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Understanding the variability of salinity in the Colorado River basin is key to

monitoring the water quality and also to honoring Minute No. 242 of the International

Boundary and Water Commission. To this end, a modeling framework is presented

that is capable of capturing any type of observed variability in salinity, is flexible, is

portable, and is easily implemented at the 29 gauges throughout the basin. The need

for such a framework was motivated by the inadequacies of the existing CRSS model,

which consistently overpredicts the salt mass. The framework consists of three pieces:

(i) a stochastic streamflow generator, (ii) a statistical salt model to compute natural salt

mass and (iii) a simulation modulate to estimate the historical salt mass.

The framework works as follows:

Ensembles of streamflows (natural flows) are generated from the streamflow

generator and are then passed through the statistical salt model to estimate the natural

salt. Finally, the ensembles are then passed through the simulation module to compute

the historical salt mass and concentration.

The streamflow generator and the salt model are modified nonparametric tech-

niques, K-nearest neighbor method. We offer comparisons to traditional alternatives

and find marked improvement with the nonparametric methodology.

The utility of the model is demonstrated in generating salinity scenarios at

Glenwood Springs on the Colorado River. Climate information (such as the state of

ENSO etc.) relevant to streamflows can be easily incorporated into this framework,

generating streamflows consistent with the climate state.
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34. This figure shows nonparametric regression for natural salt dependent on
natural flow. Alpha equals 0.95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

35. This figure shows the relationship for natural salt dependent on natural flow
for water years 1941 to 1985. The dashed line shows the USGS salt model
relationship. The solid circles show SNNSM, and the solid lines show the
local linear regression. For April (upper graph) the USGS slightly under-
estimates the results taken directly from the natural flow and salt estimates.
For June (lower graph) the USGS relationship predicts a higher salt mass
compared to the SNNSM. Both LOCFIT’s have an alpha of 0.95.  . . . . . . . .

36. The open squares show the annual natural salt mass, summed from monthly
natural salt, for the USGS salt relationship, and the dashed line shows a
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tionship, and the solid line shows a LOCFIT through the data. The USGS
salt model gives higher natural salt mass compared with the SNNSM. . . . .

37. The upper graph compares the time series for natural salt generated from
the USGS relationship and the modified K-NN method with the historic
natural flow from 1941 to 1995. The lower graph compares the time series
for simulated historic salt using the natural salt generated from the USGS
relationship and the modified K-NN method with the observed historic salt
from 1941 to 1995. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38. The upper graph shows the annual natural salt mass time series from the
modified K-NN method with 5 percent and 95 percent confidence intervals.
The heavy solid line shows the calculated natural salt mass. The dot-dashed
line shows the natural salt mass taken directly from the local regression.
The 5 percent and 95 percent confidence shows the variation around the
line direct from the regression that occurs from the residual resampling.
The lower graph removes the calculated natural salt and adds the natural
salt determined from the USGS relationship. It is evident that the USGS re-
lationship determines the natural salt mass to be higher than the natural salt
mass we determined with our technique. . . . . . . . . . . . . . . . . . . . . . . . . . . .

39. Line diagram of the CRSS simulation model and data for historic verifica-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40. Line diagram of the CRSS simulation model and data for stochastic plan-
ning runs.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41. The solid line shows the PDFs for the calculated natural flow from 1941 to
1995. The boxplots describe the interquantile range (IQR) and whiskers for
approximately 5 percent and 95 percent from the PDFs of the 100 synthetic
natural flow traces. The plot represents a single run of the KNN flow model.
The run preserved the calculated natural flow in the interquantile range
over all flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

42. The upper graph shows the PDF for K-NN synthetic natural flow. The low-
er graph shows ISM synthetic natural flow. Both are based on calculated
natural flow from 1906 to 1995. In both graphs the solid line represents the
PDF for the calculated natural flow from 1941 to 1995, while the dotted line
represents the calculated natural flow from 1906 to 1995. The boxplots rep-
resent the PDFs of 100 simulated K-NN and 90 simulated ISM synthetic
natural flows. The K-NN model simulated a wider range of flows.  . . . . . . .

43. The solid line shows the PDFs for the calculated natural salt from 1941 to
1995. The boxplots describe the interquantile range (IQR) and whiskers for
approximately 5 percent and 95 percent of the 100 synthetic natural salt
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44. The upper graph shows the PDF for the modified CRSS synthetic natural
salt, while the lower graph shows the existing CRSS synthetic natural salt
mass. It is evident that the USGS regressions used in the existing CRSS
overestimate the solid line that shows the calculated natural salt mass PDF.

