook, title, author, and year** *Essential Calculus 2nd edition,* James Stewart, 2013
 - a. **other supplemental materials** WebAssign online homework system (requires subscription)
- 5. Specific course information
 - a. brief description of the content of the course (catalog description)

Continuation of APPM 1350. Focuses on applications of the definite integral, methods of integration, improper integrals, Taylor's theorem, and infinite series. Credit not granted for this course and MATH 2300.

b. prerequisites or co-requisites.

Requires prerequisite course of APPM 1345 or APPM 1350 or MATH 1300 (minimum grade C-)

c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program. required

6. Specific goals for the course

a. specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.

1) Understand the concepts, techniques, and applications of differential and integral calculus, (2) to understand sequences and series, and (3) to improve problem solving and critical thinking

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.

7. Brief list of topics to be covered

Integration by Parts; Trigonometric Integrals and Substitutions; Partial Fractions; Improper Integrals; Areas between Curves; Volumes; Volumes by Cylindrical Shells; Arc Length; Applications of Integration to Physics and Engineering; Differential Equations; Sequences; Series; The Integral and Comparison Tests; Other Convergence Tests; Power Series; Representing Functions as Power Series; Taylor and Maclaurin Series; Parametric Curves; Calculus with Parametric Curves; Polar Coordinates; Areas and Lengths in Polar Coordinates.

APPM 2350. Calculus 3 for Engineers

Course Syllabus

- 1. Course number and name: APPM 2350. Calculus 3 for Engineers
- 2. Credits and contact hours Total Credits: 4 Lecture 50-minutes 3x/week; Recitation 50 min 1x/wk
- 3. Instructor's or course coordinator's name Adam Norris, course coordinator
- 4. Text book, title, author, and year Essential Calculus, Second Edition (w/Enhanced WebAssign). James Stewart, ISBN 9781133425823
 - a. other supplemental materials
 - WebAssign. https://www.webassign.net/colorado/login.html
 - Desire2Learn (D2L) <u>https://learn.colorado.edu/</u>
- 5. Specific course information
 - a. **brief description of the content of the course (catalog description)** Covers multivariable calculus, vector analysis, and theorems of Gauss, Green, and Stokes. Credit not granted for this course and MATH 2400..
 - **b.** prerequisites or co-requisites APPM 1360 or MATH 2300
 - c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program.
- 6. Specific goals for the course
 - a. Specific outcomes of instruction. ex: the student will be able to explain the significance of current research about a particular topic. This course extends the ideas of single-variable calculus (e.g. differentiation, integration, optimization) to functions of several variables.
 - b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.

7. Brief list of topics to be covered

Vectors in the Plane; Cartesian (Rectangular) Coordinates and Vectors in Space; Dot Products; Cross Products; Lines and Planes in Space; Cylinders and Quadric Surfaces; Vector-Valued Functions and Space Curves; Arc Length and the Unit Tangent Vector T; Curvature, Torsion, and the TNB Frame; Functions of Several Variables; Limits and Continuity; Partial Derivatives; Differentiability, Linearization, and Differentials; The Chain Rule; Directional Derivatives, Gradient Vectors, and Tangent Planes; Extreme Values and Saddle Points; Lagrange Multipliers; Taylor's Formula; Double Integrals; Areas, Moments, and Centers of Mass; Double Integrals in Polar Form; Triple Integrals in Rectangular Coordinates; Cylindrical and Spherical Coordinates; Triple Integrals in Cylindrical and Spherical Coordinates; Substitutions in Multiple Integrals; Line Integrals; Vector Fields, Work, Circulation, and Flux; Path Independence, Potential Functions, and Conservative Fields; Green's Theorem in the Plane; Surface Area and Surface Integrals; Stoke's Theorem; The Divergence Theorem and a Unified Theory.

APPM 2360. Differential Equations with Linear Algebra

Course Syllabus

- 1. **Course number and name** APPM 2360. Differential Equations with Linear Algebra
- 2. Credits and contact hours Total Credits: 4 Lecture 50-minutes 3x/week; Recitation 50 min 1x/wk
- 3. **Instructor's or course coordinator's name** Nicholas Featherstone. James Meiss, Congming, Li, and Stephen Beckeer
- 4. Text book, title, author, and year Differential Equations and Linear Algebra, by Farlow, Hall, McDill, & West, 2nd edition.
 - a. other supplemental materials
 - 1. https://www.colorado.edu/amath/course-pages/fall-2016/appm2360 for general info, homework assignments, past exams, tutoring options, pre-exam review sessions, exam rooms and times, and office hours.
- 5. Desire2Learn (D2L) <u>https://learn.colorado.edu</u> for grades, homework solutions, and submitting projects

Specific course information

- a. **brief description of the content of the course (catalog description)** Introduces ordinary differential equations, systems of linear equations, matrices, determinants, vector spaces, linear transformations, and systems of linear differential equations. Credit not granted for this course and both MATH 3130 and 4430.
- **b.** prerequisites or co-requisites APPM 1360 or MATH 2300
- c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program.

6. Specific goals for the course

a. Specific outcomes of instruction. ex: the student will be able to explain the significance of current research about a particular topic.

Explain the importance of ordinary differential equations in science and engineering, identify appropriate analysis methods, and develop mathematical thinking with the exposure to abstract vector spaces. Categorize types of differential equations (ordinary/partial, linear/nonlinear, separable). Qualitative methods: construct and interpret direction fields and phase planes. Analytic methods: solve separable first-order equations, and inhomogeneous linear secondorder equations. Laplace transform: know when to recommend the Laplace transform method, and to how to compute solutions to second-order. equations using the method. Linear algebra: explain the concept of a vector space, determine whether a given set of vectors are linearly independent, compute eigenvalues and eigenvectors, apply the methods of linear algebra to a system of linear differential equations

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.

7. Brief list of topics to be covered

Solutions and Direction Fields; Separation of Variables; Approximation Methods' Picard's Theorem; Linear Equations; Solving First-Order Linear Equations; Growth and Decay; Mixing and Cooling; Nonlinear Logistic Equations; Systems of Equations; Matrices; Systems of Linear Equations; Matrix Inverse; Determinants; Vector Spaces; Basis and Dimension; Eigenvalues; Harmonic Oscillator; Real Characteristic Roots; Complex Characteristic Roots; Undetermined Coefficients; Variation of Parameters; Forced Oscillations; Conservation and Conversion' Laplace Transform; Solving Des with Laplace Transform; Step Function and Delta Function' Liner Systems with Real Eig.; Linear Systems w/Non-real Eig; Stability and Liner Classification

ARCH 4010, Architectural Appreciation & Design Studio

Course Syllabus

- 1. Course number and name ARCH 4010, Architectural Appreciation & Design Studio
- Credits and contact hours
 5 Credits, Monday, Wednesday: 3:00 pm to 5:30 pm
- 3. Instructor's or course coordinator's name Justin Bellucci and Shawhin Roudbari

4. Text book, title, author, and year

N/A (select chapters from several books, listed below, were used)

a. other supplemental materials

readings: Simon Unwin, Analyzing Architecture, 2009; Francis Ching, Architecture: Form, Space, Order, 2011; Christine Sauer, Made of: new material sourcebook for architecture and design, 2010; Ivan Margolius, Architects + Engineers = Structures, 2002; Marianne Keeler and Bill Burke, Fundamentals of Integrated Design for Sustainable Building.

5. Specific course information

a. brief description of the content of the course (catalog description)

Introduces basic processes and principles of architectural design. Provides a basis for understanding and evaluating architecture

- b. **prerequisites or co-requisites** Seniors in AREN
- c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program.

6. Specific goals for the course

a. Specific outcomes of instruction. ex: the student will be able to explain the significance of current research about a particular topic.

Broadly, this class aims to train you in (a) fundamentals of design and architecture; (b) methods of analysis and research in architecture; and (c) techniques and tools for communicating design. Specifically, these aims correspond to the following outcomes:

Familiarity with elements of architecture An understanding of material and tectonics Exposure to innovations in integration of architecture with systems and structures Exposure to precedent research An understanding of ordering systems in design Practice in the design process and design thinking Exposure to basics of site and user analysis Schematic design development Drawing and model making Presentations, posters, and technical drawings

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course. *(leave blank if you are unsure)*

7. Brief list of topics to be covered

Elements of architecture; precedent research; ordering systems; site analysis; concept development; technical drawings; tectonics; diagram; poster board; user analysis; drawing; physical model; materials; modeling; presentation; program design; sketch models; digital 3D model; systems and structures; design; process; program development

Course alpha, number, title	AREN 1027 Engineering Drawing	
Required or elective	Required for all students in degree program	
Course description	Students learn linetypes, symbols, drawing and dimensioning standards by generating drawings using drafting instruments and computer-aided-drafting. Drawings start with basic sketching, hand drafting and continue through 3-D solid modeling on Revit. Print reading includes interpretation of site, foundation, floor and roof plans as well as elevations and sections.	
Prerequisite(s)	None	
Textbook(s) and/or other required material	The LIFT student USB package. Included Templates, Revit Building Blocks, and Example files Optional: The Creativity Code: The Power of Visual Thinking ISBN-13: 978-0997927528	
Class/Lab schedule	Total Credits: 3 <i>Lecture 75-minutes 2x/week; Lab 110 min 1x/wk</i>	
Instructor Topics covered	 Alex Gore and Lance Cayko Alphabet of lines. Drawing symbols Lettering and text Drawing and dimensioning standards Drawing notes and tables on working drawings Sketches, geometric construction, working drawings, 3D models Drawing problems on computer using both basic and advanced setup, drawing, editing, attributes and dimensioning commands Working drawings including format and site, foundation, floor, roofing plans and section and detail drawings Notes and tables on working drawings Printing and plotting 	
Course learning objectives Relationship	 Draw and dimension working drawings using proper format Draw a 3D solid model of a structure Read and interpret working drawings <u>Program Outcome</u> 	<u>Emphasis</u>
of course to program	1. an ability to apply knowledge of mathematics, science, and engineering	Small
outcomes	2. an ability to design and conduct experiments	Large
	3. an ability to analyze and interpret data	Small
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic,	Medium

	environmental, social, political, ethical, health and safety, manufacturability, and sustainability	
	5. an ability to function on multi-disciplinary teams	None
	6. an ability to identify, formulate, and solve engineering problems	None
	7. an understanding of professional and ethical responsibility	Small
	8. an ability to communicate effectively through writing and drawings	Large
	9. an ability to communicate effectively through oral presentations	Small
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	None
	11. a recognition of the need for, and an ability to engage in life-long learning	Medium
	12. a knowledge of contemporary issues	Small
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Large
	14. an ability to explain basic concepts in management, business, public policy, and leadership	Small
Contribution to the professional component	60% Engineering Science 40% Engineering Design	
Person(s) who prepared this description	Alex Gore	
Date of Preparation	2/07/2017	

Course number, name	AREN 1316 Introduction to Architectural Engineering	
Credits and contact hours	2-credits, two 50-min lectures per week	
Instructor(s)	Prof. Angela R. Bielefeldt, PhD, PE	
Textbook, Other materials	No textbook required Readings from: ASCE Civil Engineering Body of Knowledge for the 21 st Century (2008), ASCE 2013 Report Card for America's Infrastructure, LEED v4 User Guide (2013), The ASCE Code of Ethics: Principles, Study, and Application (2011)	
Course description	Surveys the broad subject of architectural engineering and professional practice. Includes the subdisciplines of structures, construction, electrical, lighting, and HVAC. Discusses professional ethics, important skills for engineers, and the engineering design process as it fulfills multiple objectives.	
Prerequisite(s)	None	
Required or elective	Required for all students in degree program	
Course learning objectives	 describe what architectural engineering is, what you may do as a architectural engineer, and the skills required to be an architectural engineer understand the process to gain the skills required to be an engineer and successfully graduate with a degree in architectural engineering from CU explain the importance of professional licensure (PE) for architectural engineers apply the professional codes of engineering ethics to evaluate situations you may encounter in your career define sustainability, describe its importance to engineering, and identify aspects of sustainability in architectural engineering projects 	
Relationship	Program Outcome	<u>Emphasis</u>
of course to program	1. an ability to apply knowledge of mathematics, science, and engineering	Small
outcomes	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	None
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Small
	5. an ability to function on multi-disciplinary teams	Small
	6. an ability to identify, formulate, and solve engineering problems	None
		1 7 4

	 7. an understanding of professional and ethical responsibility 8. an ability to communicate effectively through writing and drawings 9. an ability to communicate effectively through oral presentations 10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context 	Large Small None Medium
	11. a recognition of the need for, and an ability to engage in life-long learning	Medium
	12. a knowledge of contemporary issues	Small
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	None
	14. an ability to explain basic concepts in management, business, public policy, and leadership	None
List of topics covered	Overview of architectural engineering and sub-disciplines Compare/contrast architectural engineering with civil engineering Sustainable design Ethics and professional licensure Design and teamwork Process to earn an architectural engineering degree and build relevant skills	
Contribution to the professional component	90% Professional skills 10% Engineering Design	
Prepared by:	Angela Bielefeldt, 10/31/2016	

Course number, name	AREN 2050 Building Systems and Materials	
Credits and contact hours	3-credits, two 1.25-hour lectures per week	
Instructor(s)	Senior Instructor Matt Morris, P.E.	
Textbook, Other materials	 Allen, Edward and Iano, Joseph (2009). Fundamentals of Building Construction Materials and Methods, 5th Edition. Wiley, Inc. Hoboken, NJ. ISBN 978-0-470-07468-8 Example construction drawings 	
Course description	Covers the broad subject of building materials and systems. Includes a practical approach to assembly details, methods of construction, codes, foundations, steel, concrete, masonry, cladding, doors and windows, interiors, finishes, mechanical, plumbing, electrical, life safety and conveyance. Includes investigation of an existing facility along with a team presentation trends in commercial building construction.	
Prerequisite(s)	Restricted to students with 27-180 credits (Sophomores, Juniors or Seniors) Civil (CVEN) or Architectural (AREN) or GEEN (General) or Applied Mathematics (AMEN) majors only.	
Required or elective	Required for all students in AREN degree program, elective for CVEN	
Course learning objectives	 Identify the numerous building components, materials and systems Understand the sequence and relationship between building assemblies Develop industry vocabulary 	
Relationship	Program Outcome	Emphasis
of course to program	1. an ability to apply knowledge of mathematics, science, and engineering	Small
outcomes	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	Small
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Medium
	5. an ability to function on multi-disciplinary teams	Small
	6. an ability to identify, formulate, and solve engineering problems	Small
	7. an understanding of professional and ethical responsibility	Small
	8. an ability to communicate effectively through writing and drawings	Medium
	9. an ability to communicate effectively through oral presentations	Medium

	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Medium
	11. a recognition of the need for, and an ability to engage in life-long learning	Medium
	12. a knowledge of contemporary issues	Medium
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Medium
	14. an ability to explain basic concepts in management, business, public policy, and leadership	Small
List of topics covered	Daily current events Planning and construction sequencing Building codes Soils, earthwork, utilities Retaining systems, deep & shallow foundations Concrete, reinforcement, formwork Grade beams, foundation walls Structures - Cast-in-place, precast concrete, steel, tilt-up, masonry MEP rough-in Enclosure Interior partitions and framing Indoor air quality, thermal comfort and HVAC systems/equipment Plumbing systems/equipment Electrical systems/equipment Life safety systems/equipment Conveyance systems MEP trim, startup, testing, commissioning, certificate of occupancy Prefabrication Reading drawings	
Contribution to the professional component	10% Engineering Design 90% Engineering Science	
Prepared by:	Matt Morris, 10/31/2016	

Course number, name	AREN 2110 Thermodynamics	
Credits and contact hours	3-credits, three 50-min lectures per week	
Instructor(s)	Prof. Lupita D. Montoya, PhD	
Textbook, Other materials	Cengel, Yunus A., John Cimbala, Robert H. Turner, Fundamentals of Thermal-Fluid Sciences, 4th Edition McGraw-Hill, 2012.	
Course description	Explores fundamental principles of thermodynamics, including first and second law of thermodynamics, thermophysical properties, power and refrigeration cycles, gas mixtures and psychrometrics. Approved for arts and sciences core curriculum: natural science. Restricted to AREN, CVEN or EVEN, GEEN, AMEN or EVENCVEN Concurrent Degree majors only.	
Prerequisite(s)	Requires a prereq course of PHYS 1110 (min grade C-) and a prereq or coreq course of APPM 1360 or MATH 2300 (min grade C-).	
Required or elective	Required for all students in degree program	
Course learning objectives	 Analyze energy transfer and transformation in systems using fundamental concepts of properties of materials, work, heat, internal energy, entropy, equilibrium, and relations derived from the First and Second Laws of Thermodynamics. Apply principles to simple compressible systems used in a variety of applications that sustain modern society – heating, cooling, electric and mechanical power generation. Learn the methods to measure thermodynamic properties and estimate values for properties using property tables and relations. Perform thermodynamic analysis of engineering devices and systems such as piston-cylinders, compressors, turbines, pumps, heat exchangers, heat engine cycles, and refrigeration cycles using energy, materials, and entropy relations. Apply thermodynamic concepts in Civil, Environmental & Architectural Engineering such as sustainable energy technologies, energy conservation, and maintaining the global environment 	
Relationship of course to program outcomes	 <u>Program Outcomes</u> 1. an ability to apply knowledge of mathematics, science, and engineering 2. an ability to design and conduct experiments 3. an ability to analyze and interpret data 	<u>Emphasis</u> Large None Small

	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	None
	5. an ability to function on multi-disciplinary teams	None
	6. an ability to identify, formulate, and solve engineering problems	Large
	7. an understanding of professional and ethical responsibility	None
	8. an ability to communicate effectively through writing and drawings	Small
	9. an ability to communicate effectively through oral presentations	None
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Small
	11. a recognition of the need for, and an ability to engage in life-long learning	Small
	12. a knowledge of contemporary issues	Small
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Large
	14. an ability to explain basic concepts in management, business, public policy, and leadership	None
List of topics covered	Basic concepts in thermodynamics (e.g., system, state, equilibrium, cycle); Energy, energy transfer and general energy analysis; Properties of pure substances; Energy analysis of closed systems; Mass and energy analysis of control volumes; First and second law of thermodynamics; Entropy; Power and refrigeration cycles.	
Contribution to the professional component	100% Engineering Science	
Prepared by:	Lupita D. Montoya, 11/01/2016	

Course number, name	AREN 2120 Fluid Mechanics and Heat Transfer	
Credits and contact hours	3-credits, two 75-min lectures per week	
Instructor(s)	Prof. Zhiqiang (John) Zhai, PhD	
Textbook,	Cengel, Y.A., Cimbala, J.M., and Turner, R.H. Fundamentals of Thermal-Fluid Sciences, 4th Edition, McGraw-Hill, 2011, ISBN-10: 0077422406 ISBN-13: 978-0077422400.	
Other materials	Series of handouts for lecture summaries and homework assignments	
Course description	This course explores fundamental principles of fluid mechanics and heat transfer. Topics include fluid statics, momentum and energy conservations; laminar and turbulent viscous flows; conduction, convection and radiation heat transfer. Emphasizes topics and problems that are important to Architectural Engineers including flow of fluids in pipes and ducts, heat transfer in buildings and building systems.	
Prerequisite(s)	APPM 2350 or MATH 2400, and AREN 2110 or GEEN 3852 or MCEN 3012 or ASEN 2002; Requires corequisite course of APPM 2360	
Required or elective	Required for all students in degree program	
Course learning objectives	The course has two basic objectives: (i) to teach the fundamentals of engineering fluid mechanics and heat transfer and (ii) to present selected applications related to building energy systems.	
	Throughout the class we will emphasize topics and problems that a important to Architectural Engineers including flow of fluids in pipes a ducts, heat transfer in buildings and building systems.	
	Additionally, the class will touch on some broader issues of which students, as engineer should be aware. Among these are such topics as the need for sustainability in building design and ethical implications of standard design, the cost and benefits of high efficien buildings, and growing concern for indoor air quality (i.e. sick building syndrome).	
Relationship	Program Outcome	<u>Emphasis</u>
of course to program	1. an ability to apply knowledge of mathematics, science, and engineering	Large
outcomes	2. an ability to design and conduct experiments	Small
	3. an ability to analyze and interpret data	Medium
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Medium
	5. an ability to function on multi-disciplinary teams	Small

	 6. an ability to identify, formulate, and solve engineering problems 7. an understanding of professional and ethical responsibility 8. an ability to communicate effectively through writing and drawings 9. an ability to communicate effectively through oral presentations 10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context 	Large Medium Medium Medium Large
	11. a recognition of the need for, and an ability to engage in life- long learning	Large
	12. a knowledge of contemporary issues	Large
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Large
List of topics covered	 Fluid Mechanics: Compute energy flow and loss of fluids in pipes Compute required pumping power and pump heating Compute head and power loss during pumping Identify the differences between laminar and turbulent flow Compute laminar flow profiles in pipes Compute Reynolds number for flow over plates and in pipes Compute laminar and turbulent drag coefficients and head loss in Compute minor losses in laminar and turbulent flow Heat Transfer Compute thermal conduction through plates, cylinders and sphere Compute thermal conduction in lumped systems Compute forced convection coefficients over plates and in pipes Compute radiation emissions from gray bodies Compute radiation transmission through partially absorbing mate Compute view factors for common geometries 	es ictures
Contribution to the professional component	Compute radiation between elements of an enclosure 80% Engineering Science 20% Engineering Design	
Prepared by:	Zhiqiang (John) Zhai, 11/16/2016	

Course number, name	AREN 3010 Mechanical Systems for Buildings
Credits and contact hours	3-credits, two 75-min lectures per week
Instructor(s)	Prof. Zhiqiang (John) Zhai, PhD
Textbook, Other	Principles of Heating, Ventilation, and Air Conditioning in Buildings (1st Edition), John W. Mitchell, James E. Braun, 2012. Advanced Energy Design Guide for Small to Medium Office
materials	Buildings. ASHRAE, 2011; ANSI/ASHRAE/USGBC/IES Standard 189.1-2014 Standard for the Design of High-Performance Green Buildings Except Low-Rise Residential Buildings. ASHRAE, 2014
Course description	This is a required entry course for AREN on the basic design of buildings and their systems to meet the requirements of designing a comfortable and healthy building. The course examines critical elements such as psychrometrics, thermal comfort, indoor environment quality, solar conditions, envelope heat transfer, building heating and cooling loads, and HVAC components and systems.
Prerequisite(s)	AREN 2120 Fluid Mechanics and Heat Transfer; AREN 2050 Engineering Systems for Buildings
Required or elective	Required for all students in degree program
Course learning objectives	(1) The ability to identify the criteria, metrics, and mechanisms for a comfortable and healthy indoor environment. The criteria and metrics are determined by human physiology, but for practical design purposes, are also dictated by building codes and standards.
	(2) The ability to identify and analyze the characteristics of weather, building construction, and building operations as they define the requirements for comfortable and healthy indoor environment.
	(3) The ability to analyze the heating, ventilating, and air conditioning requirements of residential and small commercial buildings. Given the need to maintain a comfortable and healthy indoor environment, you will be able to determine HVAC loads (i.e., the requirements) as a function of a building's physical characteristics, its use, and its climatic location. The analyses will be performed by emploing basis environment head and its climatic location. The analyses will be approximately basis.
	 be performed by applying basic engineering knowledge with hand calculations and computer simulation. (4) The ability to select and size basic heating and cooling equipment to meet HVAC requirements. This ability requires knowledge of alternative HVAC equipment performance, the interactions among system components, and the interactions of the system with the building loads.
	(5) The ability to evaluate the impact of building design decisions on HVAC equipment size and cost, annual HVAC energy

	consumption and cost, and environmental impact of energy consumption on power plant emissions	
Relationship of course to	Program Outcome	<u>Emphasis</u>
program outcomes	1. an ability to apply knowledge of mathematics, science, and engineering	Large
	2. an ability to design and conduct experiments	Small
	3. an ability to analyze and interpret data	Large
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Large
	5. an ability to function on multi-disciplinary teams	Medium
	6. an ability to identify, formulate, and solve engineering problems	Large
	7. an understanding of professional and ethical responsibility	Medium
	8. an ability to communicate effectively through writing and drawings	Large
	9. an ability to communicate effectively through oral presentations	Medium
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Large
	11. a recognition of the need for, and an ability to engage in life-long learning	Medium
	12. a knowledge of contemporary issues	Large
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Large
	14. an ability to explain basic concepts in management, business, public policy, and leadership	Small
List of topics covered	Sustainable building design Building thermal system principles Building envelope and mechanical systems and design Building outdoor and indoor design conditions Thermal comfort and indoor air quality HVAC process and psychrometrics, load calculation and system sizing	
Contribution to the professional component	60% Engineering Science 40% Engineering Design	

Course number, name	AREN 3540: Illumination 1	
Credits and contact hours	d 3-credits, Three 50-min lectures per week	
Instructor(s)	Sr. Instructor C. Walter Beamer IV, PhD	
Textbook, Other materials	Recommended Text: Illuminating Engineering: From Edison's Lamp Second Edition, Joseph B. Murdoch	to the LED,
Course description	This course is about the fundamentals of illumination and lighting systems. The emphasis is on the technical foundations for the generation and distribution of light. This course is a basic fundamentals course that focuses on the physics of illumination with respect to lighting technology and the quantitative aspects of lighting design. For those students interested in a technically intensive career in lighting this course will be the basis for all illumination calculations. For those students more interested in the lighting design for buildings, this course will give them the technical knowledge necessary to effectively create installed lighting systems that meet the design expectations.	
Prerequisite(s)	Engineering Computing, Calculus III	
Required or elective	Required for all students in degree program	
Course learning objectives	 Upon completion of this course, the successful student will have: 1. The ability to discuss lighting using professional terminology. 2. A complete understanding of lighting fundamentals including light spectrum and the 5 fundamental units of photometry. 3. A thorough knowledge of light generation technology, including their positives, negatives, spectral characteristics, and likely failure mechanisms. 4. The ability to predict light reflection, transmission, and diffraction through physical media. 5. The ability to manipulate photometric data and derive photometric reports from luminous intensity data. 6. The ability to apply engineering calculations to lighting problems in order to verify design goals are met and to better understand the effect of the building environment on the flow of light. 7. An understanding of the basic considerations of the lighting design process. 	
Relationship of course to program outcomes	 <u>Program Outcome</u> 1. an ability to apply knowledge of mathematics, science, and engineering 2. an ability to design and conduct experiments 	<u>Emphasis</u> Large None

	3. an ability to analyze and interpret data	Small
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Small
	5. an ability to function on multi-disciplinary teams	None
	6. an ability to identify, formulate, and solve engineering problems	Large
	7. an understanding of professional and ethical responsibility	Small
	8. an ability to communicate effectively through writing and drawings	Small
	9. an ability to communicate effectively through oral presentations	None
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	None
	11. a recognition of the need for, and an ability to engage in life-long learning	Small
	learning	
	12. a knowledge of contemporary issues	Small
	C	Small Medium
	12. a knowledge of contemporary issues13. an ability to use the techniques, skills, and modern engineering	Medium
List of topics covered	 12. a knowledge of contemporary issues 13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice 14. an ability to explain basic concepts in management, business, 	Medium
covered	 12. a knowledge of contemporary issues 13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice 14. an ability to explain basic concepts in management, business, public policy, and leadership Electromagnetic spectrum, Visual evaluation of EMR, The lumen, Solid angle, The 5 lighting metrics, Flux transfer methods, Reflectance and transmittance properties of materials, Basic luminous radiative transfer, Form factors, Configuration 	Medium

Course number, name	AREN 4110 HVAC System Design
Credits and contact hours	3-credits, two 75-min lectures per week
Instructor(s)	Prof. Gregor P. Henze, Ph.D., P.E.
Textbook, Other materials	 Mitchell, J.W., and J.E. Braun. 2012. Heating, Ventilating, and Air-Conditioning, First Edition. John Wiley & Sons, New York McQuiston, F.C., J.D. Parker, and J.D. Spitler. 2005. Heating, Ventilating, and Air Conditioning: Analysis and Design, Sixth Edition. John Wiley & Sons, New York. ASHRAE. 2013. Handbook: Fundamentals, American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc., Atlanta. ASHRAE. 2012. Handbook: HVAC Systems and Equipment, American Society of Heating, Refrigerating, Refrigerating, and Air Conditioning Engineers, Inc., Atlanta.
Course description	The overall objective of this course is to prepare students for professional practice in the area of mechanical systems design for commercial buildings. Upon completion of the course, students will possess the skills to calculate heating, cooling, and ventilation requirements, design and evaluate conventional HVAC systems to meet these requirements in the context of codes and standards, and design and evaluate low-energy systems for sustainable buildings.
Prerequisite(s)	AREN 3010 Mechanical Systems for Buildings
Required or elective	Elective for students in the mechanical systems option in AREN
Course learning objectives	 Develop methods for energy-conscious design of HVAC systems in commercial buildings based on a thorough understanding of component and system performance Develop broad desire to achieve optimal energy efficiency in the context of prevailing codes and standards. Understand heating, cooling, and ventilating requirements in commercial buildings Understand HVAC equipment, including the primary equipment for providing heating and cooling in buildings and the secondary air and water distribution system equipment Understand the role of HVAC systems and building energy use in integrated and sustainable building design including economic impact of HVAC design decisions on both the initial costs of the building and the continuing operating costs Apply codes, standards, and sustainable design guidelines in the design of building HVAC systems

Program Outcome

<u>Emphasis</u>

Relationship of course to	1. an ability to apply knowledge of mathematics, science, and engineering	Large
program outcomes	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	None
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Large
	5. an ability to function on multi-disciplinary teams	Small
	6. an ability to identify, formulate, and solve engineering problems	Medium
	7. an understanding of professional and ethical responsibility	None
	8. an ability to communicate effectively through writing and drawings	Small
	9. an ability to communicate effectively through oral presentations	None
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Medium
	11. a recognition of the need for, and an ability to engage in life-long learning	Medium
	12. a knowledge of contemporary issues	Small
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Medium
	14. an ability to explain basic concepts in management, business, public policy, and leadership	None
List of topics covered	Overview of HVAC system, Building heating and cooling loads Psychrometric applications, Heat exchangers and cooling coils Ventilation and ASHRAE Std. 62, Air and water distribution system Room airflow and diffusers, Radiant heating and cooling Cooling towers, Chillers, Thermal energy storage Ground source heat pumps, Underfloor air distribution	
Contribution to the professional component	30% Engineering Science 70% Engineering Design	
Prepared by:	Gregor Henze, 1/30/2017	

Course number, name	AREN 4317Architectural Engineering Design
Credits and contact hours	5-credits, two 75-min lectures and one 1-hr. 50-min. lab per week
Instructor(s)	Sandra L. Vásconez, MS, LC
Textbook, Other materials	None
Course description	Provides a capstone experience to AREN students. Students design a modest commercial building and complete an integrated engineering design of the building systems executed for the conceptual, schematic, and design development phases. Students' teams work on structural, mechanical, electrical/lighting, and construction engineering management design. Each stage produce a professional-quality design document. Faculty and industry mentors participate in the teaching and evaluation of designs.
Prerequisite(s)	ARCH 4010, AREN 3010, AREN 3540, CVEN 3246, CVEN 3525, ECEN 3030 (all minimum grade C-).
Required or elective	Required
1	 Integrate the technical sub-disciplines of structural, mechanical, lighting and electrical, and construction engineering management to create a professional-level solution to a 12,000 to 15,000 square-foot building. Gather relevant data; understand "client" needs (as defined by AE faculty and industry mentors); identify budgetary, environmental and ethical constraints; and identify and use applicable regulations, codes and standards. Create feasible alternative designswhere appropriate, and carry out value engineering analysis. Prepare increasingly detailed designs and construction planning that satisfies project's constraints while also conforming to relevant codes and regulations and established sustainable practices. Prepare design documentation including design rationale and intent, design details and integrated project planning, scheduling and construction cost analysis to support each design stage. Communicate effectively both through oral presentations and written reports/drawings the design intent, proposed solutions, and engineering details.
	 Work in multi-disciplinary teams and in interdisciplinary formats as appropriate during different phases of the project. Realize the importance of obtaining professional credentials and engaging in life-long learning throughout their careers as engineers.

	9. Understand professional and ethical responsibilities students must exercise as students and as future practicing engineers.	
Relationship of	Program Outcome	<u>Emphasis</u>
course to program	1. an ability to apply knowledge of mathematics, science, and engineering	Large
outcomes	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	None
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Large
	5. an ability to function on multi-disciplinary teams	Large
	6. an ability to identify, formulate, and solve engineering problems	Large
	7. an understanding of professional and ethical responsibility	Small
	8. an ability to communicate effectively through writing and drawings	Large
	9. an ability to communicate effectively through oral presentations	Medium
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Medium
	11. a recognition of the need for, and an ability to engage in life- long learning	Small
	12. a knowledge of contemporary issues	Medium
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Large
	14. an ability to explain basic concepts in management, business, public policy, and leadership	None
List of topics covered	Engineering: LEED, BIM, quality control, building/energy codes, VE, sustainability, professional standards of care, case studies, written specifications, FE prep <u>Professional development</u> : leadership, ethics, life-long learning,	
	time management, presentation skills, owning a company	
Contribution to the professional component	50% Engineering Science 50% Engineering Design	
Prepared by:	Sandra Vasconez, 10/31/2016	

Course number, name	AREN 4506 Preconstruction Estimating and Scheduling
Credits and contact hours	3-credits, three 75-min lectures per week
Instructor(s)	Prof. Keith Molenaar, PhD, DBIA Assoc. Prof. Amy Javernick-Will, PhD
Textbook, Other materials	 Hinze, Jimmie. "Construction Planning and Scheduling- 4th edition." Pearson, New Jersey. Holm, Schaufelberger, Griffin and Cole. "Construction Cost Estimating: Process & Practices" Peason, New Jersey
Course description	This course provides an overview of pre-construction scheduling and estimating for building and engineering projects. We will explore project management methods with an emphasis on techniques for estimating and scheduling projects throughout the design process. We will apply lecture and reading materials to solve basic engineering problems. We will use computer programs, including Primavera and WinEst, to perform complex schedules and estimates. The course will culminate in a group project that will simulate a construction bid for a design and construction project on the University of Colorado campus.
Prerequisite(s)	CVEN 3246 Introduction to Construction
Required or elective	Elective in AREN and CVEN degrees
Course learning objectives	 Identify the concepts and phases of project management and pre-construction planning. Describe and differentiate between types of construction estimates and the role they play in the project process. Explain the fundamental concepts, tools and techniques to organize and develop estimates. Perform estimates, including conceptual and detailed estimates for building construction. Apply WinEst and the RS Means cost database to perform estimates throughout design. Describe and create a work breakdown (WBS) for a project. Describe and differentiate between relationship types when ordering activities in a project plan. Calculate the early start, early finish, late start and late finish for activities and the early/late finish, total float and free float for a project using the critical path method (CPM). Apply Primavera P6 to schedule complex design and construction activities. Create project schedules, including cost-loaded schedules, by applying the materials from the class to a project.

Program Outcome

Relationship of course to	1. an ability to apply knowledge of mathematics, science, and engineering	Medium
program outcomes	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	Medium
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Small
	5. an ability to function on multi-disciplinary teams	Small
	6. an ability to identify, formulate, and solve engineering problems	Medium
	7. an understanding of professional and ethical responsibility	Small
	8. an ability to communicate effectively through writing and drawings	Medium
	9. an ability to communicate effectively through oral presentations	Medium
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Small
	11. a recognition of the need for, and an ability to engage in life-long learning	Small
	12. a knowledge of contemporary issues	Small
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Medium
	14. an ability to explain basic concepts in management, business, public policy, and leadership	Medium
List of topics covered	Project management Estimating techniques (conceptual, assemblies and cost-based) Computer estimating methods (RSMeans and WinEst) Subcontractor bid analysis Scheduling techniques (bar charts and critical path method) Computer scheduling methods (Primavera P6) Project cash flow analysis	
Contribution to the professional component	90% Engineering Science 10% Engineering Design	
Prepared by:	Keith Molenaar, 10/9/2016	

Course number, name	AREN 4550 Illumination II
Credits and contact hours	3-credits, three 50-min lectures
Instructor(s)	Sandra L. Vasconez, MS, LC
Textbook,	Required:
Other materials	 Designing with Light, The Art, Science, and Practice of Architectural Lighting Design, Jason Livingston, 2014. Other: Architectural Lighting Magazine – Selected Articles; Architectural Lighting, Designing with Light and Space, Herve Descottes with Cecilia E. Ramos; The Architecture of Light, Sage Russell; IES/ASHRAE 90.1 – Lighting Section; IESNA Lighting Handbook, 10th ed., David DiLaura, et.al. (editor); LD+A Magazine – Selected Articles; Lighting Research Center Web site
Course description	Studies the fundamentals of architectural illumination. Introduces and applies basic principles and vocabulary to elementary problems in the lighting of environments for the performance of visual work and the proper interaction with architecture.
Prerequisite(s)	AREN 3540
Required or elective	Required
Course learning objectives	 Identify fundamental aspects of color vision and use that knowledge to appraise how light/lighting can be applied in architectural settings to improve visual comfort and performance. Acquire the lighting vocabulary used in architectural lighting so that even if a student chose not to work with lighting and lighting systems in their professional career, they still have the understanding required to work with lighting architectural engineers. Apply the lighting design process and basic lighting techniques to simple architectural lighting problems. Design simple yet practical architectural lighting solutions. This means selecting the appropriate lighting equipment that will achieve a desired lighting effect. The student will: understand performance characteristics of lamps, ballasts, and controls. Understand how these components perform within a lighting system. Select and specify luminaries Verify through lighting calculations photometric objectives as well as the light levels required to meet specific design goals.

	 e. Select basic lighting controls strategies and devices. Explore the integration of daylighting with electrical lighting through the use of controls. f. Present and describe desired lighting effects through sketches and produce lighting-layouts using standard formats and symbols. g. Develop a personal philosophy of lighting design, albeit this philosophy will evolve throughout the student's lighting career 	
Relationship	Program Outcome	<u>Emphasis</u>
of course to program outcomes	1. an ability to apply knowledge of mathematics, science, and engineering	Small
outcomes	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	None
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Large
	5. an ability to function on multi-disciplinary teams	Small
	6. an ability to identify, formulate, and solve engineering problems	Small
	7. an understanding of professional and ethical responsibility	Small
	8. an ability to communicate effectively through writing and drawings	Large
	9. an ability to communicate effectively through oral presentations	None
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Small
	11. a recognition of the need for, and an ability to engage in life- long learning	Small
	12. a knowledge of contemporary issues	Medium
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Large
List of topics covered	The lighting design profession, communicating design ideas, visual performance, accent illuminance ratios, light and color, Visual, AGI32, Psychology of light, lamps, luminaires and cutsheets, controls, design process, luminaire specification, design documentation, codes and sustainability.	
Contribution to the professional component	10% Engineering Science 90% Engineering Design	
Prepared by:	Sandra Vasconez, 10/21/2016	

Course number, name	AREN 4560: Luminous Radiative Transfer
Credits and contact hours	3-credits, Three 50-min lectures per week
Instructor(s)	Sr. Instructor C. Walter Beamer IV, PhD
Textbook	Recommended Text: Thermal Radiation Heat Transfer ,Fifth Edition, John R. Howell, Robert Siegel, M. Pinar Menguc
Course description	It is a study of the interaction of light and architecture. The nature of this interaction is described by a process usually referred to as "radiative transfer"; that is, the transfer of electromagnetic energy by radiative means. The descriptor "luminous" is added to indicate that the interactions studied are limited to those involving that part of the electromagnetic spectrum responsible for the sense of vision. This descriptor also indicates that the result of this interaction is ultimately assessed by visual perception, in its various forms.
	The mathematical models that have been developed to describe this interaction are presented. Their use for the analysis of lighting systems and architecture is demonstrated. Additionally, these models are used to help design lighting systems and architecture. The mathematical models are given utility by being cast into computer programs that are used to solve various lighting and architectural problems.
Prerequisite(s)	Engineering Computing, Calculus III, AREN 3540 Illumination 1
Required or elective	Technical Elective
Course	The learning objectives of this course are:
learning objectives	1. To give you a comfortable understanding of the physical (photometric) basis for radiative transfer.
	2. To give you an understanding of the concepts which define and describe radiative transfer.
	3. To give you an understanding of the mathematics which describe radiative transfer.
	4. To give you practice at using the mathematics to solve real lighting and architectural problems involving radiative transfer.
	5. To give you the skill of evaluating an architectural/lighting problem , extracting the essential radiative transfer involved, and producing architectural/lighting solutions.
	Program Outcome

Program Outcome

<u>Emphasis</u>

Relationship of course to	1. an ability to apply knowledge of mathematics, science, and engineering	Large
program outcomes	2. an ability to design and conduct experiments	Small
	3. an ability to analyze and interpret data	Small
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Small
	5. an ability to function on multi-disciplinary teams	None
	6. an ability to identify, formulate, and solve engineering problems	Large
	7. an understanding of professional and ethical responsibility	None
	8. an ability to communicate effectively through writing and drawings	Small
	9. an ability to communicate effectively through oral presentations	None
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	None
	11. a recognition of the need for, and an ability to engage in life-long learning	Small
	12. a knowledge of contemporary issues	Small
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Medium
	14. an ability to explain basic concepts in management, business, public policy, and leadership	None
List of topics covered	MATLAB programming, Basic file I/O, Numerical methods for surface and contour integrals, Advanced luminous radiative transfer, Form factors, Configuration factors, Blocking algorithms, Simple raytracing, Rendering luminous scenes, 3D modeling.	
Contribution to the professional component	95% Engineering Science 5% Engineering Design	
Prepared by:	Walter Beamer, 12/6/2016	

Course number, name	AREN 4570 Building Electrical Systems	
Credits and contact hours	3-credits, two 75-min lectures per week	
Instructor(s)	Prof. Moncef Krarti, PhD, PE	
Textbook, Other materials	No textbook required, a series of handouts are provided Readings from: National Electrical Code. National Fire Protection Agency, 2014.	
Course description	The design procedures for electrical distribution systems suitable for residential and commercial buildings are provided throughout the course. In particular, the main safety requirements from NEC are highlighted and used to design electrical systems for both dwellings and small commercial buildings.	
Prerequisite(s)	ECEN 3030: Electrical Circuits	
Required or elective	Required for all Lighting/Electrical students in AREN degree program	
Course learning objectives	 Review the electrical circuit fundamentals. Be familiar with operation and characteristics of motors and transformers. Know the various protection devices used in electrical distribution systems. Design an electrical system for a residential building and a small office building according to the requirements of the National Electrical Code (NEC). Design energy efficient electrical systems for commercial buildings. 	
Relationship	Program Outcome	<u>Emphasis</u>
of course to program outcomes	1. an ability to apply knowledge of mathematics, science, and engineering	Medium
	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	None
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Large
	5. an ability to function on multi-disciplinary teams	Small
	6. an ability to identify, formulate, and solve engineering problems	Small
	7. an understanding of professional and ethical responsibility	Medium
	8. an ability to communicate effectively through writing and drawings	Large

	9. an ability to communicate effectively through oral presentations	Small
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Medium
	11. a recognition of the need for, and an ability to engage in life-long learning	Medium
	12. a knowledge of contemporary issues	Small
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Medium
	14. an ability to explain basic concepts in management, business, public policy, and leadership	None
List of topics covered	Overview of basic electrical circuits for AC and DC circuits. Review of basic components of electrical distribution systems for buildings.	
	Review National Electrical Code (NEC) safety requirements Design procedures for electrical systems for buildings	
Contribution to the professional component	30% Engineering Science 70% Engineering Design	
Prepared by:	Moncef Krarti, 11/8/2016	

Course number, name	REN 4506 Preconstruction Estimating and Scheduling			
Credits and contact hours	3-credits, three 75-min lectures per week			
Instructor(s)	Prof. Keith Molenaar, PhD, DBIA Assoc. Prof. Amy Javernick-Will, PhD			
Textbook, Other materials	Hinze, Jimmie. "Construction Planning and Scheduling- 4th edition." Pearson, New Jersey.Holm, Schaufelberger, Griffin and Cole. "Construction Cost Estimating:			
	Process & Practices" Peason, New Jersey			
Course description	This course provides an overview of pre-construction scheduling and estimating for building and engineering projects. We will explore project management methods with an emphasis on techniques for estimating and scheduling projects throughout the design process. We will apply lecture and reading materials to solve basic engineering problems. We will use computer programs, including Primavera and WinEst, to perform complex schedules and estimates. The course will culminate in a group project that will simulate a construction bid for a design and construction project on the University of Colorado campus.			
Prerequisite(s)	CVEN 3246 Introduction to Construction			
Required or elective	Elective in AREN and CVEN degrees			
Course learning	1. Identify the concepts and phases of project management and pre-constructi planning.	on		
objectives	 Describe and differentiate between types of construction estimates and the they play in the project process. 	role		
	3. Explain the fundamental concepts, tools and techniques to organize and de estimates.	velop		
	4. Perform estimates, including conceptual and detailed estimates for building construction.	2		
	5. Apply WinEst and the RS Means cost database to perform estimates throug design.	ghout		
	6. Describe and create a work breakdown (WBS) for a project.7. Describe and differentiate between relationship types when ordering activities in a project plan.			
	 8. Calculate the early start, early finish, late start and late finish for activities and the early/late finish, total float and free float for a project using the critical path method (CPM). 			
	 9. Apply Primavera P6 to schedule complex design and construction activitie 10. Create project schedules, including cost-loaded schedules, by applying the materials from the class to a project. 			
	Program Outcome Emp	ohasis		

