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Understanding the variability of salinity in the Colorado River basin is key to
monitoring the water quality and also to honoring Minute No. 242 of the International
Boundary and Water Commission. To this end, a modeling framework is presented
that is capable of capturing any type of observed variability in salinity, is flexible, is
portable, and is easily implemented at the 29 gauges throughout the basin. The need
for such a framework was motivated by the inadequacies of the existing CRSS model,
which consistently overpredicts the salt mass. The framework consists of three pieces:
(i) a stochastic streamflow generator, (ii) a statistical salt model to compute natural salt
mass and (iii) a simulation modulate to estimate the historical salt mass.

The framework works as follows:

Ensembles of streamflows (natural flows) are generated from the streamflow
generator and are then passed through the statistical salt model to estimate the natural
salt. Finally, the ensembles are then passed through the simulation module to compute
the historical salt mass and concentration.

The streamflow generator and the salt model are modified nonparametric tech-
niques, K-nearest neighbor method. We offer comparisons to traditional alternatives
and find marked improvement with the nonparametric methodology.

The utility of the model is demonstrated in generating salinity scenarios at
Glenwood Springs on the Colorado River. Climate information (such as the state of
ENSO etc.) relevant to streamflows can be easily incorporated into this framework,

generating streamflows consistent with the climate state.
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Chapter 1

Problem Definition

1.1 Introduction

1.1.1 Motivation
Rivers in arid or semi-arid climates that provide significant amounts of irriga-

tion water tend to have salinity problems. The problems arise when large portions of
the average flow are diverted for irrigation. Salts enter a river when surface and
groundwater flows mobilize the salts present in soils, rocks, and geologic formations
underlying the soils. Diversion for irrigation and return flows to the river increase the
surface and groundwater flows, mobilizing additional salts. We use theaérioad-

ing to refer to the introduction of salt from natural (precipitation) and human-induced
(irrigation) sources. Additionally, evaporation and evapotranspiration typically remove
water but not salt from the river basin, effectively increasing the salt concentration in
the remaining water. Reservoir storage results in increased evaporation from a river
basin. Diversions remove water and salt from a river for irrigation. Crop evapotrans-
pire part of the water applied to them, but the salts are, for the most part, conserved. To
prevent deterioration of farm land resulting from salt buildup, the remaining flow from
the diversion is used to flush the salt deposited from the diversion in return flow to the
river. The return flow will have a higher salinity concentration because only water, not

salt, is removed during irrigation.



As water flows downstream, the water quality generally deteriorates because
diversions remove water and return less water with higher salinity concentrations than
naturally occur in the river. As water passes through reservoirs, evaporation increases
the overall salinity of the outflow from the reservoir. To provide downstream users
with water of adequate quality for irrigation and other consumptive use, costly projects
must be implemented to maintain salinity concentrations at acceptable levels for
downstream use.

Predictive models help basin planners to do the following:

» predict the effects of natural hydrologic variability on future salinity lev-
els,

* predict the effects of future land use changes on future salinity levels,

* predict the effects of water quality improvements plans on future salinity
levels (both to evaluate benefit/cost of proposed plans and to predict ben-
eficial effects of completed plans),

» assess the likelihood of exceeding standards,

* analyze how operating policies and/or water allocation may need to
change to mitigate effects of exceeding standards, especially in critical

low-flow periods.

Many water quality modeling projects have not included confidence levels
(risks, uncertainties). Recently, it has been recognized that uncertainty analysis is an
important part of a model output because it quantifies how well models represent
observed behavior and if the theory included in models provides meaningful and use-
ful results (Beck, 1987). Incorporating uncertainty analysis in a model presents many
advantages not available in deterministic models. Advantages of uncertainty modeling
include the following:

« understanding and quantifying uncertainty of input variables,



 understanding and quantifying uncertainty in model parameters,

 determining theonfidenceof the predictions of future salinity levels,

» allowing policy makers to identify risks and uncertainties in policy anal-
ysis,

* targeting future research to reduce highly uncertain data in the model.

No basin-scale models of water quality and salinity exist that can meet these
requirements, and this research intends to address that problem. We develop a method-

ology that meets these requirements.

1.1.2 Description of the Problem
We need to address several technical issues to provide a predictive long-term

basin-scale water quality model that can meet the requirements described previously.
We must identify all sources of uncertainty in the basin model and quantify them in
relation to each other.

Uncertainty can generally be categorized as erdraomor knowledge
(Tung, 1996). Random uncertainty is due to the inherent unpredictibility of an event.
For example, hydrologic variability is a random event that will always be present and
cannot be reduced or eliminated. Knowledge uncertainty is due to a lack of complete
understanding about modeled algorithms, parameters, and data uncertainties. Addi-
tional sources of uncertainty include uncertainty in model processes for flow and salin-
ity and error in measured values. Knowledge uncertainty can be reduced with
improved data collection or additional research to further understand model processes.

This research on the Colorado River has identified hydrologic variability as the
largest source of uncertainty in a long-term, basin-scale model in semi-arid climates. It
is critical to incorporate the effects of hydrologic variability in such a model because
hydrologic variability will be key to how well we predict the system response.

In long-term planning models, the historic record is typically used to generate



stochastic hydrology. But historic gauged flows include the effects of human develop-
ment, such as reservoir storage and diversions. To use the historic record to generate
stochastic hydrology for future predictions, we must separate the changes in flow
resulting from human development from changes in flow resulting from natural vari-
ability (stochastic hydrology).

Likewise, we can use the historic salinity record to predict future salinity.
Again, the historic salinity represents both natural and human-induced sources of salts.
Separating the gauged salinity into natural and human-induced sources is more chal-
lenging than determining the natural flow from the gauged flow because salt loading is
not directly measured, unlike diversions and reservoir regulations. Hence, natural and
human-induced salt loadings estimates are more uncertain than flow estimates. Appen-
dix A, "Glossary of Terms," provides definitions for variables developed from the sep-
aration of historic flows and the results of the modeling, which is described in this
document.

When developing a long-term basin planning model, model developers typi-
cally make simplifying assumptions to reduce the complexity of the physical processes
to be consistent with the long time frame and large computational time steps. In this
study, we assume that salt is a conservative substance, and reservoirs and reaches
between gauging points are completely mixed systems.

A highly detailed model results in highly uncertain results because the model
requires many input data, and each piece of data has an associated uncertainty. To find
an acceptable certainty for a model, scales for the aggregation and disaggregation of
measured data must be developed. Scale relates to how data is represented in the
model. To predict land use changes in the future, diversion and salt loading data must
be spatially aggregated to a scale that reflects changing land use. Disaggregating the
data at too small a level may lead to an unacceptably large uncertainty.

We researched two of the most common methods for modeling uncertainty: (1)



first order second moment (FOSM) and (2) Monte Carlo simulation. Long:teasmn-

scale models using large data sets are highly uncertain and nonlinear. FOSM modeling
is typically not a good approach for this type of uncertainty analysis, whereas Monte
Carlo simulation has been successfully used in such applications. With the computing
power available today, performing repeated simulations is not as pressing an issue as
in the past. For these reasons, using the Monte Carlo simulation for uncertainty analy-

sis is preferred for long-term, basin-scale modeling.

1.1.3 Research Tasks

This research performed the following tasks as ordered:

1) Analyzed the research issues described previously by researching previ-
ous work and modeling efforts with a literature review.

2) Selected methodologies reflecting mutual compatibilities of modeling
approaches and uncertainties that are appropriate to the long-term,
basin-scale predictions. Integrated methodologies in a simulation
model.

3) Applied the selected and developed methodologies to a case study of the
Colorado River basin. Developed a modeling system specific to the
data available in the basin. The case study includes the following:

a) validation of the predictive modeling system with historical
data;

b) application of the modeling system to make predictions from
now until 2062 for flow and salinity levels with uncertainty;

c) discussion of operational policy alternatives in the event that
critical low flows cause a sharp increase in salinity concentra-
tions in the lower Colorado River basin;

d) demonstration of policy modeling by simulating salt mass and

salt concentration violation statistics with uncertainty.



1.1.4 Case Study
The Colorado River basin has a semi-arid climate; it receives the lowest aver-

age precipitation, 1.15 in/yr (National Research Council, 1968), of any major river
basin in the United States. One of the primary uses of Colorado River water is for irri-
gated agriculture. Salinity levels in the basin must be maintained at a level that will not
adversely affect irrigated crops. Salinity standards, including numeric salinity criteria
are required at key points in the Lower Basin by the EPA and must also be maintained
in the future. A treaty between the United States and Mexico ensures that the salinity
of the Colorado River water received by Mexico is not 115 @@ ppm above the
annual salinity at Imperial Dam. These pressures make salinity the most important
water quality parameter in the Colorado River basin. Other basins have similar charac-
teristics; for example, the Rio Grande Basin has a semi-arid climate and high irrigation
demands. The findings in this research could be applied to these basins in the future.

It is estimated that nearly half of the salinity present in the Colorado River is
from natural sources; the remaining half is from human-induced sources that include
irrigated agriculture, reservoir evaporation, and municipal and industrial sources (U.S.
Department of Interior, 2001). Figure 1 shows the sources of salinity. Irrigated agricul-
ture is the highest contributor of human-induced salts in the Colorado River. The U.S.
Bureau of Reclamation (USBR) oversees extensive efforts costing millions of dollars
per year to reduce the human-induced salt entering the Colorado River.

To better understand how uses and projects upstream in the system will impact
the salinity downstream, models have been developed to predict impacts throughout
the basin. Two previous modeling efforts used uncertainty analysis on a basin-scale for
long-term policy analysis in the Colorado River basin (Malone et al., 1979 and Lee,
1989). Neither model incorporates the uncertainties in natural flow and salt together in
the model. One model looks at the uncertainties in flow due to natural variability, and

the other looks at the uncertainty in determining parameters used to model salt concen-



trations. Flow and salt are strongly dependent on each other; therefore, incorporating
uncertainties for both will provide a broader view of the uncertainties inherent in a

model and how the individual uncertainties together impact the model’s predictions.

Sources of Salinity
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Figure 1: Sources Contribution to Total Salinity (U.S. Department of Interior, 2001).

The USBR developed a highly detailed modeling system of the Colorado River
basin called the Colorado River Simulation System (CRSS). This modeling system
allows more flexibility than past efforts and includes the operational rules by which
USBR regulates its reservoirs. Data for the model is gathered from many sources,
including the USBR, U.S. Geological Society (USGS), Department of Agriculture,
and U.S. Census Bureau. Data is retrieved from gauging stations and extensive
research studies. Using extensive data, the USBR intends to be able to produce more
accurate model results. An outline for CRSS input, output, and sources of data are pro-
vided in Appendix B, "CRSS Inputs, Outputs, and Sources of Data.” When extensive
databases such as those used for CRSS are incorporated in models, those using the
results of the model may easily conclude that the use of extensive data will provide a
more accurate model. This conclusion is not always true, and caution must be used if

the uncertainty of the data used in the model is not understood (Beck, 1987).



To prevent this false confidence in a model’s results, an uncertainty analysis
can be implemented to better convey how well the input data and methodologies in the
model allow the model to predict the response of the system. The existing CRSS uses
Index Sequential Modeling (ISM) to represent uncertainties due to stochastic hydrol-
ogy. However, this technique constrains magnitude and duration of events to those of
the historical record.

Currently, the existing CRSS uses relationships developed by the USGS to esti-
mate natural salt associated with stochastic hydrology. These relationships do not
incorporate the uncertainty of the relationship between natural flow and natural salt.

The modified CRSS presented in this research directly addresses both these issues.

1.2 Literature Review

1.2.1 Methodology
We performed a literature search to locate articles pertaining to the general

topic of long-term, basin-scale, one-dimensional surface water quality models.

Many articles are related to this research, including salinity modeling at a sub-
basin scale (i.e., a field scale) and basin-scale modeling, but they include groundwater
interaction. For this research area, sufficient data for the inclusion of basin-scale
groundwater modeling is not readily available and would require a significant effort to

include in a model. A discussion of papers relevant to our research follows.

1.2.2 Water Quality Models with Uncertainty
As stated previously, the primary research objective is to develop a long-term,

predictive water quality model with uncertainties. For variable time series data, such as
natural flow or natural salt loading, using stochastic modeling can allow natural vari-
ability of the data to be incorporated into a simulation model.

Two articles discuss uncertainty analysis, in general, in water quality model-

ing. Neither review discusses specific models nor model scales. They only provide a



view of the problems of water quality modeling, uncertainty, and the means to apply
uncertainty in general water quality modeling. Following is a brief summary of each
article and a statement of their significance to this research.

Beck (1987) discusses the use of models to develop scientific theories describ-
ing the behavior of complex environmental systems. Beck emphasizes the need to con-
sider uncertainty in models and not limit oneself to deterministic models. Those using
models must also understand that complex models describing the past in great detail
may not be able to provide predictions in the same detail. The model’s output must
convey uncertainties in the prediction model.

He identifies four problem areas in water quality modeling associated with
uncertainty: (1) uncertainty about model structure, (2) modeling parameters, (3) future
system behavior, and (4) designs of experiments or monitoring programs intended to
reduce the uncertainty associated with any of the pervious areas.

A predominant focus of the review is model identifiability. Beck emphasizes
the importance of using the appropriate model for your system. He discusses tech-
niques for model identification, including the Hornberger-Spear-Young (HSY) algo-
rithm and recursive parameter estimation. The HSY algorithm chooses model
parameters that produce acceptable model results. A description using recursive
parameter estimation to develop state variables explains one means to develop state
variables and/or model parameters.

The article emphasizes the importance of uncertainty analysis when modeling
large, data intensive, systems. Simplifications are needed to model the complexities at
a basin-scale for planning time frames. Uncertainties must be quantified to understand
the accuracies of the prediction. Beck supports the need for models such as the one we
propose to develop and explains pitfalls that should be avoided during model develop-
ment. As we develop methodologies for the modified model, Beck’s discussion of

model identifiably will be important. Uncertainty analysis should uncover the uncer-
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tainties present in the model resulting from the simplification of salt processes and
flow systems. The modified CRSS will incorporate the best available information from
the extensive research of the basin. The modified CRSS will have the flexibility to be
improved easily as new research advances theories that will be important to the basin-
scale modeling system.

Tung (1996) reviews the application of uncertainty analysis in water quality
modeling. Tung identifies two types of uncertainties: (1) uncertainty due to inherent
randomness of an event and (2) uncertainties associated with a lack of complete
knowledge about model processes, parameters, and data uncertainties.

Natural variability is a type of uncertainty that is always present in a natural
system, and it cannot be reduced or eliminated. This is telaneddm(stochastic)
uncertainty. Uncertainty due to a lack of complete understanding of the accuracy of
inputs to the model or the processes included in the model is teknegdledgeuncer-
tainty. Knowledge uncertainty can be reduced through increased sampling or by
improving the measurement of input variables for the model. Research can improve
the mathematical representation of physical processes used in the model as the pro-
cesses are understood in greater detail.

Tung identifies three measurements of uncertainty: (1) the probability density
function of the variable or parameter subject to uncertainty, (2) a reliability domain
(i.e., confidence interval), and (3) a mean and variance for the variable or parameter of
interest. With the confidence interval, multiple variables or parameters cannot be com-
bined to find the overall confidence interval for the system. When using a mean and
variance for the variable or parameter of interest, the mean and variance for multiple
variables can be combined to determine the overall system’s mean or variance.

Tung’s discussion of uncertainty analysis techniques includes analytical and
approximation techniques. Analytical techniques are usually only applicable to fairly

simple models because a complete probability density function (PDF) must be avail-
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able for the input variables. Approximation techniques are more applicable to compli-
cated engineering problems in which the exact PDF is difficult or impossible to
determine. Approximation techniques include first-order variance estimation, first-
order second moment, probabilistic point estimation methods, and Monte-Carlo simu-
lation. Tung briefly describes the interrelationship between sensitivity analysis and
uncertainty analysis and states “the former is used to analyze the internal mathematical
responses of model outputs as affected by changes in model inputs/parameters,
whereas the latter is used to analyze the stochasticity of the model through these rela-
tionships.” Both are important to uncertainty analysis.

Tung’s article provides a basic guide for types of uncertainty that can be mod-
eled, methods to incorporate uncertainty in a model, means to propagate uncertainty to
a model’s results, and a discussion of uncertainty analysis versus sensitivity analysis.
This research considers the many alternatives presented when incorporating uncer-
tainty in the modified CRSS. Tung provides a broad view of uncertainty in water qual-
ity analysis and provides an overview of how uncertainty may be applied in the

modified CRSS.

1.2.3 Basin-Scale Water Quality Models for the Colorado River Basin
Two articles present uncertainty models of the Colorado River basin and pro-

vide a point for this research to move forward from published work. The articles
describe water quality models that look at the Colorado River basin and predict salin-
ity, including a measurement of the uncertainty of the prediction. A brief summary of
each article is followed by a discussion of how this research will build on these mod-
els.

The Utah Water Research Laboratory (Malone et al., 1979) developed a basin-
scale, stochastic steady state model for water quality throughout the Colorado River
basin using an existing model, SALT. The SALT model incorporates stochastic analy-

sis by allowing in-stream salinity and the agricultural base leaching factor to be input
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as random variables. The agricultural base leaching factor represents an empirical
value depicting the tons of salt removed from the soil per acre-foot of water flow
through the soil matrix. Typically, the water flow represents return flows from irriga-
tion. SALT determines the expected value and the variance for the natural salt load.
The program SALTEZ, developed from the SALT program, additionally models
means, variances, and skewness resulting from stochastic inputs of salinity and the
agricultural base leaching factor. These additions allow the propagation of uncertainty
from multiple model inputs using first order second moment analysis through the
model to the model outputs.

This research considers uncertainties only with salt loadings and the base
leaching factor and not with stochastic hydrology. The salt loading term in the model
is the mean of the historic loadings from 1940 to 1974. Uncertainties in the mean value
are related to natural and human-induced variability in flow and salinity over the time
period. The uncertainty also includes measurement and calculation errors because the
natural variability could not be separated from measurement and calculation errors.
Uncertainty associated with the base leaching factor includes both modeling uncer-
tainty (from the inexactitude of the mathematical representation of a physical phenom-
ena) and uncertainty in the estimation of the base leaching factor from available data.
The deviation from a best fit regression curve represents uncertainties, with basin
leaching factors determined from field studies in a previous report (URWL, 1975).

Results from the uncertainty analysis show the variance due to the change in
total gauged salt load contributes the most to the uncertainty, followed by the variance
due to the basin leaching factor, then uncertainty in the total salt loading due to
changes in projected diversions. The variance for the change in total salt loading
remains constant for all simulations, while the variance due to the estimation of the
basin leaching factor and projected diversions varies in each model run, depending on

the agricultural parameters for the run. The standard deviation for the total salt load at
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Imperial Dam varies from 6 to 10 percent of the total. This model does not consider
the uncertainty due to natural variability of the flow regime, which would strongly
influence the model’s output uncertainty.

Lee et al. (1993) developed a model primarily for economic policy analysis
that considers natural flow variability in determining of salt concentration. Lee devel-
oped a set of differential equations to describe the flow of total salts in the Colorado
River basin. Again, a steady state model is applied to simplify the number of equations
required for the model. Based on the Quality of Water Progress Report 18 (USBR,
1997) the equations simplify the system to include only 64 percent of the 981,570 tons
of salt targeted by the Colorado River basin Salinity Control Act. The model is used to
estimate the probability distribution of water quality improvement resulting from spe-
cific reductions in salt load or improvements due to different return flow salinity con-
centrations. Lee also models replacement of return flows from diversion with better
quality water. Replacing the return flows dilutes the salinity in the river, because the
replacement water is of better quality than the water in the river. Lee dose not consider
uncertainties associated with salt load.

Shortcomings of the simplified model are that it models only 64 percent of the
salt targeted by the Salinity Control Act and it does not consider water entitlements in
the final results. The final modified CRSS will account for all the salt in the system,
and it will include water entitlements through the use of rules that represent the entitle-
ments in the RiverWare modeling environment.

Neither the Lee nor the UWRL model incorporate the uncertainties in natural
flow and salt together. Each modeled only one of the two uncertainties. This research
incorporates uncertainties for both flow and salt in the modified CRSS. Because flow
and salt are strongly dependent on each other, incorporating uncertainties for both will
provide a broader view of the uncertainties inherent in the system and how the individ-

ual uncertainties impact the modeling system’s predictions.
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1.2.4 Modeling Salt Processes
The literature reviewed discusses various methods to determine the salt addi-

tion or removal from sites. Riley and Jurinak (1979) proposed a concept to explain salt
production in a natural watershed. They use the berseline salinityto represent the
natural release of salt from a watershed basin due to hydro-geochemical weathering
within a basin. Data shows that the salt mass from a basin is relatively constant, which
means the natural baseline salinity is relatively constant.

Riley proposes two assumptions to develop his methodology. First, he uses
measured data to show that, generally, the amount of salt leached from the land is
highest when itis firstirrigated; it decreases as irrigation continues to what he terms an
agricultural base salinitywhich is constant. He proposes that this concept can be
applied to any basin once the land has been irrigated for many years, but does not pro-
vide an exact time frame. Second, once the agricultural base salinity is reached, the
salt loading is due only to a combination of the base weathering rate of the soil profile
and underlying geologic formation. He further proposes that when both of these
assumptions are made, the removal of salt is directly proportional to the quantity of
water passing through the soil profile. A relationship between irrigation efficiency and
salt loading can be developed using the stated assumptions. Irrigation efficiency is a
function of the water leaching through the soil profile.

Riley’s research shows that soils have a base leaching factor that can be deter-
mined from readily available information. He develops a procedure based on mass bal-
ance to determine the effects of irrigation management on the salt input into a river.
This procedure includes irrigation efficiency to better understand the effects of irriga-
tion practices. The procedure determines the salt load contribution from agriculture as
a function of the change in salinity and flow over the reach, evapotranspiration in the
reach, and water diverted for agriculture in the reach. (A reach is a section of river

where gauged or calculated data is available for flow and salinity at the upper and low-
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ermost points in the reach.) Once the salinity contributed by agriculture is calculated,
the salinity from natural sources is calculated as the change in salinity over a reach,
minus the salinity caused by agriculture.

The model developed by Malone, discussed earlier, uses this method to sepa-
rate natural and agricultural salinity. Malone attempts to use a mathematical technique
to develop the natural and agricultural base leaching factors that Riley found by mass
balance. When the factors are calculated using soils data for the basin, a regression
reveals a weak relationship between the mass balance method and the mathematical
technique. Malone determines the uncertainty of using this mathematical technique to
describe salt loading from a soil profile, with the residuals from the regression. He
states that other interpretations of Riley’s theory will produce different uncertainties.
One reason for the weak correlation can be the use of large-scale geology maps to
develop the basin leaching factors for each subbasin. Much more detailed maps are
required to more accurately represent the underlying rock and formations for each
basin. Still, the classifications for the basin geology may not be at a scale that would
provide adequate correlations.

This research identifies a method of modeling salt loading that is appropriate to
the basin scale, yet yields acceptable levels of uncertainty. lorns et al. (1965) also used
a mass balance technique to determine natural and human-induced salt loads. These
studies are important sources of data and methodologies for developing the salt pro-

cesses for the modified modeling system.

1.2.5 Modeling Methods for Uncertainty
Additional articles discuss general approaches for modeling uncertainty of

water quality parameters. These articles explain the application of uncertainty analysis
by Monte Carlo simulation. Monte Carlo simulation has the advantage of providing
useful information regarding the uncertainty of model outputs when a system is highly

uncertain. Hession et al. (1996) use a two-phase uncertainty analysis to present a
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determination of uncertainty for an ecological risk assessment. The two-phase uncer-
tainty analysis determines knowledge uncertainty and stochastic uncertainty for the
effect of excess phosphorous on the trophic state of a lake. The stochastic model
parameters include phosphorous inputs and multiple parameters required by the
model.

Hession separates knowledge and stochastic uncertainty so that the effects of
each are shown individually. Stochastic uncertainty is due to inherit randomness of
natural process, such as precipitation or temperature. This type of uncertainty cannot
be reduced but should be recognized. Conversely, knowledge uncertainty can be
reduced by further research regarding the parameter. Knowledge uncertainty can be
used to guide future research and reduce the model’s uncertainty in an effective man-
ner.

Hession’s model presents the output uncertainty in two phases. First, the model
performs simulations varying only the stochastic uncertainty parameters. The results
are shown in a complimentary cumulative density function (CCDF). This defines the
probability of exceedance for various levels of phosphorous. Next, the model performs
multiple simulations again, changing the knowledge uncertainty parameters before the
multiple stochastic uncertainty runs. The multiple knowledge uncertainty runs produce
multiple CCDFs. The range of the CCDFs show the knowledge uncertainty in the
model.

Griffen (1995) uses Monte Carlo simulation to find the uncertainty associated
with achieving a No Net Increase Policy for non-point source loading of nitrogen
based on the uncertainty of nitrogen export coefficients and Best Management Plan
effectiveness.

These models discuss methods to model uncertainty that are ideal for the Colo-
rado River basin. Incorporating both random and knowledge uncertainty appears to be

a possible technique to incorporate in one model natural variability of both flow and
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salt, uncertainties in the measurement of input data, and the simplification of complex
processes. Incorporating the uncertainty for both flow and salt in one model will be an

important addition to the current ability to model salt process in river basins.

1.3 Background For the Colorado River Basin and Salinity Modeling

1.3.1 The River Basin

The research presented develops a long-term stochastic water quality modeling
system for a subbasin of the Colorado River basin. In the Colorado River basin, salin-
ity prediction and control modeling is necessary to meet treaty obligations between the
United States and Mexico and to maintain national water quality standards required by
legislation. The need to maintain salinity standards while concurrently allowing the
development of unallocated water has made modeling salinity throughout the basin
critical for long-term basin planning. The river drains an approximately 244,000-
square-mile basin and is 1,440 miles long. The basin includes parts of Wyoming, Col-
orado, Utah, New Mexico, Arizona, Nevada, California, and a small part of Mexico.
Figure 2 is a map outlining the Colorado River basin and the line that divides the basin
into the upper and lower basins.

The Colorado River basin has a low average precipitation over the basin area
compared to other basins throughout the United States. River basins such as the
Columbia, Mississippi, or Delaware have much more precipitation over their basin
area resulting in orders of magnitude greater flow out of the basin. Colorado River
basin also has the added pressure of exporting large quantities of water out of the basin

for neighboring areas that require additional water.
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Figure 2: Map of Colorado River basin.
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1.3.2 Salinity in the Basin
Natural and human-induced salinity result from point and non-point sources.