45. The upper graph shows the PDF for synthetic natural salt concentration
from 12 monthly regressions to calculate synthetic natural salt mass. The
lower graph shows the synthetic natural salt concentration from a single an-
nual regression to calculate synthetic natural salt mass. Using the single an-
nual regression allowed the simulation to preserve the calculated natural
salt concentration (solid line) in the interquantile range. . . . . . . . . . . . . . . . 

46. The upper graph shows the PDF for the modified CRSS synthetic natural
salt concentration. The lower graph shows the existing CRSS synthetic nat-
ural salt concentration. The existing CRSS overestimated the calculated
natural salt concentration (solid line), while the modified CRSS slightly un-
derestimated the calculated natural salt concentration.  . . . . . . . . . . . . . . . 

47. The PDF for observed historic flow, solid line, with boxplots of the simu-
lated historic flow from the modified CRSS. The modified CRSS simula-
tions have a subdued peak and elongated tails compared to observed
historic flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

48. The upper graph shows the PDF for simulated historic salt mass from 12
monthly regressions to calculate synthetic natural salt mass. The lower
graph shows the simulated historic salt mass from a single annual regres-
sion to calculate synthetic natural salt mass. Using the single annual regres-
sion allowed the simulation to preserve the observed data in the
interquantile range.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49. The upper graph shows the PDF for simulated historic salt concentration
from 12 monthly regressions to calculate synthetic natural salt mass. The
lower graph shows the simulated historic salt concentration from a single
annual regression to calculate synthetic natural salt mass. Neither preserved
the observed data in the interquantile range.  . . . . . . . . . . . . . . . . . . . . . . . 

50. The regression relationship between total annual depletion as a function of
the calculated natural flow. The solid line shows a LOCFIT through the
data points. There is wide scatter around the regression indicating a wide
variance around the regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

51. The upper graph shows the PDF for historic flow, while the lower graph
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gression between total annual depletion as a function of calculated natural
flow without resampling. Both historic flow and salt concentration are pre-
served better incorporating the regression. . . . . . . . . . . . . . . . . . . . . . . . . . 

52. The upper graph shows the PDF for historic flow, while the lower graph
shows the PDF for the historic salt concentration. Both graphs used the re-
gression between total annual depletion as a function of calculated natural
flow with resampling. Both historic flow and salt concentration are pre-
served best incorporating the regression with the resampling. . . . . . . . . . . .

53. The upper graph shows the number of times a theoretical salt mass target of
650,000 tons was exceeded. The lower graph shows the number of times a
theoretical salt concentration standard over 350 mg/L was exceeded and,
therefore, violated.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54. The upper graph shows the number of times a theoretical salt mass target of
650,000 tons was exceeded. The lower graph shows the number of times a
theoretical salt concentration standard over 350 mg/L was exceeded and,
therefore, violated.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

55. This figure shows the number of times a theoretical salt concentration stan-
dard over 350 mg/L was exceeded and, therefore, violated. Incorporating
the regression from total depletions as a function of calculated natural flow
with residual resampling allowed the simulations to preserve the observed
number of violations.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

56. The upper graph shows the PDFs for historic flow from the modified
CRSS. The lower graph shows the PDFs for historic flow from the existing
CRSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

57. The upper graph shows the PDFs for historic salt mass from the modified
CRSS. The lower graph shows the PDFs for historic salt mass from the ex-
isting CRSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58. Boxplots of the simulated historic salt mass from each of the 100 simula-
tions. The modified CRSS generated lower salt mass and a wider range of
values when compared to the existing CRSS results. The existing CRSS
could preserve the median of the observed historic salt mass (solid circles)
in the interquantile range.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59. The upper graph shows the PDFs for historic salt concentration from the
modified CRSS. The lower graph shows the PDFs for historic salt concen-
tration from the existing CRSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

60. The upper graph shows the number of times each modeling system’s results
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exceeded a tons standard of 650,000 tons. The lower graph shows the num-
ber of times the modified and existing CRSS results violated a salt standard
of 350 mg/L. The solid circles show the number of times the observed his-
toric record exceeded the standards. The boxplots show results of 100 sim-
ulations from the modified CRSS and 90 simulations from the existing
CRSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

61. The upper graph shows the PDF created from the median of boxplots of
probability at a given projected future flow generated from the modified
and existing CRSS. The lower graph shows the projected future salt mass
from the modified and existing CRSS. The shift in the projected future salt
mass PDF shows that the existing CRSS generated greater salt mass.  . . 

