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Chapter  1

Introduction

Water managers in the western U.S. and throughout the world are facing the

increasing problem of meeting water demands for a wide variety of purposes including

municipal, industrial, agricultural, power production, and environmental. Strict plan-

ning is necessary to meet demands on water quality, volume, timing and flowrates.

This is particularly true in the Truckee-Carson Basin where snowmelt from the Sierra

Nevada Mountains is virtually the only water source for the semi-arid desert of west-

ern Nevada. With the bulk of the water in the Truckee and Carson Rivers coming in

just four months (April, May, June, and July) and a potential evaporation to precipita-

tion ratio of 12:1 in most of the basin, water managers must plan very carefully how

they will meet all the demands. Management issues are particularly complex due to the

large number or reservoirs, diversions, and varying demands in the basin. The U.S.

Bureau of Reclamation (USBR) manages the operations on the Truckee and Carson

Rivers. The forecast for the upcoming water year is instrumental to their planning pro-

cess. Skilled forecasts provide the information necessary to facilitate effective plan-

ning of reservoir releases and diversions throughout the system.

1.1 Motivation

One of the key components of water management on the Truckee-Carson river

system is the interbasin transfer of water from the Truckee River through the Truckee
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Canal to Lahontan Reservoir, on the Carson River, to provide water for the Newlands

Project irrigation district and other water users. Water managers use the spring stream-

flow forecasts for the Truckee and Carson Rivers to determine the amount of water to

be diverted through the Truckee Canal. Due to the limited capacity of the canal and the

short water season, skilled forecasts of spring flows on these rivers are important for

efficient water management in the system.

The Newlands Project is a network of canals, ditches and reservoirs developed

by the USBR in the early 1900s to provide the water necessary for the successful

development of agriculture in western Nevada. Key to the Newlands Project’s success

is the 32.5 mile (52 kilometer) Truckee Canal. The primary operating criterion for the

Newlands Project is to maximize use of water from the Carson River and minimize

diversions of Truckee River water into the Truckee Canal. If managers divert too much

water into the Truckee Canal, they leave insufficient flows in the Truckee River to

support other water users, including endangered fish populations, along the last reach

of the river. Yet, if managers divert too little water, farmers in the Newlands Project

district will have insufficient water to sustain their crops. The USBR Lahontan Basin

Area Office utilizes spring streamflow forecasts for the Truckee and Carson Rivers to

determine the allowable diversions through the Truckee Canal. 

The USBR Lahontan Basin Area office needs an improved forecasting model

to use for watershed management and decision-making. Accuracy of forecasts has

become evermore important in the water-stressed Truckee and Carson River Basins.

Recently implemented policies limit diversions through the Truckee Canal and require

specific reservoir releases to aid in the protection of the endangered fish populations.

These policies depend heavily on the seasonal streamflow forecast. The current USBR

forecasting model is limited in the skill, the lead-time, and the quantification of uncer-

tainty in the forecasts it offers. The current forecasting method uses linear regression

based on the existing snowpack. Though the basin is predominantly snowmelt driven,
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using only snowpack information in the forecast means the forecast is not available

until the beginning of January-after a reasonable amount of snow has fallen. Further-

more, because this forecast only incorporates weather that has already occurred (i.e.,

snow that has already fallen) it cannot do a good job of projecting the accumulation

season’s total snow, and hence, runoff to come. An improved seasonal forecasting

model is necessary to strengthen seasonal planning strategies in the Truckee and Car-

son Basins.

1.2 Study Area

The Truckee and Carson Rivers originate high in the California Sierra Nevada

Mountains and flow northeastward down through the semiarid desert of western

Nevada. A map of the adjacent basins is shown in Figure1. The vast majority of both

basins’  surface area and demands for water resources lie within the State of Nevada.

Most of the precipitation and high alpine storage reservoirs, however, are located in

the State of California (Horton, 1996). (See Figure 2.) Historically, the rivers have

been used for fishing, logging and paper making, mining, ice production, irrigation,

power production, and municipal and industrial (M & I), among other uses (Horton,

1995). The two basins are connected by the one-way Truckee Canal which brings

water from the Truckee Basin into the Carson Basin. The individual river basins are

described in detail below. 

1.2.1 Truckee Basin

The Truckee River Basin encompasses an area of approximately 3,060 square

miles in the States of California and Nevada. Of the total basin area, approximately

790 square miles, or almost 26 percent of total area, lie within the State of California.

The remaining 74 percent lies in the State of Nevada. The Truckee River originates as

outflow from Lake Tahoe in California, runs northeastward approximately 105 miles,

and terminates in Pyramid Lake in Nevada. The Truckee River has an average annual
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flow of 548,200 acre-feet (1973-1994 period of record) crossing the California-

Nevada border at the Farad gaging station. (Horton, 1991)

The upper Truckee basin is steep, high alpine or forested land with elevations

reaching 9,000 to 10,000 feet (Horton, 1995). This area receives the greatest precipita-

Figure 1: Study Area
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tion in all the basin: 30 - 60 inches a year mostly in the form of snow (Taylor, 1998).

The Truckee River has seven major storage reservoirs in the upper part of the basin:

Lake Tahoe, Donner Lake, Independence Lake, Martis Creek Lake, Prosser Creek

Reservoir, Stampede Reservoir, and Boca Reservoir. These reservoirs are used for both

flood control and storage of water for downstream uses. 

The Truckee River originates as outflow from Lake Tahoe, the subbasin of

which comprises 24 percent of the total Truckee River Basin. The Lake Tahoe Basin is

fed by 63 creeks and streams and is a major contributor to flows in the Truckee River.

After Lake Tahoe, numerous streams join the Truckee River in the 15 mile stretch

between Tahoe City and the town of Truckee. These streams include Bear, Squaw,

Deer, Silver, Pole, Deep, and Cold Creeks. Between the towns of Truckee and Boca,

major tributaries include Donner, Martis, and Prosser Creeks and, the largest tributary,

the Little Truckee. The Little Truckee River is vitally important to the Truckee River

Basin due to the fact that several crucial water storage systems--Boca and Stampede

reservoirs, and Independence Lake--are located within its drainage basin. 

After its confluence with the Little Truckee, the Truckee River flows down a

steep canyon into Nevada and down to the Truckee Meadows that encompass the cities

Figure 2: Study Area Average Annual Precipitation

NEVADA

CALIFORNIA

Carson

Truckee



6

of Reno and Sparks, Nevada. The Truckee Meadows is in the rain shadow of the Sierra

Nevada Mountains and receives less than 8 inches of precipitation a year (Taylor,

1998).   Though once an agricultural area, the Truckee Meadows is now nearly con-

sumed by the expanding cities of Reno and Sparks. Consequently much of the water

from the Truckee is used for municipal and industrial (M&I) purposes.   Used M&I

water, treated at the Truckee Meadows Wastewater Reclamation Facility, is released

into Steamboat Ditch and eventually returns to the Truckee River.

Downstream of Reno/Sparks, the Truckee River flows across an arid plateau.

At Derby Dam, an annual average of almost 187,000 acre-feet of Truckee River Water

is diverted through 32.5 mile Truckee Canal. With a nominal capacity of 900 cfs, the

Truckee Canal transports water from the Truckee Basin into Lahontan Reservoir in the

Carson Basin for use in the Newlands Project irrigation district. In dry years, such as

the 1988-1994 period, this diversion can withdraw up to two-thirds of the total Truc-

kee River water. Arguably, this interbasin transfer represents the single greatest con-

troversy within the Truckee and Carson River Basins. The Newlands Project diversion

comprises the most significant single withdrawl of the Truckee River’s waters. 

The portion of the river that is not diverted to the Truckee Canal continues

through desert before emptying into Pyramid Lake within the Pyramid Lake Indian

Reservation. Two culturally and economically important fish to the Pyramid Lake

Paiute Tribe live in Pyramid Lake: the endangered cui-ui and the threatened Lahontan

cutthroat trout. These fish must migrate upstream to spawn. Low flows and shallow

depths in Truckee River below Derby Dam, however, have inhibited spawning, egg

incubation, and survival of these species (Taylor, 1998). 

1.2.2 Carson Basin.

The Carson River Basin boarders the Truckee River Basin to the south, is

roughly the same size and has very similar topography. The Carson Basin comprises
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an area of 3,360 square miles , 15 percent of which lies in California (Horton, 1996).

The Carson River runs northeastward 184 miles from its headwaters approximately

fifty miles south of Lake Tahoe to its terminus in the Carson Sink in Nevada. The aver-

age annual flow in the Carson River, as gaged at Ft. Churchill above Lahontan Reser-

voir, is 266,420 acre-feet (Horton, 1996).

Much like the Truckee Basin, the Carson Basin receives most of its precipita-

tion in the form of snow, high in the Sierra Nevada Mountains in California. At its

headwaters, the Carson River consists of two forks: the East Fork and the West Fork.

The East Fork Carson is roughly twice as long as the West Fork Carson (65 miles com-

pared with 33 miles) and the average annual discharge is 255,560 acre-feet, roughly

3.2 times that of the West Fork (Horton, 1996). The upper basin of the Carson River is

significantly less developed than the Truckee. The Carson Basin has several relatively

small storage reservoirs in its upper basin. Due to their size, these reservoirs do not

play as integral a role in policy and management decisions as do the reservoirs in the

Upper Truckee Basin.

The east and west forks of the Carson River flow down from the steep moun-

tains into the Carson Valley. The Carson Valley serves as a natural catchment basin for

the many short streams which feed the East and West Fork Carson and often flood the

basin. The East and West forks join near the western part of the Valley, though the

exact location changes from year to year. The valley is rich in farmland (over 35,000

irrigated acres) and is consequently marked by significant diversions. Here the waters

of the Carson River are rapidly diminished by extensive irrigation diversions, though

the exact depletion is not known.

In the lower basin, the Carson River flows northeast from the town of Carson

City toward Lahontan Reservoir in Lahontan Valley. The arid Lahontan Valley is in the

rain shadow of the Sierra Nevada Mountains and receives an average of only five
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inches of precipitation a year. In contrast, the average potential evaporation here

exceeds 60 inches, with rates recorded as high as 70 inches per year (Horton, 1996).

Water diverted from the Truckee River pours into Lahontan Reservoir via the

Truckee Canal to provide water for the Newlands Project. The Newlands Project con-

sists of approximately 73,000 water-righted acres, of which about 59,800 are actually

irrigated (Horton, 1996). While controversy continues to surround the Newlands

Project with respect to its sources of water, the project’s efficiency, and the water qual-

ity of its return flows, the economic benefits of this reclamation project are indisput-

able. Agriculture ranks only second (to the Fallon Naval Air Station) in its

contributions to local employment, incomes, and spending in Churchill County (Hor-

ton, 1996). 

Past Lahontan Reservoir the majority of the Carson River splits off into a net-

work of ditches and canals that make up the Truckee-Carson Irrigation District

(TCID), which represents Newlands Project farmers. Extensive Newlands Project irri-

gation has altered the natural flow to wetland areas and modified the hydrologic char-

acteristics of the Lahontan Valley, raising the local water table. The Carson River

terminates past the Newlands Project in the area of the Carson Sink. Depending on the

time of year and annual runoff from the upper basin, this area can be an extensive lab-

yrinth of interconnected lakes, marshes, and wetlands or a barren, alkali desert and salt

flat. 

1.3 Policies and Operations on the Truckee and Carson Rivers

The Truckee and Carson Rivers have been, and continue to be, crucial to the

sustainment of life in western Nevada. The rivers have played a major role in the set-

tlement and development of the area. Consequently, the policies and operations on

these rivers extend back to before the turn of the century and continue to be negotiated

to this day. Current negotiations seek to balance the demands of M&I for the cities of

Reno and Sparks, irrigation for Truckee Meadows and TCID, power production oper-



9

ated by the Sierra Pacific Power Company in the Truckee Canyon, as well as protec-

tion of the cui-ui (an endangered sucker) and Lahontan cutthroat trout (a threatened

species). As negotiations over new policies continue, the USBR and Federal Water

Master implement the provisional policies in their daily operations on the Truckee and

Carson Rivers (Horton, 1995).

Of primary importance to this research is the Operating Criteria and Proce-

dures (OCAP) for the Newlands Project irrigation district. OCAP was originally estab-

lished in 1967 to regulate agricultural diversions to the Newlands Project. For many

years before this date, water was diverted from the Truckee River to the Newlands

Project without restrictions. This water would otherwise have flowed to Pyramid

Lake, the river’s terminus, on the Pyramid Lake Indian Reservation. Due to these

diversions, the water level of Pyramid Lake declined for decades-- over 85 vertical

feet between the early 1900s and 1967. This decline in the water level eventually made

it difficult or impossible for cui-ui and Lahontan cutthroat trout to swim upstream in

the Truckee River and spawn. The Pyramid Lake Paiute Tribe filed a number of suits

resulting in the initial establishment of OCAP and further revisions in 1988 and 1997

(Horton, 1995). 

The primary goal of OCAP is to maximize the use of Carson River water and

minimize diversions of Truckee River water into the Truckee Canal. The USBR

Lahontan Basin Area Office uses forecasts of the spring runoff in the Carson and Truc-

kee Basins to assist in achieving this objective. 

Newlands Project OCAP specifies the circumstances under which water can be

diverted from the Truckee River. Specifically, OCAP allows diversions of up to 1,500

cfs through the Truckee Canal (although the canal’s nominal capacity is only 900 cfs)

and up to a total of 288,129 acre-feet per year. The actual quantity of water which may

be diverted from the Truckee River at Derby Dam varies with the determination of the

irrigation entitlement each year, the runoff forecasts for the Carson and Truckee Rivers
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and water in storage in Lahontan Reservoir. Irrigation entitlements are based on the

actual irrigated acreage in any given year: 3.5 acre-feet per acre per year (bottom

lands) and 4.5 acre-feet per acre per year (bench lands).

The USBR incorporates these criteria into operations by setting an end-of-

month storage targets for Lahontan Reservoir. Monthly storage targets from January to

May vary based on both the Ft. Churchill runoff forecast and the TCID water demand.

From June through December, the storage targets vary based only on projected TCID

water demand. 

OCAP also specifies that diversions to the Truckee Canal be coordinated with

releases from Stampede Reservoir and other reservoirs, in cooperation with the Fed-

eral Water Master, to minimize fluctuations in the Truckee River below Derby Dam in

order to meet annual flow regimes established by the United States Fish and Wildlife

Service (FWS) for the listed species in the lower Truckee River. Increases in canal

diversions which would reduce Truckee River flows below Derby Dam by more than

20 percent in a 24-hour period are not allowed when Truckee River flow, as measured

by the gauge below Derby Dam, is less than or equal to 100 cfs. During times when

diversions are technically not allowed (e.g., after the monthly storage target on Lahon-

tan has been met), the Truckee Canal must be managed to achieve an average flow of

20 cfs or less. 

OCAP also seeks to increase efficiency in the Newlands Project irrigation dis-

trict. OCAP requires that TCID farmers estimate their demands for the coming grow-

ing season and then irrigate at a minimum of 68.4 percent efficiency on that projected

demand. If the District fails to meet the targeted efficiency, then a calculation is made

as to how much water was used or diverted in excess of what it would have taken if the

efficiency target had been met. Once that total excess reaches 26,000 acre feet, OCAP

requires that the District reduce the water delivery in the following year to all water

users by the amount of that excess. To date the District has not been able to achieve an
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efficiency any greater than 63 percent (TCID web site, retrieved 10/13/02).

The USBR is responsible for calculating the allowable Truckee River diver-

sions and consulting with interested parties including the Pyramid Lake Paiute Tribe,

the U.S. Fish and Wildlife Service (FWS), TCID, and others. During the last week of

each month the USBR determines the next month’s Truckee Canal diversion schedule

based on OCAP and Carson and Truckee River forecasts. USBR water engineers

revisit the diversion schedule when necessary, based on observed runoff and forecast

revisions in order to meet the end-of-month storage target at Lahontan Reservoir. In

some months there is not enough water available, even with diversions, to meet the

storage target.

TCID currently operates Derby Dam under a temporary contract with the

USBR. The USBR Lahontan Basin Area Office monitors the flows at the U.S. Geolog-

ical Survey (USGS) gage on the Truckee Canal near Hazen to determine if and when

flows are in excess of those needed and works with TCID to bring the flows back into

compliance when excessive.

Fish spawning releases are also particularly important to this research. In 1982,

the Stampede Reservoir Judgement allotted all of the water and storage in Stampede to

protecting, and encouraging the spawning of, the endangered cui-ui and threatened

Lahontan cutthroat trout. Releases are based on schedules set by FWS and the Pyramid

Lake Tribe. Forecasted runoff, storage values, and time since the last run all affect the

annual decision of whether to have a cui-ui spawning run. If FWS and the Pyramid

Lake Tribe decide to have a spawning run, the releases from Stampede aim to meet the

following flow targets at Pyramid Lake: January 90 cfs, February 120 cfs, March 190

cfs, April 570 cfs, May 1000 cfs, June 50 cfs (Berris 2001).

Other major policies and laws in the basin include the Truckee River Operating

Agreement, flood control, Floristan Rates, and the Tahoe-Prosser Exchange. (See

Appendix A, “Operating Policy in the Basin”  and Appendix B, “Description of Select
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Laws”  for more details on operations and policies in the Truckee-Carson River Sys-

tem.) 

1.4 Cur rent forecasting methods

The USBR Lahontan Basin Area Office currently makes monthly forecasts of

streamflow in both the Truckee and Carson Rivers. The Carson forecast is used to

determine the natural inflows to Lahontan Reservoir. The Truckee forecasts are used to

determine the Truckee River water available for diversion. From a water supply stand-

point, the USBR Lahontan Basin Area Office considers the total April through July

runoff as the most important component of their forecasts, as this is when the majority

of the streamflow comes (Scott, 2002). (The Truckee River receives an average of 66

percent of its total annual flow and the Carson River receives 63 percent of its total

annual flow during this time period.) Forecasting the distribution of the spring runoff,

however, is also important for scheduling Truckee Canal diversions and setting storage

targets on Lahontan Reservoir (Reynolds, 2002). 

The current USBR forecasting techniques use linear regression analysis based

on snow water equivalent (SWE) information. Lahontan Basin Area Office forecasters

typically regress streamflow data against monthly basin average SWE, percent of nor-

mal snowpack, total accumulated precipitation, and observed runoff data to develop

regression equations for each month. Forecasters then use the monthly regression

equations to predict the most probable streamflow value. USBR forecasts also include

information from the Natural Resource Conservation Service (NRCS) official fore-

casts, whenever they are available. The USBR regression equations are always used to

forecast the January to March runoff. The NRCS official forecasts are the primary

April to July forecasts, if recently issued. If recent NRCS forecasts are not available,

the USBR regression equations are used to forecast April to July natural flow. In all

cases, the monthly distribution of the forecasted runoff is determined from similar
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years selected based on forecasted January to March and April to July volume fore-

casts. 

The USBR Lahontan Basin Area Office typically forecasts one key point on

each river: the Ft. Churchill USGS gaging station on the Carson River and the Farad

USGS gaging station on the Truckee River. Sometimes a separate forecast for the Lit-

tle Truckee River is also issued. The Carson River forecast is taken as the natural

streamflow entering Lahontan Reservoir. The Truckee River forecast for Farad is spa-

tially disaggregated to the various reservoirs upstream. This disaggregation is based on

the historical contribution of each subbasin to the total streamflow at Farad. 