Natural point sources that have been identified include seeps and saline springs. Some
springs originate from deep geological formations containing brackish water. Natural,
non-point sources of salinity generally originate from the weathering and dissolution
of underlying rocks or soils overlaying the rocks.

The underlying rocks strongly characterize the natural salinity contributed by
each subbasin. Areas of the basin include underlying rocks that are relatively resistant
to dissolution by water. These rocks include igneous and metamorphic rock types.
These rocks weather at a very slow rate and contribute small amounts of dissolved sol-
ids (total salts). The upper reaches of the Colorado, Green, and San Juan Rivers char-
acterize these types of subbasins, which are typical in the high mountain areas. The
middle and lower reaches of these subbasins contain sedimentary rock, which dis-
solves more readily in water and, therefore, contributes greater amounts of dissolved
solids to the river. Soils in these regions have chemical dissolution characteristics sim-
ilar to the underlying parent rocks. Therefore, soils over the sedimentary rock forma-
tions will tend to contribute greater amounts of dissolved solids. These areas
characterize the valleys and lower lying plains, which are the predominant areas for
agriculture.

Agriculture increases salinity concentration through two processes: (1) salt
concentration and (2) salt loading. The salt concentration process is a result of evapo-
transpiration from crops, which results in the concentration of dissolved solids in the
remaining return flow. Evapotranspiration from crops consumes water but leaves salts
behind in the soil. Return flows to the river from the diversion typically contain the
same salt mass present in the diversion water, but have less water, hence, higher con-
centrations of salt. Additionally, reservoirs concentrate salt during evaporation, i.e.,

water is lost from the reservoir and salt is conserved.
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Salt loading occurs when salt is added (from deposits) or removed (by leach-
ing) from salts present in the soil as water is transported through the soil. The water
can be introduced into the soil from human-induced sources, such as irrigation prac-
tices, or from natural sources, such as precipitation. Irrigation practices increase the
flow through soils, which increases the total salt loading from previous natural salt
loading levels.

Federal agencies fund extensive efforts, costing millions of dollars per year, to
reduce the human-induced and natural loading salt to the Colorado River. Figure 3
shows the extent of salinity projects and studies throughout the basin. USBR has off-
farm projects designed to reduce irrigation return flows by lining irrigation canals and
laterals. Additional projects not related to agriculture include capping saline springs
from abandoned gas and oil exploratory wells. The U.S. Department of Agriculture
has implemented on-farm salinity reduction, helping farmers to improve irrigation
practices that increase irrigation efficiency, thereby reducing return flows. The Bureau
of Land Management has implemented programs to reduce erosion on public lands to
limit the release of dissolved solids. As of 1998, salinity control projects, with a
reported total cost of approximately $426 million, had removed an estimated 634,000
tons of salt from the river. An additional $170 million is projected to remove an addi-

tional 390,000 tons in order to maintain current salinity standards (USBR, 1999).

1.3.3 Laws of River Relating to Water Quality
Since 1922, legislation, court decrees, and agreements have been established to

form the operational policies of the Colorado River. These are documented in a single
volume by Nathanson (1978) and are known as the “Law of the River.” These policies
are concerned mainly with water quantity. Problems with salinity did not start to be
discussed until 1961. At that time, the Mexican government strongly objected to the
guality of the water the country was receiving. The average annual salinity of water

delivered to Mexico in 1962 was 1,500 mg/L. This water was not suitable for irrigation
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and was adversely affecting crops. The rise in salinity in the water delivered to Mexico
was caused by two independent factors. Deliveries were reduced because water was
being held back in Lake Mead in preparation for filling Lake Powell and, at the same
time, highly saline groundwater from the Wellton Mohawk irrigation district was

being pumped into the Colorado River above the Mexico boundary. These highly

saline waters greatly deteriorated the quality of the Colorado River water.

Figure 3: Locations of Title 1l Salinity Reduction Projects and Studies (U.S. Depart-
ment of Interior, 2001).

In response to Mexico’s concerns and after years of negotiations, Minute No.
242 of the International Boundary and Water Commission dated August 30, 1973, was
signed. Minute No. 242 stipulated that water delivered to Mexico have an average
salinity of no more than 115 ppm30 ppm above the annual salinity at Imperial Dam.

Subsequently, the Colorado River Basin Salinity Control Act of 1974 provided
measures to ensure the United States could meet its obligation to Mexico under

Minute No. 242. The Act authorized construction of a desalting plant and additional
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salinity control projects.

Minute No. 242 sets a variable standard for the Mexico delivery, but does not
set numerical water quality standards at any fixed points in the basin. Numerical stan-
dards resulted from separate U.S. legislation that set policy regarding water quality.
The Federal Water Pollution Control Act Amendments of 1972 required development
of water quality standards across the nation. The EPA interpreted the new legislation
as a requirement to set fixed point numerical standards for salinity levels in the Colo-
rado River basin. The Salinity Control Forum was founded by the basin states (Wyo-
ming, Colorado, Nevada, Utah, Arizona, New Mexico, and California) to help develop
the numerical salinity standards, including numeric salinity criteria required by the
new legislation.

The following numeric salinity criteria were set in 1975 requiring maintenance
of a flow-weighted average total dissolved solids concentration:

» 723 mg/L below Hoover Dam

» 747 mg/L below Parker Dam

* 879 mg/L at Imperial Dam

The standards were developed from the 1972 average annual salinity concen-

trations at each location and are currently unchanged (USBR, 1999 and Lee, 1989).

1.3.4 Previous Modeling Efforts
The existing Colorado River Simulation System was developed in the late

1970’s in response to a need for a modeling system that could simulate operations for
various hydrologic and demand sequences. It evaluates how proposed development
occurring high in the basin might impact locations downstream from the development.
CRSS includes a simulation model of the entire Colorado River system. It also
includes a stochastic natural flow model to generate future stochastic flows and a salt

regression model that estimates natural salinity associated with natural flows. The sim-
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ulation model, termed the Colorado River Simulation Model (CRSM), has recently
been re-implemented in RiverWare and is still used for operational planning.

A technique called index sequential modeling (ISM) develops risk-based esti-
mates for CRSM results. A study by Ouarda et al. (1997) assesses the validity of ISM
by analyzing synthesized streamflow developed from stochastic techniques compared
with ISM. The study explains, “ISM utilizes a synthetic hydrologic database con-
structed from a series of overlapping short-term inflow sequences extracted directly
from the historical record.” Figure 4 illustrates the method in whigs the total num-
ber of historical years on recomd,is the number of years to be modeled, largdthe
generating index determined by the modeler. Indexing defines the separation in the
years of each successive sequence. A tot!aj—é#l- years or 250 years of synthesized
flow is generated for the values given in the Figure 4.

Using CRSS, the study found that with indexing of 1 to 2 years, the index
sequential modeling matches well with the stochastic properties of statistically gener-
ated hydrologies. Currently, the hydrologic database contains historical data for flow
and salt mass from water years 1906 to 1995 for 29 inflow points included in CRSM,
which are used by ISM.

A shortcoming of the method is that it requires an extensive historical record to
produce synthetic streamflow of adequate length. Additionally, there is no comparison
for salinity modeling in the system. The validity of ISM for risk-based estimates of
salinity projections has not been verified. Using ISM to produce a synthetic salinity
database should be verified to correspond well with stochastically generated salinity
data before ISM is accepted as an adequate method for producing a synthetic salinity
database.

Salinity predictions need to provide the probability of critical low-flow periods.
These periods are of interest when trying to predict periods of increased salinity con-

centrations. ISM cannot provide this needed analysis, but times series analysis can be
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used to find the probability of low-flow periods.
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Figure 4: lllustration of Index Sequential Modeling adapted from Ouarda et
al., 1997.

1.4 Research Tasks Performed
This research identified several specific technical issues as a result of the litera-

ture review and an evaluation of the shortcomings of current prediction models. These
are methodological issues relating to modeling uncertainty in a long-term, basin-scale
salinity planning model. This research addressed these issues in order to define the
combination of methodologies, which together form an effective modeling system
with quantifiable uncertainties. These issues are described briefly in the following sec-

tions.

1.4.1 Research Issues

1.4.1.1 Identifying Sources of Uncertainty and Determining How to Model Them
The first task of this research was to identify the important sources of uncer-

tainty in predicting future salinity levels in a basin, then to determine how these uncer-
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tainties should be represented in the modeling system. Table 1 and Table 2 list all the
possible sources of uncertainty for both water quantity and salinity in their relative
order of magnitude. The modeling system does not include some of these sources of
uncertainty because they have small relative magnitudes of uncertainty and/or the
uncertainties would not have a significant effect on the results of the basin-scale pre-
diction modeling system. This research identified the following sources of uncertainty
as the most important in a long-term planning model:

* hydrologic variability

» estimation of natural salt loading given natural flow

* estimation of historical salt loading from human-induced sources

* estimation of changes in salt loading due to future land use changes

We found that other sources of uncertainty, such as those contributed by mea-
surement errors and modeling processes, contribute a minimal source of uncertainty
compared to sources such as natural variability. Therefore this research excluded

uncertainty resulting from measurement error.
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Table 1: Uncertainty in Water Quality
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parameter magnitude (source)
natural salt load (USGS)
-natural variability vs. measurement error
human-induced salt load
-salinity pickup
extension of salt load record (USGS)

-from salinity-flow regression relationship

modeling procesgheory vs. observation)
-fully mixed reservoir

-effects of stratification

-bank storage relation to natural flow

(Hendrick, 1972) (USBR, 1987 p79)

conservative substance
-concentrating effect
-no precipitation in reservoirs

(Liebermann et al., 1988 p90)

EC or TDS measurement

(USGS)

Table 2: Uncertainty in Water Quantity

parameter

magnitude (source)

natural flow
-natural variability vs. measurement error

(USGS)

consumptive use - upper basin
- irrigated land estimates
- Blaney Criddle method

(Jensen et al., 1990)

unmeasured returns - lower basin

(Owen-Joyce, 1987)

extension of streamflow record
-from correlated gauges

(USGS)

modeling procesgneory vs. observation
- elevation to volume table

- elevation to area table

- CRSS bank storage

- CRSS evaporation

(Carron, 2000)
(Carron, 2000)
(USBR)
(USBR)

measurement error
- USGS stream gauge
- pool elevation

- precipitation

+/- 5% (USGS)
+/- 0.1 feet (USBR)
(USGS)(NOAA)
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As discussed previously, uncertainty can generally be separatedrnidtom
(stochastic) andnowledgeauncertainty (Tung, 1996). Natural variability represents
random uncertainty. The natural variability of hydrology cannot be reduced but must
be included in uncertainty analysis. The uncertainty in measured data and the simplifi-
cation of physical process for modeling purposes represents knowledge uncertainty.
For example, uncertainty can originate from errors when measuring a value, including
streamflow or conductivity. Models represent physical processes with simplified math-
ematical relationships. Using these simplified mathematical relationships to represent
complex physical processes introduces uncertainty in a model. For example, the phys-
ical process of salt loading will have an error associated with the simplified mathemat-
ical relationships used to represent it in a model. If salt loading is not related to flow,
the variations in the loading due to changes in flow will not be modeled. We know salt
loading is related to flow; therefore, this simplification should be developed around a
relationship between salt loading and flow to reduce error in this simplification.
Knowledge uncertainty is due to the current level of knowledge we have about the
measured data or the physical processes. Knowledge uncertainty can be reduced with

improved data collection methods and additional research.

1.4.1.2 Representation of Stochastic Hydrology
The greatest influence on salinity in the river basin is the stochastic nature of

hydrology resulting from natural variability. Hence, a useful salinity planning model
must incorporate the natural variability of flow to provide useful predictions. In the
stochastic salinity model previously discussed, Malone et al. (1979) used the stochas-
tic properties of the historical record to incorporate the uncertainty in the change in
salt loading for each reach. He did not use these stochastic properties to incorporate
natural variability in flow because a relationship between flow and salt was not devel-
oped for the model.

In the existing CRSS, ISM generates synthetic streamflow sequences that
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exactly match the historical record, shifted in time. ISM only produces synthetic
streamflow sequences that have occurred in the past. Hydrologic events that have not
occurred in the historical period we recorded cannot be captured in either uncertainty
analysis.

Of particular interest for salinity modeling are sustained low-flow periods
(droughts). During these periods, we would expect increases in salt concentrations
throughout the system. Being able to incorporate the uncertainty of hydrologic events
that are possible, but have not occurred historically, extended the modified model
beyond past modeling efforts on the Colorado River and allowed the model to include
critical low-flow analysis not included in current uncertainty studies.

Time series analysis techniques provide methods to generate synthetic hydro-
logic events that have not occurred historically, but are possible given the statistical
properties of the historic data. These properties include basic statistics, such as mean,
standard deviation, skewness coefficient, coefficient of variation, and maximum and
minimum values. The analysis can find correlations between multiple stream gauges
and specific statistics related to drought, flood, and storage.

There are two key categories of time series analysis and modeling techniques:
parametric and nonparametric technique. Parametric techniques include auto regres-
sive (AR), auto regressive moving average (ARMA), and periodic auto regressive
(PAR) models. Most parametric models assume the time series is distributed in a
Gaussian (normal) distribution. If the time series is not in a Gaussian distribution, the
time series must be transformed. A hydrologic time series is typically transformed
with a log or power transformation. The transformed data can then be used in the para-
metric model. After the model generates synthetic hydrologies, the hydrologies must
be back-transformed. The data is back-transformed by multiplying the time series by
the inverse log or power transformation. The back-transformed data is not guaranteed

to preserve the basic statistics of the transformed data (Sharma et al., 1997; Salas,
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1985; Bras and Rodriguez-Iturbe, 1985).

Many software packages can help to develop parametric models. Stochastic
Analysis, Modeling, and Simulation (SAMS) (Salas et al., 2000) is a software package
designed for parametric time series analysis of hydrologic data. SAMS can help to
analyze the statistical properties of the historic flows and then fit the streamflow data to
a model that can be used to synthesize streamflow sequences. It can generate synthetic
streamflow with longer periods of drought than the original sequence. By generating
many sequences, it is possible to determine the probability of droughts of a particular
length.

Nonparametric techniques use splines, kernel functions, nearest neighbor
methods, and orthogonal series methods to perform statistical estimation (Silverman,
1986). Nonparametric statistical estimation is performed by resampling the historic
time series. The techniques are nonparametric because they do not require estimating
any parameters for the model from the historic time series. Additionally, the model
does not require an assumption of the time series probability density function. There-
fore, nonparametric techniques preserve higher order statistics, like the probability
density function and bivariate probability density function when they are not Gaussian
or nonlinear.

Another advantage of nonparametric techniques are that they can easily be
driven by multiple variables. The variables can include precipitation or climate infor-
mation. Using climate information with a nonparametric technique allows the model
to capture shifts and trends related to climate (Rajagopalan and Lall, 1999). Con-
versely, incorporating this information in a parametric model can be involved and dif-
ficult.

The current technique to generate stochastic hydrology, ISM, is a simple non-
parametric technique. Recently developed nonparametric techniques eliminate some

of the problems that are found in synthetic streamflows generated with ISM, such as
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producing only values and time series sequences that are seen in the historic record.
Nonparametric techniques, such as the modified k-nearest neighbor algorithm devel-
oped in this research, eliminate many of the drawbacks of ISM, providing and alter-

nate nonparametric technique.

1.4.1.3 Separation of Natural Flow from Gauged Flow
Past modeling efforts raised the issue of separating natural flow from gauged

flow to estimate the future inflows to the system. The separation of natural flow from

gauged flow forces the separation of natural salt mass from gauged salt mass. While
measured data is available to support the separation of flow, there is little to no mea-
sured data available to support the separation of salt mass.

In an ideal modeling scenario, we would have gauges at the top of all tributar-
ies in a river basin. Thesgeal gauges would have no human development upstream;
therefore, the gauged data would represennderal flow into the river. With a his-
torical record of the natural flow, the record could be used directly to predict future
inflow into the system. In reality, we do not have gauges above human development
for all tributaries. Most of the historical gauged data includes the effects of human
development, which poses a problem when attempting to use this data to predict future
inflow into the system. If the variations are not considered, predictions will consider
the natural and human-induced changes in flow. When modeling future variations in
human development, we do not want past variations influencing the prediction. The
human-induced variations in flow must be accounted for in the historical record. Those
variation can be accounted for in one of two ways. The historical record either must be
adjusted to represent a single time of development (i.e. the development in the basin in
2000), or the effects of human development must be removed from the historical
record. CRSS removes the effects of human development from the historical record to
produce a natural flow database that is used for predictive modeling.

Human development, including diversions, reservoir regulation, exports, and
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imports, impacts the flow. Gauged data with human development upstream of the
gauge includes natural and human-induced effects on flow. Because human develop-
ment on many rivers began before flow gauging, natural flow cannot be determined
directly. Natural flow can only be calculated by removing the effects of human devel-
opment from gauged flows.

The same is true for calculating gauged salinity concentrations. The concentra-
tions represent natural and human-induced sources of salt loading into the river. If nat-
ural flow is separated from gauged flow, it is also necessary to separate natural salt
mass from gauged salt mass to predict future salinity levels. Gauged salt mass cannot
be used with the separated natural flow for prediction. The gauged salt mass must also
have the salt (mass) loading resulting from human-induced sources removed. Neither
natural nor human-induced salt loading can be directly measured. Typically, a mass
balance technique is used to separate salt loadings.

In addition to requiring a natural salt loading, future land uses must have an
associated human-induced salt loading to predict their effects on future salinity con-
centrations. A critical area for this research is finding an appropriate method to model
natural and human-induced salt loading with the available data.

When modeling uncertaintirying to reduce gauged data to represent natural
and human-induced sources of uncertainty introduces additional uncertainty in the
model. For example, if we use natural flow, we cannot directly find the uncertainty of
the natural flow. The natural flow uncertainty can only be developed from uncertainty
in the historical gauge measurements and all the measured and unmeasured effects of
human development. Therefore, the uncertainty in gauged flow is much less than in
natural flow. Disaggregating the gauged flow into natural and human-induced flow
introduces additional uncertainty in the model.

This investigation did not find an alternate technique to model future salinity

levels without using a model that separates historic flow and salt to natural and human-
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induced flow and salt. For this reason, we found it necessary to use natural flow and
salt to drive the modified CRSS model. The analysis of the existing stochastic tech-
nigue to generate natural flow, ISM, and two alternate techniques is detailed in Chapter
2, “Modified Nonparametric K-NN Model for Generating Stochastic Natural Stream-

flow.”

1.4.1.4 Method of Modeling Salinity Concentrations
The literature review found standard simplifications of physical processes

when modeling salinity at a long-term, basin-scale. The modified CRSS simulation
model uses the simplifications that were implemented with the existing CRSS simula-
tion model. The simplification includes modeling salinity as a conservative substance.
Modeling dissolution and precipitation of salts becomes cumbersome and impractical
at a basin-scale. An extensive amount of data is required to include chemical reactions.
This type of modeling is usually reserved for field-scale models in which acquiring the
required data is possible. Therefore, reservoirs were modeled as completely mixed
systems. As stated previously, research has generally shown that variations in salt con-
centration entering a reservoir are greatly reduced when salt leaves the reservoirs
(Helsel and Hirsch, 1992). Modeling reservoirs as a completely mixed system ade-
guately represents the reservoir’s physical salinity process for the long-term, basin-
scale.

We developed the process to describe natural salt load in the modified CRSS
from a relationship between calculated natural flow and calculated natural salt. The
technique includes a means to incorporate the uncertainty in the relationship that gen-
erates the natural salt time series. The proposed technique is introduced and explained

further in Chapter 3, “Statistical Nonparametric Model for Natural Salt Estimation.”

1.4.1.5 Issues of Scale in Human-Induced Salt Loading
Salt loading from land use needs to be represented at an accurate and meaning-
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ful scale. Using a small scale introduces many uncertainties. Large scale (up to a point)
is more accurate, but may not satisfy the needs of the model. To have a meaningful
uncertainty analysis, an appropriate scale for each set of data must be found. For
example, the model for the Colorado River must be able to model future changes in
land use. Thus, we needed a scale for diversions that reflects the scale of land use.

We needed a methodology to predict changes in salt load with changes in land
use. For example, diversions needed a scale to allow different land uses in the CRSS
simulation model. Salt loading values needed a scale to complement the scale of the
diversion information. Each land use will result in a different salt loading from the use.
To predict the effects of changing land use on salinity concentrations, we needed to
guantify the change in salt load when land use changes. For example, if land that his-
torically was used for agriculture is proposed to be set fallow, we needed to quantify
the reduction in salt loading from the land since it will no longer be used for agricul-
ture.

After collecting the data available describing salt loading into the basin from
human-induced sources, salt loading can be understood at a very basic level. Collec-
tion of salt loading from human-induced source is difficult to quantify because salt
enters the basin from many diffused sources. Mass balance techniques are used in
studies such as lorns et al. (1965). lorns provided the most detailed salt loading study
performed within the Colorado River basin. Smaller scale studies provided additional
salt loading information for specific regions of the basin (USBR, 1974). Because of
the lack of available data, a limited choice of scales was available. Currently, the basin
is broken down into regions between gauges. Generally, agriculture contributes a sin-
gle constant salt loading between each gauge. Additionally, exports remove the salt
that is present in water transported from the river basin. Most exports occur near the
basin boundary and are high in the basin. Generally, the water high in the basin is of

excellent quality; in the Colorado River basin the salinity of this water is generally less



34

than 100 mg/L annually. This information directed the modeling of human-induced

salt addition and removal.

1.4.1.6 Overall Modeling Approach and Representation of Results
We considered two types of uncertainty propagation for this model: Monte

Carlo simulation and first- order second moment (FOSM) techniques. Both techniques
have advantages and disadvantages that we considered in deciding the appropriate
method for the CRSS simulation model.

Monte Carlo simulation uses multiple simulations to directly build the proba-
bility density function for the output variables. A probability density function is first
approximated for the input variables, and the method then approximates the distribu-
tion of the output variables. Monte Carlo simulation presents output uncertainty very
effectively with highly uncertain systems or when the system responds in a non-linear
fashion (LaVenue et al., 1989). The major disadvantage of the Monte Carlo simulation
is the added computer time needed to run numerous (100-500) simulations to get an
output distribution with minimal sample error.

In contrast, FOSM uses the mean and variance of the input variables and any
correlations between the variables to determine the statistical properties of the model
output. This technique mathematically propagates the statistical properties of the input
variables to the output variables. The advantage of FOSM is that highly complex pro-
cesses can be modeled because only one simulation is required to achieve results. The
disadvantage is that a highly nonlinear system is not represented well, and highly
uncertain systems may not provide meaningful output uncertainty (LaVenue et al.,
1989).

On the basis of this analysis, Monte Carlo simulation is the most effective
method to model the system. The primary need in this research was the ability to
model a highly uncertain, nonlinear system. Computing time was not a critical issue

with available computing facilities.
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Possible methods to report or show uncertainty to a modeler include:
* mean and variance
* boxplots

» confidence interval, i.e., 95 percent confidence bands

Mean and variance provide basic statistical properties of the output value. Box-
plots graphically display the median, interquantile range, and the approximated the 5
percent and 95 percent confidence range of a series of data. Confidence intervals pro-
vide bounding lines around the mean that specify the probability a value will be
between them. Typically, the lower bounding line represents the 5 percent probability
a value will be below the line, and the upper bounding line represents the 95 percent
probability a value will be below the line.

These different methods convey different information regarding the model’s
uncertainty. We considered the availability of these multiple methods because each is
useful to modelers, depending on the type of analysis they are trying to perform.
Examples of each reporting method, along with others, are included throughout the

thesis.

1.4.2 Model Integration
The methodologies selected to model flow and salinity are dependent on the

characteristics of the specific basin and the data available for the basin. The final repre-
sentation of each of the sources of uncertainty in the prediction model depended on 1)
the magnitude of the contribution to the uncertainty of the final prediction, 2) the sig-
nificance of the contribution in the prediction, in terms of intended purpose of the
model, 3) how the processes and uncertainties can most effectively be represented in
view of available data, and 4) compatibility with the overall modeling approach.

The model results included random uncertainty resulting from hydrologic vari-

ability and knowledge uncertainty resulting from measurement error and simplifica-
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tion of complex processes for modeling purposes. As discussed previously, a
disaggregation of gauged flow and salinity was needed to provide future predictions of
salinity concentrations in the basin. The scale for the CRSS simulation model was

defined by the data available for quantifying human-induced flow and salt.

1.4.3 Case Study - Colorado River
A case study tested a modified CRSS. The case study modeled a portion of the

Colorado River basin. Modeling methods and data limitations restrict the case study to
a single gauge within the Colorado River basin. Figure 5 shows a detail of the single

gauge 09072500 (Colorado River near Glenwood Springs, CO) and the corresponding
drainage area that were modeled in this research. Working with a single gauge allowed

investigation of multiple methods that generate stochastic hydrology representing nat-

ural flow.

USGS stream :
gauge 0902750Q

®  Uscs stream gauge
Drainage area above gauge

Figure 5: Detailed outline of the case study drainage area and stream gauge.
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1.4.3.1 Interconnection for Modeling System
The modified CRSS developed in this research was composed of three primary

models. The first model was used to generate synthetic hydrology. The synthetic
hydrology represented a time series of hydrology that is statistically possible given the
data fit to the model. The incorporation of climate data to condition the natural flows is
briefly explored. The second model used the synthetic hydrology to calculate the natu-
ral salt mass as a function of the natural flow. The output from the first model (natural
flow), along with the output from the second model (natural salt mass), were input to
the final model. The final model was developed in the RiverWare river basin modeling
environment. RiverWare allows varying spatial scales and flexibility to expand the
model further as more details are learned about the physical system. A monthly time
step was used to facilitate use of the existing set of river policy available with the exist-
ing CRSS simulation model.

Together, these three models simulated the historic flow, salt mass, and salt
concentration at USGS stream gauge 09072500 (Colorado River near Glenwood
Springs, CO). Figure 6 depicts the interconnection of the modeling techniques.