Relationship of course to	1. an ability to apply knowledge of mathematics, science, and engineering	Medium
program outcomes	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	Medium
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Small
	5. an ability to function on multi-disciplinary teams	Small
	6. an ability to identify, formulate, and solve engineering problems	Medium
	7. an understanding of professional and ethical responsibility	Small
	8. an ability to communicate effectively through writing and drawings	Medium
	9. an ability to communicate effectively through oral presentations	Medium
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Small
	11. a recognition of the need for, and an ability to engage in life-long learning	Small
	12. a knowledge of contemporary issues	Small
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Medium
	14. an ability to explain basic concepts in management, business, public policy, and leadership	Medium
List of topics covered	Project management Estimating techniques (conceptual, assemblies and cost-based) Computer estimating methods (RSMeans and WinEst) Subcontractor bid analysis Scheduling techniques (bar charts and critical path method) Computer scheduling methods (Primavera P6) Project cash flow analysis	
Contribution to the professional component	90% Engineering Science 10% Engineering Design	
Prepared by:	Keith Molenaar, 10/9/2016	

Course number, name	AREN 4830 Computer Simulation for Building Energy Systems	
Credits and contact hours	3-credits, two 75-min lectures per week	
Instructor(s)	Prof. Moncef Krarti, PhD, PE	
Textbook, Other materials	No textbook required, a series of handouts are provided Readings from: ASHRAE handbooks and engineering manuals of DOE-2 and EnergyPlus computer tools.	
Course description	Overview of basic heating and cooling thermal load calculation methods as well as modeling techniques of building energy systems. In particular, energy analysis tools are introduced to assess the impact of various energy efficiency measures and control strategies on the thermal performance of both residential and commercial buildings.	
Prerequisite(s)	AREN 3010: Mechanical Systems for Buildings	
Required or elective	Required for Mechanical students in AREN degree program	
Course learning objectives	 Introduce advanced energy modeling techniques including time-domain and frequency-domain analysis to determine heating and cooling loads in buildings. Conduct building energy analysis using the state-of-the- art building simulation program DOE-2 and EnergyPlus. Introduce commercially available software such as eQUEST, EnergyPlus, Design Builder, and BEOpt. Perform parametric and optimization analyses to evaluate the effects of various design features and/or operational parameters in building energy use. 	
Relationship of course to program	Program Outcome 1. an ability to apply knowledge of mathematics, science, and	<u>Emphasis</u> Medium
	engineering	
outcomes	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	None
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Medium
	5. an ability to function on multi-disciplinary teams	Small
	6. an ability to identify, formulate, and solve engineering problems	Small
	7. an understanding of professional and ethical responsibility	Medium
	8. an ability to communicate effectively through writing and drawings	Medium

	 9. an ability to communicate effectively through oral presentations 10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and 	Small Medium
	societal context 11. a recognition of the need for, and an ability to engage in life-long	Small
	learning	S
	12. a knowledge of contemporary issues	Small
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Medium
	14. an ability to explain basic concepts in management, business, public policy, and leadership	None
List of topics covered	Overview of modeling methods and techniques of building energy systems	
	Hands-on practice to use whole-building energy simulation tools commonly used in thermal analysis of residential and commercial buildings.	
	Review effective energy efficiency measures to improve thermal performance of buildings.	
	Perform parametric and optimization analysis to design building energy systems.	
Contribution	90% Engineering Science	
to the professional component	10% Engineering Design	
Prepared by:	Moncef Krarti, 2/17/2017	

Course number, name	AREN 4890 Sustainable Building Design
Credits and contact hours	3-credits, two 75-min lectures per week
Instructor(s)	Prof. Gregor P. Henze, Ph.D., P.E.
Textbook, Other materials	Advanced Building Technologies for Sustainability Asif Syed, ISBN: 978-0-470-54603-1, Wiley & Sons, Inc. Advanced Energy Design Guide for Small to Medium Office Buildings Free download at ASHRAE: https://www.ashrae.org/standards- researchtechnology/advanced-energy-design-guides/50- percent-aedg-free-download.
Course description	Project and presentation based course that focuses on building performance analysis by simulation based on a series of lectures discussing energy efficiency technologies applied in best-practice buildings in Germany. Through the use of building simulation programs, students will examine relevant design parameters and their influence on the efficiency of these design strategies and technologies as well as on the overall energy consumption of a building. The simulations are related to a high-performance office building and will aim at optimizing the architectural design concept. Besides energy performance, a special focus will be placed on thermal comfort and indoor air quality evaluation including their integration in building simulation platforms.
Prerequisite(s)	AREN 3010 Mechanical Systems for Buildings AREN 4110 HVAC System Design
Required or elective	Elective for students in the mechanical systems option in AREN
Course learning objectives	 Evaluate building performance analysis by simulation Analyze energy and climate conscious design (super insulation, ventilation concepts, passive cooling strategies) as well as integrated energy concepts Examine relevant design parameters and their influence on the efficiency of these design strategies and technologies as well as on the overall energy consumption of a building Identify, understand and successfully synthesize architectural and engineering principles of climate and energy conscious design to create a highly comfortable indoor climate Understand to which extent the design concepts can be transferred into different climates Experience strategies of abstraction and reduction of problems to use the appropriate tool or model for the respective question and to use them in the most effective way Attain proficiency for the use of simulation to explore novel energy efficiency technologies for buildings

Relationship of course to program outcomes	<u>Program Outcome</u>1. an ability to apply knowledge of mathematics, science, and eng.2. an ability to design and conduct experiments	<u>Emphasis</u> Medium None
	3. an ability to analyze and interpret data	None
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Large
	5. an ability to function on multi-disciplinary teams	Large
	6. an ability to identify, formulate, and solve engineering problems	Medium
	7. an understanding of professional and ethical responsibility	None
	8. an ability to communicate effectively through writing and drawings	Small
	9. an ability to communicate effectively through oral presentations	Large
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Medium
	11. a recognition of the need for, and an ability to engage in life-long learning	Medium
	12. a knowledge of contemporary issues	Small
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Large
	14. an ability to explain basic concepts in management, business, public policy, and leadership	None
List of topics covered	Climate/micro-climate parameters and their relevance for climate- conscious design, Building simulation in design practice, Introduction to OpenStudio, Innovative heat insulation technologies and passive solar energy use, Ventilation in winter and summer, Comfort requirements and impact on design strategies and HVAC concepts, Passive cooling – solar and internal loads, heat storage capacity of buildings, night ventilation, ground-to-air heat exchangers, cooling with thermally activated building systems	
Contribution to the professional component	20% Engineering Science 80% Engineering Design	
Prepared by:	Gregor Henze, 1/30/2017	

CHEN 1211 - General Chemistry for Engineers

Course Syllabus

- 8. Course number and name: CHEN 1211 General Chemistry for Engineers
- 9. Credits and contact hours 4 credit hours/4 contact hours
- 10. Instructor's or course coordinator's name Michael Shirts

11. Textbook, title, author, and year

McMurry and Fay, Chemistry 6th ed., Prentice Hall, 2012

a. other supplemental materials iClickers Sapling Learning subscription D2L

12. Specific course information

a. brief description of the content of the course (catalog description)

One-semester lecture and recitation course designed to meet the general chemistry requirement for engineering students. Topics include stoichiometry; thermodynamics; gases, liquids, and solids; equilibrium; acids and bases; bonding concepts; kinetics; reactions; and materials science. Examples and problems illustrate the application of chemistry to engineering sub-disciplines. Department enforced prereqs., one year of high school chemistry or CHEM 1021 (min. grade C-) and high school algebra. Not recommended for students with grades below B- in CHEM 1021. Credit not granted for this course and CHEM 1113/1114, 1251, or 1351.

- b. prerequisites or co-requisites Recommended co-req. CHEM 1211
- c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program.

- a. specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic. After completing the work in this course, students will be able to
 - Provide meaningful and quantitative answers for the questions:
 - What is the nature of matter?
 - How can we predict the properties of matter, and how is the periodic table helpful?
 - What makes chemicals react, and why do reactions go in a particular direction?
 - How can we quantify changes in chemical reactions?
 - Solve quantitative engineering problems more easily problem solving
 - Better appreciate of the richness of chemistry and its influence on your life.

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.

14. Brief list of topics to be covered

- Atomic Structure
- Compounds, Balancing Equations
- Yield, Limiting Reactants, Solutions
- Percent Composition, Combustion Analysis
- Reactions In Aqueous Media
- Bases, Redox Reactions
- Redox Reactions
- Atomic Structure
- Atomic Structure
- Electron Configuration
- Ionic Bonds
- Lewis Dot Structures, Resonance, Formal Charge
- Resonance, Formal Charge, Vsepr
- Valence Bond And Hybridization
- Intro To Thermochemistry
- Hess's Law, Calculating Heats Of Reaction
- Entropy, Gibb's Free Energy, Gas Laws
- Dalton's Law, Kinetic Theory, Real Gases
- Intermolecular Forces
- Phase Changes, Vapor Pressure
- Solids, Phase Diagrams
- Reaction Rates And Orders, Initial Rates
- Integrated Rate Laws, Half-Lives, Mechanisms
- Rate Laws, Arrhenius Equation, Catalysis
- Equilibrium Constants
- Equilibrium Concentrations, Le Chatelier
- More Lechatelier
- Kinetics, Intro To Acids And Base Equilibria
- Ph, Weak Acid/Base Equilibria
- Percent Dissociation, Polyprotic Acids, Salts, Lewis Acids
- Neutralization, Common Ions, Buffers
- Buffers Continued
- Titrations
- Titrations Continued, Solubility
- Solubility, Precipitation
- Entropy And Probability
- Entropy And Thermodynamics
- Free Energy
- Free Energy And Chemical Equilibrium

Course alpha, number, title	CHEM 1221 Engineering General Chemistry Lab
Required or elective	Required for all students in degree program
Course description	One hour recitation in which concepts and problems are re- emphasized, homework is collected, and quizzes are given. Three hour lab in which students perform experiments designed to illustrate chemical concepts discussed in CHEN 1211. Also introduction to basic techniques in chemical measurements and synthesis.
Prerequisite(s)	One year high school chemistry or minimum grade of C- in CHEM 1001 or 1021; high school algebra. Coreq., CHEN 1211.
Textbook(s) and/or other required material	There is no textbook but there is a laboratory manual.
Class/Lab schedule	Total Credits: 2 Recitation 50-minutes 1x/week; lab 3 hrs 1x/wk
Instructor	Douglas Gin
Topics covered	 Chemical reactions of copper How acidic is your vinegar? Atomic Spectroscopy Ionic and covalent compounds Enthalpy changes in chemical reactions identifying an unknown metal from determination of its molar mass Avogadro's number Freezing point depression Kinetics of reactions of the ferroin complex Equilibrium Studies of the Iron(III) Thiocyanate reaction
Course learning objectives	 to learn how a chemist thinks and works to discuss difficult points in small recitation classes to develop experimental skills to learn how to carefully observe and measure
Relationship of course to program outcomes	Program Outcome1. an ability to apply knowledge of mathematics, science, and engineeringLarge
	2. an ability to design and conduct experiments Large
	 an ability to analyze and interpret data Large an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic,

	environmental, social, political, ethical, health and safety, manufacturability, and sustainabilityN/A5. an ability to function on multi-disciplinary teamsN/A
	6. an ability to identify, formulate, and solve engineering problems N/A
	 7. an understanding of professional and ethical responsibility N/A 8. an ability to communicate effectively through writing and drawings N/A
	9. an ability to communicate effectively through oral presentations $$\rm N/A$$
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context N/A
	11. a recognition of the need for, and an ability to engage in life-long learning N/A
	12. a knowledge of contemporary issues N/A
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice N/A
	14. an ability to explain basic concepts in management, business, public policy, and leadership N/A
Contribution to the professional component	100% Math and Basic Science

CHEN 1310 - Introduction to Computing for Engineers

Course Syllabus

- 1. **Course number and name** CHEN 1310 – Introduction to Computing for Engineers
- 2. Credits and contact hours 3 credit hours/3 contact hours
- 3. Instructor's or course coordinator's name Charlie Nuttelman
- 4. Textbook, title, author, and year:

Optional:

Engineering with Excel, Fourth Addition. Larsen, Ronald W. Pearson Prentice Hall *Matlab for Engineers,* Third Edition. Moore, Holly. Pearson Prentice Hall.

a. **other supplemental materials** Subscription to Top Hat (www.tophat.com) MatLab

5. Specific course information

- a. **brief description of the content of the course (catalog description)** Introduces the use of computers in engineering problem solving, including elementary numerical methods. Teaches programming fundamentals, including data and algorithm structure, and modular programming. Software vehicles include Excel/VBA and Matlab. Formerly GEEN 1300 and COEN 1300.
- b. prerequisites or co-requisites APPM 1340, 1345, or 1350, or MATH 1300
- c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program.
- 6. Specific goals for the course
 - a. specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.
 - b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.
- 7. Brief list of topics to be covered

Course number, name	CVEN 2121: Analytical Mechanics 1 (Statics)	
Credits and contact hours	3-credits, three 50-min lectures per week	
Instructor(s)	Assist. Prof. Petros Sideris, PhD, E.I.T	
Textbook, Other	Engineering Mechanics – Statics by R. C. Hibbeler, 14 th Edition, Prentice Hall/ Pearson.	
materials	Supplemental notes provided by the instructor	
Course description	Application of mechanics to the study of static equilibrium of rigid and elastic bodies. Topics include composition and resolution of forces; moments and couples; equivalent force systems; free-body diagrams; equilibrium of particles and rigid bodies; forces in trusses and beams; frictional forces; first and second moments of area; moments and products of inertia	
Prerequisite(s)	PHYS 1110, APPM 2350	
Required or elective	Required for all students in degree program	
Course learning	 Calculate the resultant forces and moments in 2D and 3D systems. 	
objectives	 Draw free-body diagrams for particles and rigid bodies. Solve particle and rigid body problems using the principle of static equilibrium. 	
	4) Analyze 2D trusses using methods of joints and methods of sections.	
	5) Calculate internal forces in a beam and plot axial-force, shear-force and bending-moment diagrams.	
	6) Calculate the location of the center of gravity and the centroid of a given shape/volume.	
	7) Calculate moment of inertia for an area/volume over a given rotational axis.	
Relationship	Program Outcome	<u>Emphasis</u>
of course to program	1. an ability to apply knowledge of mathematics, science, and engineering	Large
outcomes	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	None
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	None
	5. an ability to function on multi-disciplinary teams	None

	6. an ability to identify, formulate, and solve engineering problems	Large
	7. an understanding of professional and ethical responsibility	Small
	8. an ability to communicate effectively through writing and drawings	Medium
	9. an ability to communicate effectively through oral presentations	None
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Medium
	11. a recognition of the need for, and an ability to engage in life-long learning	Medium
	12. a knowledge of contemporary issues	Small
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Medium
	14. an ability to explain basic concepts in management, business, public policy, and leadership	None
List of topics covered	 Introduction (Concepts, Units, Calculations, Analysis Procedures) Force Vectors Equilibrium of a Particle 	
	 Systems of Forces and Moments 	
	5. Equilibrium of a Rigid Body	
	 6. Structural Analysis of Trusses 7. Internal Axial/Shear Forces and Moments 	
	 8. Centroids & Centers of Gravity 	
	9. Moments of Inertia	
	10. Friction	
Contribution to the	100% Engineering Science	
professional component		

Prepared by: Petros Sideris, 10/08/2016

Course number, name	CVEN3161 Mechanics of Materials I	
Credits and contact hours	3-credits, three 50-min lectures per week	
Instructor(s)	Prof.Yunping Xi, PhD, Full Professor	
Textbook, Other materials	Roy R. Craig, Jr. (2000) "Mechanics of Materials", John Wiley & Sons, New York	
Course description	Addresses concepts of stress and strain; material properties, axial loading, torsion, simple bending, and transverse shear; analysis of stress and strain; and deflections of beams. Includes selected experimental and computational laboratories.	
Prerequisite(s)	CVEN 2121 Analytical Mechanics 1. CVEN 2360 Introduction to Differential Equations with Linear Algebra	
Required or elective	Required for all students in degree program	
Course learning objectives	 The ability to find analytical solution of a single structural member under different loading conditions, such as tension, compression, torsion, and bending. The analytical solution includes selection of cross section and examination of safety of a structural member. The ability to analyze stress and strain states and find the principal stresses and strains. The ability to establish stress-strain relation of brittle and ductile materials based on hands-on experience of tensile, compressive, and torsional testing of various construction materials. 	
	4. The ability to analyze test data and write laboratory reports.	
Relationship	Program Outcome	<u>Emphasis</u>
of course to program	1. an ability to apply knowledge of mathematics, science, and engineering	Large
outcomes	2. an ability to design and conduct experiments	Medium
	3. an ability to analyze and interpret data	Large
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Small
	5. an ability to function on multi-disciplinary teams	None
	6. an ability to identify, formulate, and solve engineering problems	Medium
	7. an understanding of professional and ethical responsibility	Small
	8. an ability to communicate effectively through writing and drawings	Large
	9. an ability to communicate effectively through oral presentations	Small
		191

	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Small
	11. a recognition of the need for, and an ability to engage in life-long learning	Medium
	12. a knowledge of contemporary issues	Small
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Large
	14. an ability to explain basic concepts in management, business, public policy, and leadership	Small
List of topics covered		
Contribution	80% Engineering Science	
to the professional component	20% Engineering Design	
D 11	N N. 11/10/2017	

Prepared by: Yunping Xi, 11/10/2016

Course number, name	CVEN 3246 Introduction to Construction	
Credits and contact hours	3-credits, two 75-min lectures per week	
Instructor(s)	Prof. Matthew R. Hallowell, PhD	
Textbook, Other materials	Knutson, K., Schexnayder, C., Fiori, C. and Mayo, R. (2004). "Construction management fundamentals 2 nd edition" McGraw Hill, New York, NY.	
Course description	Broad view of concerns, activities, and objectives of people involved in construction: the owner, architect/engineer, contractor, labor, and inspector. Interactive gaming situation relates these people to the construction contract, plans/specifications, estimates/bids, scheduling, law, and financial management. Students with a Business School Real Estate emphasis may be considered for this course.	
Prerequisite(s)	None	
Required or elective	Required for all students in degree program	
Course learning objectives	 Describe the roles of key project players Select an appropriate project delivery method for a construction project Estimate the cost of a basic structure or roadway Calculate the equivalence of a series of economic investments Schedule a series of construction tasks using the critical path method Analyze a balance sheet Identify the requisite elements of a contract Identify and analyze project risks Identify and assess hazards on construction projects 	
Relationship	Program Outcome	<u>Emphasis</u>
of course to program	1. an ability to apply knowledge of mathematics, science, and engineering	None
outcomes	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	None
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Medium
	5. an ability to function on multi-disciplinary teams	Small
	6. an ability to identify, formulate, and solve engineering problems7. an understanding of professional and ethical responsibility	None Medium

	8. an ability to communicate effectively through writing and drawings	Small
	9. an ability to communicate effectively through oral presentations	Small
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Medium
	11. a recognition of the need for, and an ability to engage in life-long learning	Small
	12. a knowledge of contemporary issues	Medium
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	None
	14. an ability to explain basic concepts in management, business, public policy, and leadership	Medium
List of topics	Project contracts	
covered	Project delivery strategies	
	Introduction to basic risk analysis	
	Project controls	
	Engineering economics	
	Productivity measurement Hazard recognition and construction safety	
	Trazard recognition and construction safety	
Contribution	90% Engineering Science	
to the professional component	10% Engineering Design	
Prepared by:	Matthew Hallowell, 11/1/2016	

Course number, name	CVEN 3256 Construction Equipment and Methods	
Credits and contact hours	3-credits, three 50-min lectures per week	
Instructor(s)	Paul M. Goodrum, PhD, PE and Matthew R. Hallowell, PhD	
Textbook, Other materials	 Peurifoy, R., Schexnayder, C., Shapira, A., and Schmidt, R. (2010). Construction Planning, Equipment, and Methods. 8th Edition. McGraw-Hill. Readings regarding construction formwork design from: Nunnally, S. W., <u>Construction Methods and Management</u>, 6th Ed., Prentice-Hall, 2003. Additional Material & References will also be used. 	
Course description	Integrated study of construction equipment, methods, and economics. Topics include equipment productivity, equipment selection, and construction engineering design within economic constraints. Examples include earthmoving, concrete formwork, and temporary construction.	
Prerequisite(s)	CVEN 3246 – Introduction to Construction Engineering	
Required or elective	Elective and can be taken as a proficiency course in construction engineering and management	
Course learning objectives	 Understand the different measurements and assessment techniques of productivity Understand how to estimate earthwork volumes Understand how to estimate production rates of excavators, tractors, dozers, and scrapers Understand how to determine safe lifting capacities of cranes Understand how to estimate production rates of loaders and haulers Understand the methodology and how to estimate production rates of compaction and finishing Understand the methodology of rock excavation Understand the methodology of concrete construction Understand the methodology of steel construction Understand the methodology of steel construction Understand the design procedures of temporary support systems including formwork design, scaffolding, and shoring. 	
Relationship	Program Outcome	<u>Emphasis</u>
of course to program	1. an ability to apply knowledge of mathematics, science, and engineering	Large
outcomes	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	Medium
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic,	Large

	environmental, social, political, ethical, health and safety, manufacturability, and sustainability	
	5. an ability to function on multi-disciplinary teams	Small
	6. an ability to identify, formulate, and solve engineering problems	Medium
	7. an understanding of professional and ethical responsibility	Medium
	8. an ability to communicate effectively through writing and drawings	Medium
	9. an ability to communicate effectively through oral presentations	Medium
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Small
	11. a recognition of the need for, and an ability to engage in life-long learning	Low
	12. a knowledge of contemporary issues	Medium
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Medium
	14. an ability to explain basic concepts in management, business, public policy, and leadership	Medium
List of topics covered	 Construction Productivity Construction Modeling Earthwork Fundamentals Tractors, Dozers, and Rippers Construction Equipment Economics Scrapers and Excavators Cranes and Heavy Lift Planning Loaders and Haulers Compaction and Finishing Rock Excavation Asphalt & Concrete Paving Foundation Systems Concrete Construction Timber Construction Steel Construction Formwork Design 	
Contribution to the professional	70% Engineering Science 30% Engineering Design	

component

Course number, name	CVEN 3525 Structural Analysis	
Credits and contact hours	3-credits, two 75-min lectures per week	
Instructor(s)	Prof. Victor Saouma, PhD	
Textbook, Other materials	Hibbeler R.C., <i>Structural Analysis</i> , Prentice Hall, 9th ed. Various Handouts, papers.	
Course description	This introductory course will provide the technical foundation to properly understand the analysis of statically determinate (simple) and indeterminate (complex) structures such as cables, trusses, frames, arches. Whereas emphasis will be on 2D structures, students will also be exposed to some 3D cases. Techniques of analysis include flexibility (hand calculation) and stiffness (computer based) methods. They will also be exposed to a widely used commercial program for the analysis of structure, and will be encouraged to program in Matlab and use Mathcad for their assignments. There will be at least one presentation by a Structural Engineer who will discuss the challenges of the profession.	
Prerequisite(s)	Cven 3161	
Required or elective	prerequisite to CVEN-4545 (Steel Design), CVEN-4555 (Reinforced Concrete Design), CVEN-4525 Matrix Analysis	
Course learning objectives	 Acquire abilities to Apply knowledge of mathematics, science, and engineering Identify, formulate, and solve engineering problems. Communicate effectively through writing and drawings Use the techniques, skills, and modern engineering tools necessary for engineering practice 	
Relationship	Program Outcome	<u>Emphasis</u>
of course to program	1. an ability to apply knowledge of mathematics, science, and engineering	-
outcomes	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	None
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Small
	5. an ability to function on multi-disciplinary teams	None
	6. an ability to identify, formulate, and solve engineering problems	Large
	7. an understanding of professional and ethical responsibility	None

	8. an ability to communicate effectively through writing and drawings	Small
	9. an ability to communicate effectively through oral presentations	None
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Medium
	11. a recognition of the need for, and an ability to engage in life-long learning	Medium
	12. a knowledge of contemporary issues	None
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Large
	14. an ability to explain basic concepts in management, business, public policy, and leadership	None
List of topics covered	Analysis of statically indeterminate 2D and 3D structures; Flexibility method. Stiffness method. Curv ed members.	
Contribution to the professional component	90% Engineering Science 10% Engineering Design	
Prepared by:	Victor Saouma, 10/31/2016	

Course number, name	CVEN4161 Mechanics of Materials II	
Credits and contact hours	3-credits, three 50-min lectures per week	
Instructor(s)	Prof.Yunping Xi, PhD, Full Professor	
Textbook, Other materials	Boresi, A.P., and Schmidt, R.J. (2003) "Advanced Mechanics of Materials", the sixth edition, John Wiley & Sons, New York. Roy R. Craig, Jr. (2011) "Mechanics of Materials", John Wiley & Sons, New York	
Course description	Addresses concepts of elastic and inelastic material properties, buckling of columns, torsion analysis of members of noncircular cross sections, nonsymmetric bending, shear center, 3D analysis of stress and strain; anisotropic Hooke's law, and failure theories. Includes selected experimental and computational laboratories.	
Prerequisite(s)	CVEN 3161 Mechanics of Materials I	
Required or elective	Required for all students in degree program	
Course learning objectives	 The ability to find analytical solution of a single structural member under different loading conditions, such as compression, torsion on noncircular cross sections, and bending on nonsymmetric cross sections. The material behaviors include isotropic and anisotropic, elastic and inelastic behaviors. The ability to analyze stress and strain states and find the principal stresses and strains in 3D loading configurations. The analytical solution includes selection of cross section and examination of safety of a structural member using various 3D failure theories. The ability to determine buckling load of columns, shear center of nonsymmetric cross sections, and elastic parameters of anisotropic materials based on hands-on experience of lab testing on different construction materials. The ability to analyze test data and write laboratory reports. 	
Relationship	Program Outcome	<u>Emphasis</u>
of course to program	1. an ability to apply knowledge of mathematics, science, and engineering	Large
outcomes	2. an ability to design and conduct experiments	Medium
	3. an ability to analyze and interpret data	Large
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Small
	5. an ability to function on multi-disciplinary teams	None
	6. an ability to identify, formulate, and solve engineering problems	Medium
	7. an understanding of professional and ethical responsibility	Small
	8. an ability to communicate effectively through writing and drawings	Large

	9. an ability to communicate effectively through oral presentations	None
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Small
	11. a recognition of the need for, and an ability to engage in life-long learning	Medium
	12. a knowledge of contemporary issues	Small
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Large
	14. an ability to explain basic concepts in management, business, public policy, and leadership	Small
List of topics covered	 Buckling of Columns Euler load and differential equation of beam-column Critical loads of perfect columns with various end conditions Imperfect columns and Southwell plot Code specifications 	
	 Torsion Thin wall members; Noncircular members; Plastic torsion Bending 	
	Nonsymmetric bending; Thin wall and built-up beams Shear center; Inelastic bending	
	4. 3D Stress and Strain Analysis 3D state of stress	
	Stress transformation: principal directions and principal stresses 3D state of strain	
	Strain transformation: principal directions and principal strains	
	5. Anisotropic elastic materials (wood and fiber reinforced polymers) Hooke's law for anisotropic elastic materials	
	Applications to fiber reinforced polymers (thin FRP sheets and	
	FRP bars)	
	Applications to fiber reinforced concrete (effective properties of	
	composites) 6. Theories of Strength Failure	
	Maximum principal stress criterion and maximum principal strain	
	criterion	
	Van Mises and Tresca criteria Mohr-Coulomb failure criterion Factor of safety	
	Failure theories for anisotropic materials	
Contribution	80% Engineering Science	
to the professional component	20% Engineering Design	
Prepared by:	Yunping Xi, 02/19/2017	

Course number, name	CVEN 4545 Steel Design	
Credits and contact hours	3 credits, 2 – 75min lectures per week	
Instructor(s)	George Hearn	
Textbook, Other	AISC Steel Construction Manual, 14th ed.	
materials	Course notes and design project writeup posted at course website	
Course description	Applies basic principles of structural engineering and mechanics to design of steel structures; design of tension members, columns, beams, open-web joists, steel decks, bolts, bolted connections, welding processes, and welded connections.	
Prerequisite(s)	CVEN 3525	
Required or elective	Elective – CVEN proficiency course	
Course learning objectives	Ability to design steel decks, beams, columns and braces for low rise b	uildings
Relationship	Program Outcome	<u>Emphasis</u>
of course to program	1. an ability to apply knowledge of mathematics, science, and engineering	Small
outcomes	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	None
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Large
	5. an ability to function on multi-disciplinary teams	None
	6. an ability to identify, formulate, and solve engineering problems	None
	7. an understanding of professional and ethical responsibility	Small
	8. an ability to communicate effectively through writing and drawings	None
	9. an ability to communicate effectively through oral presentations	None
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	None
	11. a recognition of the need for, and an ability to engage in life-long learning	Small
	12. a knowledge of contemporary issues	None

	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	None
	14. an ability to explain basic concepts in management, business, public policy, and leadership	None
List of topics covered	Steel material, properties Rolled shapes Steel deck, Concrete slabs in steel deck Steel bar joists Steel beams, moment strength, shear strength	
	Steel columns Bolted steel connections Welded steel connections	
Contribution to the professional component	10% Engineering Science 90% Engineering Design	
Prepared by:	George Hearn 10/31/2016	

Course number, name	CVEN 4555 Reinforced Concrete Design	
Credits and contact hours	3 credits, 2 – 75min lectures per week	
Instructor(s)	George hearn	
Textbook, Other	ACI318-14 Building Code Requirements for Structural Concrete	
materials	Course notes and design project writeup posted at course website	
Course description	Applies basic principles of structural engineering and mechanics to the design of reinforced concrete structures, including design of beams, columns, slabs, and footings; continuous beams and frames; cast-in-place buildings.	
Prerequisite(s)	CVEN 3525	
Required or elective	Elective – CVEN proficiency course	
Course learning objectives	Ability to design non-prestressed, reinforced concrete slabs, joists, beams and columns for low-rise buildings.	
Relationship	Program Outcome	<u>Emphasis</u>
of course to program	1. an ability to apply knowledge of mathematics, science, and engineering	Small
outcomes	2. an ability to design and conduct experiments	None
	3. an ability to analyze and interpret data	None
	4. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Large
	5. an ability to function on multi-disciplinary teams	None
	6. an ability to identify, formulate, and solve engineering problems	None
	7. an understanding of professional and ethical responsibility	Small
	8. an ability to communicate effectively through writing and drawings	None
	9. an ability to communicate effectively through oral presentations	None
	10. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	None
	11. a recognition of the need for, and an ability to engage in life-long learning	Small

	12. a knowledge of contemporary issues	None
	13. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	None
	14. an ability to explain basic concepts in management, business, public policy, and leadership	None
List of topics covered	Concrete materials, concrete reinforcing steel One-way slabs: moment strength, shear strength, reinforcement limits, reinforcement detailing. Beams, Tee beams: moment strength, shear strength, reinforcement limits, reinforcement detailing. Short columns: Axial load strength, moment strength, interaction of compression and bending, reinforcement limits, reinforcement detailing Slender columns: moment magnification, interaction of compression and bending	
Contribution to the professional component	10% Engineering Science 90% Engineering Design	
Prepared by:	George Hearn 10/31/2016	

ECEN 3030 - Electrical/Electronics Circuits for Non-Majors

Course Syllabus

- 1. Course number and name ECEN 3030 – Electrical/Electronics Circuits for Non-Majors
- 2. Credits and contact hours 3 credit hours/3 contact hours
- 3. Instructor's or course coordinator's name Mohammed Hadi.
- 4. **Textbook, title, author, and year** *Essentials of Electrical and Computer Engineering,* Kerns, Irwin, Pearson - Prentice Hall.
 - a. other supplemental materials
- 5. Specific course information
 - a. brief description of the content of the course (catalog description)

For students not majoring in electrical engineering. Covers analysis of electric circuits by use of Ohm's law; network reduction; super position; node and loop analysis; Thevenin's and Norton's theorems; sinusoidal signals; phasors; power in ac circuits; transient response of simple circuits; operational amplifiers; logic circuits; and flip-flops. Restricted to nonmajors. (Same as GEEN 3854.)

- b. prerequisites or co-requisites APPM 2360.
- c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program.
- 6. Specific goals for the course
 - a. specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.
 - b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.
- 7. Brief list of topics to be covered
 - Concepts of charge, forces between charges, electrical power and energy, conductors and insulators.
 - Circuit analysis using Kirchhoff's laws, node /loop analysis, superposition, Thevenin/Norton Theorems.
 - 1st and 2nd order transient analysis of dynamic circuits using resistors, capacitors and inductors.
 - Complex numbers.
 - AC steady state analysis using phasors.
 - Steady State Power Analysis, complex power, average power, apparent power, power factor correction.
 - Magnetic Coupled circuits, mutual inductance, transformers.
 - Electrical network frequency characteristics, filters, resonant circuits.

- Ideal Op-Amps, analog computation.
- Terminal characteristics of diodes, rectification circuits.
- Electrical motors: DC, AC Poly-phase Induction and Synchronous machines.

ENVD 3114: History & Theories of Environmental Design: Buildings

Course Syllabus

- 1. **Course number and name** ENVD 3114: History & Theories of Environmental Design: Buildings
- 2. Credits and contact hours 3 Credit Hours
- 3. Instructor's or course coordinator's name Georgia Lindsay, PhD
- 4. Text book, title, author, and year World Architecture: A Cross-Cultural History, by Richard Ingersoll and Spiro Kostof (Oxford University Press, 2013)
 - a. other supplemental materials iClicker+
- 5. Specific course information
 - a. brief description of the content of the course (catalog description)
 Focusing on buildings, this class surveys the built environment from the beginning ot
 time through the present day. Emphasizing developments in the western world, it
 develops student's recognition of major styles, influential people, and drivers of
 building form.
 - b. **prerequisites or co-requisites** none.
 - c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program.

- a. Specific outcomes of instruction. ex: the student will be able to explain the significance of current research about a particular topic. At the end of the course, "A" students will have a working knowledge of and familiarity with the major buildings from the architectural canon, an understanding of the way context (climate, culture, and economy) influences buildings, and an in-depth understanding of a topic in environmental design of their choice. Students will also have competency in visual literacy, library research, and argumentative writing skills.
- b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.
- 7. Brief list of topics to be covered
 - Prehistory
 - Pyramids

- Buddhist Architecture
- Greek Architecture
- Early Architecture
- Roman Architecture
- Islamic Architecture
- Eastern palaces
- Christian architecture: Byzantine, Gothic, Renaissance
- Baroque; villas
- Monuments
- Neoclassical architecture
- Secular architecture: train stations and homes in the Gilded Age
- How to write a successful outline
- House styles: the house as consumption
- The Chair
- Museums and Prisons
- Writing your final paper
- Kathy Corbett: Purgatory River
- Using History as Inspiration
- Early Modernism
- Modernism and post-modernism
- Shawhin Roudbari: Activism and Architecture

ENVD 3134. History and Theory of Environmental Design: Landscape

Course Syllabus

- 1. **Course number and name** ENVD 3134. History and Theory of Environmental Design: Landscape
- 2. Credits and contact hours 3 credits; 3 hours/week
- 3. Instructor's or course coordinator's name Victoria Derr, Ph.D. Senior Instructor
- 4. Text book, title, author, and year Landscape Design: A Cultural and Architectural History. E.B.Rogers. New York: Abrams Press 2001
 - 1. **other supplemental materials** *Illustrated History of Landscape Design*. Chip Sullivan and Elizabeth Boults. New York: John Wiley & Sons. 2010
- 5. Specific course information
 - a. **brief description of the content of the course (catalog description)** Focuses on design projects not in a building envelope, including landscapes, public and private urban spaces, complexes and similarly scaled design projects. Aspects of architectural and planning thinking are interwoven in a landscape concentration.
 - b. prerequisites or co-requisites None.
 - c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program.

6. Specific goals for the course

a. Specific outcomes of instruction. ex: the student will be able to explain the significance of current research about a particular topic.

Students should be able to identify major historical and theoretical movements in landscape architecture and relate each to its cultural, environmental, intellectual, economic and political contexts; describe the main concepts of a number of design landscapes - explaining the processes by which human creativity and agency invest capital resources and artistic expression into recognizable, meaningful landscapes; diagram a clear framework of processes, ideas, elements, periods, and geographic regions in which the rich diversity of landscape and hits history can be organized and understood across time; analyze the underlying principles of landscape design and investigate their larger cultural contexts.

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.

6. Brief list of topics to be covered

- Biophilic Design
- Magic, Myth, and Nature
- Middles Ages: European Medieval, Moorish & Islamic, Chinese & Japanese Gardens
- Renaissance & Baroque Landscape Architecture
- Court and City in European Grand Manner
- Intellectual History: The Picturesque and Cross-Cultural Appropriations
- Social History": 19th Century Parks & Botanic Gardens
- Monuments and Cemeteries
- Social History: The City Beautiful Movement
- Cultural History: National Park Ideal
- Economics: From the Country Place Era to the new Deal
- Modernism and City Planning
- Modernist Gardens and Landscapes of Consumerism
- Cultural Geography: The everyday and the designed landscape
- Environmental Art
- Landscape Urbanism and its Discontents
- Sustainable Design, Resilience, and Advocacy: Restored and Restorative Landscapes.
- Sustainable Design, Resilience, and Advocacy: Sustainable Campus Design and Learning Landscapes
- Sustainable Design, Resilience, and Advocacy: Food Systems and Guerilla Gardens

GEEN 1400. First-Year Engineering Projects

Course Syllabus

- 1. Course number and name GEEN 1400. First-Year Engineering Projects
- Credits and contact hours
 3 Credit Hours. 15 hours lecture; 60 hours lab.
- 3. Instructor's or course coordinator's name Derek Reamon, course coordinator.
- 4. Text book, title, author, and year Introductory Engineering Design: A Projects-Based Approach. Third Edition. (Optional) https://itll.colorado.edu/courses_workshops/geen_1400/resources/textbook/

a. other supplemental materials

5. Specific course information

- a. brief description of the content of the course (catalog description)
 - First-year students solve real engineering design problems in interdisciplinary teams. Design projects vary by section. Curriculum focuses on iterative design process, teamwork and team dynamics, supporting design with testing and analysis, and technical writing. Completed projects are exhibited at an end-of-semester design expo. Students responsible for contributing towards their design project budget and poster costs, and purchasing safety glasses (approximately \$75).
- a. **prerequisites or co-requisites** None.
- b. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program.

This is a required course for Mechanical Engineering, Environmental Engineering and Aerospace Engineering majors. It is optional for all other engineering majors.

- a. Specific outcomes of instruction. ex: the student will be able to explain the significance of current research about a particular topic.
 - Introduction to engineering as a career. Conceptually understands engineering as a field, and its difference from, and interaction with, science and math; appreciates how engineering pervades society and drives societal change; gains insight into the various engineering disciplines; considers engineering as a possible career.
 - Introduction to engineering methodology. Understand the role of analysis in design.;familiar with appropriate computer software; solves engineering problems; effectively uses hand tools; effectively uses manufacturing processes.
 - Open-ended hands-on design experiences. Familiar with iterative design process; able to define functional requirements and client specifications, if appropriate;

generates alternative design concepts; applies structured decision analysis; works within constraints (e.g., budgets); makes environmental and universal design considerations, as appropriate.

- Development of communication skills (oral, written, team, client/adviser). Develops a relationship with an engineering faculty member; develops technical writing, oral presentation and client communication skills as appropriate for project.
- Teamwork skills. Learns and practices effective teamwork skills (e.g., multitasking, group leadership, brainstorming, information gathering, team-based decision-making); learns to rely on other team members to give and receive help; demonstrates dedication and commitment to team objectives; and increased understanding of diversity; practices realistic self-evaluation as a team member; learns and practices conflict resolution; develops relationships with other engineering students that extend beyond FYEP.
- b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.

7. Brief list of topics to be covered

- a. Social Styles introduction to basic working social styles, emphasizing that diverse styles lead to higher functioning teams. Distinct from personality type.
- b. Team Dynamics Exercises fun, moderately physical activities and problem-solving games in which students work together to solve a variety of interesting challenges.
- c. Intro Project one or two short (1-2 week) projects to introduce students to iterative design process in fun, hands-on way
- d. Main Project Most of the course is spent working on the main design project. Students have weekly meetings and regular deliverables, including prototype demonstration, preliminary design review, critical design review and demonstration of final hardware. Main projects vary by instructor and may include: Rube Goldberg Contraptions, Interactive Learning Exhibits, Appropriate Technological Systems for the Developing World, Assistive Technology, Fun with Fluids and Lego® Robots.
- e. Workshops throughout the semester will introduce students to some of the hands-on skills students will need to work on their projects, such as shop safety, computer-aided design, circuit design and soldering, and programming microcontrollers.
- f. Ethics an interactive introduction to the importance of ethics in engineering, focusing on the unique training and skills held by practicing engineers.
- g. Guest Lectures throughout the course will be presented by an engineer or faculty member from a sampling of engineering disciplines. They will describe a research and/or design project they are working on to give students a flavor of the various engineering disciplines.
- h. Design Expo students demonstrate final projects and display summary of design process. Engineers from local industry serve as judges. Public event with up to 2000 attendees.

PHYS 1110. General Physics I

Course Syllabus

1. **Course number and name** PHYS 1110. General Physics I

2. Credits and contact hours

4 credit hrs, 3 lecture hrs + 1 recitation hr per week contact

3. Instructor's or course coordinator's name

Two or three faculty members are assigned to this course and the faculty change every semester. In Spring 1, the instructors were Dr. Daniel Bolton, and Professor Ed Kinney.

4. Text book, title, author, and year

Essential University Physics, Volume 1, 3rd Edition. Richard Wolfson, Addison-Wesley. *Tutorials in Introductory Physics,* McDermott et al., Custom CU edition.

a. other supplemental materials

Access to the online homework system MasteringPhysics Access to the online prelecture videos on FlipItPhysics An iClicker that is registered on D2L

5. Specific course information

a. brief description of the content of the course (catalog description)

Three lect., one rec. per week, plus three evening exams in the fall and spring semesters. First semester of three-semester sequence for science and engineering students. Covers kinematics, dynamics, momentum of particles and rigid bodies, work and energy, gravitation, simple harmonic motion and introduction to thermodynamics. Approved for GT-SC2. Approved for arts and sciences core curriculum: natural science.

b. prerequisites or co-requisites Prereq or Coreq: APPM 1345 or APPM 1350 or MATH 1300 or MATH 1310

c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program. *(leave blank if you are unsure)*

- a. Specific outcomes of instruction. ex: the student will be able to explain the significance of current research about a particular topic. Students should understand that learning does not mean memorizing answers to specific questions; instead, learning means understanding general strategies, and developing robust internal models which permit one to recognize which strategy is appropriate and how to apply it. In this course, there are two broad strategies that students should master.
 - Newton's Laws. Given appropriate initial conditions of a classical mechanical system, the student should be able to compute the subsequent

motion by applying Newton's Laws. This requires mastery of concepts in kinematics and dynamics, and knowing how to apply Newton's Laws in for both translational and rotational motions.

• Conservation Laws. By comparing a known initial state of a system and a partly-known final state, the student should be able to apply one of the conservation laws (energy, momentum, or angular momentum) to determine the final state of the system.

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.

7. Brief list of topics to be covered

Vector Math and Kinematics: velocity and acceleration in 1D and 2D. Newtonian mechanics

- b. Newton's Laws
- c. Work and Energy
- d. Gravitation
- e. Linear Momentum and collisions
- f. Rotational motion and angular momentum
- g. Simple Harmonic Motion

Fluids.

Introduction to thermodynamics: Calorimetry, changes of phase; heat transport; 1st Law of Thermodynamics, 2nd Law of Thermodynamics.