1.5 Incorporation into a Decision Suppor t System (DSS)

Once a forecast is issued, water managers must decide how to best operate the

system given the predicted flow values. The USBR is currently developing a decision

support tool using the general-purpose river and reservoir modeling software River-

Ware (Zagona et al., 1998 and 2001). The Truckee RiverWare model simulates the

movement of water through reservoirs, reaches, and diversions using objects in a

graphical user interface. Simulated reservoir releases and diversion schedules are con-

trolled by rules: user-defined, prioritized logic based on the laws and policies of the

rivers. The model also includes an accounting network to track water as it moves

through the system. It is thus possible to track whether water was released to meet in

stream flow targets or for irrigation demands. The rules dictate how much water is

released from each reservoir, what account the water came from, and where the water

goes. By using different rules to move water through the system, it is possible to simu-

late flow patterns using different policies. Together with the forecasts, the DSS will be

used to assist with daily operations and seasonal and long-term planning in the basin.
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1.6 Proposed Research

The USBR Lahontan Basin area office funded part of this research in an effort

to obtain an improved seasonal forecasting model to strengthen planning and manage-

ment in the Truckee and Carson River Basins. This research aims to achieve the objec-

tive by utilizing large-scale climate information and nonparametric stochastic

forecasting techniques as described below. 

The link between streamflow in the Western United states and global climate

variables has been strongly supported in the literature. This research uses climate diag-

nostics to demonstrate that the spring streamflows in the Truckee and Carson rivers are

strongly related to atmospheric circulation features over the northern Pacific during

the preceding winter and fall. This enhances the prospects for a long-lead forecast. We

develop indices from the relevant oceanic-atmospheric circulation variables to be

applied in a forecasting mode. 

This research utilizes nonparametric stochastic forecasting techniques. We use

large-scale climate information together with known streamflow predictors to develop

a flexible streamflow forecasting model. The model developed in this research pro-

duces ensemble forecasts of spring streamflows. The ensemble forecasts can be ana-

lyzed to obtain various exceedence probabilities of interest to water managers in the

Truckee and Carson River Basins.

After issuing the forecast, this research tests the utility of the forecast to water

resources decision making. Ensemble streamflows used as inputs to a DSS. We then

analyze the forecasts’  impact on different decision variables in the system.

The overall approach is outlined in the flowchart below. A description of each

step in this process follows. 

1.  Determine large-scale climate features correlated to spring streamflow in 

the Truckee and Carson Rivers. Verify the physical relationship supporting 

this correlation. Develop indices for the significant predictors to be used in 
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the forecasting model. This step is discussed in Chapter 2, “Climate Diag-

nostics.”

2.  Develop an empirically based predictive streamflow model that can be cou-

pled with the DSS. Standard statistical methods are used to validate the 

model and measure the skill of the forecasts. This is presented in Chapter 3, 

“Nonparametric Stochastic Forecasting Model.”

3.  Couple the streamflow ensembles from the stochastic forecasting model 

with the DSS to determine flows throughout the system. Analyze various 

decision variables and exceedence probabilities to test the utility of the 

ensemble forecasts. Steps 3 and is discussed in Chapter 4, “Decision Sup-

port System.”

1.7 Contr ibution of this Research

This research produces two tools that can be used to improve forecasting

results, and, hence, water resources operations and planning in the Truckee and Carson

River Basins. First, we demonstrate that incorporating large-scale climate information

Figure 3: Proposed Research Flowchart
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in a forecasting model can produce more skillful, longer lead-time forecasts. Second,

results show that nonparametric stochastic forecasting techniques used in this study

have the added benefit of producing ensemble forecasts which can be analyzed to

determine exceedence probabilities. The improved forecasts, when coupled with a

DSS, facilitate efficient seasonal planing and management of water in the Truckee-

Carson river basin. Finally, this research highlights additional areas that warrant more

research.
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Chapter  2

Climate Diagnostics

Researchers have gathered an increasing body of evidence to demonstrate the

relationship between large-scale climate features and hydroclimatology in the western

United States. Much of the work has involved studying climate phenomena such as El

Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) and

their impacts on hydrologic variables such as precipitation, temperature and stream-

flows in the western United States. Researchers have used a variety of techniques, both

physically and empirically based, to analyze the atmosphere-ocean-land interactions

that influence hydrology in the West. Statistical techniques typically relate the domi-

nant modes of large-scale ocean-atmosphere patterns in sea surface temperatures

(SSTs) and sea level pressures (SLPs) to regional hydrologic variables for diagnostics

and prediction. Deterministic methods often employ regional watershed models to pre-

dict streamflow based on the state of the atmosphere as indicated by large-scale global

climate models. Using these approaches, the predictive capability of atmospheric cir-

culation patterns on streamflows has been applied to improve water resources manage-

ment and planning on several river basins in the West. 

There has, however, been little research on diagnosing and predicting the vari-

ability of streamflows in the Truckee and Carson Basins. Current forecasting tech-

niques in the Truckee and Carson River Basins do utilize large-scale climate
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information, though only qualitatively (e.g., in El Niño years, forecasters may subjec-

tively alter the forecast). Given this lack of research and the importance of water

resources planning in the basin, there is a need to systematically diagnose the stream-

flow variability in an effort to improve forecasting. This chapter first reviews past

studies of large-scale climate features and hydrologic variability in the western United

States then follows up with the authors' analysis of large-scale climate features' influ-

ence on streamflow variability in the Truckee-Carson River Basin.

2.1 Influence of Large-Scale Climate Features on Hydrologic Var iability in the 
Western United States: Past Studies

Precipitation and its resulting streamflow are an important source of water for

the semi-arid western United States. El-Ashry and Gibbons (1988) estimate that water

consumption in the western US averages 44% of renewable supplies, compared with

4% in the rest of the country. Yet, precipitation in this area varies both inter-seasonally

and inter-annually. Given the importance of precipitation and streamflow in the west-

ern United States, many research efforts strive to determine the cause of their spatial

and temporal variability. Efforts in recent decades have focused on the links between

large-scale climate features and hydrology in the West in an attempt to understand this

variability. 

We have long understood that in the mid-latitudes the jet stream moves mois-

ture laden air masses from the Pacific Ocean eastward over the North American conti-

nent. The jet stream is strongest during winter when the equator-to-pole temperature

gradients are greatest and, hence, is most active in carrying low pressure systems dur-

ing this time. As moist air travels eastward and encounters the mountainous regions in

the western United States, it rises and cools, forming precipitation. 

The strength and location of the jet stream govern the inter-seasonal and inter-

annual variability of precipitation over North America. The jet stream typically moves

in a sinuous motion from west to east-- with a trough over the North Pacific Ocean, a
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ridge over the Rocky Mountains, and a trough over the eastern United States. This

structure is described by several teleconnection patterns (Wallace and Gutzler, 1981;

Barnston and Livezey, 1987; Leathers, et al., 1991). For example, the PNA teleconnec-

tion pattern describes variability in four pressure centers over the Pacific Ocean and

North America that persist from late summer to spring and are strongest in winter. The

PNA is marked by low pressure systems south of the Aleutian Islands (the Aleutian

Low) and over the southeastern United States and high pressure systems near Hawaii

and over the Rocky Mountains (central Canada) in winter and fall (spring.) These pos-

itive and negative pressure systems direct the movement of the jet stream: counter-

clockwise near the low pressure systems and clockwise near the high pressure

systems, resulting in the sinuous motion seen in Figure4.

Intensification of the PNA is associated with a deepening of the Aleutian Low

and a strengthening over the ridge of the Rockies. This situation deflects storm sys-

Figure 4: Typical PNA Pattern and its effect on the jet stream

warm 
SSTs
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tems north toward Alaska and reduces precipitation over much of the western US.

Weakening of the PNA is associated with a weaker Aleutian Low and a weaker ridge

over the Rocky Mountains. In this situation cyclonic disturbances can penetrate into

the western US, resulting in increased precipitation. Variability in the location and

strength of the PNA wave train over North America can have pronounced impacts on

local climate in specific regions. These variations are actively forced by slow changes

in SST patterns in the tropical and extra-tropical Pacific Ocean. Changes in SST pat-

terns are associated with the ENSO and PDO teleconnections which are described

below. 

ENSO is a quasi-cyclic phenomenon that occurs in the tropical Pacific Ocean

every three to seven years and has pronounced effects on weather around the world. In

normal years, easterly “ trade winds”  in the tropical Pacific drive surface waters west-

ward. This results in warmer waters (6-8° C warmer) in the western tropical Pacific

due to longer exposure to solar heating, and cooler waters in the eastern tropical

Pacific due to oceanic upwelling. In some years the trade winds weaken, allowing

warmer waters off the western Pacific to migrate eastward and eventually reach the

South American coast. These situations are knows as El Niño events. The opposite

phenomenon, termed La Niña, is characterized by stronger trade winds and colder

SSTs in the tropical Pacific Ocean. (Allan, 1996; Dingman, 2002) (See Figure 5.) The

Southern Oscillation refers to a see-saw shift in surface air pressure at Darwin, Austra-

lia and the South Pacific Island of Tahiti. When the pressure is high at Darwin it is low

at Tahiti, and vice versa. El Niño and La Niña occur during the extreme phases of the

Southern Oscillation. Climatologists have developed several indices based on SSTs

(e.g., Nino3, Nina1+2, Nino3.4, etc.) and SLPs (e.g., SOI, Darwin SLP, etc.) that indi-

cate the strength and phase of ENSO. The indices measure SSTs or SLPs in specific

regions of the tropical Pacific Ocean that are strongly influenced by ENSO.



21

Although ENSO is defined by large-scale oscillations in oceanic and atmo-

spheric conditions in the tropical Pacific, the phenomenon affects weather patterns

across the globe. Perhaps the most notable effect for North America is the shift in the

jet stream which carries storm systems from the North Pacific across the North Amer-

ican land mass in late fall and winter. In El Niño years warmer than average SSTs

cause increased convection and precipitation in the tropics near and east of the date

line. La Niña events are marked by decreased convection and precipitation just west of

the date line (Hoerling et al., 1997). This change in the magnitude and location of typ-

ical convection patterns perturbs the areas of high pressure where air subsides on

either side of the equator, in turn altering atmospheric circulation in the mid-latitudes.

During ENSO events, the altered PNA pattern shifts the location and strength of the jet

stream. (See Figure6.) The PNA wave train is typically strengthened during El Niño

events and a weakened during La Niña events. The overall result is unusually warm or

cold winters in particular regions, drought in normally productive agricultural areas,

and torrential rains in normally arid regions (Rasmussen, 1985; Ropelweski and Halp-

ert, 1986 and 1989).

Figure 5: Color  compar isons of warm versus cold phase El Niño/La Nina, SST, 
sea-level pressure, and sur face wind stress anomaly patterns
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The PDO is a long-term fluctuation in SSTs and sea levels in the northern

Pacific Ocean that waxes and wanes approximately every 20 to 30 years (Mantua et

al., 1997). Like ENSO, the PDO oscillates between a “warm” (positive) phase and a

“cool”  (negative) phase. (See Figure7.) The PDO index, which is based on the first

principal component of Pacific SSTs, denotes the strength of the PDO and its phase.

(See Figure8.) Based on atmospheric and oceanic data, scientists believe we have just

entered the “cool”  phase. The “cool”  phase is characterized by a cool wedge of lower

than normal sea-surface heights and ocean temperatures in the eastern equatorial

Pacific and a warm horseshoe pattern of higher than normal sea-surface heights con-

necting the north, west and southern Pacific. In the “warm” phase, which appears to

have lasted from 1977- 1999, the west Pacific Ocean becomes cool and the wedge in

the east warms. Two main characteristics distinguish PDO from ENSO, however.

Figure 6: El Niño effect on jet stream
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First, twentieth century PDO “events”  persisted for 20-to-30 years, while typical

ENSO events (El Niño or La Niña) persisted for 6 to 18 months. Second, the truly dis-

tinguishing climatic features of the PDO are most visible in the North Pacific/North

American sector, while secondary signatures exist in the tropics - the opposite is true

for ENSO. 

The change in location of the cold and warm water masses resulting from a

shift in the PDO alters the path of the jet stream. The PDO phase that we appear to

have entered will act to steer the jet stream further north over the Western United

States. This shift will in turn transport winter precipitation and storm systems further

Figure 7: Color  compar isons of warm versus cold phase PDO, SST, Sea-level 
pressure, and sur face wind stress anomaly patterns

Figure 8: Monthly Values of the PDO index: January 1900-August 2003



24

north than what has been the norm for the past 30 years. As can be perceived, the PDO

has several attributes in common with ENSO. Hence, the PDO, as an independent phe-

nomenon like ENSO, is an area of active research. 

The influence of tropical Pacific climate conditions (such as ENSO and PDO)

on North American hydroclimatic variability has been well documented (e.g., Ropel-

weski and Halpert, 1986; Cayan and Webb, 1992; Kayha and Dracup, 1993; Redmond

and Koch, 1991; Cayan and Redmond, 1996; Gershunov, 1998; Kerr, 1998; Dettinger

et al., 1998 and 1999; Cayan et al., 1999; Hidalgo and Dracup, 2003). In 1986, Ropel-

weski and Halpert demonstrated that El Niño events are associated with increased sea-

sonal precipitation in the southwestern and southeastern United States. Several years

later, Kerr (1988) suggested that La Niña events can cause drought in the same regions

of North America. From this time onward, studies relating atmospheric circulation

features over the Pacific to hydrology, particularly in the semi-arid western United

States, have abounded. 

As most basins in the western US receive the bulk of their annual flow from

spring snowmelt (Serreze et al., 1999), many studies focus on the correlation between

large-scale climate features and western mountain snowpack. For example, McCabe

and Dettinger (2002) used principal component analysis to determine the primary

modes of April 1st snowpack and found that the two components which account for

61% of the variance in the western United States are closely related to the PDO and the

Nino3 (tropical Pacific) SSTs. 

Other studies exhibit a strong correlation between atmospheric circulation pat-

terns and warm season precipitation. Hidalgo and Dracup (2003) investigated the link-

ages between ENSO and hydroclimatic variations in the Upper Colorado River Basin.

The results for warm season precipitation response to ENSO were much stronger than

results obtained for cold season precipitation. 

Pizarro and Lall (2002) studied the effect of the ENSO and PDO on annual
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maximum floods in the Western U.S. Their correlations with Nino3 suggested an

enhanced probability of winter floods in El Niño years in California and Oregon,

spring floods in S. Idaho, N.E. Utah and Colorado, and summer floods in New Mexico

and S. Colorado. In Washington, N. Idaho, Montana and Wyoming, the likelihood of

flooding appears reduced. However, when they considered the recent weakening of the

negative PDO signal, these probabilities changed, stressing the interplay of ENSO and

PDO signals. Under the weakened PDO assumption, the probability of floods

decreased in California, N. Washington and S. Colorado and increases in the other

regions.

Rajagopalan et al. (2000) studied the teleconnection between the winter ENSO

and summer drought in the United States. They discovered a strong relationship

between ENSO and drought in the southwestern U.S. (e.g., Texas, southern Arizona

and California). They determined, however, that this relationship varied spatially and

temporally over the twentieth century, thus underscoring the complicated nature of the

relationship and the difficulty in forecasting. 

Because ENSO and PDO generally persist for several months (to years, in the

case of PDO), useful long-range hydrological forecasts can be made in regions that are

particularly affected by these patterns. A number of studies have found relationships

between streamflows and ENSO cycles (e.g., Dracup and Kayha, 1994). In basins that

exhibit strong hydrologic-atmospheric circulation pattern linkages, incorporation of

climate information has been shown to improve streamflow forecasts. Clark et al.

(2001) examined the effects of the ENSO signal and SWE on streamflow in the

Columbia and Colorado River systems. They determined that in basins which exhibit

strong ENSO seasonality, a forecast incorporating both the ENSO signal and SWE is

more accurate than a forecast based on SWE alone. While SWE is good a measure of

initial conditions, the ENSO signal provides information about weather to come

throughout the remainder of the winter season.
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Several researchers have focused on the possibilities of improving water man-

agement through the use of climate information. In their analysis of adaptive manage-

ment on the Colorado River, Pulwarty and Melis (2001) presented the need for

monitoring climate parameters in addition to the April 1st snowpack when analyzing

runoff forecasts. They argued that careful application of climatic information could

result in enhanced management of water supply, flood control, power generation and

environmental issues.

The incorporation of large-scale climate features can also improve the lead-

time of forecasts. Because atmospheric-oceanic conditions change slowly from season

to season, it is possible to use summer and fall climate information to predict April 1st

snowpack (McCabe and Dettinger, 2002) or even summer streamflow (Hamlet et al.,

2002). This enhanced lead-time allows for more efficient management of the system.

Hamlet, Huppert and Lettenmaier (2002) presented the economic value of the

increased hydropower production in the Columbia River Basin as a result of incorpo-

rating climate information in the streamflow forecast to increase lead time--in this

case, six months earlier. 

The effects of large-scale climate phenomenona, however, are non-linear in

space and time (Hoerling and Kumar, 1997). Not all El Niño's are the same, nor does

the atmosphere always react in the same way from one El Niño to another. An anoma-

lous ENSO signal may have strong effects in one basin and none at all in another

basin. Similarly, the signal may correlate strongly with years of high streamflow, but

have no apparent link to drought conditions. Furthermore, the interplay of multiple cli-

mate patterns such as ENSO, PDO and PNA make the impacts on hydroclimatic vari-

ability more complex. Jain and Lall (2000 and 2001) found non-linear relationships

between annual maximum floods and ENSO and PDO, particularly when multiple

indices were considered. Additionally, the influence of climate indices may only be

apparent in years when the indices are at extreme values. Pizarro and Lall (2002)
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determined that major changes in rainfall or floods occur only for extreme NINO3 and

PDO values with the intermediate values leading to no effect. Furthermore, subtle

shifts in atmospheric circulation patterns can cause significant changes in precipitation

and temperature, meaning that standard teleconnection indices provide a poor descrip-

tor of climate changes in many regions. In order to utilize climate information to fore-

cast in a specific basin, it makes sense to analyze the direct linkages between

individual climate features and streamflow (or precipitation) in the given basin.

2.2 Analysis of Atmospher ic Circulation Features’  Impact on Streamflow in the 
Truckee and Carson Rivers

Given the influence of atmospheric circulation patterns on hydrologic variabil-

ity in the western United States, we analyze their direct impact on our basin of interest,

the Truckee-Carson Basin. We perform climate diagnostics to determine the relevant

large-scale climate features related to streamflow in the Truckee and Carson Rivers.

The dominant teleconnection patterns described above (ENSO, PDO, PNA) clearly

have a significant impact on hydrology across the western US as a whole. Subtle vari-

ations in these patterns, however, can significantly shift the basin-scale area of impact.

These patterns, therefore, may not always directly impact the hydrology in the Truc-

kee-Carson Basin. In this study we analyze the dominant teleconnection patterns as

well as other large-scale atmospheric variables. We attempt to identify which patterns

are most important (dominant or otherwise) and develop indices of these patterns to

forecast streamflow. The results from this analysis are later utilized for forecasting

seasonal streamflow in the basin, as is presented in Chapter 3, “Nonparametric Sto-

chastic Forecasting Model.”

The Truckee and Carson Rivers are spring snowmelt dominated. Serreze et al.

(1999) estimate that 67% of annual precipitation in the Sierra Nevada Mountains falls

as snow. Mountain snowpack and winter precipitation are key to forecasting on these

rivers. The total snowpack, however, is not known until late winter or early spring and
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earlier snowpack measurements provide lower skill in forecasts. Atmospheric circula-

tion patterns, however, have been shown to be good indicators of what precipitation

will come throughout the winter season, and hence offer insight into spring stream-

flows. In this study, relationships between spring streamflows and climate variables

from the preceding winter and fall are identified. Consequently, we identify physical

mechanisms governing the interannual variability of streamflow in the Truckee and

Carson Rivers and determine their application to forecasting.

2.2.1 Data

The following data sets for the 1949 - 2003 period are used in the analysis:

(i) Monthly natural streamflow data from Farad and Ft. Churchill gaging sta-

tions on the Truckee and Carson Rivers, respectively.

(ii) Monthly SWE data is obtained from the NRCS National Water and Climate

Center website (http://www.wcc.nrcs.usda.gov). The SWE data is gathered

from snow course and snotel stations in the upper Truckee Basin (17 sta-

tions) and upper Carson Basin (7 stations) to compute an area average for

each basin. 