Investigating the existing CRSS models and data has been ongoing since
August 1999. A series of six status reports presented to the Colorado River Salinity
Control Forum describe the investigation in detail. The information gained from these
investigations provided data and knowledge used to develop a modified nonparametric
K-NN model for generating streamflow. The development of this model and compari-
son to the existing model and an equivalent parametric model are presented in Chapter
2, “Modified Nonparametric K-NN Model for Generating Stochastic Natural Stream-
flow.” A discussion of conditioning the generation of natural flows on climate informa-
tion is included in a discussion concluding Chapter 2. A statistical nonparametric local
linear regression with K-NN residual resampling for estimating salt mass is developed

and compared to the existing salt model in Chapter 3, “Statistical Nonparametric
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Model for Natural Salt Estimation.” The results from the models to generate synthetic
natural flow and an associated natural salt were then taken into the CRSS simulation
model. The CRSS simulation model modeled both historic and future flow, salt mass,
and salt concentration at USGS stream gauge 09072500. The modified modeling sys-
tem results are compared with the existing modeling system in Chapter 4, “Historic
and Future Salt Concentration Modeled in RiverWare.” which discusses the develop-
ment and results from the modified CRSS.

The final chapter, Chapter 5, “Conclusion and Recommendations for Future
Work,” provides a summary of the result from each model within the modified model-

ing system and describes future work that could develop from this research.

1.4.3.2 Model Validation and Metric of Success
We performed model validation to ensure the model performed as intended.

We also wanted to ensure the model reproduced observed data. If a model is able to
reproduce observed data well, there is more confidence the model can produce appro-
priate projected results.

The model was validated over the time period of water years 1941 to 1995.
Each model in the modified modeling system was validated at the completion of its
development. The final CRSS simulation model ensured that all the models in the sys-
tem could together model historic flow, salt mass, and salt concentration to an accept-
able degree.

The first model generated the stochastic natural flow. To validate the paramet-
ric (PAR) and nonparametric (K-NN) model, each generated an ensemble of 100 sim-
ulations, and the probability density functions (PDF) from each ensemble were plotted

against the historic PDF to ensure each technique was able to preserve the PDF.
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Figure 6: Flowchart depicting interconnection of modeling system.
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The second model generated natural salt mass associated with synthetic natural
flow. This model was first validated by using the model to generate a natural salt mass
for a historic period. Historic flow and salt data were both available from water years
1941 to 1995. The natural flow and salt data fit the regression from water years 1941 to
1985. The fitted salt model was then used to generate natural salt mass from water
years 1941 to 1995. The model’s ability to reproduce the period it was fit to (water
years 1941-1985) and an independent period (water years 1986-1995) is checked. The
results from the statistical nonparametric natural salt model and the existing USGS
natural salt model were also compared.

The third model generated the historic flow and salt mass given the results
from the first two models. To validate this model, the historic period from 1941 to
1995 again was generated with the existing CRSS model and the modified CRSS. The
PDF for simulated historic and natural flow, salt mass, and salt concentration were
each compared with the PDF for the observed historic data. We deemed the modeling

system appropriate if the probability density function was preserved.

1.4.3.3 Uncertainty in Predictions
A simulation for future predictions was performed. The most recent predic-

tions for demands in the basin were input in the CRSS simulation model, and the
model was used to predict salinity levels with uncertainty until 2062. This model run
demonstrated use of the modeling system and uncertainty analysis for future predic-
tion. The results were compared from the existing CRSS and the modified CRSS that
were developed in this research. The results from the comparison were analyzed and

discussed.

1.4.3.4 Policy Modeling
Using the modified CRSS will allow more informed policy decisions to be

made. To demonstrate the applicability and advantages of the modified CRSS, scenar-
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ios considering violations of a fictional salinity concentration and salt mass standard
above USGS stream gauge 09072500 were simulated. The uncertainty analysis
informs policy makers how well the system is understood and where focused research
could improve the understanding.

Violation statistics were generated that display the number of times a standard
is violated with uncertainty for the statistic. For the time period 1941 to 1995, the
number of simulated violations was compared to the historic number of violations.

For the future simulation, the number of violations simulated by the new mod-
eling system was compared to the existing modeling system.

In the future, when the new modeling system is expanded to a basin-scale
model, the influence on river basin policy analysis and decisions can further be evalu-
ated. Policy analysis might include changes in operational and basin planning policy.
Reservoir releases designed to dilute high salinity concentrations downstream of a res-
ervoir would be a possible operational policy scenario. Planning policy can analyze the
impacts of new water quality improvement projects or changes in land use. With
uncertainty analysis, the scenarios could incorporate the uncertainty of the project’s
effectiveness and also look at how multiple projects throughout the basin will affect
salinity levels at points of interest (i.e., where salinity standards are established).

Operational policy was modeled with the rule language available in RiverWare.
Planning policy was modeled by changing water uses or demand levels entered into

the model as inputs.

1.5 Summary
The basic problem this research addresses is the long-term prediction of salin-

ity with uncertainty at a basin scale. We expand on existing techniques employed for
risk assessment, such as index sequential modeling. We found Monte Carlo simulation

to be a readily accepted technique for uncertainty modeling in water resources and
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very effective in highly uncertain systems such as the Colorado River basin. The
uncertainty analysis will advance and consolidate the current information regarding

the uncertainty of inputs for models of the Colorado River basin and the uncertainty
inherent in the methods used to model a system as complex as the input and transport
of salt at a basin-scale.

The modified CRSS provides modelers and policy makers with a preliminary
step toward creating a tool to predict salinity at a basin-scale. Confidence was applied
to the outputs from the model and the uncertainty of inputs was prioritized. Research
can focus on reducing the uncertainties that exhibit the greatest influence on the

model.



Chapter 2

Modified Nonparametric K-NN Model for Generating Stochastic Natural
Streamflow

2.1 Introduction
Long-term operational and planning studies in a river basin require the ability

to predict streamflow variability (McMahon, 1996). Typically, this ability involves
developing a stochastic streamflow model to generate synthetic sequences of stream-
flow. The generated sequences preserve the historic statistics (mean, standard devia-
tion, lag(1) correlation, and skewness coefficient) and higher order statistics depending
upon the model. These models work on the premise that the statistics of the historical
flows are likely to occur in the future, i.e., the stationary assumption.

In the Colorado River basin, modeling natural flow variability is important
because it is the largest source of uncertainty, as we identified in Chapter 1, “Problem
Definition.” Investigating and improving the generation of stochastic flow improves
modeling uncertainty in the Colorado River basin. The current technique for generat-
ing stochastic natural flow for the Colorado River used by the Colorado River Simula-
tion System (CRSS) simulation model has some limitations. Improving the technique
for generating synthetic streamflow sequences would allow basin policy managers to
fully understand the effects of natural streamflow variability on future streamflow
sequences. We also would like to provide basin managers with a modeling technique

that will allow future scenarios of drought or surplus events to be developed in a statis-
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tically accepted method. Further, recent studies show a link between climate and
extreme streamflow events. We investigated relationships between climate and stream-
flows in the upper Colorado River mainstem, which can condition streamflow genera-
tion on climate data.

One of the first steps of our research was to investigate monthly streamflow
data in the Colorado River basin, a required input to the CRSS to model operations, for
various hydrologic and demand sequences. We studied the Colorado River basin
streamflow at a single gauge, USGS stream gauge 09072500 (Colorado River near
Glenwood Springs, CO). The probability density function (PDF) for monthly natural
streamflow from water years 1906 to 1995 exhibits non-Gaussian features that vary
from month to month. Generally, the natural streamflow data is skewed towards the
low flows, with an extended tail in the high flows. The annual PDF is slightly skewed
towards the low flows, with a concentrated point at the higher flows.

The most effective stochastic flow generation model should preserve the skew-
ness and extended tail behavior seen in the natural flow data. Preserving the tails is of
particular interest because the tails exhibit the probability of extreme low or high flow.
During periods of extreme low flows, salinity has historically increased in concentra-
tion. Modeling these periods to our best ability provided confidence in the results of
the entire modeling system. The technique should be capable of generating synthetic
streamflow values and sequences that have not occurred in the historic record, but are
statistically possible given the historic record’s statistics. Generating values above or
below the maximum and minimum of the historic record should also be possible.

We investigated three different techniques for generating synthetic streamflow:
(1) a nonparametric index sequential method (ISM) that is currently used by the U.S.
Bureau of Reclamation (USBR) to generate synthetic hydrology for the CRSS, (2) a
parametric periodic auto regressive (PAR) model that is traditional and widely used,

and (3) a nonparametric k-nearest neighbor (K-NN) model developed in this study.
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Our motivation for this investigation was to identify alternatives to the currently used
ISM, which has limited ability to generate a variety of synthetic streamflow sequences.
We first present a background of stochastic models followed by a description of the

three models and results.

2.2 Background
Stochastic streamflow models were traditionally developed in an auto regres-

sive (AR) framework and subsequently ARMA and PAR models (Shama et al., 1997).
These are also referred to as parametric models because they involve selecting an
appropriatemodel anditting parameters to it. Parametric models assume that the time
series is normally (Gaussian) distributed (Salas, 1985). More often than not, stream-
flows are not Gaussian distributions, thereby violating this assumption. To address
this, the data ifrTansformedo a Gaussian distribution using a log or power transfor-
mation before fitting a parametric model to the transformed data (Shama et al., 1997).
The synthetic sequences generated from the model are back-transformed into the orig-
inal space. This process of fitting the model on the transformed data and then back
transforming it often does not guarantee the preservation of statistics (Sharma et al.,
1997, Salas, 1985; Bras, 1985; Benjamin, 1970).

The parametric models generally preserve the mean, variance, and auto corre-
lations (depending on the order of the model). As the time series is transformed to a
Gaussian distribution (or near Gaussian) by appropriate transformation, the skewness
is preserved to the extent the transformations are good.

Parametric models require estimating multiple model parameters, depending
on the type of model. Considerable uncertainty can exist in the estimation, depending
on the length of the historical data, which adds to variability in the simulations. Fur-
thermore, because they are restricted to a Gaussian framework (Gaussian distribution

assumption), parametric models cannot reproduce non-Gaussian features such as
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heavily skewed distributions or bimodal distributions that may be present in the histor-
ical data (Sharma, et al., 1997; Lall and Sharma, 1996), which is one of the major
drawbacks of the parametric model. Such features are not uncommon in Colorado
River basin flow data (Lall and Sharma, 1996), as we show later in this chapter when
we compare the methods on the Glenwood Springs streamflow gauge.

Nonparametric models have been developed to address these drawbacks of the
parametric models. The simplest nonparametric model is the ISM, which involves
selecting chunks of historic data. For example, if we have 100 years of historical data,
without wraparound we can generate 80 sequences of 20-year lengths, 70 sequences of
30-year lengths, etc. The advantages are that it is simple and easy to implement,
assumption free, and can reproduce the entire distributional properties of the historic
data: the mean, variance, auto-correlation, etc. The main disadvantage is that only his-
torically observed sequences can be generated.

Recently developed nonparametric models, (Lall, 1995; Lall and Sharma,

1996; Tarboton et al., 1998) have tried to address the problems of ISM and parametric
models. A few types of nonparametric models exist for streamflow generation: kernel
based (Sharma et al., 1999), nearest neighbor based (Lall and Sharma, 1996), and
hybrid parametric/nonparametric models (Srinivas and Srinivasan, 2001).

In effect, the nonparametric models estimate the marginal and conditional
probability density functions locally and simulate sequences from them. They are

assumption free and can model any shape of the density function.

2.3 Index Sequential Method
USBR uses CRSS to simulate flows in the Colorado River basin. Natural flows

are a required input to drive the model when simulating historic flows. Natural flows
currently are generated using the ISM. Colorado River basin policymakers have been

using the ISM for more than a decade to develop risk-based estimates of important
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system output.

The ISM is a nonparametric stochastic technique that generates synthetic
hydrologies by sequentiallylock bootstrappinghe historic time series. Block boot-
strapping is a technique in which a block of the historic time series is resampled as a
synthetic trace. For example, our historic time series for stream gauge 09072500 is 90
years in length, from water years 1906 to 1995. To model 25 years into the future, the
method extracts a 25-year block from the historic streamflow record then shifts one
year forward and extracts 25 years again, repeating the process 90 times. When the end
of the historic record is reached, the record is continued from the beginning of the time
series. A schematic of the technique is shown in Figure 7. The intent is that every year
to be simulated sees all the hydrologies of the historic record. Consequently, the simu-

lated sequences have the same distributional properties as the historic data.

data wrapped from beginning

1906 1
/\/\/\/\ . 1st synthetic hydrology
90 extracted overlapping 25
1906 1931 year ISM sequences
2nd synthetic hydrology
1907 1932 ® ®
[
89rd synthetic hydrology
1993 D

90th synthetic hydrology

1994 1930
Figure 7: Schematic of the ISM (adapted from Ouarda et al., 1997). The synthetic
hydrologies, each 25 years in length, are shown below the original 90-year time
series. The additional 24 years used for wraparound are shown in shading.
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Ouarda (1997) compared the nonparametric ISM to a traditional parametric
autoregressive method to determine how well the two modeling techniques allowed
project dependable capacity to be estimated. The study found using ISM, synthetically
generated sequences statistically corresponded acceptably with sequences generated
from an AR(1) model. Because power generation was of interest, the study looked at
the cumulative density function for total energy out and found that the two techniques
compared well at the lower and middle sections which are critical to energy production
modeling, of the function.

Kendall and Dracup (1991) also compared ISM and an AR(1) model. Again,
an annual model was developed to compare the two techniques. Their study compared
reservoir storage capacity at Lake Mead and Lake Powell. They also found that the
two techniques generated sequences that are not significantly different. Generally, they
found that flows generated by the AR(1) model result in slightly higher storage levels
than the ISM. They also stated that the AR(1) model has a tendency to underestimate
the occurrence of severe droughts. Further, the ISM did not perform well when the
tails of the distribution were of interest. They found at 90 percent exceedance and
greater, the AR(1) model produced lower flows. They recommended considering
AR(1) models if tails of the distribution are important.

Neither of these studies explored higher order statistics, such as the PDF of the
generated synthetic flows or the bivariate probability of the current month’s flow
dependent on the previous month’s flow. Higher order flow statistics were important in
our work because of our interest in a stochastic techniques performance during
extreme events such as high or low flows. We needed to be able to simulate severe
droughts to accurately simulate the effects of low flow periods on salinity levels. These
events are described in the tails of higher order statistics, such as the PDF of the gener-
ated synthetic flows, an area in which the ISM did not perform as well as a parametric

model.
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Advantages of this technique, which have led to its widespread use, are that it
is simple to implement and that it does not require the modeler to estimate parameters
(Shama et al., 1997). Because it reproduces the historical data, it preserves all of the
statistics, along with the probability density function.

A limitation of this technique is that it cannot generate synthetic hydrologies or
sequences that did not occur in the past record. Consequently, it cannot create droughts

or surpluses of lengths different from those that have occurred in the past record.

2.4 Periodic Auto Regressive Method
The parametric periodic auto regressive (PAR) model is a traditional and

accepted method to model synthetic streamflow. The PAR model is also termed a sea-
sonal auto regressive model and is distinguished from other auto regressive methods in
that it explicitly models seasonality, such as the case with streamflow.

The general equation for a PAR model of order is given by
p
Yor = Het Z qDj,r(yﬁ,t—j_”r—j)+88,t Eq. 2.1
j=1
where: y is the streamflow process,

9 is the yeart is the season,
Hy is the mean of the process in season streamflow,
@ is the auto regressive parameter,
€9 1 is the uncorrelated normally distributed noise term with mean 0 and vari-

anceoz(e) :
The season could represent months or another subset of a year. In our investi-

gation, we developed a lag(1) monthly model or a model of grderl with

T = 12. This model can be written as

Yo~ uT+q)l,T(y8,-[_1_“T_1)+519’T Eq. 2.2
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which means each season represents a month, and the current month flow is dependent
linearly on the previous month’s flow. The model parametetsz(e) are estimated
for each month from the data. Wigh = 1  amd= 12  (representing 12 seasons), 12

estimates ofb , andz(a) have to be computed, requiring estimation of 36

pt ¥
parameters. Method of Moments, approximating Least Squares, or Yule-Walker equa-
tions are used to estimate the auto regressive parameters (Salas, 1985; Bras, 1985).

The PAR method is a parametric method. Traditionally, stochastic models were
developed with parametric models, such as AR, ARMA and PAR models. The PAR
parametric method preserves the mean, standard deviation, and lag(1) correlation. This
parametric technique is only able to preserve a Gaussian probability density function.
An additional step is required to preserve the skewness coefficient of a time series.
Colorado River monthly hydrologic data has months that do not exhibit a Gaussian
distribution. The months must be transformed to change the shape of the PDF to
approximate a Gaussian distribution. We transformed the Colorado River data with a
log transformation using the equatign= In(x+ a  wheye: is the transformed pro-
cessx is the original process, amd is estimated to bring the skewness coefficient
towards zero.

Transformations can be used to approximate a time series skewness coefficient;
this additional step is required for the parametric method but not for nonparametric
methods. After generating the synthetic hydrology with the parametric model, the syn-
thetic hydrology must be “back-transformed” by the inverse log transformation. The
back-transformed data is not guaranteed to preserve the basic statistics of the trans-
formed data (Sharma, 1997; Salas, 1985; Bras, 1985; Benjamin, 1970).

A software package developed at Colorado State University, “Stochastic Anal-
ysis, Modeling, and Simulation” (SAMS) (Salas, 2000) was used to develop the
PAR(1) model. SAMS transforms the flow data to approximate a Gaussian distribution

by the transformation process described earlier. The transformed data is then fitted to a
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PAR(1) model using least squares to solve the auto regressive parameters. The fitted
model is then used to generate synthetic sequences. Using SAMS facilitates transform-
ing the data that is used to fit the parametric model and reduces the time required to fit
parameters to the model.

The simulation process for a month, February for example, is

Yeeb = Hren* (Vaan—Hyad + ¥ (N(0,0°(€))) Eq. 2.3

Using generated January flows, we generated a normal random variable with mean 0
varianceoz(e) and from Eq. 2.3 generated the value for February. The process is
repeated for as many simulations as needed.

The advantages to using a parametric model like PAR are that (1) it can simu-
late values and sequences not seen in the past, (2) much past work exists that uses
these methods for various simulations, and (3) a fully developed theoretical back-
ground exists. The main disadvantages are that the data must be transformed to a
Gaussian distribution to satisfy the assumption of the model and that is generated
from a normal distribution; hence, any values fremioe +co can be simulated, which

can generate unrealistic values.

2.5 Traditional K Nearest Neighbor Method
Recent developments in nonparametric models have tried to address some of

the concerns statisticians have with using the index sequential method and parametric
methods. The concerns with the index sequential method are that it cannot create val-
ues or time series sequences that did not occur in the past. One of the goals of stochas-
tic modeling is to explore values and sequences that did not occur in the past but could
occur based on the statistics of the historic record. Parametric methods cannot preserve
the non-Gaussian features of a PDF.

Recently developed nonparametric techniques include kernel based (Shama et



52

al., 1997), and K-NN based resampling (Lall, 1995). As mentioned earlier, the non-
parametric techniques approximate the conditional and marginal densities of a time
series and simulate from these. The simulation problem can be assumed to be a condi-
tional simulation problem, i.e., a lag(1) model can be thought of as simulation from a
conditional PDF. For example, a lag(1) model can be expressed as simulation from the
conditional PDF

f(yt|yH) Eq. 2.4
wherey is a time series of flows.

The parametric models, such as PAR, essentially simulate from a Gaussian
conditional distribution because they assume the data is normally distributed, as
described in the previous section. The nonparametric models approximate the condi-
tional PDF shown in Eq. 2.4, from the data. Thereby, they have the ability to reproduce
any arbitrary PDF structure without any prior assumptions, unlike the parametric
counterpart.

Lall and Sharma (1996) introduced a k-nearest neighbor (K-NN) model, distin-
quishing it from the ISM. Unlike ISM, the K-NN model does not use a block of the
historic time series for each generated time series. Instead, the K-NN model resamples
one month at a time, generatisgquencesf synthetic flow time series not seen in the
historic record. To find successive months, the k-nearest neighbors to the current flow
are found. The Euclidian distance between each neighbor and the current flow are cal-
culated. The distances are then weighted, with the closest neighbor receiving the great-
est weight. A discrete kernel is used to resample one of the k weighted neighbors. The
resampled neighbor then becomes the current month flow. The process then moves up
to the next month and is repeated. Rajagopalan and Lall (1999) demonstrated the K-
NN technique in developing a daily precipitation model. The daily precipitation model

uses six weather variables in a K-NN framework to choose an appropriate precipita-
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tion.

One of the drawbacks of the K-NN technique is that the synthetic time series
do not have values that differ from the historic time series. Nonparametric models that
use a kernel density estimators alleviate this problem (Shama et al., 1997). However,
the kernel based methods have problems in the tails of the distribution, creating unreal-
istic values like the parametric techniques do, but to a lesser degree. Also, this method
can get unwieldy in higher dimensions (Lall, 1995).

To further address these problems, Srinivas and Srinivasan (2001) recently
developed a stochastic model that incorporates the strengths of parametric and non-
parametric models in a single technique. Tpeswhitenedhe streamflow time series
with a periodic autoregressive model that removes the dependence in the historic flow
sequence, then use a nonparametric moving block bootstrap to resample the prewhit-
ened streamflow. The prewhitened streamflow smoothed the historic time series and
filled in values between the historic data. This smoothing allows the technique to gen-
erate streamflows not seen in the historic record while preserving non-Gaussian fea-
tures in the historic streamflow. The method performs well but still requires extensive
steps to generate streamflows.

We adopted the K-NN model because it is simpler, effective, and more flexible
than the kernel based models (Lall and Sharma, 1996; Rajagopalan and Lall, 1999).
We modified this model to address some of the drawbacks of the K-NN model. The
modification developed and tested here is one suggested by Lall and Sharma (1996).

The K-NN model developed by Lall and Sharma (1996) is a nearest neighbor
bootstrap because the neighbors are computed to the flow at the current time step and
one of them iselectedrom a weight function that gives more weight to the nearest
neighbor and less weight to the farthest neighbor. The successos@eittecheigh-
bor becomes the flow in the next time step. The algorithm is described in detail in Lall

and Sharma (1996) and also in Rajagopalan and Lall (1999). This algorithm is akin to
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approximating the conditional PDF (Eqg. 2.4) and simulating from it. The advantage is
that the traces generated are not exactly the same as historical traces, as for ISM. How-
ever, values not seen in the historical record cannot be generated, which is one of the
main drawbacks. The modified version of the model, described in the next section,

eliminates this concern.

2.6 Modified K Nearest Neighbor Method
The K-NN algorithm developed in our work is an improvement on traditional

K-NN techniques. To keep the modeling simple but to allow creation of values that
were not seen in the historic time series, we developed a technique discussed in the
conclusion of Lall and Sharma (1996) and Rajagopalan and Lall (1999). They suggest
a variation of the traditional K-NN model that addresses the inability to recreate values
that had not occurred in the past. The techniques also reduced the problems of the ker-
nel estimator while remaining simple to implement.

The modified K-NN technique develops a regression relationship between each
month’s flows and saves the residuals from the regression. The succeeding month’s
flow is first calculated from the appropriate regression, then the k-nearest flows to the
flow from the regression are found. A residual from the k-nearest flows is resampled
and added to the flow from the regression to perturb the regression. This scheme will
allow the K-NN method to perturb the historic data within its representative neighbor-
hood and allow extrapolation beyond the sample.

We describe the modified K-NN algorithm for a lag(1) model, indicating the
current month’s flow is solely dependent on the previous month’s flow. Figure 8 shows
the scatter plot of February and March streamflows. The solid line shows a nonpara-
metric fit through the scatter. The nonparametric fit is a locally weighted regression
scheme (Loader, 1999; Rajagopalan and Lall, 1997). Fit at any given point is based on

a local polynomial fitted to the k nearest neighbors. The number of neighbors Kk is
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determined with cross validation. The details are presented in Chapter 3, “Statistical
Nonparametric Model for Natural Salt Estimation.” The algorithm starts by fitting a

nonparametric fit for each month dependent on the previous month:

Yo = f(Yi_q) +& Eq. 2.5

1. The residuals from the fit are saved.

2. Once we have the value of the flow for the current month, , We estimate
the mean flow of the next month yrom Eq. 2.5.

3. We compare k-nearest neighbors,tg (these are shown in big circles in
Figure 8).

4. We then select a neighbor from the weight function:
Yj

k
2 Y]
=1

Eq. 2.6

00od
o000

This weight function gives more weight to the nearest neighbor and less
weight to the farthest neighbor.

5. The residual corresponding to the selecfédeéghbor that was computed

and saved in Eq. 2.5 above is added to the mean estirﬁafﬁrye simu-
lated value for the next time step becomesiyg .

6. The process is repeated for each month.

Lall and Sharma (1996) suggested both an objective criteria based on general-
ized cross validation and a heuristic scheme to select a k, the number of nearest neigh-
bors. They mentioned that the heuristic scheme works well in almost all the cases for
1<p<6 andN =100, and we adopted the same scheme here, where is the dimen-
sion of the model anl  is the number of data points in our monthly lag(%) 1 )

model, it is the number of years of data. The heuristic schelneis/N
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Figure 8: Nonlinear local regression fit to March natural flows dependent on Febru-
ary natural flows is depicted by the solid line (alpha = 0.3). A least square fit is shown
with the dotted line.

The modified version of the K-NN model generates values not seen in the his-
toric record and also has the ability to generate extreme values not seen in the history.
Further, it retains the basic capability of the traditional K-NN methodology of repro-
ducing PDF structure. The K-NN model of lag(1) will reproduce all the basic statis-
tics, lag(1) autocorrelation, and also the PDF structure, which is a significant
improvement over the PAR model.

This nonparametric method is easy to implement, with few parameters to esti-
mate, and makes no assumption about the underlying model. A further advantage of
the K-NN framework is that it incorporates multiple variables in a stochastic model
more easily than parametric techniques do. This ability allows nonparametric K-NN
techniques to be conditioned on additional variables, such as climate variables. Condi-

tioning on climate can allow a model to capture interannual variability caused by cli-
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mate. These features of the K-NN framework make the technique a flexible and easier

framework to work with than the parametric techniques.

2.7 Model Evaluation
We compared the three models by applying them to the natural streamflow at

USGS stream gauge 09072500 (Colorado River near Glenwood Springs, CO). The
monthly flow data was available for the period 1906 to 1995. We generated 100 simu-
lations from the modified K-NN model and 90 simulations from the ISM, each of the
same length as the 90-year historical data. We computed a suite of statistics from the

simulation and compare them to statistics from the historical data.