PHYS 1120 General Physics 2

Course Syllabus

- 7. Course number and name PHYS 1120
- 8. Credits and contact hours Credits and contact hours: 4 credit hrs; 3 lecture hrs + 1 recitation hr per week contact
- 9. Instructor's or course coordinator's name Dr. Michael Dubson

10. Text book, title, author, and year

Tutorials in Introductory Physics, McDermott et al., Prentice-Hall 2013, (Custom CU edition)

a. other supplemental materials FlipItPhysics subscription MasteringPhysics subscription iClicker

11. Specific course information

a. brief description of the content of the course (catalog description)

Three lect., one rec. per week, plus three evening exams in the fall and spring semesters. Second semester of three-semester introductory sequence for science and engineering students. Covers electricity and magnetism, wave motion, and optics. Normally is taken concurrently with PHYS 1140. Approved for GT-SC2. Approved for arts and sciences core curriculum: natural science.

b. prerequisites or co-requisites

Prereq: PHYS 1110 and prereq or coreq of APPM 1360 or MATH 2300

c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program. *(leave blank if you are unsure)*

12. Specific goals for the course

a. Specific outcomes of instruction. ex: the student will be able to explain the significance of current research about a particular topic.

Students should understand that learning does not mean memorizing answers to specific questions; instead, learning means understanding general strategies, and developing robust internal models which permit one to recognize which strategy is appropriate and how to apply it. In this course, the general strategy is application of Maxwell's equations. There are two broad categories for applications of Maxwell's equations:

• Charges, currents, and fields. Given a known distribution of charges and/or currents, students should be able to compute the electric and magnetic fields. Similarly, given the fields, students should be able to compute the forces on and motion of charges.

- Circuit analysis. Students should be able to understand and analyze simple DC and AC circuits containing batteries, resistors, capacitors, and inductors.
- b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.
- 7. Brief list of topics to be covered

Static Electric fields, Gauss's Law, Voltage and capacitance, DC Circuits, Magnetic, Fields: Biot-Savart Law and Ampere's Law, Faraday's Law, inductance, Electromagnetic waves and Maxwell's equations, Ray Optics, Wave optics and diffraction (time permitting)

Course Syllabus

- 1. Course number and name WRTG 3030: Writing on Science and Society
- Credits and contact hours
 3 credit hours. 2.5 lecture hours per week contact
- 3. Instructor's or course coordinator's name Multiple, inlcuding: Rolf Norgaard, Steve Lamos, Don Wilkerson, Lonni Pearce, Petger Schaberg

4. Text book, title, author, and year

Readings and course materials available D2L. The Purdue University OWL (on-line writing lab);

a. other supplemental materials (depending on section)

- *They Say, I Say: The Moves that Matter in Academic Writing*, Graff and Birkenstein, WW Norton & Co.
- Writing Science: How to Write Papers hat Get Cited and Proposals that Get Funded. Schimel, Oxford UP 2012
- The Colorado State University Writing Center, which offers an array of writing & teaching resources: <u>http://writing.colostate.edu/</u>
- College-level writing handbook
- The Colorado State University "WAC Clearinghouse," which supports scholarly exchange about communication across the curriculum: <u>http://wac.colostate.edu/</u>

5. Specific course information

a. brief description of the content of the course (catalog description)

Through selected reading and writing assignments, students consider ethical and social ramifications of science policy and practice. Focuses on critical thinking, analytical writing, and oral presentation. Taught as a writing workshop, the course addresses communication with professional and non-technical audiences. May be repeated up to 6 total credit hours. Approved for GT-C03. Approved for arts and sciences core curriculum: written communication.

- a. **prerequisites or co-requisites** none
- b. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program. (leave blank if you are unsure)
- 6. Specific goals for the course
 - a. Specific outcomes of instruction. ex: the student will be able to explain the significance of current research about a particular topic.

Critical Thinking and Its Written Application; The Writing Process; Rhetorical Situation; Mechanics and Style. Fulfills the course criteria given to all state

institutions by the Colorado Commission on Higher Education. In other words, this writing class is not just about what your writing teacher here at CU thinks is important. It's about deepening your skills in rhetorical knowledge, writing processes, and language conventions so that you can write effectively for a variety of audiences in a variety of situations—both inside and outside the classroom.

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.

7. Brief list of topics to be covered

Summary/Response; Resume/Cover Letter; Editorial Argument; Rhetorical Analysis; Research Issues and Approach; <u>Final Project.</u> A substantive inquiry into an issue or topic of the student's choice. The project will go through multiples stages of revision, and will reflect the conventions of an appropriate science, technical communication, or professional writing genre.

Evaluating Disciplinary Scientific Argument; Evaluating Popular Scientific Argument; Research in a Disciplinary Genre; Research "accommodation" in a Popular Genre.

Social & Professional Context; Rhetorical Knowledge; Best Practices for Revision; The Writing Process; The Concept of Genre and Science Writing for a Specialized Audience; Compiling Annotated Bibliography; Deliberative Discourse; Adopting the Ethos of Education not Debater; Defining Terms and Illustrating Claims; Developing Evidence; Making Clear Transitions; Revising for Brevity & Clarity; Anticipating & Answering Objections; Emphasizing Best Ideas; The Essay Form; Writing Introductions for Lay & Scientific Audiences; Paraphrase and Citation; How to Write Developmental, Results, Discussion, and Conclusion, Sections; Voice and Style.

Rhetorical essays including techniques of thesis-building, evidential support, organization, and rhetorical awareness; Research Proposals for funding agencies; Academic Articles including annotated bibliography & disciplinary Analysis.

Rhetorical Framework; Resumes and Professional Writing; Communicating Science; White Papers; Project Development & Science in the Public Sphere; Project Proposals and Ethics; White Paper Presentations;

Appendix B – Faculty Vitae

Listed below in alphabetical order are two page CVs organized by program starting with architectural engineering followed by civil faculty members as many contribute to the AREN program. Last are environmental and water resources faculty, as they generally have much lower contributions to the architectural engineering program.

Bernard Amadei I

Professor

EDUCATION	PhD (Civil Eng.), University of California, Berkeley, U.S.A., 1982
	MaSc (Civil Eng.), University of Toronto, Canada, 1979
	Dipl. Eng./BS (Geol. Eng.), School of Applied Geology & Mining Eng.,
	Nancy, France, 1977
ACADEMIC	University of Colorado Boulder, Dept. Civil, Environmental, and
EXPERIENCE	Architectural Engineering: Professor (1994-Present); Assoc. Prof
	(1989-1994), Assistant Prof. (1982-1989)
	University of Colorado Boulder, Mortenson Center in Engineering for
	Developing Communities, Director (2009-2012), co-Director
	(2015-Present)
	Visiting Professor, Technion University, Israel (2010-2014)
NON-ACADEMIC	U.S. Science Envoy to Pakistan and Nepal, U.S. Department of State
EXPERIENCE	(2013-14)
	Founding President, Engineers Without Borders – USA and co-Founder of
	Engineers Without Borders – International (2002-Present)
	Independent Consultant in International Development and Geological
	Engineering (1982-Present)
	Senior Engineer, J. F. T. Agapito and Associates, Inc., Grand Junction,
	Colorado (Jan-June, 1982)
PROFESSIONAL	Registered in EU countries but not in US
REGISTRATIONS	
SCIENTIFIC AND	US National Academy of Engineering
	National Academy of Construction
PROFESSIONAL	American Society of Civil Engineers
SOCIETIES OF	International Society for Rock Mechanics
WHICH A	American Society of Mechanical Engineers
MEMBER	American Rock Mechanics Association
	Institute of Electrical and Electronics Engineers
	American Society of Engineering Education
HONORS AND	Five honorary doctoral degrees (UMass Lowell; Carroll College;
AWARDS	Clarkson, Drexel, and Worcester Polytechnic Institute).
AWARDS	
	1984 Manuel Rocha Award, International Society for Rock Mechanics.
	1992 Schlumberger Lecture Award, Int. Society for Rock Mechanics.
	2002 Bank One Colorado Faculty Community Service Award
	2005 Am. Association of Engineering Societies Norm Augustine Award
	2005 Service Award for Professional Excellence from Rotary International
	2006 General Palmer Award from ACEC, Colorado
	2006 Ralph Coats Roe Medal, Am. Society of Mechanical Engineers
	2007 Hoover Medal from ASCE, ASME, IEEE, AIME, and AIChE
	2007 Heinz Foundation Award for the Environment (co-recipient)
	2008 Drexel University College of Engineering's Engineer of the Year
	2008 Golden Vector Award, Pan American Fed. of Eng. Assoc. (UPADI)
	2008 Member of the US National Academy of Engineering
	2008 Engineering News Record Award of Excellence
	2009 Distinguished Member of the American Society of Civil Engineers
	2013 Member of the National Academy of Construction
	2015 Washington Award, The Western Society of Engineers
	2015 American Society of Civil Engineers, (OPAL) (education)
	2016 C. H. Dunn Award of the Construction Industry Institute

INSTITUTIONAL	University of Colorado Service
AND	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
PROFESSIONAL	Personnel Committee
SERVICE IN	Curriculum Committee (2013-2015)
LAST FIVE	EWB-USA CU Boulder Chapter Advisor
YEARS	Mortenson Center in Engineering for Developing Communities
	Director. 2009 – 2012; co-Director: 2015-Present
	University (non-CU) Service
	Consultant to PeaceEng program at Drexel University
	Summer course development, Technion University
	Non-University Service
	• Member NAE Award Committee (2017-2018)
	• U.S. Science Envoy to Pakistan and Nepal, U.S. Dept. of State
	(2013-14)
	 Member, NAE/USIP Roundtable on Technology, Science, and Peace
	building (2011-present)
	 Member (and co-chair), Board of the PeaceTech laboratory (2014-
	present)
	 Member, NRC Committee on USAID Grand Challenges in
	International Development (2011-2013)
	 Member, NRC Committee on Increasing National Resilience to
	Hazards and Disasters (2010-2012)
	 Founding-President, Engineers Without Borders - USA (2001-present)
PRINCIPAL	 A Systems Approach to Modeling Community Development Projects.
PUBLICATIONS	Amadei, B., ISBN-13: 978-1-60650-518-2, Momentum Press, 2015.
AND	Engineering for Sustainable Human Development, Amadei, B., ISBN
PRESENTATIONS	978-0-7844-1353-1, ASCE Press, Reston, VA, 2014.
OF	• "Disaster Resilience: A National Imperative", contributing committee member, The National Academies Press, 2012.
LAST FIVE	 "A Retrospective Approach to Assessing the Sustainability of the
YEARS	Grand Canal of China", N. Tsung, R. Corotis, P. Chinowsky, and B.
	Amadei, ASCE Journal of Structure and Infrastructure Engineering,
	9(4), pp. 297-316, 2013.
	• "Integrating sustainable development into a service learning engineering course", Mintz et al., ASCE Journal of Professional
	<i>Issues in Engineering Education and Practice</i> , doi: 10.1061/ (ASCE)
	EI. 1943-5541.0000169, 2013.
	• "Engineering for developing communities at the University of
	Colorado Boulder: A ten-year retrospective," R. Sandekian, P.
	Chinowsky, B. Amadei, Int. J. Service Learning in Eng., pp. 62-77,
DDOFESSIONAT	2015.
PROFESSIONAL DEVELOPMENT	Attended multiple conferences, workshops, and mastings during the next
ACTIVITIES IN	Attended multiple conferences, workshops, and meetings during the past five years dealing with various aspects of system dynamic modeling,
THE LAST FIVE	GIS, and science diplomacy.
YEARS	ons, and science dipioniacy.
ILANO	

Rajagopalan Balaji Professor

EDUCATION	B Tech, Civil Engineering, National Institute of Technology,
	Kurukshetra, India, 1989
	M Tech, Quality Reliability and Operations Research, Indian Statistical
	Institute, Calcutta, India, 1991
	Ph.D., Civil and Environmental Engineering, Utah State University, 1995
ACADEMIC	University of Colorado - Boulder, Professor, 2010-present; Associate
EXPERIENCE	Professor, 2007-2010; Assistant Professor, 2000-2007; Fellow of
	Cooperative Institute for Research in Environmental Sciences (CIRES),
	2001-present
	Utah State University, Logan, UT, Research Assistant Professor, 1997-
	2003; Graduate Research Assistant, 1991-1995
	Columbia University, New York, NY, Adjunct Associate Research
	Scientist, 200-present; Associate Research Scientist, 1997-2000; Post-
	Doctoral Research Scientist, 1995-1997
NON-ACADEMIC	Alembic Chemicals Ltd., Baroda, India, Intern, summer 1991
EXPERIENCE	Hindustan Cables Ltd., Hyderabad, India, Intern, summer 1990
	Engineers India Ltd., Cochin, India, Intern, summer 1988
PROFESSIONAL	
REGISTRATIONS	
SCIENTIFIC AND	American Geophysical Union
PROFESSIONAL	American Society of Civil Engineers – Environment and Water Research
SOCIETIES OF	Institute
WHICH A	
MEMBER	
HONORS AND	Norbert Gerbier - MUMM International Award, World Meteorological
AWARDS	Organization, 2009.
	Partners in Conservation Award, Department of Interior, 2009.
	Research Development Award, CEAE Department, University of
	Colorado – Boulder, 2006.
	College Research Award, College of Engineering and Applied Sciences,
	University of Colorado, Boulder, CO, 2014
	Young Researcher Award, CEAE Department, University of Colorado -
	Boulder, 2003.
INSTITUTIONAL	Climate Research, Associate Editor (2008 to present)
AND	Advances in Water Resources, Associate Editor (2014 to present)
PROFESSIONAL	Water Resources Research. Associate Editor (2009 to 2015)
SERVICE IN	Geophysical Research Letters. Associate Editor (2004 to 2012)
LAST FIVE	Journal of Hydrologic Engineering (ASCE). Associate Editor (2004 to
YEARS	2010)
	State of Colorado. Member of Technical Advisory Committee, Colorado
	Water Availability Study (2009 to 2011)
	U.S. Climate Variability and Predictability Research (CLIVAR). Member
	of Prediction, Predictability and Applications Panel (2007 - 2012)

PRINCIPAL PUBLICATIONS OF LAST FIVE YEARS	 American Water Works Association Research Foundation. Member of Project Advisory Committee (March 2006 – October 2009). University Service Dept. of Civil, Environmental, & Architectural Engineering (CEAE) Chair, July 2014 - Associate Chair Fall 2010 - 12 Curriculum Committee - Fall 2001 – Spring 2006, Fall 2009 to 2010; Executive Committee - 2012-2014 Faculty Search Committee. 2003-2004, 2006-2007, 2011-12 Co-operative Institute for Research in Environmental Sciences (CIRES) Executive Committee, Member. Spring 2006 – Spring 2008. Promotion Committee of Dr. Xinzhao Chu, Member. Fall 2006 to present. Graduate Student Fellowship Committee. Member, Fall 2004 – Spring 2006, Fall 2009 – Spring 2010; Chair, Fall 2005 – Spring 2006. Visiting Fellows Committee, Member. Fall 2002 – 2004, 2010-2011 Samson, C., B. Rajagopalan and S. Summers, Modeling Source Water TOC Using Hydroclimate Variables and Local Polynomial Regression, Environmental Science & Technology, 50 (8), 4413– 4421, 2016 Weirich, S., J. Silverstein and B. Rajagopalan, Resilience of Secondary Wastewater Treatment Plants: Prior Performance Is Predictive of Future Process Failure and Recovery Time, Environmental Engineering Science, 32(3), 222-231, 2015 Pavlak, G., A. Florita, G. Henze and B. Rajagopalan, Probabilistic identification of inverse building model parameters, Journal of Architectural Engineering, 20(2), 04013011, 2014 Verdin, A., B. Rajagopalan, W. Kleiber and R. Katz, Coupled Stochastic Weather Generation Using Spatial and Generalized Linear Models, Stochastic Environmental Research and Risk Assessment (SERRA), special issue, 29(2), 347-356, 2015 Bracken, C., B. Rajagopalan, M. Alexander and S. Gangopadhyay, Spatial univibility of account leaverne emerivibility in the Worter United
	special issue, 29(2), 347-356, 2015
PROFESSIONAL DEVELOPMENT ACTIVITIES IN THE LAST FIVE YEARS	Summer Institute 2009 for New Media Pedagogy, Scholarship, and Learning Technologies using Web 2.0 Tools, Organized by Faculty Teaching Excellence Program at the University of Colorado at Boulder, May 11-15, 2009 Chairs Workshop, University of Colorado, Boulder, August 2014-2016

C. Walter Beamer IV Sr. Instructor

EDUCATION	
EDUCATION	BS, Architectural Engineering, University of Colorado, 1998
	MS, Civil Engineering, University of Colorado, 2003
	Ph.D., Civil Engineering, University of Colorado, 2005
ACADEMIC	University of Colorado Boulder:
EXPERIENCE	Sr. Instructor, 2015 – present;
	Instructor 2012-2015;
	AREN Faculty Director, 2016-present;
	Co-Director Rocky Mountain Lighting Academy, 2012-present
NON-ACADEMIC	Senior Associate (Acoustics and Lighting), January 2008 to January
EXPERIENCE	2011, Shen Milsom Wilke, LLC. – Denver, Colorado
	Senior Associate (Acoustics), May –August 2008, Shen Milsom Wilke,
	LLC-FZ – Dubai, United Arab Emirates
	Acoustics Consultant, 2005 to 2007, Kirkegaard Associates – Boulder,
	Colorado
	Research Assistant, 2000 to 2005, Dept. of Civil, Environmental and
	Architectural Engineering, University of Colorado – Boulder,
	Colorado
	Independent Contractor (Lighting Consultant), 1999 to 2008, Light'n Up
	– Washington, DC
	Consultant (Lighting Design), 1998 to 1999, Robert Singer & Associates
	– Aspen, Colorado
	Lighting Intern, May - August 1998, Moran Coventry Lighting
	Associates – Washington, DC
PROFESSIONAL	None
REGISTRATIONS	
SCIENTIFIC AND	Illuminating Engineering Society (IES)
PROFESSIONAL	Acoustical Society of America (ASA)
SOCIETIES OF	
WHICH A	
MEMBER	
HONORS AND	Department Teaching Award, CEAE, 2016
AWARDS	
INSTITUTIONAL	Illuminating Engineering Society Service
AND	Technical Committee on Daylighting, IES, 2014 – Present
PROFESSIONAL	High Dynamic Range Imaging Subcommittee, IES, 2015-Present
SERVICE IN	Illuminating Engineering Society Education Think Tank, 2014-
LAST FIVE	Present University Commission
YEARS	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	AREN Faculty Director, AY 2016-2017
	Co-Director, Rocky Mountain Lighting Academy, 2012 - Present
	Operations Committee (AREN), 2014 – 2016
	Computing Committee, 2015 – Present
	Chair, Computing Committee, Aug 2013 – Aug 2015

	Curriculum Committee, 2012 – 2013
	Computing Committee, 2012 – 2013
PRINCIPAL	N/A
PUBLICATIONS	
AND	
PRESENTATIONS	
OF	
LAST FIVE	
YEARS	
PROFESSIONAL	None
DEVELOPMENT	
ACTIVITIES IN	
THE LAST FIVE	
YEARS	

Angela R. Bielefeldt Professor

EDUCATION	BS, Civil Engineering, Iowa State University, 1992
	MS, Civil Engineering, University of Washington, 1994
	Ph.D., Civil Engineering, University of Washington, 1996
ACADEMIC	University of Colorado Boulder: Professor, 2012 – present; Associate
EXPERIENCE	Professor, 2003-2012; Assistant Professor, 1996-2003; Faculty Director
	Sustainable By Design Residential Academic Program, 2014-present;
	CEAE ABET Assessment Coordinator, 2008-present; Associate Chair
	CEAE 2012-13, 2014-15; Director EVEN program, 2006-2010;
	University of Canterbury, Christchurch, NZ (sabbatical), 2013
	University of Minnesota, Braun Intertec Professor (sabbatical), 2005-06
	University of Washington, Research Assistant, 1992-1996, part time
	Iowa State University, Research Assistant, 1992, part time
NON-ACADEMIC	Remediation Technologies, Seattle, WA, Asst. Engineer, summer 1994
EXPERIENCE	Montgomery Watson, Des Moines, IA, Assistant Engineer, summer 1992
	Sandia National Laboratories, Albuquerque, NM, Intern, summer 1992
	CH2M Hill, Reston, VA, Intern, summer 1990
PROFESSIONAL	P.E., Colorado, 2003 to present.
REGISTRATIONS	
SCIENTIFIC AND	American Society for Engineering Education (ASEE)
PROFESSIONAL	American Society of Civil Engineers (ASCE)
SOCIETIES OF	Association of Environmental Engineering & Science Professors (AEESP)
WHICH A	Water Environment Federation (WEF)
MEMBER	water Environment redefation (wEr)
HONORS AND	Best Paper Award from PIC IV, ASEE Annual Conference, 2016
AWARDS	Overall Best Paper Award from ASEE Annual Conference, 2015
AWARDS	Distinguished Service Award, AEESP, 2013
	Outstanding Reviewer Award, ASCE Journal of Professional Issues in
	Engineering Education & Practice, 2012
	Advisor for winning teams in the national AECOM Student Design
	Competition, 2012 and 2011
	Advisor for the winning teams in the National WEF Student design
	Competition, 2012 and 2009
	Outstanding Service Award, Boulder Faculty Assembly, CU, 2012
INSTITUTIONAL	American Society for Engineering Education (ASEE). Environmental
AND	Division director (2010-13); Community Engagement Division chair-
PROFESSIONAL	elect (2011-13) & secretary (2015-16), best paper committee PIC III
SERVICE IN	(2013, 2015)
LAST FIVE	American Society of Civil Engineers (ASCE). Corresponding member of
YEARS	the Civil Engineering Program Criteria Task Committee, 2013.
	Association of Environmental Engineering and Science Professors
	(AEESP). Co-organized 2013 conference.
	Reviews in Environmental Science and Biotechnology, publisher Springer
	Netherlands; Editorial Board, 2009 – present.
	International Journal for Service Learning in Engineering (IJSLE), Editorial
	Board 2011-present.

	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Executive Committee. 2015-present.
	Curriculum Committee. Chair. 2011-13, 2014-2015
	Assessment Coordinator. Spring 2008 to present.
	Environmental Engineering (EVEN) cross-disciplinary degree program
	Associate Director. 2014 - present.
	College of Engineering at the University of Colorado - Boulder
	Undergraduate Education Council. 2012-2013, 2014-2015.
	Assessment Committee. Spring 2008 to present.
PRINCIPAL	Canney, N., A.R. Bielefeldt. 2016. Validity and Reliability Evidence of
PUBLICATIONS	the Engineering Professional Responsibility Assessment Tool. Journal
AND	of Engineering Education. 105 (3), 452-477.
PRESENTATIONS	Bielefeldt, A.R., N.E. Canney. 2016. Humanitarian Aspirations of
OF	Engineering Students: Differences Between Disciplines and
LAST FIVE	Institutions. Journal of Humanitarian Engineering. 4 (1), 8-17.
YEARS	Bielefeldt, A.R., N. Canney. 2015. Changes in the Social Responsibility
	Attitudes of Engineering Students Over Time. Science and
	Engineering Ethics. DOI 10.1007/s11948-015-9706-5.
	Canney, N., A. Bielefeldt. 2015. Differences in Engineering Students'
	Views of Social Responsibility Between Disciplines. Journal of
	Professional Issues in Engineering Education and Practice. 141 (4),
	04015004. http://dx.doi.org/10.1061/(ASCE)EI.1943-5541.0000248
	McCormick, M., A.R. Bielefeldt, C. Swan, K. Paterson. 2015. Assessing
	Students' Motivation to Engage in Sustainable Engineering.
	International Journal of Sustainability in Higher Education. 16 (2),
	136-154. DOI 10.1108/IJSHE-06-2013-0054
	Bielefeldt, A.R. 2014. Global Interests Among First-Year Civil and
	Environmental Engineering Students. Journal of Professional Issues in
	Engineering Education and Practice. 140 (2), 04013016-1-9.
	Bielefeldt, A.R., M. W. Stewart, E. Mansfield, R.S. Summers, J.N. Ryan.
	2013. Effects of chlorine and other water quality parameters on the
	release of silver nanoparticles from a ceramic surface. <i>Water Research</i> .
	47, 4032-4039.
PROFESSIONAL	ASCE Body of Knowledge 3 Workshop, Aug. 5-6, 2016.
DEVELOPMENT	ABET Symposium. April 14-15, 2016.
ACTIVITIES IN	IEEE/ASEE Frontiers in Education Conference. Oct. 21-24, 2015.
THE LAST FIVE	Integrating Design and Community Engagement within the Curriculum
YEARS	Workshop. Sponsored by EPICS, EWB-USA, and EFELTS. West
	Lafayette, Indiana. June 19-20, 2014.
	Engineering Education Research Leader Networkshops: Mentoring,
	Communicating, and Power Brokering for the Next Generation (NSF
	EEC-1314725, 1314868). Online collaborative. 2013 – 2016.

Paul S. Chinowsky Professor

EDUCATION	
EDUCATION	BArch, Architecture, Cal Poly San Luis Obispo, 1987
	MArch, Architecture, Cal Poly San Luis Obispo, 1988
	Ph.D., Civil Engineering, Stanford University, 1991
ACADEMIC	University of Colorado Boulder: Professor, 2010-present; Associate
EXPERIENCE	Professor, 2002-2010; Associate Vice Provost 2015 – Present; Director,
	Mortenson Center and Mortenson Professor for Sustainable
	Development, 2012-2015
	Georgia Institute of Technology: Associate Professor, 2000-2002;
	Assistant Professor, 1994-2002.
	Loughborough University: Visiting Professor (2005)
NON-ACADEMIC	Stone & Webster Engineering: 1991-1994, Principal Analyst
EXPERIENCE	
PROFESSIONAL	
REGISTRATIONS	
SCIENTIFIC AND	American Society of Civil Engineers (ASCE)
PROFESSIONAL	Academy of Management (AOM)
SOCIETIES OF	Engineering Project Organization Society (EPOS)
WHICH A	
MEMBER	
HONORS AND	Best Paper Award, Transportation Research Board Conference, 2015.
AWARDS	Best Paper Award, Humanitarian Technology Conference, 2014.
	ASCE, Journal of Management in Engineering, Best Peer Reviewed Paper
	Award, 2012
	Distinguished Service Award, Engineering Project Organization Society,
	2011
	Best Paper Award, EPOC Conference, 2010
INSTITUTIONAL	Conference Co-Chair, Engineering Project Organization Conference,
AND	Winter Park, CO, July 2014.
PROFESSIONAL	Conference Co-Chair, Engineering Project Organization Conference,
SERVICE IN	Winter Park, CO, July 2013.
LAST FIVE	Conference Co-Chair, Engineering Project Organization Conference,
YEARS	Rheden, The Netherlands, August 2012.
	Engineering Project Organization Society, Co-Founder and Chairman 2010 - Present
	Contributing Author, IPCC Report 5
	Editor, Journal of Engineering Project Organizations, Taylor & Francis,
	January 2011- Present.
	Member, Boulder Faculty Assembly, Executive Committee (2010 –
	2012), Vice-Chair (2012-2013), Chair (2013-2015)
	Co-Developer and Co-Coordinator, College Undergraduate Certificate in
	Global Engineering (2012-2013)
	Member, Mortenson Center Executive Committee (2010 – 2012)
	Co-Coordinator, Civil Systems Graduate Program, Department of Civil,
	Env. And Arch. Engineering, Current

PRINCIPAL PUBLICATIONS AND PRESENTATIONS OF LAST FIVE YEARS	 Walters, J. P., & Chinowsky, P. S. (2016). Planning rural water services in Nicaragua: A systems-based analysis of impact factors using graphical modeling. <i>Environmental Science & Policy</i>, <i>57</i>, 93-100. Melvin, A.M., Larsen, P., Boehlert, B., Neumann, J.E., Chinowsky, P., Espinet, X., Martinich, J., Baumann, M.S., Rennels, L., Bothner, A. and Nicolsky, D.J., (2016). Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. <i>Proceedings of the National Academy of Sciences</i>, p.201611056. Espinet, X., Schweikert, A., van den Heever, N., & Chinowsky, P. (2016). Planning resilient roads for the future environment and climate change: Quantifying the vulnerability of the primary transport infrastructure system in Mexico. <i>Transport Policy</i>, <i>50</i>, 78-86. Twerefou, D.K.; Chinowsky, P.; Adjei-Mantey, K.; Strzepek, N.L. (2015) "The Economic Impact of Climate Change on Road Infrastructure in Ghana," <i>Sustainability</i>, <i>7</i>(<i>9</i>), 11949-11966. Sandekian, R., Chinowsky, P., & Amadei, B. (2014). "Engineering for Developing Communities at the University of Colorado Boulder: A Ten Year Retrospective," <i>International Journal for Service Learning in Engineering, Humanitarian Engineering and Social Entrepreneurship</i>, 62-77. Chinowsky, Paul S. and Hoffman, Rod (2014). "Long-Term Viability of Mid-Size Engineering Firms," ASCE Journal of Management in Engineering, 10.1061/(ASCE)ME.1943-5479.0000328. Neumann, James E., Price, Jason, Chinowsky, Paul, Wright, Leonard, Ludwig, Lindsay, Streeter, Richard, Jones, Russell, Smith, Joel B., Perkins, William, Jantarasami, Lesley, and Jeremy Martinich (2014). "Climate Change Risks to US Infrastructure: Impacts on coastal development, roads, bridges, and urban drainage," Climatic Change. Chinowsky, Paul S., Price, Jason C. and Neumann, James (2013). "Assessment of Climate Change Adaptation Costs for the U.S. Road Network," Global Environment Change, 23(4):
DEVELOPMENT	Climate Change Impacts Symposium, EPOC 2016 Conference, August
ACTIVITIES IN	2016.
THE LAST FIVE	"Resiliency versus Risk: An Adaptation Challenge," Colorado Municipal
YEARS	League, October 2015

Ross B. Corotis

EDUCATION	
EDUCATION	BS, Civil Engineering, MIT, 1967
	MS, Civil Engineering, MIT, 1968
	Ph.D., Civil Engineering (Structural Mechanics), MIT, 1971
ACADEMIC	University of Colorado Boulder: Professor, 1994 - present; Dean of the
EXPERIENCE	College of Engineering and Applied Science, 1994-2001
	The Johns Hopkins University: Professor 1981-1994; Founding Chair of
	the Department of Civil Engineering, 1983-1990; Associate Dean,
	1990-1994
	Northwestern University: Professor 1979-1981; Associate Professor,
	1975-1979; Assistant Professor 1971-1974
NON-ACADEMIC	Jefferson Science Fellow, U.S. Department of State, full-time 2007-2008
EXPERIENCE	
PROFESSIONAL	P.E., Colorado, 1995 – present; P.E. Maryland, 1981 – present; P.E.
REGISTRATIONS	Illinois, 1974 – present; S.E. Illinois, 1976 – present
SCIENTIFIC AND	American Society of Civil Engineers (ASCE)
PROFESSIONAL	Civil Engineering Risk and Reliability Association (CERRA)
SOCIETIES OF	International Association for Structural Safety and Reliability (IASSAR)
WHICH A	International Forum for Engineering Decision (IFED)
MEMBER	
HONORS AND	National Academy of Engineering, Elected Member, 2002
AWARDS	University of Colorado Discovery Learning Center, Dedicated in my
	name, 2002
	International Association for Structural Safety & Reliability, Senior
	Research Prize, 2005
	U of Colorado Boulder Faculty Assembly Award for Teaching, 2006
	Marquis Who's Who in the World, 2006
	ASCE Distinguished Member, elected 2011
	Charter Fellow, Engineering Mechanics Institute of ASCE, elected 2013
INSTITUTIONAL	International Journal of Structural Safety
AND	Editorial Board, 1989-
PROFESSIONAL	International Journal of Risk Assessment and Management
SERVICE IN	Editorial Board, 2004-
LAST FIVE	International Association for Bridge Maintenance and Safety
YEARS	Scientific Committee, 2002, 2004, 2006, 2010, 2012 Conferences
	International Association for Structural Safety and Reliability
	International Advisory Committee: 2012-2013
	National Academy of Engineering
	Chair, Civil Engineering Section, 2009-2011
	International Forum on Engineering Decision Making
	Member, Advisory Council, 2005-2010
	Consortium Member, 2010-
	International Standards Organization
	U.S. Delegate to ISO 2394, 2011-
L	American Society of Civil Engineers

[
	Editor, Journal of Engineering Mechanics, 2004-2010
	Comm. on Disaster Resilience of Structures, Infrastructure &
	Communities, 2012-
	Risk and Resilience Measurements Committee, 2015-
	National Research Council (The National Academies)
	Committee on NIST Technical Programs, 1999-2014 (chair 2009-2014)
	Study Committee on Resilience of Communities behind Dams and
	Levees, 2011-2012
	Laboratory Assessment Board, 2009-
	Board on Infrastructure and the Constructed Environment, 2012-
	Colorado Department of Economic Development and International Trade,
	proposal panel, 2014
	Review of School of Civil & Environmental Engineering, Georgia Institute
	of Technology, 2016
PRINCIPAL	Hurley, M. and Corotis, R. 2014. "Perception of Risk of Natural
PUBLICATIONS	Hazards: A Hazard Mitigation Plan Framework," International Journal
AND PRESENTATIONS	of Risk Assessment and Management, 17(3), 188-211.
OF	Bonstrom, H. and Corotis, R. 2015. "Optimizing Portfolio Loss Reduction using a First Order Paliability Method Sensitivity
	Reduction using a First-Order Reliability Method Sensitivity
LAST FIVE	Analysis," Structure and Infrastructure Engineering, 11(9), 1190-1198.
YEARS	Bonstrom, H. and Corotis, R. 2015. "Building Portfolio Seismic Loss
	Assessment using the First-Order Reliability Method," Structural Safety, 52, 113-120.
	Bonstrom, H. and Corotis, R. 2016. "First-Order Reliability Approach to
	Quantify and Improve Building Portfolio Resilience," ASCE Journal
	of Structural Engineering, 142(8), C4014001.
	Lin, Y., Corotis, R. and Liel, A. 2015 "A Framework Methodology for
	Risk-Based Decision Making: Applications to Transportation
	Agencies," ASCE-ASME Journal of Risk and Uncertainty in
	Engineering Systems Part A Civil Engineering, September, 1(3), 04015006-1 - 04015006-13
	Corotis, R. 2015. "An Overview of Uncertainty Concepts Related to
	Mechanical and Civil Engineering," ASCE-ASME Journal of Risk and
	Uncertainty in Engineering Systems, Part B Mechanical Engineering,
	December, 1(4), 040801-1 - 040801-12.
	Elwood, E. and Corotis, R. 2015. "Application of Fuzzy Pattern
	Recognition of Seismic Damage to Concrete Structures," ASCE-
	ASME Journal of Risk and Uncertainty in Engineering Systems, Part
	A Civil Engineering, December, 1(4), 04015011-1 - 04015011-12.
PROFESSIONAL	ASCE Colorado Section, monthly meetings (4/year), 2001 – present
DEVELOPMENT	NSF Workshop on Teaching Ethics in Foreign Extensions, 2011, 2012
ACTIVITIES IN	Webinar on seismic base isolation, 2016
THE LAST FIVE	NSF Education Workshop on Teaching Structural Art, 2016
YEARS	NSF Workshop on Social and Cultural Implications of Climate Change,
	2016

Shideh Dashti Assistant Professor

EDUCATION	BS, Civil and Environmental Engineering, Cornell University, 2004 MS, Civil Engineering, University of California at Berkeley, 2005 Ph.D., Civil Engineering, University of California at Berkeley, 2009
	University of Colorado Boulder: Assistant Professor, 2011 – present;
ACADEMIC	Geotechnical Centrifuge Faculty Director 2015-present;
EXPERIENCE	University of California at Berkeley, Doctoral Student and Post-doctoral
	Associate, 2016-2010
NON-ACADEMIC EXPERIENCE	Bechtel National, Geotechnical Engineering, 2005-2016
PROFESSIONAL REGISTRATIONS	None
SCIENTIFIC AND	American Society of Civil Engineers (ASCE)
	International Society of Soil Mechanics and Geotechnical
PROFESSIONAL	Engineering (ISSMGE TC 104 committee member)
SOCIETIES OF	Earthquake Engineering and Soil Dynamics Committee of ASCE
WHICH A	Earthquake Engineering Research Institute (EERI)
MEMBER	GeoEngineering Extreme Event Reconnaissance (GEER)
	American Society of Civil Engineers (ASCE) Outstanding Reviewer
	Award (2016)
	Departmental Young Researcher Award, Civil, Architectural, and Env.
	Engineering, CU Boulder (2015)
	Dean's Faculty Fellowship, College of Engineering and Applied
HONORS AND	Sciences, CU Boulder (2015)
AWARDS	Departmental Teaching Award, Civil, Architectural, and Env.
	Engineering, CU Boulder (2014)
	National Science Foundation (NSF) Fellow for ENHANCE (since
	December 2012)
	Outstanding Graduate Student Instructor Award from the Department of
	Civil and Environmental Engineering, UC Berkeley (2009)
	Distinguished Leadership Award, Cornell University (April 2004)
	Journal editorial board: Soils and Foundation
	Elected as the board member of the United States Universities Council
	on
	Geotechnical Education and Research (USUCGER),
INSTITUTIONAL	http://www.usucger.org/.
AND	Committee member of the International Society of Soil Mechanics and
PROFESSIONAL	Geotechnical Engineering (ISSMGE TC 104), ASCE Geo-Institute.
SERVICE IN	Peer-reviewer for: ASCE Journal of Geotechnical and GeoEnvironmental
LAST FIVE	Engineering, Geotechnique, EERI Journal of Earthquake Spectra,
YEARS	
	Canadian Geotechnical Journal, Journal of Earthquake Engineering,
	Geotechnical Testing Journal, Soils and Foundations, Soil Dynamics
	and Earthquake Engineering, Journal of Geotechnical and Geological
	Engineering

	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Graduate Committee. 2013-present.
	Awards Committee. 2012
	Faculty Search Committee for Environmental Engineering. 2014
	Faculty Search Committee for Geotechnical Engineering. 2015, 2016
PRINCIPAL	Dashti, S., and Karimi, Z. (in press), "Ground Motion Intensity Measures
PUBLICATIONS	to Evaluate I: the Liquefaction Hazard in the Vicinity of Shallow
AND	Founded Structures," Earthquake Spectra.
PRESENTATIONS	Deniz, D., Arneson, E.E., Liel, A.B., Dashti, S., Javernick-Will, A.
OF	(2016). "Flood Loss Models for Residential Buildings Based on the
LAST FIVE	2013 Colorado Floods," Natural Hazards Journal,
YEARS	doi:10.1007/s11069-016-2615-3.
	Arneson, E., Deniz, D., Javernick-Will, A., Liel, A., and Dashti,
	S. (2016). "Information Deficits and Post-Disaster Recovery,"
	Natural Hazards Review (accepted and in press).
	Hushmand, A., Dashti, S., Davis, C., McCartney, J.S. Hushmand, B.
	(2016). "A Centrifuge Study of the Influence of Site Response,
	Relative Stiffness, and Kinematic Constraints on the Seismic
	Performance of Buried Reservoir Structures," Soil Dynamics and
	Earthquake Engineering Journal, 88, 427-438.
	Hushmand, A., Dashti, S., Davis, C., Hushmand, B., McCartney, J., Hu,
	J., Lee, Y. (2016). "Seismic Performance of Underground Reservoir
	Structures: Insight from Centrifuge Modeling on the Influence of
	Backfill Soil Type and Geometry," Journal of Geotechnical and
	Geoenvironmental Engineering, ASCE 10.1061/(ASCE)GT.1943-
	5606.0001544 , 04016058.
	Dashti, S., Hashash, Y., Gillis, K., Musgrove, M., and Walker, M.
	(2016). "Development of Dynamic Centrifuge Models of
	Underground Structures near Tall Buildings," Soil Dynamics and
	Earthquake Engineering Journal, 86, 89-105.
	Y.H. Deng, S. Dashti, A. Hushmand, C. Davis, B. Hushmand (2016).
	"Seismic Response of Underground Reservoir Structures in Sand:
	Evaluation of Numerical Simulations using Centrifuge Experiments,"
	Soil Dynamics and Earthquake Engineering Journal, 85, 202-216.
	Karimi, Z., and Dashti, S. (2016). "Seismic Performance of Structures on
	Liquefiable Soils: Insight from Numerical Simulations and
	Centrifuge Experiments," Journal of Geotechnical and
	Geoenvironmental Engineering, ASCE, 10.1061/(ASCE)GT.1943-
	5606.0001479.
	Elected as the board member of the United States Universities Council
PROFESSIONAL	on Geotechnical Education and Research (USUCGER).
DEVELOPMENT	Committee member of the International Society of Soil Mechanics and
ACTIVITIES IN	Geotechnical Engineering (ISSMGE TC 104), ASCE Geo-Institute.
THE LAST FIVE	GeoEngineering Extreme Event Reconnaissance (GEER), including
YEARS	leading 1 reconnaissance team and participating in 3 others since
	2011

Paul M. Goodrum Professor

EDUCATION	BS, Civil Engineering, University of Washington 1993
	MS, Civil Engineering, University of Texas at Austin, 1994
	Ph.D., Civil Engineering, University of Texas at Austin, 2001
ACADEMIC	University of Colorado Boulder: Professor, 2012 – present; Nicholas R.
EXPERIENCE	Petry Professor in Construction Engineering and Management, 2012 –
	present.
	University of Kentucky: Professor 2011-2012; Terrill McDowell Chair of
	Construction Engineering and Management 2011-2012; Associate
	Professor 2006-2011; Assistant Professor, 2001-2006;
	University of Texas at Austin: Research Assistant 1998-2001; Research Assistant 1993-1994
NON-ACADEMIC	Design Civil Engineering (EIT), DDS Engineering 1996-1998; Project
EXPERIENCE	Engineer and Project Safety Engineering, W. L. Hailey and Company,
	Inc 1994-1996
PROFESSIONAL	P.E., Kentucky (License Number 20220), 1998 to present.
REGISTRATIONS	
SCIENTIFIC AND	American Society of Civil Engineers (ASCE)
PROFESSIONAL	Construction Research Council (CRC)
SOCIETIES OF	
WHICH A	
MEMBER	
HONORS AND	Blue Ribbon Committee Award AFH-10 Construction Management,
AWARDS	National Academies Transportation Research Board, 2016
	Outstanding Researcher Award, Construction Industry Institute, 2014
	Distinguished Professor Award, Construction Industry Institute, 2014
	Outstanding Faculty Award in Civil Engineering, University of
	Kentucky, 2012.
INSTITUTIONAL	ASCE J. of Construction Engineering and Management – Specialty
AND	Editors of Labor and Personnel Issues – 2006 - 2016
PROFESSIONAL	Practice Periodical of Structural Design and Construction, American
SERVICE IN	Society of Civil Engineering, Editor of Special Issue dedicated to the
LAST FIVE	Construction Engineering Conference in Seattle, Washington in April
YEARS	2014
	Construction Economics Research Network (CERN), Core Member, 2005-2012
	National Academies, Transportation Research Board, Construction
	Management Committee
	Member, 2005 - Present
	Committee Research Coordinator, 2012 – Present
	Chair, 2015 - Present
	National Academies, Transportation Research Board, Information
	Technology in Construction Subcommittee, Co-Chair, 2010 - 2013
	Construction Industry Institute, Breakthrough Strategy Committee, 1999
	-2016
	- *

	Construction Industry Institute, Academic Committee (elected Secretary 2005 to 2008, appointed Co-Chair 2011-2012, and appointed Chair 2012-2013), 2005-2016 Construction Industry Institute, Strategic Communications Committee, Academic Liason, 2013-2014. University Service Dept. of Civil, Environmental, & Architectural Engineering (CEAE) Executive Committee. 2012-2016 Graduate Committee. 2012-2013 Curriculum Committee. 2013-2014 CEAE Faculty Search Committee. 2012-2013, 2015-2016, 2016- Present (Chair)
PRINCIPAL	Bannier, P., Jin, H., and Goodrum, P. (2016). "Work Envelope
PUBLICATIONS	Requirements among Piping Trades and the Influence of Global
AND PRESENTATIONS	Anthromorphic Characteristics." Journal of Information
OF	Technology in Construction. Vol. 21, pg. 292-314 Karimi, H., Taylor, T., Goodrum, P., and Srinivasan, C. (2016).
LAST YEAR	"The Impact of Craft Professional Staffing Difficulty on
	Construction Project Safety Performance." Emerald Journal of
	Construction Innovations. 16.3 (2016).
	Sweeny, J., Goodrum, P., and Miller, J. (2016). "Analysis of
	Empirical Data on the Effects of the Format of Engineering
	Deliverables on Craft Performance." Elsevier Journal of
	Automation in Construction in Summer. 69(2016). pp. 59-67.
	Goodrum, P., Miller, J., and Sweany, J. (2016). "Influence of the
	Format of Engineering Information and Spatial-Cognitive Ability
	on Craft Worker Performance." ASCE Journal of Construction
	Engineering and Management. DOI 04016043.
	Sankaran, B., O'Brien, W., Goodrum. P., Khwaja, N., and Leite, F.
	(2016). "Civil Integrated Management for Highway Infrastructure
	- Case Studies and Lessons Learned." National Academies
	Transportation Research Board Journal of the Transportation Research Record. 2573 (2016). pp. 10-17.
	<u>Zhai, D., Shan, Y., Sturgill, R., Taylor, T., Goodrum, P. (2016).</u>
	"Estimating Highway Construction Time Using Parametric
	Modelling." National Academies Transportation Research Board
	Journal of the Transportation Research Record. 2573(2016). pp.
	1-9
PROFESSIONAL	Construction Industry Institute Annual Conference, National Harbor,
DEVELOPMENT	August 2-4, 2016.
ACTIVITIES	