(iii) Monthly winter precipitation data for the California Sierra Nevada Moun-

tains region. This is obtained from the U.S. climate division data set from

the NOAA-CIRES Climate Diagnostics Center (CDC) website (http://

www.cdc.noaa.gov). 

(iv) Monthly values of large-scale ocean atmospheric variables - SST, SLP,

wind, etc., for the globe are also obtained from the CDC website. These are

extracted from the NCEP/NCAR re-analysis data sets.

The natural streamflow data for Farad and Ft. Churchill is not a direct measure-

ment of the water in the river, but rather, a calculation of what the streamflow would

have been without the effects of human development (e.g., reservoirs and depletions).
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We use natural streamflow data because our interest lies in forecasting the total water

coming into the system before regulation. Once the natural streamflow is forecasted,

policies and regulations can be simulated using a DSS, as is addressed later in Chapter

4, “Decision Support System.”  We obtain the natural streamflow data for the Truckee

River at Farad from the USBR Lahontan Basin Area Office. USBR engineers calculate

the natural streamflow in the Truckee River based on inflows to the seven major stor-

age reservoirs near the top of the basin before any significant depletions have been

made. Data for the Carson River are scarce; though irrigators deplete significant

amounts of water before the Ft. Churchill, these depletions are not monitored, making

it extremely difficult to calculate natural streamflow. For Ft. Churchill, the USBR

takes the historical flow (i.e., the actual gaged flow in the river) to be the natural

streamflow. The historical flow data for Ft. Churchill can be obtained from the USGS

website (http://water.usgs.gov). We compute spring streamflow volumes (April to July

total) from the monthly natural streamflow data. The UBSR and the NRCS use the

April to July time period as the standard for spring runoff and base many operations in

the basin on the April to July total volume forecast. 

Basin SWE data is gathered from snow course and snotel stations in the upper

Truckee and upper Carson Basins. As shown in Figure2, the vast majority of precipi-

tation, and certainly snow, falls in the upper basins where elevations are highest. SWE

measurements from the upper basins, thus, provide a good measure of the total precip-

itation contributing to spring streamflows in the Truckee and Carson Rivers. Basin

averages of SWE are calculated using the method employed for the NRCS web site.

The SWE depth from every station in the basin is summed and then divided by the

sum of the long-term averages for each of the stations (Tom Pagano, 2003). This aver-

age gives more weight to heavier snow producing sites. Because basin averages are

measured in terms of percent of normal, this averaging method makes sense in terms

of calculating the total spring runoff-- the sites which contribute the most to the total
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runoff should carry more weight. For example, we compare two hypothetical sites one

with a long-term SWE average of 60 inches and the second with a long-term average

of 5 inches. If, in a given year, each site receives 5 inches above the average, the 60

inch site would report a 108% of normal snowpack and the 5 inch site would report a

200% of normal snowpack. Clearly, the total basin runoff in this year will be much

closer to 108% of normal than to 200% of normal, suggesting that higher value sta-

tions should get more weight. The basin average SWE method does not account for

missing data (i.e., at specific stations) in any given year. If the data is missing, that site

is left out of the average in that year. Also, the method does not account for higher

variability sites. These issues could potentially introduce bias into the basin average

(Clark et al., 2001). To correct for such baises, Clark et al. (2001) calculate z scores for

each station (by subtracting the long-term mean and dividing by the stadnard devia-

tion), calculate a basin-wide z score and then convert back to SWE units. For compar-

ison with current forecasting tehcniques (which use NRCS basin averages), we use the

NRCS averaging method. 

For the large-scale atmospheric circulation variables such as SSTs, geopoten-

tial heights, and winds, we obtain monthly averages of the NCEP/NCAR re-analysis

data (Kalnay et al., 1996) for the 1949 to 2003 time period. These data sets are avail-

able from the CDC website given above. The re-analysis data are computed by run-

ning a global atmospheric circulation model that is initialized with observed global

atmospheric data every six hours. As a result, all atmospheric circulation variables are

available on a regular 2.25° grid at several levels - for details refer to Kalnay et al.

(1996).

2.2.2 Methodology

Through climate diagnostics, we analyze the influence of large-scale climate

features on streamflow in the Truckee and Carson Rivers. The primary purpose for
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performing these climate diagnostics is to gather information regarding the physical

mechanisms that drive spring streamflow in the basins as well as to establish predic-

tors that can be used in a forecasting model. 

Though it is well known that these basins are snowmelt dominated, we first

analyze their climatology to better establish the timing of precipitation and runoff. We

examine the interannual and seasonal variability of streamflow and precipitation and

demonstrate the relationship between the two variables. Next, we perform a correla-

tion analysis to resolve which atmospheric circulation features are relevant to the

basins. Correlations between spring streamflow in the Truckee and Carson Rivers and

various winter and fall atmospheric circulation features are presented as contour maps.

The contour maps cover the Pacific Ocean region and the contours represent the corre-

lation values between streamflow and climate variables at every point on the 2.25°

grid. Correlations are deemed statistically significant using standard t-test methods as

presented by Helsel (1995). The 95% significance level for correlations in this analysis

is 0.27--correlations above this level are considered significant. We next perform a

composite analysis to establish the physical relevance of the statistically significant

variables. A composite analysis takes a group of selected years and presents the domi-

nant atmosphere and ocean circulation patterns during these years. Specifically, we

analyze atmosphere and ocean features in high and low streamflow years. The correla-

tion and composite analyses are conducted using the CDC web-based analysis tool

available at the CDC website given above. All correlation and composite images are

generated using this analysis tool. Finally, based on the above analyses, we establish

indices to be used as predictors in the forecasting model. Climate indices are taken as

area averages of the regions of highest correlation for the various relevant climate

variables. 
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2.2.3 Results: Climatology Analysis

Figure 9 presents the average monthly streamflows for the Truckee and Carson

Rivers at Farad and Ft. Churchill, respectively. The plot demonstrates that the bulk of

the annual streamflow in both rivers comes in the springtime, specifically during the

months of April, May, and June. Streamflow in the remaining months is relatively

small.

Figure 10 illustrates the monthly average precipitation for the Sierra Nevada

region. Precipitation is highest in the winter months of December to February, with a

significant amount also falling in November and March. Based on Serreze et al.'s

(1999) estimate that 67% of precipitation in the Sierra Nevada's falls as snow, we

deduce that most winter precipitation falls in the form of snow. Precipitation stored as

snow in mountains throughout winter is released as runoff in spring when tempera-

tures rise, causing the spring pulse evident in Figure 9.

Figure 9: Average monthly streamflow volumes for  the Truckee and Carson Riv-
ers (based on the 1949-2003 per iod)
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Figure 11 and Figure12 show the timeseries of spring runoff (measured as

total April to July streamflow) and winter precipitation (measured as April 1st SWE),

respectively, in the Truckee and Carson Basins for the period 1949-2003. The figures

demonstrate the high interannual variability in seasonal precipitation and streamflow.

In the water-stressed basin, where all available water is allocated, there often isn't

enough water to meet demands. Water managers in the basin must understand and pre-

dict the variability in the supply in order to efficiently manage the basin. 

Figure 13 presents the scatterplot of end of winter SWE and spring runoff in

the Truckee and Carson rivers. There is a high degree of correlation between winter

SWE and spring runoff. The top figures represent the correlations for the Truckee

River; the bottom for the Carson River. The left figures are for March 1st SWE; the

right for April 1st. Not surprisingly, April 1st SWE correlates better with spring runoff

than March 1st SWE. Correlation values are 0.80 for the Truckee with March 1st

SWE, 0.81 for the Carson with March 1st SWE, 0.93 for the Truckee with April 1st

SWE and 0.90 for the Carson with April 1st SWE. April 1st SWE provides a more

Figure 10: Average monthly precipitation for  the Sierra Nevada mountain cli-
mate division (based on the 1949-2003 per iod)
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Figure 11: Spr ing streamflow in the Truckee and Carson r ivers for  the per iod 
1949 to 2003. The top figure shows the Truckee River  spr ing streamflow; the bot-
tom show spr ing streamflow for  the Carson River. The spr ing streamflow is taken 
as the total volume for  the months Apr il to July

Figure 12: Apr il 1st SWE in the headwater  regions of the Truckee and Carson 
r ivers for  the per iod 1949 to 2003.   SWE is taken as a basin-wide average and 
represented as a percent of normal value.
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accurate representation of the total snow available for runoff in the April to July sea-

son. March 1st SWE, however, also correlates well with spring runoff and offers the

opportunity for an earlier forecast. The scatter for the Truckee River is tighter than that

for the Carson River. One possible reason for the lower correlation in the Carson is

that the Carson Basin has significantly fewer snow measurement stations than the

Truckee Basin (7 stations for the Carson versus 17 for the Truckee), limiting the accu-

racy of a basin-wide SWE value. The USBR is currently coordinating with the NRCS

to install more snotel stations in the Carson Basin. Another potential source of the

lower correlation values is that the natural streamflow values for the Carson are, in

fact, the gaged streamflow values at Ft. Churchill. With over 35,000 irrigated acres

before the Ft. Churchill gaging station, it is unlikely that the gaged streamflow is a pre-

cise representation of natural streamflow. Having noted this, the plots nevertheless

Figure 13: March 1st (left) and Apr il 1st (r ight) SWE versus spr ing runoff vol-
ume in the Truckee (top) and Carson r ivers for  the per iod 1949 to 2003.   SWE is 
taken as a basin-wide average and represented as a percent of normal value.
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portray a strong correlation between SWE and the total spring streamflow at both

Farad and Ft. Churchill. These correlation values are statistically significant, indicat-

ing the potential for using SWE as a predictor to spring runoff in both rivers. 

2.2.4 Results: Correlation Analysis

In the correlation analysis, we correlate spring streamflows in the Truckee and

Carson Rivers with winter indices of the dominant teleconnection patterns (i.e., ENSO

and PDO) as well as general oceanic and atmospheric circulation variables (e.g., SST

and pressure). Correlations between spring streamflow and the dominant winter tele-

connection indices Nino3, Nino3.4, SOI and PDO are not statistically significant. This

is not surprising, given that climate (and streamflow) anomalies in specific regions are

sensitive to subtle shifts in atmospheric circulation patterns; shifts that are not well

described by the standard teleconnection indices. We therefore analyze the oceanic

and atmospheric circulation variables related to these larger dominant teleconnection

patterns: SST and pressure. The winter SSTs and 500mb geopotential height pressure

variables over the Pacific Ocean correlate strongly with spring streamflows in the

Truckee and Carson Rivers. We use the 500mb geopotential height pressure variable

because it is smoother than the SLP variable. Results from the analysis of these vari-

ables are presented below.

Figure 14 presents the correlations between the oceanic and atmospheric vari-

ables over the Pacific Ocean in winter (December to January) and the runoff during the

following spring (April to June) in the Carson basin. Figure14(a) illustrates the

500mb geopotential height correlation and Figure 14(b) depicts the SST correlation.

Figure 15 similarly, presents the correlations for the Truckee basin.  

Figure 14 and Figure15 demonstrate that winter climate over the Pacific

Ocean correlates strongly with streamflow in the Truckee and Carson Rivers in the fol-

lowing spring. In particular, the 500mb geopotential height pressure variable off the
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coast of Washington has a strong negative correlation (-0.7) with spring streamflow.

This means when pressure in this region is below average in winter, streamflow in the

Truckee and Carson Rivers the following spring will likely be above average. Simi-

larly, the sea surface temperature in the northern mid-Pacific Ocean in winter has a

strong positive correlation (0.5) with spring runoff; above average sea surface temper-

ature in this region in winter indicate above average runoff the following spring in the

Figure 14: Carson River  spr ing streamflow correlated with winter  (a) geopoten-
tial height 500mb and (b) sea sur face temperature

Figure 15: Truckee River  spr ing streamflow correlated with winter  (a) geopoten-
tial height 500mb and (b) sea sur face temperature
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Truckee and Carson Rivers. To the east of this region, the SSTs exhibit a negative cor-

relation with the spring streamflows. The physical significance of these correlations

will be described in the following section. 

It is not surprising that the climate correlation patterns are very similar for both

rivers. Because the headwaters to the Truckee and Carson Rivers are very close in

proximity, they are affected by many of the same weather patterns.

Correlations between spring streamflows and climate variables from the pre-

ceding fall are shown in Figure 16. The correlations in fall, though somewhat weaker

than those for winter (-0.5 for the geopotential height 500mb and 0.4 for the SST),

could provide early information about streamflow to come the following spring--

before SWE data is even available. It can be seen that these patterns are similar to the

winter patterns (Figure14). This persistence in atmospheric circulation patterns

enhances the possibility of longer lead-time forecasts.

It is generally believed that the large-scale ocean-atmospheric patterns are per-

sistent over time. To confirm that the patterns provide important information over

time, we correlate the spring streamflows with the large-scale climate variables in suc-

Figure 16: Carson River  spr ing streamflow correlated with fall (a) geopotential 
height 500mb and (b) sea sur face temperature

 

(b)(a)
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cessive three month seasons starting with the preceding July (e.g., July-Sept., Aug.-

Oct., Sept.-Nov., etc.). For each map we take the correlation value for the geopotential

height and SST regions discussed above. We then plot the correlation values as they

increase with time. This is shown in Figure17. Though correlations are strongest for

the winter months, Figure17 illustrates that correlations are significant in fall and

even late summer.

This approach of developing correlation maps and identifying the relationship

to large-scale climate variables is much more comprehensive than correlating with

standard indices such as the Nino3, Nino3.4, SOI, PDO, etc. In the latter, if the corre-

lation is weak with these indices, one might erroneously conclude a lack of relation-

ship with the large-scale climate phenomenon when in fact the correlation maps with

SSTs and geopotential heights might indicate otherwise. For instance, the correlation

between the spring streamflows in Truckee and Carson are very low (statistically

insignificant) with winter Nino3, Nino3.4, SOI and PDO indices. However, the spatial

correlation maps clearly indicate a relationship with northern Pacific geopotential

Figure 17: Persistence of geopotential height and SST correlations for  months 
pr ior  to spr ing runoff
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heights and SSTs which are part of the general PNA, PDO and ENSO patterns. The

standard teleconnection patterns describe variations in the amplitude of the PNA wave

train in specific locations. These variations may not be important in the Truckee-Car-

son Basin, therefore we find the exact patterns that are important.

2.2.5 Results: Composite Analysis

To understand the physical mechanisms driving the correlation patterns seen

above we perform a composite analysis. In this analysis, years are grouped according

to flow characteristics (i.e., the six years above the 90th percentile of streamflows and

the six years below the 10th percentile of streamflows). Average ocean-atmospheric

patterns for the selected years are obtained for each grid point around the globe. Spe-

cifically, we examine the SSTs and vector winds in the northern Pacific and plot the

patterns in high streamflow years and again in low streamflow years. The resulting

patterns provide insights into the physical link between the geopotential heights and

SSTs and spring streamflows in the Truckee and Carson rivers. The SSTs are shown as

colors, while the vector winds are shown as arrows-- the length of the arrows indicate

the strength of the winds.

Figure 18 presents the vector winds in the six highest streamflow years (a) and

the six lowest streamflow years (b). Figure19 similarly presents the SSTs in high (a)

and low (b) streamflow year. Figure20 illustrates the difference of vector winds and

SSTs between high and low streamflow years.  (For the high minus low composite

plot, an average SST or wind vector is computed at each grid point for the high years,

again for the low years, and then the two values are differenced.) The SST plots

exhibit a similar pattern to that in the correlation plots (Figure 14)-- warm SSTs in the

north mid-Pacific in high streamflow years and cool SSTs in this region in low stream-

flow years. The high minus low composite map shows that the SSTs across the north

Pacific exhibit a dipole pattern of warmer SSTs to west and cooler SSTs to the east--
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also seen in the correlations analysis (Figure14). The winds in high streamflow years

show a counterclockwise rotation around the region off the coast of Washington-the

region of highest correlation detected in the correlation analysis (Figure14). The

opposite wind rotation is seen in low streamflow years. 

The Coriolis Force causes winds in the northern hemisphere to move in a coun-

terclockwise rotation pattern around a region of low pressure. This can be seen in the

Figure 18: Climate composites: vector  winds in high (a) and low (b) streamflow 
years

Figure 19: Climate composites: SSTs in high (a) and low (b) streamflow years 
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low pressure region off the coast of Washington. This process enhances southerly

winds to the area southeast of the low pressure region-- in this case the headwaters of

the Truckee and Carson Rivers. Southerly winds carry warm, moist air, thereby

increasing the chance of precipitation (in this case snow) when the air rises and cools

as it encounters the Sierra Nevada Mountains. Increased snowfall consequently

increases spring streamflows. This explains the physical significance of the negative

correlation between pressure and streamflow in the Truckee and Carson Basins.

The SST pattern, on the other hand, is a direct response to the pressure and

winds. The winds are generally stronger to the east of a low pressure region-- this

increases the evaporative cooling and also increases upwelling of deep cold water to

the surface. Together, they result in cooler than normal SSTs to the east of the low

pressure region. The opposite is true on the west side of the low pressure region. Thus,

in the mid-latitudes it is typical to see a low pressure region lying between cooler than

normal SSTs to the east and warmer than normal SSTs to the west. A schematic of this

plausible physical mechanism is shown in Figure21.

Figure 20: Climate composites: high minus low streamflow years (a) sea sur face 
temperature and (b) vector  winds

 

(b)(a)
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2.2.6 Predictor  Indices

Based on the correlation and composite analyses, we develop climate indices

by averaging the ocean-atmospheric variables over the areas of highest correlation.

Figure 22 illustrates the making of the geopotential height and SST indices.  We com-

Figure 21: Schematic of physical mechanism relating a low pressure pattern in 
winter  in the nor thern Pacific to spr ing streamflows in the Truckee and Carson 
Rivers.

Figure 22: Geopotential height (a) and SST (b) correlation plots. The boxes indi-
cate the regions used in creation of the indices

L

 

(a) (b)
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pute area averages for the regions inside the boxes depicted in Figure22. Specifically,

the gridded geopotential heights over the region 225-235° E and 42-46° N and the

SSTs over the region 175-185° E and 42-47° N are averaged for each year - thus,

resulting in a time series of the indices. For the winter index, we compute December to

February averages, and for the fall, September to November averages.

Figure 23 shows the scatterplot of the geopotential height index (fall and win-

ter) versus runoff the following spring. We use local regression (Loader, 1999) to fit

the spline shown in the scatterplot. (Details of this method are provided in Chapter 3,

“Nonparametric Stochastic Forecasting Model.” ) A strong relationship exists between

the spring streamflows and both winter and fall indices. The relationship, however, is

not directly linear. While normal and above normal streamflow values express a

nearly-linear negative relationship with the geopotential height index, the relationship

Figure 23:  Scatter  plots of winter  (left) and fall (r ight) geopotential height index 
and spr ing runoff in the Truckee (top) and Carson (bottom) r ivers.
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breaks down for lower streamflow values - thus providing a non-linearity. The tight-

ness of the scatter and the high correlation value signify the potential for using the

index as a predictor to streamflow in a forecasting mode.

Figure 24 presents the relationship between the SST index and runoff the fol-

lowing spring. Though correlation values are statistically significant, the relationship

is nonlinear. A large amount of scatter for the normal SSTs indicates that the index

may not be as useful in forecasting in normal SST years. 

Figure 25 shows the surface plot of the geopotential height index, the SST

index and the Truckee River spring runoff. Results are similar for the Carson. The

nonlinearities among all three variables are apparent in the undulations of the surface

plot. If the relationships were linear, the plot would appear as a flat sheet.  The SST

Figure 24: Scatter  plots of winter  (left) and fall (r ight) SST index and spr ing run-
off in the Truckee (top) and Carson (bottom) r ivers
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has a stronger relationship with streamflow when geopotential height index is low.