2.7.1 Test Ensembles
The three stochastic flow models were applied to natural flows at USGS stream

gauge 09072500. Natural flows were calculated from historic gauge records by remov-
ing anthropogenic effects such as consumptive use, reservoir regulation, imports, and
exports. USBR calculated the monthly natural flows from October 1905 through Sep-

tember 1995. The monthly natural flow mean is 178,000 acre-feet/month, and standard
deviation is 217,000. The 90 years of aggregated annual natural flows from water year
1906 to 1995 has a mean of 2,132,000 acre-feet/year and standard deviation of

550,000. High variability in both annual and monthly flows can be seen in Figure 9.
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Figure 9: (a) A time series of annual water year natural flow and (b) monthly natural
flow from water year 1906 to 1995 for USGS stream gauge 09072500 (Colorado
River near Glenwood Springs, CO). The time series exhibit a high rate of variability
both annually and monthly.
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2.7.2 Model Evaluation Criteria
The three modeling techniques were each compared to the 1906-1995 historic

flow data and then compared to each according to the following criteria.

The first criterion addresses how well the generated ensembles preserved the
basic statistics, mean, standard deviation, lag(1) correlation, coefficient of skewness,
and maximum and minimum of the historic data. A model that preserved all the statis-
tics well is deemed appropriate to model the original time series.

The second criterion addressed how well the modeling techniques preserved
the higher order statistics of the original data. Preserving higher order statistics ensures
the modeling technique’s ability to project variability and be realistic. These abilities
can be checked by how well the modeling technique reproduces the probability density
function (PDF). We also looked at the bivariate probability density function, which
shows how well a technique can preserve the probability of choosing the current
month’s flow based on the magnitude of flow during the previous month (i.e., condi-
tional PDF).

The last criterion addressed drought, surplus, and storage statistics. Drought,
surplus, and storage statistics are important in river basins for reservoir operation.
These statistics allow river basin managers to understand the characteristics of extreme
events. Neither the parametric nor nonparametric model explicitly models these statis-
tics. The longest drought statistic shows the number of consecutive years the flow is
below the median flow. The maximum drought statistic is the maximum volume of
water during a drought. Surplus statistics are the opposite. The storage statistics
(rescaled range and hurst coefficient) capture long-range memory in the time series.

All of these were calculated for each technique.

2.8 Results
The statistics from simulation ensembles and the historic data are shown as

boxplots. The boxplots display the interquantile range (IQR) and whiskers extending
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to 1.5 * IQR for the PDFs of the 100 synthetic natural flow traces. The interquantile
range indicates the range for 50 percent of the data around the mean. The horizontal
line inside the IQR depicts the median of the data. The whiskers approximate the 5
percent and 95 percent confidence for the traces. Data beyond the whiskers (1.5 *

IQR) are termed outliners and indicated by a solid circle. An example boxplot is given:

[ ]

L5Y1QR— \ outliner
I
I

25% of data above mean— median ~>-WwWhiskers
interquantile rangd QR)

25% of data below mean—
I
I
1.5*IQR— I

Historic data is shown as a solid circle with a solid line connecting each month.

As expected, all the models preserved well the mean and standard deviation
for ISM (Figure 10), PAR (Figure 11), and K-NN (Figure 12). Note that the ISM
exactly reproduced the statistics with no variation around the historic statistic, because
the ISM uses the historic recaeglactlyto develop the ensembles. All the statistics
throughout our analysis exhibit this trait. For the remainder of our analysis, we only

discuss the comparison with the PAR(1) and K-NN model.
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Boxplots of ISM Simulated Mean of Flows

2"10"6
L

1.5"10"6

106
L

flow (acre-feet/month)

510"
L

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Ann

Boxplots of ISM Simulated Standard Deviation of Flows

500000

400000

flow (acre-feet/month)
200000 300000

100000

0

O‘Cl N;v D;C J;n Féb M;1r A‘pr M;ly Jl.‘lr‘l Jln Al‘,lg S;p Ar‘m
Figure 10: The ISM technique generates an ensemble of simulations. The ensemble
of simulations are compared to historic statistic with boxplots. Boxplots show the
interquantile range of an ensemble in the box and the vertical dashed lines (“whis-
kers”) approximate the 5% and 95% range of the ensemble. The historic statistic for
the fitting period (water year 1906 to 1995) is shown with the solid line and the solid
circle. When the historic statistic falls in the box, the statistic is preserved by the
technique. The upper graph shows the mean, while the lower graph shows the stan-
dard deviation. Both the monthly and annual statistics are preserved.
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Boxplots of PAR(1) Simulated Mean of Flows
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Figure 11: The PAR technique generates an ensemble of simulations. The ensemble
of simulations are compared to historic statistic with boxplots (see Figure 10 for
explanation). The upper graph shows the mean, while the lower graph shows the
standard deviation. Both the monthly and annual mean are preserved. The PAR
model overestimates the standard deviation monthly and annually.
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Boxplots of 'new’ KNN Simulated Mean of Flows
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Figure 12: The modified KNN technique generates an ensemble of simulations. The
ensemble of simulations are compared to historic statistics with boxplots. (See

Figure 10 for explanation.) The upper graph shows the mean, while the lower graph
shows the standard deviation. Both the monthly and annual statistics are preserved.
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The modified K-NN model and PAR(1) models preserved well the lag(1) cor-
relation for ISM (Figure 13), PAR (Figure 14), and K-NN (Figure 15). PAR(1) did not
preserve the skew coefficients because this depends on how well the transformation is
able to approximate a Gaussian distribution. The modified K-NN model preserved the
coefficient of skewness very well. The modified K-NN models preserved the maxi-
mum and the minimum for ISM (Figure 16), PAR (Figure 17), and K-NN (Figure 18)
flows well. The parametric PAR(1) model overestimated the maximum and minimum
values because PAR(1) can simulate unrealistic values, as mentioned earlier. The mod-
ified K-NN generated maximum and minimum values that are not seen in the histori-

cal data; this is a significant aspect of the modified K-NN.
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Boxplots of ISM Simulated Lag(1) Correlation of Flows
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Figure 13: The upper graph shows boxplots (see Figure 10 for explanation) of the
lag(1) correlation of the ISM. The lower graph shows the coefficient of skewness.
ISM preserved both statistics annually and monthly.
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Boxplots of PAR(1) Simulated Lag(1) Correlation of Flows
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Figure 14: The upper graph shows boxplots (see Figure 10 for explanation) of the
lag(1) correlation of the PAR model. The lower graph shows the coefficient of skew-
ness. The lag(1) correlation is preserved monthly for most months in the interquantile
range. The coefficient of skewness is not preserved in the interquantile range for
either the monthly or annual time step.
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Boxplots of ’new’ KNN Simulated Lag(1) Correlation of Flows
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Figure 15: The upper graph shows boxplots (see Figure 10 for explanation) of the

lag(1) correlation of the K-NN. The lower graph shows the coefficient of skewness.
K-NN preserves both statistics monthly. The annual time step is preserved on the

fringes of the interquantile range.
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Boxplots of ISM Simulated Maximun
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Figure 16: The upper graph shows boxplots (see Figure 10 for explanation) of the
lag(1) maximum value of the ISM. The lower graph shows the minimum value. The
ISM exactly reproduces both statistics.
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Boxplots of PAR(1) Simulated Maximun
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Figure 17: The upper graph shows boxplots (see Figure 10 for explanation) of the
lag(1) maximum value of the PAR(1). The lower graph shows the minimum value.
The PAR(1) technique tends to overestimate the maximum and minimum both
monthly and annually.
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Boxplots of 'new’ KNN Simulated Maximun
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Figure 18: The upper graph shows boxplots (see Figure 10 for explanation) of the
lag(1) maximum value of the K-NN. The lower graph shows the minimum value. The
K-NN technique slightly underestimates certain months maximum but preserves the
other months and annual statistics well.
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The higher order statistics continued to show the strengths of nonparametric
techniques. Figures 19- 21 show select PDFs for the month of January. In the upper
graph, a Gaussian distribution approximates the historical data quite well. The simula-
tions from the PAR(1) and K-NN reproduced this fairly well. The month of February
for ISM (Figure 19), PAR (Figure 20), and K-NN (Figure 21), in the lower graph,
exhibits a skewed distribution. The parametric PAR(1) tended to reproduce a Gaussian
equivalent of the original probability density function, while the nonparametric K-NN
model was able to preserve the non-Gaussian structure. Similar observations can be
seen for the PDF of September flows (upper graph) and annual flows (lower graph) for

ISM (Figure 22), PAR (Figure 23), and K-NN (Figure 24).
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PDFs from ISM method for January
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Figure 19: The upper graph shows the PDFs for ISM for January, which approxi-
mates a Gaussian distribution. The ISM can only reproduce the historic probability
density function because every simulation includes all the historic time series; how-
ever each simulation is sequentially shifted. The lower graph shows the PDFs for
February, which is skewed towards the low flows.
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PDFs from PAR(1) method for January

——— T — — —
—_——— T — —
—_——— T — —
-— — — T — — —ae e
- - — T — —
e — — T T — — e
—_—— T — — —
—— ——ZT —F— — —
—_——— T — — — —
_—_ T — — —
—_—— T — — —
—_—— T — — —
_——— T — — —
—_———— e — — — —
_—— g7 — — — —
—_—_——— g — — —
[ S —
_—— 7 — — —
\\\\\ e ——
_—_—— T — — —
—_———— g —— — —
_——— = — — —
_—— T — — —
—_———— S — — —
_—— T — — —
—_——— TN — — —
—_——— TSN — — —
—_———— TSN — — —
_——— T — —
_——— TN — —
\\\\\\ T~ — —
- ———— —T——T N — —
—_——— T~ — —
Py s .
—_—— TSN — — —
—_———— T~ — — —
- —— ——CTSF—— ——
—_—_——s = — — —
_— 00— — —
—_—— S — — —
—-—— e — — —
—_—— s — — —
_—— N — — —
—— s — — —
- —— ST — —
—_— s — —
_—— s —
_— SN — —
— s — —
_— " — —
—_——SN a0 — —
_— S — —
—_— X — —
—— NI ——
_—— N — —
—— N — —
[
—— N —
«— — N+ —
— T —

900000

00000 200000

uonnqusiq Anjiceqold

43926 51660 59393 67127
flow (acre-feet/month)

36193

28846

PDFs from PAR(1) method for February

800000

9000070 700000 200000

uonnquisig Aujiqeqold

47475 56530 65584 74639
flow (acre-feet/month)

38420

29818

Figure 20: The upper graph shows the PDFs for PAR(1)for January, which approxi-

mates a Gaussian distribution. The lower graph shows the PDFs for February, which is
skewed towards the low flows. This parametric technique cannot preserve the skewed

distribution in the interquantile range of the simulations.



74

PDFs from ‘'new’ KNN method for January
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mates a Gaussian distribution. The lower graph shows the PDFs for February, which
is skewed towards the low flows. Both distributions are preserved by the K-NN tech-

nique.
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PDFs from ISM method for September
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Figure 22: The upper graph shows the PDFs for ISM for September, which is skewed
to the lower flows with a long tail in the higher flows. The lower graph shows the
PDFs for annual flows. The ISM exactly recreates the PDF, again as stated in
Figure 19.
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PDFs from PAR(1) method for September
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Figure 23: The upper graph shows the PDFs for PAR for September, which is skewed
to the lower flows with a long tail in the higher flows. The lower graph shows the

PDFs for annual flows. The PAR technique can only approximate the annual PDF.

Annual flow is not directly modeled.
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PDFs from 'new’ KNN method for September

Svohae

S§vOLS' L

SOl 9v0LS

uonnqusia Aujiqeqold

210126

143513 176820
flow (acre-feet/month)

110207

76900

45259

PDFs from 'new’ KNN method for Annual

— L Ia— —
— A — —
—_——— —
—_—— = —
—— — 1 — —
—— —CAT——
—— — 2 — —
—— = — —
—— AT — —
—— — T — —
—— T — — —
—— ST ———
—— AT ———
—— T ———
—— T — —
—— T ——
—— ST ——
—— T ——
—f T ——
—f T — —
—— T ———
——f T ———
——fF ————
——f T ————
— == ——
—— T —— ——
—_—_f -
—_— T — — —
——— g TF —— ——
—— — —f—r — — — —
——— 5 — — — —
—_—_— — — — —
—— Ty — — — —
—_—— 17— — — —
—_— T — — —
———— P —— ——
\\\\ 7 — —
——— T — — —
—— T/ — — —
———— T/ ———
——— T/ — — — s
——— =/ — — —
—— T — — — —
——— T —— ——
—_— T — — — —
—— T — — =
——— g/ — — — aas
——— Ty — —
—— 7 — — —
—— — A — — —
— A — — —
——— — A — — — e
\\\\\ I ZF——— e
——— — =7+ — — —
—_————— = — — —
—_— g — — —
—— 7 — — —
—_—— 7 — — —
———— g — — —
—— — g — — —
=T — ——
—_—— T — — —
——— T — — — —
—_——— g1 —— — —
—_ T — — — —
——— e — — — —
—_—_—— = ———
—_— 0 ——— —
—_— " —— — —
s X — — — —
—_——— S — — —
—_— S — — —
—_—— N — — —
—_————— — —
—_—_ s — —
——— s — — —
—— s+ — — —
—_—— S — — —
—_———— S — — —
—— — — O — — —
—— — I~ — — —
o—— — DN — — —
e — — — LIS} — — —
- — — I~y — — —
—— — T~ — — —
- T~y — —
—_—— g — — —
—— Ny ——
_——— N — —
——— s — —
—_——— s — —
_———— T~ —
—_——— 5 —
—_— —— S —
—_—— s —
—_— — —CS 7 —
—_—— S —
—_——— N —
ey N
_— — T —

£v0L8

£v0L9 £~0hy £-0he

uonnquisia Aujigeqoid

2950698 3430328

2471068

feet/year)

Figure 24: The upper graph shows the PDFs for K-NN for September, which is
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skewed to the lower flows with a long tail in the higher flows. The lower graph shows

the PDFs for annual flows. The K-NN technique can preserve the skewness and tail
behavior best, but can only approximate the annual PDF, although the K-NN tech-

nique can reproduce the frequency of higher flows better than the parametric tech-

nique.
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The bivariate PDF (Figure 25) was computed for the months May and June
from the historic time series and for one of the simulations from the PAR(1) and K-NN
models. The historic time series show nonlinear features, indicating a non-Gaussian
relationship in the transition of flow between months May and June. The PAR(1)
model was only able to recreate a Gaussian bell-shaped distribution, as expected,
while the K-NN model preserved the nonlinear features seen in the bivariate probabil-

ity density function of the historic values.
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Figure 25: Bivariate probability density function for May/June estimated using an
S-plus library from (a) historic values, and a single realization from 100 simula-
tions using the (b) PAR(1), and (c) K-NN model. The nonparametric technique can
preserve the historic bivariate PDF’s non-Gaussian features, while the parametric
technique can only approximate a bell-shaped distribution.

The final statistics compared the drought, surplus, and storage statistics. Both
the PAR(1) and K-NN preserved the longest drought within the upper interquantile
range. The parametric model preserved the maximum drought better. The nonparamet-

ric model tended to underestimate the maximum drought. This underestimation means
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the nonparametric model generated lower drought values than the historic record, indi-
cating that the technique produced more conservative drought estimates than the para-
metric model. Both the K-NN and PAR(1) models preserved the surplus statistics
(longest surplus and maximum surplus) well, ISM (Figure 26), PAR (Figure 27), and
K-NN (Figure 28). Both the parametric and nonparametric techniques overestimated
the storage statistic (rescaled range and hurst coefficient). The nonparametric model
preserved the storage statistics within the whiskers, while the parametric model could

not preserve either storage statistic within the whiskers.

Boxplot of Storage and Drought Statistics
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Figure 26: This figure shows boxplots of storage, surplus, and drought statistics for
the nonparametric ISM model's annual values. The drought statistics include LD
(longest drought), MD (maximum drought). The surplus statistic include LS (longest

surplus), MS (maximum surplus). All the values are exactly preserved because the
entire historic record is resampled for each of the 100 simulations.
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Boxplot of Storage and Drought Statistics
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Figure 27: This figure shows boxplots of storage, surplus, and drought statistics for
the parametric PAR(1) model’s annual values (see Figure 26 for explanation). The

parametric model preserves the drought statistics are preserved slightly better. The
parametric PAR(1) technique cannot preserve the storage statistic within the whis-
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Boxplot of Storage and Drought Statistics
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Figure 28: This figure shows boxplots of storage, surplus, and drought statistics for
the nonparametric K-NN models annual values (see Figure 26 for explanation). The
model preserves the storage statistic within the whiskers.

2.9 Climate Link
Large-scale climate in the western United States modulates streamflows

(Cayan and Webb, 1992). Relationships between large-scale climate and streamflow
vary in strength throughout the Colorado River basin. Strong relationships have been
documented in the southern basin, while weaker relationships have been identified in
the upper Colorado River mainstem (Cayan et al., 1999; McCabe and Dettinger,
1999). We explored establishing links between large-scale climate patterns and
monthly streamflow in the upper Colorado River mainstem.
Streamflows generated by the K-NN technique can be conditioned on climate

variables. To condition the flows on climate, we needed to find an index that exhibits a

correlation with the streamflows. To develop such an index, we explored the relation-
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ship between natural flow and climate indicators in the upper Colorado River main-
stem.

We performed the analysis on annual natural flow at USGS gauge 090163500,
Colorado River at Colorado/Utah state line from 1909 to 1996, provided by the Colo-
rado Water Conservation Board, and three snow water equivalent gauges for the region
upstream of USGS gauge 09163500, which have a correlation of 0.72 with the USGS
stream gauge. Both the snow water equivalent and stream gauge are first correlated
with an ENSO index. We found that the correlations not strong enough to directly con-
dition the streamflow with the ENSO index, which is not surprising because previous
research has shown the upper Colorado River mainstem has weak correlations with
ENSO (Cayan et al., 1999).

Another technique to develop an index first generates composites from the
streamflow data. Composites explore climate patterns for various flow regimes, such
as high and low flows. Exploring various sections of flow can uncover nonlinear rela-
tionships between flow and large-scale climate. We looked at the average climate pat-
tern for three different flow regimes: periods of high-, normal-, and low-flow. The
separate flow regimes are developed using salinity concentration that is modeled at an
upstream gauge (0909550: Colorado River near Cameo). The flow regimes represent
thresholds that can be chosen by many methods. The regimes are usually chosen to try
to find unique patterns in climate for particular flows. Our thresholds were based on
the behavior of the CRSS salinity model. The CRSS model overpredicted salt concen-
tration during the low-flow years 1977 and 1981. During the high-flow years of 1983
to 1989 and 1995, salt mass was underpredicted when compared to normal years. At
this gauge, we determined the low-flow period as flows below 3,500,000 ac-ft/year,
normal-flow between 3,500,000 ac-ft/year and 7,500,000 ac-ft/year, and high-flows
above 7,500,000 ac-ft/year. This criteria allowed us to categorizes flows that are over

or underpredicting salt relative to the average flow regime.
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We were interested in looking at the climate patterns for each flow regime and
determining if there is a significant difference in the average climate pattern for each
flow regime. We examined multiple indicators for climate to verify that they are all
consistent with the pattern we uncover. We examined the following climate indicators:
sea surface temperature, sea level pressure, geopotential heights at 500 mb level, vec-
tor winds at 1000 mb level, outgoing long wave radiation, velocity potential, and
divergence. Many of these indicators are complementary, and we used them to verify
the accuracy of our analysis. We performed this verification by finding the average cli-
mate pattern for the high-, low-, and high-minus-low-flow regimes. We identified a
particular climate pattern for each flow regime. We used these patterns in the next step,
in which the patterns helped to generate natural flow sequences.

From this analysis, we were able to identify climate patterns that typically pro-
duce the high- and low-flow regimes. To incorporate climate information in our model,
we needed to develop a relationship between a climate indicator and natural flow. The
geopotential height at the 500mb level climate indicator showed the strongest relation-
ship to natural streamflow. Figure 29 show the composite plots for the geopotential
height at the 500mb level. The upper plots shows the composite for the low-flow years.
A high-pressure system over the western United States can be seen, which tends to
bring in cold dry air over the upper Colorado River basin and, consequently, causes a
reduced snow cover and lower flows. The lower plot shows the high-flow years in
which the pattern is weaker than that seen in the low-flow years; this also highlights
the asymmetry of the relationship. Figure 30 shows the composite of high-minus-low-
flow years (difference of the two plots in Figure 29). The signal is highlighted in the

difference plot.
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Figure 29: Both plots are anomaly composites for the geopotential height at 500
mb.The upper plot displays the composite of low-flow years. The lower plot displays
the composite of high-flow years. The low-flow years show strong high pressure over
the western United States an strong low-pressure over the northern Pacific.
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Figure 30: This figure shows an anomaly composite for high-minus-low-flow years at
the geopotential height at 500 mb. The plot shows a strong negative difference over
the western United States and positive difference of the northern Pacific.

To use this data in developing a climate index, we performed a principal com-
ponent (PC) analysis on the high-minus-low geopotential height and examine the
results. We found the spatial structure for the first PC accounts for 33 percent of the
variance and matched the pattern that is found in the geopotential heights relation to
flow. A scatterplot of the natural flow dependent on the first PC (PC(1)) revealed a
weak relationship during low and high flows. Unfortunately, we found the relationship
is not strong enough to condition the flow on climate. Further research needs to be per-
formed to find an index that provides a stronger relationship between the index and the

natural flow in the upper Colorado River mainstem.
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2.10 Discussion and Conclusions

We compared three stochastic hydrology modeling techniques, one of which is
ISM, USBR’s currently used technique. We looked at how well each technique pre-
served basic statistics and the PDF for the time series they modeled.

We compared the ISM to a PAR(1) and modified KNN technique, uncovering
the limitations of the ISM and PAR(1) techniques. The ISM is limited because it can-
not generate synthetic hydrologies or sequences that did not occur in the past record.
Consequently, droughts or surpluses of lengths different from those that have occurred
in the past record cannot be created.

The main disadvantages of the PAR(1) technique are (1) that the data has to be
transformed to a Gaussian distribution to satisfy the assumption of the model and (2)
thate is generated from a normal distribution; hence any values f&oto +c can be
simulated, which can result in generating unrealistic values.

With a traditional K-NN technique, the advantage is that the traces generated
are not exactly the same as historical traces, as in the case of ISM. However, values not
seen in the historical record cannot be generated, which is seen as one of the main
drawbacks. The modified version of the traditional K-NN technique eliminated this
concern and the drawbacks found with the ISM and PAR(1) technique.

The modified version of the K-NN model generated values not seen in the his-
toric record, and it also has the ability to generate extreme values not seen in the his-
tory. Further, it retains the basic capability of the traditional K-NN methodology of
reproducing PDF structure.

We compared the generated synthetic ensemble time series to the historic natu-
ral flow record for water year 1906 to 1995 to determine which technique best pre-
serves the historic statistics. Specifically, all methods preserve the mean monthly and
annually. The nonparametric methods best preserve the standard deviation. The para-

metric method tended to overestimate the standard deviation both monthly and annu-
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ally. One of the drawbacks of the ISM was evident when comparing statistics. The
statistics from the ISM exactly matched the historic statistic because the technique
uses the direct historic record. We could not achieve any variability in the statistics,
which limits the method when generating synthetic streamflows. One of the goals of
modeling with stochastic hydrology is to explore future streamflows that are statisti-
cally possible given the historic record. With no variability around the historic statis-
tics, the method is incapable of providing as wide a variety of flows as the PAR(1) or
K-NN techniques.

The nonparametric models best preserve the lag(1) correlation. Again, the K-
NN nonparametric model displayed a wider range of possible values monthly and
annually while the ISM technique could only produce the exact historic statistic.
Because the modified K-NN method is able to produce values that did not historically
occur, it is not limited to reproducing the historic record like the ISM technique. One
disadvantage of past nonparametric models is that they were limited to recreating
numbers that occurred in the past record. Parametric models are able to reproduce val-
ues that did not occur in the past, which is why the parametric PAR technique is also
able to reproduce a wider range of flows. The parametric PAR technique can produce
the wider range of flows because the PDF is not limited on the tails; therefore, the
model can reproduce extreme values. The unbounded tails in the parametric distribu-
tion allow the parametric model to generate unrealistic values. The K-NN technique is
limited to generating the most extreme values in the historic record, plus the most
extreme residual. The ISM is limited to the most extreme historic values, reducing the
variability the ISM technique can model.

The ISM is also limited because it requires an extensive record. The historic
record used for the model was 90 years, only allowing the ISM to generate 90 simula-
tions. The simulations of the PAR and K-NN techniques were not limited to the num-

ber of years in historic record. We were able to produce 100 simulations for each
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technique, which allowed us to converge on an actual estimate of the statistic of inter-
est with more confidence. We were also able to apply the PAR and modified K-NN
techniques to a wider range of datasets; we were not limited to datasets with extensive
records.

Comparing the PDFs for the three techniques showed the strengths of the mod-
ified K-NN method, such as preserving the coefficient of skewness and non-Gaussian
features. Incorporating a dissaggregation scheme would allow the modified K-NN
method to better preserve the annual PDF along with the monthly PDFs.

Another strength of the modified K-NN technique is that the flows it generates
can be conditioned on a separate variable, such as climate, without much difficulty.
Conditioning on a climate variable, such as the PNA index, would allow the modified
K-NN technique to incorporate interannual variability in the generated synthetic
streamflows. Incorporating interannual variability would allow the model to vary from
the historic record based on future predictions of changing climate. Adding such a
framework to a parametric technique is much more complicated than with a nonpara-
metric K-NN technique.

For these reasons, we see the modified K-NN technique as easier to implement
than the parametric PAR(1) technique and more flexible than either the PAR(1) or ISM

techniques.



Chapter 3

Statistical Nonparametric Model for Natural Salt Estimation

3.1 Salinity Standards on the Colorado River

The most important water quality parameter in the Colorado River basin is
total dissolved solids. Total dissolved solids is an accepted measure of water salinity.
High levels of salinity in the Colorado River basin are damaging to agricultural,
municipal, and industrial water users.

Salinity of the Colorado River became an important issue when the Mexican
government strongly objected to the quality of the water Mexico was receiving. The
average annual salinity of water delivered to Mexico in 1962 was 1,500 mg/L. This
water was not suitable for irrigation and was adversely affecting crops. Two indepen-
dent factors caused the rise in the salinity of the water delivered to Mexico. Deliveries
were reduced because water was being held back in Lake Mead in preparation for fill-
ing Lake Powell and, at the same time, highly saline groundwater from the Wellton
Mohawk irrigation district was being pumped into the Colorado River above the Mex-
ico boundary. These highly saline waters greatly deteriorated the quality of the Colo-
rado River water.