62. The upper graph shows the boxplots of the median from projected future
salt mass. The modified CRSS generated lower salt mass and a wider range
of values than the existing CRSS. The lower graph shows the PDF created
from the median of boxplots of probability at a given projected future salt
concentration generated from the existing and modified CRSS. The slight
shift in the PDFs shows that the existing CRSS generated higher salt con-
centration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63. The upper graph shows the number of times the modified and existing
CRSS results exceeded a tons standard of 750,000 tons, while the lower
graph shows number of times a salt standard of 650mg/L was exceeded and,
therefore, violated during water year 2002 to 2062. For both graphs the ex-
isting CRSS results exceeded the modified CRSS results. . . . . . . . . . . . . . 
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Chapter 1

Problem Definition

1.1 Introduction

1.1.1 Motivation

Rivers in arid or semi-arid climates that provide significant amounts of irrig

tion water tend to have salinity problems. The problems arise when large portion

the average flow are diverted for irrigation. Salts enter a river when surface and

groundwater flows mobilize the salts present in soils, rocks, and geologic format

underlying the soils. Diversion for irrigation and return flows to the river increase 

surface and groundwater flows, mobilizing additional salts. We use the termsalt load-

ing to refer to the introduction of salt from natural (precipitation) and human-indu

(irrigation) sources. Additionally, evaporation and evapotranspiration typically rem

water but not salt from the river basin, effectively increasing the salt concentratio

the remaining water. Reservoir storage results in increased evaporation from a ri

basin. Diversions remove water and salt from a river for irrigation. Crop evapotra

pire part of the water applied to them, but the salts are, for the most part, conserve

prevent deterioration of farm land resulting from salt buildup, the remaining flow fro

the diversion is used to flush the salt deposited from the diversion in return flow to

river. The return flow will have a higher salinity concentration because only water,

salt, is removed during irrigation.
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As water flows downstream, the water quality generally deteriorates beca

diversions remove water and return less water with higher salinity concentrations

naturally occur in the river. As water passes through reservoirs, evaporation incre

the overall salinity of the outflow from the reservoir. To provide downstream user

with water of adequate quality for irrigation and other consumptive use, costly proj

must be implemented to maintain salinity concentrations at acceptable levels for

downstream use.

Predictive models help basin planners to do the following:

• predict the effects of natural hydrologic variability on future salinity le

els,

• predict the effects of future land use changes on future salinity level

• predict the effects of water quality improvements plans on future salin

levels (both to evaluate benefit/cost of proposed plans and to predict

eficial effects of completed plans),

• assess the likelihood of exceeding standards,

• analyze how operating policies and/or water allocation may need to

change to mitigate effects of exceeding standards, especially in criti

low-flow periods.

Many water quality modeling projects have not included confidence levels

(risks, uncertainties). Recently, it has been recognized that uncertainty analysis i

important part of a model output because it quantifies how well models represen

observed behavior and if the theory included in models provides meaningful and

ful results (Beck, 1987). Incorporating uncertainty analysis in a model presents m

advantages not available in deterministic models. Advantages of uncertainty mod

include the following:

• understanding and quantifying uncertainty of input variables,
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• understanding and quantifying uncertainty in model parameters,

• determining theconfidence of the predictions of future salinity levels,

• allowing policy makers to identify risks and uncertainties in policy an

ysis,

• targeting future research to reduce highly uncertain data in the mod

No basin-scale models of water quality and salinity exist that can meet the

requirements, and this research intends to address that problem. We develop a m

ology that meets these requirements.

1.1.2 Description of the Problem

We need to address several technical issues to provide a predictive long-t,

basin-scale water quality model that can meet the requirements described previo

We must identify all sources of uncertainty in the basin model and quantify them

relation to each other.

Uncertainty can generally be categorized as eitherrandom or knowledge

(Tung, 1996). Random uncertainty is due to the inherent unpredictibility of an eve

For example, hydrologic variability is a random event that will always be present 

cannot be reduced or eliminated. Knowledge uncertainty is due to a lack of comp

understanding about modeled algorithms, parameters, and data uncertainties. A

tional sources of uncertainty include uncertainty in model processes for flow and s

ity and error in measured values. Knowledge uncertainty can be reduced with

improved data collection or additional research to further understand model proce

This research on the Colorado River has identified hydrologic variability as

largest source of uncertainty in a long-term, basin-scale model in semi-arid climate

is critical to incorporate the effects of hydrologic variability in such a model becau

hydrologic variability will be key to how well we predict the system response.