When the geopotential height index is high, streamflow does not vary significantly

with the SST index. Similarly, the geopotential height index has a stronger correlation

with spring runoff when the SST index is low, and a weaker correlation with spring

runoff when the SST index is high. The nonlinearities evidenced in this plot under-

score the complex relationship between the SST index, the geopotential height index,

and spring runoff in the Truckee River. The use of local regression techniques is neces-

sary if any useful information is to be gleaned from these indices.

2.3 Summary and Conclusions

Growing evidence from past studies supports the hypothesis that large-scale

atmospheric circulation patterns affect the hydroclimate in the western United States.

Researchers have conducted many studies that demonstrate various atmosphere-

Figure 25: Three dimensional plot of geopotential height index, SST index and 
spr ing runoff in the Truckee River
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ocean-land relationships. Many of the studies focus on large-scale patterns (such as

ENSO and PDO) that impact weather around the globe. Several studies demonstrate a

link between these climate patterns and flooding and drought in various regions of the

western United States. Other studies have utilized the relationships for forecasting pre-

cipitation and streamflow. Research shows, however, that these relationships are

highly nonlinear and their physical mechanisms are not fully understood. 

We conduct our own analysis to determine the prominent patterns that affect

hydroclimate in the Truckee and Carson basins. The basins are clearly snowmelt dom-

inated, thus we analyze winter atmospheric circulation patterns to glean useful infor-

mation that may affect runoff the following spring.   Correlation analysis results show

that winter large-scale ocean-atmospheric patterns over the Pacific Ocean strongly

modulate the year to year variations of spring runoff in the basins. Particularly, 500mb

geopotential height and SST demonstrate a strong relationship with the spring runoff.

The persistence of these circulation patterns into fall enhances the prospect of a

longer-lead forecast using the large-scale climate information. The composite analysis

provides a physical explanation of the pressure-streamflow relationship. Based on our

analysis we develop climate indices to be applied later in a forecasting model.



48

Chapter  3

Nonparametr ic Stochastic Forecasting Model

An improved model is required to predict spring runoff in the Truckee and Car-

son Basins to better facilitate operation and management of the rivers. Specifically, the

seasonal forecasting model will help establish allowable diversions through the Truc-

kee Canal to the Newlands project as well as reservoir releases for fish. The spring

forecast is of particular importance in the Truckee-Carson river system. Because run-

off from spring snowmelt accounts for nearly two-thirds of the total annual stream-

flow, forecasting this total volume is imperative. It is also important to disaggregate

this volume into monthly values throughout the season, as monthly forecasts deter-

mine storage targets for Lahontan Reservoir. Furthermore, the forecasting model

should quantify the uncertainty of the forecast to allow water managers to plan for

extreme scenarios. Finally the model must be easy to use and to implement into the

existing operational procedures.   This chapter describes the development of a non-

parametric stochastic model for forecasting spring runoff. The model uses the large-

scale climate predictors identified in Chapter 2 and provides ensemble forecasts of

spring streamflows, thus quantifying the uncertainty of the forecast. This chapter pre-

sents the forecasting model, its predictive ability and the results obtained from it. 
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3.1 Introduction

3.1.1 Need for  an improved forecasting model 

The USBR Lahontan Basin Area Office (LBAO) is currently searching for an

improved forecasting model to use for watershed management and decision-making.

Accuracy of forecasts has become evermore important in the water-stressed Truckee

and Carson River Basins. With the implementation of revised OCAP in recent years,

the release of water quality credit water for fish, as well as diversions through the

Truckee Canal, depend heavily on the seasonal forecast. The current USBR forecast-

ing model is limited in its skill, estimation of uncertainty, and lead-time. The model

does not always predict the spring runoff to a required accuracy level and in certain sit-

uations can adversely affect the efficiency and management of the basin. Though flex-

ibility has been built into the system to accommodate for errors, it is not uncommon to

divert or release too much or too little water based on an inaccurate forecast. The lead-

time provided by the USBR forecasting model also leaves room for improvement. The

model employs snowpack information as the basis of the forecast, therefore spring

runoff can be predicted from January 1st at the earliest. Though current basin policies

do not require a seasonal forecast earlier than January, water managers could benefit

from advance notice of the coming water season (Scott, 2002). Furthermore, the Janu-

ary forecast is highly provisional due to the fact that only a small proportion of the

total seasonal snow has fallen by the end of December. A forecasting model that is not

limited to solely snowpack information could provide better skill in the early winter

months. Finally, there is a need to improve the quantification of uncertainty in the

forecasts. While the current forecasting methods do provide probabilistic forecasts,

these forecasts are based on the assumption that the data are normally distributed and

do not capture the true probability distribution. The importance of planning for

extreme events such as floods and droughts underscores the need for a reliable sto-

chastic model. In this study, we develop a forecasting model to address all these needs. 
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3.1.2 Background

Streamflows can be modeled and forecasted by a number of different methods,

including physically-based (deterministic) methods and statistically-based (empirical)

methods. The streamflow in the Truckee River, for example, is currently being mod-

eled using the deterministic Precipitation Runoff Modeling System (PRMS) (Leaves-

ley et al., 1996) as well as the empirical regression models of the USBR and the

NRCS. Deterministic models such as PRMS aim to emulate hydrologic processes by

modeling basin response (e.g., streamflows and sediment yields) to various combina-

tions of precipitation, climate, and land use. Deterministic models, however, typically

have several parameters to be calibrated, thus requiring large amounts of data. Empiri-

cal models developed by the USBR and the NRCS seek to capture the underlying rela-

tionship between various hydrological parameters (e.g., streamflows and snowpack)

through statistical methods such as linear regression. While each of the models cur-

rently used in the Truckee-Carson Basin has its advantages, the forecasts produced are

not as accurate as needed for efficient and effective management of the system and the

USBR LBAO is seeking an improved model. 

This research develops a nonparametric statistical forecasting model. We

choose a statistical model because, in general, statistical models require less initial

data and parameters and do not need to be calibrated like deterministic models do. The

model developed in this research aims to improve on existing models not only by

improving the accuracy of the forecast, but also by providing a longer lead-time and

better quantifying the uncertainty of the forecast. Because the model utilizes snowpack

information as well as large-scale climate information, it can forecast from fall and

provide water managers with an early perspective in planning for the coming water

season. Later forecasts increase in skill and can be used operationally. The model pro-

duces ensemble forecasts which provide reliable exceedence probabilities to be used

in planning for extreme events. The forecasting technique has no underlying data
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assumptions, and hence can better capture the probability distribution of the forecast.

Existing statistical forecasting methods are briefly discussed, followed by a descrip-

tion of the methods employed in this study and the results from the application to the

Truckee-Carson Basin.

Effective river basin planning and management requires the ability to model

streamflow variability. Stochastic models capture streamflow variability by generating

ensembles-- multiple scenarios of plausible streamflow values which include extreme

events such as floods and droughts and which preserve the statistics of the observed

data. The ensembles can be used to quantify the uncertainty of the forecast and to cal-

culate exceedence probabilities. Both statistically-based and physically-based models

can generate ensemble forecasts. For example, PRMS utilizes the National Weather

Service’s Ensemble Streamflow Prediction (ESP) method to couple multiple scenarios

of precipitation (specifically, all data from the historical record) with initial conditions

(e.g., soil moisture) to generate multiple runoff timeseries. Empirically-based stochas-

tic models often selectively sample from the range of past streamflow data to generate

ensembles. In both frameworks, the models operate on the premise that the statistics

(mean, standard deviation, lag (1) correlation, and skew) of the historical flow (or pre-

cipitation) are likely to occur in the future, i.e. the stationary assumption. 

Traditional statistical forecasting techniques fit a regression, often linear,

between the response variable (e.g., spring streamflows) and the independent variables

(e.g., predictors). They are of the form:

Eq. 3.1  

Where the coefficients a1, a2,…, ap are estimated from the data. The error, e, is

assumed to be normally distributed with mean 0 and standard deviation 1.

In the above model, the independent variables can be past values of the

yt a1x1t a2x2t … apx
pt

+ + + et+=
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response variable itself:

Eq. 3.2  

These models are termed autoregressive moving average (ARMA) and peri-

odic autoregressive (PAR) models. Hydrologists have developed and used such mod-

els for streamflow simulation and forecasting for many years (Salas 1985, Yevjevich

1972, and Bras and Iturbe 1985). 

These traditional modeling techniques are termed “parametric”  because they

are based on estimating parameters (e.g., determining the coefficients) to fit the model.

Parametric models inherently assume that the time series is normally (Gaussian) dis-

tributed (Salas, 1985). Typically, streamflow data do not fit a Gaussian distribution,

thereby violating this assumption. To address this, the data are transformed to a normal

distribution using a log or power transformation before fitting a parametric model to

the transformed data (Sharma et al., 1997). The forecasted values are then back-trans-

formed into the original space. This process of fitting the model on the transformed

data and then back transforming it often does not guarantee the preservation of statis-

tics (Sharma et al., 1997; Salas, 1985; Bras, 1985; Benjamin, 1970). There is rich liter-

ature for fitting and testing such models and software packages are extensively

available (Helsel and Hirsch 1992). Such models have been widely used for hydrocli-

mate forecasting in the US (e.g., Piechota et al., 2001 and Cordery and McCall, 2000).

While parametric models generally preserve the mean, variance, and auto-correlations

of a data set, skewness is approximated and further uncertainty is introduced through

estimating model parameters. The inability to reproduce skew and bimodality, as well

as the model uncertainty introduced through parameter estimation can significantly

influence model results.

Nonparametric forecasting models were developed to address the drawbacks of

yt a1y
t 1–

a2y
t 2–

apy
t p–

et+ + +=
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parametric models. Nonparametric models, unlike parametric models, are assumption

free and are driven by the data alone. Nonparametric models do not assume any under-

lying distribution in the data. No parameter estimations or data transformations are

necessary. Nonparametric models estimate the marginal and conditional probability

density function locally and hence capture any arbitrary relationship in the data, linear

or nonlinear, Gaussian or non-Gaussian. Several types of nonparametric models exist

for streamflow forecasting. These include the kernel based (Sharma et al., 1999), near-

est neighbor based (Lall and Sharma, 1996), and hybrid parametric/nonparametric

models (Srinivas and Srinivasan, 2001). This research employs nonparametric fore-

casting techniques, the further benefits of which will be expanded upon later in this

chapter.

3.2 Seasonal Forecasting Model

3.2.3 Modified K-NN Method

The seasonal forecasting model developed in this study utilizes the nonpara-

metric modified k-nearest neighbor (K-NN) approach developed by Prairie (2002) to

generate ensemble forecasts of streamflow. The forecasts draw on the strong statistical

correlations and physical relationship between winter (and fall) large-scale climate

signals and the total spring runoff in the Truckee and Carson Rivers. The modified K-

NN model fits a nonparametric relationship using local polynomials (Loader, 1999)

between the predictors (500mb geopotential height, SST, and basin averaged SWE)

and the spring streamflows. For the given winter (or fall) predictors, the fit is used to

estimate the mean streamflow for the following spring. The residuals of the fit are then

resampled and added to the mean forecast to obtain the ensemble forecast. A weight-

ing scheme is used in the bootstrap of the k-nearest regression residuals, giving more

weight to the closest neighbors, less weight to the farthest. 

The local polynomial fit for the mean forecast (an assumption free, nonpara-
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metric approach) has the ability to capture any arbitrary (linear or nonlinear) depen-

dence structure. The coupling of this with the residual resampling provides the

capability to capture any arbitrary dependencies and probability density functions

exhibited by the data, unlike conventional methods that can capture only linear depen-

dence and Gaussian probability density functions. Once the ensemble of the total

spring runoff is obtained, we apply similar techniques to disaggregate the total volume

into monthly values which are used to set storage targets on Lahontan Reservoir. 

The modified K-NN algorithm, adapted from Prairie (2002) to work with mul-

tiple predictors in this research, is outlined below:

1.A local polynomial is fit to the flow regressed on the three predictors, x, y, z:

Eq. 3.1  

2.The residuals (et
*) from the fit are saved.

3.Given the three predictors for the current winter (or fall), the mean flow from

Equation 3.1 is estimated.

4.The Euclidean distance between the current set of predictors and the sets of

predictors for all other years is calculated and k-nearest neighbors are

selected.

5.The neighbors are weighted using the weight function:

Eq. 3.2  

This weight function gives more weight to the nearest neighbor and less

weight to the farthest neighbor. The weights are normalized to create a

probability mass function or “weight metric” . Other weight functions with

Yt f x y z, ,( ) et+=
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the same philosophy- i.e., more weights to nearest neighbors and lesser

weights to farther neighbors can be used as well. Prairie (2002) found little

or no sensitivity to the choice of the weight function. 

6. Bootstrap the residuals. One of the neighbors is resampled using the

“weight metric”  obtained from Equation 3.2 above. Consequently, its resid-

ual (et) is resampled and added to the mean estimate.

7. Repeat 6 to obtain as many simulations as required (in this case, 100 simu-

lations provided reproducible ensemble statistics.) Repeat steps 1 through 6

for other years. 

Figure 26 and Figure27 can be utilized to better visualize these steps.

Figure 26 shows the scatter plot of the historical area-averaged winter geopotential

height index and spring runoff for the Carson River at Ft. Churchill. The solid line

shows a local (or nonparametric) fit through the scatter. The nonparametric fit is a

Figure 26: Local regression fit
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locally weighted regression scheme (Loader, 1999; Rajagopalan and Lall, 1998). At

any point in the regression, a local polynomial is fit to the k nearest neighbors. The

size of the neighborhood (i.e., k) and the order of the polynomial are obtained using an

objective criteria called Generalized Cross Validation (GCV). This estimation is at

several points to obtain the solid line in Figure26. We used the statistical package

LOCFIT developed by Loader (http://cm.belllabs.com/cm/ms/departments/sia/project/

locfit/) for fitting local polynomials. Because the forecasting model developed for this

research uses three predictors, the local regression fit is in a four-dimensional space.

The concept is the same as described for the two-dimensional example shown in

Figure 26.

Figure 27 depicts the bootstrapping of the residuals for the ensemble forecast.

Using the local regression we first obtain the expected (or mean) value for the forecast.

Figure 27: Residual resampling
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Given the current state of the system (i.e., the current winter geopotential height, SST

and SWE), we determine the spring runoff associated with this value (Yt
*). In the two-

dimensional example, this is obtained by taking the current geopotential height value

on the x-axis, moving vertically up to the local regression line and finding the y-value

associated with that point on the regression. This y-value is the expected value of the

spring runoff. Next, using a heuristic scheme, we define the “neighborhood” around

the current x-value to capture the k-nearest points, where k is defined as:

Eq. 3.3  

A point is next picked from the “neighborhood” with the stipulation that the

points with values closer to the current x-value (in this figure, the geopotential height)

have a greater chance of being selected and those further away have a lesser chance.

The residual (et
*) from the local regression associated with the selected point is then

added to the mean forecasted value (Yt
*) to obtain the first member of the ensemble

forecast. This process of resampling the residuals is repeated several times (here, 100

times) to obtain an ensemble forecast with 100 members. This is often referred to as

“bootstrapping”  the residuals. We tested various ensemble sizes and found little differ-

ence in forecast skill or ensemble statistics when the residuals were resampled more

than 100 times.

One significant advantage of the K-NN (or modified K-NN) framework is that

variables can be easily added in the predictor set--e.g., the number of predictors is not

limited and hence forecasts can incorporate hydrologic initial conditions (SWE or

accumulated precipitation), large-scale climate information, and any other relevant

predictors of streamflows in the basin. 

The flexibility of the method allows it to be used within any timestep frame-

work-- e.g., monthly forecasts as done by Prairie (2002), seasonal forecasts (from

k n=



58

either winter or fall) as presented in this chapter, etc. Seasonal forecasts can easily be

updated monthly to incorporate new initial conditions. Because nonparametric tech-

niques are data driven rather than distribution-fit driven, there is no need to re-parame-

terize the model for each updated forecast.

The modified K-NN model is an improvement on the traditional K-NN model

in that it is able to generate values not seen in the historical record. This modification

was first presented in Prairie (2002) and was briefly mentioned in the conclusion of

Lall and Sharma (1996) and Rajagopalan and Lall (1999). The traditional K-NN resa-

mples the actual points in the neighborhood, rather than adding the residuals associ-

ated with neighbors to the mean forecast. Desouza and Lall (2003) used the traditional

K-NN approach to streamflow forecast in northern Brazil and obtained very good

results.

A drawback of the modified K-NN technique, however, is that due to residual

resampling it is possible to produce negative flow values in extremely dry streamflow

years. If the expected value (mean forecast from the regression fit) is close to zero and

negative residuals are added to this, it is possible to produce negative ensemble mem-

bers. A method to address this drawback is to take a log transformation of the data

before fitting the model and then transforming the forecasted values back into the orig-

inal space. It is worth noting that nonparametric techniques such as the modified K-

NN, though capable of producing negative flow values, are bounded by the tails of the

probability distribution. The lowest possible value is the lowest historical value plus

the largest negative residual. For comparison, parametric techniques, which assume a

Gaussian distribution, are inherently unbounded in the possibility of streamflow val-

ues. Because the tails of a Gaussian distribution extend from -  to + , it is possible

to produce highly negative or positive streamflow values.

∞ ∞
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3.2.4 Model Ver ification and Skill Measure

In order to validate the forecasting model, we use standard cross-validation

techniques. We remove a streamflow value from the data set before fitting the model

and then use the model to produce an ensemble forecast of the “unknown” value. The

skill of the forecast is a measure of how adequately the model reproduces the

“unknown”  value. Boxplots of ensemble forecasts with the observed values overlaid

on top provide a visual comparison of how well the ensembles capture the observed

values. In addition to this visual comparison, we use three skill measures to evaluate

the model performance:

(i) Correlation coefficient of the median of the ensemble forecast and the

observed value.

(ii) Ranked Probability Skill Score (RPSS). 

(iii) Likelihood Function Skill Score.

The RPSS, typically used by climatologists, is used to quantify the skill of

ensemble forecasts. The RPSS verifies multicategory (in this case, above normal, nor-

mal, and below normal) probability forecasts by comparing the skill of the forecast rel-

ative to climatology. The term “climatology”  here refers to the streamflow one would

expect based only upon the long-term historical climate data (e.g., precipitation, tem-

perature) for the basin. For example, a climatological forecast in any year will present

the historical mean as the most expected streamflow value and a 10% chance of

exceeding the 90th percentile of the historical data. By defining the categories above

normal, normal, and below normal at the 33rd and 67th percentile of the historical data,

climatology presents an equal probability (0.33) of falling into each category. The

RPSS ranges from +1 (perfect forecast) to - . Negative RPSS values indicate that the

forecast has less accuracy than climatology. The RPSS essentially measures how often

an ensemble member falls into the category of the observed value and compares that to

a climatological forecast. The rank probability score (RPS) of the categorical forecast

∞
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P = (P1, P2, ... Pk) for a certain time is defined as:

Eq. 3.1  

for k mutually exclusive and collectively exhaustive categories. The vector

d (d1, d2, ... dk) represents the observation vector such that dn equals one if class n

occurs, and zero otherwise. The RPS has a range of zero to one and is positively ori-

ented (the higher the value, the better the forecast). (Toth, 2002)

The RPS is then used to calculate the rank probability skill score, RPSS:

Eq. 3.2  

(Toth, 2002).

The likelihood function is also used to quantify the skill of ensemble forecasts.

As with the RPSS, we classify three categories for the likelihood function: below nor-

mal, normal, and above normal with divisions at the 33rd and 67th percentiles. The

likelihood function compares the likelihood of the ensemble forecast falling into the

observed category against climatology to develop a skill score. The likelihood skill

score for the ensemble forecast in any given year is calculated as:

Eq. 3.3  

Skill scores range from 0 to the total number of categories-- 3 in this case.

A likelihood score of zero indicates no skill, a score of 1 indicates the same skill as cli-
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matology, and a skill score between 1 and the number of categories represents skill

better than climatology. The likelihood measure is generic and is related to informa-

tion theory (Rajagopalan et al., 2001).