In response to Mexico’s concerns and after years of negotiations, Minute No.
242 of the International Boundary and Water Commission (IBWC) dated August 30,

1973, was signed. Minute No. 242 stipulated that water delivered to Mexico have an
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average salinity of no more than 115 ppn30 ppm abe the average annual salinity
at Imperial Dam.

Subsequently, the Colorado River Basin Salinity Control Act of 1974 was
passed to ensure that the United States could meet its obligation to Mexico under
Minute No. 242. The Act authorized construction of a desalting plant and additional
salinity control projects in the upper basin.

Minute No. 242 sets a variable standard for the Mexico delivery, but does not
set numerical water quality standards at any fixed points in the basin. Numerical stan-
dards resulted from separate U.S. legislation that set policy regarding water quality.
The Federal Water Pollution Control Act Amendments of 1972 required development
of water quality standards across the nation. The EPA interpreted the new legislation
as a requirement to set fixed point numerical standards for salinity levels in the Colo-
rado River basin. The basin states (Wyoming, Colorado, Nevada, Utah, Arizona, New
Mexico, and California) found the Salinity Control Forum to help develop numerical
salinity standards, including numeric salinity criteria required by the new legislation.

The following numeric salinity criteria were set in 1975 requiring maintenance
of a flow-weighted average total dissolved solids concentration:

» 723 mg/L below Hoover Dam

» 747 mg/L below Parker Dam

* 879 mg/L at Imperial Dam

The standards were developed from the 1972 average annual salinity concentrations at
each location and are currently unchanged (USBR, 1999 and Lee, 1989). To maintain

these salinity standards, we must understand the sources for increased salinity.

3.2 Salinity Sources and Remediation

Natural and human-induced salinity result from point and non-point sources.
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Natural point sources that have been identified include seeps and saline springs. Some
springs originate from deep geological formations containing brackish water. Natural
non-point sources of salinity generally originate from the weathering and dissolution
of underlying rocks or soils overlaying the rocks.

The underlying rocks strongly characterize the natural salinity contributed by
each subbasin. In some areas of the basin, the underlying rocks are relatively resistant
to dissolution by water. Igneous and metamorphic rock types, for example weather at a
very slow rate and contribute small amounts of dissolved solids (total salts). High
mountain areas, such as the upper reaches of the Colorado, Green, and San Juan Riv-
ers, are characterized by these types of formations. The middle and lower reaches of
these subbasins contain sedimentary rock, which dissolves more readily in water and,
therefore, contributes greater amounts of dissolved solids to the river. Soils in these
regions have chemical dissolution characteristics similar to the underlying parent
rocks. Valleys and lower lying plains, which are the predominant areas for agriculture,
are characterized by these types of soil.

Agriculture increases salinity concentration through two processes: (1) salt
concentration and (2) salt loading. The salt concentration process is a result of evapo-
transpiration from crops which consume water but leave salts behind in the soil.
Return flows to the river from the diversion typically contain the same salt mass
present in the diversion water but with less water, hence, higher concentration of salt.
Additionally, reservoirs concentrate salt by evaporation, when water is lost from the
reservoir but salt is conserved.

Salt loading occurs when salt is added or removed from the river when water
transported through soil leaches or deposits salts present in the soil. The water can be
introduced into the soil from human-induced sources, such as irrigation practices, or
from natural sources, such as precipitation. Irrigation practices increase the flow

through soils, which increases the total salt loading from previous natural salt loading
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levels.

Federal agencies fund extensive efforts, costing millions of dollars per year, to
reduce the human-induced and natural loading salt to the Colorado River. U.S. Bureau
of Reclamation (USBR) has off-farm salinity control projects designed to reduce irri-
gation return flows by lining irrigation canals and laterals. Additional salinity control
projects not related to agriculture include capping saline springs from abandoned gas
and oil exploratory wells. The U.S. Department of Agriculture has implemented on-
farm salinity reduction, thereby helping farmers to improve irrigation practices that
increase irrigation efficiency, reducing return flows. The Bureau of Land Management
has implemented programs to reduce erosion on public lands to limit the release of dis-
solved solids. As of 1998, salinity control projects, with a reported total cost of
approximately $426 million, had removed an estimated 634,000 tons of salt from the
river. An additional $170 million is projected to remove an additional 390,000 tons in

order to maintain current salinity standards. (USBR, 1999).

3.3 Previous Modeling Efforts
In 1996, USBR performed salt-routing studies to estimate future salinity levels

under normal hydrologic conditions given three scenarios: (1) without any salinity
control projects, (2) with salinity control projects currently in place, (3) with addi-
tional salinity control projects to meet the numeric salinity standards in 2015 (U.S.
Department of Interior, 2001). A modeling system developed by the USBR assisted
basin planners project these future salinity control needs.

The modeling system, Colorado River Simulation System (CRSS) (USBR,
1987), simulates future salinity levels, considering changing human-induced water use
in the basin. CRSS was developed in the late 1970’s in response to a need for a model-
ing system that could simulate operations for various hydrologic and demand

sequences. It allowed evaluation of impacts of proposed development high in the basin
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on locations downstream.

CRSS includes various components of the physical mechanism that adds salt to
the Colorado River basin. Agricultural diversions in the CRSS simulation model
deplete water, but conserve salt mass, simulating the concentrating effect. In addition,
the agricultural diversions model agricultural salt loading, tersaéidity pickup

Limited data is available describing salinity pickup throughout the basin. One
extensive study (USBR, 1983 (1)) explains how salinity pickup was calculated in the
Grand Valley using a mass balance of salt. The value for salinity pickup in the Grand
Valley is an average salinity pickup from 1952 to 1980. The report states that the
human-induced salinity pickup for the Grand Valley averages 580,000 tons per year
90,000 tons with 95 percent confidence. To explain this large variance, the authors of
this report attempt to correlate the salinity pickup with the annual flow of the Colorado
River near Cameo, the annual flow of the Dolores River near Cisco, the annual salt
loading on the Dolores, mean annual temperature, and annual precipitation. But salin-
ity pickup could not be correlated with any of these. The report goes on to suggest that
variations in salinity pickup cannot be due to changes in irrigation practices because
variations in practices could not account for the magnitude of annual variations the
data showed. The report concludes, “The variance from the mean is due to the inability
to measure inflow and outflow with sufficient accuracy. Even with the adjustment for
unaccounted flow, the variation about the mean salt load is significantly large.”

In addition to agricultural salt loading, CRSS must use estimates of natural salt
loading. Natural salt loading contributes an estimated 47 percent of the total salinity in
the Colorado River basin (U.S. Department of Interior, 2001). Natural flow is calcu-
lated, described in Chapter 2, “Modified Nonparametric K-NN Model for Generating
Stochastic Natural Streamflow,” by removing the human-induced effects on flow from
observed historic flow. Human-induced effects include agricultural consumptive use,

exports, and reservoir regulation, all of which are measured or can be estimated. Natu-
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ral salt can be calculated by removing the human-induced effects on salt from
observed historic salt. Unfortunately, human-induced effects on salt are much more
difficult to quantify than effects on flow because salt from agricultural salinity pickup
originates from many diffuse sources that are difficult to measure.

The USGS developed the current technique to estimate natural salt entering the
river using historic flow and salt data from 1941 to 1983, along with 12 predevelop-
ment months that assist calibration (Mueller and Osen, 1988). USGS used a multiple
linear regression to develop an expression for historic salt as a function of historic flow
and several human-induced development variables, such as consumptive use, irrigated
acres, diversions, net reservoir releases, or a summation of all human induced adjust-
ments (diversions + consumptive useeservoir regulation). The regressions (one for
each gauge) were calibrated to equalize the variance of the residuals. Then, each
development variable was assigned a value of zero, and the historic flows were
replaced by calculated natural flows provided by the USBR. The resulting relationship
was proposed to relate natural salt to natural flow (Mueller and Osen, 1988).

CRSS requires an estimate of the natural dissolved solids as an input to the
CRSS simulation model, along with the natural flow estimate associated with the natu-
ral dissolved solids estimate. Figure 31 displays the interconnection of the existing
CRSS components, including a stochastic natural flow model to generate future sto-
chastic flows, a salt regression model that estimates natural salinity associated with
natural flows, and the CRSS simulation model. The stochastic natural flow model used
for many years is the index sequential method (ISM). The CRSS simulation model cal-
culates simulated historic salt mass by adding the natural salt mass to the salinity
picked up by agriculture and subtracting the salt that leaves with water exported from

the basin.
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Figure 31: Flowchart depicting interconnection of existing CRSS modeling sys-
tem.

The existing CRSS overpredicts the historical salt mass at USGS stream gauge
09072500 (Colorado River near Glenwood Springs, CO), from 1970 to 1990, by an
average 140,000 tons/year. The overprediction could result from

» salinity pickup from agriculture being too high,

* natural salt loading being too high.

From 1970 to 1990, the historic salt mass in the river passing gauge 09072500
averaged 570,300 tons/year. The relationship proposed by the USGS estimates average
annual natural salt mass of 583,000 tons/year. For CRSS to simulate the historic salt
mass, the human-induced salinity pickup sources would neethtavesalt from the

river. Current estimates, as reflected in CRSS, are that human-induced sources contrib-
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ute 137,000 tons/year from agriculture salinity pickup and exports remove an average
44,000 tons/year. The estimate for salinity pickup by agriculture is developed from an
extensive study that quantified estimates of natural and human-induced salt (lorns et
al., 1965). The report estimates that, in 1957, natural sources contributed 516,200 tons/
year, and human-induced sources contributed 138,881 tons/year from agriculture
salinity pickup and removed 15,881 ton/year by exports above Glenwood Springs.
These values were adjusted for current basin conditions then input in the CRSS simu-
lation model.

Using these numbers, if human-induced sources contributed no salt above
gauge 09072500, the existing CRSS would still overpredict salt mass. The lorns report
indicates that the human-induced sources of salinity are not removing salt, but are add-
ing significant amounts. These findings point to an overestimation of natural salt by
the USGS model. To correct or refine the USGS model would require a reanalysis of
the detailed data on which the regressions were based. However, this data is not avail-
able. Therefore, we propose a new technique to relate natural flow to natural salt that is

more accurate and for which the uncertainty can be quantified.

3.4 Statistical Nonparametric Natural Salt Model
To address the problems of overprediction by the existing model technique, we

developed a new modeling approach to estimate natural salt mass given natural flow.
The model is a nonparametric statistical model, based on a local polynomial method,
that fits a function to relate natural salt to natural flow. The uncertainty in the estimates
of the natural salt from this model is incorporated via a k-nearest neighbor (K-NN)

bootstrap technique.

3.4.1 Local Regression (Nonparametric Regression)
Parametric techniques generally are limited to fitting a linear relationship to the

functionf , i.e., linear regression. Furthermore, parametric techniques fit an equation



98

(linear or nonlinear) to the entire data, which restricts the ability to capture non-linear-
ities in the data. In addition, hypothesis testing requires normality assumption of the
error term, thus further restricting the model (Helsel and Hirsch, 1992).

A relationship between a dependant variable (y) and a set of independent vari-

ables (x) taken in the form of
y = f(x)+ & Eq. 3.7

wheree, is the error term.

t

Nonparametric methods, on the other hand, fit the fundtion locally and make
no prior assumption about the functional form, i.e., linear, quadratic. Thereby, they
have greater flexibility in capturing any arbitrary relationship. Several nonparametric
methods exist: kernel based, splines, local polynomials. For a detailed description of
these methods and comparisons, refer to Owosina (1992) and references therein. We
adopted a local regression scheme that has been shown to be easy to implement and
effective (Rajagopalan, and Lall, 1998, and Loader, 1999). The method and the algo-
rithm are described through the following example.

The synthetic dataset was generated from the following equation:

X

y, = sin(x)-02 +e

t Eq. 3.8

whereet

function. The function is shown in Figure 32, wha{e is a sequence of 100 points

is a mean zero, variance 0.1, Gaussian random variable adding noise to the

from O - 2m. The solid circles indicate points generated from Eg. 3.8. The long-
dashed line shows the true function (isén(xt)— 0.2Xt ) without the noise term. The
short-dashed line is a linear regression fit to the data, and the medium-dashed line is a

guadratic regression fit. It is evident that neither of these regressions is able to capture
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the nonlinear sinusodal function, the true underlying function.

Local regression, shown by the solid line, is able to fit this data well. We used
the library, LOCFIT, designed for use with Splus (Loader, 1999). The local regression
technique, as the name suggests, performs local regression at each point of estimate.
We explain this methodology, with reference to Figure 32, as follows:

() Let us assume that we want to estimate the functi(x? at

(i) A neighborhood is defined arounq . The size of the neighborhood is

a xn, wherea is a parameter between 0 and 1. Bigger indicates more
smoothing. (For example, far = 1  and a local linear fit; it is the same as
the parametric linear regression).

(iii) For the neighbors captured in the neighborhood (shown in the dashed rect-

angles) a regression of order is fit. Typically, a linear fit works very well
(shown as the heavy solid line within the neighborhood).
(iv) The fitted regression is used to estimatg, at

t
(v) This is repeated at all points where we need the estimate.

The advantages to this method are apparent. Because we fit local regressions
there is great flexibility in modeling any structure that might be present in the data (lin-
ear and nonlinear). The neighborhood size ( ) provides the amount of smoothing.
Furthermore, this approach is assumption free, unlike the parametric models that

require data to be Gaussian distributed.
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Figure 32: This figure shows several data fitting techniques for data generated by sine
function with noise.The solid line is a local linear regression with alpha = 0.2, calcu-
lated by the LOCFIT algorithm. The dashed rectangle depicts the neighbors chosen
around point xto develop the local linear regression. A local least square linear
regression on the points in the rectangle is indicated by a heavy solid line.

Alpha can be chosen by various methods; typically a function is chosen (i.e., in
linear regression it is the least square minus the sum of the squares of the difference
between the observed and estimated values). However, the performance of a fitted
model in terms of predicting future values is not assured. Therefore, fitting the model
over predictive sum of squares instead of least squares would be very effective. One
method is the cross-validation (CV) in which a point is dropped and it is predicted by

fitting a model to the rest of the data.

2
(Yi —y_i) Eq. 3.9
1

CV(a) =

Sl

IIM:
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wherey_i is the estimate at by droppimgyi from the fit. This approach chooses
differenta s and selects the one that minimize Eq. 3.9. When a dataset is small Loader
(1999) recommends using CV; therefore, we used this technique w find

The generalized cross validation (GCV) function, on the other hand, is a good
estimate of the predictive error when the dataset is larger. The GCV score function
provides an estimate of the CV. The GCV uses all points from a neighborhood, then
estimatesyi with various neighborhood sizes and finds the neighborhood size that
gives that lowest score. The neighborhood size with the lowest GCV score determines
the appropriate alpha.

The GCV score function forE a local estimatgllof  is given as

z (Y; _yi)Z
GCV(a) = n-=1

Eq. 3.10
(n-vy)°
where:v 1 is the fitted degrees of freedom,

n is the sample size,

Y; —Y; is the residual.

This local regression technique is used to fit the natural salt as a function of
natural flow. This modeling technique uses the human-induced salt loading data used
in the current CRSS model to calculate natural salt mass. Calculated natural salt mass
is “back-calculated” from the observed historic salt mass by adding the mass from
agricultural salinity pickup and removing the mass that leaves with exports. Using the
calculated natural salt, a direct relationship between natural flow and salt is found. We
developed 12 relationships, one for each month, for years 1941 to 1985. Using the
mass added by agriculture and removed by exports from the CRSS model allows the
statistical nonparametric natural salt model results to easily be incorporated in the
model.

Figure 33 shows a scatter plot of the calculated natural salt and natural flow for
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the month of April for the years 1941 to 1985. The dotted line represents a parametric
least squares linear regression; it fits the regression using the entire dataset at once and
cannot capture nonlinearities of the data distribution. The nonparametric local regres-
sion, shown by the solid line, captures nonlinear features of the calculated natural flow
and natural salt relationship using an alpha of 0.95. Rajagopalan and Lall (1998)
describe similar nonparametric regression in which they use a locally weighted poly-

nomial regression to estimate spatial data describing precipitation.

Natural Flow vs Natural Salt Mass for April WY 1941 to 1985
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Figure 33: This figure shows nonparametric regression for natural salt depen-
dent on natural flow. Alpha equals 0.95.

We developed a K-NN residual resampling technique to quantify the uncer-
tainty of the estimates from the local regression method. This technique is similar to

the modified K-NN technique described in Chapter 2.

3.4.2 Residual resampling
The residuals from the regression indicate the uncertainty of the regression. To
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guantify the uncertainty of estimates for natural salt from the regression, we imple-
mented a method to resample the residuals. The data is widely scattered around the
regression, indicating large variance. To quantify the variance in the data generated
from the regression relationship, we used a K-NN technique as described in Chapter 2.
For example, in Figure 34, the stochastic flow model generated a natura. bk x

first found the meanpassociated salt masgfyom the regression. Next, we found the

k nearest neighbors, using a Euclidean distance, shown as circles. The k-nearest neigh-
bors are outlined with the dashed rectangle. We resampled one of the res[rduals, e
using a weighted kernel and added it to the mean salt mass estinvdergpeated

this technique for each value of natural flow developed from the stochastic natural flow
model. When we applied this method to 100 ensembles of simulated natural flow, the
resulting 100 ensembles of simulated natural salt reflected the variance around the

regression of the calculated natural salt as a function of natural flow.

Natural Flow vs Natural Salt Mass for April WY 1941 to 1985
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Figure 34: This figure shows nonparametric regression for natural salt depen-
dent on natural flow. Alpha equals 0.95.
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3.5 Model Evaluation

We used the statistical nonparametric natural salt model (SNNSM) to generate
natural salt mass for given values of natural flow. We compared the results to results
from the USGS salt model and the calculated natural salt. We evaluated each technique

on how well it reproduced the calculated natural salt, and we discussed the differences.

3.5.1 Test Ensembles
The SNNSM takes natural flow data and generates an estimated value of natu-

ral salt. We used calculated natural flow data from water years 1941 to 1985 and the
calculated natural salt data from 1941 to 1985 above USGS stream gauge 09072500
(Colorado River near Glenwood Springs, CO) to develop the regressions for the
SNNSM. The calculated natural flows are the observed historic flows minus the total
human-induced consumptive use. We calculated the calculated natural salt from his-
toric gauged data and salt load data from CRSS as

calculated natural salt = observed historic salt
+ salt with water exported out of the basin
- salinity pickup from agriculture (values
based on CRSS)

The salt removed by exports and the salt added by agriculture for the period
1941 to 1985 were taken from the data used to drive the CRSS model. In the CRSS
model, agriculture annually adds 137,000 tons of salt above gauge 09072500. A con-
stant salinity pickup is a fair assumption because agricultural consumptive use was
basically constant from 1941 to 1995. The exports remove a constant concentration of
100 mg/L. The tons removed by exports vary with flow, according to the relationship
between flow and salt mass.

We found the regression relationships for each monthly time series, i.e., we
developed 12 relationships between calculated natural flow and salt mass. Developing
these relationships was necessary because the current CRSS model simulates river pol-

icy at a monthly timestep. Enabling the model to accept an annual timestep is beyond



105

the scope of this research.

We developed confidence intervals around the estimated salt mass, which was
calculated directly from the regression, by running 100 synthetic traces of monthly
simulated natural flow through the statistical nonparametric natural salt model, incor-
porating residual resampling to generate 100 synthetic traces of monthly simulated
natural salt mass. We summed the simulations to an annual time step and then calcu-
lated the 5 percent and 95 percent quantiles of the data, finding the confidence inter-

vals.

3.5.2 Model Evaluation Criteria
We compared results from the SNNSM to results from the USGS salt model

for water years 1941 to 1995. We evaluated each model’s performance on a monthly
and annual time scale. We derived the annual time series by summing the water year
months, October through September. We compared three aspects for each salt model.

First, we compared the regressions developed with the SNNSM to the USGS
salt model.

Second, we used both model regressions to generate estimated natural salt
mass from 1941 to 1995 given the same estimated natural flows. We calculated esti-
mated historic salt from the estimated natural salt mass for each salt model. We calcu-
lated estimated historic salt mass as

estimated historic salt = estimated natural salt
- salt from exports
+ salt from agricultural salinity pickup

We evaluated each technique on how well it matched the observed historic salt mass.
Third, we added the confidence interval developed from the residual resam-

pling technique in the SNNSM and plotted the estimated natural salt and the estimated

natural salt from the USGS salt model. We evaluated each technique on how well it

matched the calculated natural salt. Of interest was if the SNNSM could capture the
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calculated natural salt within the confidence intervals.

3.6 Results
Figure 35 shows the local linear regression relationship developed using our

SNNSM and the existing USGS salt model for April and June. The solid circles show
the data points for calculated natural flow versus calculated natural salt. The dotted
line shows the relationship developed by the USGS salt model. It is a power curve
relationship developed for the month of April, from the USGS salt model technique, to
find estimated natural salt. The solid lines shows the SNNSM relationship. It shows a
local linear regression of the solid circles. The local linear regression is able to capture
the nonlinear characteristics of the data. For April, the USGS salt model relationship
underestimated the calculated salt mass when compared to the SNNSM. The lower
graph compares the same relationships for the month of June, which displays data with
a relatively linear relationship. June is a higher flow and salt mass month. During this
month, the USGS relationship estimated higher salt mass than the SNNSM. The wider
scatter of the data points indicates there is more variability around the relationship.
The USGS relationship has no method to incorporate the variance in the data around
the regression, while the SNNSM can incorporate this variance by resampling the

residuals from the regression when generating salt mass.
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Figure 35: This figure shows the relationship for natural salt dependent on natural
flow for water years 1941 to 1985. The dashed line shows the USGS salt model rela-
tionship. The solid circles show SNNSM, and the solid lines show the local linear
regression. For April (upper graph) the USGS slightly under-estimates the results
taken directly from the natural flow and salt estimates. For June (lower graph) the
USGS relationship predicts a higher salt mass compared to the SNNSM. Both
LOCFIT’s have an alpha of 0.95.
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Figure 36 compares the regressions of annual values for calculated natural flow
and salt. The annual values are a summation of the monthly values, showing the USGS
salt model estimates higher natural salt mass than the SNNSM. At the higher flows,
both regressions give a similar salt mass for a given high flow while at lower flows, the

USGS salt model gives a significantly higher salt mass for a given low flow.
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Figure 36: The open squares show the annual natural salt mass, summed from
monthly natural salt, for the USGS salt relationship, and the dashed line shows a least
squares fit. The solid circles show the data to find the SNNSM relationship, and the
solid line shows a LOCFIT through the data. The USGS salt model gives higher natu-
ral salt mass compared with the SNNSM.

The graphs of Figure 37 display time series generated using both the new pro-
posed regression of calculated natural salt as a function of natural flow and the regres-
sion proposed by the USGS. We used a single calculated natural flow time series from
water years 1941 to 1995 to generate estimated natural salt given the calculated natural

flow. The estimated natural salt was generated at a monthly time step. We summed the
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monthly data to annual to remove the seasonal signal from the time series. The dot-
dashed line shows the local linear regression without the residual resampling. The
double-dot-dashed line is the result from the USGS salt model. In the upper graph, it
can be seen that the USGS salt model estimates a higher estimated natural salt mass
than the SNNSM. The lower graph shows the estimated historic salt using the esti-
mated natural salt generated from both the SNNSM and the USGS salt model. The
heavy solid line is the observed historic salt mass. As shown, the SNNSM tracked the
observed historic salt mass more accurately and tracked the salt mass well during low

flow periods.
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Figure 37: The upper graph compares the time series for natural salt generated from
the USGS relationship and the modified K-NN method with the historic natural flow
from 1941 to 1995. The lower graph compares the time series for simulated historic
salt using the natural salt generated from the USGS relationship and the modified K-
NN method with the observed historic salt from 1941 to 1995.
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Figure 38 shows the effects of adding the residual resampling step into the
SNNSM. With the residual resampling, we were able to incorporate the variance of
our regression when generating simulated natural salt given an ensemble of simulated
natural flow. The dot-dashed line labeled “Statistical Nonparametric Natural Salt
Model (SNNSM)” shows the estimated natural salt from the model if only the regres-
sion were used and no resampling were performed. Adding resampling perturbs the
result from the regression based on the variance of our regression. To show the effects
of the perturbation, we developed confidence intervals (dashed line) around the Statis-
tical Nonparametric Natural Salt Model line, as described in Section 3.5.1, “Test
Ensembles.” By incorporating the confidence intervals, we were able to capture the
variability of the estimated natural salt from the regression during the period 1941 to
1985. After 1985, the estimated natural salt falls slightly below the 5 percent confi-
dence interval. This indicates that, for given natural flow, the natural salt is lower after
1985 than before 1985. Including the natural flow and salt data after 1985 when devel-
oping our SNNSM will allow our confidence intervals to capture the salt after 1985.

The heavy double dot-dashed line shows the natural salt from the USGS
regression. The USGS relationship is outside the upper confidence intervals for all but

one year. The SNNSM rarely generated values as high as the USGS regression.
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Figure 38: The upper graph shows the annual natural salt mass time series from the
modified K-NN method with 5 percent and 95 percent confidence intervals. The
heavy solid line shows the calculated natural salt mass. The dot-dashed line shows the
natural salt mass taken directly from the local regression. The 5 percent and 95 per-
cent confidence shows the variation around the line direct from the regression that
occurs from the residual resampling. The lower graph removes the calculated natural
salt and adds the natural salt determined from the USGS relationship. It is evident that
the USGS relationship determines the natural salt mass to be higher than the natural
salt mass we determined with our technique.
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3.7 Discussion and Conclusions
The current salt model proposed a relationship for calculated natural salt mass

as a function of calculated natural flow with a weighted least-square regression fit to a
model of observed historic salt mass as a function of observed historic flow and several
development variables, which represent the human-induced water resource develop-
ment throughout the basin.

We outlined a technique to calculate the natural salt based on the way CRSS
simulates estimated historic salt mass. The estimated natural salt and the human-
induced salt determined the estimated historic salt mass. The observed historic salt for
water years 1941 to 1995 was compared to the estimated historic salt generated from
the USGS salt model and found to be 15 percent, or 86,000 tons, greater than the
annual average observed historic salt mass.