Matthew R. Hallowell

Associate Professor

EDUCATION	DC Circit Environmente Development Haring in 2004
EDUCATION	BS, Civil Engineering, Bucknell University, 2004
	MS, Civil Engineering, Bucknell University, 2005
	Ph.D., Civil Engineering, Oregon State University, 2008
ACADEMIC	University of Colorado Boulder: Associate Professor, 2014-present;
EXPERIENCE	Assistant Professor, 2008-2014; Faculty Director for Civil Engineering,
	2016-present, Director of the President's Teaching and Learning
	Collaborative, 2016-present, Associate Chair CEAE 2014-15,
NON-ACADEMIC	Expert Witness in construction injury and forensics cases
EXPERIENCE	Professional consultant for construction safety
	President, Modular Design Solutions
	Project Engineer, Pine Tree Engineering
	Project Engineer, Penn Lyon Homes
	Carpenter, Fenderson-Howe Builders
PROFESSIONAL	
REGISTRATIONS	
SCIENTIFIC AND	American Society for Engineering Education (ASEE)
PROFESSIONAL	American Society of Civil Engineers (ASCE)
SOCIETIES OF	Construction Industry Institute (CII)
WHICH A	The Beavers
MEMBER	Chi Epsilon
HONORS AND	Charles Hutchinson Memorial Teaching Award, U. of Colorado (2015)
AWARDS	Outstanding Researcher Award, Construction Industry Institute (2015)
	Engineering News Record (ENR) Top 20 Under 40 (2014)
	Faculty Early Career Development (CAREER) Award, National Science
	Foundation (2013)
	Best Paper Award, American Society of Engineering Education Annual
	Conference (2013)
	Outstanding Advisor Award, College of Engineering and Applied
	Science (2013)
	John and Mercedes Peebles Innovation in Education Award, University
	of Colorado College of Engineering and Applied Science (2012)
	Best Paper Award, Journal of Safety, Health, and Environmental
	Research (2012)
	American Society of Civil Engineering New Faculty Excellence in
	Teaching Award (2011)
INSTITUTIONAL	Member of the CII Academic Committee
AND	Member of the NAE Frontiers of Engineering Education (FOEE)
PROFESSIONAL	Member of the ASCE Safety Committee, Construction Research Council
SERVICE IN	Mentor, ASCE Excellence in Civil Engineering Education (ExCEEd)
LAST FIVE	
YEARS	University Service
	Director of the President's Teaching and Learning Collaborative, Boulder
	Campus, 2016-present
	Member, Future Leadership Advancement Group (FLAG) in the College
	of Engineering and Applied Science

	Member, Graduate Education Council in the College of Engineering and
	Applied Science
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Executive Committee. 2016-present.
	Graduate Committee. Chair. 2014-2015
	Associate Chair for Graduate Education. 2014-2015
	Study Abroad Advisor
	Honors Program Advisor
	Habitat for Humanity Campus Chapter Advisor
	Engineers without Borders Rwanda Advisor
PRINCIPAL	Lingard, H., Hallowell, M.R., Salas, R.*, Prizadeh, P.* (2017). "Leading
PUBLICATIONS	or lagging? Temporal analysis of safety indicators on a large
AND	infrastructure construction project. Safety Science, 91, 206-220.
PRESENTATIONS	Tixier, A.J.P.*, Hallowell, M.R., Rajagopalan, B., and Bowman, D.
OF	(2016). "Application of machine learning to construction injury
LAST FIVE	prediction." Automation in Construction, Elsevier, (69) 102-114.
YEARS	Hallowell, M.R., Hardison, D.*, and Desvignes, M.* (2016).
	"Information technology and safety: Integrating empirical safety risk data
	with building information modeling (BIM), sensing, and visualization
	technologies." Construction Innovation (16)3, 323-347.
	Arroyo, P., Fuenzalida, C., Albert, A.*, and Hallowell, M.R. (2016).
	"Collaborating in decision making: An experimental study comparing
	CBA and WRC methods." Journal of Energy and Buildings, 128, 132-
	142.
	Salas, R.* and Hallowell, M.R. (2016). "Predictive validity of safety
	leading indicators: An empirical assessment in the oil and gas industry."
	Journal of Construction Engineering and Management, ASCE,
	04016052-1 to 04016052-11.
	Tixier, A.*, Hallowell, M.R., Rajagopalan, B., and Bowman, D. (2016).
	"Automated content analysis for safety: A natural language processing
	system to extract precursors and outcomes from unstructured injury
	reports." Automation in Construction, 62, 45-56.
	Hallowell, M.R. and Hansen, D.* (2016). "Measuring and improving
	designer hazard recognition skill: Critical competency to enable
	prevention through design." <i>Safety Science</i> , 82, 254-263.
	Hallowell, M.R. and Yugar-Arias, I.* (2016). "Exploring fundamental
	causes of safety challenges faced by Hispanic construction workers in the
	US using Photovoice." <i>Safety Science</i> , Elsevier, 82, 199-211.
PROFESSIONAL	ASCE Excellence in Civil Engineering Education (ExCEEd) workshop
DEVELOPMENT	mentor and participant
ACTIVITIES IN	National Academy of Engineering, Frontiers of Engineering Education
THE LAST FIVE	(FOEE) workshop
YEARS	President's Teaching and Learning Collaborative, University of Colorado
	Boulder Campus
	Doulou Callipus

George Hearn A	Associate Professor
EDUCATION	DES, Columbia Univ., 1989
	MS, Columbia Univ., 1982
	BE, The Cooper Union, 1979
ACADEMIC	University of Colorado Boulder: Assoc. Prof, 1996 - present
EXPERIENCE	University of Colorado Boulder, Asst. Prof. 1989-1996
NON-ACADEMIC	Consulting engineer 1979-1989
EXPERIENCE	
PROFESSIONAL	P.E., Colorado, New York
REGISTRATIONS	
SCIENTIFIC AND	ASCE, AISC, TRB
PROFESSIONAL	
SOCIETIES OF	
WHICH A	
MEMBER	
HONORS AND	
AWARDS	
INSTITUTIONAL	Chair, TRB AHD30 Structures Maintenance Committee 2015 – 2018
AND	Academic director, AASHTO TSP2 Western Bridge Preservation
PROFESSIONAL	Partnership, 2012-present
SERVICE IN	Member, FHWA Expert Task Group for Bridge Preservation, 2010-
LAST FIVE	present
YEARS	Member, NAS Expert Task Group for Long Term Bridge Performance 2012-present
	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Executive Committee. 2010-present.
	Faculty Search Committees, 2010-present
PRINCIPAL	Hearn,G., (2016). Bridge Preservation Index and Its Relation to National
PUBLICATIONS	Performance Management Measures. TRB Annual Mtg., Paper
AND	16-2301, 149.
PRESENTATIONS	Hearn,G., (2015). Element-Level Performance Measures for Bridge
OF LAST EIVE	Preservation. Trans. Res. Rec. 2481, p10-17.
LAST FIVE	Hearn,G. (2014). State Bridge Load Posting Processes and Practices. Natl
YEARS	Acad., NCHRP Synthesis 453. 136p.
	Hearn,G. (2014). Status of Posting for Load Among U.S. Bridges and Cultures TPB Appual Mtg. Paper 14 3072, 15p.
	Culverts. TRB Annual Mtg., Paper 14-3072, 15p.

	Hearn,G, Juntunen,D., Ahmad,A.S., and Johnson,B.V. (2013).
	Performance Measures for Bridge Preservation. TRB Annual
	Mtg., Paper 13-1551, 15p.
	Hearn,G., Pan,S-Y, and Casey,W.F. (2013). Bridge Management
	Practices in Idaho, Michigan and Virginia. TRB Annual Mtg.,
	Paper 13-0869, 14p.
	Hearn,G. (2012) Deterioration and Cost Information for Bridge
	Management. Colorado DOT, CDOT-2012-4, 354p.
	Hearn, G. (2012). Bridge Management Practices in Idaho, Michigan and
	Virginia. USDOT FHWA,
	http://www.fhwa.dot.gov/asset/hif12029/hif12029.pdf, 42p.
	Hearn, G. and Johnson, B.V. (2011). An Overview of Identification and
	Tracking of Highway Bridge Maintenance Actions. NAS-TRB,
	Transp. Res. Rec. No 2220, p12-20.
PROFESSIONAL	FHWA training for bridge inspection using national bridge elements
DEVELOPMENT	
ACTIVITIES IN	
THE LAST FIVE	
YEARS	

Gregor P. Henze	Professor
-----------------	-----------

EDUCATION	
EDUCATION	Technical University of Berlin, Mechanical Engineering, B.S. 1989
	Oregon State University, Mechanical Engineering, M.S. 1991
	Technical University of Berlin, Mechanical Engineering, DiplIng. 1992
	University of Colorado Boulder, Civil Engineering, Ph.D. 1995
ACADEMIC	2014-2015, Visiting Professor, Universidad de Sevilla, Spain
EXPERIENCE	2013 to present, Joint Professor, National Renewable Energy Laboratory
	2008 to present, Professor, University of Colorado Boulder
	1999-2008, Assistant/Assoc. Professor, University of Nebraska-Lincoln
NON-ACADEMIC	2005-2006, Visiting Scientist, Fraunhofer Institute for Solar Energy
EXPERIENCE	Systems, Freiburg, Germany
	2005, Visiting Scientist, Siemens Building Technologies, Zug, CH
	1996-1999, Energy Engineering Manager, Johnson Controls, Germany
PROFESSIONAL	HBDP, High-Performance Building Design Professional, 2006 to present.
REGISTRATIONS	P.E., Mechanical Engineering, Nebraska, 2004 to present.
SCIENTIFIC AND	American Society of Heating, Refrigerating, and Air-Conditioning
PROFESSIONAL	Engineers (ASHRAE)
SOCIETIES OF	American Society of Civil Engineers (ASCE)
WHICH A	International Building Performance Simulation Association (IBPSA)
MEMBER	
HONORS AND	University of Colorado AREN Appreciation Award 2015;
AWARDS	University of Colorado CEAE Department Service Award 2014
	Endowed Lewis-Worcester Faculty Fellowship 2014-2018
	Architectural Engineering Institute (AEI) 2013 Best Paper Award
	University of Colorado CEAE Distinguished Achievement Award 2012
	Colorado Cleantech Industry Association Research and
	Commercialization Award 2011
	University of Colorado CEAE Research Development Award 2011
INSTITUTIONAL	Chair for Workshop on Intelligent Building Operations, Purdue
AND	University, June 2016; U of Colorado 2013; Concordia U. 2011.
PROFESSIONAL	Editorial Board Member for Journal of Building Performance Simulation
SERVICE IN	since 2015.
LAST FIVE	Associate Editor for Journal of Architectural Engineering since 2015
YEARS	Associate Editor for Renewable Energy in the topical area of "Low
	Energy Architecture and Buildings" for 2014-2015.
	Renewable and Sustainable Energy Institute (RASEI) Fellow and
	Executive Committee Member since 2010
	American Society of Mechanical Engineers (ASME) Solar Energy
	Division Technical Committee Chair for Conservation and Solar Buildings for 2008-2014.
	Associate Editor for Journal of Solar Energy Engineering in topical area
	of "Conservation and Solar Buildings" for 2008-2014.
	Member of ASHRAE committee charged with developing a certification
	program on Sustainable Building Design and Operation.

	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Curriculum Committee, 2015 to present.
	Executive Committee, 2012-2014.
	AREN Faculty Director, 2012-2014. Associate Chair, 2010-2012.
	College of Engineering at the University of Colorado - Boulder
	Dean Search Committee, 2015-2016.
	Energy Engineering Minor Committee, 2013 to present.
PRINCIPAL	Giuliani, M., G.P. Henze, and A.R. Florita (2016) "Modeling and
PUBLICATIONS	Calibration of a High-Mass Historic Building for Energy and Comfort
AND	Assessment." Energy and Buildings, 116, 434-448.
PRESENTATIONS	Patteeuw, D., G.P. Henze, and L. Helsen (2016), "Comparison of load
OF	shifting incentives for low-energy buildings with heat pumps to attain
LAST FIVE	grid flexibility benefits." Applied Energy, 167, 80-92.
YEARS	Henze, G.P., Pless, S., Petersen, A., Long, N., and Scambos, A. T. (2015).
	Control limits for building energy end use based on frequency analysis
	and quantile regression. Energy Efficiency, 8(6), 1077-1092
	Pavlak, G.S., Henze, G.P., and Cushing, V. J. (2015). Evaluating
	synergistic effect of optimally controlling commercial building
	thermal mass portfolios. Energy, 84, 161-176.
	Harmer, L.C. and Henze, G.P. (2015). Building Commissioning Using
	Calibrated Energy Models. Energy and Buildings, 92, 2014-2015.
	Henze, G.P., Pavlak, G.S., Florita, A.R., Dodier, R.H., and Hirsch, A.I.
	(2015). An energy signal tool for decision support in building energy
	systems. Applied Energy, 138, 51-70.
	Zhao, P., Henze, G.P., Brandemuehl, M.J., Cushing, V.J., and Plamp, S.
	(2015). Dynamic frequency regulation resources of commercial
	buildings through combined building system resources using a
	supervisory control methodology. Energy and Buildings, 86, 137-150.
	Pavlak, G.S., Henze, G.P., and Cushing, V.J. (2014). Optimizing
	commercial building participation in energy and ancillary service
	markets. Energy and Buildings, 81, 115-126.
	Pavlak, G.S., Florita, A.R., Henze, G.P., and Rajagopalan, B. (2013).
	Comparison of Traditional and Bayesian Calibration Techniques for
	Gray-Box Modeling. Journal of Architectural Engineering, 20(2).
	Tanner, R.A., and Henze, G.P. (2014). Stochastic control optimization for
	a mixed mode building considering occupant window opening
	behaviour. Journal of Building Performance Simulation, 7(6), 427-44.
PROFESSIONAL	Co-Chair for Workshop on Intelligent Building Operations,
DEVELOPMENT	West Lafayette, IN, Purdue University, June 2016.
ACTIVITIES IN	Co-Chair for Workshop on Building-to-Grid Integration,
THE LAST FIVE	Universidad de Sevilla, Spain, June 2015.
YEARS	Chair for Workshop on Intelligent Building Operations,
	University of Colorado Boulder, June 2013.
	Chair for Workshop on Model Predictive Control in Buildings,
	Concordia University, Montreal, June 2011.

Mija H. Hubler Assistant Professor

EDUCATION	BS, Civil Engineering, University of Illinois, 2006
	MS, Civil Engineering, Cornell University, 2009
	Ph.D., Civil Engineering, Northwestern University, 2013
ACADEMIC	University of Colorado Boulder, Assistant Professor, 2015 – present
EXPERIENCE	Massachusetts Institute of Technology, Postdoctoral Researcher, 2013-
	2015
	Northwestern University, Research Assistant, 2009-2013, part time
	Cornell University, Research Assistant, 2006-2009, part time
NON-ACADEMIC	F.H. Paschen/S.N. Nielsen, Chicago, IL, Engineering Intern, summer 2005
EXPERIENCE	Architectural Alliance Inc., Santa Fe, NM, Intern, summer 2004
PROFESSIONAL	
REGISTRATIONS	
SCIENTIFIC AND	American Society of Civil Engineers (ASCE)
PROFESSIONAL	International Association for Life-Cycle Civil Engineering (IALCE)
SOCIETIES OF	Society of Engineering Sciences (SES)
WHICH A	American Concrete Institute (ACI)
MEMBER	
HONORS AND	
AWARDS	
INSTITUTIONAL	RILEM Technical Committee MDC – Multi-decade creep and shrinkage
AND	of concrete: material model and structural analysis, 2012-2013
PROFESSIONAL	Voting Member for ACI 209 Creep and Shrinkage of Concrete, 2012 -
SERVICE IN	2013, secretary for subcommittee on rate type modeling, Member of
LAST FIVE	ACI 241, Nanotechnology of Concrete
YEARS	Scientific Committee for International Association of Fracture Mechanics
	for Concrete and Concrete Structures Conference 9
	Reviews in Journal of Engineering Mechanics, Materials and Structures,
	Construction & Building Materials, Journal of Nanomechanics and
	Micromechanics, Journal of Materials in Civil Engineering, and
	Journal of Mechanical Engineering Science, and Mechanics Research
	Communications, 2015 - present
	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	External Joint Evaluation Committee. Coordinator. 2016
PRINCIPAL	M. H. Hubler, and FJ. Ulm. 2016. "Size-Effect Law for Scratch Tests of
PUBLICATIONS	Axisymmetric Shape." Journal of Engineering Mechanics, 04016094.
AND	Q. Yu, JL. Le, M. H. Hubler, R. Wendner, G. Cusatis, and Z. P. Bazant.
PRESENTATIONS	2016. "Comparison of Main Models for Size Effect on Shear Strength
OF	of Reinforced and Prestressed Concrete Beams." <i>Structural Concrete</i> .
LAST FIVE	RILEM TC-242-MDC, 2015. "RILEM draft recommendation: TC-242-
YEARS	MDC multi-decade creep and shrinkage of concrete: material model
	and structural analysis*," RILEM Mater. and Struc., 48(4).

	R. Wendner, M. H. Hubler, and Z. Bažant, 2015. "Optimization method,
	choice of form and uncertainty quantification of Model B4 using
	laboratory and multi-decade bridge databases," <i>RILEM Mater. and</i>
	Struc., 48(4).
	M. H. Hubler, R. Wendner, and Z. Bažant, 2015. "Statistical justification
	of Model B4 for drying and autogenous shrinkage of concrete and comparisons to other models," <i>RILEM Mater. and Struc.</i> , 48(4).
	R. Wendner, M. H. Hubler, and Z. Bažant, 2015. "Statistical justification of model B4 for multi-decade concrete creep using laboratory and heidag detabases and comparisons to other models." <i>PUEM Mater</i>
	bridge databases and comparisons to other models," <i>RILEM Mater. and Struc.</i> , 48(4).
	M. H. Hubler, R. Wendner, and Z. Bažant, 2015. "Extensive Concrete
	Creep and Shrinkage Database – Analysis and Recommendations for
	Testing and Reporting," ACI Mat. J.
	Z. Bažant and M. H. Hubler, 2013. "Theory of Cyclic Creep of Concrete
	Based on Paris Law for Fatigue Growth of Subcritical Microcracks," <i>JMPS</i> , 63, pg. 187-200.
	C. Hoover, Z. Bažant, J. Vorel, R. Wendner, and M. H. Hubler, 2013.
	"Comprehensive Concrete Tests: Description and Results," ACI
	Materials J., 114, pg. 92-103.
	Z. Bažant, M. H. Hubler, and M. Jirásek, 2013. "Improved Estimation of
	Long-Term Relaxation Function from Compliance Function of Aging
	Concrete," ASCE J. of Eng. Mechanics, 139(2), pg. 146-152.
	Z. Bažant, M. H. Hubler, and Q. Yu, "Pervasiveness of Excessive
	Segmental Bridge Deflections: Wake-Up Call for Creep," ACI
	Structural J. 2011, 108(6), pg. 766-774.
PROFESSIONAL	NAPP Program for Teaching, Aug. 2015
DEVELOPMENT	PCA Education Foundation Professor's Workshop, July 2015
ACTIVITIES IN	
THE LAST FIVE	
YEARS	

Amy N. Javernick-Will Associate Professor

EDUCATION	BS, Civil Engineering, University of Colorado Boulder, 1999
	MS, Civil Engineering, University of Colorado Boulder, 2001
	Ph.D., Civil Engineering, Stanford University, 2009
ACADEMIC	University of Colorado Boulder: Associate Professor, 2016 - present;
EXPERIENCE	Assistant Professor, 2010-2016-; Associate Director of Graduate
	Education and Research, Mortenson Center in Engineering for
	Developing Communities, 2015—present
	Stanford University: Stanford Graduate Fellow, Research Assistant,
	Teaching Assistant, 2006-2009
NON-ACADEMIC	Opus Northwest, L.L.C., Denver, CO, Project Manager, 2005-2006;
EXPERIENCE	Associate Project Manager, 2001-2004
	Neenan Company, Fort Collins, CO, Project Engineer, 2000-2001
	Turner Construction Company, Denver, CO, Intern, summer 1999
PROFESSIONAL	F.E., Colorado, 1999; LEED Accreditation 2005-Present.
REGISTRATIONS	
SCIENTIFIC AND	American Society for Engineering Education (ASEE)
PROFESSIONAL	American Society of Civil Engineers (ASCE)
SOCIETIES OF	Construction Research Congress (CRC)
WHICH A	Construction Industry Institute (CII)
MEMBER	
HONORS AND	Distinguished Professor Award, Construction Industry Institute, 2016
AWARDS	Best Paper Award, Engineering Project Organizations Conference: 2015 and 2016.
	Outstanding Undergraduate Research Mentor, University of Colorado- Boulder, 2015
	Honorary Commended Paper, International Journal of Disaster Resilience in the Built Environment, 2014
	ASCE Excellence in Civil Engineering Education (ExCEEd) New Faculty Excellence in Teaching Award ,2014
	Outstanding Advisor, College of Engineering and Applied Science, University of Colorado-Boulder, 2014
	Young Researcher Award, Department of CEAE, University of Colorado Boulder, 2014
INSTITUTIONAL	Construction Management and Economics, Editor (2016-current)
AND	Journal of Construction Engineering and Management, Assistant Specialty
PROFESSIONAL	Editor (2011-2016)
SERVICE IN	National Academy of Engineering, member of panel working on research
LAST FIVE	project "Understanding the Engineering Education-Workforce
YEARS	Continuum" (2013-2016)
	Construction Industry Institute, Academic Committee (2010-2016),
	Conference Chair, CII-track (2014-2016), Academic Co-chair-Global
	Community of Practice (2012-2016)
	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)

	Associate Director, Mortenson Center in Engineering for Developing
	Communities (2015-present)
	Graduate Committee, Curriculum Committee
	College of Engineering at the University of Colorado - Boulder
	Faculty Leadership Affairs Group (FLAG), College of Engineering and
	Applied Science (2015-present)
	<u>University Service</u>
	Boulder Faculty Affairs Leadership Committee (2014-2015)
PRINCIPAL	Zerio, A., Opdyke, A., and A. Javernick-Will (2016). "Characterizing
PUBLICATIONS	Post-Disaster Reconstruction Training Methods and Learning Styles".
AND	Engineering Project Organization Journal.
PRESENTATIONS	Opdyke A., Lepropre, F., Javernick-Will, A. and M. Koschmann (2016).
OF	"Inter-organizational resource coordination in post-disaster
LAST FIVE	infrastructure recovery." Construction Management and Economics.
YEARS	Antillon, E., Molenaar, K., and A. Javernick-Will (2016). "Evaluating
	the Effect of Contract Timing on Life Cycle Design Innovation in
	Public-Private Partnerships: A Comparative Case Study of Highway
	Projects". Journal of Construction Engineering and Management.
	Deniz, D., Arneson, E., Liel, A., Dashti, S., and A. Javernick-Will
	(2016). "Flood Loss Models for Residential Buildings Based on the
	2013 Colorado Floods". Natural Hazards.
	Jordan, E., Javernick-Will, A. and Tierney, K. (2016). "Post-Tsunami
	Recovery in Tamil Nadu, India: Combined Social and Infrastructural
	outcomes". Natural Hazard:
	Poleacovschi, C. and A. Javernick-Will. (2016). "Spanning Knowledge
	Across Subgroups and Its Effects on Individual Performance".
	Journal of Management in Engineering.
	Litchfield, K., Javernick-Will, A., and A. Maul (2016). "Technical and
	Professional Skills of Engineers Involved and Not Involved in
	6
	Engineering Service." Journal of Engineering Education. 105(1): 70-
	<i>92.</i>
	Litchfield, K. and A. Javernick-Will (2015). "I am an Engineer AND':
	A Mixed-Methods Study of Socially Engaged Engineers". Journal of
	Engineering Education. 104(4): 393-4166.
	Wanberg, J., Javernick-Will, A., Taylor, J. and P. Chinowsky
	(2015). "The Effects of Organizational Divisions on Knowledge
	Sharing Networks in Multi-lateral Communities of Practice".
	Engineering Project Organizations Journal
	Walters, J. and A. Javernick-Will (2015). "Management of Rural Water
	Services in Nicaragua: A Systemic Network Approach to Evaluating
	Stakeholder Alignment". International Journal of Sustainable
	e v
DDOFEGGIONAT	Development and World Ecology. 22(4): 358-367.
PROFESSIONAL	Penn State PACE, Innovation Research Road mapping Workshop, June
DEVELOPMENT	2015.
ACTIVITIES IN	NSF IDEAS Lab, Virginia, March 2014
THE LAST FIVE	NAE, Engineering Education to Workforce Continuum, 2013-201
YEARS	

Moncef Krarti	Professor
EDUCATION	BS, Diplôme d'Ingénieur, Ecole des Ponts et Chaussées, Paris, 1984 MS, Civil Engineering, University of Colorado, 1985 Ph.D., Civil Engineering, University of Colorado, 1987
ACADEMIC EXPERIENCE	 University of Colorado Boulder: Professor, 2004 – present; Associate Professor, 1998-2004; Assistant Professor, 1991-1998; Associate Chair CEAE 2006-08; Director JCEM program, 1997-1998; Nanyang Technological University, Singapore (sabbatical), 2012-2013 Ecole des Mines de Paris, Adjoint Professor, 1998-Present Texas A&M University, Post-doctoral Fellow, 1986-1988
NON-ACADEMIC EXPERIENCE	Associate, Steven Winter Associates, Norwalk, CT, 1988-1991.
PROFESSIONAL REGISTRATIONS SCIENTIFIC AND	P.E., Colorado, 1998 to present. LEED-AP, Green Building Certification Institute, 2009 to present.
PROFESSIONAL SOCIETIES OF	American Society for Mechanical Engineers (ASME), Fellow. American Society of Heating, Refrigerating, and Air Conditioning (ASHRAE)
WHICH A MEMBER	American Solar Energy Society (ASES)
HONORS AND AWARDS	Distinguished Achievement Award, CEAE Department, 2016. Elected ASME Fellow, 2015. New Inventor Award, University of Colorado at Boulder, 2013. Eckel Award for Excellence, University of Colorado at Boulder, 2012. Service Award, Solar Energy Division Chair, ASME, New York, NY, 2011.
INSTITUTIONAL AND PROFESSIONAL SERVICE IN LAST FIVE YEARS	 American Society for Mechanical Engineers (ASME). Co-director of Integrated and Sustainable Building Equipment and Systems (ISBES). Environmental Division director (2011-13); Editor of ASME Handbook on ISBES, Editor of Monographs. Chair and co-chair of several ASME Energy sustainability conferences, 1992-present. American Society of Heating, Refrigerating, and Air Conditioning (ASHRAE), Voting member of several technical committees on Thermal Energy Storage, Intelligent Buildings, and Building Thermal Load Calculations, 1992-present. of the Civil Engineering Program Criteria Task Committee, 2013. American Solar Energy Society (ASES), Technical Chair of two annual ASES conferences, 2006-present. Editorial Member of Journal of Solar Energy Engineering (JSEE), published by ASME, Chair of Energy Fundamentals Section, 2006- 2012. Editorial board of Francis and Taylor publishing on Building Energy Efficient Systems. 2012-present. University Service Dept. of Civil, Environmental, & Architectural Engineering (CEAE) Executive Committee. 2010-2013 and 2015-present. Graduate Committee. 1998-2002, 2006-2015

	1
	Chair of CEAE Faculty Search Committees, 2002-2003, 2006-2007, 2008-2009, 2013-2014.
	Coordinator of High School Honor Institute: to attract high school
	honor students to enroll in engineering, 2002-2005.
	College of Engineering at the University of Colorado - Boulder
	First Level Review Committee, Chair, Engineering College, 2007-2008.
	First Level Review Committee, Member, Engineering College, 2004-2008.
	CU-Campus Carbon Neutral Committee, Member, Campus wide Committee, since 2008.
PRINCIPAL	A. Alaidroos and M. Krarti, "Numerical Modeling of Ventilated Wall
PUBLICATIONS	Cavities with Spray Evaporative Cooling Systems" Energy and
AND	Buildings, accepted and available online 24 August (2016)
PRESENTATIONS	B. Park and M. Krarti, "Energy performance analysis of variable
OF	reflectivity envelope systems for commercial buildings" Energy and
LAST FIVE	Buildings, 116, 249-262 (2016).
YEARS	B. Ameer and M. Krarti, "Impact of Subsidization on High Energy
	Performance Designs for Kuwaiti Residential Buildings, Energy and Buildings, 124, (2016).
	J. Mun, and M. Krarti, "Optimal Insulation for Ice Rink Floors", Energy
	and Buildings, In Press, Available online 25 September, (2015).
	M. Krarti "Evaluation of large scale building energy efficiency retrofit
	program in Kuwait", Renewable and Sustainable Energy Reviews, 50, 1069-1080, (2015).
	B. Park, W.V. Srubar, and M. Krarti, "Energy performance analysis of variable thermal resistance envelopes in residential buildings", Energy
	and Buildings, 103, 317-325, (2015).
	M. Krarti, Analysis Methods for Building Energy Auditing, Chapter in
	Energy Efficiency and Renewable Energy Handbook, Second Edition,
	Y. Goswami and F. Kreith, CRC Press, Taylor and Francis Publishing,
	(2015).
	C. Kaltreider, M. Krarti, and J.S. McCartney, "Heat Transfer Analysis of Thermo-Active Foundations". Energy and Buildings, 86, 492-501,
	(2015).
	M. Krarti, Thermo-active Foundations for Sustainable Buildings, Editor, monograph, 150 pages, ASME Press, 2015.
	M. Krarti, Energy Efficient Building Electrical Systems, textbook, 520
	pages, Taylor and Francis, 2016.
PROFESSIONAL	DOE Conference on Collaboration between Universities and DOE
DEVELOPMENT	Research Laboratories, Washington DC, April 1-2, 2015.
ACTIVITIES IN	ASES Workshop, on Energy Efficient Residential Buildings, Phoenix,
THE LAST FIVE	Aug. 5-6, 2014.
YEARS	

ADDIE B. LIEI ASSOCIATE Professor	Abbie B. Liel	Associate Professor
-----------------------------------	---------------	---------------------

EDUCATION	
EDUCATION	BSE, Civil and Environmental Engineering, Princeton University, 2002
	MS, Civil and Environmental Engineering, University College London,
	2003
	MS, Building and Urban Design and Development, University College
	London, 2004
	Ph.D., Civil and Environmental Engineering, Stanford, 2008
ACADEMIC	University of Colorado at Boulder, Assistant Professor, 2008-2015;
EXPERIENCE	Associate Professor 2016 – present
	Stanford University, Stanford, CA, Research Assistant, 2004-2008
	University of Tokyo, Japan, Visiting Researcher, 2006
	University College London, England, Research Assistant, 2004
	Princeton University, Princeton, NJ, Research Assistant, 2002-2002
NON-ACADEMIC	Applied Technology Council, Consultant, 2005-present
EXPERIENCE	URS Corporation, Portland, OR, Structural Engineering Intern, 2001
PROFESSIONAL	Professional Engineer, State of California
REGISTRATIONS	
SCIENTIFIC AND	American Society of Civil Engineers (ASCE).
PROFESSIONAL	Earthquake Engineering Research Institute (EERI).
SOCIETIES OF	American Society of Engineering Education (ASEE)
WHICH A	Consortium of Universities for Research in Earthquake Engineering
MEMBER	(CUREE)
HONORS AND	Civil Engineering Honorary Visiting Research Award, University of
AWARDS	Auckland, 2015
	Shah Family Innovation Prize, Awarded by the Earthquake Engineering
	Research Institute, 2015
	Outstanding Faculty Advisor Award, College of Engineering, 2015
	Outstanding Paper Earthquake Spectra, 2013
	Outstanding Paper of 2012 (Runner-up) in Journal of Performance of
	Constructed Facilities, 2013
	Dean's Award for Outstanding Junior Faculty Member, College of
	Engineering, 2013 (Awarded 2014)
	Faculty Teaching Award, Dept. of Civil, Environmental and
	Architectural Engineering, 2013
	National Science Foundation CAREER Award, 2012
	Selected as Next-Generation Hazards and Disaster Researcher, 2009
	Research Fellowship, Japan Society for the Promotion of Science, 2006
	Winner, Student Paper Competition, Earthquake Engineering Research
	Institute, 2006
	Recipient, Graduate Research Fellowship, National Science Foundation,
	2004 - 2008
	Marshall Scholar, 2002 – 2004
INSTITUTIONAL	
AND	Research Consultant, Applied Technology Council
PROFESSIONAL	Project Management Committee for ATC-78, Identification and
	Mitigation of Non-ductile Concrete Buildings, 2010 – present

SERVICE IN	Working group for ATC-63, Quantification of Building System
LAST FIVE	Performance and Response Parameters, and ATC-63-1, Development
YEARS	of Structural Component Equivalency Methodologies, 2005 – 2010
	Research Consultant, Building Seismic Safety Council, National Institute
	of Building Sciences
	Working group for Development of Simplified Seismic Design
	Procedures, 2010 – 2012
	Co-chair, 2017 ASCE Structures Congress, Local Planning Committee EERI Annual Meeting Working Group, 2016 – present
	Committee on Reform of Structural Engineering Education, Structural
	Engineering Institute, ASCE, 2015 - present
	Affiliate Member, Structural Engineers Association of Colorado, 2013 -
	Present & Member of Sub-Committee on Snow Loads, 2012 –
	Present
	Founding Member, Young Professionals Committee, Structural
	Engineering Institute, American Society of Civil
	Engineers, 2011- 2016
PRINCIPAL	Liel, Abbie B., D. Jared DeBock, James R. Harris, Jeannette Torrents,
PUBLICATIONS	Bruce Ellingwood, "Reliability-Based Design Snow Loads: II
OF	Reliability Assessment and Mapping Procedures," ASCE Journal of
LAST FIVE	Structural Engineering, in Press.
YEARS	Deniz, Derya, Erin E. Arneson, Abbie B. Liel, Shideh Dashti and Amy N.
	Javernick-Will, "Flood Loss Models for Residential Buildings Based
	on the 2013 Colorado Floods", Natural Hazards, In Press.
	Harrington, Cody C. and Abbie B. Liel, "Collapse Assessment of
	Moment Frame Buildings, Considering Vertical Ground Shaking",
	Earthquake Engineering and Structural Dynamics, In Press.
	Welsh-Huggins, Sarah J and Abbie B. Liel, "A Life-Cycle Framework
	for Integrating Green Building and Hazard-Resistant Design:
	Examining the Seismic Impacts of Buildings with Green Roof
	Systems", Structure and Infrastructure Engineering, 13(1), 2017.
	Sattar, Siamak and Abbie B. Liel. "Seismic Performance of Non-Ductile
	Reinforced Concrete Frames with Masonry Infill Walls: II. Collapse
	Assessment", Earthquake Spectra, 32(2), pp. 819 – 842, 2016.
	Raghunandan, Meera, Abbie B. Liel, and Nicolas Luco. "Aftershock
	Collapse Vulnerability Assessment of Reinforced Concrete Frame
	Structures", Earthquake Engineering and Structural Dynamics, 44(3),
	pp. 419-439, 2015.
PROFESSIONAL	TRESTLE Scholar. Transforming Education, Supporting Teaching and
DEVELOPMENT	Learning Excellence (TRESTLE), University of Colorado Boulder
ACTIVITIES IN	Center for STEM Learning, Fall, 2016.
THE LAST FIVE	Participant in Creative Art of Structural and Civil Engineering
YEARS	Workshop, Hosted by UMass Amherst, June, 2016.

Keith R. Molenaar Professor

EDUCATION	BS, Architectural Engineering, University of Colorado, 1990
	MS, Civil Engineering, University of Colorado, 1995
	Ph.D., Civil Engineering, University of Colorado, 1996
ACADEMIC	University of Colorado Boulder: Professor, 2011 - present; Associate
EXPERIENCE	Dean for Graduate Programs, 2015-present; Associate Professor, 2006-
	11; Assistant Professor, 1999-06; CEAE Department Chair, 2010-15;
	Polytechnic University of Valencia, Valencia Spain (sabbatical), 2014-15
	Catholic University of Chile, Santiago, Chile (sabbatical), 2006-07
	Georgia Institute of Technology: Assistant Professor, 1997-99
	University of Colorado, Instructor/Research Assistant, 1994-97
NON-ACADEMIC	Pre-Construction Services Consultant, 1991-97, Architectural Resource
EXPERIENCE	Consultants, Inc., Boulder, Colorado; Assistant Site Superintendent,
	1988-91, Spectrum Builders, Inc., Boulder, Colorado
PROFESSIONAL	DBIA Professional, 2002-present
REGISTRATIONS	
SCIENTIFIC AND	American Society of Civil Engineers
PROFESSIONAL	Association for the Advancement of Cost Engineering International
SOCIETIES OF	Construction Management Association of America
WHICH A	Design-Build Institute of America
MEMBER	
HONORS AND	Pan-American Academy of Engineering, 2012
AWARDS	Excellence in Leadership Fellow, University of Colorado, 2010
	Fulbright Scholar, Fulbright Commission of Chile, 2006
	Provost Faculty Achievement Award, University of Colorado, 2006
	Top 50 "Trendsetter," Public Works Magazine, 2004
INSTITUTIONAL	National Service
AND	American Society of Civil Engineers
PROFESSIONAL	Department Heads Executive Committee, 2011-2015.
SERVICE IN	International Activities Committee, ASCE Lead Representative to the
LAST FIVE	Union of Pan-American Engineering Associations, 2008-2014.
YEARS	Design-Build Institute of America
	Chair, Registration Board, 2016; Member, 2009-2016.
	Faculty Advisor, Design-Build of America Student Competition Team,
	2015 and 16.
	National Research Committee, 2008-2014.
	TRB Transportation Research Board
	Construction Management Committee 2014-present
	University Service
	College of Engineering and Applied Science
	Associate Dean for Graduate Programs, 2015-present
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Department Chair, 2010-14
	Graduate Committee, 2015-present

PRINCIPAL	Tran, D., Molenaar, K.R., and Gransberg, D.D. (2016). "Implementing
PUBLICATIONS	Best-Value Procurement for Design-Bid-Build Highway Projects,"
AND	Transportation Research Record: Journal of the Transportation
PRESENTATIONS	Research Board, National Academies. 2573, 26-33.
OF	Stanford, M.S. Molenaar, K.R. and Sheeran, K.M. (2016). "Application
LAST FIVE	of Indefinite Delivery-Indefinite Quantity Construction Strategies at
YEARS	the Federal Level," ASCE Journal of Management in Engineering,
	32(5), 04016011.
	Pellicer, E., Sanz, M., Esmaeili, B. and Molenaar, K., (2016),
	"Exploration of Team Integration in Spanish Multi-Family Residential
	Construction," ASCE Journal of Management in Engineering, 32(5), 05016012.
	Harper, C.M., Molenaar, K.R., and Cannon, J.P. (2016). "Measuring
	Constructs of Relational Contracting in Construction Projects," ASCE
	Journal of Construction Engineering and Management, 142(10), 04016053.
	Mesa, H., Molenaar, K.R., and Alarcón, L.F. (2016). "Exploring
	Performance of the Integrated Project Delivery Process on Complex
	Building Projects," International Journal of Project Management,
	34(7), 1089–1101.
	Tran, D., Molenaar, K., and Alarcón, L.F. (2016). "A Hybrid Cross-Impact
	Approach to Predicting Cost Variance of Project Delivery Decisions for
	Highways," ASCE Journal of Infrastructure Systems, 22(1), 04015017.
PROFESSIONAL	Design-Build Institute of America's Design-Build Conference and
DEVELOPMENT	Exposition, Denver, CO, November, 2015.
ACTIVITIES IN	American Association of Port Authorities Annual Conference, San
THE LAST FIVE	Diego, CA, October, 2015.
YEARS	Construction Industry Institute Annual Conference, Boston, MA, August, 2015.
	Transportation Research Board Annual Conference, Washington, DC, January 2015.
	Advanced Methodologies for Construction Management, Catholic
	University of Chile and Chilean Association of Construction,
	Santiago, Chile, September 2014.
	18 th International Congress on Project Management and Engineering,
	Alcañiz, Spain, July 2014.
	New York State Department of Transportation Design-Build Peer
	Exchange, Rochester, NY, April 2014.
	American Society of Civil Engineers, Department Heads Committee
	Meeting, Oklahoma City, OK, April 2014.
	Federal Highway Administration, Risk Management Peer Exchange,
	Atlanta, GA, March 2014.
	American Society of Civil Engineering, Texas Section Centennial
	Conference, Dallas, TX, September 2013.

Matthew Morris Senior Instructor

EDUCATION	BS, Civil Engineering, University of Colorado Boulder, 1999
	MS, Civil Engineering, University of Colorado Boulder, 2002
ACADEMIC	University of Colorado Boulder: Senior Instructor, 2016 - present;
EXPERIENCE	Instructor, 2012-2016
	United States Military Academy, West Point: Associate Professor, 2005-
	2006; Instructor, 2003-2005
NON-ACADEMIC	Mortenson Construction, Denver, CO, Project Manager, 2006-2012
EXPERIENCE	U.S. Air Force, Civil Engineer Officer, 1999-2006
PROFESSIONAL	P.E., Colorado, 2005 to present.
REGISTRATIONS	LEED AP, 2007 to present
SCIENTIFIC AND	Design Build Institute of America (DBIA)
PROFESSIONAL	
SOCIETIES OF	
WHICH A	
MEMBER	
HONORS AND	University of Colorado Civil Engineering Faculty Excellence Award,
AWARDS	2016
	Dan Ivanoff Construction Engineering & Management Fellowship, 2014-
	present
	University of Colorado Architectural Engineering Faculty Excellence
	Award, 2014
	University of Colorado Marinus Smith Award – Teaching Excellence,
	2013
	Meritorious Service Medal
	Air Force Commendation Medal
	National Defense Service Medal
	Global War on Terrorism Service Medal
	Korean Defense Service Medal
	Air Force Overseas Ribbon
	Air Force Longevity Service
	Small Arms Expert Marksmanship
	Company Grade Officer of the Quarter, 2003
	Company Grade Officer of the Quarter, 2001
INSTITUTIONAL	University Service
AND	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
PROFESSIONAL	Curriculum Committee, 2015-present
SERVICE IN	Construction Engineering & Management Industry Advisory Board
LAST FIVE	Executive Committee, 2012-present
YEARS	Associated General Contractors (AGC) Student Chapter Faculty
	Advisor, 2012-present
	College of Engineering at the University of Colorado - Boulder
	Scholarship Committee, 2012-present
	College internship committee, 2014

	College of Engineering Renovation Design/Construction Committee,
	2015-2016
	Larson Lab Mechanical Upgrade Construction Project liaison, 2015-
	2016
PRINCIPAL	Not Applicable
PUBLICATIONS	
AND	
PRESENTATIONS	
OF	
LAST FIVE	
YEARS	
PROFESSIONAL	Town of Superior Open Space Advisory Committee, 2014-present
DEVELOPMENT	Design Build Institute of America Owner's Forum, 2015
ACTIVITIES IN	
THE LAST FIVE	
YEARS	

Ronald Y.S. Pak Professor

EDUCATION	
EDUCATION	BE, Civil Engineering, McMaster University, 1979
	MS, Civil Engineering, Caltech, 1980
	Ph.D., Civil Engineering, Caltech, 1985
ACADEMIC	Professor, University of Colorado Boulder (1995-present)
EXPERIENCE	Associate Professor, University of Colorado Boulder (1991-95)
	Assistant Professor, University of Colorado Boulder (1985-91)
	Research Fellow, California Institute of Technology (1985)
NON-ACADEMIC	Associate Engineer, C.F. Braun & Co, California (1981-82)
EXPERIENCE	Associate Engineer, C.F. Braun & Co, Camornia (1981-82)
PROFESSIONAL	None
REGISTRATIONS	None
SCIENTIFIC AND	
PROFESSIONAL	Engineering Mechanics Institute (EMI)
SOCIETIES OF	American Society of Civil Engineers (ASCE)
WHICH A	Consortium of University of Earthquake Engineering (CUREE)
MEMBER	
HONORS AND	Distinguished Visiting Professor, Northwest University
AWARDS	NSF Presidential Young Investigator Award
	Association of Professional Engineers Gold Medal, Ontario, Canada
INSTITUTIONAL	Professional Service
AND	Board of Directors and Executive Committee, Consortium of
PROFESSIONAL	Universities for Earthquake Engineering (CUREE)
SERVICE IN	American Society of Civil Engineers (ASCE) Engineering Mechanics
LAST FIVE	Institute (Vice-Chair)
YEARS	American Society of Civil Engineers (ASCE) Geo-Institute Soil
	Dynamics Committee
	University of Colorado Boulder
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Executive Committee, Personnel Committee, Faculty Search
	Committees
	Civil Engineering and Applied Math Double-Degree Program Director
	Junior Faculty Mentoring Committee (Chair)
	Facilities Committee (Chair)
	College of Engineering at the University of Colorado - Boulder
	First Level Review Committee for Promotion and Tenure
PRINCIPAL	1. Shahmohamadi, M.; Khojasteh, A.; Rahimian, M., Pak, R.Y.S.,
PUBLICATIONS	"Rigid cylinder in a transversely isotropic half-space under lateral
AND	loads," International J. for Numerical and Analytical Methods in
PRESENTATIONS	Geomechanics, Volume 36, Issue 10, 2012, 1368-1386.
OF LAST FIVE	2. Eskandari-Ghadi, Morteza; Pak, Ronald Y. S.; Ardeshir-Behrestaghi,
YEARS	Azizollah, "Vertical Action of a Concentric Multi-Annular Punch on a
	Transversely Isotropic Elastic Half-Space," J. Applied Mechanics,
	ASME, 79, Issue 4, July 2012.
	ASIVIL, 77, ISSUE 4, JULY 2012.