In long-term planning models, the historic record is typically used to gene
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stochastic hydrology. But historic gauged flows include the effects of human dev

ment, such as reservoir storage and diversions. To use the historic record to gen

stochastic hydrology for future predictions, we must separate the changes in flow

resulting from human development from changes in flow resulting from natural va

ability (stochastic hydrology).

Likewise, we can use the historic salinity record to predict future salinity.

Again, the historic salinity represents both natural and human-induced sources of

Separating the gauged salinity into natural and human-induced sources is more 

lenging than determining the natural flow from the gauged flow because salt loadin

not directly measured, unlike diversions and reservoir regulations. Hence, natura

human-induced salt loadings estimates are more uncertain than flow estimates. A

dix A, "Glossary of Terms," provides definitions for variables developed from the 

aration of historic flows and the results of the modeling, which is described in this

document.

 When developing a long-term basin planning model, model developers ty

cally make simplifying assumptions to reduce the complexity of the physical proce

to be consistent with the long time frame and large computational time steps. In 

study, we assume that salt is a conservative substance, and reservoirs and reac

between gauging points are completely mixed systems.

A highly detailed model results in highly uncertain results because the mo

requires many input data, and each piece of data has an associated uncertainty. T

an acceptable certainty for a model, scales for the aggregation and disaggregati

measured data must be developed. Scale relates to how data is represented in t

model. To predict land use changes in the future, diversion and salt loading data

be spatially aggregated to a scale that reflects changing land use. Disaggregatin

data at too small a level may lead to an unacceptably large uncertainty.

We researched two of the most common methods for modeling uncertainty
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first order second moment (FOSM) and (2) Monte Carlo simulation. Long-term, basin-

scale models using large data sets are highly uncertain and nonlinear. FOSM mod

is typically not a good approach for this type of uncertainty analysis, whereas Mo

Carlo simulation has been successfully used in such applications. With the compu

power available today, performing repeated simulations is not as pressing an iss

in the past. For these reasons, using the Monte Carlo simulation for uncertainty a

sis is preferred for long-term, basin-scale modeling.

1.1.3 Research Tasks

This research performed the following tasks as ordered:

1) Analyzed the research issues described previously by researching p

ous work and modeling efforts with a literature review.

2)  Selected methodologies reflecting mutual compatibilities of modelin

approaches and uncertainties that are appropriate to the long-term

basin-scale predictions. Integrated methodologies in a simulation

model.

3) Applied the selected and developed methodologies to a case study o

Colorado River basin. Developed a modeling system specific to the

data available in the basin. The case study includes the following:

a)  validation of the predictive modeling system with historical

data;

b)  application of the modeling system to make predictions from

now until 2062 for flow and salinity levels with uncertainty;

c)  discussion of operational policy alternatives in the event that

critical low flows cause a sharp increase in salinity concentra

tions in the lower Colorado River basin;

d)  demonstration of policy modeling by simulating salt mass an

salt concentration violation statistics with uncertainty.
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1.1.4 Case Study

The Colorado River basin has a semi-arid climate; it receives the lowest a

age precipitation, 1.15 in/yr (National Research Council, 1968), of any major rive

basin in the United States. One of the primary uses of Colorado River water is fo

gated agriculture. Salinity levels in the basin must be maintained at a level that will

adversely affect irrigated crops. Salinity standards, including numeric salinity crit

are required at key points in the Lower Basin by the EPA and must also be mainta

in the future. A treaty between the United States and Mexico ensures that the sa

of the Colorado River water received by Mexico is not 115 ppm± 30 ppm above the

annual salinity at Imperial Dam. These pressures make salinity the most importa

water quality parameter in the Colorado River basin. Other basins have similar ch

teristics; for example, the Rio Grande Basin has a semi-arid climate and high irriga

demands. The findings in this research could be applied to these basins in the fu

It is estimated that nearly half of the salinity present in the Colorado River

from natural sources; the remaining half is from human-induced sources that inc

irrigated agriculture, reservoir evaporation, and municipal and industrial sources (

Department of Interior, 2001). Figure 1 shows the sources of salinity. Irrigated agr

ture is the highest contributor of human-induced salts in the Colorado River. The U

Bureau of Reclamation (USBR) oversees extensive efforts costing millions of dol

per year to reduce the human-induced salt entering the Colorado River.