Using the calculated natural flow and salt mass, we created a relationship
between calculated natural flow and salt mass. Using the regression developed from
the relationship and the calculated natural flow, we were able the reduce the difference
between the annual average observed historic salt mass and the estimated historic salt
mass to 0.8 percent, or 4,000 tons. Further, we incorporated the residual resampling
technique in the SNNSM to enable the model to preserve the variance around the
regression of the calculated natural salt as a function of calculated natural flow.

The resampling technique allowed a greater variety of natural salt values to be
generated for a given natural flow. These techniques allowed the SNNSM to reproduce
the calculated natural salt from 1941 to 1985 within confidence intervals created from

100 simulations of estimated natural salt mass.



Chapter 4

Historic and Future Salt Concentration Modeled in RiverWare

4.1 Introduction

Salt concentration is important in the Colorado River basin because itis a
water quality parameter regulated by federal water quality standards. Federal water
guality standards were set as a result of the Federal Water Pollution Control Act
Amendments of 1972. The Amendments, interpreted by the Environmental Protection
Agency, require numerical standards for salinity levels in the Colorado River basin.
Modeling studies that predict long-term salinity levels under various operational sce-
narios and salinity control projects facilitate planning and operating the river to meet
water quality standards. Operational and planning policies in the Colorado River basin
are complicated because the basin is governed by many laws, statutes, and court
decrees. To capture these complex policies in a modeling tool, the U.S. Bureau of Rec-
lamation (USBR) developed the Colorado River Simulation System (CRSS) (U.S.
Department of Interior, 2001), a series of computer models for the entire basin.

Developed in the early 1970’s, one of the purposes of CRSS is to conduct long-
term operational and planning studies that allow managers to understand the effects of
future development on salinity throughout the Colorado River basin.

CRSS includes a simulation model of the entire Colorado River system. It also

includes a stochastic natural flow model to generate future stochastic flows and a salt
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regression model that estimates natural salinity associated with natural flows. The sto-
chastic natural flow model used for many years is the index sequential method (ISM).
ISM is limited to generating flows and flow sequences that have occurred historically,
which limits the ability of planning studies to consider flows that are statistically pos-
sible but have not occurred. The salt regression model consists of a series of 12
monthly regressions of natural salt mass as a function of natural flow that were devel-
oped by the USGS (Mueller and Osen, 1988), as discussed in Chapter 3. These two
models provide the natural flow and natural salt input data for the CRSS simulation
model.

To ensure the CRSS simulation model is calibrated, it is periodically used to
simulate a historic period and the results are compared to the observed historic record.
If discrepancies are found, the model is not simulating the historic period correctly.
Recently, the historic runs have indicated that the simulation system overpredicts salt
throughout the basin, as discussed in Chapter 3, “Statistical Nonparametric Model for
Natural Salt Estimation.” We found that the salt entering and leaving the river from
human-induced sources appeared reasonable, based on lorns et al. (1965) report. Thus,
we concluded that the 12 monthly natural salt regressions developed by the USGS
overestimate natural salt when the results from the regressions are summed to annual
natural salt.

To improve CRSS performance, newly developed models replaced both the
stochastic natural flow model and the natural salt regression model. In this chapter we
bring these new models together in a simulation model to demonstrate that they more
accurately reflect variability by improving flow variability prediction and quantifica-
tion of risks, fully reflecting future salt variability by improving the relationship
between natural flow and salt, and reproducing historical results. These developments
result in an improved analysis of future salinity and quantified risks.

We performed our study on the upper mainstem of the Colorado River, at
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USGS stream gauge 09072500 Colorado River near Glenwood Springs, CO. We chose
the upper Colorado River mainstem because this part of the basin contributed more
than 51 percent of the total annual historic salt load seen in the outflow from Lake
Powell from 1941 to 1990. Gauge 09072500 also exhibited an overprediction of his-
toric salt mass in the calibration runs from 1970 to 1990 by 20 percent. One of our pri-
mary goals was to develop techniques to correct the overprediction. While
investigating the cause and means to correct the overprediction, we intended to ensure
our solutions were portable and easily implemented at the 28 remaining gauges

throughout the basin.

4.2 Existing CRSS
CRSS is used to simulate flow and salt over a historic period to verify that the

model is calibrated. It is also used to simulate future periods and model proposed
development and changing operational and planning policy. The model uses different
input data for different simulated time periods. The CRSS simulation model runs at a

monthly time step, as required by the operational rule set.

4.2.1 Historical Verification
When CRSS is used to verify a historic period the CRSS simulation model is

populated with historic data. Thmalculated natural flowavailable from 1906 to 1995
at a monthly time step, is obtained as follows:

calculated natural flow = observed historic flow
+ agricultural consumptive use
+ exports
+ municipal and industrial consumptive use
+ effects of off-stream reservoir regulation

The primary sources of data include the observed historic flow from USGS
stream gauge records, agricultural consumptive use estimated by the USBR using the

Blaney Criddle method, exports from USGS stream gauge records, off-stream reser-
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voir regulation from USBR records for off-stream reservoirs run by the USBR or an
independent manager (USBR, 1983(2); USBR, 1985; USBR, 1987; USBR, 1992).

USGS stream gauge 09072500 recorded river flows from water year 1899 to
1966. Since 1966, flow has been determined at the gauge as the difference between
flows at USGS stream gauge 09085000 (Roaring Fork River at Glenwood Springs,
CO) and USGS stream gauge 09085100 (Colorado River below Glenwood Springs,
CO). A different gauge performs periodic conductivity measurements. The conductiv-
ity measurements from USGS water quality gauge 09071100, from 1942 to present are
used to calculate total dissolved solids. In the Colorado River basin, total dissolved
solids is accepted as a measure of salt concentration. Salt mass is calculated by multi-
plying flow volume and salt concentration, then using the appropriate conversion fac-
tor. The salt gauge was extended back to 1941 as described in Mueller and Osen,
(1988). After this work, a historic flow time series from 1906 to 1995 and a historic
salt time series from 1941 to 1995 were available. Together, these time series represent
the observed historic flow and salt mass in the Colorado River near Glenwood Springs,
Colorado, at a monthly time step.

A series of 12 regressions, developed by the USGS, were used to compute the
estimated natural salt masssociated with natural flows. The regressions were devel-
oped using observed historic flows and salt and several development variables (Muel-
ler and Osen, 1988).

Figure 39 depicts the CRSS simulation model’s water and salt balance with a
line diagram of the basin above USGS stream gauge 09072500. The inputs are at the
top of the diagram: calculated natural flow, as described previously, and the associated
estimated natural salt mass from the USGS salt model. The model routes these inputs
through the river reach above USGS gauge 09072500, where the historic monthly
depletions from agriculture, exports, municipal and industrial uses, and the effects of

off-stream reservoir regulation are removed from the river reach. Reservoir regulation
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describes the total monthly change in surface storage, surface evaporation, and bank
storage (as appropriate) in reservoirs above USGS gauge 09072500. Salt mass is added
with agricultural returns and removed with exports. The left side of the diagram shows
how simulated historic flow is related to calculated natural flow. The right side shows
how simulated historic salt mass is related to estimated natural salt mass. The CRSS
simulation model simulates these processes and produces as output historic gauge
flows and associated salt mass. The result of a historical verification run is shown at

the end of Chapter 3, “Statistical Nonparametric Model for Natural Salt Estimation.”
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Figure 39: Line diagram of the CRSS simulation model and data for historic verifica-
tion.
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4.2.2 Stochastic Planning Runs
Long-term operational and planning studies are also conducted using CRSS.

For these runs, the CRSS simulation model uses natural flows generated by the ISM.
The ISM resamples the 90 years of historic calculated natural flows, generating 90
individual time series sequencessghthetic natural flowsThe CRSS simulation

model uses the 90 synthetic natural flow time series sequences, or traces, to produce
90 simulated results, which are then used to generate statistical probabilities of various
events.

The USBR has used the index sequential technique to generate synthetic
hydrology for the CRSS since the inception of the CRSS in the 1970’s. Various studies
have found that the ISM generates “statistically faithful” synthetic streamflow
sequences (Kendall and Dracup, 1991; Ouarda et al., 1997). The Colorado River Sys-
tem is well suited to using the index sequential modeling system because of the exten-
sive historic time series in the basin (water year 1906 to 1995).

Two attributes of the ISM that detract from its usefulness are that it requires an
extensive time series and that it cannot generate values or hydrologic sequences that
have not occurred in the original dataset. Thus, a hydrologic sequence such as a period
of drought or surplus that has not been seen in the past could not be generated.

The simulation model also requires gyathetic natural salt masssociated
with each synthetic natural flow sequence. Again, the series of 12 regressions, devel-
oped by the USGS, are used to compute the associated synthetic natural salt mass for a
given synthetic natural flow. Thus, 90 individual synthetic natural salt traces are found
using the regressions, one for each synthetic natural flow trace.

Figure 40 depicts the CRSS simulation model’s water and salt balance, with a
line diagram of the basin above USGS stream gauge 09072500 when the simulation
model simulates future flow and salt mass. The inputs are at the top of the diagram:

synthetic natural flow, from the stochastic natural flow model and associated synthetic
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natural salt mass from the USGS salt model. The model routes these inputs through
the river reach above USGS gauge 09072500, where the projected future monthly
depletions from agriculture, exports, municipal and industrial uses are removed from
the river reach. Projected salt mass is added with agricultural returns and removed with
exports.

The left side of the diagram shows how simulated future flow is related to syn-
thetic natural flow. The right side shows how simulated future salt mass is related to
synthetic natural salt mass. The simulation model performs Monte Carlo simulations
by running each synthetic natural flow and associated salt time series. The existing
CRSS has 90 synthetic natural flow and associated salt time series that are each run
through the simulation model, one at a time, calculating 90 simulated historic or future
flow and associated salt time series. Together, the 90 simulations of simulated historic
or future flow, salt, and concentration can be used to approximate the PDF for the
observed historic or predicted future flow, salt, and concentration.

To verify that the stochastic planning runs simulate accurate traces of simu-
lated flows and associated salt mass, the CRSS simulation model was populated with
historic monthly depletions, instead of projected future depletions. Then, PDFs of the
observed historic flow and salt mass were compared to the simulated historic flow and
salt mass from the CRSS simulation model. If the simulation statistics preserved the
observed historic flow and salt mass statistics, the CRSS is deemed verified.

We performed stochastic planning runs with both historic depletions to verify
the simulation runs and projected future depletions, to compare the existing CRSS,

explained previously, and the modified CRSS, explained next.
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Figure 40: Line diagram of the CRSS simulation model and data for stochastic plan-
ning runs.

4.3 Modified CRSS

To address the limitations of the existing CRSS modeling system, we devel-
oped a modified stochastic natural flow model and statistical nonparametric natural
salt model. A description of these models follows. We used both models to generate
data for the CRSS simulation model. We compared the results from the simulation
model to results from simulations using the ISM natural flow and USGS natural salt

regression model described previously.
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4.3.1 Modified Stochastic Natural Flow Model
As stated many times, a drawback of ISM is that it cannot generate synthetic

sequences that did not occur in the past record. An alternate nonparametric method, K-
NN, eliminates this drawback. Traditional K-NN methods resample values from the
historic time series, one at a time (Lall, 1995). Because samples are not taken as
blocks, as in the ISM, this technique is able to produce time series sequences that did
not occur in the historic data. However, values are limited to those in the data set. We
further developed the traditional K-NN technique to provide the ability to create val-
ues not seen in the historic record. Our modified K-NN method developed a regression
relationship between successive months’ flows and saved the residuals from the
regression. The succeeding month’s flow was first calculated from the appropriate
regression. Then, the k-nearest flows to the flow from the regression were found. A
residual from the k-nearest flows was resampled and added to the flow from the regres-
sion to produce a new value. This scheme allowed the K-NN method to perturb the
historic data within its representative neighborhood and allows extrapolation beyond
the sample, while maintaining the residuals of the data. The method is described in
detail in Chapter 2, “Modified Nonparametric K-NN Model for Generating Stochastic
Natural Streamflow.”

Like the ISM, the modified K-NN has the advantage of nonparametric models;
there is no need to transform the data to fit an assumed probability density function. It
has the further advantage of being able to generate synthetic time series containing
numbers and sequences that have not occurred in the past, but are “statistically faith-
ful” to the original time series.

Chapter 2, “Modified Nonparametric K-NN Model for Generating Stochastic
Natural Streamflow,” demonstrated that the generated synthetic time series of natural
flow PDFs preserved the PDF of the historic data. We used a PDF with boxplots of the

annual synthetic natural flow to validate the modified stochastic natural flow model.
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The monthly time series were summed to an annual time series because the salinity
standard is based on an annual time step.

We used the K-NN flow model to generate one hundred 55-year natural flow
traces based on the monthly calculated natural flows from 1941 to 1995. We chose the
1941-1995 period because of the availability of both observed historic flow and salt
data to verify the model results. Figure 41 shows a plot of the annual calculated natural
flow PDFs from 1941 to 1995 as the solid line. The boxplots display the interquantile
range (IQR) and whiskers extending to 1.5 * IQR for the PDFs of the 100 synthetic
natural flow traces. The interquantile range (the box) indicates the range for 50 percent
of the data around the mean. The horizontal line inside the IQR depicts the median of
the data. The whiskers approximate the 5 percent and 95 percent confidence for the
traces. Data beyond the whiskers (1.5 * IQR) are termed outliners and indicated by a

solid circle.An example boxplot is given:

[ ]

15Y1QR— \ outliner
I
I

25% of data above mean— median ~>Wwhiskers
interquantile rangdQR)

25% of data below mean—
I
I
1.5*IQR— I

Each plot in Figure 41 shows that the calculated natural flow PDF fell within
the interquantile range of the boxplots. Hence, the model generated synthetic data that

is statistically consistent with the historic data.
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Figure 41: The solid line shows the PDFs for the calculated natural flow from 1941 to
1995. The boxplots describe the interquantile range (IQR) and whiskers for approxi-
mately 5 percent and 95 percent from the PDFs of the 100 synthetic natural flow
traces. The plot represents a single run of the KNN flow model. The run preserved
the calculated natural flow in the interquantile range over all flows.

Unlike the salinity data, the flow data was not limited to the time period 1941
to 1995. Calculated natural flow data was available from 1906 to 1995 at this gauge.
Using the full time period increased the sample size for the stochastic model, increas-
ing the certainty of the model results. In Figure 42, the solid lines show the PDF for
the calculated natural flow from 1941 to 1995, while the dotted line represents the PDF
for the calculated natural flow from 1906 to 1995. Note that the PDF for the longer
time period is different from the PDF for the shorter period. When the longer period
was used to generate synthetic natural flows, the boxplots from the 100 simulations
follow the PDF for the calculated natural flow from 1906 to 1995, not the PDF for the
shorter period.

The boxplots in the upper graph represent the 100 synthetic natural flow PDFs
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from the modified K-NN stochastic natural flow model, and, in the lower graph, 100
synthetic natural flow PDFs generated from the ISM. ISM performs best with an
extensive historic record, therefore, we compared ISM to the modified KNN flow
model using the full record, allowing ISM to produce its best results. Using the time
period 1906 to 1995, ISM generated 90 simulations of synthetic natural flow.

The main disadvantage of ISM is that it cannot generate synthetic data that is
statistically possible but has not occurred in history. As a result, ISM produced a nar-
rower range of probabilities at each given flow than the modified K-NN flow model.
This narrower range is indicated by the longer boxplots produced by the modified K-
NN flow model, which can generate synthetic stochastic data that is statistically possi-

ble but has not occurred in history.
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Figure 42: The upper graph shows the PDF for K-NN synthetic natural flow. The

1511808 1991438

1056160

lower graph shows ISM synthetic natural flow. Both are based on calculated natural

flow from 1906 to 1995. In both graphs the solid line represents the PDF for the calcu-

lated natural flow from 1941 to 1995, while the dotted line represents the calculated

natural flow from 1906 to 1995. The boxplots represent the PDFs of 100 simulated K-

NN and 90 simulated ISM synthetic natural flows. The K-NN model simulated a

wider range of flows.
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4.3.2 Statistical Nonparametric Natural Salt Model
To replace the USGS model, we developed a statistical nonparametric natural

salt model that computes a natural salt mass given a natural flow, either historic or gen-
erated by the K-NN flow model. The computation is achieved using a nonparametric
local regression fit to a scatter plot of calculated natural flow versus calculated natural
salt, both from 1941 to 1995. The calculated natural salt is calculated from historic
gauged data and salt load data from the CRSS simulation model as follows:

calculated natural salt = observed historic salt
+ salt with water exported out of the basin
- salinity pickup from agriculture (values
based on CRSS)

The value computed from the local regression is perturbed with a local residual
chosen by a K-NN technique that resamples a residual from the nonparametric regres-
sion.

A detailed description of the statistical nonparametric natural salt model and its
subsequent validation are in Chapter 3, “Statistical Nonparametric Model for Natural
Salt Estimation.” To validate the statistical nonparametric natural salt model, we split
the estimated natural salt time series into fitting and subsequent future projection peri-
ods. The fitting period was from water year 1941 to 1985. The validation period was
from water year 1986 to 1995.

The upper graph in Figure 43 shows the annual calculated natural salt mass
PDF from 1941 to 1995 as a solid line. The boxplots represent the PDFs of the 100
simulations of monthly synthetic natural salt mass, summed to annual. The statistical
nonparametric natural salt model, using synthetic natural flows, generated the monthly
synthetic natural salt mass. The calculated natural salt mass did not fall within the
interquantile range of the synthetic natural salt mass. We hypothesized that this is a
result of certain monthly regression data that have outliers, weakening the regression

relationship. To verify our hypothesis, we developed a regression of annual calculated
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natural flow as a function of annual calculated salt mass. We used the regression to
generate the annual synthetic natural salt as a function of the annual synthetic natural
flow, where the monthly synthetic natural flows were summed to annual. The lower
graph in Figure 43 shows the PDFs of using the annual regression, rather than sum-
ming the results from 12 monthly regressions. The interquantile range of the simula-
tion boxplots encompassed the PDF of the calculated salt mass over the entire range.
These findings show that an annual regression model best preserves the annual
natural salt PDF. Unfortunately, CRSS requires entering natural flow and salt data at a
monthlytime step to accommodate the operational rule set. Work to move the opera-
tional ruleset to an annual time step is being considered. When the work is complete an
annual regression salt model will best preserve the natural salt mass PDF, avoiding the

summation of monthly salt mass values.
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1995. The boxplots describe the interquantile range (IQR) and whiskers for approxi-
mately 5 percent and 95 percent of the 100 synthetic natural salt traces. The upper
annual statistical nonparametric salt model, preserving the tail of the calculated natu-
ral salt PDF.

Figure 43: The solid line shows the PDFs for the calculated natural salt from 1941 to
graph uses a monthly statistical nonparametric salt model. The lower graph uses
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The statistical nonparametric natural salt model was fitted with the calculated
natural salt mass data, from 1941 to 1995. Salt mass data before 1941 was not avail-
able. This regression relationship can be applied to estimate (find) natural salt mass for
dates outside the 1941 to 1995 range. The statistical nonparametric natural salt mass
model was used to compute natural salt associated with one hundred 90-year traces of
synthetic natural flows based on the 1906 to 1995 calculated natural flows. In the
upper graph of Figure 44, the solid line shows the PDF for calculated natural salt from
1941 to 1995. (A PDF for calculated natural salt from 1906 to 1995 was not available
because there is no historic salt mass data before 1941.) The interquantile range of the
100 synthetic natural salt mass traces did not include the calculated natural salt mass,
shown as a solid line, over the entire range. This resulted from using synthetic natural
flows based on calculated natural flows from a longer time period than the period of
the calculated natural salt mass.

The lower graph shows the results using the ISM to generate 90 traces of syn-
thetic natural flows and USGS regressions to find the associated salt mass. The solid
line shows a significant shift in the peak of the boxplots compared to the PDF for cal-
culated natural salt mass from 1941 to 1995 (solid line). This shift reveals that the
USGS regression gives a higher salt mass for a given flow than our statistical nonpara-

metric natural salt model.
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evident that the USGS regressions used in the existing CRSS overestimate the solid

salt, while the lower graph shows the existing CRSS synthetic natural salt mass. Itis
line that shows the calculated natural salt mass PDF.

Figure 44: The upper graph shows the PDF for the modified CRSS synthetic natural
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Although salt mass is typically the modeled value of interest, concentration is
the regulated value and the measured value. Thus, the model should be validated for

concentration. Salt concentration is a function of both flow volume and salt mass given
by:

salt mass (tons) 735.29
flow volume (ac-ft)

salt concentration (mg/L¥ Eq. 4.11

where 735.29 is a conversion factor that converts tons/acre-foot to mg/L. In Figure 45,
the upper graph displays thalculated natural salt concentratid?DF as the solid

line, with boxplots from PDFs of 100 synthetic natural concentration traces. We found
calculated natural salt concentration using equation 4.11 with the calculated natural
salt and natural flow. We found the 1&fhthetic natural salt concentratidraces

using equation 4.11 and the 100 monthly synthetic natural flow and salt mass traces
described previously. We were not able to preserve the calculated natural salt concen-
tration PDF in the interquantile range over all flows. Again, we hypothesized that this
is a result of summing the results from the monthly salt regressions. In the lower
graph, using a single annual salt regression preserved the calculated natural salt PDF
in the interquantile range of the 100 synthetic natural salt concentration PDFs. This
result further indicates the importance of developing a simulation model that can sim-

ulate natural flow and salt data at an annual time step.
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Figure 45: The upper graph shows the PDF for synthetic natural salt concentration
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from 12 monthly regressions to calculate synthetic natural salt mass. The lower graph
shows the synthetic natural salt concentration from a single annual regression to cal-

culate synthetic natural salt mass. Using the single annual regression allowed the sim-

ulation to preserve the calculated natural salt concentration (solid line) in the

interguantile range.
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Using 100 synthetic natural flow traces based on the 1906 to 1995 calculated
natural flow and the associated synthetic natural salt mass from the statistical nonpara-
metric natural salt model, we calculated 100 synthetic natural salt concentration traces.
Figure 46 shows the calculated natural salt concentration PDF from 1941 to 1995 as a
solid line, with the boxplots of the 100 synthetic natural salt concentration PDFs.

The natural flows from 1906 to 1995 were generally higher than flows from
1941 to 1995, causing the synthetic salt concentration to be lower than the calculated
natural salt concentration from 1941 to 1995. The lower graph of Figure 46 shows the
results using the existing CRSS models to generate 90 synthetic natural salt concentra-
tion traces. Figure 46 shows that the boxplots from the PDFs of 90 synthetic traces
peaked at a higher salt mass than the calculated natural salt concentration PDF, the
solid line, from 1941 to 1995. Again, this higher salt mass occurred because the syn-
thetic natural salt mass from the existing CRSS model is greater than the calculated

natural salt mass, as shown in Figure 44.
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Figure 46: The upper graph shows the PDF for the modified CRSS synthetic natural
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salt concentration. The lower graph shows the existing CRSS synthetic natural salt

concentration. The existing CRSS overestimated the calculated natural salt concen-
tration (solid line), while the modified CRSS slightly underestimated the calculated

natural salt concentration.
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The code for both the modified stochastic natural flow model and the statistical

nonparametric natural salt model are included in Appendix C, “Sample Splus Code.”

4.3.3 Simulation Model
The final step in our modeling system used the CRSS simulation model as

implemented in RiverWare (Zagona, 2001). The USBR re-implemented the CRSS
simulation model in RiverWare to simplify changing operational policies.

To test the modified stochastic nonparametric natural flow model, we used a
segment of the CRSS simulation model that includes USGS gauge 09072500 (Colo-
rado River near Glenwood Springs, CO). The modified stochastic natural flow model
and statistical nonparametric natural salt model generated inputs for the CRSS simula-
tion model. The inputs included calculated or synthetic natural flow and associated
natural salt mass. Additionally, human-induced depletions and salt loading were
entered in the CRSS simulation model, as explained in Section 4.2, “Existing CRSS.”
Total depletions are a sum of depletions from agriculture, municipal and industrial
sources, exports, and reservoir regulation. Human-induced salt results from agricul-
tural salinity pickup and the salt removed with exports. We concluded that reservoir
regulation has minimal effect on salt at an annual scale; therefore, reservoir regulation
did not model salt. The time period simulated by the model dictated the depletion and
salt loading data used in the run. For example, if the run simulated the historic time
period from 1941 to 1995, the model used the depletions and human-induced salt load-
ings from the 1941 to 1995 historic record. If the model simulated the future time
period of 2002 to 2062, it used projected depletions and salt loadings.

CRSS performs Monte Carlo simulations by running each trace of synthetic
natural flow and associated salt time series through the CRSS simulation model. Our
modified CRSS used 100 synthetic natural flow traces and associated salt mass traces

that were each run through the simulation model, one at a time, calculating 100 simu-
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lated historic or future flows and associated simulated salt mass and concentration
time series. These simulations could be used to approximate the PDF for the observed
historic or predicted future flow, salt, and concentration.

We first used the CRSS simulation model to validate the modified CRSS sys-
tem by showing that it could preserve the observed PDF for historic flow, salt mass,
and concentration from 1941 to 1995. The inputs were 100 traces of synthetic natural
flow and associated salt mass traces generated with the modified stochastic natural
flow model, using the 1941 to 1995 calculated natural flow, and the statistical nonpara-
metric natural salt model, using the synthetic natural flow traces generated from the
modified stochastic natural flow model. The total depletions were based on 1941 to
1995 historic records.

The results were compared to the observed historic PDF, as discussed pervi-
ously. Figure 47 displays the observed historic flow PDF from 1941 to 1995 as a solid
line, with boxplots describing the PDFs of the 100 simulations of simulated historic
flow from the simulation model. The shape of the observed historic flow PDF was pre-
served well; however, the peak of the PDFs from the simulated historic flows was sub-
dued and the tails were elongated.

Figure 48, upper graph, displays the observed historic salt mass from 1941 to
1995 as a solid line, with boxplots describing the PDFs of the 100 simulations of sim-
ulated historic salt mass. The simulated historic salt mass could not preserve the
observed historic salt mass in the interquantile range across all flows. Again, we
hypothesized that this was a result of summing the results from 12 monthly natural salt
regression models to calculate an annual salt mass.