	 Soudkhah, M. and Pak, R.Y.S. "Performance of Wave-Absorbing Boundary Method for Seismic Vertical Free-Field Soil Motion in Centrifuge Simulations," Computers and Geotechnics, Volume: 43, June 2012, 155-164. Pak, R.Y.S. and Soudkhah, M and Jeramy C. Ashlock, "Dynamic Behavior of a Square Foundation in Planar Motion on a Sand Stratum," Soil Dynamics and Earthquake Engineering, Vol. 42, 2012, 151-160. Morteza Eskandari-Ghadi, Azizollah Ardeshir-Behrestaghi, Ronald Y.S. Pak, Mostafa Karimi and Masoud Momeni-Badeleh," Forced vertical and horizontal movements of a rectangular rigid foundation on a transversely isotropic half-space, Int. J. Analytical and Numerical methods in Geomechanics, Vol 37, 14, 2013, 2301-2315. Shahmohamadi, M.; Khojasteh, A.; Rahimian, M.; et al., " Dynamics of a Cylindrical Pile in a Transversely Isotropic Half-Space under Axial Excitations, J. Engrg. Mech., ASCE, Vol. 139, Issue 5, 568- 579, 2013. Naceni, MR, Eskandari-Ghadi, M.)[, Ardalan, Alireza A and Pak, R. Y. S. "Asymmetric motion of a transversely isotropic thermoelastic half-space under time-harmonic buried source," ZAMP Zeitschrift für Angewandte Mathematik und Physik, Vol.65, 5, 2014, 1031-51. Zhang ZC, Liu HL and Pak RYS "Computational Modeling of Buried Blast-induced Ground Subsidence and Ground Motion," Geomechanics and Engineering, Vol. 7, No. 6, Dec 2014, 613-631. M. R. Naeeni, M. Eskandari-Ghadi, A. A. Ardalan, R. Y. S. Pak, M. Rahimian, Y. Hayati, "Coupled thermoviscoelastodynamic Green's functions for biomaterial half-space, Journal of Applied Mathematics and Mechanics/ Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), Vol. 95 Issue: 3, 260-282, 2015. Kalantari, M, Khojasteh, A., Mohammadnezhad, H., Rahimian, M., Pak, R. Y. S., "An inextensible membrane at the interface of a transversely isotropic bi-material full-space," Int. J. Engrg. Science, Vol. 91, 34-48, 2015 (DOI: 10.1016/j.ijengsci.2015.02.004)
PROFESSIONAL	Invited lecture, Hohai University, China
DEVELOPMENT	Invited lecture, Northwest University, China
ACTIVITIES IN	Civil Engineering and Applied Mathematics Dual Degree Program
THE LAST FIVE	
	1
	Civil Engineering and Applied Mathematics Dual Degree Program development Civil Engineering–Engineering Science Program Development

W. Tad Pfeffer Professor

	110103501
EDUCATION	BS, Geology, University of Vermont, 1976
	MS, Geology, University of Maine, 1981
	Ph.D., Geophysics, University of Washington, 1987
ACADEMIC	University of Colorado Boulder: Professor, CEAE, 2006 - present;
EXPERIENCE	Associate Professor, CEAE, 1999-2006; Fellow, Institute of Arctic and
	Alpine Research (INSTAAR), 1997-present; Assistant Research
	Professor, Geological Sciences, 1995-1999; Research Associate,
	INSTAAR, 1988-1997; Post-Doctoral Researcher, INSTAAR, 1987-
	1988.
NON-ACADEMIC	President, W.T. Pfeffer Geophysical Consultants LLC, Nederland
EXPERIENCE	Colorado, USA.
PROFESSIONAL	N/A
REGISTRATIONS	
SCIENTIFIC AND	American Geophysical Union
PROFESSIONAL	International Glaciological Society
SOCIETIES OF	
WHICH A	
MEMBER	
HONORS AND	Jefferson Science Fellow (National Academy of Sciences), 2015-2016
AWARDS	Nye Lecture, American Geophysical Union, December 2011.
	University of Colorado Council on Research and Creative Work,
	Sabbatical year support for 2007-2008.
	Graham Foundation for Advanced Studies in the Fine Arts, Chicago,
	Illinois. Grant support for research and photography for <i>The Hand of the</i>
	Small Town Builder (published by David R. Godine, 2014), 2003
INSTITUTIONAL	Editor in Chief, Oxford University Press Oxford Research
AND	Review/Natural Hazard Science, 2013-Present
PROFESSIONAL	Lead Author, IPCC AR5 WGI, Chapter 13 (Sea Level Change); 2010 – 2013.
SERVICE IN	Invited participant, Climate Change Impacts and Integrated Assessment
LAST FIVE	Workshop/Snowmass Energy Modeling Forum, Snowmass, Colorado,
YEARS	August 2013.
	Committee Member, National Academy of Sciences, National
	Committee for the International Union of Geodesy and Geophysics, 2012
	-2015.
	Sigma Xi Distinguished Lecturer (2011-2012)
	University Service
	<u>University Service</u> Academic Affairs Committee, Boulder Faculty assembly (2007-2012)
	Secretary, Boulder Faculty Assembly (2006 – 2007)
	Search Committee member, CU Graduate School Dean/Vice Chancellor
	for Research (2007)
	CEAE Committee Work: Facilities Committee (2000-2006)
	CEAE Curriculum Committee (2011)

PRINCIPAL	Bahr, D. B., W. T. Pfeffer, and G. Kaser (2015), A Review of Volume-
PUBLICATIONS	Area Scaling of Glaciers, Reviews of Geophysics, 52,
AND	doi:10.1002/2014RG000470.
PRESENTATIONS	Bahr, D.B., W.T. Pfeffer, and G. Kaser. (2014) Glacier volume
OF	estimation as an ill-posed inversion. Journal of Glaciology, 60(223),
LAST FIVE	
LAST FIVE YEARS	 2014 doi: 10.3189/2014JoG14J062 Pfeffer, W.T., A.A. Arendt; A. Bliss; T. Bolch; J.G. Cogley; A.S. Gardner; J-O Hagen; R. Hock; G. Kaser; C. Kleinholz; E.S.Miles; G. Moholdt; N.Mölg; F.Paul; V. Radić; P. Rastner; B.H. Raup; J. Rich; M.J. Sharp; and the Randolph Consortium. (2014) The Randolph Glacier Inventory: A globally complete inventory of glaciers. Journal of Glaciology. Gregory, J.M., J.A. Church, P.U. Clark, A.J. Payne, M.A. Merrifield, R.S. Nerem, P.D. Nunn, W.T. Pfeffer, D. Stammer, (2014). Comment on "Expert assessment of sea-level rise by AD 2100 and AD 2300", by Horton et al. (2014), Quat. Sci. Rev., 97 pp. 193-194, 10.1016/j.quascirev.2014.05.24 Gardner, A. S., G. Moholdt, J. G. Cogley, B. Wouters, A. A. Arendt, J. Wahr, E. Berthier, R. Hock, W. T. Pfeffer, G. Kaser, S. R. M. Ligtenberg, T. Bolch, M. J. Sharp, J. O. Hagen, M. R. van den Broeke & F. Paul, A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science, 340, 852-857, 2013 Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A. Levermann, M.A. Merrifield, G.A. Milne, R.S. Nerem, P.D. Nunn, A.J. Payne, W. T. Pfeffer, D. Stammer, A.S. Unnikrishnan, (2013). Sea Level Rise by 2100. Science, 342(6165), p. 1445-1445. National Research Council, Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future, The National Academies Press, Washington, D.C., 2012 Pfeffer, W.T., Adaptation to a Non-Steady World, The International Journal of the Constructed Environment, V 2, No. 3, pp. 81-92, 2012
	Pfeffer, W.T., <u>Land Ice and Sea Level Rise: A Thirty-Year Perspective</u> , Oceanography 24(2): 94–111,
	http://dx.doi.org/10.5670/oceanog.2011.30, 2011
PROFESSIONAL	None
DEVELOPMENT	
ACTIVITIES IN	
THE LAST FIVE	
YEARS	

Fatemeh Pourahmadian Assistant Professor

EDUCATION	BSc, Mechanical Engineering, University of Tabriz, Iran, 2007
	MSc, Mechanical Engineering, Iran University of Science and
	Technology, Iran, 2010
	MSc, Geo Engineering, University of Minnesota, Iran, 2015
	PhD, Civil Engineering, University of Minnesota, 2016
ACADEMIC	University of Minnesota, Twin Cities, MN, Postdoctoral Fellow in
EXPERIENCE	Waves & Imaging Laboratory, 2016; Graduate Research Assistant,
	2011-2016
	Iran University of Science and Technology, Tehran, Iran, Research
	Associate in Experimental Modal Analysis Laboratory, 2010-2011;
	Graduate Research Assistant, 2008-2010
NON-ACADEMIC	HEPCO, Arak, Iran, Intern, summer 2004
EXPERIENCE	Wagon Pars CO, Arak, Iran, Intern, summer 2007
PROFESSIONAL	
REGISTRATIONS	
SCIENTIFIC AND	Society of Engineering Science (SES)
PROFESSIONAL	Engineering Mechanics Institute (EMI)
SOCIETIES OF	American Society of Mechanical Engineers (ASME)
WHICH A	American Rock Mechanics Association (ARMA)
MEMBER	
HONORS AND	Sommerfeld Fellowship, University of Minnesota, 2011-2012
AWARDS	Daneshy Fellowship, University of Minnesota, 2014-2015
	Exceptional student award, Iran University of Science and Technology, 2009
INSTITUTIONAL	Reviewer for
AND	Journal of Mechanical Systems and Signal Processing
PROFESSIONAL	International Journal of Rock Mechanics and Mining Sciences
SERVICE IN	Journal of Inverse Problems in Science and Engineering
LAST FIVE	
YEARS	
PRINCIPAL	Pourahmadian, F., B.B. Guzina and H. Haddar, Generalized linear
PUBLICATIONS	sampling method for elastic-wave sensing of heterogeneous fractures,
OF	Inverse Problems, In press, 2016
LAST FIVE	Pourahmadian, F., B.B. Guzina, On the elastic-wave imaging and
YEARS	characterization of fractures with specific stiffness, <i>International Journal</i>
	of Solids and Structures, In press, 71, 126-140, 2015
	Guzina B.B., F. Pourahmadian, Why the high-frequency inverse
	scattering by topological sensitivity may work. <i>Proceedings of the Royal</i>
	Society A 471, 20150187, 2015
	Pourahmadian F., S. G. Mogilevskaya, Complex variables-based
	approach for analytical evaluation of boundary integral representations of
	three-dimensional acoustic scattering. Engineering Analysis with
	Boundary Elements 53, 9-17, 2015
	Pourahmadian F, Ahmadian H, Jalali H. Modeling and identification of
	\mathbf{F} Pouranmagian F. Annagian H. Jajali H. Modeling and identification of

	frictional forces at a contact interface experiencing vibro- impacts. Journal of Sound and Vibration 331, 2874-2886, 2012 Jalali H, H Ahmadian, F Pourahmadian, Identification of micro- vibro- impacts at the boundary condition of a nonlinear beam, Journal of Mechanical Systems and Signal Processing 25, 1073-1085, 2011 Pourahmadian F, B. B. Guzina, Elastic anatomy of fracture in rock,
PROFESSIONAL DEVELOPMENT ACTIVITIES IN THE LAST FIVE YEARS	Geophysical Research Letters, under review, 2016

EDUCATION	
EDUCATION	BSE, Civil Engineering Systems, University of Pennsylvania, 1991
	SM, Aeronautics & Astronautics, Massachusetts Institute of Technology,
	1993 Ph.D. Civil & Environmental Engineering Stanford University 1008
ACADEMIC	Ph.D., Civil & Environmental Engineering, Stanford University, 1998
EXPERIENCE	University of Colorado Boulder: Associate Professor, 2012-present;
EAPERIENCE	Assistant Professor, 2005-2012 Oxford University, United Kingdom (sabbatical), Fall 2014
	Stanford University (sabbatical), Winter-Spring 2014
NON-ACADEMIC	Sandia National Laboratories, Livermore, CA, Principal Member of
EXPERIENCE	Technical Staff (2004-2005), Senior Member of Technical Staff
	(1998-2004)
PROFESSIONAL	none
REGISTRATIONS	
SCIENTIFIC AND	Engineering Mechanics Institute (EMI), American Society of Civil
PROFESSIONAL	Engineers (ASCE)
SOCIETIES OF	
WHICH A	
MEMBER	
HONORS AND	Research Development Award (2012). Department of Civil,
AWARDS	Environmental, and Architectural Engineering, University of Colorado
	Boulder.
INSTITUTIONAL	Associate Editor/ Editorial Board Member: ASCE Journal of
AND	Engineering Mechanics (01/12-present), Acta Geotechnica (10/12-
PROFESSIONAL	present), International Journal for Numerical and Analytical Methods in
SERVICE IN LAST FIVE	Geomechanics (09/13-present)
YEARS	University Service Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
ILANS	Computer Committee Member, Chair (08/15-present)
	Curriculum Committee Member (8/15-present)
	University of Colorado Boulder
	Boulder Campus Cyberinfrastructure Board (BCCB) (1/15-present).
PRINCIPAL	Regueiro, R.A., Duan, Z., Wang, W., Sweetser, J.D., Jensen, E.W. (2016)
PUBLICATIONS	General formulation of a poromechanical cohesive surface element with
AND	elastoplasticity for modeling interfaces in fluid-saturated geomaterials,
PRESENTATIONS	Int. J. Multi. Comp. Eng., accepted.
OF	Regueiro, R.A., Duan, Z., Yan, B. (2016) Overlapped-coupling between
LAST FIVE	spherical discrete elements and micropolar finite elements in one
YEARS	dimension using a bridging-scale decomposition for statics, Eng.
	Comput. 33(1):28-63.
	Bennett, K., Regueiro, R.A., Borja, R.I. (2016) Finite strain elastoplasticity
	considering the Eshelby stress for materials undergoing plastic volume
	change, Int. J. Plast. 77:214-245.
	Zhang, B., Regueiro, R.A. (2015) On large deformation granular strain
	measures for generating stress-strain relations based upon three-

	dimensional discrete element simulations, Int. J. Solids Struct 66:151-
	170.
	Burd, H.J., Regueiro, R.A. (2015) Finite element implementation of a
	multiscale model of the human lens capsule, Biomech. Model.
	Mechanobiology 14(6):1363-1378.
	Wang, W., Regueiro, R.A., McCartney, J.S. (2015) Coupled axisymmetric
	thermo-poro-mechanical finite element analysis of energy foundation
	centrifuge experiments in partially saturated silt, Geotechnical and
	Geological Engineering 33(2):373-388.
DDOFESSIONAL	
PROFESSIONAL	Multi-scale mechanics of particulate media, with K. Kamrin, J. Andrade,
DEVELOPMENT	D. Hennan (lead), SES2016, University of Maryland, College Park,
ACTIVITIES IN	October 2016.
THE LAST FIVE	Computational Geomechanics, with J. Andrade, R. Borja, Q. Chen, M.
YEARS	Manzari, S. Sun (lead), J. White, EMI2016, Vanderbilt University,
	May 2016.
	Multi-scale mechanics of particulate media, with K. Kamrin, J. Andrade,
	D. Hennan (lead), SES2015, Texas A&M University, October 2015.
	Computational Geomechanics (as lead organizer), with J. Andrade, R.
	Borja, M. Manzari, J. White, EMI2015, Stanford University, June
	2015.

Victor E. Saouma Professor

EDUCATION	Baccalaureat Serie Scientifique, Lycee Chateaubriand, Rome, 1971
	B.E. Civil Engineering, American University of Beirut, 1975
	M.E., Civil Engineering, Cornell University, 1977
	Ph.D., Civil Engineering, Cornell University, 1980
ACADEMIC	Visiting Professor: Politecnico of Milan, Visiting Professor, Department
EXPERIENCE	of Structural Engineering (2003-2004); Swiss Federal Institute of
	Technology, Lausanne (1997-1998); Politecnico de Catalunya
	(Barcelona), Ecole Normale Superieure de Cachan, and Universite de
	Toulouse (each one month)
	University of Colorado – Boulder, Professor, 1995-present; Associate
	Professor, 1988-1995, Assistant Professor, 1984-1988
	University of Pittsburg, Pittsburgh, PA, Assistant Professor, 1981-1983
	Princeton University, Princeton, NJ, Research Associate, 1980-1981
NON-ACADEMIC	University of Colorado – Boulder, Director and Principal investigator of
EXPERIENCE	the George E. Brown, Jr. Network for Earthquake Engineering
	Simulation (NEES), on Fast Hybrid Test (2006-2009)
PROFESSIONAL	None
REGISTRATIONS	
SCIENTIFIC AND	American Concrete Institute (ACI)
PROFESSIONAL	International union of laboratories and experts in construction materials
SOCIETIES OF	systems and structures (RILEM)
WHICH A	
MEMBER	
HONORS AND	Fellow and Past President of the International Association of Fracture
AWARDS	Mechanics for Concrete and Concrete Structures (IA-FraMCOs)
INSTITUTIONAL	Professional Service
AND	ACI-ASCE Committee 447, Finite Element Analysis of Reinforce
PROFESSIONAL	Concrete Structures
SERVICE IN	RILEM QFS Committee on Size Effect and Scaling of Quasibrittle
LAST FIVE	Fracture
YEARS	Organized the 9 th International conference on fracture mechanics of
	concrete (IA-FraMCoS).
	Chair of a RILEM committee on Alkali Silica Reaction
	Member of the Expanded Proactive Materials Degradation Analysis
	<i>Expert Panel</i> (PMDA) for concrete in nuclear reactors; Nuclear
	Regulatory Commission, 2010- 2014
	Member of the <i>Materials Aging and Degradation</i> (MAaD) External
	Review Committee (ORNL, Light Water Reactor Sustainability R&D
	Program).
	Member of the Scientific Committee of MACENA (France), Managing
	confinement structures in the event of an accident.
	University Service
	Chair of Search Committee

PRINCIPAL	Saouma, V. and Hariri-Ardebili, M. and Le Pape Y. and Balaji, R. (2016)
PUBLICATIONS	Effect of Alkali-Silica Reaction on the Shear Strength of Reinforced
OF	Concrete Structural Members. A Numerical and Statistical Study,
LAST FIVE	Nuclear Engineering and Design
YEARS	Hariri-Ardebili, M. and Saouma, V. (2016) Seismic Fragility Analysis of
	Concrete Dams; A State-of-the-Art Review, Engineering Structures,
	Vol. 128, pp. 374-399
	Hariri-Ardebili, M. and Saouma, V. (2016) Probabilistic Seismic
	Demand Model and Intensity Measure for Concrete Dams, Journal of
	Structural Safety, Vol. 59, pp. 67-85
	Hariri-Ardebili, M. and Furgani, L. and Maghella, M., and Saouma, V.
	(2016) A new class of seismic damage and performance indices for
	arch dams via ETA method, Engineering Structures, V. 110 pp. 145-
	160,
	Hariri-Ardebili, M. and Saouma, V. and Porter, K. (2015) Quantification
	of Seismic Potential Failure Modes in Concrete Dams, Earthquake
	Engineering and Structural Dynamic,
	Hariri-Ardebili, M. and Saouma, V. (2016) Collapse Fragility Curves
	for Concrete Dams; A Comprehensive Study, ASCE J. of Structural
	Engineering,
	Saouma, V.E. (2015) Applications of Fracture Mechanics to
	Cementitious Materials; A Personal Perspective, in ACI SP-300
	Fracture Mechanics Applications in Concrete, G.L. Cusatis Editor
	Saouma, V.E. and Martin, R. and Hariri-Ardebili, M. and Katayama,
	T.(2015) A Mathematical Model for the Kinetics of the Alkali Silica
	Chemical Reaction, Cement and Concrete Research, Vol. 68, pp.
	184-195
	Saouma, V. and Hariri-Ardebili, M. (2014) A Proposed Aging
	Management Program for Alkali Silica Reactions in a Nuclear Power
	Plant Nuclear Engineering and Structural Design, Vol 277, pp. 248-
	264.
	Saouma, V., Kang, D., Haussman, G. (2012), A Computational Finite-
	Element Program for Hybrid Simulation, Earthquake Engineering and
	Structural Dynamic Journal, Vol. 41, pp. 375-389.
PROFESSIONAL	
DEVELOPMENT	
ACTIVITIES IN	
THE LAST FIVE	
YEARS	

Petros Sideris Assistant Professor

EDUCATION	Diploma, Civil Engineering, National Tech. U. of Athens, Greece, 2005.
	M.S., Civil Engineering, University at Buffalo – SUNY, 2008
	Ph.D., Civil Engineering, University at Buffalo – SUNY, 2012
	Post-doctoral Research Fellow, University at Buffalo – SUNY, 2012-13
ACADEMIC	University of Colorado at Boulder, Assistant Professor (2013 – Present)
EXPERIENCE	University at Buffalo – SUNY, Adjunct Lecturer (2012-13)
	University at Buffalo – SUNY, Graduate Research Assistant (2008-12)
	University at Buffalo – SUNY, SEESL Fellow (2007-08)
	University at Buffalo – SUNY, Graduate Teaching Assistant (2005-07)
NON-ACADEMIC	None
EXPERIENCE	
PROFESSIONAL	Engineer in Training (E.I.T), Michigan, 2013 to present
REGISTRATIONS	
SCIENTIFIC AND	American Society of Civil Engineers (ASCE)
PROFESSIONAL	Earthquake Engineering Research Institute (EERI)
SOCIETIES OF	Transportation Research Board of the National Academies
WHICH A	American Concrete Institute (ACI)
MEMBER	
HONORS AND	2014 Outstanding Reviewer, Journal of Structural Engineering, American
AWARDS	Society of Civil Engineers (ASCE), U.S.A.
	2013 Chair's Recognition Award, Department of Civil, Structural and
	Environmental Engineering (CSEE), University at Buffalo, The State
	University of New York
	2010 Liu Huixian Earthquake Engineering Scholarship Award, US-China
	Earthquake Engineering Foundation, USA
	2010 Paul J. Koessler Memorial Scholarship Award, Peace Bridge
	Authority and ASCE Buffalo Section
	<i>Fellowship</i> (2007-08), Structural Engineering and Earthquake Simulation
	Laboratory (SEESL), University at Buffalo, The State University of
	New York (SUNY)
INSTITUTIONAL	Professional Committees:
AND	TRB Committee on Seismic Design and Performance of Bridges – AFF50
PROFESSIONAL	(since 2015)
SERVICE IN	ASCE/SEI Seismic Effects Committee (since 2013)
LAST FIVE	ASCE/SEI Performance-based Design of Structures Committee (since
YEARS	2016)
	Reviewer for 9 peer-reviewed journals: ASCE Natural Hazards Review,
	Earthquake Engineering and Engineering Vibration (Springer), ASCE
	Journal of Bridge Engineering, ASCE Journal of Engineering Mechanics,
	Engineering Structures Journal, ASCE Journal of Structural Engineering,
	Journal of Building Engineering (Elsevier), Transportation Research
	Record (TRR), Journal of the Transportation Research Board, Journal of
	Earthquake Engineering (Taylor & Francis)
	University Service:

PRINCIPAL PUBLICATIONS AND PRESENTATIONS OF	 Director, Structures and Materials Testing Laboratory (SMTL), University of Colorado – Boulder (since 2013, 4 years) Department Committee Work: (a) Facilities Committee, since 2014 (3 years); (b) Graduate Committee (2013-14); and (c) SESM Faculty Search Committee (2013-16) Nikoukalam M.T. and Sideris, P. (2016), "Experimental Performance Assessment of Nearly Full-Scale Reinforced Concrete Columns with Partially Debonded Longitudinal Reinforcement", ASCE Journal of Structural Engineering (Accepted).
LAST FIVE YEARS	Nikoukalam M.T. and Sideris, P. (2016), "Low-Damage Post-Tensioned Segmental Bridge Columns with Flexible End Joints for Seismic Accelerated Bridge Construction", <i>TRR - Journal of the</i> <i>Transportation Research Board</i> (In press, DOI:10.3141/2592-17).
	Sideris, P. and Salehi, M. (2016), "A Gradient Inelastic Flexibility-Based Frame Element Formulation", <i>ASCE Journal of Engineering</i> <i>Mechanics</i> , 142(7), 04016039.
	Sideris, P. (2015), "Nonlinear Quasi-static Analysis of Hybrid Sliding- Rocking Bridge Columns Subjected to Lateral Loading", <i>Engineering</i> <i>Structures Journal</i> , 101, 125-137.
	Sideris, P., Aref, A. and Filiatrault, A. (2015), "Experimental Seismic Performance of a Hybrid Sliding-Rocking Bridge for Various Specimen Configurations and Seismic Loading Conditions", <i>ASCE</i> <i>Journal of Bridge Engineering</i> , 20(11), 04015009.
	Sideris, P., Aref, A. and Filiatrault, A. (2014), "Effects of Anchorage Hardware on the Cyclic Tensile Response of Unbonded Monostrands", <i>PCI Journal</i> , 59(6), 60-77.
	Sideris, P., Aref, A. and Filiatrault, A. (2014), "Quasi-Static Cyclic Testing of a Large-Scale Hybrid Sliding-Rocking Segmental Column with Slip-Dominant Joints", <i>ASCE Journal of Bridge Engineering</i> , 19(10), 04014036.
	Sideris, P., Aref, A. and Filiatrault, A. (2014), "Large-scale Seismic Testing of a Hybrid Sliding-Rocking Post-Tensioned Segmental Bridge System", <i>ASCE Journal of Structural Engineering</i> , 140(6), 04014025.
	Sideris, P. and Filiatrault, A. (2014), "Seismic Response of Squat Rigid Bodies on Inclined Planes with Rigid Boundaries", ASCE Journal of Engineering Mechanics, 140(1): 149–158.
PROFESSIONAL DEVELOPMENT ACTIVITIES IN THE LAST FIVE YEARS	 Faculty Teaching Excellence Program, University of Colorado – Boulder, Fall 2015 2012 Future Faculty Workshop, Strategies for Effective Teaching, Office of the Vice Provost for Faculty Affairs & the Teaching & Learning Center, University at Buffalo, The State University of New York

Jeong-Hoon Song Assistant Professor

EDUCATION	BS, Civil Engineering, Yonsei University, 2001
	MS, Civil Engineering, Yonsei University, 2003
	Ph.D., Theoretical and Applied Mechanics, Northwestern University,
	2008
ACADEMIC	University of Colorado Boulder: Assistant Professor, 2014-present
EXPERIENCE	University of South Carolina: Assistant Professor, 2011-2014
	Northwestern University, Post-doctoral Fellow, 2008-201
	Northwestern University, Research Assistant, 2004-2008
NON-ACADEMIC	Naval Research Laboratory, Faculty Research Fellow, summer 2014-2016
EXPERIENCE	
PROFESSIONAL	None
REGISTRATIONS	
SCIENTIFIC AND	American Society of Civil Engineers (ASCE)
PROFESSIONAL	American Society of Mechanical Engineers (ASME)
SOCIETIES OF	US Association for Computational Mechanics (USACM)
WHICH A	International Association for Computational Mechanics (IACM)
MEMBER	
HONORS AND	ONR Faculty Research Fellowship (2014-2016): Office of Naval Research
AWARDS	
INSTITUTIONAL	Committee Member (2013-Present): Computational Mechanics
AND	Committee; technical committee in Engineering Mechanics Institute
PROFESSIONAL	(EMI) at American Society of Civil Engineers (ASCE)
SERVICE IN	Corresponding Guest Editor (2015-2016): Special Issue on
LAST FIVE	"Computational modeling of material deterioration at various length
YEARS	scales", International Journal of Fracture.
	Guest Editor: Special Issue on "Experimental Testing and Computational
	Modeling of Dynamic Fracture", International Journal of Impact
	Engineering, 87: 1-212 (2016).
	Member of Editorial Board (2014-Present): International Journal of
	Modern Mechanics
	Member of Editorial Board (2012-Present): Journal of Computational
	Engineering
	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Graduate Committee. 2014-present.
PRINCIPAL	K.C. Hoang, Y. Fu, and J.H. Song, An hp-proper orthogonal
PUBLICATIONS	decomposition-moving least squares approach for molecular dynamics
AND	simulation, Computer Methods in Applied Mechanics and Engineering,
PRESENTATIONS	298: 548-575 (2016).
OF LAST FIVE	J. Lua, T. Zhang, E. Fang and J.H. Song, "Explicit phantom paired shell
	element approach for crack branching and impact damage prediction of
YEARS	aluminum structures", International Journal of Impact Engineering,
	87:28–43 (2016).

TT	
	 Y. Fu, J.G. Michopoulos and J.H. Song, "Dynamic response of polyethylene polymer nanocomposites to shock wave loading", Journal of Polymer Science, Part B: Polymer Physics, 53: 1292-1302 (2015). Y. Fu, J.G. Michopolous and J.H. Song, "Coarse-grained molecular dynamics simulations of epoxy resin during the curing process", Computational Materials Science, 107: 24-32 (2015). Y. Fu and J.H. Song, "Heat flux expressions that satisfy the conservation laws in atomistic system involving multibody potentials", Journal of Computational Physics, 294: 191–207 (2015). Y. Fu and J.H. Song, "Large deformation mechanism of glassy polyethylene polymer nanocomposites: coarse grain molecular dynamics study", Computational Materials Science, 96: 485-494 (2015). A. Tabarraeia, S. Shadaloua and J.H. Song, "Mechanical properties of Graphene nanoribbons with disordered edges", Computational Materials Science, 96: 10-19 (2015). A. Tabarraeia, X. Wang, A. Sadeghirad and J.H. Song, "An enhanced bridging domain method for linking atomistic and continuum domains", Finite Elements in Analysis and Design, 92:36-49 (2014). Y. Fu and J.H. Song, "On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation", Journal of Chemical Physics, 141: 054108 (2014). J.H. Song and Y.C. Yoon, "Multiscale failure analysis with coarse-grained micro cracks and damage", Theoretical and Applied Fracture Mechanics, 72: 100-109 (2014). Y. C. Yoon and J.H. Song, "Extended particle difference method for moving boundary problems", Computational Mechanics, 54:723–743 (2014). Y.C. Yoon and J.H. Song, "Extended particle difference method for weak and strong discontinuity problems: Part II. Formulations and applications for various interfacial singularity problems", Computational Mechanics, 53:1105–1128 (2014). Y.C. Yoon and J.H. Song, "Extended particle difference method for weak and strong discontinuity problems: Part II. Der
	particle derivative approximation for the representation of weak and
	A. Tabarraei, J.H. Song and H. Waisman, "Two-scale approach for modeling adiabatic shear band propagation under impact loads", International Journal for Multiscale Computational Engineering, 11: 543-563 (2013).
DEVELOPMENT ACTIVITIES IN THE LAST FIVE	None
YEARS	

Wil V. Srubar III Assistant Professor

EDUCATION	BS, Civil Engineering, Texas A&M University, 2006
	MS, Civil Engineering, University of Texas Austin, 2008
	Ph.D., Civil and Environmental Engineering, Stanford University, 2013
ACADEMIC	University of Colorado Boulder: Assistant Professor, 2014-present
EXPERIENCE	University of Colorado Boulder: Adjunct Assistant Professor, 2013-2014
	Stanford University, Graduate Research Assistant, 2009-2013
	University of Texas at Austin, Graduate Teaching Assistant, 2007-2008
NON-ACADEMIC	Project Engineer, Alpha Facilities Solutions, San Antonio TX, 1-8, 2009
EXPERIENCE	Graduate Engineer, Walter P. Moore and Associates, Inc, Austin, TX, 6/08
	- 1/09
	Engineering Intern, Walter P. Moore and Associates, Inc, Austin, TX, 5/06
	- 8/06
PROFESSIONAL	Engineer-In-Training (EIT), Texas
REGISTRATIONS	
SCIENTIFIC AND	American Concrete Institute
PROFESSIONAL	American Society of Civil Engineers (ASCE)
SOCIETIES OF	Architectural Engineering Institute
WHICH A	Structural Engineering Institute
MEMBER	American Ceramics Society: Cements Division
HONORS AND	Faculty Appreciation Award • University of Colorado 2016
AWARDS	Young Researcher Award • University of Colorado 2016
	Excellence in Civil Engineering Education (ExCEEd) Fellow • ASCE
	2016
	Best Presentation Award • NSF/NIST Polymers and Composites
	Workshop 2013
	ASCE Best Paper Competition • San Jose Branch 2012, 2013
	Gerald J. Leiberman Fellowship • Stanford University 2012
	Graduate Scholar Award • International Conference on Sustainability 2012
	Best Paper Award: Green • American Composites Manufacturers'
	Association 2011
	NSF Graduate Research Fellowship • National Science Foundation 2007
INSTITUTIONAL	Professional Service
AND	Architectural Engineering Institute • Academic Council June 2015 -
PROFESSIONAL	present
SERVICE IN	1st International Conference on Biobased Building Materials •
LAST FIVE	Moderator June 2015
YEARS	American Society of Engineering Education Conference • Moderator
	June 2015
	ASCE Structures Congress • Session Chair April 2015
	Journal of Renewable Materials • Guest Co-Editor 2014-2015
	External Peer Reviewer for Grants & Journal Paper August 2013 -
	present
	NSF, NDSEG, EPA, 10+ Scientific and Technical Journals

	Institutional Service
	oSTEM Faculty Advisor, College of Engineering and Applied
	Sciences 2016 – present
	AEI Student Chapter Faculty Advisor, CEAE Department 2015 –
	present
	Graduate Committee Member, CEAE Department 2014 – present
PRINCIPAL	a. Hinchcliffe, SA*, KM Hess*, WV Srubar III. "Experimental and
PUBLICATIONS	Theoretical Investigation of Prestressed Natural Fiber-Reinforced
AND	Polylactic (PLA) Composite Materials." Composites Part B:
PRESENTATIONS	Engineering, 95: 346-354, 2016.
OF	b. Hess, KM*, WV Srubar III. "Activating Relaxation-Controlled
LAST FIVE	Diffusion Mechanisms for Tailored Moisture Resistance of Gelatin-
YEARS	based Bioadhesives for Engineered Wood Products." Composites Part
	A, 84: 435-441, 2016.
	c. Frazier, SD*, WV Srubar III. "Evaporation-based Method for
	Preparing Gelatin Foams with Aligned Tubular Pore Structures."
	Materials Science and Engineering C, 62:467-473, 2016.
	doi:10.1016/j.msec.2016.01.074
	d. Barnhouse, PW*, WV Srubar III. "Material Characterization and
	Hydraulic Conductivity Modeling of Macroporous Recycled-
	Aggregate Pervious Concrete." <i>Construction and Building Materials</i> ,
	110: 89-97, 2016.
	e. Srubar III, WV, SL Billington. "A Micromechanical Model for
	Moisture-Induced Deterioration in Fully Biorenewable Wood-Plastic
	Composites." Composites Part A: Applied Science and Manufacturing;
	50: 81-92, 2013. doi:10.1016/j.compositesa.2013.02.001
	f. Srubar III, WV, "An Analytical Model for Predicting the Freeze-
	Thaw Durability of Natural Fiber Composites." Composites Part B:
	Engineering; 69: 435-442.
	g. Billington, SL, WV Srubar III, AT Michel. "Renewable Biobased
	Composites for Civil Engineering Applications." in Sustainable
	Composites: Fibers, Resins, and Applications. Netravali, A, C Pastore,
	Eds. DESTech: Lancaster, PA, pp. 313-336, 2014
PROFESSIONAL	1. American Concrete Institute (ACI) Conference Fall 2014, 2015, 2016
DEVELOPMENT	2. Architectural Engineering Institute (AEI) Conference 2015, 2016
ACTIVITIES IN	3. Structural Engineering Institute (SEI) Conference 2015
THE LAST FIVE	4. American Society of Engineering Education Conference 2015
YEARS	5. American Ceramics Society: Cements Division Conference 2015,
	2016
	6. Symposium for Sustainable Infrastructure 2016
	7. International Concrete Sustainability Conference 2016
	8. 3rd International Conference on Urban Disaster Reduction 2014
	9. Sustainable Structures Symposium 2014
	10. NSF Durability of Polymers and Polymer Composites Workshop
	2013
	11. BioEnvironmental Polymer Society Annual Meeting 2012

Sandra L. Vásconez Senior Instructor

EDUCATION	BA, Modern Foreign Languages, The King's College, 1993
	MS, Lighting, Rensselaer Polytechnic Institute, 2000
	MA, Art History and Museum Studies, University of Denver, 2005
ACADEMIC	University of Colorado at Boulder: Senior Instructor, 2007-present; Co-
EXPERIENCE	Director and Instructor of Rocky Mountain Lighting Academy
	2012-present; Co-Administrator and Instructor of ENVD Lighting
	Design Certificate, 2014-present
	Rensselaer Polytechnic Institute, Troy, NY, Adjunct Assistant Professor
	1998-2002; Outreach Education Instructor, 1998-2002
NON-ACADEMIC	Quenroe Associates, Boulder, CO, Project Manager and Assistant
EXPERIENCE	Designer, 2004-2007
	Denver Art Museum, Denver, CO, Museum Internship, 2004
	Victoria H. Myhren Gallery, University of Denver, CO, Senior Gallery
	Assistant, 2003-2004
	Quenroe Associates, Boulder, CO, Exhibition Design Internship, 2003
	Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY,
	Manager of Program Development, 1998-2002
	MCI Customer Delivery Services, Colorado Springs, CO, Systems
	Security Administrator, 1994-1995
	MCI Citicorp Account, New York, NY, Staff Assistant, 1993-1994
PROFESSIONAL	National Council on Qualification for Lighting Professionals (NCQLP),
REGISTRATIONS	Lighting Certified, 2002-present
SCIENTIFIC AND	IESNA (Illuminating Engineering Society of North America), 1998-
PROFESSIONAL	present
SOCIETIES OF	IALD (International Association of Lighting Designers), 2015 – present
WHICH A	
MEMBER	
HONORS AND	Marinus Smith Award, 2013, University of Colorado-Boulder
AWARDS	Architectural Engineering Faculty Appreciation Award, Civil,
	Environmental and Architectural Engineering, 2013
	Service Award; Civil, Environmental and Architectural Engineering, 2012
INSTITUTIONAL	IES Research Symposium Committee - 2016
AND	University Service
PROFESSIONAL	Dept. of Civil, Environmental & Architectural Engineering (CEAE)
SERVICE IN LAST	Operations Committee, 2015-2016
FIVE YEARS	Chair, David L. DiLaura Faculty Fellowship in Architectural Engineering,
	2013-Present
	Interim Curriculum Committee Chair 2013-2014
	Environmental Engineering Search Committee, 2013
	Civil, Environmental and Architectural Engineering Cooperative
	Representative, 2011-2013
	Curriculum Committee 2010-12
	IES Student Chapter Advisor, 2007-present
	College of Engineering at the University of Colorado - Boulder

	Undergraduate Education Council, 2013-2014
PRINCIPAL	Not Applicable
PUBLICATIONS	
OF LAST FIVE	
YEARS	
PROFESSIONAL	Lightfair International Annual Conference – 2012-present
DEVELOPMENT	International Association of Lighting Designers Annual Conference -
ACTIVITIES IN	2015, 2016
THE LAST FIVE	IES Light + Behavior Symposium – 2014
YEARS	Rocky Mountain Lighting Academy – 2012-present

Yunping Xi Professor

EDUCATION	BS, Civil Engineering, Beijing Institute of Civil Engineering and
	Architecture, 1982
	MS, Structural Engineering, Central Research Institute of Building and
	Construction, Beijing, 1985
	Ph.D., Structural Engineering, Northwestern University, 1991
ACADEMIC	University of Colorado – Boulder, Professor, 2005-present;
EXPERIENCE	Associate Professor, 2000-2005; Assistant Professor, 1997-2000
	Drexel University, Assistant Professor, 1993-1997
	Northwestern University, Research Scientist, 1991-1993; Visiting
	Scholar, 1987-1988
NON-ACADEMIC	Beijing Central Research Institute of Building and Construction,
EXPERIENCE	Structural Engineer 1985-1987
	Beijing Design Institute of Building and Construction, 1982-1983
PROFESSIONAL	None
REGISTRATIONS	
SCIENTIFIC AND	American Society of Civil Engineers (ASCE)
PROFESSIONAL	International Association on Concrete Creep (IA-Concreep)
SOCIETIES OF	American Concrete Institute (ACI)
WHICH A	
MEMBER	
HONORS AND	2014 Chang Jiang Chaired Professor, Department of Education, China.
AWARDS	2010 Kwang-Hua Chair Professor at Tongji University, China.
	A recipient of 2010 Faculty Fellowship at University of Colorado at
	Boulder.
	Research Development Award, Department of Civil, Environmental, and
	Architectural Engineering (CVEN), University of Colorado – Boulder, 2004.
	Young Researcher's Award, CVEN, University of Colorado – Boulder, 1998-1999
	Faculty Advisor for Drexel Teams in American Concrete Institute (ACI)
	Beam Competition, First Prize for highest ultimate load and First Prize
	for best prediction, 1994
INSTITUTIONAL	- The chair of Experimental Analysis and Instrumentation (EA&I)
AND	Committee, ASCE Engineering Mechanics Institute (EMI)
PROFESSIONAL	- University Administrator of Colorado Local Technical Assistance
SERVICE IN	Program
LAST FIVE	- Members of the editorial board of international journals "Computers in
YEARS	Concrete", "Magazine of Concrete Research", and "Journal of
	Sustainable Cement Based Materials".
	University Service
	- A member of First Level Review Committee of College of
	Engineering (2012 – 2015).