3.2.5 Results

We first determine the optimal set of predictors by evaluating a model that uses

all three predictors (SWE, SST, and 500mb geopotential height) against a model based

on SWE and 500mb geopotential height data alone. Results show little or no improve-

ment in forecast skill when the SST index is included in the predictor set. Therefore, in

the interest of parsimony, we do not include the SST in the final forecasting model.

Though SST correlations coefficients determined in Chapter 2 are statistically signifi-

cant, the SST pattern is, at least in part, a response to the atmosphere-- hence providing

little independent information. It is possible that the SST pattern contains a component

which acts independently as a driving force for streamflow in the Truckee and Carson

Basins. The relatively low correlation coefficient, however, introduces error in the

model, thus decreasing any forecast skill that could be provided by an independent

driving force. GCV and other objective criteria can be used to formally select an opti-

mal set of predictors from a large suite of possible predictors. In linear regression, the

stepwise regression method is typically used. This research uses only three predictors,

therefore making it easy to perform an exhaustive search. All of the forecasting results

presented below include only the geopotential height index and SWE in the predictor

set. Results indicating the legitimacy of including the geopotential height index as a

predictor are also presented.

3.2.5.1 April 1st Forecast

Figure 28 illustrates the modified K-NN model’s ability to forecast each year

in the historical record using standard cross-validation techniques. This model uses

April 1st SWE and the winter (December to February) geopotential height index, mak-
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ing the forecast available April 1st. The solid line in the plots represents the historical

timeseries of spring runoff in the Truckee River (top) and Carson River (bottom). The

boxplots at each year illustrate the ensemble forecast in that year. The box portion of

the boxplots represent the interquartile range of the ensemble forecast (25th to 75th

percentile) with the horizontal line inside each box denoting the median of the forecast

(most probable value.) The whiskers of the boxplot extend to the 5th and 95th percen-

tiles of the ensemble forecast. Points outside the whiskers are outliers of the ensemble.

Larger boxplots indicate greater forecast uncertainty, or a wider range of possible

streamflow values in the ensemble. The dashed horizontal lines represent the quantiles

(5th, 25th, 50th, 75th, and 95th percentile) of the historical data and help the viewer

establish the relative streamflow in each year.

As demonstrated in Figure28, the model typically captures the observed value

within the interquartile range of the ensemble forecast, indicating fairly good skill in

Figure 28: Timeser ies of spr ing runoff with ensemble forecasts for  each year  
(1949-2003). The solid line represents the histor ical timeser ies. The boxplots rep-
resent the ensemble forecast issued from Apr il 1st in each year. The dashed hor i-
zontal lines represent the quantiles of the histor ical data (5th, 25th, 50th, 75th, and 
95th percentiles). The top figure is for  the Truckee River ; the bottom for  the Car-
son River.
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the forecast. The fact that the median of the ensemble is not in the center of the box

illustrates skew in the ensemble forecast-- a feature that linear techniques cannot pro-

duce. Representing skew in the ensemble is important in determining exceedence

probabilities of various forecasts.

Figure 29 shows the scatter plot of the median of the ensemble forecast and the

observed spring runoff. If the forecast were perfect in every year, the points in the scat-

ter plot would fall directly on the 45 degree lines shown in the figure. A larger amount

of scatter denotes more error in the median forecast. The r value of correlation is noted

in the lower right corner or each plot. 

The results presented in Figure29 demonstrate that, even without the added

benefit of quantifying uncertainty, the most probable forecasted value falls quite close

to the observed value. Forecasting results for the Truckee River (r=0.93) are slightly

better than those for the Carson River (r=0.87). As noted in Chapter 2, the correlation

coefficient between SWE and spring runoff is slightly lower in Carson Basin than that

in the Truckee Basin. Forecasters in the Truckee-Carson Basin historically have had

more difficulty forecasting runoff in the Carson River and believe this is partly due to

Figure 29: Median of Apr il 1st ensemble forecast vs. observed spr ing runoff for  
the Truckee forecast (left) and Carson forecast (r ight).
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the relative scarcity of snowpack data in the Carson Basin (Reynolds, 2002).

Figure 30 shows the scatter plots of the April 1st NRCS official forecast versus

the observed spring runoff. Historic forecast data from the USBR “similar years”

model are not available, therefore we analyze the NRCS forecast. The r values are

comparable to median of ensemble forecast results presented above: 0.93 for the Truc-

kee River and 0.88 for the Carson River. Based on this comparison, one might argue

that the model used in the research does not improve on the NRCS forecasting model.

This comparison, however, does not evaluate the added benefit of the ensemble fore-

casts produced in this research. Ensemble forecasts provide important information

regarding exceedence probabilities and the uncertainty in the forecast. The official

NRCS forecast does provide the 10th, 30th, 50th, 70th and 90th exceedence probabili-

ties. However, the ensemble forecasts generated in this research can be evaluated to

find exceedence probabilities for any threshold flow value that may be of particular

importance in the basin.

The graphs of Figure 31 and Figure32   emphasize the model’s ability to fore-

cast in extreme years. We select the years above the 90th percentile of the historical

Figure 30: NRCS forecast vs. observed spr ing runoff for  the Truckee River  (left) 
and Carson River  (r ight).
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Figure 31: Ensemble forecasts for  extremely wet years (above the 90th percentile). 
The solid line represents the observed spr ing runoff. The boxplots illustrate the 
ensemble forecast issued Apr il 1st of each year. The dashed hor izontal lines sig-
nify the quantiles of the histor ical data (5th, 25th, 50th, 75th, and 95th percentiles). 
The top figure is for  the Truckee River ; the bottom for  the Carson River.

Figure 32: Ensemble forecasts for  extremely dry years (below the 10th percen-
tile). The solid line represents the observed spr ing runoff. The boxplots illustrate 
the ensemble forecast issued Apr il 1st of each year. The dashed hor izontal lines 
signify the quantiles of the histor ical data (5th, 25th, 50th, 75th, and 95th percen-
tiles). The top figure is for  the Truckee River ; the bottom for  the Carson River.
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record (Figure31) and below the 10th percentile (Figure32) to test the model’s perfor-

mance in forecasting extreme wet and extreme dry years. The results demonstrate that

the model does a fairly good job of forecasting even these extreme streamflow values.

While the model does not always capture the extreme values within the interquartile

range of the data, the observed value is not far outside the range of possible stream-

flow values.

We calculate the RPSS for each forecasted year (i.e., 55 different skill scores)

and boxplot the results shown in Figure33. To ascertain the model’s skill in wet and

dry years, we boxplot the RPSS of those years separately, as well. We define wet as

those years with streamflow above the 75th percentile and dry as years below the 25th

percentile.  

The model performs quite well overall, doing a particularly good job in wet

years, with slightly decreased skill in dry years. Note that the scores are heavily

skewed toward the upper boundary (1) making the 95th percentile whisker difficult to

distinguish. For all categories (all years, wet years, dry years) the interquartile range of

the RPSSs is well above 0, indicating that overall, the model performs significantly

better than climatology. The median value of the skill scores are presented in Table1,

along with results from the likelihood skill measure.

Figure 33: Rank Probability Skill Score (RPSS): all years (a), wet years (b) and 
dry years (c).
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The results of the likelihood skill measure are presented in Figure34. Likeli-

hood results also show that the ensemble forecast performs significantly better than

climatology. For all categories, the interquartile range of the skill scores lies well

above 1. 

The median skill scores for the RPSS and likelihood function are presented in

Table1.Both skill measures indicate that the model performs better than climatology

in both rivers. The skill score for the Truckee River is slightly higher than that for the

Carson River. The model performs best in wet years, with a slight decrease in skill in

dry years.  

Figure 34: L ikelihood skill measure: all years (a), wet years (b) and dry years (c).

Table 1: Skill measure of the ensemble forecast in all years, wet years, and dry 
years.
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One of the benefits of ensemble forecasts is that they can be used to obtain

exceedence probabilities. This can be seen using plots of the probability density func-

tion (PDF) of the ensemble. Figure 35 presents the PDF of the ensemble forecast in a

below normal streamflow year (1992) on the Truckee River. Figure36 shows the PDF

of the ensemble forecast in an above normal year (1999) for the Truckee River. Plots

for the Carson River look similar to those presented for the Truckee. The climatologi-

cal PDF (i.e., the PDF of the historical data) is overlaid in these plots. 

Notice that in Figure35 and in Figure 36 the PDF of the ensemble forecast

shifts away from climatology, better capturing the runoff in the coming year. In 1992,

the streamflow in the Truckee River was 75 kaf, well below the average value. While

climatology shows an exceedence probability of 92 percent for that flow, the ensemble

forecast supports a much lower exceedence probability (49 percent) for the same flow,

more accurately representing the probability of that flow value. Similarly, for the

above average flow of 408 kaf in 1999, climatology suggests an exceedence probabil-

ity of 17 percent while the ensemble forecast shows a much higher probability of

exceedence (59 percent), better capturing the probability of the observed flow value. 

Figure 35: PDF on the ensemble forecast in a dry year  (1992)
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3.2.5.2 March 1st Forecast

All model results discussed thus far have utilized April 1st SWE in the model.

Here, we present results from a forecast based on March 1st SWE. Water managers in

the Truckee-Carson river system consider the April 1st forecast the most important for

seasonal operations and decision-making, however, preliminary forecasts issued prior

to April 1st are also used. Farmers use preliminary forecasts to help estimate their pro-

jected seasonal water demand and water managers perform preliminary model runs to

get an idea of what policies may have to be implemented in the upcoming water sea-

son-- including flood control measures. 

Figure 37 shows the scatter plot of the median of the ensemble forecast versus

the observed value and demonstrates that a forecast issued at the end of February has

considerable skill. The correlation value is 0.76 for the Truckee River and 0.75 for the

Carson River. The March 1st forecast skill is less than the April 1st skill; this is

expected because as forecast lead time increases, the resulting skill decreases.

Figure 38, Figure 39, and Table2 display the skill scores for the March 1st

forecast in all years, wet years, and dry years. Interestingly, the RPSS demonstrate bet-

Figure 36: PDF of the ensemble forecast in a wet year  (1999)
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ter forecast skill in the Carson than the Truckee, whereas the Likelihood function indi-

cates the opposite. This discrepancy highlights the differences in these skill measures,

indicating that various skill measures should be tested to gain true insight into the fore-

casting skill. Compared with the April 1st results (Table1), the March 1st results do not

show as significant of differences between all years, wet years, and dry years. Overall,

the skill scores indicate that the March 1st ensemble forecasts provide significantly

greater skill than climatology. This skill can be utilized to better prepare for the com-

ing water season (e.g., releasing water sooner than normal for increased flood storage,

or holding back on flood control measures in extreme dry years.)    

3.2.5.3 Fall Forecast

Figure 40 shows the fall forecast results: the scatter plot of the median of the

ensemble forecast versus the observed value. The forecast, issued at the end of

November, uses the September to November 500mb geopotential height index as a

model predictor. As SWE data is often unavailable at this time, no snowpack or pre-

cipitation information is incorporated in the forecast. The correlation coefficient

Figure 37: Median of March 1st ensemble forecast vs. observed spr ing runoff for  
the Truckee forecast (left) and Carson forecast (r ight).
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between the median forecasted value and observed value is 0.36 for the Truckee River

and 0.28 for the Carson River. These correlation coefficients, though much lower than

those for the April 1st and March 1st forecasts, are statistically significant and indicate

positive skill in the fall forecast.

Figure 38: March 1st RPSS: all years (a), wet years (b) and dry years (c).

Figure 39: March 1st likelihood skill score: all years (a), wet years (b) and dry 
years (c).

Table 2: March 1st skill measure of the ensemble forecast in all years, wet years, 
and dry years.
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Figure 41, Figure42, and Table 3 show the skill scores for the fall forecasts in

all years, wet years, and dry years.The skill scores indicate that a fall forecast does best

in capturing the wet years, with mild improvements over climatology in all years and

dry years. The RPSS shows more of an increase in skill in the wet years than the like-

lihood function. The RPSS also indicates no improvement over climatology in dry

years, whereas the likelihood function shows some improvement in every category: all

years, wet years, and dry years.    

Figure 40: Median of fall ensemble forecast vs. observed spr ing runoff for  the 
Truckee forecast (left) and Carson forecast (r ight).

Figure 41: Fall RPSS: all years (a), wet years (b) and dry years (c).
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The results and skill scores illustrate that there is substantial and useful skill in

the long lead time forecasts (as much as 5 months for forecasts issued in fall). The skill

improves significantly as the lead time decreases (i.e., going from fall to spring) and

provides useful information about the coming water season. A forecast issued in fall

gives water managers a look at the type of runoff season to come. The benefit of a

forecast from fall is not that water managers know the exact volume of spring runoff,

but that they have an idea of whether the coming season will be above average or

below average. Because current forecasting techniques only utilize snowpack informa-

tion, water mangers do not have the opportunity to utilize a fall forecast in their opera-

tions and decision-making. USBR engineers, however, believe that a forecast in fall

would definitely be helpful in planning for the coming water season (Scott, 2002).

Figure 42: Fall likelihood skill score: all years (a), wet years (b) and dry years (c).

Table 3: Fall skill measure of the ensemble forecast in all years, wet years, and 
dry years.
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3.2.5.4 Use of Climate in the Forecast: A Comparison

Though forecasters have used snowpack data in forecasting models for many

decades, combining SWE with large-scale climate information to forecast is a rela-

tively new technique (see Chapter 2 for details). We test the utility of including large-

scale climate information in the model by comparing the skill of a forecast which

includes both SWE and the geopotential height index as predictors against a forecast

based on SWE alone. 

As extreme wet and dry years affect management and decision making the

most, we first present the results for these years. Figure 43 and Figure44 show the

comparisons of incorporating large-scale climate information in the April 1st forecast

of extreme wet and dry years. (Extreme wet and dry years are defined as those years

with spring streamflow above the 90th percentile and below the 10th percentile, respec-

tively.) Figure 43 demonstrates that including the 500mb geopotential height index in

the predictor set significantly improves the forecast in extremely wet years. The

improvement in extremely dry years, though not as strong as in wet years, is also

apparent in Figure44. In both cases, the boxplots are tighter for the forecasts that uti-

lize the large-scale climate information, indicating less uncertainty in the forecast.

Figure 43: Incorporating large-scale climate information in the forecast: wet 
years

0
2

0
0

4
0

0
6

0
0

8
0

0

•

••
•

•••
•
•• •

•••

1952 1967 1969 1982 1983 1995

Truckee Wet Years (Using Climate Index)

A
M

J
J
 V

o
lu

m
e

 (
k
a

f)

0
2

0
0

4
0

0
6

0
0

8
0

0

••

•
•
•
•••

1952 1967 1969 1982 1983 1995

Carson Wet Years (Using Climate Index)

A
M

J
J
 V

o
lu

m
e

 (
k
a

f)

0
2

0
0

4
0

0
6

0
0

8
0

0

•

1952 1967 1969 1982 1983 1995

Truckee Wet Years (No Climate Index)

A
M

J
J
 V

o
lu

m
e

 (
k
a

f)

0
2

0
0

4
0

0
6

0
0

8
0

0

•

••

1952 1967 1969 1982 1983 1995

Carson Wet Years (No Climate Index)

A
M

J
J
 V

o
lu

m
e

 (
k
a

f)



75

We next analyze the benefit of including the geopotential height predictor

when forecasting all years in the historical record (rather than only extreme wet and

dry years). We look at the comparison for each monthly forecast starting from a

November 1st forecast through to the April 1st forecast. Forecast skill is presented in

terms of (i) the correlation coefficient between median of the ensemble forecast and

the observed value, (ii) the RPSS, and (iii) the likelihood function.

Figure 45 shows the correlation coefficient between the median of the fore-

casted ensemble versus the observed value for each monthly forecast. The results

show that the mean forecast is closer to the observed value if the geopotential height

index is included in the set of predictors. This is true for each monthly forecast (though

less so in the later months) on both rivers. Note that the November 1st and December

1st forecasts use only the geopotential height index as a predictor. No forecast is avail-

able during these months if only SWE information is used. The difference in skill is

most pronounced in the long lead forecasts, indicating that initial conditions (i.e.,

SWE) provide better information later in the forecasting season. 

Figure 46 shows the RPSS for all years for each monthly forecast.  The RPSS

results, too, demonstrate that incorporating the 500mb geopotential height as a predic-

Figure 44: Incorporating large-scale climate information in the forecast: dry 
years
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tor adds skill to the forecast. While the correlation coefficient discussed above mea-

sures the skill of the mean of the ensemble forecast, the RPSS measures the skill of the

entire forecast distribution (i.e., including the spread). It is interesting to note that

when the entire ensemble forecast is considered (i.e., as with the RPSS), using both

SWE and the geopotential height index produces significantly better results even for

the March 1st and April 1st forecasts. One also might note the decrease in skill on the

Truckee River when moving from the December 1st forecast to the January 1st fore-

cast. This could be due to the fact that January SWE data is highly provisional and

Figure 45: Incorporating large-scale climate information in the forecast: correla-
tion coefficient for  monthly forecasts from November 1st through Apr il 1st for  the 
Truckee (a) and Carson (b) Rivers.

Figure 46: Incorporating large-scale climate information in the forecast: RPSS 
for  monthly forecasts from November  1st through Apr il 1st for  the Truckee (a) 
and Carson (b) Rivers.
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including this information may introduce significant error into the forecast. The

decrease could also be due to the January SWE data starting in 1966, rather than 1949,

meaning that the January regression contains 17 fewer points than the regressions for

other months. Regardless, the results show that including the climate information pro-

vides significant skill. 

Figure 47 shows the likelihood scores for all years for each monthly forecast.

Similar to the RPSS, the likelihood function measures the skill of the entire ensemble

forecast. The likelihood skill measure results also show that including the geopotential

height as a predictor increases the skill of the forecast.  

Clearly, including the geopotential height index as a predictor increases the

forecast skill. The SWE data provides important information regarding basin initial

conditions (i.e., the amount of snow currently available to affect runoff). The atmo-

spheric data, however, provides information about weather yet to come in the basin.

The geopotential height, for example, will include information about precipitation in

the month of April. This information is not captured in the April 1st SWE measure-

ment, but will nevertheless affect spring runoff. It is thus possible for atmospheric data

to increase forecast skill.

Figure 47: Incorporating large-scale climate information in the forecast: likeli-
hood score for  monthly forecasts from November  1st through Apr il 1st for  the 
Truckee (a) and Carson (b) Rivers.
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3.3 Seasonal to Monthly Disaggregation Model

In practice, for seasonal operations and planning, the monthly breakup (April,

May, June, and July) of the spring seasonal runoff is required. The monthly values are

used specifically to set target storage values on Lahontan Reservoir. Water managers

use the storage targets in determining the allowable diversions through the Truckee

Canal. They must establish how much water will come from the Carson River before

allowing depletions from the Truckee River. Water managers seek to meet the target

values so that Lahontan Reservoir will contain adequate water supplies throughout the

irrigation season. Storage targets are based partly on projected demands in the Truc-

kee-Carson Irrigation District (TCID) and partly on the forecasted water availability

from the Truckee and Carson Rivers. As stated in Chapter 1, however, sometimes

there is not enough water in either river to meet the storage target. 

Rather than making monthly forecasts, which may not mass-balance with the

total spring runoff forecast, we disaggregate the total volume into monthly propor-

tions. We use the K-NN approach described earlier in this disaggregation. First,

monthly fractions of the total spring runoff volume are computed for each historical

year. Given the current year’s seasonal forecasted runoff, we find k neighbors (i.e., his-

torical years) based on their closeness to this forecasted value. One of the k years is

resampled and consequently, the monthly proportions associated with it. Thus resam-

pled monthly proportions are applied to the current year’s seasonal forecast.