To better understand how uses and projects upstream in the system will im

the salinity downstream, models have been developed to predict impacts through

the basin. Two previous modeling efforts used uncertainty analysis on a basin-sca

long-term policy analysis in the Colorado River basin (Malone et al., 1979 and Le

1989). Neither model incorporates the uncertainties in natural flow and salt togeth

the model. One model looks at the uncertainties in flow due to natural variability,

the other looks at the uncertainty in determining parameters used to model salt co
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trations. Flow and salt are strongly dependent on each other; therefore, incorpor

uncertainties for both will provide a broader view of the uncertainties inherent in 

model and how the individual uncertainties together impact the model’s predictio

The USBR developed a highly detailed modeling system of the Colorado R

basin called the Colorado River Simulation System (CRSS). This modeling syste

allows more flexibility than past efforts and includes the operational rules by whic

USBR regulates its reservoirs. Data for the model is gathered from many source

including the USBR, U.S. Geological Society (USGS), Department of Agriculture

and U.S. Census Bureau. Data is retrieved from gauging stations and extensive

research studies. Using extensive data, the USBR intends to be able to produce

accurate model results. An outline for CRSS input, output, and sources of data ar

vided in Appendix B, "CRSS Inputs, Outputs, and Sources of Data." When exten

databases such as those used for CRSS are incorporated in models, those using

results of the model may easily conclude that the use of extensive data will provi

more accurate model. This conclusion is not always true, and caution must be us

the uncertainty of the data used in the model is not understood (Beck, 1987).

Figure 1: Sources Contribution to Total Salinity (U.S. Department of Interior, 2001



8

sis

n the

 uses

rol-

se of

esti-

t

alt.

ues.

al

sub-

ater

t to

rm,

h as

ari-

el-

e a
To prevent this false confidence in a model’s results, an uncertainty analy

can be implemented to better convey how well the input data and methodologies i

model allow the model to predict the response of the system. The existing CRSS

Index Sequential Modeling (ISM) to represent uncertainties due to stochastic hyd

ogy. However, this technique constrains magnitude and duration of events to tho

the historical record.

Currently, the existing CRSS uses relationships developed by the USGS to

mate natural salt associated with stochastic hydrology. These relationships do no

incorporate the uncertainty of the relationship between natural flow and natural s

The modified CRSS presented in this research directly addresses both these iss

1.2 Literature Review

1.2.1 Methodology

We performed a literature search to locate articles pertaining to the gener

topic of long-term, basin-scale, one-dimensional surface water quality models.

Many articles are related to this research, including salinity modeling at a 

basin scale (i.e., a field scale) and basin-scale modeling, but they include groundw

interaction. For this research area, sufficient data for the inclusion of basin-scale

groundwater modeling is not readily available and would require a significant effor

include in a model. A discussion of papers relevant to our research follows.

1.2.2 Water Quality Models with Uncertainty

As stated previously, the primary research objective is to develop a long-te

predictive water quality model with uncertainties. For variable time series data, suc

natural flow or natural salt loading, using stochastic modeling can allow natural v

ability of the data to be incorporated into a simulation model.

Two articles discuss uncertainty analysis, in general, in water quality mod

ing. Neither review discusses specific models nor model scales. They only provid
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view of the problems of water quality modeling, uncertainty, and the means to ap

uncertainty in general water quality modeling. Following is a brief summary of ea

article and a statement of their significance to this research.

Beck (1987) discusses the use of models to develop scientific theories de

ing the behavior of complex environmental systems. Beck emphasizes the need t

sider uncertainty in models and not limit oneself to deterministic models. Those u

models must also understand that complex models describing the past in great d

may not be able to provide predictions in the same detail. The model’s output mu

convey uncertainties in the prediction model.

He identifies four problem areas in water quality modeling associated with

uncertainty: (1) uncertainty about model structure, (2) modeling parameters, (3) fu

system behavior, and (4) designs of experiments or monitoring programs intende

reduce the uncertainty associated with any of the pervious areas.

A predominant focus of the review is model identifiability. Beck emphasize

the importance of using the appropriate model for your system. He discusses tec

niques for model identification, including the Hornberger-Spear-Young (HSY) alg

rithm and recursive parameter estimation. The HSY algorithm chooses model

parameters that produce acceptable model results. A description using recursive

parameter estimation to develop state variables explains one means to develop s

variables and/or model parameters.

The article emphasizes the importance of uncertainty analysis when mode

large, data intensive, systems. Simplifications are needed to model the complexit

a basin-scale for planning time frames. Uncertainties must be quantified to unders

the accuracies of the prediction. Beck supports the need for models such as the o

propose to develop and explains pitfalls that should be avoided during model dev

ment. As we develop methodologies for the modified model, Beck’s discussion o

model identifiably will be important. Uncertainty analysis should uncover the unc
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tainties present in the model resulting from the simplification of salt processes an

flow systems. The modified CRSS will incorporate the best available information fr

the extensive research of the basin. The modified CRSS will have the flexibility to

improved easily as new research advances theories that will be important to the 

scale modeling system.