PRINCIPAL	1. Musiket, K., Vernerey, F., and Xi, Y. (2016) "Numeral Modeling of
PUBLICATIONS	Fracture Failure of Recycled Aggregate Concrete Beams under High
OF	Loading Rates", International Journal of Fracture,
LAST FIVE	doi:10.1007/s10704-016-0145-3.
YEARS	2. Jiang, Z., Huang, Q.H., Xi, Y., Gu, X.L., Zhang, W.P. (2016)
	"Experimental Study of Diffusivity of Interfacial Transition Zone
	between Cement Paste and Aggregate", J. of Materials for Civil
	<i>Engineering, ASCE</i> , 28(10): 04016109; DOI:
	10.1061/(ASCE)MT.1943-5533.0001637.
	3. Homan, L., Ababneh, A., and Xi, Y. (2016) "The Effect of Moisture
	Transport on Chloride Penetration in Concrete", Construction and
	Building Materials, 125, 1189-1195.
	4. Na, O., and Xi, Y. (2016) "Mechanical and Durability Properties of
	Portland Cement Insulation Mortar with Rubber Powder from Waste
	Tires", Journal of Material Cycles and Waste Management, DOI
	10.1007/s10163-016-0475-2.
	5. Na, O., Ou, E., Xi, Y., and Saouma, V. (2016) "The Effects of Alkali-
	Silica Reaction on Mechanical Properties of Concrete with Three
	Different Types of Reactive Aggregates", Structural Concrete, DOI:
	10.1002/suco.201400062.
	6. Musiket, K., Rosendahl, M., and Xi, Y. (2016) "Fracture of Recycled
	Aggregate Concrete under High Loading Rates", J. of Material in Civil
	<i>Eng.</i> , <i>ASCE</i> , <u>10.1061/(ASCE)MT.1943-5533.0001513</u> , 04016018.
	7. Zhang, W.P., Tong, F., Gu, X.L., Xi, Y. (2015) "Study on Moisture
	Transport in Concrete in Atmospheric Environment", Computers and
	<i>Concrete</i> , 16(5), 775-793.
	8. Zhang, W.P., Min, H.G., Gu, X.L., Xi, Y., Xing. Y.S. (2015)
	"Mesoscale Model for Thermal Conductivity of Concrete",
	Construction and Building Materials, 98, 8-16.
	9. Bai, Y., Harajli, A., Xi, Y. (2015) "Analytical Solutions of Ionic
	Diffusion and Heat Conduction In Multi-Layered Porous Media",
	Journal of Applied Mathematics, Vol. 2015, Article ID 208914, 11
	pages, doi:10.1155/2015/208914.
	10. Damrongwiriyanupap, N., Limkatanyu, S., and Xi, Y. (2015) "A
	Thermo-Hygro coupled Model for Chloride Penetration in Concrete
	Structures", Advances in Materials Science and Engineering, vol.
	2015, Article ID 682940, 10 pages, doi:10.1155/2015/682940.
PROFESSIONAL	- Mastering the subsurface through technology innovation and
DEVELOPMENT	collaboration: carbon storage and oil and Natural gas technologies
ACTIVITIES IN	review meeting, Aug. 16-18, Pittsburgh, PA.
THE LAST FIVE	- Annual meeting of engineering mechanics institute of ASCE, May 22,
YEARS	Nashville, TN.
	- MAMNA 2016, March 21, Johns Hopkins.

Zhiqiang (John) Zhai

Professor

EDUCATION	BS, Engineering Mechanics, Tsinghua University, 1994
	 MS, Fluid Mechanics, Tsinghua University, 1995
	PhD, Fluid Mechanics, Tsinghua University, 1999
	PhD, Building Technology, MIT, 2003
ACADEMIC	University of Colorado Boulder: Professor, 2015-present; Associate
EXPERIENCE	Professor, 2010-2015; Assistant Professor, 2003-2010; Faculty Director
	AREN Program, 2014-2016
NON-ACADEMIC	Senior Fellow, Rocky Mountain Institute, Boulder, CO (sabbatical), 2010-
EXPERIENCE	2011
PROFESSIONAL	
REGISTRATIONS	
SCIENTIFIC AND	International Society of Indoor Air Quality and Climate (ISIAQ)
PROFESSIONAL	 International Building Performance Simulation Association (IBPSA)
SOCIETIES OF	 American Society of Heating, Refrigerating, and Air Conditioning
WHICH A	Engineers (ASHRAE)
MEMBER	 China Green Building Council (CGBC)
HONORS AND	 Named as Distinguished Lecturer by American Society of Heating,
AWARDS	 Named as Distinguished Lecturer by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), 2014.
AWARDS	
	• Invited Participant for 2010 US Frontiers of Engineering (US FOE) Symposium and Invited Organizer for 2011 US FOE Symposium by
	National Academy of Engineering of US
	• Research Development Award, Department of Civil, Environmental,
	and Architectural Engineering, University of Colorado at Boulder, May 2010
	May, 2010
	• Distinguished Service Award (DSA) of American Society of Heating,
	Refrigerating, and Air Conditioning Engineers (ASHRAE), May, 2010
	• William Mong Visiting Research Fellowship in Engineering, The
	University of Hong Kong, 2009
	• 2008 Best Paper Award, International Journal of Building Simulation,
	• Sustainability Award of Green Faculty, University of Colorado at
	Boulder, 2008
	• Young Researcher Award, Department of Civil, Environmental, and
	Architectural Engineering, University of Colorado at Boulder, 2007
	Presidential Fellowship, Massachusetts Institute of Technology, 1999– 2002
	• Grant-in-Aid Fellowship, American Society of Heating, Refrigerating,
	and Air Conditioning Engineers (ASHRAE), 2001
	• Martin Family Society of Fellows for Sustainability, Massachusetts
	Institute of Technology, 2000
INSTITUTIONAL	Associate Editor for Energy and Buildings Journal
AND	
PROFESSIONAL	

SEDVICE DI	
SERVICE IN	• Editorial Board Member for Building Simulation: An International
LAST FIVE	Journal ; Journal of Building Physics; Indoor and Built Environment
YEARS	Journal; Journal of Energy; Journal AIMS Energy
	• Voting member and ASHRAE Learning Institute Coordinator of
	ASHRAE Technical Committee 4.10 – Indoor Environmental
	Modeling, 2004-Present
	• Scientific Committee Member for Urban Transitions Global Summit
	2016, Sept 5-9, 2016, Shanghai, China
	• Vice President for the Healthy Buildings 2015 North America
	Conference, July 19-22, 2015, Boulder, Colorado
	• Vice President for the 9th International Symposium on Heating,
	Ventilation and Air Conditioning and the 3rd International Conference
	on Building Energy and Environment (ISHVAC-COBEE 2015), July
	12-15, 2015, Tianjin, China
	 International Scientific Committee Member for Indoor Air 2016, July
	 International Scientific Committee Member for Indoor Air 2016, July 3-8, 2016, Ghent, Belgium
	• Scientific Committee Member for International Building Physics
DDINCIDAT	Conference 2015 (IBPC 2015), June 14-17, 2015, Torino, Italy
PRINCIPAL	• Zhai Z, Yates AP, Duanmu Lin, Wang Z. 2015. An Evaluation and
PUBLICATIONS	Model of the Chinese Kang System to Improve Domestic Comfort in
AND	Northeast Rural China – Part-1: Model Development. Renewable
PRESENTATIONS	Energy, 84: 3-11.
OF	• Zhai Z, Yates AP, Duanmu Lin, Wang Z. 2015. An Evaluation and
LAST FIVE	Model of the Chinese Kang System to Improve Domestic Comfort in
YEARS	Northeast Rural China – Part-2: Result Analysis. Renewable Energy,
	84: 12-21.
	• Zhai Z, Abarr M, AL-Saadi S, and Yate P. 2014. Energy Storage for
	Residential Buildings. Journal of Architectural Engineering, 20(4).
	SPECIAL SECTION: Housing and Residential Building
	Construction, B4014004.
	• Zhai Z, Xue Yu and Chen Q. 2014. Inverse Design Methods for
	Indoor Ventilation Systems Using CFD-Based Multi-Objective
	Genetic Algorithm. Building Simulation: An International Journal,
	7(6): 661-669.
	• Zhai Z and Osborne A. 2013. Simulation-Based Feasibility Study of
	Improved Air Conditioning Systems for Hospital Operating Room.
	Frontiers of Architectural Research, 2(4): 468-475.
	 Zhai Z, Hermansen KA and Al-Saadi S. 2012. The Development of
	Simplified Rack Boundary Conditions for Numerical Data Center
	Models. ASHRAE Transactions, 118(2): 436-449.
PROFESSIONAL	NSF STEM Mentor Workshop, every Feb, Washington, DC.
DEVELOPMENT	
ACTIVITIES IN	
THE LAST FIVE	
YEARS	

Yida Zhang Assistant Professor

	1
EDUCATION	BS, Civil Engineering, Zhejiang University, 2010
	MS, Civil Engineering, Louisiana State University, 2012
	Ph.D., Civil Engineering, Northwestern University, 2016
ACADEMIC	University of Colorado Boulder: Assistant Professor, 2016 – present;
EXPERIENCE	
NON-ACADEMIC	N/A
EXPERIENCE	
PROFESSIONAL	N/A
REGISTRATIONS	
SCIENTIFIC AND	American Society of Civil Engineers (ASCE)
PROFESSIONAL	American Rock Mechanics Association (ARMA)
SOCIETIES OF	
WHICH A	
MEMBER	
HONORS AND	Terminal Year Fellowship, Northwestern University, 2016
AWARDS	Walter P. Murphy Fellowship, Northwestern University, 2013
	Outstanding Undergraduate Final Project, Zhejiang University, 2010
	First Prize of Chinese Physics Olympiad, China, 2005
INSTITUTIONAL	American Society of Civil Engineers (ASCE). Technical board,
AND	Unsaturated Soils (2016-present)
PROFESSIONAL	
SERVICE IN	
LAST FIVE	
YEARS	
PRINCIPAL	Publications
PUBLICATIONS	Zhang, Y.D. & Buscarnera, G. (2017) Rate-dependent breakage
AND	mechanics: a continuum theory accounting for the fracture kinetics of
PRESENTATIONS	minerals. Accepted, Géotechnique.
OF	Gao, S., Zhang, Y.D., Sonta, A. & Buscarnera, G. (2016) Evolution of
LAST FIVE	water retention characteristics of granular material subjected to grain
YEARS	crushing. <i>Journal of Geotechnical and Geoenvironmental Engineering</i> 142 (9).
	Zhang, Y.D., Buscarnera, G. & Einav, I. (2015) Grainsize dependence of
	yielding in granular soils interpreted using fracture mechanics,
	breakage mechanics, and Weibull statistics. Géotechnique 66(2), 149-
	160.
	Zhang, Y.D. & Buscarnera, G. (2015) Implicit Integration under Mixed
	Controls of a Breakage Model for Unsaturated Crushable Soils.
	International Journal for Numerical and Analytical Methods in
	Geomechanics. Published online, DOI: 10.1002/nag.2431.
	Zhang, Y.D. & Buscarnera, G. (2015) Prediction of breakage-induced
	couplings in unsaturated granular soils. Géotechnique 65(2), 135-140.

	 Zhang, Y.D. & Buscarnera, G. (2014). Grainsize dependence of clastic yielding in unsaturated granular soils. <i>Granular Matter</i> 16(4), 469-483. Voyiadjis, G.Z., Faghihi, D. & Zhang, Y.D. (2014) A theory for grain boundaries with strain-gradient plasticity. <i>International Journal of Solids and Structures</i> 51, 1872-1889.
	 Presentations EMI 2016 & PMC 2016, "Grain size effect in the comminution of granular materials" May, 2016, Nashville, TN. 49th US Rock Mechanics/Geomechanics Symposium, "Constitutive couplings in unsaturated granular media with crushable grains" July, 2015, San Francisco, CA. 17th U.S. National Congress on Theoretical & Applied Mechanics, "Computational aspects of a hydro-mechanical model for crushable granular soils", June, 2014, East Lansing, MI. 2013 Conference of the ASCE Engineering Mechanics Institute,
	"Understanding hydro-mechanical coupling in brittle unsaturated granular matter", Aug. 2013, Evanston, IL
PROFESSIONAL	N/A
DEVELOPMENT	
ACTIVITIES IN	
THE LAST FIVE	
YEARS	

Dobroslav Znidarcic Professor

EDUCATION	BS, Civil Engineering, University of Zagreb, Croatia, 1972
	MS, Civil Engineering, University of Zagreb, Croatia, 1978
	Ph.D., Civil Engineering, University of Colorado Boulder, 1982
ACADEMIC	University of Colorado Boulder: Professor, 2006 – present; Associate
EXPERIENCE	Professor, 1992-2006; Assistant Professor, 1985-1992;
	University of Zagreb, Croatia, Docent 1983-1984
	Purdue University, Visiting Assistant Professor, 1984-1985
	University of Zagreb, Fulbright Scholar (sabbatical), 2001-2002
	University of Colorado, Boulder, Research Assistant 1980-1982
	University of Zagreb, Research and Scientific Assistant, 1972-1979
NON-ACADEMIC	ISMES Bergamo, Italy, Visiting Scientist (sabbatical) 1993-1994
EXPERIENCE	Geoexpert Zagreb, Croatia, Head of the field laboratory, 1974-1977
PROFESSIONAL	
REGISTRATIONS	
SCIENTIFIC AND	American Society of Civil Engineers (ASCE)
PROFESSIONAL	Croatian Society for Soil Mechanics and Geotechnical Engineering
SOCIETIES OF	(HGD)
WHICH A	International Society for Soil Mechanics and Geotechnical Engineering
MEMBER	(ISSMGE)
	American Society for Testing and Materials (ASTM)
HONORS AND	Fulbright Scholar, 2001-2002.
AWARDS	Suklje Lecturer, Slovenian Geotechnical Society, Strunjan 2007
	Nonveiller Lecturer, Croatian Geotechnical Society, Zagreb, 2012
	Ardaman-Wissa Lecturer, University of Florida, Gainesville, 2016
INSTITUTIONAL	Modeling Aspects of Tailings Disposal Facility Design - Prediction of
AND	Storage Capacity, Short Course Delivered at the - Tailings and Mine
PROFESSIONAL	Waste conferences, US and Canada with G. Gjerapic and D. vanZyl,
SERVICE IN	2012-2016.
LAST FIVE	University Service
YEARS	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Operations Committee Chair, 2011-
	Transfer Students Evaluator, 2011-
	University of Colorado – Boulder Campus
	Graduate School Fellowship Committee, member, 2012-2015
	Graduate School Dissertation Completion Fellowship Committee,
	member, 2012-2015
PRINCIPAL	Lee, J. and Znidarcic, D., 2013, Flow Pump System for Unsaturated
PUBLICATIONS	Soils: Measurement of Suction Response and the Soil–Water Retention
AND	Curve, Geotechnical Testing Journal, Vol. 36, No. 5, 12 pp.
PRESENTATIONS	Estepho, M., van Zyl, D., Znidarcic, D., and Revington, A., 2013,
OF	Seepage Induced Consolidation Testing of Mature Fine Tailings,
LAST FIVE	Tailings and Mine Waste '13 conference proceedings, November 3-6,
YEARS	Banff, AB, Canada, ISBN: 978-1-55195-326-7, pp.101-109.

	
	Brink, N., Kim, H., and Znidarcic, D., 2013, Consolidation Modelling for Geotextile Tubes Filled with Fine-Grained Materials, Proceedings of the GeoAfrica 2013 Conference, Accra, 2013. 18-20 November 2013, Accra, Ghana, CD-ROM.pp.10.
	Treinen, J.M., Cooke, R., and Znidarcic, D., 2014, A discussion of the
	critical drivers for tailings beach flows, Proceedings of the 17th
	International Seminar on Paste and Thickened Tailings, June 9-12,
	2014 Vancouver, Canada, Richard Jewell, Andy Fourie, Patrick Sean Wells, and Dirk van Zyl eds., InfoMine Inc., June 2014 ISBN 978-0- 9917905-3-1, pp. 19-30.
	Gjerapic, G., Bronson, B.R., Johnson, J.M. and Znidarcic, D., 2014,
	Embankment Stability on Soft Soil Foundations, Tailings and Mine
	Waste '14 conference proceedings, October 6-8, Keystone, CO,
	Brink, N., Kim, H., and Znidarcic, D., 2015, Numerical Modeling
	Procedures for Consolidation of Fine-Grained Materials in Geotextile
	Tubes, Proceedings of the Geosynthetics 2015 Conference, Portland,
	OR, 15-18 February 2015, pp.10.
	Znidarcic, D., 2015, If it creeps, does it matter? Tailings and Mine Waste
	'15 conference proceedings, October 25-28, Vancouver, BC, Canada,
	pp.229-235.
	Znidarcic, D., Adkins, D., Utting, L. and Catling, M., 2015, Rheomax® ETD technology, a laboratory study of application performance and associated geotechnical characteristics for polymer assisted tailings deposition of oil sands MFT, Tailings and Mine Waste '15 conference proceedings, October 25-28, Vancouver, BC, Canada, pp.508-520.
	Fourie, A., and Znidarcic, D., 2016, Optimising the Thin-lift Deposition of Thickened Tailings, Tailings and Mine Waste '16 conference
	proceedings, October 2-5, Keystone, CO. Gjerapic, G., Malgesini, M., Johnson, J.M., and Znidarcic, D., 2016, Use
	of Pore Water Pressure Measurements to Evaluate Risk to Tailings Stability, Tailings and Mine Waste '16 conference proceedings,
	October 2-5, Keystone, CO.
	Znidarcic, D., Van Zyl, D., Mario Ramirez, M., Mittal K., and Kaminsky,
	H., 2016, Consolidation Characteristics of Flocculated MFT –
	Experimental Column and SICT data, International Oil Sands Tailings
	conference proceedings, December 4-7, Lake Louise, AB, Canada, pp.
	Al-Yaqoub, T.H. Parol, J. and Znidarcic, D., 2017, Experimental
	investigation of volume change behavior of swelling soil, <u>Applied</u>
DOFESSIONAL	<u>Clay Science</u> , Vol. 137, pp. 22-29
PROFESSIONAL DEVELOPMENT	Tailings and Mine Waste conferences 2011, 2012, 2013, 2014, 2015 and 2016.
ACTIVITIES IN	International Oil Sands Tailings Conference, 2016.
THE LAST FIVE	mornational on bands rannings conference, 2010.
YEARS	

Environmental and Water Resources Faculty Resumes follow, in alphabetical order

(These faculty typically devote about 5% of their time to architectural engineering; see Table 6-2)

Sherri M. Cook Assistant Professor

EDUCATION	BS, Civil Engineering, Virginia Tech (VPI&SU), 2008
	MS, Environmental Engineering, University of Michigan, 2009
	Ph.D., Environmental Engineering, University of Michigan, 2014
ACADEMIC	University of Colorado Boulder: Assistant Professor, 2014 – present
EXPERIENCE	University of Michigan, Research Assistant, 2008-2014, part time
	Clarkson University, Research Assistant, summer 2007
	Virginia Tech, Research Assistant, 2005-2006, part time
NON-ACADEMIC	Froehling & Robertson, Sterling, VA, Intern, summer 2005
EXPERIENCE	
PROFESSIONAL	E.I.T., Virginia, 2008 to present.
REGISTRATIONS	
SCIENTIFIC AND	Association of Environmental Engineering & Science Professors (AEESP)
PROFESSIONAL	Water Environment Federation (WEF)
SOCIETIES OF	International Water Association (IWA)
WHICH A	Society of Women Engineers (SWE)
MEMBER	
HONORS AND	Rackham Predoctoral Fellow, 2013-2014
AWARDS	Graham Sustainability Institute Doctoral Fellow, 2010-2013
	National Science Foundation Graduate Research Fellow, 2009-2012
	Phi Kappa Phi Honor Society National Fellow, 2008-2009
	Virginia Tech College of Engineering Outstanding Senior, 2008
	Morris K. Udall Scholar, 2007 and 2006
INSTITUTIONAL	International Water Association Wastewater Treatment Modeling
AND	Conference. Scientific Committee (2014, 2016); Chair of Young Water
PROFESSIONAL	Professional Scientific Committee and Workshop (2016)
SERVICE IN	IWA/Water Environment Federation (WEF) Nutrient Removal and
LAST FIVE	Recovery Conference. Scientific Committee (2016)
YEARS	Rocky Mountain Water Environment Association (RMWEA) Internship
	Committee (2016)
	Peer Review: Funding Agencies (WERF, NSF) and Journals (6)
	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Curriculum Committee. 2014 to present.
	Graduate Committee. 2014-2015
	Classroom Renovation Committee. 2015.
	University of Colorado - Boulder
	Udall Scholarship Selection Committee. 2016
	Faculty Student Mentor Program. 2014
PRINCIPAL	Thompson, K.; Shimabuku, K.K.; Kearns, J.P.; Knappe, D.R.U.;
PUBLICATIONS	Summers, R.S.; Cook, S.M. Environmental comparison between
AND	biochar and activated carbon for tertiary wastewater treatment.
PRESENTATIONS	Accepted for publication at Environmental Science & Technology.
OF	Thompson, K.A.; Shimabuku, K.T.; Kearns, J.P., Knappe, D.R.U.;
	Summers, R.S; Cook, S.M. An environmental comparison between

LAST FIVE	powdered activated carbon and biochar for tertiary wastewater
YEARS	treatment. Biochar 2016, Corvallis, OR, August 2016.
	Cornejo, P.K.; Hogrewe, B.; Jones, C.H.; Cook, S.M. Improving
	Decision Support for Small Drinking Water Systems: An Innovative
	Approach to Alternatives Assessment. American Water Works
	Association 16th Annual Conference & Exposition, Chicago, IL, June
	2016.
	Jones, C.H.; Shilling, E.; Cook, S.M. Sustainability Comparison of
	Innovative and Conventional Treatment Technologies for Small
	Systems. Rocky Mountain Student Region AWWA and WEA 13 th
	Annual Student Conference, Laramie, WY, May 2016.
	Shilling, E.; Linden, K.; Cook, S.M. A Comparison of Life Cycle
	Environmental Emissions from Disinfection Technologies for Small
	Drinking Water Systems. Association of Environmental Engineering
	and Science Professors (AEESP) Education and Research Conference,
	New Haven, CT, June 2015.
	Cook, S.M.; Skerlos, S.J.; Love, N.G. Resource recovery from waste: A
	design-oriented analysis of anaerobic co-digestion stability. Oral
	presentation at the <i>Borchardt Conference</i> . Ann Arbor, MI, February
	25, 2014.
	Cook, S.M.; Delgado Vela, J.; Stadler, L.G. Modeling advancing the
	success of engineering service projects from the classroom to the field.
	(failure and success analysis of water and sanitation projects in
	developing communities) Poster Presentation at the <i>AEESP Education</i>
	and Research Conference, Golden, CO, July 14-16, 2013.
	Cook, S.M.; VanDuinen, B.J.; Love, N.G.; Skerlos, S.J. Life cycle
	comparison of environmental emissions from three disposal options for
	unused pharmaceuticals. Environmental Science & Technology, 46
	(10), 5535-5541, 2012.
PROFESSIONAL	Development Effectiveness Workshop at UIUC, Sept 29- Oct 1, 2016
DEVELOPMENT	CU-Boulder LEAP (Leadership Education for Advancement and
ACTIVITIES IN	Promotion) Introductory Leadership Workshop, May 12-13, 2016
THE LAST FIVE	AEESP-NSF Grand (Environmental Engineering) Challenges Workshop,
YEARS	May 19-20, 2016
	CU-Boulder FTEP (Faculty Teaching Excellence Program)
	Learning Goals Workshop, Aug. 10, 2015.
	CU-Boulder FTEP Writing (Well written? Well argued!) Workshop,
	October 2014 (4 sessions)

EDUCATION	
EDUCATION	BS, Civil Engineering, University of Kentucky, 1996
	MS, Civil Engineering, University of Colorado, 2007
	Ph.D., Civil Engineering, University of Colorado, 2010
ACADEMIC	University of Colorado Boulder: Instructor, 2014 – present; Postdoctoral
EXPERIENCE	Research Associate, 2010-2011; Graduate Research Assistant, 2006-
	2010
NON-ACADEMIC	Jacobs Engineering, Denver, CO, Water Process Engineer, 2011-2013
EXPERIENCE	Landmark Consultants, Steamboat Springs, CO, Project Manager, 2002-
	2006
	JF Sato & Assoc., Littleton, CO, Project Manager, 2001 - 2002
	Carroll & Lange, Inc, Lakewood, CO, Engineer, 1999 – 2001
	Environmental Engineering Service, Lebanon, OH, Engineer, 1998-1999
	STEELOX Building Systems, Mason, OH, Engineer, 1997-1998
PROFESSIONAL	P.E., Colorado, 2002 to present.
REGISTRATIONS	
SCIENTIFIC AND	Association of Environmental Engineering & Science Professors (AEESP)
PROFESSIONAL	American Water Works Association (AWWA)
SOCIETIES OF	
WHICH A	
MEMBER	
HONORS AND	John and Mercedes Peebles Innovation in Education Award, 2016
AWARDS	College of Engineering Outstanding Faculty Advisor, 2016
	Environmental Engineering Faculty Appreciation Award, 2016
	Environmental Engineering Faculty Appreciation Award, 2015
	Environmental Engineering Faculty Appreciation Award, 2014
	Best Paper Award - Water Quality and Technology Division, American
	Water Works Association, 2013
	Advisor for winning teams in the national FAA Student Design
	Competition, 2016 and 2014
INSTITUTIONAL	University Service
AND	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
PROFESSIONAL	Faculty Advisor for Student Chapter of RMSAWWA/WEF 2014 to
SERVICE IN	present
LAST FIVE	Environmental Engineering (EVEN) cross-disciplinary degree program
YEARS	Curriculum Committee. 2014 to present
	Awards Committee. Chair 2015 to present
	Faculty Advisor for Student Environmental Engineers (SEVEN)
	2014 to present
PRINCIPAL	Chowdhury, Z.K., Summers, R. S., Westerhoff, G.P., Leto, B., Nowack,
PUBLICATIONS	K., Corwin, C. J.; Passantino, L., technical editor. (2012). "Activated
AND	Carbon: Solutions for Improving Water Quality," American Water
PRESENTATIONS	Works Association, Denver, CO.
OF	

LAST FIVE	Seidel, C. J., and Corwin, C. J. (2013) "Total Chromium and Hexavalent
YEARS	Chromium Occurrence Analysis," Journal of American Water Works Association, 105(6) 37-38.
	 Seidel, C. J., Najm, I., Blute, N.K., Corwin, C. J., and Wu, Y. (2013) "National and California Implications of Potential Hexavalent Chromium MCLs," Journal of American Water Works Association, 105(6) 39-40.
	Summers, R.S., Kim, S.M., Shimabuku, K., Chae, S. and Corwin, C.J. (2013) "Granular activated carbon adsorption of MIB in the presence of dissolved organic matter," Water Research, 47 (10) 3507-3513.
	Corwin, C. J., and Summers, R. S. (2012) "Controlling Trace Organic Contaminants with Granular Activated Carbon Adsorption," Journal of American Water Works Association, 104(1) E36-E47.
	Corwin, C. J. and Summers, R. S. (2011) "Adsorption and Desorption of Trace Organic Contaminants from Granular Activated Carbon Adsorbers after Intermittent Loading and Throughout Backwash Cycles," Water Research, 45 (2) 417-426.
PROFESSIONAL	National Effective Teaching Institute (NETI1) Workshop, June 23-25,
DEVELOPMENT	2016.
ACTIVITIES IN	
THE LAST FIVE	
YEARS	

John P. Crimaldi Professor

EDUCATION	BSE, Mechanical and Aerospace Engineering, Princeton University, 1987
	MS, Civil and Environmental Engineering, Stanford University, 1992
	Ph.D., Civil and Environmental Engineering, Stanford University, 1998
ACADEMIC	University of Colorado Boulder: Professor, 2015 - present; Associate
EXPERIENCE	Professor, 2007-2015; Assistant Professor, 2000-2007; CEAE
	Associate Chair for Graduate Education, 2013-present; Affiliated
	Faculty, Dept. of Applied Mathematics, University of Colorado
NON ACADEMIC	Boulder, 2010-present
NON-ACADEMIC	Northrop Aircraft Company, Engineer, 1987-1991
EXPERIENCE	
PROFESSIONAL	
REGISTRATIONS	
SCIENTIFIC AND	American Society for Limnology and Oceanography
PROFESSIONAL	American Geophysical Union
SOCIETIES OF	
WHICH A	
MEMBER	
HONORS AND	Research Development Award, CEAE 2016
AWARDS	Faculty Research Fellow, University of Colorado, 2008-2009
	CAREER Award: National Science Foundation, Biological Oceanography
	Program, 2004-2009
	Young Researcher Award: CEAE, 2004
	Charles Hutchinson Teaching Award: College of Engineering, University
	of Colorado, 2003
	Department Teaching Award: CEAE, 2002
	Junior Faculty Development Award: University of Colorado, 2001
	Graduate Fellowship: Achievement Rewards for College Scientists Foundation, 1995-1996
	Graduate Fellowship: Office of Naval Research, 1991-1994
	Donald J. Dyke Award for Excellence in Undergraduate Research:
	Princeton University, 1987
INSTITUTIONAL	Limnology and Oceanography: Methods, Associate Editor, 2008 - present
AND	
PROFESSIONAL	Session Organizer and Chair, "Consequences of fluid stirring and mixing:
SERVICE IN	from organisms to ecosystems," American Society for Limnology and
LAST FIVE	Oceanography, Ocean Sciences meeting, Honolulu, Hawaii, February
YEARS	24-28, 2014.
	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Associate Chair for Graduate Education, 2013-present
	· •
	Facilitator for selection of Department Chair, 2013
	Chair of Graduate Committee, 2013-present
	College Outstanding Dissertation Award Committee, 2010

	Chair of Awards Committee, 2009-2013
	College of Engineering at the University of Colorado - Boulder
	Campus Ethics Committee, CEAS Representative 2011-2014
	Engineering Excellence Fund, Faculty Advisor, 2010-2014
	Dean's Blue Ribbon Committee on Graduate Programs, 2012
	Steering Committee, Integrated Teaching and Learning Graduate STEM
	Program, 2011-2012
PRINCIPAL	Pratt, K.R., Meiss, J.D. and J.P. Crimaldi. Reaction Enhancement of
PUBLICATIONS	Initially Distant Scalars by Lagrangian Coherent Structures. Physics of
AND	<i>Fluids</i> 27 , no. 3, 035106, 2015.
PRESENTATIONS	Soltys, M A, and J.P. Crimaldi. Joint Probabilities and Mixing of
OF	Isolated Scalars Emitted From Parallel Jets. Journal of Fluid Mechanics
LAST FIVE	769, 130-153, 2015.
YEARS	Crimaldi, J.P. and T.R. Kawakami. Reaction enhancement in an
	unsteady obstacle wake: Implications for broadcast spawning and other
	mixing-limited processes in marine environments. Journal of Marine
	Systems 114,130-137, 2015.
	Crimaldi, J.P. and R.A. Zimmer. The physics of broadcast spawning in
	benthic invertebrates. Annual Review of Marine Science 6, 141-165,
	2014. (Invited review article)
	Crimaldi, J.P. and *T.R. Kawakami. Reaction of initially distant scalars
	in a cylinder wake. <i>Physics of Fluids</i> 25 , 053604, 1-16, 2013.
	Koehl, M.A.R., Crimaldi, J.P., and *D.E. Dombroski. Wind chop and
	ship wakes determine hydrodynamic stresses on larvae settling on
	different microhabitats in fouling communities. <i>Marine Ecology Progress</i>
	Series 479 , 47-62, 2013.
	Cullis, J. D. S., Crimaldi, J. P. and D. M. McKnight. Hydrodynamic
	shear removal of the nuisance stalk-forming diatom Didymosphenia
	geminata. Limnology & Oceanography: Fluids & Environments 3, 256-
	26, 2013.
	Crimaldi, J.P. The role of structured stirring and mixing on gamete
	dispersal and aggregation in broadcast spawning. The Journal of
	Experimental Biology 215, 1031-1039, 2012. (Invited review, Cover
	article)
	Soltys, M.A. and J.P. Crimaldi. Scalar interactions between parallel jets
	measured using a two-channel PLIF technique. Experiments in Fluids 50,
	1625-1632, 2011.
PROFESSIONAL	
DEVELOPMENT	
ACTIVITIES IN	
THE LAST FIVE	
YEARS	
ILANS	

Michael N. Gooseff Associate Professor

EDUCATION	
EDUCATION	BCE, Civil Engineering, Georgia Institute of Technology, 1996
	MS, Civil Engineering, University of Colorado, 1998
	Ph.D., Civil Engineering, University of Colorado, 2001
ACADEMIC	University of Colorado Boulder: Associate Professor, 2015-present;
EXPERIENCE	Director of the McMurdo Dry Valleys LTER program, 2015-present;
	Co-Director of the Graduate Hydrologic Sciences Program, 2015-
	present;
	Colorado State University, Associate Professor, 2013-2015;
	Penn State University, Assistant Professor, 2007-2012; Associate
	Professor, 2012-2013
	Colorado School of Mines, Assistant Professor, 2004-2007
	Utah State University, Assistant Professor, 2002-2004
	Oregon State University Postdoctoral Fellow, 2002
	University of Colorado, Research Assistant, 1998-2001, part time
NON-ACADEMIC	Hydrosphere Resource Consultants, geospatial technician, 1996-1998;
EXPERIENCE PROFESSIONAL	GEDCO, process safety management technician, 1995 E.I.T., Georgia, 1996 to present.
REGISTRATIONS	E.I. I., Georgia, 1996 to present.
SCIENTIFIC AND	American Geophysical Union (AGU)
PROFESSIONAL	American Geophysical Union (AGU) Association for the Science of Limnology & Oceanography (ASLO)
SOCIETIES OF	Geological Society of America (GSA)
WHICH A	Society of Freshwater Science (SFS)
MEMBER	Ecological Society of America (ESA)
HONORS AND	Lead Principal Investigator of the McMurdo Dry Valleys Long-Term
AWARDS	Ecological Research Project, 2015 – present.
	Outstanding Teaching Award, 2011, Penn State Engineering Alumni
	Society
	Harry West Teaching Award, 2011-2012, Department of Civil &
	Environmental Engineering, Penn State University
	Universities Council On Water Resources (UCOWR) Award for
	Education and Public Service to the MOCHA team, 2011
	Hartz Family Development Professorship at Penn State University, 2007-
	2010
	Outstanding Faculty Mentor, 2004, Utah State University
INSTITUTIONAL	American Geophysical Union, Water Quality Technical Committee,
AND	Chair, 2014 - present; Chair elect, 2012-2014; Hydrologic Sciences
PROFESSIONAL	Award Committee, Member, 2012-2015.
SERVICE IN	Consortium of Universities for the Advancement of Hydrologic Sciences,
LAST FIVE	Inc., Board of Directors, Member, 2014 – present.
YEARS	Environmental Protection Agency, Scientific Advisory Board on
	Connectivity of Waters, 2013 – 2014.
	Eos, Transactions of the American Geophysical Union, Editorial Board,
	2009 - present
	Hydrology and Earth System Sciences, Associate Editor, 2009-2015

	Water Deserves Deservel Associate Editor 2011 2015
	Water Resources Research, Associate Editor, 2011-2015
	WIRES Water, Associate Editor, 2012 – present.
	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Curriculum Committee. 2016 - present
	Awards Committee. 2015 - present.
	Center for Water, Earth Science, and Technology (CWEST)
	Education Committee. Chair. 2016 - present.
PRINCIPAL	Gooseff, MN, MA Briggs, KE Bencala, BL McGlynn, and DT Scott.
PUBLICATIONS	2013. Do transient storage parameters directly scale in longer,
AND	combined stream reaches? Reach length dependence of transient
PRESENTATIONS	storage interpretations, Journal of Hydrology, 483: 16-25.
OF	Wohl, E, BP Bledsoe, KD Fausch, N Kramer, KR Bestgen and MN
LAST FIVE	Gooseff. 2016. Management of large wood in Streams: An overview
YEARS	and proposed framework for hazard evaluation. Journal of the
	American Water Resources Association, 52(2): 315–335.
	Harvey, J, and M Gooseff, 2015. River corridor science: Hydrologic
	exchange and ecological consequences from bedforms to
	basins. <i>Water Resources Research</i> , 51(9): 6893-6922.
	Kelleher, C, T Wagener, B McGlynn, AS Ward, MN Gooseff and R Payn.
	2013. Identifiability of transient storage model parameters along a
	mountain stream. <i>Water Resources Research</i> , 49(9): 5290-5306.
	Wollheim, WM, TK Harms, BJ Peterson, K Morkeski, CS Copkinson, RJ
	Stewart, MN Gooseff, and MA Briggs. 2014. Nitrate uptake dynamics
	of surface transient storage in stream channels and fluvial wetland.
	Biogeochemistry, 120: 239-257.
	Ward, AS, MN Gooseff, M Fitzgerald, TJ Voltz, and K Singha. 2014.
	Spatially distributed characterization of hyporheic solute transport
	during baseflow recession in a headwater mountain stream using
	electrical geophysical imaging. <i>Journal of Hydrology</i> , 517: 362-377.
	Ward, AS, MN Gooseff, TJ Voltz, M Fitzgerald, K Singha, and JP
	Zarnetske. 2013. How does rapidly changing discharge during storm
	events affect transient storage and channel water balance in a
	headwater mountain stream? <i>Water Resources Research</i> , 49(9): 5473-
	5486. Word AS DA Davis MN Coord ff DI McChing KE Derecto CA
	Ward, AS, RA Payn, MN Gooseff, BL McGlynn, KE Bencala, CA
	Kelleher, SM Wondzell, and T Wagener. 2013. Variations in surface
	water-ground water interactions along a headwater mountain stream:
	Comparisons between transient storage and water balance analyses. $W_{T}(x) = P_{T}(x) + AO(C) + 2250 + 2274$
DDOFEGGIONAI	Water Resources Research, 49(6): 3359-3374.
PROFESSIONAL	National Academy of Engineering Frontiers in Engineering Education
DEVELOPMENT	Symposium, 2011 (1 of 65 selected participants from Engineering
ACTIVITIES IN	programs across the US)
THE LAST FIVE	
YEARS	

Mark Hernandez Professor

DDUG	
EDUCATION	BS, Civil Engineering, University of California at Berkeley, 1986
	MS, Civil Engineering, University of California at Berkeley, 1988
	Ph.D., Civil Engineering, University of California at Berkeley, 1992
	PstDoc, Applied Microbiology, University of California at Berkeley, 1995
ACADEMIC	University of Colorado Boulder: Professor, 2009 - present; Associate
EXPERIENCE	Professor, 2002-2008; Assistant Professor, 1996-2002; Faculty Director
	Colorado Diversity Initiative, 2002-2014
	University of California, Research Assistant, 1987-1992, part time
NON-	Civil Engineer, City and County of San Francisco, Responsible to the
ACADEMIC	Engineering Bureau for in-house process engineering and research projects for
EXPERIENCE	the City's main wastewater treatment facilities. Oro Loma Sanitary District
	(OLSD)/CH2M Hill Inc., Oakland, CA. Served as liaison and staff engineer
	to CH2M Hill, Inc. for the District's master plan and expansion.
PROFESSIONAL	P.E., Civil Engineering, California, 1996 to present.
REGISTRATION	,
S	
SCIENTIFIC	American Association for Aerosol Research (AAAR)
AND	American Society for Microbiology (ASM)
PROFESSIONAL	Association of Environmental Engineering & Science Professors (AEESP)
SOCIETIES	Water Environment Federation (WEF)
HONORS AND	Great Minds in STEM Foundation, Hispanic Educator of the Year, 2012
AWARDS	Sigma Xi, Distinguished Lectureship, 2012
	President's Commendation for Advancing Diversity,
	University of Colorado System Award, 2008
	University of Colorado at Boulder, Diversity and Equity Award, 2008
	University of Colorado, Dept. of Civil Engineering, Teaching Award, 2003
	Association of Environmental Engineering and Science Professors
	Advisor to Outstanding Doctoral Dissertation, 2001
	University of Colorado, Dept. of Civil Engineering, Young Researcher Award,
	2000
INSTITUTIONAL	Executive Committee, The Leadership Alliance, one of a five-member
AND	executive board overseeing the policy, operations and financing of this
PROFESSIONAL	premier NGO promoting diversity in higher education.
SERVICE IN	The National Academy of Science, Engineering and Medicine:
LAST FIVE	committee (2016/2017): Standards for the Microbiology of the Built
YEARS	Environment; (2011/2012): Review of Environmental Risk Assessment
	for Expansion of Facilities for Experimentations with Airborne
	Agricultural Pathogens
	American Association for Aerosol Research: Editor, Journal of Aerosol
	Science and Technology, 2008-2013, Bioaerosol Committee Working
	Group Chairman, 2015-2016
	University Service
	Director, The Colorado Diversity Initiative Principal Investigator of an AGEP
	grant (of 22 awarded nationwide). I conceived, designed and led a joint
	grant (or 22 awarded nationwide). I conceived, designed and led a joint

	NIH-NSF funded program to recruit and integrate graduate students from
	socioeconomic groups that have been traditionally underrepresented in
	STEM PhD programs.
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Joint Program Coordinator for new Civil Engineering Program at Mesa State
	University, 2016 - Present
	Environmental Engineering (EVEN) cross-disciplinary degree program
	Graduate Admissions Committee. 2015-present.
PRINCIPAL	Mehsah-Attipoe, J., Taubel, M., Hernandez, M. , Pitkaranta, M., Reponen, T.,
	(2016) Toward a better understanding of the potential benefits and adversity of
PUBLICATIONS	microbe exposures in the indoor environment, Indoor Air, <i>In Press</i> .
AND	
PRESENTATION	Caicedo Ramirez, A., Ling, L., Hernandez, M. , (2016), Diffusion susceptibility
S OF	demonstrates relative inhibition potential of sorbent-immobilized heavy metals
LAST FIVE	against sulfur oxidizing acidophiles, <i>Journal of Microbiological Methods</i> ,
YEARS	<i>131:42-44.</i>
	Hernandez, M., Perring, A.E., McCabe, K., Kok, G., Granger, G., Baumgardner,
	D., (2016) Chamber catalogues of optical and fluorescent signatures distinguish
	bioaerosol classes, <i>Atmospheric Measurement Techniques</i> , 9, 3283-3292,
	doi:10.5194/amt-9-3283-2016
	Handorean A. M., Robertson C., Harris, J.K, Frank, D.N, Kotter, C., Stevens M.J.,
	Pace, N.R., Hernandez , M. (2105) Microbial aerosol liberation from soiled
	textiles isolated during routine residuals handling in modern health care setting.
	Microbiome, 3:72, DOI 10.1186/s40168-015-0132-3
	Levin, H., Taubel, M., Hernandez, M . (2015) Microbiology of the Built
	Environment, Healthy Buildings Europe <i>Microbiome</i> , 3:68, 10.1186/s40168-015-0115-4
	Turner, J, Hernandez, M , Snowder, J, Handorean, A, and McCabe, K., (2015) An
	optimized analytical suite for comparing toxicity effects of diesel exhaust
	particles and their extracts on human lung cells, <i>Aerosol Science and Technology</i>
	49(8):599
	Ling, A., Robertson [,] C., Harris, J.K, Frank, D.N, Kotter, C., Stevens M.J., Pace,
	N.R., and Hernandez M . (2014) High-resolution microbial community
	succession of microbially induced concrete corrosion in working sanitary
	manholes. <i>PLoSOne</i> , DOI: 10.1371/journal.pone.0116400
	Ling, A., Robertson C., Harris, J., Frank, D., Kotter, C., Stevens M., Pace, N.R.,
	Hernandez M. (2014) Carbon Dioxide and Hydrogen Sulfide Associations with
	Regional Bacterial Diversity Patterns in Microbially Induced Concrete
	Corrosion, Environmental Science & Technology, 48 (13): 7357
	Abu Dalo, M, Nevostrueva, S, Hernandez, M , (2014) Enhanced Copper (II)
	Removal from Acidic Water By Granular Activated Carbon Impregnated with
	Carboxybenzotriazole, <i>APCBEE Procedia</i> , 5: 64-6
	Ling, A.L., Pace, N.R., Hernandez, M., and LaPara, T. (2013) Tetracycline
	Resistance and Class 1 Integron Genes Associated with Indoor and Outdoor
	Aerosols, <i>Environmental Sci & Tech 47</i> (9): 4046
PROFESSIONAL	Conference Chairman: The Microbiology of the Built Environment,
DEVELOPMENT	University of Colorado at Boulder. 2012-2016
	Oniversity of Colorado at Boulder. 2012-2010
ACTIVITIES IN	Ludon Ain Woulschon, Houldhy Drilding Frances Annue 2015
THE LACE DIVE	Indoor Air Workshop: Healthy Buildings Europe Annex 2015
THE LAST FIVE YEARS	Indoor Air Workshop: Healthy Buildings Europe Annex 2015

Joseph Kasprzyk Assistant Professor

EDUCATION	BS, Civil Engineering, Penn State University, 2007
	MS, Civil Engineering, Penn State University, 2009
	Ph.D., Civil Engineering, Penn State University, 2013
ACADEMIC	University of Colorado Boulder: Assistant Professor, 2013 – present, full
EXPERIENCE	time
	Penn State University, Research Assistant, 2006-2013, part time
NON-ACADEMIC	AECOM, Intern, 2009-2013, performed engineering analysis on project
EXPERIENCE	assessing climate change effects on flood insurance, part time
	S and G Gas and Oil, Intern, 2005-2007, performed stormwater
	management calculations and created land development plans, part
	time
PROFESSIONAL	E.I.T., Pennsylvania, 2007
REGISTRATIONS	
SCIENTIFIC AND	American Geophysical Union (AGU)
PROFESSIONAL	American Society of Civil Engineers (ASCE)
SOCIETIES OF	Association of Environmental Engineering & Science Professors
WHICH A	(AEESP)
MEMBER	
HONORS AND	Early Career Research Excellence Award of the International
AWARDS	Environmental Modelling and Software Society (iEMSs). Awarded
	at iEMSs meeting in Toulouse, France, July 2016.
	University Council on Water Resources (UCOWR) Ph.D. Dissertation
	Award in Natural Science and Engineering, Awarded at UCOWR
	Conference, June 2014.
	Quentin Martin Best Practice-Oriented Paper, ASCE Journal of Water
	Resources Planning and Management, for Fu et al. (2013) "Optimal
	Design of Water Distribution Systems Using Many-Objective Visual
	Analytics" Awarded at EWRI 2014 in Portland, OR.
	Reviewing awards: Environmental Modelling and Software (2014);
	Journal of Water Resources Planning and Management (Best
	Reviewer, 2014; Outstanding Reviewer; 2011); Water Resources
	Research (2014)
	Student Presentation Award, International Environmental Modelling and
	Software Society Meeting, July 2012
	US Environmental Protection Agency Science to Achieve Results
	(STAR) Graduate Fellowship, 2010-2013
	NSF Graduate Research Fellowship Program Honorable Mention, 2009
	First Place Technical Paper/Presentation Competition, ASCE Mid-
	Atlantic regional student competition, 2007
INSTITUTIONAL	Member of AGU technical committees on hydrologic uncertainty and water and
AND	society
PROFESSIONAL	Member of control group of Environmental Water Resource Systems (EWRS)
SERVICE IN	committee of ASCE Environmental Water Resources Institute, 2016-2020
SERVICE IIV	(a four year term that includes serving as Secretary, Vice Chair, Chair, and
	Past Chair).