3.3.6 Results

Figure 48 displays the results of disaggregating the 1999 total seasonal volume

into monthly values. The solid line represents the April to July monthly volumes in

1999. The boxplots illustrate the ensemble forecast in each month. Results in other

years are similar. This monthly disaggregation scheme is preliminary and requires val-

idation and testing. However, the results are encouraging.
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3.4 Summary and Conclusions

Using the predictors determined in Chapter 2, we develop a nonparametric sto-

chastic model to forecast spring streamflows in the Truckee and Carson Rivers. The

nonparametric model uses a local polynomial approach for mean forecast and residual

resampling to provide ensembles, thus effectively capturing uncertainty. The method

offers a simple and flexible tool to model any arbitrary relationship present in the data.

Furthermore, this approach is data-driven with minimal assumptions, unlike the tradi-

tion parametric alternatives. The ensemble forecasts provide exceedence probabilities

which are useful to water managers. Results show that the incorporation of large-scale

climate information, specifically the 500mb geopotential height index, provides skill-

ful long lead time forecasts-- particularly in extreme streamflow years. A simple dis-

aggregation method based on the K-NN bootstrap also demonstrates the flexibility and

utility of the proposed approach. The application of these forecasts is demonstrated in

Chapter 4.

Figure 48: Disaggregation of total seasonal volume into monthly values: 1999. 
The solid line represents the observed monthly value in that year. The boxplots 
represent the ensemble forecast for  each month. 
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Chapter  4

Decision Support System

A water resources decision support system (DSS) provides important informa-

tion to water managers, lawmakers, and stakeholders and aids in operations, planning,

and policy-making. The extremely complex operations and policies on the Truckee-

Carson river system require the assistance of a DSS. With highly variable flows, mul-

tiple storage reservoirs and diversions, demands typically greater than supply, and

ever-evolving policies, water managers and policy-makers have much to balance in

this basin. Forecasts assist greatly with planning and management, however, after the

issuance of a forecast, water managers and policy-makers must determine how to best

operate the system given the predicted flow values. DSSs provide the ability to model

various flow and policy scenarios to help water managers with operational decision-

making in the basin. This chapter describes the DSS currently under development for

the Truckee-Carson basin, discusses the application of forecasts in that DSS, and then

presents results from a simplified seasonal model developed in this study to test the

utility of the forecasts from Chapter 3. 

4.1 Truckee- Carson Decision Support System (DSS)

A flexible water resources modeling framework for the Truckee Carson river

system is currently under development. USBR managers, partners and stakeholders in

the Truckee Carson river basin require this type of DSS to address the complex and
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rapidly evolving water resources issues in the basin. The USBR Lahontan Basin Area

Office and the Truckee River Water Master’s Office will use the DSS to make man-

agement decisions as well as to formulate operational strategies to satisfy the ever-

changing legal requirements and multiple purpose water demands of this basin. The

operational capabilities of the model will allow both managers and stakeholders to

make decisions for storage, release and exchange of water. The USBR Lahontan Basin

Area Office has been building the DSS in collaboration with partners from the USBR

Technical Service Center, the US Geological Survey, the Bureau of Indian Affairs, the

Truckee River Operating Agreement planning coordinator, the Fish and Wildlife Ser-

vice and the Pyramid Lake Tribe.

The USBR Lahontan Basin Area Office is developing the Truckee-Carson

DSS using the general-purpose river and reservoir modeling software RiverWare

(Zagona et al., 1998 and 2001). The Truckee RiverWare model simulates the move-

ment of water through the river system using objects in a graphical user interface. (See

Figure 49 below.) The laws and policies of the river are implemented with rules. These

rules, based on user-defined, prioritized logic, govern simulations of reservoir releases

and diversions throughout the network. The model simulates allocation of water rights

in the basin using the accounting network which tracks the ownership of the water as it

moves through the system. It is thus possible to monitor whether water was released to

meet instream flow targets or for irrigation demands. The rules dictate how much

water to release from each reservoir, which account the water comes from, and where

the water goes. By using different rules to move water through the system, it is possi-

ble to simulate flow patterns using different policies.

4.1.1 Incorporation of Forecasts

The USBR couples forecasts with the decision support system to formulate

daily operations and seasonal planning in the basin. USBR natural flow forecasts of
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seasonal (April to July) runoff volume are used as model inputs at the top of the basin

and represent the inflow to the top most reservoirs. The Truckee RiverWare model first

spatially disaggregates the forecast for Farad gage to represent the inflow to the vari-

ous top most reservoirs upstream. Modeling on the Carson River begins at Ft.

Churchill, thus no spatial disaggregation is necessary. Next, the model disaggregates

the seasonal volume into daily values using a “similar years analysis.”  Similar years

analysis finds years in the historical record with seasonal flow volumes closest to the

current year and applies the associated daily streamflow values in those years to make

a timeseries for the current year. Finally, the model takes the daily natural streamflow

and implements the policies and operations in the basin to simulate the actual water in

the river at any location on any day of the season. 

The Truckee RiverWare model simulates three time periods throughout the

year: January to March, April to July, and August to December. Because the bulk of

the annual streamflow comes from the spring runoff, the April to July forecast domi-

Figure 49: Screenshot of Truckee RiverWare model
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nates most of the operations throughout the year. The April to July natural streamflow

forecast directs much of the flood control procedures during the January to March

period. For example, forecasts predicting an above average spring runoff will result in

larger reservoir drawdowns during the first period of the year, and vice-versa for a

drought prediction. The spring forecasts affect the April to July operation period

because the bulk of the water moving into and through the system comes in this time

period. Managers aim to meet storage targets on Lahontan Reservoir during this period

to gear up for the irrigation season. Because very little water enters the system after

July, the August to December time period releases storage water built up during the

April to July period. In this way, the April to July forecast and observed spring runoff

affect operations in the basin throughout the year. Forecasts issued for the January to

March and August to December time periods are necessary as inputs to the model,

though the accuracy of these forecasts is not nearly as critical as the accuracy of the

April to July forecast. 

In January each year the USBR Lahontan Basin Area Office issues the April to

July forecast for all interested parties in the basin. Irrigators in the Newlands project

use this information to determine their projected demand for the irrigation season. U.S.

Fish and Wildlife Service (FWS) representatives use the forecast to establish the feasi-

bility of a fish spawning run and to schedule Water Quality Credit Water (WQCW)

releases for spawning or to combat low flows. Based on projected demands and fore-

casted inputs, the USBR runs the Truckee RiverWare model to simulate operations for

the entire calendar year. As forecasters update the April to July forecast, the model is

run again to simulate operations in the system for the remainder of the year. The

USBR uses updated forecasts at the beginning of March and April and then throughout

the April to July period. The April 1st issued forecast is particularly important as man-

gers use these values to set target storages on Lahontan and to set guidelines for opera-

tions throughout the runoff season. The FWS uses the updated forecasts, too, in setting
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a release schedule of WQCW from Stampede reservoir. As very little water comes in

the August to December period, forecasters do not update this forecast as regularly.

Modelers use new initial conditions (e.g., initial reservoir storage values) as model

input at the begin of each new run. 

4.1.2 Incorporation of Laws and Policies

The Truckee RiverWare ruleset mimics the laws and policies of the basin.

These rules are written in the form of prioritized logic to govern the movement of the

forecasted inflow values throughout the system. Flood control algorithms, minimum

flow requirements for fish, and allowable diversions for agriculture are examples of

rules implemented in the Truckee RiverWare model. Because the policies and laws are

expressed as dynamic data (rather than compiled in the model code), managers and

policy-makers can easily turn different rules on or off to test the outcome of different

policies. In this way, managers and policy-makers can determine the potential impacts

of pending laws and policies to help in decision-making.

4.1.3 Incorporation of Physical Mechanisms

The Truckee RiverWare model simulates the physical movement of water

through the system using standard hydrologic and hydraulic principles. USBR engi-

neers can select different algorithms to simulate these processes based on available

data and the level of detail desired. For example, routing through a reach can be simu-

lated using time-lag, impulse response, muskingum, muskingum-cunge, kinematic

wave or storage routing routines. Other selectable algorithms include power genera-

tion, tailwater calculation, evaporation and seepage. By modeling the hydrologic and

hydraulic mechanisms in the system, the Truckee RiverWare model aims to accurately

simulate the total amount of water moving through the system at any place and any

time during the simulation run.
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4.1.4 Incorporation of Water  Rights

The Truckee RiverWare model tracks the legal ownership of water through the

water accounting system. The accounting system uses reservoir storage accounts and

flow and diversion accounts to simulate water rights, accruals, carryovers and

exchanges. The Truckee RiverWare model, for example, tracks how much reservoir

storage water belongs to irrigators and how much belongs to fish. The model also

tracks who releases are made for. Because water rights drive many of the policies in

the basin, account data is first assessed to determine the operating rules driving the

simulation. 

4.2 Seasonal Operations Model

Because the Truckee RiverWare model is not yet fully operational, we develop

a simplified seasonal operations model to test the utility of the forecast results from

Chapter 3. The seasonal model incorporates scaled down versions of the major polices

and physical structures in the lower Truckee-Carson river system. Primarily, we test

the forecasts’  influence on diversions through the Truckee Canal and the resulting

water available for irrigation and fish. The model operates on a seasonal timescale,

and thus does not account for daily operations. To understand the forecasts’  influence

on daily operations and feedback mechanisms throughout the entire system, we will

couple ensemble forecasts with the full Truckee RiverWare model at a later date.

The simplified model, written in the S-plus coding language, takes output from

the forecasting model and simulates seasonal policies on the ensemble forecasts. (See

Appendix D “Seasonal Operations Model Code”  for the policy code.) We analyze

three important decision variables: Lahontan Storage Available for Irrigation, Truckee

River Water Available for Fish, and the Truckee Canal Diversion. These decision vari-

ables are important in both seasonal operations and daily operations. Though the sea-

sonal model does not simulate daily operations, its results provide insight to the
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necessary daily operations throughout the season. For example, if seasonal model

results indicate a high probability of maximizing the total allowed diversion through

the Truckee Canal, daily operations will need to start diversions at full canal capacity

the first day of the season. Similarly, if the model results show a high probability of

minimal diversions through the canal, daily diversions should be small in the begin-

ning of the season to avoid diverting too much water through the one-way canal.

4.2.5 Decision Var iables

4.2.5.1 Lahontan Storage Available for Irrigation

Farmers and project managers in the Newlands Project farming district need to

know the Lahontan storage available for irrigation before the runoff season starts.

Farmers need this information to help establish the size and type of crops they will

plant. The new OCAP require that Truckee Carson Irrigation District (TCID) farmers

estimate their demands for the coming growing season and then irrigate at a minimum

of 68.4% efficiency on that projected demand. If the district does not meet this effi-

ciency standard, the water available for irrigation can be reduced in the coming irriga-

tion season. For this reason, farmers really need to know the Lahontan storage

available for irrigation before the runoff season begins. TCID project managers, who

currently operate Lahontan Dam under a temporary contract with the USBR, utilize

the projected storage information to establish a release schedule from the dam.

4.2.5.2 Truckee Canal Diversion

Water managers (including TCID and the USBR) use projected Truckee Canal

diversion information to establish a diversion schedule and inform interested parties of

the schedule. Water managers shape the diversion schedule to pass the total projected

allowable diversion throughout the entire season. The diversion schedule must con-

sider the 900 cfs canal capacity as well as constraints in diversions during the warm
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months of July and August when endangered fish are particularly threatened by low

flows in the Truckee River and canal diversions must averages less than 20 cfs. 

4.2.5.3 Truckee River Water Available for Fish

The FWS and the Pyramid Lake Paiute Tribe (PLPT) use the projected water

remaining in the Truckee River to determine the possibility of making a fish run or the

need to release Stampede water to combat low flows. If the projected water remaining

in the Truckee River is particularly high, FWS will plan a fish spawning run in the

coming season. If model results project dangerously low flows, FWS will release

WQCW stored in Stampede Reservoir to protect the endangered cui-ui and threatened

Lahontan cutthroat trout. 

4.2.6 Operational Policies Implemented in Simplified Model

We implement the dominant OCAP policies in a seasonal framework by first

streamlining them to work on a seasonal timestep. In reality, the policies are much too

complicated to be fully represented in a simple seasonal model; this is why the USBR

has invested so many resources to build the Truckee RiverWare model. Several poli-

cies, such as those related to projected irrigation demands, require additional data from

farmers to exactly reflect implemented procedures. Other polices, such as diversions

through the Truckee Canal, have nuances that require modeling on a daily timestep.

Nevertheless, the seasonal model, even with the streamlined policies, provides valu-

able results for analyzing forecasts’  impact on decision making and available water for

fish and irrigation. 

The policies, as implemented in the seasonal model, are described below:

• Water use from the Carson River is maximized before diversions from 

the Truckee are made.

• Diversion through the Truckee Canal cannot exceed 164 kaf.

• Target storages on Lahontan Reservoir are based on projected April-July 



88

runoff volume for both the Truckee and Carson Rivers as measured at 

Farad and Ft. Churchill gages, respectively. The target is set at 2/3 the 

total projected spring runoff for the year.

• The minimum Lahontan storage target is based on average historical 

flows and demands in the basin. The minimum target is set as 1/3 of 

average historical spring runoff.

We make several assumptions to streamline the policy in the seasonal model.

These assumptions include:

• All water available for irrigation is used in the same season and does not 

carry over to the next irrigation season.

• All water diverted into the Truckee Canal at Derby Dam reaches Lahon-

tan Reservoir. (In reality, there are diversions and seepage along the 

canal-- amounting to approximately 25% of the water originally enter-

ing the canal.)

• Diversions before Lahontan Reservoir and Derby Dam are neglected 

(i.e., the simplified policies are implemented on the total forecasted 

flow).

These simplified policies and assumptions do not exactly match reality, how-

ever considering the significant simplifications, model results are surprisingly close to

observed values. For example, the average annual water avialable for irriagtion in the

Newlands Project is 296kaf; model results show an average of 277kaf. Though the

simplified policy model does not exactly match reality, it is good enough to be used as

a tool to analyze the forecasts’  impact on the three decision variables discussed above.

Several specific differences between actual basin policy and the simplified policy

implemented in this model should be discussed. First, though OCAP allows annual

Truckee Canal diversions of up to 288kaf, in practice policies based on actual irrigated

acerage limit the April to July diversions to a value closer to 164kaf. Similarly, pro-
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jected irrigated acerage is used together with the seasonal forecast to set Lahontan

storage targets. Because this irrigation data is not available to us, we set the target

based on the forecasts only. 

4.2.7 Model Testing

To test seasonal operations and the utility of the forecast in any given year, we

run each of the 100 forecasted ensemble members through the seasonal operations

model. The model’s output comes in the form of PDFs for the three decision variables

discussed above. Exceedence probabilities of various threshold values can be calcu-

lated for each of the variables to assist in decision making. For example, fish biologists

have suggested that cui-ui and Lahontan cutthroat trout need 250 cfs of water in the

lower Truckee River to survive. A 50% probability of exceeding 60.5 kaf (250 cfs)

would alert FWS to plan Stampede releases to augment the low flows. For validation,

we also simulate operations on the observed values for spring runoff in each year. A

comparison between model results from observed runoff and model results from fore-

casted runoff validates the forecasts’  impact on the decision variables. We do not com-

pare the actual observed values of the decision variables because the assumptions in

the seasonal model preclude a direct comparison. The intent behind the simplified sea-

sonal model is not to provide a working decision support system, but rather to demon-

strate the utility of including forecast information in a decision support system. For

forecasting comparison, we simulate a climatological forecast by bootstrapping the

historical data 100 times and then run this ensemble forecast through the seasonal

operations model.

4.2.8 Results

Figure 50 presents the seasonal operations model results for observed runoff

values versus the median of the model results from the ensemble forecast. We examine

each of the decision variables; the simulated values using the observed runoff value
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(i.e., a perfect forecast) and the values using the ensemble forecasts generated in Chap-

ter 3. Each point in the scatter plot represents the median of the model’s output in each

year. 

Correlation values between the perfect forecast model results and median of

ensemble forecast model results are 0.90 for the Lahontan storage available for irriga-

tion, 0.80 for the Truckee Canal diversion, and 0.93 for Truckee River water available

for fish. These results indicate that operations based on the forecasted runoff ensemble

are quite similar to what operations would be given a perfect forecast. Though the skill

of the runoff forecast certainly plays an important role in this comparison, flow thresh-

olds and the overall flexibility in operations also affect the model results. It is impor-

tant to test the streamflow forecast in an operations model to determine how well

streamflow forecast skill translates to skill in predicting the values of key decision

variables.

Figure 51  presents the seasonal operations model results based on the fall fore-

cast. Correlation coefficients are 0.37 for irrigation water, 0.30 for the diversion, and

0.32 for fish water. Using the standard t-test comparison, these results illustrate posi-

Figure 50: Seasonal operations model decision var iables: (a) Lahontan storage 
water  available for  ir r igation (b) Truckee Canal diversion, and (c) water  remain-
ing in the Truckee River  available for  fish. The scatter  plots compare the median 
of the model’s output based on the ensemble forecast with the model’s output 
based on the observed runoff value for  that year. Each point represents data for  
one year.
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tive skill in simulating the decision variables even as early as fall. Though the skill

using the fall forecast is much poorer than that for the April 1st forecast, model simula-

tions using the fall forecast will at least provide some information as to whether these

decision variables will be above normal or below normal. The usefulness of using a

fall forecast is that it provides water managers with an early look at whether the com-

ing water season will be extremely wet or dry so they can start planning.

The remaining results of the seasonal operations model are presented in the

form of PDFs. We present five plots for each year of analysis: Truckee River spring

runoff, Carson River spring runoff, Lahontan Storage Available for Irrigation, Truckee

Water Available for Fish, and Truckee Canal Diversion. Each plot contains a PDF rep-

resenting historical observed data (the dashed line), a PDF for the ensemble forecast

generated in Chapter 3 (the solid line), a solid circle illustrating results using the

observed runoff values, and an open circle illustrating results using the NRCS forecast.

We present the Truckee and Carson spring runoff PDFs to assist in the analysis of how

the skill of the forecast in each river affects the skill in capturing the various decision

variables. 

Figure 51: Fall forecast seasonal operations model decision var iables: (a) Lahon-
tan storage water  available for  ir r igation (b) Truckee Canal diversion, and (c) 
water  remaining in the Truckee River  available for  fish. The scatter  plots com-
pare the median of the model’s output based on the ensemble forecast with the 
model’s output based on the observed runoff value for  that year. Each point rep-
resents data for  one year.
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Figure 52 presents seasonal operations model results for a below average

streamflow year: 1992. For all decision variables, the PDF representing the ensemble

forecast shifts away from the climatological PDF to better capture what would have

occurred given a perfect forecast. These results demonstrate that utilizing the ensem-

ble forecast provides water managers with an accurate representation of the decision

variables for the coming season. Comparison with the NRCS forecast model results

illustrates that in 1992 both the  NRCS forecast and the forecast from this research do

Figure 52: Seasonal Operations Model Results: 1992. Truckee River  spr ing run-
off (a), Carson River  spr ing runoff (b), Lahontan storage available for  ir r igation 
(c), Truckee Canal diversion (d), and Truckee River  water  available for  fish (e). 
The solid line represents model results based on ensemble forecasts and the 
dashed line represents model results based on a climatological forecast. The solid 
circle illustrates model results using the observed runoff value and the open circle 
shows the results using the NRCS forecasted value.
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a good job in capturing the decision variables. The real benefit of using the ensemble

forecasts of this research (rather than the single NRCS forecasted value) comes from

the resulting PDFs. Exceedence probabilities obtained from these PDFs will further

assist in decision-making. For example, there is a 49% probability that Truckee River

water remaining for fish will exceed 60.5 kaf (250 cfs). This probability suggests that

flows will likely be close to this threshold value, alerting FWS that they may need to

release water quality credit water in the hot summer days. For comparison, using

model output of historical streamflow data presents a 85% probability of exceeding

the low flow threshold value. Irrigation water available to the Newlands Project farm-

ing district averages 296 kaf per year. Model results show a 2% percent chance of

exceeding this value in 1992, indicating to farmers that they may need to reduce their

planting this year or use low water crops. By comparison, model output of historical

streamflow data presents a 50% chance of exceeding this average value. Model results

show the most likely (50th percentile) Truckee Canal diversion is 57 kaf, with a 19%

chance of the diversions exceeding 100 kaf. Water managers can utilize this informa-

tion in setting the daily diversion schedule in the Truckee Canal.