Tung (1996) reviews the application of uncertainty analysis in water qualit

modeling. Tung identifies two types of uncertainties: (1) uncertainty due to inhere

randomness of an event and (2) uncertainties associated with a lack of complete

knowledge about model processes, parameters, and data uncertainties.

Natural variability is a type of uncertainty that is always present in a natura

system, and it cannot be reduced or eliminated. This is termedrandom (stochastic)

uncertainty. Uncertainty due to a lack of complete understanding of the accuracy

inputs to the model or the processes included in the model is termedknowledgeuncer-

tainty. Knowledge uncertainty can be reduced through increased sampling or by

improving the measurement of input variables for the model. Research can impr

the mathematical representation of physical processes used in the model as the

cesses are understood in greater detail.

Tung identifies three measurements of uncertainty: (1) the probability den

function of the variable or parameter subject to uncertainty, (2) a reliability doma

(i.e., confidence interval), and (3) a mean and variance for the variable or parame

interest. With the confidence interval, multiple variables or parameters cannot be

bined to find the overall confidence interval for the system. When using a mean a

variance for the variable or parameter of interest, the mean and variance for mul

variables can be combined to determine the overall system’s mean or variance.

Tung’s discussion of uncertainty analysis techniques includes analytical a

approximation techniques. Analytical techniques are usually only applicable to fa

simple models because a complete probability density function (PDF) must be a
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able for the input variables. Approximation techniques are more applicable to co

cated engineering problems in which the exact PDF is difficult or impossible to

determine. Approximation techniques include first-order variance estimation, firs

order second moment, probabilistic point estimation methods, and Monte-Carlo s

lation. Tung briefly describes the interrelationship between sensitivity analysis an

uncertainty analysis and states “the former is used to analyze the internal mathem

responses of model outputs as affected by changes in model inputs/parameters,

whereas the latter is used to analyze the stochasticity of the model through these

tionships.” Both are important to uncertainty analysis.

Tung’s article provides a basic guide for types of uncertainty that can be m

eled, methods to incorporate uncertainty in a model, means to propagate uncertai

a model’s results, and a discussion of uncertainty analysis versus sensitivity ana

This research considers the many alternatives presented when incorporating unc

tainty in the modified CRSS. Tung provides a broad view of uncertainty in water q

ity analysis and provides an overview of how uncertainty may be applied in the

modified CRSS.

1.2.3 Basin-Scale Water Quality Models for the Colorado River Basin

Two articles present uncertainty models of the Colorado River basin and p

vide a point for this research to move forward from published work. The articles

describe water quality models that look at the Colorado River basin and predict s

ity, including a measurement of the uncertainty of the prediction. A brief summar

each article is followed by a discussion of how this research will build on these m

els.

The Utah Water Research Laboratory (Malone et al., 1979) developed a b

scale, stochastic steady state model for water quality throughout the Colorado R

basin using an existing model, SALT. The SALT model incorporates stochastic a

sis by allowing in-stream salinity and the agricultural base leaching factor to be in
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as random variables. The agricultural base leaching factor represents an empiric

value depicting the tons of salt removed from the soil per acre-foot of water flow

through the soil matrix. Typically, the water flow represents return flows from irrig

tion. SALT determines the expected value and the variance for the natural salt lo

The program SALTEZ, developed from the SALT program, additionally models

means, variances, and skewness resulting from stochastic inputs of salinity and 

agricultural base leaching factor. These additions allow the propagation of uncerta

from multiple model inputs using first order second moment analysis through the

model to the model outputs.

This research considers uncertainties only with salt loadings and the base

leaching factor and not with stochastic hydrology. The salt loading term in the mo

is the mean of the historic loadings from 1940 to 1974. Uncertainties in the mean v

are related to natural and human-induced variability in flow and salinity over the 

period. The uncertainty also includes measurement and calculation errors becau

natural variability could not be separated from measurement and calculation erro

Uncertainty associated with the base leaching factor includes both modeling unc

tainty (from the inexactitude of the mathematical representation of a physical phe

ena) and uncertainty in the estimation of the base leaching factor from available 

The deviation from a best fit regression curve represents uncertainties, with basi

leaching factors determined from field studies in a previous report (URWL, 1975)

Results from the uncertainty analysis show the variance due to the chang

total gauged salt load contributes the most to the uncertainty, followed by the varia

due to the basin leaching factor, then uncertainty in the total salt loading due to

changes in projected diversions. The variance for the change in total salt loading

remains constant for all simulations, while the variance due to the estimation of t

basin leaching factor and projected diversions varies in each model run, dependin

the agricultural parameters for the run. The standard deviation for the total salt loa
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Imperial Dam varies from 6 to 10 percent of the total. This model does not consid

the uncertainty due to natural variability of the flow regime, which would strongly

influence the model’s output uncertainty.