LAST FIVE	Vice Chair of a task committee sponsored by EWRS within EWRI:
YEARS	ECSTATIC: Excellence in Systems Analysis Teaching and Innovative
	Communication.
	Guest editor of Thematic Issue on evolutionary algorithms in water resources
	for Environmental Modelling and Software
	Associate Editor, Journal of Water Resources Planning and Management, 2016- Present
	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Graduate Committee. 2013-2015; 2016-2017
	Curriculum Committee. 2014-2015
PRINCIPAL	Piscopo, A, R Neupauer, JR Kasprzyk. 2016. "Optimal design of active
PUBLICATIONS	spreading systems to remediate sorbing groundwater contaminants in
AND	situ" Contaminant Hydrology. vol 190: 29-43.
PRESENTATIONS	Smith, R, JR Kasprzyk, E Zagona. 2016. "Many Objective Analysis to
OF	Optimize Pumping and Releases in a Multi-Reservoir Water Supply
LAST FIVE	Network" Journal of Water Resources Planning and Management. vol.
YEARS	142, no. 2
	Kasprzyk, JR, PM Reed, D Hadka. 2016. "Battling Arrow's Paradox to
	Discover Robust Water Management Alternatives" Journal of Water
	Resources Planning and Management. vol 142, no. 2.
	Matrosov, E, I Huskova, JR Kasprzyk, JJ Harou, C Lambert, PM Reed.
	2015. "Many-Objective Optimization and Visual Analytics Reveal
	Key Trade-offs for London's Water Supply" Journal of Hydrology, vol
	531, part 3: 1040-1053.
	Piscopo, AN, JR Kasprzyk, RM Neupauer. 2015. "An Iterative
	Approach to Multi-Objective Engineering Design: Optimization of
	Engineered Injection and Extraction for Enhanced Groundwater
	Remediation" Environmental Modelling and Software, vol 69: 253-
	261.
	Kasprzyk, JR, JN Ryan, "Tradeoff analysis of setback distance and
	density for oil and natural gas development" Presented at American
	Water Resources Association (AWRA) 2015 meeting, Denver, CO,
	Nov 2015.
	Maier, HM, Z Kapelan, JR Kasprzyk, JB Kollat, LS Mattot, MC Cunha,
	GC Dandy, MS Gibbs, E Keedwell, A Marchi, A Ostfeld, D Savic, DP
	Solomatine, JA Vrugt, AC Zecchin, BS Minsker, EJ Barbour, G
	Kuczera, F Pasha, A Castelletti, M Giuliani, PM Reed. 2014.
	"Evolutionary Algorithms and Other Metaheuristics in Water
	Resources: Current Status, Research Challenges, and Future
DDOFESSIONAT	Directions" Environmental Modelling and Software, vol. 62: 271-299.
PROFESSIONAL DEVELOPMENT	Participated in yearly workshops with water managers at University of
DEVELOPMENT	California Davis to improve relevance of research results, 2008-
ACTIVITIES IN	present
THE LAST FIVE	Attended Faculty Teaching Excellence Program workshops on learning
YEARS	objective design and how to get the most out of the first day of class
	Workshop on NSF CAREER proposals at AEESP conference, 2015

Karl G. Linden Prof

EDUCATION	BS, Agricultural and Biological Engineering, Cornell University, 1989
	MS, Civil/Environmental Engineering, Univ. of California Davis, 1993
	Ph.D., Civil/Environmental Engineering, Univ. of California Davis, 1997
ACADEMIC	University of Colorado Boulder: Mortenson Professor in Sustainable
EXPERIENCE	Development, 2015 - present; Helen and Huber Croft Endowed
	Professor, 2011-15; Professor, 2008-2011
	Duke Univ.: Associate Professor, 2005-07; Assistant Prof., 1999-2005
	University of North Carolina Charlotte: Assistant Professor 1997-99
	University of Colorado at Boulder Visiting Professor 2006
	EAWAG, Swiss Federal Institute for Environmental Science and
	Technology: Visiting Professor, 2003
	University of Vienna: Visiting Professor, 2003
	University of California Davis, Research Assistant, 1991-1997, part time
	Cornel University, Research Assistant, 1987-89, part time
NON-ACADEMIC	Larry Walker and Associates, Davis CA, Project Engineer 1993
EXPERIENCE	Microgen Corporation, Ithaca NY, Project Engineer 1990
	Black & Veatch, Montgomery Watson Harza, US EPA, Cadmus Group,
	Malcolm Pirnie, Hazen, Carollo Engineers, Colorado Department of
	Public Health and Environment, Dow Water, Brown and Caldwell,
	Tetra Tech: Intermittent Engineering Consultant 1998-present
PROFESSIONAL	BCEEM, American Academy of Environmental Engineers and Scientists,
REGISTRATIONS	2015-present
	EIT: License XE095615, California; February 1995
SCIENTIFIC AND	American Society of Civil Engineers (ASCE)
PROFESSIONAL	Association of Environmental Engineering & Science Professors (AEESP)
SOCIETIES OF	American Water Works Association (AWWA)
WHICH A	International UV Association (IUVA)
MEMBER	International Water Association (IWA
HONORS AND	WateReuse Person of the Year Award, 2014
AWARDS	Australian Water Recycling Center of Excellence Fellow 2013-2014
	Pioneer Award in Disinfection and Public Health, Water Environment
	Federation, 2013
	University Research Award, Boulder Faculty Assembly, CU 2013
	Best Research Paper Award, International UV Association, 2013
	Best Classic UV Paper Award, International UV Association, 2013
	Faculty Research Award, College of Engineering and Applied Sci., 2012
	Distinguished Faculty Award, CEAE, CU College of Engineering, 2011
	Best Paper of the Year, J. AWWA 2010. Journal AWWA, 101(4)90+
INSTITUTIONAL	Board of Directors, Association of Environmental Engineering and
AND	Science Professors (AEESP) 2016 – 2019
PROFESSIONAL	World Health Organization (WHO) Water Quality Technical Advisory
SERVICE IN	Group member 2015-present
LAST FIVE	Trustee, Vice Chair (2014-2016), Water Science and Research Division,
YEARS	American Water Works Association 2011-17

	Associate Editor, Journal of the American Water Works Association,
	2012-2018
	Associate Editor, ASCE: Journal of Environmental Engin., 2005 - 2015
	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Executive Committee. 2010-2015.
	Facilities Committee. Chair. 2013-2016
	Mortenson Center (MCEDC) cross-disciplinary degree program
	Co-Director. 2015 - present.
	College of Engineering at the University of Colorado - Boulder
	Vice Chancellors Advisory Committee, 2012-2015.
PRINCIPAL	Lester, Y., Thurman, E.M., Ferrer, I., Sitterley, K., Korak, J.A., Aiken,
PUBLICATIONS	G., *Linden, K.G. (2015) "Characterization of fracturing flowback
AND	water in Colorado: Implications for water treatment" <i>Science of the</i>
PRESENTATIONS	Total Environment 521-513: 637-644.
OF LAST FIVE	Beck, S.E., Wright, H.B., Hargy, T.M., Larason, T.C., *Linden, K.G.
LAST FIVE	(2015) "Action Spectra for Validation of Pathogen Disinfection in
YEARS	Medium-Pressure Ultraviolet (UV) Systems" <i>Water Res.</i> , 70:27-37
	Barstow, C.K., Dotson, A.D., *Linden, K.G. (2014) "Assessing point of
	use ultraviolet disinfection for safe water in urban developing
	communities" <i>IWA Journal of Water and Health</i> , 12(4):663-669
	Chatterley, C., Javernick-Will, A., Linden, K.G., Kawser, A., Laure, B.,
	Mohini, V. (2014) "A qualitative comparative analysis of well- managed school sanitation in Bangladesh" BMC public health, Vol.
	14, No. 6. Pp. 1-14.
	Keen, O.S. and *Linden, K.G. (2013) Degradation of Antibiotic
	Activity during UV/H2O2 Advanced Oxidation and Photolysis in
	Wastewater Effluent Environmental Sci. & Technol 2013 47 (22),
	13020-13030
	Rodriguez, R.A., Bounty, S., *Linden, K.G. (2013) Long-Range
	Quantitative PCR for Determining Inactivation of Adenovirus 2 by UV
PROFESSIONAL	Light. <i>J. Applied Microbiology</i> . 114(6) 1854-1865 American Water Works Association (AWWA) Water Quality Technol
DEVELOPMENT	Conference (WQTC); Salt Lake City, UT, November 14-16, 2015
ACTIVITIES IN	International Ultraviolet Association Research Frontiers
THE LAST FIVE	Conference, Leeuwarden, The Netherlands. May 20, 2015.
YEARS	Water Sustainability in Oil and Gas Exploration: Treatment Issues,
ΙΖΑΝΟ	American Chemical Society, Denver CO, March 25, 2015
	American Chemical Society, Deriver CO, March 25, 2015 Association of Environmental Engineering and Science Professors
	Conference, Yale University New Haven CT. June 14, 2015
	ReNUWIt Sunlight Symposium, Stanford University, April 2, 2013.
	Keno wa sumgit symposium, staniora University, April 2, 2015.

Ben Livneh Assistant Professor

EDUCATION	BS, Civil Engineering, University of Western Ontario, 2004
	MS, Civil Engineering, University of Western Ontario, 2006
	Ph.D., Civil Engineering, University of Washington, 2012
ACADEMIC	University of Colorado Boulder: Assistant Professor, 2015-present;
EXPERIENCE	Research Scientist II, 2014-2015; Research Scientist I, 2012-2014
	University of Washington, Research Assistant, 2006-2012
	Seattle University, Adjunct Professor, 2008, 2010, 2011
	University of Western Ontario, Research Assistant, 2004-2006
NON-ACADEMIC	Design and CAD Engineer, Lican Developments, Windsor, ON, 2006
EXPERIENCE	Univercycle Recycling Co., Windsor, ON, Jiang Ying, China, 2003-2006
	Quality Engineering Company, Southfield, MI, 2002
	Event Manager, Canada Summer Games, London, ON, 2001
PROFESSIONAL	
REGISTRATIONS	
SCIENTIFIC AND	American Geophysical Union (AGU)
PROFESSIONAL	
SOCIETIES OF	
WHICH A	
MEMBER	
HONORS AND	Symposium Scholar, DISCCRS VIII: Dissertations Initiative for the
AWARDS	Advancement of Climate Change Research, 2013
	CIRES Visiting Fellowship Award, 2012
INSTITUTIONAL	American Geophysical Union (AGU) Lead session convener for both oral
AND	and poster sessions, 2013-2016
PROFESSIONAL	Associate Editor, Journal of the American Water Resources Association,
SERVICE IN	2016-present
LAST FIVE	University Service
YEARS	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Computing Committee. 2016-present
	Graduate Committee. 2015-2016.
	Cooperative Institute for Research in Environmental Sciences (CIRES)
	Distinguished Lecturer Series Committee: 2015-present.
PRINCIPAL	Houle, E.S., B. Livneh , and J.R. Kasprzyk, 2016: Exploring Snow Model
PUBLICATIONS	Parameter Sensitivity Using Sobol' Variance Decomposition,
AND	Environmental Model and Software (accepted).
PRESENTATIONS	Raseman, W., J.R. Kasprzyk, F. L. Rosario-Ortiz, J.R Stewart, and B.
OF	Livneh, 2016: Decision support systems for water treatment under
LAST FIVE	climate extremes: A critical review, Environmental Science: Water
YEARS	Research & Technology (accepted).
	Yanto, B. Livneh, J.R. Kasprzyk, and B. Rajagopalan, 2016: Hydrologic
	Model Application Under Data Scarcity on Multiple Watersheds in
	Java Island, Indonesia, Journal of Hydrology: Regional Studies
	(accepted).

	Livneh B., and M.P. Hoerling, 2016: The Physics of Drought in the U.S.
	Central Great Plains. Journal of Climate, 29, 6783-6804.
	Livneh B., R. Kumar, and L. Samaniego, 2015: Influence of Soil
	Textural Properties on Hydrologic Fluxes in the Mississippi River
	Basin, Hydrological Processes, 29, 4638–4655.
	Livneh B., T.J. Bohn, D.S. Pierce, F. Munoz-Ariola, B. Nijssen, R. Vose,
	D. Cayan, and L.D. Brekke, 2015: A spatially comprehensive,
	hydrometeorological data set for Mexico, the U.S., and southern
	Canada 1950-2013, Nature Scientific Data, 2, 150042,
	doi:10.1038/sdata.2015.42.
	Buma B., and B. Livneh , 2015: Potential effects of forest disturbances
	and management on water resources in a warmer climate, Forest
	Science, http://dx.doi.org/10.5849/forsci.14-164.
	Livneh B., J.S. Deems, B. Buma, J.J. Barsugli, D. Schneider, N.P.
	Molotch, K. Wolter, and C.A. Wessman, 2015: Catchment Response
	to Bark Beetle Outbreak in the Upper Colorado River Basin, Journal of
	Hydrology 523,196–210. Pol L. F. Towler, and P. Livneb , 2015: How Can We Potter Understand
	Pal, I., E. Towler, and B. Livneh , 2015: How Can We Better Understand Low River Flows as Climate Changes?, Eos Opinion, AGU, 96,
	doi:10.1029/2015EO033875.
	Livneh, B., J.S. Deems, D. Schneider, J.J. Barsugli, and N.P. Molotch,
	2014: Filling in the gaps: Inferring spatially distributed precipitation
	from gauge observations over complex terrain, Water Resources
	Research, 50, doi:10.1002/2014WR015442.
	Livneh B., E.A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K.M.
	Andreadis, E.P. Maurer, and D.P. Lettenmaier, 2013: A Long-Term
	Hydrologically Based Dataset of Land Surface Fluxes and States for
	the Conterminous United States: Update and Extensions, Journal of
	Climate, 26, 9384–9392.
	Livneh B. , and D.P. Lettenmaier, 2013: Regional parameter estimation
	for the Unified Land Model, Water Resources Research,
	doi:10.1029/2012WR012220.
	Livneh, B. and D.P. Lettenmaier, 2012: Multi-criteria parameter
	estimation for the unified land model, Hydrology and Earth System
	Sciences, 16, 3029-3048, doi:10.5194/hess-16-3029-2012.
PROFESSIONAL	Co-organizer, Reservoir Evaporation Workshop, Oct. 2015, CU Boulder
DEVELOPMENT	Science-lead, Climate Change and Water Working Group, Aug. 2015
ACTIVITIES IN	Seattle
THE LAST FIVE	Mentor, Faculty Mentoring Students Program, CU-Boulder, 2013-2015
YEARS	Resource Speaker, Water Education Foundation: Lower Colorado River
	Tour, 2013
	Vice President, Chi Epsilon, University of Washington Chapter, 2011-
	2012

Diane M. McKnight Professor

EDUCATION	
EDUCATION	BS, Mechanical Engineering, Massachusetts Institute of Technology, 1975
	MS, Civil Engineering, Massachusetts Institute of Technology, 1978
	Ph.D., Environmental Engineering, Massachusetts Institute of
	Technology, 1979
ACADEMIC	University of Colorado - Boulder, Professor, 1999-present; Associate
EXPERIENCE	Professor, 1996-1999
	Massachusetts Institute of Technology – INCRA Fellow, 1975-1979
NON-ACADEMIC	University of Colorado - Boulder; Fellow of INSTARR, 1996-present;
EXPERIENCE	Associate Director, Mountain Research Station, 1996-2002
	U.S. Geological Survey – Research Hydrologist, National Research
	Program, 1979-1996; Research Advisor, Ecology, Water Resources,
	1986-1992; National Research Council Fellow, 1979-1980
	National Science Foundation- Arctic Sciences, Program Officer, 2015-
	present
PROFESSIONAL	N/A
REGISTRATIONS	
SCIENTIFIC AND	American Society of Limnology and Oceanography (ASLO)
PROFESSIONAL	American Geophysical Union (AGU)
SOCIETIES OF	American Chemical Society (ACS)
WHICH A	International Humic Substances Society (IHSS)
MEMBER	Phycological Society of America (PSA)
MENIDER	Society of Freshwater Science (SFS)
	Sigma Xi
HONORS AND	Distinguished Research Lecturer, University of Colorado (2015)
AWARDS	Faculty Research Award, College of Engineering and Applied Science,
AWARDS	University of Colorado (2014)
	John Dalton Medal, European Geophysical Union (2014)
	American Geophysical Union, Hydrology Career Award (2014)
	National Academy of Engineering, member (2012)
	American Association for the Advancement of Science, Fellow (2009)
	Honorary Chair, Humic Sciences and Technology Conference XI (2008)
	American Geophysical Union, Langbein Lecturer (2005)
	American Geophysical Union Fellow (2003)
	USGS, Meritorious Service Award (1995)
	Arthur T. Ippen Award, Ralph M. Parsons Laboratory, Massachusetts
	Institute of Technology (1978)
INSTITUTIONAL	Chair, Editorial Committee, Schoolyard Children's Book Series, Long-
AND	
AND PROFESSIONAL	term Ecological Research Network (2006-2015) National Academies, Chair, Committee on the Effects of Diluted Bitumen
SERVICE IN	
LAST FIVE	on the Environment: A Comparative Study, 2014-2016 University Service
YEARS	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Co-Director Hydrologic Sciences Graduate Program, 2004-2015
	INSTARR

	Various Promotion and Tenure Committees
PRINCIPAL	McKnight, D. M., Cozzetto, K., Cullis, J. D. S., Gooseff, M. N., Jaros, C.,
PUBLICATIONS	Koch, J. C., Lyons, W. B., Neupauer, R., Wlostowski, A. 2015.
OF LAST FIVE	Potential for real-time understanding of coupled hydrologic and
YEARS	biogeochemical processes in stream ecosystems: Future integration of
	telemetered data with process models for glacial meltwater streams.
	Water Resources Research 51(8):6725-6738.
	Cullis, J. D. S., L. F. Stanish, D.M. McKnight. 2014. Diel flow pulses drive
	particulate organic matter transport from microbial mats in a glacial
	meltwater stream in the McMurdo Dry Valleys. Water Resources
	Research, 50: 86-97, DOI: 10.1002/2013WR014061
	Gabor, R. S., K. Eilers, D. M. McKnight, N. Fierer, S. P. Anderson. 2014.
	From the litter layer to the saprolite: Chemical changes in water-soluble
	soil organic matter and their correlation to microbial community
	composition. Soil Biology and Biochemistry, 68:166-176.
	Cozzetto, K. D., K. E. Bencala, M. N. Gooseff, D. M. McKnight. 2013.
	The influence of stream thermal regimes and preferential flow paths on
	hyporheic exchange in a glacial meltwater stream. Water Resources
	Research. <u>49 (9):</u> 5552–5569.
	Koch, J. C., R. L. Runkel, R. Striegl, D.M. McKnight. 2013. Hydrologic
	controls on the transport and cycling of carbon and nitrogen in a boreal
	catchment underlain by continuous permafrost. Journal of Geophysical
	Research-Biogeosciences. 118(2): 698-712.
	Todd, A. S.; Manning, A. H.; Verplanck, P. L. Crouch, C., McKnight, D.
	M.; Dunham, R., 2012. <u>Climate-Change-Driven Deterioration of Water</u> <u>Quality in a Mineralized Watershed</u> . Environmental Science &
	Technology, 46: 9324-9332, DOI: 10.1021/es3020056.
	Cawley, K. M., Butler, K. D., Aiken, G. R., Larsen, L. G., Huntington, T.
	G., McKnight, D. M., 2012. Identifying fluorescent pulp mill effluent
	in the Gulf of Maine and its watershed. Marine Pollution Bulletin,
	64:1678-1687, DOI:10.1016/j.marpolbul.2012.05.040
	SanClements, M. D., Oelsner, G. P., McKnight, D. M., Stoddard, J. L.,
	Nelson. S. J. 2012. New insights into the source of decadal increases of
	dissolved organic matter in acid-sensitive lakes of the Northeastern
	United States. Environmental Science & Technology.
	doi.org/10.1021/es204321x.
PROFESSIONAL	Serving as a Program officer in the Arctic Science program at the National
DEVELOPMENT	Science Foundation
ACTIVITIES IN	
THE LAST FIVE	
YEARS	

EDUCATION	BS, Engineering, California State University, 1989
	MS, Mechanical Engineering, Stanford University, 1991
	PhD, Civil and Environmental Engineering, Stanford University, 1999
ACADEMIC	University of Colorado Boulder: Assistant Professor, 2010 – present.
EXPERIENCE	Colorado School of Public Health, Environmental and Occupational
	Health Department, Assistant Professor, 2010-present.
	Rensselaer Polytechnic Institute, Assistant Professor, 2003–2009.
	State of New York University at Albany, Postdoctoral Fellow, 1998-
	2000.
	Harvard School of Public Health, Postdoctoral Fellow, 2000-2003
NON-ACADEMIC	The Aerospace Corporation, Asst. Engineer, El Segundo CA, summers
EXPERIENCE	1988-1991
LAFENIENCE	Hughes Aircraft Corporation, Asst. Engineer, Canoga Park CA,
	summer 1987
PROFESSIONAL	NA
REGISTRATIONS	
	American Society for Engineering Education
SCIENTIFIC AND	American Society for Engineering Education
PROFESSIONAL	American Society of Civil Engineers
SOCIETIES OF	Association of Environmental Engineering & Science Professors
WHICH A	American Association for Aerosol Research (AAAR)
MEMBER	
HONORS AND	Fulbright Senior Specialist (Environmental Sciences), U.S. Department
AWARDS	of State (2011-present).
	David M. Darrin '40 Counseling Award, for "a faculty member who
	has made unusual contributions to the personal counseling of students",
	awarded by the <i>Phalanx Honor Society</i> at Rensselaer Polytechnic
	Institute (2009).
	Second place, 2009 International Latino Book Award, Best Biography
	for "Paths to Discovery: Autobiographies from Chicanas with Careers
	in Science, Mathematics and Engineering".
	First prize, (co-PI) third annual ARCHITECT magazine R+D Awards
	for "Active Phytoremediation Wall System", August 2009.
	Rensselaer NSF-RAMP UP (ADVANCE) Career Campaign Award
	"in recognition of outstanding scholarship and early career
	achievement" (March 2007).
INSTITUTIONAL	American Association for Aerosol Research (AAAR):
AND	Chair of Health Effects Working Group (2015-2016); Chair of Internet
PROFESSIONAL	Communications Committee (2015-2016); Chair of Membership
SERVICE IN LAST	Committee (2016-2017); National Secretary (2008-2011).
FIVE YEARS	Association of Environmental Engineering and Science Professors
	(AEESP). Organized "Air Quality Challenges for the Environmental
	Engineer of 2050" Symposium at 2013 conference.

	Member of the Senior Fulbright Specialists Program in Environmental
	Science, Council for the International Exchange of Scholars and the U.S.
	Department of State (2011-present)
	University Service
	Scholarship Committee, College of Engineering and Applied Science,
	(2011-present).
	Awards Committee, Department of Civil, Environmental and
	Architectural Engineering, (2012-present).
	Awards Committee, Environmental Engineering Program(2013-present).
	Faculty Advisor, Society of Hispanic Professional Engineers/Mexican
	American Engineers and Scientists, CU Chapter (2010- present).
PRINCIPAL	Barraza F., Jorquera H., Heyer J., Palma W., Edwards A.M., Muñoz M.,
PUBLICATIONS	Valdivia G., Montoya L.D (2016). "Short-term dynamics of indoor and
AND	outdoor endotoxin exposure: Case of Santiago, Chile, 2012",
PRESENTATIONS	Environment International, 92-93:97-105.
OF	Ward, B.J., Yacob T.W., Montoya L.D. (2014). "Evaluation of Solid
LAST FIVE	Fuel Char Briquettes from Human Waste", Environmental Science and
YEARS	<i>Technology</i> , 48 (16):9852–9858.
	Barraza F., Jorquera H., Valdivia G., Montoya L.D. (2014). "Indoor
	PM2.5 in Santiago, Chile, spring 2012: Source apportionment and
	outdoor contributions", Atmospheric Environment, 94:692-700.
	Escobedo L. E., Champion W., Li N., Montoya L. D. (2014). "Indoor
	Air Quality in Latino Homes in Boulder, Colorado", Atmospheric
	Environment, 92:69-75.
	McQuillan B., Hertzberg J. and Montoya L.D. (2014). "Flow
	Visualization Study of Synthetic Flow Control in the Indoor
	Environment", <i>Building and Environment</i> , 73:239-248.
	Lennox E., Kreisberg N. and Montoya L.D. (2013). "Design and Characterization of a New Area Aerosol Sampler Based on Microtrap
	Collection Technology", Aerosol Science and Technology, 47(6):626-
	633.
	Wei Z., Chen L., Thompson D. and Montoya L.D. (2014). "Effect of
	Size on In Vitro Cytotoxicity of Titania and Alumina Nanoparticles",
	Journal of Experimental Nanoscience, 9(6):625-638.
	Aydogan A. and Montoya L.D. (2011). "Formaldehyde Removal by
	Common Indoor Plant Species and Various Growing Media",
	Atmospheric Environment 45:2675-2682.
PROFESSIONAL	Sustainable Engineering Education Community Workshop, NSF,
DEVELOPMENT	Arlington VA, August 5-6, 2014.
ACTIVITIES IN	Integrating Sustainability into Engineering: Design principles and tools
THE LAST FIVE	to expand your educative capacity. National conference of the Society
YEARS	for the Advancement of Chicanos and Native Americans in Science
	(SACNAS, University of South Florida, October 21, 2010.
	Summer Leadership Institute, AAAS and SACNAS, Washington DC,
	July 28 – August 1, 2009.

EDUCATION	BS, Civil Engineering, Carnegie Mellon University, 1989
	MS, Civil Engineering, Massachusetts Institute of Technology, 1991
	MS, Mathematics, New Mexico Institute of Mining and Tech., 1999
	Ph.D., Hydrology, New Mexico Institute of Mining and Tech., 2000
ACADEMIC	University of Colorado Boulder: Professor, 2016 – present; Associate
EXPERIENCE	Professor, 2009-2016; Assistant Professor, 2005-2009; Faculty Director
	for Civil Engineering, 2014-2015; Associate Chair CEAE 2015 -
	present;
	Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador, Fulbright
	scholar, 2015
	University of Virginia, Visiting Assistant Professor, 2004-2008, Assistant
	Professor, 2001-2004
	New Mexico Institute of Mining and Tech., Research Assistant, Teaching
	Assistant, Research Fellow, 1995-2000, part time
	Massachusetts Institute of Technology, Research Assistant, 1989-1991,
	part time
NON-ACADEMIC	Idaho National Engineering Laboratory, Idaho Falls, ID, Engineer, Senior
EXPERIENCE	Engineer, 1991-1995
	F&M Associates, Allentown, PA, Intern, summers 1988, 1989
	Lehigh County Authority, Wescosville, PA, Intern, summer 1987
PROFESSIONAL	P.E., New Mexico, 1998 to present
REGISTRATIONS	P.E., Virginia, 2002 to present
SCIENTIFIC AND	American Geophysical Union (AGU)
PROFESSIONAL	American Society of Civil Engineers (ASCE)
SOCIETIES OF	American Society for Engineering Education (ASEE)
WHICH A	Geological Society of America (GSA)
MEMBER	National Groundwater Association (NGWA)
	Society for Industrial and Applied Math (SIAM)
HONORS AND	"Best Should Teach" Faculty Gold Award, Univ. of Colorado, 2016;
AWARDS	President's Teaching Scholar, Univ. of Colorado, 2015; Fulbright U.S.
	Scholar Grant, 2015; Editor's Citation for Excellence in Refereeing,
	Water Resources Research, 2015, Geophysical Research Letters, 2013;
	Fellow, Geological Society of America
INSTITUTIONAL	Associate Editor, Journal of Hydrology, 2012 – present
AND	American Society of Civil Engineers – Committee on Faculty
PROFESSIONAL	Development (Member 2009 – 2016, Secretary 2013-14, Chair 2014-
SERVICE IN	15, Past Chair 2015-16); ExCEEd Teaching Workshop (Director 2010,
LAST FIVE	Mentor and presenter 2011, 2012); Groundwater Council (Secretary
YEARS	2012-14, Vice Chair 2014-present); Excellence in Water Resources
	Education Task Committee (Vice Chair 2008-14); Groundwater
	Management Committee (Member 2003-present); Groundwater
	Symposium Committee (Member 2007-present)
	American Geophysical Union – Langbein Lecture Committee (Member
	2011-2014, Chair 2013-14)

	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Curriculum Committee. Chair. 2015- present; Member 2013-present
	Coordinator for establishing a joint Civil Engineering program with
	Colorado Mesa University, 2015-present
	Representative to the Boulder Faculty Assembly (BFA), 2014-present
	College of Engineering at the University of Colorado - Boulder
	Undergraduate Education Council. 2010-12, 2014, 2015-present.
	Writing Sub-Committee. Spring 2016 – present.
	University of Colorado
	President's Teaching Scholar Program Selection Committee, 2015-16
	GPTI Award Selection Committee, 2013-present
	BFA Intercollegiate Athletics Committee, 2015-present, Chair 2016-
	present
	BFA Budget and Planning Committee, 2015-present
PRINCIPAL	Okkonen, J. and R.M. Neupauer, Capture zone delineation methodology
PUBLICATIONS	based on the maximum concentration - Preventative groundwater well
AND	protection areas for heat exchange fluid mixtures, Water Resources
PRESENTATIONS	Research, 52, doi:10.1002/2016WR018715, 2016.
OF	Piscopo, A.N., R.M. Neupauer, J.R. Kasprzyk, Optimal design of active
LAST FIVE	spreading systems to remediate sorbing groundwater contaminants in
YEARS	situ, Journal of Contaminant Hydrology, 190, 29-43, 2016.
	Wagner, D.E., R.M. Neupauer, and C. Cichowitz, Adjoint-based
	probabilistic source characterization in water distribution systems with
	transient flows and imperfect sensors, Journal of Water Resources
	Planning and Management, DOI: 10.1061/(ASCE)WR.1943-
	5452.0000508, 2015.
	Neupauer, R.M. and D.C. Mays, Engineered injection and extraction for
	in situ remediation of sorbing solutes in groundwater, Journal of
	Environmental Engineering, 141(6), DOI: 10.1061/(ASCE)EE.1943-
	7870.0000923, 2015.
	Lackey, G.D., R.M. Neupauer, and J. Pitlick, Effects of streambed
	conductance on stream depletion, Water, 7, 271-287,
	doi:10.3390/2/7010271, 2015.
	Neupauer, R. M., J. D. Meiss, and D. C. Mays, Chaotic advection and
	reaction during engineered injection and extraction in heterogeneous
	porous media, Water Resour. Res., 50, doi:10.1002/2013WR014057,
	Griebling, S.A. and R.M. Neupauer, Adjoint modeling of stream
	depletion in groundwater-surface water systems, <i>Water Resources</i>
DDOFEGGIONAT	<i>Research</i> , 49, doi:10.1002/wrcr.20385, 2013.
PROFESSIONAL	Boulder Faculty Assembly Leadership Institute, 2013-14.
DEVELOPMENT	
ACTIVITIES	

Harihar Rajaram, Professor

EDUCATION	B. Tech, Indian Institute of Technology, Madras, 1985
	MS, Civil Engineering, University of Iowa, 1987
	Sc.D., Civil Engineering, Massachusetts Institute of Technology, 1991
ACADEMIC	University of Colorado Boulder: President's Teaching Scholar, 2012-
EXPERIENCE	present; Professor, 2004 – present; Associate Professor, 2000-2004;
	Assistant Professor, 1993-2000; Affiliate Faculty Member, Applied
	Mathematics, 1996-present
NON-ACADEMIC	None
EXPERIENCE	
PROFESSIONAL	None
REGISTRATIONS	
SCIENTIFIC AND	American Geophysical Union
PROFESSIONAL	Society for Industrial and Applied Mathematics
SOCIETIES OF	
WHICH A	
MEMBER	
HONORS AND	President's Teaching Scholar, University of Colorado, 2012
AWARDS	Clarence Eckel Prize for Faculty Excellence, 2016
	College of Engineering Faculty Research award, 2016
	Editor, Water Resources Research, 2013-present
INSTITUTIONAL	Editor, Water Resources Research, 2013-present
AND	ICESat2 Science Definition Team Review Panel, NASA, 2014.
PROFESSIONAL	University Service
SERVICE IN LAST	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
FIVE YEARS	Executive Committee. 2014-present.
	College of Engineering at the University of Colorado - Boulder
	First-Level Review Committee, 2012-2014.
	Faculty Research Committee, 2013-15.
	University of Colorado
	Research Review Board, 2014-present
	Faculty Teaching Excellence Program Associate, 2014-present
PRINCIPAL	•Pandey, S. and H. Rajaram, Modeling the influence of preferential flow
PUBLICATIONS	on the spatial variability and time-dependence of mineral weathering
OF THE LAST	rates, Water Resources Research, 52, doi: 10.1002/2016WR019026,
FIVE YEARS	2016
	·Colgan, W., H. Rajaram, W. Abdalati, C. McCutchan, R. Mottram, M. S.
	Moussavi, and S. Grigsby, Glacier crevasses: Observations, models,
	and mass balance implications, , Rev. Geophys., 54, 119–161, 2016.
	doi:10.1002/2015RG000504
	Birdsell, D. T., H. Rajaram, D. Dempsey, and H. S. Viswanathan,
	Hydraulic fracturing fluid migration in the subsurface: A review and

	expanded modeling results, Water Resour. Res., 51, 2015.
	doi:10.1002/2015WR017810
	·Pandey, S.N., A. Chaudhuri, H. Rajaram, S. Kelkar, Fracture
	transmissivity evolution due to silica dissolution/precipitation during
	geothermal heat extraction, <i>Geothermics</i> 57, 111–126, 2015.
	doi: 10.1016/j.geothermics.2015.06.011
	·Phillips, T; Rajaram, H; Colgan, W; Steffen, K; Abdalati, W: Evaluation
	of cryo-hydrologic warming as an explanation for increased ice
	velocities in the wet snow zone, Sermeq Avannarleq, West Greenland;
	1 1
	Journal Of Geophysical Research-Earth Surface 118(3), 1241-1256
DD OFFICIAN AL	DOI: 10.1002/jgrf.20079, 2013
PROFESSIONAL	None
DEVELOPMENT	
ACTIVITIES IN	
THE LAST FIVE	
YEARS	

Zhiyong (Jason) Ren Associate Professor

EDUCATION	
EDUCATION	BS, Environmental Engineering, Tianjin Ins. Urban Construction, 2000
	MS, Environmental Engineering, Tianjin University, 2003
	Ph.D., Environmental Engineering, Penn State University, 2008
ACADEMIC	University of Colorado Boulder: Associate Professor, 2013 - present;
EXPERIENCE	University of Colorado Denver: Assistant Professor, 2008-2013;
	Director, Center for Sustainable Urban Infrastructure, 2012-2013;
	National Renewable Energy Lab, Visiting Professor, 2009-10; 2015-
	present
	Penn State University, Research Assistant, 2004-2008, part time
NON-ACADEMIC	Bioelectric, Inc, Denver, CO, CTO, 2013-2015, part time
EXPERIENCE	North China Municipal Eng. Design and Research Institute/Spring
	Environmental, LLC, Environmental Engineer, 2013-2014
PROFESSIONAL	E.I.T., Ohio, 2006 to present.
REGISTRATIONS	
SCIENTIFIC AND	Association of Environmental Engineering & Science Professors (AEESP)
PROFESSIONAL	American Chemical Society (ACS)
SOCIETIES OF	Water Environment Federation (WEF)
WHICH A	
MEMBER	
HONORS AND	2015 Research Development Award, CEAE, CU Boulder
AWARDS	2015 New Inventor of the Year Award, CU Technology Transfer Office
	2013 (Faculty Advisor) Graduate School Outstanding Ph.D Dissertation
	Award (Wang)
	2012 Excellence in Review Award, Environmental Science & Technology
	(ES&T)
	2012 University Award for Excellence in Research and Creative Work,
	CU Denver
	2012 Outstanding Faculty in Research Award, CEAS, CU Denver
	2012 Chang Junior Faculty Achievement Award, CEAS CU Denver
INSTITUTIONAL	Association of Environmental Engineering and Science Professors
AND	(AEESP) Education Committee – Co-chair
PROFESSIONAL	Chinese-American Professors in Environmental Engineering and Science
SERVICE IN	(CAPEES) President, Chairman
LAST FIVE	Denver Metro Wastewater Reclamation District CPG Committee
YEARS	Peer Reviewer and Panelist for NSF, DOE, EPA, USDA, and many
	academic journals
	Reviews in Environmental Science and Biotechnology, publisher Springer
	Netherlands; Editorial Board, 2009 – present.
	International Journal for Service Learning in Engineering (IJSLE), Editorial
	Board 2011-present.
	University Service
	Boulder Faculty Assembly, Diversity Committee, 2015-
	Member, Task Force for Bioengineering Department and Degrees, College

	Member, Graduate Committee, Civil, Environmental and Architectural
	Engineering, 2013-present
PRINCIPAL	1. Lu, L., Hou, D., Wang, X., Jassby, D., Ren, ZJ. Active H2 Harvesting
PUBLICATIONS	Prevents Methanogenesis in Microbial Electrolysis Cells,
AND	Environmental Science & Technology Letters, 2016, 3 (8), 286-290.
PRESENTATIONS	2. Wang, X., Zhou, L., Lu, L., Lobo, F., Li, N., Wang, H., Park, J., Ren,
OF	ZJ. Alternating Current Influences Anaerobic Electroactive Biofilm
LAST FIVE	Activity. Environmental Science & Technology, 2016, 50 (17), 9169-
YEARS	9176
	3. Mao, D., Lu, L., Revil, A., Zuo, Y., Hinton, J., Ren, ZJ. Geophysical
	Monitoring of Hydrocarbon-Contaminated Soils Remediated with a
	Bioelectrochemical System, Environmental Science & Technology,
	2016, 50 (15), 8205-8213
	4. Hou, D., Lu, L., Ren, ZJ. Microbial Fuel Cells and Osmotic Membrane
	Bioreactors Have Mutual Benefits for Wastewater Treatment and
	Energy Production, Water Research, 2016, 98, 183-189.
	5. Ren, ZJ*., Umble, AK. Water Treatment: Recover Wastewater
	Resources Locally. NATURE, 2016, 529, 25.
	6. Huggins, TM., Haeger, A., Biffinger, JC*., Ren, ZJ*. Granular biochar
	compared with activated carbon for wastewater treatment and resource
	recovery <i>Water Research</i> , 2016, 94, 225-232.
	7. Lu, L., Huang, Z., Rau, G., Ren, ZJ* Microbial Electrolytic Carbon
	Capture for Carbon Negative and Energy Positive Wastewater
	Treatment. Environmental Science & Technology, 2015, 49, 8193-
	8201.
	8. Lu, L., Zeng C., Wang, L., Yin, X., Jin S., Lu, A., Ren, ZJ Graphene
	Oxide and H2 Production from Bioelectrochemical Graphite
	Oxidation. Scientific Reports, 2015, 5, 16242.
	9. Wang, H., Park, J., Ren, ZJ*, Practical Energy Harvesting from
	Microbial Fuel Cells: A review. <i>Environmental Science & Technology</i> , 2015, 40, 2267, 2277
	2015, 49, 3267-3277.
	10. Wang, H., and Ren, ZJ*. Bioelectrochemical metal recovery from
PROFESSIONAL	wastewater: A review. <i>Water Research</i> , 2014, 66, 219-232. Grand Challenges in Environmental Engineering Workshop, April, 2016
DEVELOPMENT	AEESP Workshop on Environmental Engineering Education, July, 2015
ACTIVITIES IN	ALEST WORKShop on Environmental Engineering Education, July, 2015
THE LAST FIVE	
YEARS	
	1

Fernando Rosario-Ortiz Associate Professor

	ASCE Fellowship to attend the ExCEEd workshop, Florida Gulf Coast University, July 21-26th, 2013
INSTITUTIONAL	Member of the Bounder Faculty Assembly Faculty Affairs Committee,
AND	2015
PROFESSIONAL	Chair of interview committee for CEAE, 2014
SERVICE IN	First year mentoring student program, including being a member of the ad-
LAST FIVE YEARS	hoc executive committee for the program, Boulder Faculty Assembly, Fall 2013-2015
	Environmental Engineering Program Steering Committee (2011-2012) Reviewer for numerous journals, including Environmental Science and Technology, Water Research, Chemosphere, Journal of the American Water Works Association.
	Organizer for numerous scientific symposia for the American Chemical Society and the Association of Environmental Engineering and Science Professors
PRINCIPAL	McKay, G.; Couch, K.; Mezyk, S. P.; Rosario-Ortiz, F. L. Investigation
PUBLICATIONS	of the coupled effects of molecular weight and charge transfer
AND	interactions on the optical and photochemical properties of dissolved
PRESENTATIONS OF	organic matter. Environmental Science and Technology, 2016, 50, 15, 8093-8102
LAST FIVE	Rosario-Ortiz, F. L.; Rose, J. B.; Speight, V. L.; von Gunten, U.;
YEARS	Schnoor, J. How do you like your tap water? Science, 2016, 351, 6276, 912-914
	Arias, M.; Cawley, K.; Rosario-Ortiz, F. L. Enhanced DOC removal using anion and cation ion exchange resins. Water Research, 2016, 88, 1, 981-989
	Korak, J. A.; Rosario-Ortiz, F. L.; Summers, R. S. Evaluation of optical surrogates for the characterization of DOM removal by coagulation. Environmental Science: Water Research and Technology, 2015, 1, 493-506
	McKay, G.; Rosario-Ortiz, F. L. Temperature dependence of the photochemical formation of hydroxyl radical from dissolved organic matter. Environmental Science and Technology, 2015, 49, 7, 4147- 4154
	Cawley, K.; Korak, J. A.; Rosario-Ortiz, F. L. Quantum yields for the formation of reactive intermediates from dissolved organic matter samples from the Suwanee River. Environmental Engineering Science, 2015, 32, 1, 31-37
PROFESSIONAL	ASCE EXCEED Workshop, 2013
DEVELOPMENT	
ACTIVITIES IN	
THE LAST FIVE	
YEARS	

Joseph N. Ryan Professor

EDUCATION	B.S., Geological Engineering, Princeton University, 1983
EDUCATION	M.S., Civil and Environmental Engineering, Massachusetts Institute of
	Technology, 1988
	Ph.D., Civil and Environmental Engineering, Massachusetts Institute of
	Technology, 1992
ACADEMIC	University of Colorado Boulder: Professor, 2004-present; Associate
EXPERIENCE	Professor, 2000-2004; Assistant Professor, 1993-2000; Director, EVEN
	Program, 2001 to 2006 and 2012 to 2013
	University of Canterbury, Christchurch, NZ (sabbatical), 2008
	Yale University, New Haven, CT (sabbatical), 2001
	U.S. Geological Survey, postdoctoral research associate, 1992-1993
	Massachusetts Institute of Technology, Graduate Research Assistant,
	1985-1992, part time
NON-ACADEMIC	Staff Engineer/Geologist, 1983 to 1986, Earth Water and Air, Inc.,
EXPERIENCE	Minneapolis, MN
PROF. REGISTR.	
SCIENTIFIC AND	Association of Environmental Engineering and Science Professors
PROFESSIONAL	American Chemical Society
SOCIETIES	American Geophysical Union
HONORS AND	Bennett-Lindstedt Endowed Faculty Fellow, 2013-2018, Department of
AWARDS	Civil, Environmental, and Architectural Engineering, University of
	Colorado Boulder
	Distinguished Achievement Award, 2009, Civil, Environmental, and
	Architectural Engineering, University of Colorado Boulder
	Boulder County Pacesetter Award (Science/Health/Medicine), 2008,
	Boulder Daily Camera
	National Notable Achievement Award, 2006, U.S. Environmental
	Protection Agency, Member of the Left Hand Watershed Revitalization Team
INSTITUTIONAL	University Service
AND	Environmental Engineering Program, director, 2012-2013
PROFESSIONAL	Civil, Environmental, and Architectural Engineering Department,
SERVICE IN	Graduate Committee, 2012-2013
LAST FIVE	College of Engineering and Applied Science, First-Level Review
YEARS	Committee, 2014-present
	University of Colorado Boulder, Outreach and Engagement Committee,
	2006-present
	Professional Service
	Association of Environmental Engineering and Science Professors,
	Newsletter Editor, 2009-2012
	National Service
	U.S. Environmental Protection Agency, Science Advisory Board sub-
	panel on Hydraulic Fracturing Study, 2014-2016.