Figure 53 demonstrates model results in relatively normal streamflow year:

2003.  As in the below normal streamflow example of Figure52, the PDFs represent-

ing the ensemble forecast provide water managers with an accurate representation of

the decision variables the coming season. The NRCS results and the results from the

ensemble forecast are quite similar in 2003, as well. Analysis of the fish water PDF

reveals a 100% exceedence probability for the low flow threshold value of 60.5 kaf

(250 cfs). This means that out of 100 simulations, not one value fell below 60.5 cfs.

Though FWS will likely monitor the situation throughout the season, this exceedence

probability allows them the rest much easier regarding low flows. Model output from

historical streamflow data, by comparison suggests a higher probability (15%) of hav-

ing to release WQCW. Model results show a 6% chance of exceeding the historical
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average of 296 kaf available for irrigation. The 50th percentile is 209 kaf, indicating to

farmers that though it will not be a wet year, drought precautions are not necessary.

The most probable Truckee Canal diversion is 94 kaf. 

Figure 54 demonstrates results for an above average streamflow year: 1993. In

this year, the model results from the ensemble forecast are much better than the NRCS

forecast results-- particularly when determining irrigation water and fish water. Model

Figure 53: Seasonal Operations Model Results: 2003. Truckee River  spr ing run-
off (a), Carson River  spr ing runoff (b), Lahontan storage available for  ir r igation 
(c), Truckee Canal diversion (d), and Truckee River  water  available for  fish (e). 
The solid line represents model results based on ensemble forecasts and the 
dashed line represents model results based on a climatological forecast. The solid 
circle illustrates model results using the observed runoff value and the open circle 
shows the results using the NRCS forecasted value.

0 100 200 300 400 500 600
0.

00
0

0.
01

5
Truckee Spring Flow (kaf)

P
D

F
0 100 200 300 400 500 600

0.
00

0
0.

00
8

Carson Spring Flow (kaf)

P
D

F

0 100 200 300 400 500 600

0.
00

0
0.

01
0

Lahontan Storage for Irrigation (kaf)

P
D

F

0 100 200 300 400 500 600

0.
00

0
0.

01
5

0.
03

0

Truckee Canal Diversion (kaf)

P
D

F

0 100 200 300 400 500 600

0.
00

0.
02

Water Remaining in Truckee (kaf)

P
D

F

���������	��
 �������������������������
 ���

� 
 � �������
 �� �!�"#���������$����������
 ���

% ���&�#�('���)�'*�*
 � �+��������
 ���

,.- �./ ��0��� ��� �*
1�"#���������$����������
 ���

(a) (b)

(c) (d)

(e)



95

results of the ensemble forecast show a 100% chance of exceeding the 60.5 low-flow

threshold for fish in the lower Truckee River. In fact, the most probable value is 267

kaf, suggesting to FWS that it is an excellent year to schedule a fish spawning run.

Lahontan storage available for irrigation shows a 100% chance of exceeding the 296

average value. TCID farmers can plan on having plenty of irrigation water for this year

and will likely consider carryover storage in Lahontan. The PDF for the Truckee Canal

Figure 54: Seasonal Operations Model Results: 1993. Truckee River  spr ing run-
off (a), Carson River  spr ing runoff (b), Lahontan storage available for  ir r igation 
(c), Truckee Canal diversion (d), and Truckee River  water  available for  fish (e). 
The solid line represents model results based on ensemble forecasts and the 
dashed line represents model results based on a climatological forecast. The solid 
circle illustrates model results using the observed runoff value and the open circle 
shows the results using the NRCS forecasted value.
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diversions is very tight next to 164 kaf--the maximum allowable diversions. Water

managers should use this information to schedule diversions at full canal capacity

starting from the beginning of the season. 

4.3 Summary and Conclusions

While seasonal forecasts help water managers to determine the volume of

water available in the coming season, the daily operations on how that water will be

divided up to comply with laws and policies in the basin, as well as seasonal and long-

term planning strategies, still remains as a large task. DSSs, such as the Truckee River-

Ware model, utilize forecasts to determine reservoir releases and diversions through-

out the system by modeling the physical river network together with the policies

governing operations in the basin. For this study, we develop a simplified seasonal

operations model to test the utility of the forecast in different years. Model results for

normal, above normal, and below normal streamflow years demonstrate that utilizing

the ensemble forecasts from Chapter 3 in a decision support system framework pro-

vides water managers with valuable information regarding decision variables in the

coming season. 
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Chapter  5

Conclusions and Recommendations

This section summarizes and concludes this thesis. We review the motivation

and original goals of this research, summarize the final results, and draw conclusions

from these results. We also make recommendations for future work that will improve

and extend this study.

5.1 Summary

As in other western U.S. river basins, water managers of the Truckee and Car-

son rivers must plan carefully to meet the many demands on water quality, volume,

timing and flow rates. Operations on these rivers are particularly complex due to mul-

tiple storage reservoirs and diversions as well as the many policies and laws. An

important feature in the Truckee-Carson river system is the Truckee Canal, which typ-

ically diverts over 1/3 of the annual Truckee River flow to the Carson River basin for

use in the Newlands Project irrigation district. Resulting low flows and shallow depths

in Truckee River below this diversion have inhibited the spawning and survival of the

threatened Lahontan cutthroat trout and the endangered cui-ui. The hydrology of the

basins adds to the complexity in operations and management. Snowmelt from the

Sierra Nevada mountains is virtually the only water source for the agricultural, munic-

ipal, and industrial development of the arid lower basin. Water managers must under-

stand the interannual and interseasonal variability of flows in the Truckee and Carson
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rivers to enable the sustainment of development in this western Nevadan basin. The

USBR utilizes forecasts of the spring runoff to help with operations and planning on

the rivers. Current forecasting techniques, however, are not skillful enough and do not

provide enough lead-time to optimize management effectiveness. 

In this study, we set out to develop a seasonal forecasting model to assist with

water resources decision making in the Truckee-Carson river system. We investigate

the use of large-scale climate information as a spring runoff predictor to improve the

skill and lead-time of the forecasts. We use nonparametric stochastic forecasting tech-

niques to provide ensemble forecasts which can aid in decision making by providing

exceedence probabilities. We set out to demonstrate the utility of the improved fore-

cast by coupling them with the DSS and analyzing different important decision vari-

ables. 

There is growing evidence that large-scale atmospheric circulation patterns

affect the hydroclimate in the western United States. In this study, we conduct our own

analysis to determine the prominent patterns that affect the hydroclimate in the Truc-

kee and Carson basins. Correlation analysis results show that winter large-scale ocean-

atmospheric patterns over the Pacific Ocean strongly modulate the year to year varia-

tions of spring runoff in the basins. Particularly, 500mb geopotential height and SST

demonstrate a strong relationship with the spring runoff. The persistence of these cir-

culation patterns back to fall enhances the prospect of a longer-lead forecast. Compos-

ite analysis results provide the physical explanation of the pressure-streamflow

relationship. Based on our analysis we develop climate indices to be applied in a fore-

casting mode.

We develop a nonparametric stochastic forecasting model to predict the April

to July streamflows in the Truckee and Carson rivers. The nonparametric approach is

assumption free and can capture nonlinearities as well as linear dependencies in the

data. Results show that the incorporation of large-scale climate information improves



99

the skill and lead time of the forecast. The resulting ensemble forecasts provide

exceedence probabilities which can aid in water resources decision making. We also

demonstrate the ability to use the modified K-NN technique to disaggregate seasonal

volumes into monthly values. The true application of these forecasts comes in cou-

pling them with a decision support system.

Water managers in the Truckee Carson river basin are currently developing a

decision support system to aid in operations and planning in the basin. The Truckee

RiverWare model utilizes forecasts to drive simulations of the physical mechanisms,

policies, and water rights in the Truckee-Carson river system. For this study, we

develop a simplified seasonal operations model to test the utility of the forecast in dif-

ferent years. Model results for normal, above normal, and below normal streamflow

years demonstrate that utilizing the ensemble forecasts from Chapter 3 in a decision

support system framework provides water managers with valuable information regard-

ing water available for irrigation and fish in the coming season. 

5.2 Conclusions

This research demonstrates that incorporating large-scale climate information

in forecasting can produce better, longer lead-time forecasts. Results show that the sto-

chastic forecasting technique has the added benefit of providing exceedence probabili-

ties for various seasonal flow values. The improved forecasts facilitate efficient

seasonal planing and management in the complex Truckee-Carson River Basin.

Though the process of incorporating large-scale climate information into water

resources decision making is applied to the Truckee-Carson river system in this study,

the approach is quite flexible and can be extended to other basins throughout the west-

ern US.
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5.3 Recommendations for  Future Work

Many areas of this research warrant further research and analysis. We present

several issues that should be addressed to complete this study as well as possibilities

for extending the techniques of this research to new realms. 

5.3.1 Coupling ensemble forecasts with the Truckee RiverWare model

The ensemble forecasts generated from this research need to be coupled with

the Truckee RiverWare model after its completion. This final step of the study plays an

integral role in determining the utility of the ensemble forecasts to water resources

decision making in the basin. Results from the simplified seasonal policy model dem-

onstrate that the forecasts provide important information which can be applied to oper-

ations and management. However, the full RiverWare model must be tested to

determine the exact impact forecasts have on the multiple decision variables in the

basin. Using the Truckee RiverWare model will not only allow for daily analysis of all

the policies in the entire basin, it will also include the tracking of water rights. The

forecasts presumably affect many other decision variables not addressed in the simpli-

fied model. Other impacts to analyze in the full DSS include the forecasts’  impact on

flood control and water rights. The utility of passing entire ensemble forecast through

the Truckee RiverWare model, rather than utilizing current methods which only pass

the expected value and the 30th and 70th percentiles, should also be explored. 

5.3.2 Temporal disaggregation

Further work on developing a temporal disaggregation scheme should be

investigated. The temporal disaggreation of the forecasted April to July runoff plays

an important role in model simulations. The Truckee RiverWare model requires both

daily and monthly streamflow values during the April to July period. Daily values are

used as input to drive the simulations in the operations model. Monthly values drive

the rules that set target storages on Lahontan Reservoir.
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Preliminary results of using the modified K-NN technique to disaggregate the

seasonal runoff to monthly values are encouraging. This application of the technique

requires more testing and validation. 

The Truckee RiverWare model currently uses a “similar years analysis”  to dis-

aggregate the total seasonal volume into daily values. It would be interesting to test

whether the nonparametric techniques of the modified K-NN method improve the skill

of the daily disaggregation.

5.3.3 Forecast Improvements

Streamflow forecasting is not an exact science. Researchers in the field utilize

many different techniques that may or may not improve forecasting skill in a given

basin. Results from the techniques presented in this study show good forecast skill.

However, given that water managers in the Truckee-Carson basin rely heavily upon

the spring forecast, any improvement in forecast skill would have pronounced effects

throughout the basin. 

Improving the predictor selection criteria for the modified K-NN model could

possibly increase forecast skill. This study uses correlation analysis and significance

tests to determine valid statistical relationships. The composite analysis establishes the

physical mechanisms relating various predictors to streamflows in the Truckee and

Carson rivers. A more objective criteria could be used to sort through an entire suite of

predictors to determine the best set. Methods similar to general cross validation, but

applicable in nonlinear models, are available for this purpose. 

The potential of issuing a joint forecast to increase forecast skill could also be

explored. This study issued forecasts separately for the Truckee River and for the Car-

son River, relying on the forecasters knowledge that the two rivers are highly corre-

lated. Forecasting the Truckee and Carson jointly may better capture the covariance

between the rivers.
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As always, the skill of the forecast depends heavily on data quantity and qual-

ity. Longer data sets typically provide better model fitting and, hence, forecasting skill.

Data sets extending further back than 1949 would likely increase forecasting skill.

More accurate SWE data, particularly in the Carson basin, will also improve forecast-

ing results. Other methods of calculating basin-wide SWE could also be explored.

5.3.4 Compar isons with a statistical-physical forecasting model

This study could be extended to compare results from a the statistical model

presented in this thesis with a statistical-physical model. The statistical-physical model

would couple a stochastic weather generator with the existing physically-based Truc-

kee PRMS model. The weather generator produces ensembles of possible weather sce-

narios (e.g., precipitation and temperature) using past data. The Truckee PRMS model

will use the weather ensembles as input to generate traces of possible runoff scenarios.

The skill of the statistical-physical model should be compared to the skill of the fore-

casting model presented in this study. The ensemble forecasts from both models

should be coupled with the DSS to compare their impacts on decision variables in the

basin. 
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Appendix A

Operating Policy in the Basin

The Truckee-Carson River System is highly regulated and litigated. Over the

past century there have been a number of laws, regulations, court cases, and decrees

that affect basin operations. Typically, new agreements or laws incorporate the previ-

ous policy, so many of the original policies are still in force today. This section briefly

describes the river operations of the past, the present and future. A description of the

major policies and laws can be found in Appendix B, “Description of Select Laws”.

A.1 Histor ic and cur rent policy

As in most river basins, flood control is the highest priority operation in the

Truckee and Carson River Basins. Except for Lake Tahoe, Donner Lake, and Indepen-

dence Lake, the reservoirs are operated in accordance with the U.S. Army Corps of

Engineers flood control regulations to prevent flooding downstream. 

After flood control, the main operating policy is the Floriston rates. The Floris-

ton rates, which were originally established in 1908 and later reaffirmed in the 1944

Orr Ditch Decree, are a set of flow rates that must be met at the Farad USGS gage near

the town of Floriston on the border of California and Nevada. These rates vary

between 300 and 500 cfs based on the level of Lake Tahoe and the time of year. Oper-

ating procedures meet the Floriston rates first by using unregulated flows, then by

release storage water from Boca, Prosser, and Tahoe. Municipal, industrial, and agri-
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culture interests downstream all use the water released for Floriston rates. 

Donner Lake and Independence Lake are privately owned. The Sierra Pacific

Power Company owns all of the storage rights in Independence Lake and half of the

storage rights in Donner Lake. TCID owns the other half of the storage rights in Don-

ner Lake. These private entities can schedule releases to use the water they have in

storage for municipal, agricultural and industrial purposes. Although these lakes are

private, their storage rights do not have higher priority than the Floriston rates; they

can only store water when the Floriston rates are met. 

Stampede Reservoir was originally constructed to supplement agriculture and

municipal water. In 1982, the Stampede Reservoir Judgement decreed all of the water

and storage in Stampede to the protection of the endangered cui-ui and threatened

Lahontan cutthroat trout. The FWS and Pyramid Lake Paiute Tribe schedule releases

based on the projected need to supplement flows for the spawning or survival of these

species. Spawning runs are scheduled based on storage values, forecasted flows, and

time since the last run. In spawning run years, FWS and the Pyramid Lake Paiute Tribe

schedule releases from Stampede to try to meet the following flow targets at Pyramid

Lake: January 90cfs, February 120cfs, March 190cfs, April 570cfs, May 1000cfs, June

50cfs (Berris 2001).   Because of its more recent construction and therefore junior

water rights, Stampede rarely fills completely.

The Truckee Canal diverts Truckee River water into the Carson River Basin for

use in the Newlands Project irrigation district. Diversion criteria, as defined by OCAP,

are based on forecasted flows on the Carson River and project land that is actually irri-

gated. 

In the upper basin, the Tahoe-Prosser Exchange Agreement helps maintain

instream flows below Tahoe Dam by allowing exchanges between Tahoe and Prosser

Reservoirs. With the exchange agreement, Tahoe can release water to keep a live

stream below the dam even though releases are not required. Meanwhile, Prosser can
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store inflows which would otherwise have been released.   In this way, Prosser stores

some of Tahoe’s water-- this is known as an exchange. Exchanges like this also exist

between Boca and Donner Reservoirs. These exchanges add flexibility to the system. 

A.2 Future policy affecting the Basin

 Past policies and procedures will affect how the river operates in the future.

The new Truckee River Operating Agreement, if agreed on, will regulate the river in

the future while still incorporating many of the past laws and policy. In particular, Flo-

riston rates will still be the main operations goal but those entitled to use Floriston rate

water could store some of their water for specific purposes later. The stored water will

later be released only to benefit the purpose for which it was stored. (Truckee River

Operating Agreement DEIS/DEIR 1998).    Another change in TROA is the condition

in which stored water can be exchanged with scheduled releases to make operations

more flexible for multiple purposes. The new TROA will also allow Floriston rates to

be reduced to store WQCW even when cui-ui are not spawning. 
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Appendix B

Descr iption of Select Laws

The following is a description of some of the major laws in the Truckee-Carson

River System.   See the Truckee River Chronology (Horton, 1995), the Truckee River

Atlas (Horton, 1995), and the Carson River Chronology (Horton, 1996) for a full

description of history and laws in the basins. 

B.1 Flor iston Rates 

The Floriston rates were established in 1908 as an agreement between the Flo-

riston Paper Company and the Truckee River General Electric Company. This agree-

ment established mean instream flows of 500cfs between March 1 and September 30

and 400cfs for the rest of the year as measured at Floriston, CA. The Truckee River

General Electric Decree of 1915 and the Truckee River Agreement of 1935 amended

the Floriston rates to allow for reduced rates based on the level of Lake Tahoe.

Between November 1 and March 31, Floriston rates were 350cfs whenever Lake

Tahoe was below 6225.0 ft. AMSL and 300 cfs whenever Lake Tahoe fell below

6225.25 ft. Unregulated flow, Tahoe releases, and Boca releases (once it was built)

were used to meet these flow requirements. To this day, the reservoirs must be oper-

ated such that the Floriston rates are met. (Horton 1995)

B.2 Truckee River  Agreement

The Truckee River Agreement (TRA) of 1935 enacted a contract among the

federal government, Sierra Pacific Power Company, TCID, and Washoe County Water

Conservation District. This agreement reaffirmed the Floriston rates and established

rules regarding the use of Lake Tahoe water. The agreement set the natural rim of Lake
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Tahoe at 6223.0 ft. AMSL allowing 6.1 feet of storage depth in the lake. This agree-

ment, in conjunction with the Truckee Storage Project, confirmed the need for the con-

struction of Boca Reservoir on the Little Truckee River. (Horton 1995)

B.3 Orr  Ditch Decree

The Orr Ditch Decree of 1944 incorporated the provisions of the TRA and

delineated Truckee River water rights. In general, the decree established that the Pyra-

mid Lake Paiute Indian Tribe had the most senior water rights to irrigate land. The

Decree next permitted the Newlands project to divert up to 1500 cfs through the Truc-

kee Canal. The Sierra Pacific Power Company was given the next water rights for

municipal, domestic, and industrial purposes. 

B.4 Tahoe -Prosser  Exchange Agreement

The Tahoe-Prosser Exchange Agreement of 1959 maintains flows directly

downstream of Lake Tahoe during periods when releases from Lake Tahoe are unnec-

essary to meet Floriston rates. This agreement allowed an equal amount of water

released from Tahoe to be stored in Prosser thereby exchanging water between the two

reservoirs. 

B.5 Newlands Project Operating Cr iter ia and Procedures (OCAP)

Newlands Project OCAP, originally established in 1967, regulate the diver-

sions from the Truckee River to the Newlands Project via the Truckee Canal. The pri-

mary objective is to maximize use of Carson River water and minimize diversions

from the Truckee River. In 1997, the Secretary of the Interior adjusted the 1988 OCAP

to make the Newlands Project less dependent on Truckee River water and to increase

the Newlands project water use efficiency. 

B.6 Stampede Reservoir  Judgement

In 1982, the federal Ninth Circuit Court ruled in Carson-Truckee Water Con-
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servation District v. Watt that all water in Stampede Reservoir be used for threatened

and endangered fish in Pyramid Lake until those species are no longer on the Endan-

gered Species List. FWS and the Pyramid Lake fisheries establish the release sched-

ules to protect these listed species. 