Subsequently, we created a simulation model equivalent to the CRSS simula-
tion model in S-Plus programming language. S-Plus is a statistical programming lan-
guage that simplifies designing and modeling statistical models. The S-Plus simulation

model allowed the synthetic natural flow and associated salt mass traces to be input
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and modeled at an annual time step. Modeling at an annual time step was possible for

this model because no major river reservoirs occur in the case study area. Major river

reservoir operating policy is expressed at a monthly time step. With the S-Plus simula-
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Figure 47: The PDF for observed historic flow, solid line, with boxplots of the simu-

lated historic flow from the modified CRSS. The modified CRSS simulations have a

subdued peak and elongated tails compared to observed historic flows.
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Figure 48: The upper graph shows the PDF for simulated historic salt mass from 12
monthly regressions to calculate synthetic natural salt mass. The lower graph shows
the simulated historic salt mass from a single annual regression to calculate syn-
thetic natural salt mass. Using the single annual regression allowed the simulation
to preserve the observed data in the interquantile range.
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Figure 49, upper graph, displays the observed historic salt concentration PDF
from 1941 to 1995 as a solid line, with boxplots describing the PDFs of the 100 simu-
lated historic salt concentration traces representing 1941 to 1995. The simulated his-
toric salt concentration could not preserve the observed historic salt concentration in
the whiskers of the boxplots for all salt concentrations. To verify if this was a result of
summing the salt mass from the 12 monthly regressions to derive annual salt mass val-
ues, we used the S-Plus simulation model results to calculate the annual simulated his-
toric salt concentration. As seen in Figure 49, lower graph, the simulation still could
not preserve the observed historic salt concentration in the whisker of the boxplots for
all salt concentrations. Both the RiverWare and S-Plus simulation models simulated a

much wider range of salt concentrations than observed concentrations.



141

PDFs from 'new’ KNN method for Annual Historic Salt Concentration

uonnguisia Aujigeqold

264 307 350 393
salt concentration (mg/L/year)

221

181

PDFs from 'new’ KNN method for Annual Historic Salt Concentration

0100

8000

uonnquisia Aujiqeqold

307 350 393

264

salt concentration (mg/L/year)
Figure 49: The upper graph shows the PDF for simulated historic salt concentration

221

181

from 12 monthly regressions to calculate synthetic natural salt mass. The lower graph

shows the simulated historic salt concentration from a single annual regression to cal-

culate synthetic natural salt mass. Neither preserved the observed data in the inter-

quantile range.
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To explain why the observed historic salt concentration PDF could not be pre-
served, we investigated how the simulated historic salt concentration is calculated.
Simulated historic salt concentration is a function of simulated historic flow and simu-
lated historic salt mass. From the previous figure (Figure 48), we see that the annual
salt regression model preserved the historic salt mass well, but the simulated historic
flow shows a subdued peak in the PDF, indicating a wider range of flows than the
observed historic flow. The wider range of flows produced a wider range of concentra-
tions, as indicated in Figure 49. It is apparent that reproducing historical flows is
important in reproducing salt concentration. Simulated historic flows are computed by
removing total depletions from the synthetic natural flow. Because the natural flows
were well reproduced (Figure 41), it seems the depletions might have influenced the
historic flow PDFs, which we investigated further.

We assumed that depletions are constant, but Figure 50 shows that the level of
depletions in any given year is a function of the flows for that year. Our first attempt to
model simulated historic flow did not consider this relationship. The modified stochas-
tic natural flow model generated 100 synthetic natural flow traces based on 1941 to
1995 calculated natural flow. For each year, the 100 simulations represented a variety
of natural flows. To find simulated historic flow, the same historic depletions from
1941 to 1995 were removed from every trace of synthetic natural flow, no matter what
flow was generated for each trace.

A more accurate model would consider the total depletion as a function of the
natural flow. Figure 50 shows the relationship between total depletions as a function of
calculated natural flow from 1941 to 1995. The plot shows a tendency for total deple-
tions to increase with increased natural flow. The scatter of the points shows much

variability around the regression.
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Figure 50: The regression relationship between total annual depletion as a function
of the calculated natural flow. The solid line shows a LOCFIT through the data
points. There is wide scatter around the regression indicating a wide variance around
the regression.

To incorporate the relationship between calculated natural flow and total deple-
tions, we used depletions as a function of natural flow based on the regression shown
in Figure 50. We did this by computing a total depletion from the regression for each
synthetic natural flow value and removing the appropriate total depletion. We first per-
formed this by calculating the total depletion directly from the regression. The upper
graph in Figure 51 shows the observed historic flow PDF (as a solid line) was not pre-
served in the interquantile range for all the PDFs for the simulated historic flows (as
boxplots). The lower graph shows similar results for the simulated historic salt con-

centration.
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Figure 51: The upper graph shows the PDF for historic flow, while the lower graph

shows the PDF for the historic salt concentration. Both graphs used the regression

between total annual depletion as a function of calculated natural flow without resam-
pling. Both historic flow and salt concentration are preserved better incorporating the

regression.
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Adding a K-NN technique to resample the residuals from the neighboring
points around the regression point and adding the residuals to the total depletion
improved the model results. In Figure 52, upper graph, the simulated historic flow
PDFs preserved the observed historic flow PDF in the interquantile range over most
flows. The simulated historic salt concentration PDFs, shown in the lower graph, still
produced more lower concentrations than were seen historically, but to a lesser degree
than when the total depletions were found directly from the regression with no resam-
pling. Generally, we were able to preserve most of the observed historic salt concentra-
tion PDFs in the interquantile range of the boxplots for the simulated historic salt
concentration PDFs.

This technique, which improves the simulation results when compared to the
observed historic salt concentration, cannot be used in the CRSS simulation model
until a new set of operational policy rules is developed that can evaluate policy at an

annual time step.
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Figure 52: The upper graph shows the PDF for historic flow, while the lower graph

shows the PDF for the historic salt concentration. Both graphs used the regression
between total annual depletion as a function of calculated natural flow with resam-

pling. Both historic flow and salt concentration are preserved best incorporating the

regression with the resampling.
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4.3.4 Simulated Policy
To gain an understanding of how using the modified CRSS model could influ-

ence policy decisions, we tested policies using some fictional salt mass and concentra-
tion standards. As discussed in the opening of this chapter, salinity concentration
standards are mandated at three locations in the lower basin of the Colorado River. Our
segment of the CRSS simulation model did not include these locations, but developing
fictional standards in the modeled segment facilitated comparing the performance of
the existing and modified CRSS. We developed standards that occur in the tails of the
PDF, where extreme events, such as high salt mass or concentration, occur. For the fic-
tional salt mass standard, we determined the number of times 650,000 tons or more of
salt occurred at the simulated gauge. For the observed historic salt mass, this standard
was exceeded 6 times. Figure 53 shows the number of times the fictional standards
were exceeded by the simulation model that was run at a monthly time step and
summed to annual values. The upper graph shows a boxplot for the number of times
100 simulated historic salt mass traces from the simulation model exceeded the fic-
tional standard. The solid circle indicates the number of times the observed historic
salt mass exceeded the standard. The simulation model preserved the fictional salt
mass standard in the interquantile range. The lower graph shows the number of times a
salt concentration standard of 350 mg/L was exceeded and, therefore, violated. The
solid circle indicates that the observed historic salt concentration was exceeded 4
times. The simulation model overestimated the number of times the standard was
exceeded, as indicated by the interquantile range being well above the number of times
the observed historic salinity concentration exceeded the fictional salinity concentra-

tion standard.
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Figure 53: The upper graph shows the number of times a theoretical salt mass target of
650,000 tons was exceeded. The lower graph shows the number of times a theoretical
salt concentration standard over 350 mg/L was exceeded and, therefore, violated.
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Figure 54 shows how well the annual time step model estimates the number of
times the fictional standards were exceeded and, therefore, violated. In the upper plot,
the number of times the observed historic salt mass exceeded the standard was within
the interquantile range of the simulation model. In the lower plot, the model still over-
estimated the number of times the observed historic salt concentration standard was
violated.

Figure 55 shows the number of times the salinity concentration standard was
violated by the annual time step simulation model after the addition of the relationship
between calculated natural flow and total depletions with resampling. In this case, the
number of violations from the observed historic salt concentration was within the
interquantile range of the simulation model results. This is consistent with the PDFs
from the simulation model, which did the best job of preserving the PDF of the his-

toric salt concentration.
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Figure 54: The upper graph shows the number of times a theoretical salt mass target
of 650,000 tons was exceeded. The lower graph shows the number of times a theoret-
ical salt concentration standard over 350 mg/L was exceeded and, therefore, violated.
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Figure 55: This figure shows the number of times a theoretical salt concentration stan-
dard over 350 mg/L was exceeded and, therefore, violated. Incorporating the regres-
sion from total depletions as a function of calculated natural flow with residual
resampling allowed the simulations to preserve the observed number of violations.

4.3.5 Comparison of the Existing CRSS and the Modified CRSS
The existing CRSS and the modified CRSS were compared by generating the

synthetic natural flow traces using the entire calculated natural flow time series. The
ISM flow model, in the existing CRSS, performs best using the entire calculated natu-
ral flow time series.

We developed the next figures from the results of the monthly time step simu-
lation model. The synthetic natural flow traces of 55 years in length were generated
based on 1906 to 1995 calculated natural flow. The associated simulated synthetic nat-
ural salt mass was computed using the statistical nonparametric natural salt model,
based on calculated natural flow and salt mass from 1941 to 1995. The total depletions

were based on historic records from 1941 to 1995. With these inputs, the simulation
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model approximated the observed historic flow, salt mass, and concentration from
1941 to 1995 using the most extensive data available.

Figure 56 shows the PDF for observed historic flow from 1941 to 1995 as the
solid line. The boxplots describe the PDFs of the 100 traces of simulated historic flow
produced by the simulation model. The upper graph shows the results of the modified
CRSS, while the lower graph shows the results of the existing CRSS. Neither set of
models reproduced the observed PDF in the interquantile range. The existing CRSS
could not preserve the observed PDF within the whiskers for all flows, but the modi-
fied CRSS preserved the observed PDF. Generating synthetic natural flows based on
1906 to 1995 calculated natural flows did not allow the simulation model to preserve
the observed PDF for the time period 1941 to 1995 in the interquantile range. From the
plots, it is evident that there are higher calculated natural flows in the years before
1941 because the PDFs from the 100 simulations are skewed towards the higher flows.
From our previous analysis, we can also attribute the high PDFs of the simulations to
not using a relationship between calculated natural flow and total depletions, which
finds a depletion associated with each synthetic natural flow.

A significant difference between the modified and existing CRSS can be seen
for the observed historic salt mass, as shown in Figure 57. The upper graph shows
results for the modified CRSS, while the lower graph shows the existing CRSS.
Because the synthetic natural flows, based on 1906 to 1995 data, are high, natural salt
concentrations are low. Figure 58 compares the simulated historic salt mass values
generated by the 100 simulations of the modified CRSS and existing CRSS. The graph
shows that the existing CRSS generated higher historic salt mass in a narrower range
of values than the modified CRSS, which is evident because the median, shown as the
horizontal line within the interquantile range, is higher for the existing CRSS than for
the modified CRSS. Also, the whisker for the existing CRSS spans a narrower range of

values than for the modified CRSS.



153

PDFs from 'new’ KNN method for Annual

T
018

T
24019 0Ly 0LE

uonnquIsia Ajigeqoid

1256969 1701961 2146953 2591944 3036936

834227

flow (acre-feet/year)

PDFs from ISM method for Annual

T
L0018

T
018

PAN I 4 L0l

uonnquisiq Anjiceqold

1701961 2146953 2591944 3036936

flow (acre-feet/year)

1256969

834227

Figure 56: The upper graph shows the PDFs for historic flow from the modified

CRSS. The lower graph shows the PDFs for historic flow from the existing CRSS.
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Figure 57: The upper graph shows the PDFs for historic salt mass from the modified
CRSS. The lower graph shows the PDFs for historic salt mass from the existing
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Boxplot of Historic Annual Salt Mass
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Figure 58: Boxplots of the simulated historic salt mass from each of the 100 simula-
tions. The modified CRSS generated lower salt mass and a wider range of values
when compared to the existing CRSS results. The existing CRSS could preserve the
median of the observed historic salt mass (solid circles) in the interquantile range.

Figure 59 shows the annual historic salt concentration PDF for the modified
CRSS in the upper graph and the existing CRSS in the lower graph. The existing
CRSS overestimated the observed historic salt concentration PDF, seen by the shift in
the peak of the simulated historic salt concentration PDFs. This overestimate is a result
of the overestimate seen in the PDFs of the historic salt mass. The modified CRSS
slightly underestimated the observed historic salt concentration PDF because the sim-
ulated historic flow was greater than the observed historic flow, diluting the simulated

historic salt concentration.
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PDFs from 'new’ KNN method for Annual Historic Salt Concentration
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Figure 59: The upper graph shows the PDFs for historic salt concentration from the
modified CRSS. The lower graph shows the PDFs for historic salt concentration

from the existing CRSS.
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Figure 60 shows the results from the simulated policy analysis. These plots
compare the results from the modified CRSS to the existing CRSS. The upper graph
shows the number of times each CRSS generates results that exceeds a standard of
650,000 tons. The existing CRSS results (boxplots) greatly overestimated the number
of times the tons standard was exceeded compared to the observed historic record
(solid circle), while the modified CRSS results preserved the number of times the tons
standard was exceeded compared to the observed historic record.

The lower graph shows the number of times a salinity concentration standard

of 350 mg/L was exceeded. The existing CRSS results greatly overestimated the num

ber of times the salinity concentration standard was exceeded compared to the
observed historic record. The modified CRSS results also overestimated the number of
times the salinity concentration standard was exceeded compared to the number of
times the observed historic record violated the standard, however the number of times
the observed historic record violated the standard was preserved within the whiskers of
the boxplot. The overestimation seen in the modified CRSS results could be removed
if the simulation model were run at an annual time step and the proposed relationship
for total depletions as a function of calculated natural flow were incorporated, as dis-
cussed when the modified CRSS used the synthetic natural flow based on 1941 to 1995

calculated natural flows.
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Boxplot of Number of Times Tons Exceeded
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Figure 60: The upper graph shows the number of times each modeling system’s
results exceeded a tons standard of 650,000 tons. The lower graph shows the number
of times the modified and existing CRSS results violated a salt standard of 350 mg/L.
The solid circles show the number of times the observed historic record exceeded the
standards. The boxplots show results of 100 simulations from the modified CRSS and
90 simulations from the existing CRSS.
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4.3.6 Stochastic Planning Run Simulations
Next, the existing CRSS and the modified CRSS were used to simulate sto-

chastic planning runs. The runs approximated the projected future flow, salt mass, and
concentration from 2002 to 2061 using the most extensive data available. Using the
entire calculated historic flow time series allowed the existing CRSS and the modified
CRSS to be compared.

Stochastic planning runs were developed from the results of the monthly time
step simulation model. A synthetic natural flow time series of 60 years length was gen-
erated based on 1906 to 1995 calculated natural flow. The associated synthetic natural
salt mass was computed using the statistical nonparametric natural salt model. The
total depletions were projected future depletions from 2002 to 2061. Running the sim-
ulation for 60 years ensured the simulation was run until the future depletions reached
full development.

The upper graph in Figure 61 shows the PDF created from the median for box-
plots of probability at a given projected future flow. Both systems generated projected
future flow similarly. The lower graph shows the PDF created from the median for
boxplots of probability at a given projected future salt mass. The modified CRSS pro-

duced lower salt mass than the existing CRSS.
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Figure 61: The upper graph shows the PDF created from the median of boxplots of
probability at a given projected future flow generated from the modified and existing
CRSS. The lower graph shows the projected future salt mass from the modified and
existing CRSS. The shift in the projected future salt mass PDF shows that the exist-
ing CRSS generated greater salt mass.
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Boxplots showing all the simulations, in the upper graph of Figure 62, again
show that the modified CRSS produced lower salt masses than the existing CRSS. The
lower graph shows the PDF created from the median for boxplots of probability at a
given projected future salt concentration for each system. The difference between the
two systems is shown; again the modified CRSS simulated lower projected future salt
concentrations than the existing CRSS.

Figure 63 reiterates these results when the two modeling systems are compared
with the simulated policy analysis. The upper graph shows the number of times a tons
standard of 750,000 tons was exceeded and the lower graph shows the number of times
at salinity standard of 600 mg/L was exceeded and, therefore, violated. Again, the esti-

mates of the existing CRSS exceeded the estimates of the modified CRSS.
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Boxplot of Future Annual Salt Mass
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Figure 62: The upper graph shows the boxplots of the median from projected future
salt mass. The modified CRSS generated lower salt mass and a wider range of values
than the existing CRSS. The lower graph shows the PDF created from the median of
boxplots of probability at a given projected future salt concentration generated from
the existing and modified CRSS. The slight shift in the PDFs shows that the existing
CRSS generated higher salt concentration.
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Boxplot of Number of Times Tons Exceeded
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Figure 63: The upper graph shows the number of times the modified and existing
CRSS results exceeded a tons standard of 750,000 tons, while the lower graph shows
number of times a salt standard of 650mg/L was exceeded and, therefore, violated
during water year 2002 to 2062. For both graphs the existing CRSS results exceeded
the modified CRSS results.



164

4.4 Discussion and Conclusions
We outlined and developed a modified CRSS modeling system to simulate

long-term historic flow, salt mass, and concentration at a single gauge in the upper
Colorado River mainstem. The modified modeling system consisted of two modified
models. The first model was a nonparametric K-NN model with resampling that gener-
ated synthetic natural flow. The second model used the generated natural flow and
computed an associated natural salt mass from a nonparametric local linear regression
with K-NN resampling. A simulation model used the generated synthetic natural flow
and salt mass to perform Monte Carlo simulations, which model historic flow, salt
mass, and concentration with uncertainty.

We validated our modified modeling system by ensuring the modeling system
reproduced all the distributional properties, i.e., the PDF of the observed historic
record. Reproducing the PDF of the historic record ensured the mean, standard devia-
tion, and skewness were all preserved. Validation was performed by using the model to
generate synthetic streamflows for the period 1941 to 1995. We found we were able to
preserve the PDF for the natural flow and salt, but we produced a greater range of his-
toric flow values. This greater range of historic flow values caused our historic salt
concentration to produce a greater range of values than observed. Upon investigating
this problem, we found that the relationship between natural flow and total depletions
must be preserved to preserve the correct distribution of historic flows. Once we incor-
porated the relationship between natural flow and total depletions, we were able to pre-
serve the historic flow and salt concentration PDF.

We used two time scales to develop a monthly and annual nonparametric local
linear regression of natural salt mass as a function of natural flow with K-NN residual
resampling model. At a monthly time scale, 12 regressions were developed - one for
each month. To calculate the annual natural salt the result from the 12 regressions were

summed to an annual value. Using this method, we lost the ability to preserve the tails
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of the observed annual distribution. For policy analysis, the annual time step is more
important than the monthly time step. A monthly time step is only used to facilitate the
use of the “rules” to simulate river basin policy. If the simulation model were run at an
annual time step, an annual statistical nonparametric natural salt model would generate
better results. We showed that using a single annual natural salt mass as a function of
natural flow regression to generate annual natural salt mass best allowed the model to
preserve the observed annual natural salt mass PDF. Further, incorporating the rela-
tionship between total annual depletions as a function of annual natural flow in addi-
tion to an annual statistical nonparametric natural salt model allowed us to preserve the
number of times a fictional salinity standard was violated.

After completing our validation, we used the modeling system at the monthly
time step, accommodating the simulation model’s requirement to model operational
policy rules. We first used hydrologies from 1906 to 1995 to generate natural flows for
the period 1941 to 1995. We found that the flows before 1941 generally were higher
than flows after 1941. Thus, the generated natural flows were higher than observed
flows from 1941 to 1995, which caused the model to generate higher salt mass than
observed and a wider range of historic salt concentration. The historic salt concentra-
tion was skewed towards lower concentrations because the shift in natural flows
towards higher flows was larger than the shift in natural salt towards higher salt. The
additional natural flow diluted salt mass, lowering the salinity concentration.

We compared the existing CRSS to the modified CRSS using the entire natural
flow dataset from 1906 to 1995. The comparison showed that the modified CRSS sim-
ulated much lower salt mass and concentrations than the existing CRSS.

The final future simulations gave similar results. Projected future flow, salt
mass, and concentration were simulated from 2002 to 2061. We compared the modi-
fied and existing CRSS, finding again that the modified CRSS, simulated lower future

projected salt mass (88,000 tons lower) and concentration (57 mg/L lower) than the
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existing CRSS.

Another strength of the modified CRSS that was not discussed previously is
that the nonparametric K-NN stochastic flow model can be easily used to generate
high- or low-flow scenarios to test policies under adverse conditions. To add this abil-
ity to the K-NN framework, the flow database that is used for resampling could be bro-
ken in thirds. The first third would be high flows, the second normal flows, and the
third low flows. To generate a low-flow scenario, the K-NN model would generate a
future streamflow time series by resampling only from the low flows in the database,
thereby generating a synthetic time series with a sustained drought. This could also be
performed by resampling from only the high flows to generate the time series.

Our modified modeling system generated historic flow and salt mass that
matched the observed time period from which they were generated. We showed that
our modified CRSS generated lower historic salt mass and salt concentration than the
existing CRSS. We developed the new modeling system from data used to run the sim-
ulation model. By using the data from the simulation model, we kept our methods to
develop data to drive the simulation model consistent with the data used in the simula-
tion model. Keeping the data consistent allowed the modified CRSS to reproduce his-
torical results and to fully reflect variability by improving the relationship between

natural flow and salt mass.



Chapter 5

Conclusion and Recommendations for Future Work

5.1 Conclusions

This research developed a modified modeling system to simulate flow, salt
mass, and concentration at USGS gauge 09072500. The modified modeling system
was built on three interconnected models: (1) a nonparametric stochastic natural flow
model, (2) a statistical nonparametric natural salt mass model, and (3) a river basin
simulation model, the CRSS simulation model.

The modified modeling system improved the accuracy of salinity modeling
when compared to the existing modeling system used in CRSS. The two systems were
compared at a single gauge in the upper Colorado River mainstem, USGS stream
gauge 09072500 (Colorado River near Glenwood Springs, Colorado) and its associ-
ated water quality gauge 09071100 (Colorado River near Glenwood Springs, Colo-
rado). The modified modeling system was validated over the time period 1941 to 1995,
when both historic flow and salt data were available. The validation step demonstrated
that the modified modeling system preserves basic and higher order statistics for the

observed data. A discussion of each of the three interconnected models follows.

5.1.1 Modified Nonparametric Stochastic Flow Model
This task compared three techniques to generate stochastic flows. The existing

technique, nonparametric index sequential method (ISM), can only reproduce values



168

for stream flow that occurred in the past. The variability of the generated stream flows

is also more limited than the other two techniques. These other techniques, a paramet-
ric periodic auto regressive (PAR) model and a nonparametric modified k-nearest
neighbor (K-NN) model, develop stochastic stream flows values and sequences with
more variety because they generate values that did not occur in the historic record, but
are “statistically possible.”

The parametric PAR technique requires the modeled data to fit a Gaussian
(normal) distribution. If this requirement is not met, the data needs to be transformed
to fit a Gaussian distribution. Transformation is a time consuming task that does not
guarantee appropriate results. Further, the parametric technique cannot preserve PDFs
with non-Gaussian features, which the Colorado River streamflow data exhibit.

Conversely, the nonparametric technique does not require the data to fit a
Gaussian distribution. The technique improves current K-NN techniques by incorpo-
rating a method to resample residuals from a regression, therefore allowing the modi-
fied K-NN technique to generate values not seen in the historic record. Traditional K-
NN techniques resample directly from the historic dataset when generating a synthetic
time series. The modified K-NN technique is able to preserve both Gaussian and non-
Gaussian PDFs and does not require the modeled data to be transformed to a Gaussian
PDF when using the modified K-NN technique. The modified K-NN technique is
found to apply to a larger variety of data than the PAR technique.

The modified K-NN model was easy to implement and provided a flexible
framework. The flexible framework allowed the K-NN technique to generate synthetic
streamflows that simulated sustained low-flow or high-flow period. It was also easy to
condition the flow data on an independent time series, such as climate indices. Climate
indexes have shown a strong correlation in many river basins, i.e., San Juan River.
When flows are conditioned on climate, climate forecasts can drive future simulations

of streamflow.
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5.1.2 Statistical Nonparametric Natural Salt Model
The existing natural salt model was developed from weighted least-square lin-

ear regressions based on historic flow, salt mass, and multiple development variables,
including agricultural consumptive use, reservoir regulation, and exports. The model
generates a higher natural salt mass than the new natural salt regression model. The
existing natural salt model does not incorporate any of the data for modeling salt in the
CRSS simulation model. To maintain consistency between the CRSS simulation
model and the statistical nonparametric natural salt model, the data from the CRSS
simulation model was used to develop data for the statistical nonparametric natural salt
model. The new salt model is based on a regression between natural salt mass as a
function of natural flow. The addition of a K-NN resampling algorithm allows the new

salt model to incorporate the variance of the regression in the results from the model.

5.1.3 CRSS Simulation Model
The CRSS simulation model uses the ensembles generated by the modified sto-

chastic natural flow model and the statistical nonparametric natural salt model to drive
a model of USGS stream gauge 09072500 (Colorado River near Glenwood Springs,
CO). The modified stochastic natural flow model incorporates the uncertainty of flows
based on the observed historic flow. The statistical nonparametric natural salt model
incorporates the uncertainty (variance) in the natural flow versus natural salt regres-
sion. Together, these three models allow the river basin model to incorporate the
uncertainties in both the flow and salt together in a single river basin model. The CRSS
simulation model simulates the flow, salt mass, and salt concentration with uncertainty
at the stream gauge.

In the CRSS simulation model, the existing techniques to simulate future
stream flow, salt mass, and salt concentration were compared to our modified tech-
niques. The existing techniques use the ISM and a weighted least-square regression to

find the natural salt mass as a function of natural flow. The modified techniques use a



170

modified K-NN stochastic model with residual resampling and a nonparametric local
linear regression with K-NN residual resampling The modified techniques produced
lower salt mass and salt concentration values than the existing techniques. Both tech-
nigues generated flows that produced a similar median flow, although the modified

techniques generated a wider variety of flows around the median.

5.2 Future Work
Many projects could further develop this research. Incorporating a temporal

and spatial disaggregation technique could allow the modeling system to preserve both
an annual and monthly time scale and extend the model to additional gauges through-
out the Colorado River basin. A temporal disaggregation model would preserve basic
statistics at both the monthly and annual time scale. If the operational qidisy

were written to function at the annual time step, a temporal disaggregation model
would not be needed and an annual time step simulation model could be built.

