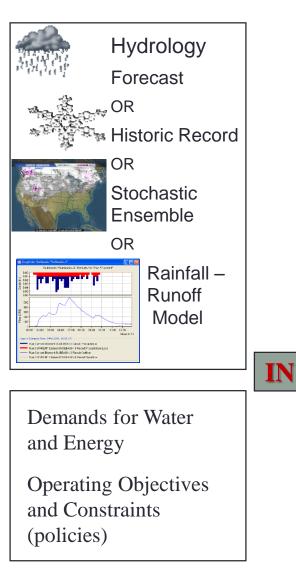


RiverWare and the Water-Energy Nexus

Tim Magee

Understanding the Water-Energy Nexus: Integrated Water and Power System Modelling September 28, 2016



Center for Advanced Decision Support for Water and Environmental Systems UNIVERSITY OF COLORADO BOULDER

RiverWare's Inputs and Outputs

Models interaction of

Hydrologic response of River /Reservoir system (includes Hydropower)

Multi-objective operating policies

Values of Decision Variables, Performance Indicators Schedule for Operations Water accounting data Statistics

Reports

OUT

Post-Processing

Export data to DSS, HDB, any DB Export directly to Excel, Tableau, netCDF, GPAT Statistical Analysis Policy Analysis Tradeoff Analysis

RiverWare Overview

- Uses: river system and reservoir operations and planning, hydropower scheduling, policy evaluation and negotiation, water rights accounting, climate change studies
- Solvers: Simulation, Rules, and Optimization
- Accurate and flexible modeling:
 - Physical process alternatives
 - Multiple objective modeling including hydropower
 - Basin specific prioritized policy
 - Customizable inputs and outputs
- Analysis: Solution path information, diagnostics and debugging tools, many output options

RiverWare is Designed for Model Coupling, enabling Power System Analysis

- Automated data interfaces to databases, files, and spreadsheets
- Execute in batch mode via scripting
- Expanding integration with other tools
 - Deltares FEWS (with and without RiverWare GUI)
 - Corps Water Management System (CWMS)
 - Planned: National Weather Service Community Hydrologic Prediction Systems (CHPS)

Water – Energy Nexus: Deployed Applications for Operations

Tennessee Valley Authority

• Hydrothermal Constraints, esp. Nuclear

- Separate models
- Minimum flows, steady flows, flow ramping constraints
- Issues usually in August when cold water has been used
- Value of hydropower with depth "Block Costs"
 - Low priority
 - Reflects thermal generation and market alternatives
 - Pseudo joint optimization of hydro, thermal, and market resources

Bonneville Power Administration

- Reserve capacity modeling (partially because of wind)
- Spill priorities due to negative electricity prices

Water – Energy Nexus: Research with DOE

- Oak Ridge Collaboration: Integrated Hydropower and Wind Generation analysis on the Columbia Basin developed framework for analysis -- (Magee et al., Final Report to ORNL, 2011)
- NREL collaboration: Plexos and RiverWare (Ibanez et al., 2014, Energy)
 - Plexos sends Block Costs to RiverWare
 - RiverWare sends hydropower to Plexos
- NREL collaboration (current project): Modeling electric sector dynamics considering water quality: add REPRA and GateCycle
 - Model curtailment from hydrothermal issues
 - New "Power Plant" object in RiverWare
- Proposed Future:
 - Co-optimize hydropower and other power at a grid level while including the hydrothermal effects
 - Ancillary services
 - Multiple time scale planning