B.7 Preliminary Settlement Act

The Preliminary Settlement Act of 1989, negotiated between Pyramid Lake

Paiute Tribe and Sierra Pacific Power Company (SPPCo), provided 39,500 acre-feet

of storage rights to SPPCo when not needed for M&I uses. Excess water in storage

could be used for fishery purposes and SPPCo gave up its right to single use hydro-

power flows. This act allowed for the storage of water to be used for spawning. 

B.8 Negotiated Settlement Act: P.L . 101-618

    The Negotiated Settlement Act (P.L. 101-618) provided legislation to settle

many of the outstanding court cases and disputes over water rights in the Truckee

River Basin. The Act provided for protection of wetlands, recovery of endangered and

threatened fish, improved management of the Newlands project, settlement of Fallon

Paiute-Shoshone and Pyramid Lake Paiute Tribe water issues, and apportionment of

interstate water. The act incorporated the conditions set in the Preliminary Settlement

Agreement but declared that the act is not effective until a new operating agreement is

negotiated and ratified. 

B.9 Water  Quality Settlement Agreement

In 1996, the U.S. Department of Justice, Environmental Protection Agency,

Department of the Interior, Nevada Department of Environment Protection, Washoe

County, Reno, Sparks and the Pyramid Lake Paiute Tribe all signed the Truckee River

Water Quality Settlement Agreement. This agreement set up a program to improve

Truckee River water quality downstream of Reno by augmenting river flows during

low flow periods. The Federal government and Washoe County have each agreed to
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purchase $12 million worth of water rights explicitly for water quality purposes. This

water quality credit water (WQCW) is to be stored in the federally controlled reser-

voirs and released by decision of a committee. 

B.10 Truckee River  Operating Agreement

The Truckee River Operating Agreement is a negotiated settlement involving

all of major entities in the Truckee River Basin. As of November 2003, the agreement

has not been approved and is still under negotiations. In general, the agreement will

coordinate reservoir releases and storage, improve exchange of stored water, improve

efficiency of water and storage space, improve the accounting procedures to track

water, and set up the Interstate Allocation. 

B.11 Water  Rights Acquisition Program (WRAP)

Public Law 101-618 provides for a program to acquire water rights to preserve

and enhance wetlands in Lahontan Valley. As a result, the Water Rights Acquisition

Program (WRAP) will acquire approximately 75,000 acre-feet of water to help pre-

serve 25,000 acres of wetland in the Stillwater National Wildlife Refuge and Stillwater

Wildlife Management Area. Most of this water will come from the Carson Division of

the Newlands Project but some of the water could be diverted from the Truckee River

via the Truckee Canal. 
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Appendix C

Glossary

Following is a glossary of important acronyms and terms used in this thesis. 

Cui-ui

The cui-ui is an endangered sucker fish that lives in Pyramid Lake and swims

up the Truckee River to spawn. Low flows in the Truckee River below Derby

Dam have threatened its survival.

DSS

A decision Support System (DSS) is a tool used by water resources managers

to evaluate operations and policy alternatives.

Exceedence probability

The probability of exceeding a certain threshold flow value.

ENSO

El Nino-Southern Oscillation. 

FWS

U.S. Fish and Wildlife Service.

Lahontan cutthroat trout

The Lahontan cutthroat trout is a threatened fish that lives in the Truckee River

and Pyramid Lake. 

M& I

Municipal and Industrial (M&I) water is a classification of Truckee River

water that is treated and used for domestic or industrial uses. 

Natural Flow

The flow that would be present in the river without the effects of human devel-
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opment (e.g., reserviors and diversions).

Newlands Project

Farming district of 65,000 irrigated acres for which Truckee River water is

diverterted through the Truckee Canal.

NRCS

Natural Resources Conservation Service.

OCAP

Operating Criteria and Procedures for the Newlands Project Irrigation district. 

PCA

Principal Component Analysis. 

PDO

Pacific Decadal Oscillation.

PNA

Pacific/North American climate pattern.

RiverWare

RiverWare is a general purpose river and reservoir modeling tool created by

the Center for Advanced Decision Support for Water and Environmental Sys-

tems at the University of Colorado, Boulder. 

SST

Sea Surface Temperature.

SLP

Sea Level Pressure. 

SWE

Snow water equivalent. The total water content contained in the snowpack,

reported as a depth. SWE data provides useful information for determining the

amount of water stored as snow.
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TCID

Truckee-Carson Irrigation District. TCID manages all the canals, ditches, dams

and reservoirs for the Newlands Project irrigation district.

USBR

U.S. Bureau of Reclamation.

USGS

U.S. Geological Survey.

WQCW

Water quality credit water (WQCW) is created from water rights purchased as

part of the WQSA and stored in federally controlled reservoirs.
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Appendix D

Modified K-NN Forecasting Code

{

######################################################

#    MODIFIED K-NN METHOD-- FORECAST ALL YEARS

######################################################

# 1. Use y-hat from the locfit model 

#    (fpredicted.loc$fit and cpredicted.loc$fit)

# 2. The residuals from the locfit model will be used 

#    (residuals(locf.model), residuals(locc.model))

# 3. Get the distance between the predicted point x values

#    and the x values for all points in the model (will get the 

#    Euclidean distance of the normalized values) 

# 4. Pick the K (based on heuristic scheme) nearest neighbors

# 5. Weight the K nearest neighbors 

# 6. The weighted K-NN residuals will then be used in a bootstrap

     

# SET UP PARAMETERS                

x=matrix(scan("predictors.dat"),byrow=T,ncol=9)  # all 9 possible predictors

        # 1 NCDC Precip

        # 2 Geopotential Height

        # 3 SST

        # 4 Average SWE Mar1

        # 5 Average SWE Apr1

        # 6 Truckee SWE Mar1

        # 7 Truckee SWE Apr1
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        # 8 Carson SWE Mar1

        # 9 Carson SWE Apr1

yfVol=scan("faradNatural.amjj.vol.dat") # y-values (streamflow at farad)

ycVol=scan("churchillNatural.amjj.vol.dat") # y-values (streamflow at 

churchill)

#nrcsf=scan("nrcsTruckeeApril")   # 1990-2003 NRCS forecasts       

#nrcsc=scan("nrcsCarsonApril")   # 1990-2003 NRCS forecasts  

const=1948 # the year before the data starts 

xs=(1949-const) # the starting position of the data set (change as needed)

xe=(2003-const) # the ending position of the data set (change as needed)       

yp=xe-xs+1 # yp for the number of years to predict at-- predict each year 

                         

xx=scale(x) # normalize the data (so higher magnitude variables

                       # don't get more weight in distance calculation)

        

# set up matricies to hold ensemble forecast        

ensemblef=matrix(nrow=100,ncol=yp)

ensemblec=matrix(nrow=100,ncol=yp)

## TRUCKEE      

## Need to make the forecast for every year, so put into loop

#x=cbind(x[,7],x[,2],x[,3])    # swe,geopot,sst

x=cbind(x[,7],x[,2]) # swe,geopot

p=length(x[1,])         # p for the number of predictors

                        #  **  NOTE:  If p is not 3, MUST CHANGE number 

#  **  of terms in distance calculation         

for(i in 1:yp)



121

{

  # p1 is the position of the year we're predicting

  p1=i               

  xpred=x[p1,]  

  yfpred=yfVol[p1]

if(p1 == xs)

{

    xmodel=x[(xs+1):xe,]

     yfmodel=yfVol[(xs+1):xe]

  }         

  if(p1 == xe)

  {

      xmodel=x[xs:(xe-1),]

      yfmodel=yfVol[xs:(xe-1)]

  }

  if(p1 != xe && p1 != xs)

  {                                

      xmodel=rbind(x[xs:(p1-1),],x[(p1+1):xe,])

      yfmodel=c(yfVol[xs:(p1-1)],yfVol[(p1+1):xe])

}           

  ym=length(xmodel[,1])        

  # DISTANCE CALCULATION

  # calculate the distance between the (predictors of the) point we're predicting 

  # and all other points-- use scaled data

  xdist=scale(xmodel)

  distance=1:ym     

  for(j in 1:ym)

  {

    # distance[j]=sqrt(((xx[p1,1]-xdist[j,1])^2)+((xx[p1,2]-
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xdist[j,2])^2)+((xx[p1,3]-xdist[j,3])^2))

       distance[j]=sqrt(((xx[p1,1]-xdist[j,1])^2)+((xx[p1,2]-xdist[j,2])^2))

  }

  

  # RANK the distances          

  drank=rank(distance)       # here rank 1 is the nearest neighbor 

                             # (i.e. the smallest distance) 

  # DETERMINE K and weight it

  n=length(distance)

  kk=sqrt(n)

  kk=round(kk)

  W=1:kk 

  W=1/W        

  W=W/sum(W)    

  W=cumsum(W)   

       

  # Find the alpha for the locfit model-- take the alpha whith the lowest gcv        

  alphaf=seq(0.2,1,by=0.05)

xxf=gcvplot(yfmodel~xmodel,alpha=alphaf,deg=1,kern="bisq",ev="data")

zxf=xxf$values

zzf=order(zxf)

alphaf=alphaf[zzf[1]]

  # Do the LOCFIT and get the expected value for each of the p  points

  locf.model=locfit(yfmodel~xmodel, alpha=alphaf, deg=1, kern="bisq")

fit=locf.model

  # Make the mean prediction

        # hack-fix so predict.locfit will work:  make xpred a matrix with 

        # the real xpred the first row.  Take first predicted point.

        xpred=rbind(xpred,xmodel)      
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  fpredicted.loc=predict.locfit(locf.model, xpred, se.fit=T, band="global")

        

  # now weight the neighbors and pick one at random (using the weights)

  # do this 100 times

 residualsf=residuals(locf.model) # get the residuals of the locfit model

  for(k in 1:100)         # do innerloop 100 times (bootstrap residu-

als)

  {

      rannum=runif(1,0,1)

      xy=c(rannum,W)      # adds a random number (between 0 and 1) 

# to the weight function (CDF)

      rankW=rank(xy)      # assigns a rank to the random number 

                          # (and W vector)

      pos=order(drank)[rankW[1]] # gives the position in the distance matrix 

(and

# corrrespondingly the y matrix for the 

selected

                          # neighbor)

      resids=residualsf[pos] # Once I get a neighbor, I need to find the 

                          # residual associated with that neighbor

      ensemblef[k,i]=fpredicted.loc$fit[1]+resids

                          # add that residual to the y-hat from the

                          # locfit model

  }

}
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## CARSON      

x=matrix(scan("predictors.dat"),byrow=T,ncol=9)  # all 9 possible predictors

#x=cbind(x[,9],x[,2],x[,3])    # swe,geopot,sst

x=cbind(x[,9],x[,2]) # swe,geopot 

p=length(x[1,])          

for(i in 1:yp)

{

  p1=i               

  xpred=x[p1,]  

  ycpred=ycVol[p1]

 

  if(p1 == xs)

  {

     xmodel=x[(xs+1):xe,]

     ycmodel=ycVol[(xs+1):xe]        

  }         

  if(p1 == xe)

  {

      xmodel=x[xs:(xe-1),]

      ycmodel=ycVol[xs:(xe-1)]        

  }

  if(p1 != xe && p1 != xs)

  {                                

      xmodel=rbind(x[xs:(p1-1),],x[(p1+1):xe,])

      ycmodel=c(ycVol[xs:(p1-1)],ycVol[(p1+1):xe])  

  }           

  ym=length(xmodel[,1]) 

  # DISTANCE CALCULATION

  xdist=scale(xmodel)

  distance=1:ym     
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  for(j in 1:ym)

  {

    #distance[j]=sqrt(((xx[p1,1]-xdist[j,1])^2)+((xx[p1,2]-

xdist[j,2])^2)+((xx[p1,3]-xdist[j,3])^2))

    distance[j]=sqrt(((xx[p1,1]-xdist[j,1])^2)+((xx[p1,2]-xdist[j,2])^2))    

  }

  

  # RANK the distances          

  drank=rank(distance) 

          

  # DETERMINE K and weight it

 n=length(distance)

  kk=sqrt(n)

  kk=round(kk)

  W=1:kk 

  W=1/W        

  W=W/sum(W)    

  W=cumsum(W)   

       

  # Find the alpha for the locfit model-- take the alpha whith the lowest gcv        

  alphac=seq(0.2,1,by=0.05)

  xxc=gcvplot(ycmodel~xmodel,alpha=alphac,deg=1,kern="bisq",ev="data")

  zxc=xxc$values

  zzc=order(zxc)

  alphac=alphac[zzc[1]]        

        

  # Do the LOCFIT and get the expected value for each of the p  points

  locc.model=locfit(ycmodel~xmodel, alpha=alphac, deg=1, kern="bisq")

  fit=locc.model

  # Make the mean prediction
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xpred=rbind(xpred,xmodel)      

  cpredicted.loc=predict.locfit(locc.model, xpred, se.fit=T, band="global")

  

        

  # now weight the neighbors and pick one at random (using the weights)

  # do this 100 times

  residualsc=residuals(locc.model)

  for(k in 1:100)      

   {

      rannum=runif(1,0,1)

      xy=c(rannum,W)

      rankW=rank(xy)

      pos=order(drank)[rankW[1]]   

      resids=residualsc[pos]

      ensemblec[k,i]=cpredicted.loc$fit[1]+resids

   }

}

# Write the ensemble forecast matrices to file 

# (i.e. write an object from Splus into an ASCII file)

write(t(ensemblef),file="knnFaradAprSWEGpHApr.out",ncol=55)         

write(t(ensemblec),file="knnCarsonAprSWEGpHApr.out",ncol=55)   

                

# Make boxplots

plotbeg=1949-const       

plotend=2003-const

                 

par(mfrow=c(2,1))

nevals=plotend-plotbeg+1 

xevals=ensemblef[,plotbeg:plotend]

xs=1:nevals
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qf=quantile(yfVol,c(.05,.25,.5,.75,.95))

zz=boxplot(split(t(xevals),xs),plot=F,cex=1.0,print=F,cex=1.0,ylim=range(0,800))

zz$names=rep("",length(zz$names))

z1=bxp(zz,xlab="",ylab="",style.bxp="old",cex=1.25)

title(main="Truckee Modified K-NN Prediction (1949-2003)")

title(ylab="AMJJ Volume (kaf)")        

lines(z1,yfVol[plotbeg:plotend],lty=1,lwd=2)

for(i in 1:5)

{

abline(h=qf[i],lty=2)

}

xevals=ensemblec[,plotbeg:plotend]

xs=1:nevals

qc=quantile(ycVol,c(.05,.025,.5,.75,.95))

zz=boxplot(split(t(xevals),xs),plot=F,cex=1.0)

zz$names=rep("",length(zz$names))

z1=bxp(zz,xlab="",ylab="",style.bxp="old",cex=1.25, ylim=range(0,800))

title(main="Carson Modified K-NN Prediction (1949-2003)")

title(ylab="AMJJ Volume (kaf)")

lines(z1,ycVol[plotbeg:plotend],lty=1,lwd=2)

for(i in 1:5)

{

  abline(h=qc[i],lty=2)

}

# end of file        

}
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Appendix E

Seasonal Policy Model Code

{

#############################################################

# A simplified policy model for Newland's Project OCAP.

# Solves for storage on Lahontan Reservior, water remaining 

# in the Truckee River, and diversion through the Truckee Canal 

#############################################################

year=2003 # change value as necessary

# Lahontan minimum storage target is (1/3) of average historical total flow on T and C

minTarget=(1/3)* (mean(yfVol)+mean(ycVol))

# minimum flow that must remain in Truckee for fish-- change to test different policies

fishFlow=0

# max diversion through the Truckee Canal is 164kaf

maxDiversion=164

        

# get the ensemble for the particular year we want to run

ensemblef=matrix(scan("knnFaradAprSWEGpH.out"),byrow=T,ncol=55) 

ensemblec=matrix(scan("knnCarsonAprSWEGpH.out"),byrow=T,ncol=55)               

c=year-1948

allf=ensemblef[,c]

allc=ensemblec[,c]

# model does not allow negative flow values from the forecast

for(i in 1:100)
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{

if(allf[i]<0)

{

allf[i]=0

}

if (allc[i]<0)

{

allc[i]=0

}

}

# add climatology, to check what managers would do w/o a forecast

# bootstrap the historical data to get climatology 

n=sample(1:54, 100,replace=T)

if(c==1)

{

climf=yfVol[2:55]

climc=ycVol[2:55]

}

if (c==55)

{

climf=yfVol[1:54]

climc=ycVol[1:54]

}

if (c!=1 & c!=55)

{

climf=c(yfVol[1:c-1],yfVol[c+1:55])

climc=c(ycVol[1:c-1],ycVol[c=1:55])

}

climf=climf[n]

climc=climc[n]
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allf=c(allf,climf)

allc=c(allc,climc)

# add the observed value, to check what would have occured w/ perfect forecat        

allf=c(allf,yfVol[c])

allc=c(allc,ycVol[c])

        

# set up vectors for decision variables

lahontanStorage=1:201

truckeeDiversion=1:201

truckeeToPyramid=1:201

for(i in 1:201)  # run 100 times (for each set of ensembles) plus one for observed value

{

# Available for diversion is Truckee water - minimum fish flow water

faradAvailForDiversion=allf[i]-fishFlow

if (faradAvailForDiversion<0)

{

      faradAvailForDiversion=0.0

   }

# Available for diversion cannot excede maxDiversion

   if (faradAvailForDiversion>maxDiversion)

   {

faradAvailForDiversion=maxDiversion

   }

   # maximize use of Carson water before diverting from Truckee

   carsonWater=allc[i]
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#  Lahontan storage target is initially set as (2/3) of total T and C --most probable 

forecasted flow

   lahontanTarget=(2/3)* (allf[i]+allc[i])

   if (lahontanTarget < minTarget)  

   {

       lahontanTarget=minTarget

   }

# Set the Truckee Diversion

   # First, divert only what is needed to meet lahontanTarget.  

   # If there isn't enough faradAvailForDiversion to meet lahontanTarget,

   # the farmers get shorted (fish get highest priority)

   truckeeDiv=lahontanTarget-carsonWater

   if (truckeeDiv > faradAvailForDiversion)

   {

      truckeeDiv=faradAvailForDiversion

   }

   lahontanStorage[i]=carsonWater+truckeeDiv

   truckeeDiversion[i]=truckeeDiv

   truckeeToPyramid[i]=allf[i]-truckeeDiv

}

#Plot the decision variables

par(mfrow=c(3,2))

sm.density(ensemblef[,c],xlim=c(0,600),ylab="PDF",xlab="Truckee Spring Flow 

(kaf)")

sm.density(climf,add=T,lty=2)

points(yfVol[c],.0001,pch=19)

sm.density(ensemblec[,c],xlim=c(0,600),ylab="PDF",xlab="Carson Spring Flow 
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(kaf)")

sm.density(climc,add=T,lty=2)

points(ycVol[c],.0001,pch=19)

sm.density(lahontanStorage[1:100],xlim=c(0,600),ylab="PDF",xlab="Lahontan Stor-

age for Irrigation (kaf)")

sm.density(lahontanStorage[101:200], add=T,lty=2)

points(lahontanStorage[201],.0001,pch=19)

sm.density(truckeeDiversion[1:100],xlim=c(0,600),ylab="PDF",xlab="Truckee Canal 

Diversion (kaf)")

sm.density(truckeeDiversion[101:200], add=T,lty=2)

points(truckeeDiversion[201],.0001,pch=19)        

               

sm.density(truckeeToPyramid[1:100],xlim=c(0,600),ylab="PDF",xlab="Water 

Remaining in Truckee (kaf)")

sm.density(truckeeToPyramid[101:200], add=T,lty=2)

points(truckeeToPyramid[201],.0001,pch=19)

# end of file

}