Lee et al. (1993) developed a model primarily for economic policy analysis

that considers natural flow variability in determining of salt concentration. Lee de

oped a set of differential equations to describe the flow of total salts in the Colora

River basin. Again, a steady state model is applied to simplify the number of equat

required for the model. Based on the Quality of Water Progress Report 18 (USBR

1997) the equations simplify the system to include only 64 percent of the 981,570

of salt targeted by the Colorado River basin Salinity Control Act. The model is use

estimate the probability distribution of water quality improvement resulting from s

cific reductions in salt load or improvements due to different return flow salinity c

centrations. Lee also models replacement of return flows from diversion with bet

quality water. Replacing the return flows dilutes the salinity in the river, because 

replacement water is of better quality than the water in the river. Lee dose not con

uncertainties associated with salt load.

Shortcomings of the simplified model are that it models only 64 percent of

salt targeted by the Salinity Control Act and it does not consider water entitlemen

the final results. The final modified CRSS will account for all the salt in the system

and it will include water entitlements through the use of rules that represent the en

ments in the RiverWare modeling environment.

Neither the Lee nor the UWRL model incorporate the uncertainties in natu

flow and salt together. Each modeled only one of the two uncertainties. This rese

incorporates uncertainties for both flow and salt in the modified CRSS. Because 

and salt are strongly dependent on each other, incorporating uncertainties for both

provide a broader view of the uncertainties inherent in the system and how the ind

ual uncertainties impact the modeling system’s predictions.
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1.2.4 Modeling Salt Processes

The literature reviewed discusses various methods to determine the salt a

tion or removal from sites. Riley and Jurinak (1979) proposed a concept to explain

production in a natural watershed. They use the termbaseline salinity to represent the

natural release of salt from a watershed basin due to hydro-geochemical weathe

within a basin. Data shows that the salt mass from a basin is relatively constant, w

means the natural baseline salinity is relatively constant.

Riley proposes two assumptions to develop his methodology. First, he use

measured data to show that, generally, the amount of salt leached from the land

highest when it is first irrigated; it decreases as irrigation continues to what he term

agricultural base salinity, which is constant. He proposes that this concept can be

applied to any basin once the land has been irrigated for many years, but does n

vide an exact time frame. Second, once the agricultural base salinity is reached,

salt loading is due only to a combination of the base weathering rate of the soil pr

and underlying geologic formation. He further proposes that when both of these

assumptions are made, the removal of salt is directly proportional to the quantity

water passing through the soil profile. A relationship between irrigation efficiency

salt loading can be developed using the stated assumptions. Irrigation efficiency

function of the water leaching through the soil profile.

Riley’s research shows that soils have a base leaching factor that can be 

mined from readily available information. He develops a procedure based on mas

ance to determine the effects of irrigation management on the salt input into a riv

This procedure includes irrigation efficiency to better understand the effects of irr

tion practices. The procedure determines the salt load contribution from agricultur

a function of the change in salinity and flow over the reach, evapotranspiration in

reach, and water diverted for agriculture in the reach. (A reach is a section of rive

where gauged or calculated data is available for flow and salinity at the upper and
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ermost points in the reach.) Once the salinity contributed by agriculture is calcula

the salinity from natural sources is calculated as the change in salinity over a rea

minus the salinity caused by agriculture.

The model developed by Malone, discussed earlier, uses this method to s

rate natural and agricultural salinity. Malone attempts to use a mathematical techn

to develop the natural and agricultural base leaching factors that Riley found by m

balance. When the factors are calculated using soils data for the basin, a regres

reveals a weak relationship between the mass balance method and the mathem

technique. Malone determines the uncertainty of using this mathematical techniq

describe salt loading from a soil profile, with the residuals from the regression. H

states that other interpretations of Riley’s theory will produce different uncertainti

One reason for the weak correlation can be the use of large-scale geology maps

develop the basin leaching factors for each subbasin. Much more detailed maps

required to more accurately represent the underlying rock and formations for eac

basin. Still, the classifications for the basin geology may not be at a scale that wo

provide adequate correlations.