PRINCIPAL	Sherwood O.A., Rogers J.D., Lackey G., Burke T.L., Osborn S.G., and
PUBLICATIONS	Ryan J.N., 2016. Groundwater methane in relation to oil and gas
AND	development and shallow coal seams in the Denver-Julesburg Basin of
PRESENTATIONS	Colorado. Proceedings of the National Academy of Sciences 113(30),
OF	8391-8396.
LAST FIVE	Mohanty S.K., Saiers J.E., and Ryan J.N., 2016. Colloid mobilization in a
YEARS	fractured soil: Effect of pore water exchange between preferential flow
	paths and soil matrix. <i>Environmental Science & Technology</i> 50 (5),
	2310-2317.
	Webster J.P., Kane T.J., Obrist D., Ryan J.N., and Aiken G.R., 2016.
	Estimating mercury emissions resulting from wildfire in the western
	United States. Science of the Total Environment 568 , 578-586.
	Mohanty S.K., Saiers J.E., and Ryan J.N., 2015. Colloid mobilization in
	a fractured soil during dry-wet cycles: Role of drying duration and
	flow path permeability. <i>Environmental Science & Technology</i> 49 (15),
	9100-9106.
	Poulin B.A., Aiken G.R., Nagy K.L., Manceau A., Krabbenhoft D.P., and
	Ryan J.N., 2015. Mercury transformation and release differs with
	depth and time in a contaminated riparian soil during simulated
	flooding. Geochimica et Cosmochimica Acta 176, 118-138.
	Rogers J.D., Burke T.L., Osborn S.G., and Ryan J.N., 2015. A
	framework for identifying organic compounds of concern in hydraulic
	fracturing fluids based on mobility and persistence in groundwater.
	Environmental Science & Technology Letters 2, 158-164.
	Mohanty S.K., Saiers J.E., and Ryan J.N., 2014. Colloid-facilitated
	mobilization of metals by freeze-thaw cycles. <i>Environmental Science</i>
	& Technology 48, 977-984.
	Poulin B.A., Ryan J.N., and Aiken G.R., 2014. The effects of iron on
	optical properties of dissolved organic matter. <i>Environmental Science</i>
	& Technology 48, 10098-10106.
	Writer J.H., Antweiler R.C., Ferrer I., Ryan J.N., and Thurman E.M.,
	2013. In-stream attenuation of neuro-active pharmaceuticals and their
	metabolites. Environmental Science & Technology 47(17), 9781-9790.
	Craven A.M., Aiken G.R., and Ryan J.N., 2012. Copper(II) binding by
	dissolved organic matter: Importance of the copper-to-dissolved
	organic matter ratio and implications for the biotic ligand model.
	Environmental Science & Technology 46(18), 9948-9955.
	McCleskey R.B., Nordstrom D.K., Ryan J.N., and Ball J.W., 2012. A
	new method of calculating electrical conductivity with applications to
	natural waters. <i>Geochimica et Cosmochimica Acta</i> 77 , 369-382.
PROFESSIONAL	
DEVELOPMENT	
IN THE LAST	
FIVE YEARS	
TIVE LEANS	

JoAnn Silverstein Professor

EDUCATION	BA, Psychology, Stanford University, 1967
	BS, Civil Engineering, University of California, Davis, 1977
	MS, Civil Engineering, University of California, Davis, 1980
	Ph.D., Civil Engineering, University of California, Davis,, 1982
ACADEMIC	University of Colorado Boulder: Professor, 1998 – present; Associate
EXPERIENCE	Professor, 1989-1997; Assistant Professor, 1982-1988; Founding
	Faculty Director Sustainable By Design Residential Academic Program,
	2011-2014; Director, Program in Environmental Design, 2012-2015;
	Chair, Dept. Civil, Environmental and Architectural Engineering, 2002-
	2010; Board of Directors, Center of the American West, 2015 – present.
	University of California, Davis, Graduate Research Assistant, 1980 -
	1982.
NON-ACADEMIC	California Department of Water Resources, State Water Project Division
EXPERIENCE	of O & M: Intern, 1976-1977; Assistant Engineer, 1978-1980.
	Applied Environmental Services, consultant, 1996 – 2000.
PROFESSIONAL	P.E., Civil Engineering, Colorado, #26151, 1988 to present.
REGISTRATIONS	
SCIENTIFIC AND	American Academy of Environmental Engineers and Scientists ((AAEES)
PROFESSIONAL	American Society of Civil Engineers (ASCE)
SOCIETIES OF	American Water Works Association
WHICH A	Association of Environmental Engineering & Science Professors (AEESP)
MEMBER	International Water Association (IWA)
	Society of Women Engineers (SWE)
	Water Environment Federation (WEF)
	Tau Beta Pi, Chi Epsilon
HONORS AND	Distinguished Service Award, AEESP, 1997
AWARDS	Distinguished Engineering Educator, SWE, 2000
	Keynote Speaker, AEESP National Meeting, 2014
	Eminence Member, AAEES, 2006
	CU-LEAD Alliance, Faculty Appreciation Award, 2006
INSTITUTIONAL	AAEES: Eminence Member Selection Committee, 2005 – present.
AND	External Promotion and Tenure Reviews (~ 3 per year for faculty at US
PROFESSIONAL	universities)
SERVICE IN	University Service
LAST FIVE	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
YEARS	Personnel Committee. 1998-present. Chair of three Primary Unit
	Evaluation Committees for tenure and promotion.
	Faculty mentor to two assistant professors.
	Awards Committee. Chair. 2015-16.
	College of Engineering at the University of Colorado - Boulder
	Boulder Campus.
	Program Review: Environmental Design, Theater and Dance Department
	(2011 and 2016.
	Director, Program in Environmental Design, 2012-2015

	Office of Diversity, Equity and Community Engagement (ODECE),
	Faculty Advisory Council, 2011-present.
PRINCIPAL PUBLICATIONS AND	 Kohler, L.E., J. Silverstein, B. Rajagopalan (2016) Predicting Life Cycle Failures of On-Site Wastewater Treatment Systems Using Generalized Additive Models, Environ. Eng. Sci., 33(2):112-124.
PRESENTATIONS OF LAST FIVE YEARS	Kohler, L.E., J. Silverstein, B. Rajagopalan (2016) Risk-Cost Estimation of On-site Wastewater Treatment Systems Using Extreme Value Analysis, Water Environment Research, in press.
	Kohler, L.E., J. Silverstein, B. Rajagopalan (2016) Modeling On-site Wasewater Treatment System Performance Fragility to Hydroclimate Stressors, Wat. Sci. Technol., in press.
	 Suchetana, B., B. Rajagopalan, J. Silverstein (2016) Hierarchical Modeling Approach to Evaluation of Spatial and Temporal Variability of Wastewater Treatment Compliance with Biochemical Oxygen Demand, Total Suspended Solids, and Ammonia Limits in the United States, Environ. Eng. Sci., 33(7):514-524.
	 Weirich, S.R.,* J. Silverstein, and B. Rajagopalan, (2015) Resilience of Secondary Wastewater Treatment Plants: Prior Performance is Predictive of Future Process Failure and Recovery Time. Environ. Eng. Sci. 32(3):222-231.
	Weirich, S.R.,* J. Silverstein, and B. Rajagopalan, (2015) Simulation of effluent BOD and ammonia for increasingly decentralized networks of wastewater treatment facilities. Environ. Eng. Sci. 32(3):232-239
	Weirich, S. R.,* Silverstein, J., & Rajagopalan, B. (2011). Effect of average flow and capacity utilization on effluent water quality from US municipal wastewater treatment facilities. Water Research, 45(14), 4279-4286. Doi:10.1016/j.watres.2011.06.002.
	Yacob, T.*, Pandey, S.,* Silverstein, J. Rajaram, H. (2013) Soluble Microbial Products Decrease Pyrite Oxidation by Ferric Iron at pH < 2, Environmental Science & Technology, 47(15):8658-8665, 2013.
PROFESSIONAL DEVELOPMENT ACTIVITIES IN THE LAST FIVE	 Univ. Colorado, Boulder, Peak-to-Peak Workshops on integration of sustainability into undergraduate curriculum, 2012 – 2013. Center of the American West Workshop on Urban Sustainability in Western Cities, Portland, OR, September 2015.
YEARS	Center of the American West, Workshop on Integration of Agriculture, Water Resources, and Public Lands, Fresno, CA, September 2016.

R. Scott Summers Professor

EDUCATION	
EDUCATION	B.S., Civil Engineering, University of Cincinnati, 1975
	M.S., Environmental Engineering, University of Cincinnati, 1977
	Ph.D., Environmental Engineering & Science, Stanford University, 1986
ACADEMIC	University of Colorado-Boulder: Professor, 1998-present; Director,
EXPERIENCE	Environmental Engineering Program, 2013-present; Program
	Coordinator, Graduate Environmental Engineering Program, 2000-
	2010, 2012- 2014; Director, DeRISK Center, 2014-present, Director,
	Center for Drinking Water Optimization, 1997-2004;
	University of Cincinnati: Associate Professor, 1993-1998; Assistant
	Professor, 1988-1993; Program Coordinator, Water, Waste Water and
	Hazardous Waste Program ,1988-1998;
	University of Crete, Greece, Visiting Fulbright Professor, (sabbatical),
	1995
	Universitat Karlsruhe, Germany, Research Associate (post-doctoral
	fellow), 1986-1988
	Stanford University, Research Assistant, 1979-1985
	University of Cincinnati, Research Assistant, 1975-1977
NON-ACADEMIC	U.S. EPA, Municipal Environmental Research Laboratory, Cincinnati,
EXPERIENCE	OH; Visiting Research Scientist, (sabbatical), 1996; Project
	Engineer, 1977-1979
	Summers & Hooper, Inc., Technical Director (part time), 1995-2000
PROFESSIONAL	EIT, Ohio, 1975.
REGISTRATIONS	
SCIENTIFIC AND	Association of Environmental Engineering & Science Professors (AEESP)
PROFESSIONAL	American Water Works Association (AWWA)
SOCIETIES OF	American Society of Civil Engineers (ASCE)
WHICH A	American Society of Civit Engineers (ASCE)
MEMBER	
HONORS AND	Water Quality Division Best Paper Award, Journal AWWA, 2016
AWARDS	A.P. Black Award, American Water Works Association, 2013
	CEAE Department, University of Colorado; Service Award, 2011;
	Student's Favorite Professor Award, 2010; Teaching Award, 2009;
	Research Award, 2007
	Academic Achievement Award, MS or PhD advisor, American Water
	Works Association, 1993, 1995, 1996 (2), 1998, 1999, 2000
INSTITUTIONAL	American Water Works Association:
AND	Water Science and Research Division, 2004-2010 Trustee; Water
PROFESSIONAL	Quality and Technology Conference Planning Committee, 2007-
SERVICE IN	2010, Activated Carbon Committee, 1994-current; Biological
LAST FIVE	Drinking Water Treatment Committee, 2000- current; Biotreatment
YEARS	Symposium Organizing Committee, 2013; VOC Workshop
	Organizing Committee, 2011

	University Service
	Dept. of Civil, Environmental, & Architectural Engineering (CEAE)
	Personnel Committee, 1998-present; Graduate Committee, 2000-
	· · · · ·
	2003, Chair 2008-2012; Environmental Engineering Graduate
	Program Coordinator, 2000-2011, 2013-present
	Environmental Engineering (EVEN) cross-disciplinary degree program,
	1998- present; Director. 2014 - present
	College of Engineering at the University of Colorado - Boulder
	Undergraduate Education Council. 2014-present
PRINCIPAL	Hohner, A. K., Cawley, K., Oropeza, J., Summers, R. S., & Rosario-
PUBLICATIONS	Ortiz, F. L. (2016). Drinking water treatment response following a
AND	Colorado wildfire. Water Research, 105, 187-198.
PRESENTATIONS	Samson, C. C., Rajagopalan, B., & Summers, R. S. (2016). Modeling
OF	Source Water TOC Using Hydroclimate Variables and Local
LAST FIVE	Polynomial Regression. Environmental Science & Technology, 50(8),
YEARS	4413-4421.
	Kempisty, D. M., & Summers, R. S. (2016). Effect of Influent
	Groundwater Quality on Adsorption of Low Concentrations of 1, 2
	Dichloroethane by Granular Activated Carbon. <i>Journal of</i>
	Environmental Engineering, 142 (12), 04016064.
	Shimabuku, K. K., Kearns, J. P., Martinez, J. E., Mahoney, R. B.,
	Moreno-Vasquez, L., & Summers, R. S. (2016). Biochar sorbents for
	sulfamethoxazole removal from surface water, stormwater, and
	wastewater effluent. Water Research, 96, 236-245.
	Thompson, K. A., Shimabuku, K. K., Kearns, J. P., Knappe, D. R.,
	Summers, R. S., & Cook, S. M. (2016). Environmental Comparison
	of Biochar and Activated Carbon for Tertiary Wastewater Treatment.
	Environmental Science & Technology, 50(20), 11253-11262.
	Summers, R.S., Finau-Starkey, L. (2016), Work-in-Progress –
	Development of a student-based mentorship program for first-year
	environmental engineering students, Proceedings First-Year
	Engineering Experience (FYEE) Conference, Columbus, OH.
	Saunders, J.F., Hohner, A.K., Summers, R.S., Rosario-Ortiz, F.L.,
	(2015) "Regulating Chlorophyll a to Control DBP Precursors in
	Water Supply Reservoirs," J. Amer. Water Works Assoc.,
	http://dx.doi.org/10.5942/jawwa.2015.107.0153, 107 (11) E603-E612.
	Kennedy, A.M., Summers, R.S., (2015) Effect of DOM Size on Organic
	Micropollutant Adsorption by GAC, <i>Environmental Science</i> &
	<i>Technology.</i> , DOI: 10.1021/acs.est.5b0041149 (11), pp 6617–6624.
PROFESSIONAL	Association of Environmental Engineering and Science Professors
DEVELOPMENT	(AEESP) Conference, Department Chairs and Directors Workshop,
	2013.
ACTIVITIES IN	
THE LAST FIVE	First-Year Engineering Experience (FYEE) Conference, July 31 – August
YEARS	2, 2016, Columbus, OH

Michael E. Walker Instructor

EDUCATION	
EDUCATION	BS, Chemistry, University of Illinois, 2004
	Ph.D., Chemical Engineering, Illinois Institute of Technology, 2012
ACADEMIC	University of Colorado Boulder: Instructor, 2014 – present
EXPERIENCE	Northwestern University, Evanston IL, Postdoctoral Fellow, 2012-2014
	Illinois Institute of Technology, TA/RA, 2007-2012, part time
NON-ACADEMIC	United States Gypsum, Libertyville, IL, Technical Staff L1, 2005-2006
EXPERIENCE	Valent Biosciences Corp., Long Grove, IL, Assistant Tech., fall 2004
PROFESSIONAL	
REGISTRATIONS	
SCIENTIFIC AND	American Chemical Society (ACS)
PROFESSIONAL	American Institute of Chemical Engineers (AIChE)
SOCIETIES OF	Association of Environmental Engineering & Science Professors (AEESP)
WHICH A	
MEMBER	
HONORS AND	Big Dog Award - Food & Beverage Environmental Conference 2014
AWARDS	ChBE Departmental Excellence in Teaching Award (TA of the Year) 2010
	ChBE Departmental Excellence in Teaching Award (TA of the Year) 2009
	ChBE Departmental Excellence in Teaching Award (TA of the Year) 2008
	ARCS Scholarship Award 2011
	ARCS Scholarship Award 2010
INSTITUTIONAL	American Institute of Chemical Engineers (AIChE). Environmental
AND	Division: Leg & Reg co-chair (2014-16); 2 nd Vice Chair of
PROFESSIONAL	programming for Environmental Engineering: Midwest Regional
SERVICE IN	Conference (2015); Chair – Energy, Sustainability and the
LAST FIVE	Environment: Midwest Regional Conference (2014)
YEARS	University Service
	Civil Environmental and Architectural Engineering (CEAE)
	Computing Committee. 2016-present
	Environmental Engineering (EVEN)
	Curriculum Committee. 2015-present
	College of Engineering at the University of Colorado - Boulder
	Energy Engineering Minor Committee. 2015-present
PRINCIPAL	Publications and Technical Reports
PUBLICATIONS	Briam, R.B.; Walker, M.E.; Masanet, E. (2015). A Comparison of Product-
AND	based Energy Intensity Metrics for Cheese and Whey Processing.
PRESENTATIONS	Journal of Food Engineering, 151, 25-33.
OF	Walker, M.E.; Arnold, C.S.; Lettieri, D.J., et al. (2014). Energy Intensity
LAST FIVE	Comparisons of Concentrated Food Products. Environmental Science &
YEARS	Technology, 48(20), 12370-12377.
	Walker, M.E., Lettieri, D.J., Romanin, V., et al. (2013). Establish GHG
	Emissions Efficiency Benchmarks for Covered Industrial Sectors.
	Prepared for the California Air Resources Board and the California

	Environmental Protection Agency by Northwestern University,
	University of California, Berkeley, and Ecofys. June 30, 2013.
	Walker, M.E.; Lv, Z.; Masanet, E. (2013). Industrial Steam Systems and
	the Energy-Water Nexus. <i>Environmental Science & Technology</i> ,
	47(22), 13060-13067.
	Masanet, E.; Walker, M.E. (2013). Energy-Water Efficiency and U.S.
	Industrial Steam. AIChE Journal (Cover Article), 59(7), 2268-2274.
	Walker, M.E.; Theregowda, R.B.; Safari, I., et al. (2013). Utilization of
	Municipal Wastewater for Cooling in Thermoelectric Power Plants:
	Evaluation of the Combined Cost of Makeup Water Treatment and
	Increased Condenser Fouling. Energy, 60, 139-147.
	Safari, I.; Walker, M.E.; Abbasian, J., et al. (2013). Utilization of
	Municipal Wastewater for Cooling in Thermoelectric Power Plants.
	Fuel, 111, 103-113.
	Walker, M.E.; Safari, I.; Theregowda, R.B., et al. (2012). Economic
	Impact of Condenser Fouling in Existing Thermoelectric Power Plants.
	Energy, 44, 429-437.
	Hsieh, M.K.; Walker, M.E.; Safari, I., et al. (2012). Ammonia Stripping in
	Open-Recirculating Cooling Water Systems. Environmental Progress &
	Sustainable Energy, 32(3), 489-495.
	Walker, M.E.; Abbasian, J.; Chmielewski, D.J.; Castaldi, M.J. (2011). Dry
	Gasification Oxy-Combustion Power Cycle. Energy & Fuels, 25, 2258-
	2266
	Presentations
	Grand Challenges Facing the Implementation of Carbon Cap-and-Trade
	Policy for Complex Manufacturing Industries. Food & Beverage
	Environmental Conference: Napa, California – March, 2014.
	Industrial Boiler Systems and the Energy-Water Nexus. AIChE Annual
	Meeting: San Francisco, California – November, 2013.
	Economic Evaluation of Freshwater Conservation Strategies for
	Thermoelectric Power Plants. AIChE Annual Meeting: San Francisco,
	California – November, 2013
	Development of Product-Based Energy Intensity Metrics for the California
	Food Industry. Carbon Management Technology Conference:
	Alexandria, Virginia – October, 2013.
PROFESSIONAL	Food & Beverage Environmental Conference. March, 2014.
DEVELOPMENT	AIChE Annual Meeting. November, 2013.
ACTIVITIES IN	Carbon Management and Technology Conference. October, 2013.
THE LAST FIVE	
YEARS	
	1

Appendix C – Equipment

The major pieces of equipment used by the architectural engineering program in courses to support instruction are summarized in the tables below.

Course	Major Equipment Used
AREN 2120 – Fluid Mechanics & Heat Transfer	- Hobos
AREN 4550 – Illumination I	- Konica Minolta illuminance meters T-10
CVEN 2012 Geomatics	 Tripods – ca. 10 Wild type (5/8X11 screw), ca. 4 Kern type Levels – 8, including Leica, K&E, Wild types Theodolites – 8 electronic theodolites Total Stations – 6 Leica: 4 "Builder," 2 earlier models Corner prism EDM reflectors – ca. 8 useable Stadia Rods – 7 Range poles/reflector poles - 3 Tapes: 6 fiberglass, 100' and 200' Tapes: 4 metal, mostly with broken tips but still usable Metal detector Misc. Flagging and marking equipment GPS: 2 Leica GS14 antennas and one Leica CS20 controller, plus accessories for base station/RTK rover configuration
CVEN 3161- Mechanics of Materials I	 Three MTS universal testing machines for tension and compression testing of structural and geological materials, with capacities of 22 kN, 500 kN, and 4.5 MN. Tinus Olsen Torsional Testing Machine with 2000 in-lb capacity Concrete mixer, scale Whitemann displacement gage, dial gages, strain gages, LVDTs

Equipment Used in Required Courses for All AREN Students:
--

Equipment used in **Proficiency** Courses for AREN Students

Course	Major Equipment Used
AREN 4110 – HVAC	- IR thermographic camera
Design	- Blower door
	- Minolta illuminance meters T-1 (10)
AREN 4550 – Illumination	- Minolta luminance meter LS-100 (1)
II	- Spectrometer
	- Various lamps and lamp holders
	- Manual dimmers (1)

Course	Major Equipment Used
AREN 4010 – HVAC	- Direct digital control (DDC) modules to teach development of
System Modeling and	HVAC control strategies for air handling units and chilled water
Control	plants
CVEN 4161 – Mechanics of Materials II	- Instron machine in ITLL and ABAQUS software
	- Torsion Instron machine in ITLL
	- Module with a large frame, a beam-column, restraint beam,
	counterweight, load arm, load tray and several rulers along the
	inside of the frame

Equipment used in Concentration Courses for AREN Students

Equipment used in Technical Elective Courses for AREN Students

Course	Major Equipment Used
AREN 4830 – Sustainable Materials & Structures	- Instrom machine in ITLL
AREN 4130 – Optical	- Konica Minolta illuminance meters T-10
Design	- Konica Minolta luminance meter LS-100
	- CL-500A Konica Minolta Spectrometer
	- Omega HH309A digital thermometer
	- 36" Integrating sphere
	- Optical bench & various mounting hardware
	- Manually operated, 8' arm, goniophotometer
	- Various LED modules and luminaires
	- Lambda 0-150V DC power supply
	- Interpower 500VA multi-frequency AC power supply
	- Elgar 120V AC power supply
	- Laser cutters in ITLL
	- 3D printer in ITLL
AREN 4350 – Advanced	- Moveable ceiling in lighting lab
Lighting Design	- ETC programmable 7-color LED theatrical luminaires (4)
	- ETC Source Four Mini theatrical luminaires (6)
	- Theatrical tripod stands with T-Bar (8) and floor stands (8)
	- Theatrical lamp holders with options for gels and gobos (24)
	- Various beam-angle lamps and lamps holders
	- Manual dimmers (10)
CVEN 3708 Geotechnical	- Triaxial cells and consolidometers
Engineering 1	 Proctor and modified Proctor test equipment
	- Atterberg limit apparatus
	- Constant head and falling head permeability setup
	- Mechanical sieve shaker, sieve stacks, and hydrometers
CVEN 3718 Geotechnical	- Direct shear test machine with shear box, weights, displacement
Engineering 2	gauges
	- Triaxial test cells with load cells, pressure gauges, LVDT,
	computer

- Instructional Centrifuge and demonstration models, data
acquisition system

Appendix D – Institutional Summary

1. The Institution

a. Name and address of the institution:

The University of Colorado Boulder College of Engineering and Applied Science 422 UCB Boulder, Colorado 80309-0422

b. Name and title of the chief executive officer of the institution:

Bruce D. Benson - President of the University of Colorado System Philip P. DiStefano - Chancellor of the Boulder Campus Russell L. Moore - Provost and Executive Vice Chancellor for Academic Affairs Robert D. Braun - Dean of the College of Engineering and Applied Science

c. Name and title of the person submitting the self-study report:

Submitted by:

Robert D. Braun, Dean College of Engineering and Applied Science University of Colorado Boulder Boulder, Colorado 80309-0422 (303) 492-7006 Bobby.Braun@Colorado.EDU

Contact for ABET matters:

Ken Anderson, Associate Dean for Education College of Engineering and Applied Science University of Colorado Boulder Boulder, Colorado 80309-0422 (303) 492-2066 Ken.Anderson@Colorado.EDU

d. Name the organizations by which the institution is now accredited and the dates of the initial and most recent accreditation evaluations:

The University of Colorado Boulder's general regional accreditation is from the Higher Learning Commission (HLC) of the North Central Association of Colleges and Schools (NCA). The University of Colorado has been accredited by NCA since 1913. Every 10 years, a team of leading external educators visits the University's campus to evaluate the university's programs, policies, and practices and to provide recommendations for continuous improvement. The most recent review took place in 2009-2010, and on August 16, 2010, the Institutional Actions Council of the Higher Learning Commission voted to continue accreditation for the University of Colorado Boulder. For more information, see: <u>http://www.colorado.edu/accreditation/</u>. The most recent self-study is at:

http://www.colorado.edu/accreditation/downloads/CUBoulderSelfStudy2010.pdf.

2. Type of Control

The University of Colorado is a state-supported institution, governed by an elected Board of Regents under the Colorado Commission on Higher Education.

3. Educational Unit

a. Campus Administration

The Dean of the College of Engineering and Applied Science reports to the Provost and Executive Vice Chancellor for Academic Affairs, who reports to the Chancellor and Chief Executive Officer of the Boulder Campus. The Chancellor and Chief Executive Officer reports to the President of the University of Colorado system. Additional details can be found at:

http://chancellor.colorado.edu/chancellors-administrative-organization.

b. College Administration

The Chief Executive Officer of the College of Engineering and Applied Science is the Dean, Robert D. Braun. The Associate Dean for Education is Ken Anderson; the Associate Dean for Research is Keith Molenaar; and the Associate Dean for Faculty Advancement is JoAnn Silverstein. The Assistant Dean for Inclusive Excellence is Sarah Miller; the Assistant Dean for Advancement is Ann Bishop Shoup; the Assistant Dean for Communications, Strategy and Planning is Phil Larson; the Assistant Dean for Students is Mary Steiner; The Assistant Dean for Programs and Engagement is Doug Smith; and the Assistant Dean for Administration is Cherie Summers.

4. Academic Support Units

The degree programs in the College are supported by a number of other departments and programs, including Applied Mathematics, Physics, Chemistry and Biochemistry, the Herbst Program of Humanities and the Program for Writing and Rhetoric. In addition, the supporting units also teach these courses to other majors throughout the university. The names and titles of the individuals responsible for these units are as follows:

- Applied Mathematics, Keith Julien, Department Chair
- Physics, John Cumalat, Department Chair
- Chemistry and Biochemistry, Carl A. Koval, Department Chair
- Herbst Program of Humanities for Engineers, Leland Giovannelli, Director
- Program for Writing and Rhetoric, John-Michael Rivera, Director

The courses provided by these academic support units are regularly reviewed by the College of Engineering and Applied Science's Undergraduate Education Council, which is chaired by the Associate Dean for Education. The Council is composed of the associate chairs (or chairs of curriculum committees) or his/her designee for each program, the undergraduate staff advisors for each department, the Assistant Dean for Inclusive Excellence, the Assistant Dean for Students, the Director of the Herbst Program of Humanities, the Director of Assessment and Accreditation, the Director of International Programs, and the Co-Directors of the Integrated Teaching and Learning Laboratory (ITLL). This group meets regularly throughout the year to

coordinate matters of common interest and concern with respect to the College's undergraduate programs.

5. Non-academic Support Units

The programs of the College of Engineering and Applied Science are served by several essential campus-wide support units:

- 1. University Libraries, overseen by James Williams II, Dean of the CU-Boulder Libraries; Leonard Gemmill Engineering Library, overseen by Emily Fidelman, Operations Manager
- 2. Information Technology Services (ITS), Larry Levine, Assoc. Vice Chancellor and Chief Information Officer;
- 3. Career Services, Lisa Severy, Assistant Vice Chancellor of Student Affairs and Director

In addition, there are several mechanisms in place to support student academic success:

- 1. Broadening Opportunity through Leadership and Diversity (BOLD) Center, overseen by Sarah Miller, Assistant Dean for Inclusive Excellence
- 2. Student Academic Success Center (SASC) for tutoring and academic excellence support services, Corinna Rohse, Director
- 3. Supplemental peer-based advising is provided by the college's "Engineering Ambassadors"; overseen by Chris Anderson, Student Services Coordinator and Amanda Parker, Director of Access and Recruiting
- 4. The Engineering Quadrangle Living & Learning Community is a first-year housing option for engineering and pre-engineering students; college liaison is Vanessa Dunn, Director of Student Engagement and Community Building

6. Credit Unit

One semester credit normally represents one class hour or two laboratory hours per week. The campus operates year round, with fall and spring semesters of 16 weeks each, a 10-week summer session, a three-week "Maymester" academic period between spring semester and summer session, and a three-week "Augmester" academic period between summer session and fall semester. All programs require 128 semester hours to graduate.

7. Tables

Table D-1. Program Enrollment and Degree Data Table D-2. Personnel

Table D-1. Program Enrollment and Degree Data

Architectural Engineering

	Academic Enrollment Year					Total Undergrad	Total Grad	Degrees Awarded					
	Year		1st	2nd	3rd	4th	5th			Associates	Bachelors	Masters	Doctorates
Current	2016	FT	34	23	29	40	15	141	38	N/A			
Year	2010	РТ	0	1	0	1	3	5	3		29	7	3
1	2015	FT	24	37	32	34	15	142	33				
	2015	РТ	0	0	0	0	3	3	3	N/A	40	5	3
2	2014	FT	31	32	29	42	14	148	25				
	2014	РТ	0	0	0	1	4	5	3	N/A	34	10	4
3	2013	FT	32	27	33	41	17	150	20				
		РТ	1	0	0	2	1	4	5	N/A	43	1	1
4	2012	FT	23	32	33	38	18	144	0				
		РТ	0	2	0	1	3	6	0	N/A	58	0	0

Official fall term enrollment figures (head count) for the current and preceding four academic years and undergraduate and graduate degrees conferred during each of those years. The "current" year means the academic year preceding the on-site visit.

FT--full time PT--part time

Table D-2. Personnel

Architectural Engineering

Year¹: Fall 2016

	HEAD	FTE ²	
	FT	PT	112
Administrative ²		4	1
Faculty (tenure-track) ³	43		14
Other Faculty (excluding student Assistants)	7		3
Student Teaching Assistants ⁴	28		6
Technicians/Specialists	2	1	0
Office/Clerical Employees	12	1	4
Others ⁵			

The Head Count data represent the CEAE Department as a whole. These were multiplied by the percentage of time devoted specifically to architectural engineering (as opposed to civil or environmental engineering), resulting in the values shown in the FTE column. For faculty, the percentages listed in Table 6-2 were used. Student Teaching Assistants are based on serving as TAs for courses required for AREN students (or split if the course is also required for civil and/or environmental engineering). Staff helping equally with all three programs were split equally, and allocated 33% to AREN.

APPENDIX E –Rubrics related to outcome 2(b) Design and Conduct Experiments

The following rubrics for CVEN 3161 Mechanics of Materials, AREN 2120 Fluid Mechanics and Heat Transfer, AREN 3540 Illumination I are used for direct assessment of the 2[b] design and conduct experiments outcome. These can also be found in the respective course dossiers.

CVEN 3161 Mechanics of Materials – Rubric for Design and Conduct Experiments

	Below adequate	Adequate	Superior
Percentage of total points earned on lab write-up, per guidelines below:	<80%	80-90%	<u>≥</u> 90%

1. GENERAL FORMAT (10%)

Format

- · The entire report should be stapled or bound and NOT be placed in a folder or cover.
- Text should be 1.0 line spaced and may be done in 11 point or 12 point font.

Figures, Tables, Graphs, and Sections

Figures, Tables and Graphs should each have a title and a number (graph titles are to be label BELOW the graph and table titles are to be label ABOVE the table). Graphs should have white background so data points and trendlines are easy to see. Graphs should have the axes labeled, the scale indicated, and should be of appropriate size for the reader to see the results. It is sometimes necessary to give a graph or table its own page. If placed within the text, tables and graphs should be separated from the text with appropriate borders. These graphs and tables should be referenced in the text. The report should be divided into the sections discussed below. These sections should appear in the order presented.

2. TITLE PAGE

- Report Title.
- Entity presented by (you).
- Group Number/Name.
- Organization that the report was done for (University, Department & Course #).
- · Date the Experiment was completed.
- Date report was submitted.

3. ABSTRACT (5%)

The abstract is a brief description of what is contained in the report. It should cover the main purpose of
the experiment, a general description of what was done, a general description of the equipments used, a
broad overview of the results that were obtained, and conclusions as to whether the results seem
reasonable. The abstract should be able to stand alone from the rest of the report. It should not directly
refer to figures or tables or other content of the rest of the report.

4. TABLE OF CONTENTS, LIST OF FIGURES, LIST OF TABLES (5%)

- · The Table of Contents should list all the sections and what page they start on.
- List of figures and list of tables should contain all figures and tables including name and number listed in the text and the page they start on.

5. INTRODUCTION (10%)

- Discuss the background necessary to understand the report. This would include brief description of theory, definitions of major terms, objective(s) and purpose of the lab, and any assumptions used during experiment.
- Discuss the properties that are extrapolated or calculated from the test.
- · Short description of how the stress-strain graph was created and how the data was obtained.
- · Appropriate background so that a common reader can understand the experiment.
- Brief description of the materials used.

6. SPECIMEN PREPARATION (10%)

 Create a list of steps as to how the concrete cylinders were prepared, including the concrete mix design for your group.

7. EXPERIMENTAL PROCEDURE (10%)

 Create a list of steps as to how the experiment was conducted. Include a listing of equipment used, sketches or drawings of the test specimen(s) including dimensions and the testing setup.

8. TEST RESULTS (20%)

Your results should make use of charts and tables, and explain your figures including measured quantities, graphs or charts created for understanding the results, and any properties calculated, such as the cross sectional area (Ao) and the original gauge length of the specimen (Lo, i.e. the height of cylinder).

A minimum of the following should be included:

- Plot of test data force vs. displacement (original data).
- Plot of test data in positive force vs. positive displacement.
- Plot of Stress vs. Strain. The curve should start at (0,0), in other words at zero stain and zero stress.
- "Fix" your data by adding or subtracting to every value the same amount, which represents the deformation
 of the samples before they are in full contact with the loading heads.

For the compression test, calculate and show the following properties obtained from each specimen and the average values:

- E (Modulus of Elasticity)
- fc' (Max. stress = the compressive strength of concrete)
- ε_e (The strain corresponding to f_e')

For the splitting tension test, calculate and show the following property obtained from the specimen:

ft (the tensile strength of concrete measured by the splitting tension test)

Numerical results are best presented in table form. It should be noted which properties were calculated, and which were extrapolated graphically.

9. ANALYSIS AND CONCLUSION (20%)

- · Explain the failure mechanisms of concrete under compression and tension
- Explain the fracture surfaces of concrete under compression and splitting tension
- Explain the effect of end constraint on compressive strength of concrete.
- Identify any large errors and attempt to provide explanations of possible causes.
- Include observations from lab.

10. REFERENCES (5%)

Whenever you use a source within the body of the paper, this source should be referenced.

11. APPENDICES (5%)

- Test data: Include the data received from the tests. You are recommended to use Excel Spreadsheets and to
 show both the originally measured data and the data that you calculated and/or changed. If the raw data is
 lengthy, you may include only a sampling of it.
- Sample Calculations: Include all sample calculations in this section for any equations that you used in writing the report.

AREN 2120 Fluid Mechanics and Heat Transfer – Rubric for Design and Conduct Experiments

	Below adequate	Adequate	Superior
Percentage of total points earned on lab write-up, per guidelines below:	<80%	80-90%	≥90%
AREN 2120 FLUID MECHANICS AND HEAT TRANSF	ER SPRING 2017		
Thermal House Competition (Team work of 3 students) <u>Dbjective:</u> Design and build a model house with <u>comfortable indoor air tempe</u>		team, 2 is fine, bu work! The teams contributions.	Z1]: Strictly, NO more than 3 students per at NO single person per team! It is team hares the same score regardless of the
	stature for bour day and fight	•	
Requirements: Geometry: Minimum interior scales: 10in x 10in x 10in (at least 80% usable/em No requirement on exterior scales but you have to consider the cost	pty space)	Commented [J spaces!	Z2]: Can NOT fill more than 20% of inside
<i>Materials:</i> Whatever you can find (<mark>recycled materials are highly encouraged</mark>), p	ainting is allowed	Commented [J	 Z3]: Can have large insulation/shading etc. Z4]: Donated materials still need a cost n fair market price.
Shape: Free as long as it fits the geometry requirements			
<i>Window:</i> Minimum 20% window-wall-ratio (A _{window} /A _{wall}) for <mark>at least ONE w</mark> . No requirement on window materials (but need be transparent)	all	Commented [J	Z5]: For at least one wall, not all the walls!
 Assignment released on March 23, 2017 Design and construction: March 23 – April 16 Self-testing and adjustment: April 10 – April 23 (using Hobo) a. Each team will reserve one Hobo from TA for a 24-hc Final testing and write report: April 24 – May 3 (using Hobo) 	ours. First come, first serve!		
a. The model house will be placed at one dedicated outd sunshine.b. You are allowed to orientate the house at your wish at	oor location with full access of	f Commented [J cafe	Z6]: Court yard outside the engineering
can not be changed afterwards).c. A Hobo will be placed in the house to monitor temper light intensity for 24 hours.d. You are allowed to operate the house twice (optional) you decided (e.g., open/close door/window, raise/drop	during the test at the moments curtain/blinder/overhang, but		
 you can not use any other active measures to heat or c 5. Paper report and digital video file due date: May 4th class tim youtube link before 5pm on May 3rd) *Hobo size: 2.4 x 1.9 x 0.8 in; A User Instruction is downloadable fr 	e (please send me by email the		
 <u>fudge Criteria (100%):</u> Meet design requirements (10%) Thermal performance (45%):	omfort zone (25%)		
Jniversity of Colorado at Boulder	:	1	

AREN 2120 FLUID MECHANICS AND HEAT TRANSFER

- a. Cost of the project (20%)
- b. Material selection (10%)
- 4. Esthetics (10%)
- 5. Quality of video clip (5%)

Report Requirements:

- 1. Design descriptions:
 - a. Pictures of your design (inside and outside) and geometry descriptions (house interior and exterior scales and window sizes etc.)
 - b. Design philosophy and concept (why the house was designed this way and functions of design features)
 - c. What materials were used and the cost of the project (donation materials are acceptable but estimated cost need be included)
- Thermal performance (figures of the varying house interior air temperature and relative humidity values during 24 hours downloaded from Hobo, compared against the outdoor conditions measured by TA – <u>consider to print and compare indoor and outdoor conditions</u> <u>on the same figure for best visualization</u>; total hours of day and night temperature within the comfort zone, ΔT=T_{high}-T_{lower}, etc.). Outdoor conditions will be posted on the course web everyday.
- Conclusions (discussion of results, potential improvement approaches, experience and lessons, etc.)

Video Requirement: Please videotape and edit the entire design, construction, test process and outcomes with a 2-minute video clip (BE CREATIVE!). Please write the youtube link in your final report as well as emailing me the link before 5pm on May 3rd (John.Zhai@colorado.edu). We will share these videos in the last class of the semester.

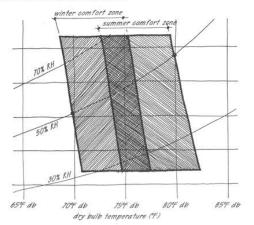


Figure 2.6: Winter and summer comfort zones, for light activity in typical seasonal clothing (winter 0.9 clo, summer 0.5 clo), with minimal air movement (less than 0.15 m/s winter and 0.25 m/s summer), and where dry-bulb air temperature and mean radiant temperature are equal. (*Reproduced from ASHRAE, 1981, by permission.*)

University of Colorado at Boulder

2

AREN 3540 Illumination I – Rubric for Design and Conduct Experiments

	Below adequate	Adequate	Superior
Percentage of total points earned on lab write-up, per guidelines below:	<80%	80-90%	<u>≥</u> 90%

AREN 3540 - Illumination 1Assignment7 - Illuminance Field SurveyAssigned:Friday, November 11, 2016Due:Friday, November 18, 2016 at the beginning of class[200 points total]

Background:

Modern illuminance meters have solid state photodetector devices that have a special filter that gives them a spectral response that approximates the $v(\lambda)$ curve. In addition, they have a structure that permits their spatial response to be approximately that described by the cosine incidence law of illumination.

To get a correct reading, the detector must be level and unshaded. As you learned in your survey class, "one measurement is no measurement." At each position where you will be determining the illuminance, you should take at least *3 separate readings*.

Field Survey Procedure:

- 1. Arrange a meeting with your survey team (Teams of 3-4 people).
- 2. Find a classroom (large or small) and identify a time when you can survey the illuminance.
- 3. Make the necessary equipment preparations.
- 4. Determine horizontal illuminance at (at least) 40 positions at workplane height in the seating area of the classroom.
- 5. Use Excel to produce an iso-illuminance contour plot of the horizontal illuminance in the room
- 6. Write a report that briefly describes your findings.
 - a. Title page, team member list
 - b. Brief outline of the measurement equipment
 - c. Brief outline of the measurement process
 - d. Data Summary
 - i. Average of the illuminances in the room, E
 - ii. Mean deviation (the average difference from the average),

$$MD = \frac{1}{N} \sum_{i=1}^{N} |\bar{E} - E_i|$$

Where N is the number of points

- e. Contour Plot
- f. Original or copy of data sheet taken at the time of the measurements
- g. AutoCAD drawing (to scale) of room showing where measurements were made

Deliverables:

Your team is to produce a formal Illuminance survey report. <u>Your formal report shall be **printed in**</u> **color, spiral bound** and accompanied by a letter of transmittal.

The report will be assessed and points given; each member of the team will receive that point total.

AREN 3540 - II	lumination 1	Names Elvin Vilonia							
Assignment 7 Evaluation			Ryan White						
[200 points]			Sally Glyfer						
			Super	This	her				
			'						
1. Measu	rements [100]								
a.	Team of 3-4 people			0	10	20			
b.	Minimum of 40 measurements		0	20	40	60			
с.	Minimum of 3 readings at each location	0	5	10	15	20			
						C			
2. Desigr	& Report [100]								
a.	Printed in color			0	2.5	5			
b.	Spiral bound			0	2.5	5			
с.	Transmittal page			0	2.5	5			
d.	Title page, team member list			0	2.5	5			
e.	Measurement equipment outline			0	2.5	5			
f.	Measurement process outline			0	2.5 (5			
g.	Data Summary								
9	i. Average of the illuminances in the ro	om, E		0	5	10			
	ii. Mean deviation			0	5	10			
h.	Contour plot			0	10	20			
i.	Original data collection sheet from the measu	urements			0	10			
j.	AutoCAD drawing								
	i. of room to scale and with dimension	s		0	5	10			
	ii. showing where measurements were	made		0	5	10			
						0.000			

Notis: · Mow luminaives in CNO drawing

.

Total: 200

Signature Attesting to Compliance

By signing below, I attest to the following:

That the Architectural Engineering Program in the Department of Civil, Environmental, & Architectural Engineering has conducted an honest assessment of compliance and has provided a complete and accurate disclosure of timely information regarding compliance with ABET's *Criteria for Accrediting Engineering Programs* to include the General Criteria and any applicable Program Criteria, and the ABET *Accreditation Policy and Procedure Manual*.

<u>Robert D. Braun</u> Dean's Name (As indicated on the RFE)

July 1, 2017

Signature

Date