Spatial disaggregation techniques could extend this framework to additional
gauges and preserve the correlation structure among the gauges. Once the modified
techniques have been extended to a basin-scale, their performance in predicting salt
concentration at the locations of the salinity standards could be investigated.

With the extended modeling framework, the impacts on operational and plan-
ning policy could be comprehensively studied. Considering the results of this research,
the modified modeling system can be expected to simulate lower salt mass and con-
centration at the salinity standard locations.

Finally, we found that salt loading from human-induced sources is not well
understood. Limited data allows little flexibility in designing a technique to model
human-induced salt loading. Efforts to better understand salt loading by humans
would improve our confidence in modeling human-induced salt loading. Further

efforts could explore the relationship between salt loading and land use and develop a
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method to model salt loading based on land use. Currently, data does not support a
mathematical relationship between salt loading and land use. Instead, estimates of salt
loading for each reach in the existing CRSS model are taken from several salinity stud-
ies.

Continued research efforts to understand highly uncertain data and methodolo-
gies more effectively conveys uncertainty in the modeling system’s results, therefore

improving the policymaker’s decision support system.
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Appendix A

Glossary of Terms

observed historic flow - from gauged historic records

observed historic salt mass - from gauged historic records

total depletion = sum (agriculture consumptive use + expagservoir regu-
lation)

human-induced salt mass = sum (salt leaving with export water + agricultural
salinity pickup)

calculated natural flow = observed historic flow - total depletions

calculated natural salt mass = observed historic salt mass- human-induced salt
mass

estimated natural salt mass - natural salt mass estimated for the corresponding
calculated natural flow from a natural salt model over a historic period

calculated natural salt concentration (mg/L) = calculated natural salt mass
(tons) * 735.29 / calculated natural flow volume (ac-ft)

calculated historic flow = calculated natural flow - total depletions

calculated historic salt mass = calculated natural salt mass - human-induced
salt mass

synthetic natural flow (100 synthetic traces) - generated natural flows from the

stochastic natural flow model
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associated synthetic natural salt mass (100 synthetic traces) - estimates of natu-
ral salt corresponding to synthetic natural flows

synthetic natural concentration (mg/L) = associated synthetic natural salt mass
(tons) * 735.29 / synthetic natural flow volume (ac-ft)

simulated historic flow (100 synthetic traces) = simulated natural flow - total
depletions

simulated historic salt mass (100 synthetic traces) = simulated natural salt mass
- human induced salt mass

simulated historic concentration (mg/L) = simulated historic salt mass (tons) *

735.29 / simulated historic flow volume (ac-ft)

modified stochastic natural flow model (MSNFM)
statistical nonparametric natural salt model (SNNSM)
index sequential method flow model (ISM flow model)

US Geological Survey salt model (USGS salt model)



Appendix B

CRSS Inputs, Outputs, and Sources of Data

2.1 ldentify Primary Inputs, Outputs, and the Sources of the Data for Colorado
River Simulation System

Inputs:

a) The inputs and outputs for a projection run are as follows
(USBR, 1987)

(1)
(2)

3)
(4)

Natural flow, calculated as described in following sec-
tion (b)

Demands, these are input into SMDID (Simulation
Model Demand Input Data) generation program. With-
drawals and depletions are specified in the database. The
values for each can be held constant or they can be
trended, varying either by a step or linear trend to meet a
certain value a number of years in the future. All values
are entered annually and distributed for each diversion
point according to a monthly distribution. Sources of
demands for the Upper Basin are typically taken from
the ProjectedNVaterSupplyandDepletions- UpperCol-
orado Rver. For the Lower Basin, demands are deter-
mined from theConsumptre Use of Dversions from

the Main Stem report. Diversions are determined either
from historical consumptive use to diversion ratios,
maximum diversion capacity to maximum allowable
consumptive use ratios, or an assumed diversion to con-
sumptive use ratio of approximately 167 percent when
no better data is available.

Initial reservoir elevation or storage, taken from USGS
or USBR gauges

Natural salt load input as concentration, calculated as
described in following section (b)
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For the Upper Basin, developed from historical flow and
salt load relationships (Mueller and Osen, 1988). For the
Lower Basin, this was deviated from a mass balance for
salt load within each reach of the lower basin.

(5) Salinity Pickup, input as concentration in the SMDID
generation program. Determined from project data or
estimated (lorns et al., 1965) for the Upper Basin.
Included for only two projects in the Lower Basin. Salt
pickup values for Lower Basin obtained from project
data. The remaining salt pickup in the Lower Basin is
assumed to be captured in the salt gains and losses from
the hydrology data base.

Concentration assumed constant in the current model.
Why not use salt load? This does not represent salt load
dependent on flow.

(6) Initial reservoir concentration, taken from outflow salt
concentration of initial month for model run. Deter-
mined from USGS measurements, estimates, or exten-
sions of existing data. (Nordlund and Liebermann,
1990; Mueller and Osen, 1988).

Outputs: (7) Flows and Salt Concentration at all modeled diversions
and reservoirs in the Colorado River basin

2.2 Generating the Natural Flow Database
In order to present all gauged information at the same conditions, a time must

be chosen to adjust all gauged data. In the CRSS model, the common level of develop-
ment chosen was “natural” level. Natural flow represents the streamflows that occur if
humans had not used any water from the basin. Natural flow is developed by subtract-
ing human-induces effects (i.e., reservoir regulation, depletion, exports, municipal and
industrial uses) from the historical gauge data. The uncertainty in the natural flow and
salt would be determined from the uncertainty in the data used to calculate the natural

flow database.

b) The inputs and outputs for generation of natural flow data are
as follows:

Inputs: (1) Inputs and sources for the Upper Basin natural flow
(USBR, 1983 (2))
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(@) Historical Flow, USGS gauged data
(b) Consumptive Use, modified Blaney-Criddle
method
(c) Reservoir Regulation
i) monthly change in surface storage, measured
i) monthly change in bank storage, 10% of
change in surface storage
lii) monthly evaporation, determined from
monthly average surface area x monthly
evaporation rate
(d) Exports, USGS and irrigation districts, assumed
measured
(e) M and | Uses, determined from annual consump-
tive powerplant use, annual value is divided by 12
to get monthly
() Imports, USGS and irrigation districts, assumed
measured
() Incidental depletions, account for stock pond
evaporation, fish and wildlife uses, etc. Generally
only annual totals, measured and calculated
Outputs: (2) Outputs total natural flow at specific stream gaging
points
Inputs: (3) Inputs and sources for the Upper Basin natural salinity

(USBR, 1987)

(@)

The determination of natural salt load has evolved
from different attempts to determine natural salt
load given measured historical data. Currently salt
load is derived from a relationship developed by
the USGS taking the form of a regression equation

C = a@®; C is concentration in mg/L, Q is flow in

ft3/s, and a and b are empirical constants. The rela-
tionship was developed from a weighted least-
squares regression from a model of historical salt
load as a function of historical streamflow and sev-
eral variables representing development. Develop-
ment variables include upstream adjustments to
stream flow, consumptive use, diversions, and irri-
gated acreage

Outputs: (4) Outputs total natural salinity at specific stream gaging
locations



Inputs:

Outputs:

Inputs:

Outputs:

(5)

(6)

(7)

(8)
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(a) Total natural salt concentration at specific stream
gauging points

Inputs and sources for Lower Basin natural flow (USBR,
1985; USBR, 1992)

(&) Historical outflows from reservoirs, USGS gauged
data

(b) Diversion and measured returns, Decree Account-
ing Records

(c) Phreatophyte consumptive use, Blaney Criddle
(d) Unmeasured returns, (Owen-Joyce, 1987)

Outputs natural flow data for specific actual and inter-
vening flow stations

Inputs and sources for Lower Basin natural salinity
(USBR, 1985; USBR, 1992)

(a) Historical outflow salt load. Determined from
USGS measurements, estimates, or extensions of
existing data (Nordlund and Liebermann, 1990;
Mueller and Osen, 1988).

(b) Diversion and measured returns salt load, Deter-
mined from USGS measurements, estimates, or
extensions of existing data (Nordlund and Lieber-
mann, 1990; Mueller and Osen, 1988).

(c) Unmeasured returns (Owen-Joyce, 1987)

Outputs natural salinity for specific actual and interven-
ing flow stations.



Appendix C

Sample Splus Code

3.1 Sample Splus Modeling Code

#*************************************************************

#NP modified k-nn stochastic flow model

#

#models natural flow for gauge 09072500 from water year 1906 to 1995
#100 simulations each 90 years long are created.

#*************************************************************

{
WYmonflow_matrix(BCNatFlow[1:1080,1], ncol=12, byrow=T) #10/1905 to

9/1995
KNNtnflow_matrix(0,1080,100)

annlee_1:90
for(i in 1:90)annlee[i]_sum(WYmonflow[i,1:12])
X_annlee

#fit lowess and get the residuals series..

resids_matrix(0,nrow=89,ncol=12)

alpha_seq(0.2,0.8,by=0.05)

alphal_seq(0.2,0.8,by=0.05)

alpha2_c(alpha, alphal)

for(iin 1:12){

i1 i-1

if(i == 1){

zz_gcevplot(WYmonflow[2:90,1]~WYmonflow[1:89,12], alpha=alpha, deg=1,
ev="cross")
#z1_gcvplot(WYmonflow[2:90,1]~WYmonflow[1:89,12],alpha=alpha,deg=2)
#z2_order(c(zz$values,z1$values))

z2_order(zz$values)

degl 1
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#if(z2[1] > 13)degl_2
zz_locfittWYmonflow[2:90,1]~WYmonflow[1:89,12], alpha=alpha2[z2[1]],
deg=degl)
x1l zz
resids[,i]_residuals(zz)} else
{
zz_gcvplot(WYmonflow[1:89,i]~WYmonflow[1:89,i1], alpha=alpha, deg=1,
ev="cross")
#z1_gcvplot(WYmonflow[1:89,i]~WYmonflow[1:89,i1], alpha=alpha, deg=2)
#z2_order(c(zz$values,z1$values))
z2_order(zz$values)
degl 1
#if(z2[1] > 13)degl_2
zz_locfittWYmonflow[1:89,i]~WYmonflow[1:89,i1], alpha=alpha2[z2[1]],
deg=degl)

if(i == 2)x2|_zz
if(i == 3)x3l_zz
if(i == 4)x4l_zz
if(i == 5)x5|_zz
if(i == 6)x6l_zz
if(i == 7)x7|_zz
if(i == 8)x8l_zz
if(i == 9)x9l_zz

if(i == 10)x10l_zz
if(il == 11)x11l_zz
if(i == 12)x12|_zz
residsl[,i]_residuals(zz)}

}

armean_matrix(0,101,13)
arstdev_matrix(0,101,13)
arcor_matrix(0,101,13)
arskw_matrix(0,101,13)
mondiffs_matrix(0,101,347)
armax_matrix(0,101,13)
armin_matrix(0,101,13)

### drought stats..
mxsp_1:101
mxdef 1:101
maxs_1:101
maxd_1:101

index_1:90



kk_sqrt(89)
kk_round(kk)
W_1:kk
W_1/W
W_W/sum(W)
W_cumsum(W)

frac_1
th_frac*mean(array(t(WYmonflow[1:90,1:12])))
th_quantile(array(t(WYmonflow[1:90,1:12])),0.5)

# Get the first year..

for(k in 1:100){

xsim_1:1080

i_round(runif(1,1,89))
xsim[1]_WYmonflow[i,1]
xprev_xsim[1]

for(i in 2:1080){

1 %% 12

if(j == 0)j_12

j1 -1

if(j == 1){xx_abs(xprev-WYmonflow[1:89,12])}
else
{xx_abs(xprev-WYmonflow[1:89,j1])}

Xz_order(xx)
XZ_Xz[1:KkK]
xx_runif(1,0,1)
Xy_c(xx,W)
xX_rank(xy)

11 xz[xx[1]]

if(j == 1)xm_predict(x1l,xprev)
if(j == 2)xm_predict(x2l,xprev)
if(j == 3)xm_predict(x3l,xprev)
if(j == 4)xm_predict(x4l,xprev)
if(j == 5)xm_predict(x5I,xprev)
if(j == 6)xm_predict(x6l,xprev)
if(j == 7)xm_predict(x71,xprev)
if(j == 8)xm_predict(x8l,xprev)
if(j == 9)xm_predict(x9l,xprev)
if(j == 10)xm_predict(x10l,xprev)
if(j == 11)xm_predict(x11l,xprev)
if(j == 12)xm_predict(x12l,xprev)

187
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xsim[i]_xm + residsJi1,j]
#print(c(i,j,xprev,xm,resids[il1,j]))

xprev_xsimli]}

simdismon_matrix(xsim,nrow=12)
simdismon_t(simdismon)

KNNtnflow[,k]_xsim

}

#*************************************************************

#Calculate historic flow
#

#*************************************************************

cu41to95_scan(file="cu41t095.txt")

KNNthistflow _matrix(99,660,100)
for (i in 1:100){
# KNNhistflow[,i]_KNNnflow[1:660,i]-cu41t095[1:660] #10/1941 to 9/
1995

KNNTthistflow[,i]_KNNtnflow[1:660,i]-cu41t095[1:660] #10/1941 to 9/
1995

}
ISMhistflow_matrix(99,660,100)
for (i in 1:100){

ISMhistflow[,i]_KNNtnflow[1:660,i]-cu41t095[1:660] #10/1941 to 9/
1995

}

#*************************************************************

#Regression for natural flow and "back calculated" natural salt

#for monthly data

#fit lowess and get the residuals series..

#

#Required Input
BCNatFlow_matrix(scan("0725RebuiltNatFlow.txt"),ncol=1,byrow=T)
monBCNatFlow_matrix(BCNatFlow[1:1080,], ncol=12, byrow=T)

rebuiltNatSalt USGSglen[1:660,4]+rebuiltExportMass[421:1080]-rebuilt-
MonRtnmass[421:1080] #10/1940 to 9/1995
rebuiltNatFlow_matrix(scan("0725RebuiltNatFlow.txt"),ncol=1,byrow=T)
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mon0725Nflow_matrix(BCNatFlow[421:960], ncol=12, byrow=T) #10/1940
to 9/1985

mon0725Hmass_matrix(rebuiltNatSalt[1:540], ncol=12, byrow=T) #10/1940
to 9/1985

mon0725Nflow_matrix(BCNatFlow[421:1080], ncol=12, byrow=T) #10/1940
to 9/1995
mon0725Hmass_matrix(rebuiltNatSalt[1:660], ncol=12, byrow=T) #10/1940
to 9/1995

#*************************************************************

resids_matrix(0,nrow=55,ncol=12)
alpha_seq(0.2,0.95,by=0.05)

for(i in 1:12){

#zz_gcvplot(mon0725Hmass|,ij~mon0725Nflowl[,i], alpha=alpha, deg=1,
ev="cross")

zz_gcvplot(mon0725Hmass|,i]~mon0725Nflow[,i], alpha=alpha,d eg=1)
z2_order(zz$values)

degl 1

zz_locfit(mon0725Hmassl[,il~mon0725Nflow],i], alpha=alpha[z2[1]],
deg=degl)

if(i == 1)x1s_zz
if(i == 2)x2s_zz
if(i == 3)x3s_zz
if(i == 4)x4s_zz
if(i == 5)xbs_zz
if(i == 6)x6s_zz
if(i == 7)x7s_zz
if(i == 8)x8s_zz
if(i == 9)x9s_zz

if(i == 10)x10s_zz
if(i == 11)x11s_zz
if(i == 12)x12s_zz
resids|,i]_residuals(zz)

}

#*************************************************************

# validate improved salt model

#*************************************************************

ISMflow_matrix(BCNatFlow[421:1080,], ncol=12, byrow=T) #10/1940 to 9/
1995

ISMsalt40to95_matrix(0,55,12)
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data_(ISMflow)
#data2_monResReg

ISMsalt40to95[,1]_predict(x1s,data[,1])
ISMsalt40to95[,2]_predict(x2s,data[,2])
ISMsalt40to95[,3]_predict(x3s,datal,3])
ISMsalt40to95[,4]_predict(x4s,data[,4])
ISMsalt40to95[,5]_predict(x5s,data[,5])
ISMsalt40to95[,6] predict(x6s,data[,6])
ISMsalt40to95[,7]_predict(x7s,data[,7])
ISMsalt40to95[,8]_predict(x8s,datal,8])
ISMsalt40to95[,9]_predict(x9s,data[,9])
ISMsalt40to95[,10]_predict(x10s,data[,10])
ISMsalt40to95[,11] predict(x11s,data[,11])
ISMsalt40to95[,12] _predict(x12s,data[,12])

write(t(ISMsalt40t095),file="ISMsalt40t095.txt",ncol=1)

#*************************************************************

#lmproved Natural Salt Model

#
#*************************************************************
#stats_array(99, dim=c(660,5,100))
KNNVhnsalt_matrix(0,660,100)

index_1:45

kk_sqrt(45)
kk_round(kk)
kk 12

W_1:kk
W_1/W
W_W/sum(W)
W_cumsum(W)

# Get the first year..

for(k in 1:100){

#WYmonflow_matrix(KNNhflow[1:348 k], ncol=12, byrow=T) #10/1940 to
9/1969

#WYmonflow_matrix(USGSglen[1:348,3], ncol=12, byrow=T) #10/1940 to 9/
1969

#WYmonflow_matrix(BCNatFlow[421:1080,1], ncol=12, byrow=T) #10/1940
to 9/1995

Modelflow_matrix(BCNatFlow[421:1080,1], ncol=1, byrow=T) #10/1940 to
9/1995
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WYmonflow_matrix(BCNatFlow[421:960,1], ncol=12, byrow=T) #10/1940 to
9/1985

xsalt_1:660

for(i in 1:660){
#xprev_KNNtnflow[i,k]
xprev_Modelflow]i,1]

1 %% 12

if(j == 0)]_12

1]
xX_abs(xprev-WYmonflowl[,j1])

xz_order(xx)
xz_xz[1:kK]
xx_runif(1,0,1)
Xy_c(xx,W)
xx_rank(xy)

i1 xz[xx[1]]

if(j == 1)xm_predict(x1s,xprev)
if(j == 2)xm_predict(x2s,xprev)
if(j == 3)xm_predict(x3s,xprev)
if(j == 4)xm_predict(x4s,xprev)
if(j == 5)xm_predict(x5s,xprev)
if(j == 6)xm_predict(x6s,xprev)
if(j == 7)xm_predict(X7s,xprev)
if(j == 8)xm_predict(x8s,xprev)
if(j == 9)xm_ predict(x9s,xprev)
if(j == 10)xm_predict(x10s,xprev)
if(j == 11)xm_predict(x11s,xprev)
if(j == 12)xm_predict(x12s,xprev)

#cat(il)

xsalt[i]_xm + resids][il,j]
#xsalt[i]_xm
statsi,,k]_c(i,j,xprev,xm,resids[il,j])

}

simdismon_matrix(xsim,nrow=12)
simdismon_t(simdismon)

#KNNhsalt[,k]_xsalt
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KNNVhnsalt[,k]_xsalt
cat(k)
}

#write(t(KNNhsalt),file="KNNhsalt.txt",ncol=100)
#write(t(KNNnsalt),file="KNNnsalt.txt",ncol=100)
write(t(stats),file="stats.txt",ncol=5)

#*************************************************************

#Calculate Historic Salt Mass

#

#*****'k***********************************************'k*******
rebuiltExportMass_scan(file="RebuiltExportMass.txt") #9/1905 to 12/1995
rebuiltMonRtnmass_scan(file="0725monRtnmass.txt") #9/1905 to 12/1995

KNNthsalt_matrix(99,660,100)
for (i in 1:100){

KNNthsalt[,i]_KNNthnsalt[1:660,i] - rebuiltExportMass[421:1080] +
ebuiltMonRtnmass[421:1080] #10/1970 to 9/1995

}

ISMhsalt_matrix(99,660,90)
for (i in 1:90){

ISMhsalt[,i]_ISMNsalt[1:660,i] - rebuiltExportMass[421:1080] + rebuilt-
MonRtnmass[421:1080] #10/1970 to 9/1995

}

SAMSNflowMatrix_matrix(99,1080,100)
for(k in 1:100){
for(i in 1:1080){
j_1%% 12
| i %% 90
if(j == 0)j_12
if(l == 0)I_90
SAMSNflowMatrix[i,k] SAMSNflow[j,I,k]
}
cat(k)
}

3.2 Sample Splus Data Plotting Code

#************************************************************

#Calculates basic statistical data then produces boxplots of the statistics
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data_array(matrix(KNNHistflows),c(12,85,100))

tdata_array(99, dim=c(85,12,100))
for(i in 1:100)1{

tdatal,,i]_t(data[,,i])

}

#calculates statistical parameters

sammean_matrix(99,100,13)
samstdev_matrix(99,100,13)
samvar_matrix(99,100,13)
samcor_matrix(99,100,13)
samskw_matrix(99,100,13)

for(i in 1:100)1
for(jin 1:12){

sammean(i,j]_mean(tdatal,j,i])
samstdev[i,j]_stdev(tdatal,j,i])
samvarfi,j]_var(tdatal,j,i])
samskw([i,j]_sum((tdatal[,j,i]-sammeanli,j])"*3)
samskwl[i,j]_samskwf[i,j]/85
samskw[i,j]_samskwl[i,j]/samstdeV]i,j]*3

}

for(jin 2:12) {
samcor(i,j]_cor(tdata[,,i],tdata[,j-1,i])
}

samcor[i,1]_cor(tdata[1:74,12,i],tdata[2:85,1,i])

samann_1:85
for(l in 1:85){
samann[l]_(sum(tdata]l,,i]))
}

sammean(i,13]_mean(samann)
samstdevV][i,13]_stdev(samann)
samskw([i,13]_sum((samann-sammean(i,13])"3)
samskw([i,13] _samskw][i,13]/85
samskw([i,13]_samskw][i,13]/samstdev]i,13]"3
samcor[i,13]_cor(samann[1:84],samann[2:85])

}

monbox_function(data)

{

#data is the matrix containing the monthly flows - 77 rows and 13 columns
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mOnthS_C("OCt","NOV","DeC","Jan","Feb","Mar","Apr","May","JUﬂ","JU"',"A

ug","Sep","Ann"
)
xs_1:13

zz_boxplot(split(t(data),xs),plot=F,cex=1.0)
zz$names_rep(",length(zz$names))

z1 bxp(zz,ylim=range(data),xlab="",ylab=
axis(1,at=z1,labels=months,cex=1.25)
points(z1,0bs,pch=16,cex=1.25)
lines(z1[1:12],0bs[1:12],Ity=1)
#title(main="Boxplots of monthly mean",cex=1.0)

}

monbox(sammean)

titte(main="Boxplots of Simulated Mean of Flows PAR(1) ",cex=1.0)
dev.copy(postscript, file="sammean.ps")

dev.off()

dev.off()

monbox(samstdev)

title(main="Boxplots of Simulated Standard Deviation of Flows PAR(1)
" .cex=1.0)

dev.copy(pscript, file="samstdev.ps")

dev.off()

dev.off()

monbox(samcor)

title(main="Boxplots of Simulated Lag(1) Correlation of Flows PAR(1)
" .cex=1.0)

dev.copy(pscript, file="samcor.ps")

dev.off()

dev.off()

obs_obsskw

monbox(samskw)

titte(main="Boxplots of Simulated Skew of Flows PAR(1) ",cex=1.0)
dev.copy(pscript, file="samskw.ps")

dev.off()

dev.off()

,Style.bxp="old",cex=1.25)

monbox(ismmean)

title(main="Boxplots of Simulated Mean of Flows ISM ",cex=1.0)
dev.copy(postscript, file="ismmean.ps")

dev.off()

dev.off()

monbox(ismstdev)

title(main="Boxplots of Simulated Standard Deviation of Flows ISM
" ,cex=1.0)



195

dev.copy(pscript, file="ismstdev.ps")

dev.off()

dev.off()

monbox(ismcor)

title(main="Boxplots of Simulated Lag(1) Correlation of Flows ISM
",cex=1.0)

dev.copy(pscript, file="ismcor.ps")

dev.off()

dev.off()

obs_obsskw

monbox(ismskw)

title(main="Boxplots of Simulated Skew of Flows ISM ",cex=1.0)
dev.copy(pscript, file="ismskw.ps")

dev.off()

dev.off()

#*************************************************************

#produces pdf with 100 simulations compared to history

SAMS data
#11 is August shows bivariate

h_hnorm(nat1805[,1])
zx_sm.density(nat1805[,1],h)
points_zx$eval.points
hden_zx$estimate

samdensityO_matrix(0,100,100)

for(i in 1:100){
h_hnorm(tdatal[,1,i])
zy _sm.density(tdatal[,1,i],h,eval.points=points)
samdensityQ[,i]_zy$estimate

}

#*************************************************************

#routine to produce and graph boxplots for 100 pdf’s

pdfbox_function(data,points)

{

#data is the matrix containing the monthly flows - 85 rows and 13 columns

xs_1:100

zz_boxplot(split((data),xs),plot=F,cex=1.0)
zz$names_rep("",length(zz$names))
z1_bxp(zz,xlim=c(0,714),ylim=range(data),xlab="flow (acre-feet/



month)",ylab="Probability Density",style.bxp="old",cex=1)

#points(z1,hden,cex=1.25)
lines(z1[1:100],hden,lty=1,xaxt="s",lwd=2)
evalloc_points
ntot_length(z1)
nlmid_as.integer(ntot/4)
n2mid_as.integer(ntot/2)
n3mid_as.integer(ntot*3/4)
z2_1:5

z2[1]_z1[1]
z2[2]_z1[n1mid]
z2[3]_z1[n2mid]
z2[4]_z1[n3mid]
z2[5]_z1[ntot]

nl_1:5

nl[1] O

n1[2] evalloc[n1mid]
n1[3]_evalloc[n2mid]
n1[4]_evalloc[n3mid]

n1[5] evalloc[ntot]
nl_round(nl,digit=0)
nl_as.character(nl)
axis(1,at=z2, label=n1)

#title(main="SAMS AR(1) for October",cex=1.0)

}

#title(main="SAMS AR(1) for August",cex=1.0)
#title(main="K-NN nonparametric for October",cex=1.0)

#title(main="K-NN nonparametric for August”,cex=1.0)

pdfbox(samdensity0)

title(main="PDF’s from SAMS AR(1) method for October",cex=1.0)

pdfbox(xdensity1)

title(main="PAR(1) parametric for annual totals",cex=1.0)
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