This research identifies a method of modeling salt loading that is appropria

the basin scale, yet yields acceptable levels of uncertainty. Iorns et al. (1965) also

a mass balance technique to determine natural and human-induced salt loads. T

studies are important sources of data and methodologies for developing the salt 

cesses for the modified modeling system.

1.2.5 Modeling Methods for Uncertainty

Additional articles discuss general approaches for modeling uncertainty o

water quality parameters. These articles explain the application of uncertainty ana

by Monte Carlo simulation. Monte Carlo simulation has the advantage of providin

useful information regarding the uncertainty of model outputs when a system is hig

uncertain. Hession et al. (1996) use a two-phase uncertainty analysis to present
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determination of uncertainty for an ecological risk assessment. The two-phase u

tainty analysis determines knowledge uncertainty and stochastic uncertainty for 

effect of excess phosphorous on the trophic state of a lake. The stochastic mode

parameters include phosphorous inputs and multiple parameters required by the

model.

Hession separates knowledge and stochastic uncertainty so that the effec

each are shown individually. Stochastic uncertainty is due to inherit randomness

natural process, such as precipitation or temperature. This type of uncertainty ca

be reduced but should be recognized. Conversely, knowledge uncertainty can be

reduced by further research regarding the parameter. Knowledge uncertainty can

used to guide future research and reduce the model’s uncertainty in an effective 

ner.

Hession’s model presents the output uncertainty in two phases. First, the m

performs simulations varying only the stochastic uncertainty parameters. The res

are shown in a complimentary cumulative density function (CCDF). This defines 

probability of exceedance for various levels of phosphorous. Next, the model perfo

multiple simulations again, changing the knowledge uncertainty parameters befor

multiple stochastic uncertainty runs. The multiple knowledge uncertainty runs prod

multiple CCDFs. The range of the CCDFs show the knowledge uncertainty in the

model.

Griffen (1995) uses Monte Carlo simulation to find the uncertainty associa

with achieving a No Net Increase Policy for non-point source loading of nitrogen

based on the uncertainty of nitrogen export coefficients and Best Management P

effectiveness.

These models discuss methods to model uncertainty that are ideal for the C

rado River basin. Incorporating both random and knowledge uncertainty appears

a possible technique to incorporate in one model natural variability of both flow a
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salt, uncertainties in the measurement of input data, and the simplification of com

processes. Incorporating the uncertainty for both flow and salt in one model will be

important addition to the current ability to model salt process in river basins.

1.3 Background For the Colorado River Basin and Salinity Modeling

1.3.1 The River Basin

The research presented develops a long-term stochastic water quality mod

system for a subbasin of the Colorado River basin. In the Colorado River basin, 

ity prediction and control modeling is necessary to meet treaty obligations betwee

United States and Mexico and to maintain national water quality standards require

legislation. The need to maintain salinity standards while concurrently allowing th

development of unallocated water has made modeling salinity throughout the ba

critical for long-term basin planning. The river drains an approximately 244,000-

square-mile basin and is 1,440 miles long. The basin includes parts of Wyoming

orado, Utah, New Mexico, Arizona, Nevada, California, and a small part of Mexic

Figure 2 is a map outlining the Colorado River basin and the line that divides the b

into the upper and lower basins.

The Colorado River basin has a low average precipitation over the basin a

compared to other basins throughout the United States. River basins such as the

Columbia, Mississippi, or Delaware have much more precipitation over their basi

area resulting in orders of magnitude greater flow out of the basin. Colorado Rive

basin also has the added pressure of exporting large quantities of water out of the

for neighboring areas that require additional water.
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Figure 2: Map of Colorado River basin.

Detail shown
in Figure 5
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1.3.2 Salinity in the Basin

Natural and human-induced salinity result from point and non-point source

Natural point sources that have been identified include seeps and saline springs.

springs originate from deep geological formations containing brackish water. Natu

non-point sources of salinity generally originate from the weathering and dissolu

of underlying rocks or soils overlaying the rocks.

The underlying rocks strongly characterize the natural salinity contributed

each subbasin. Areas of the basin include underlying rocks that are relatively resi

to dissolution by water. These rocks include igneous and metamorphic rock type

These rocks weather at a very slow rate and contribute small amounts of dissolve

ids (total salts). The upper reaches of the Colorado, Green, and San Juan Rivers

acterize these types of subbasins, which are typical in the high mountain areas. 

middle and lower reaches of these subbasins contain sedimentary rock, which d

solves more readily in water and, therefore, contributes greater amounts of disso

solids to the river. Soils in these regions have chemical dissolution characteristic

ilar to the underlying parent rocks. Therefore, soils over the sedimentary rock for

tions will tend to contribute greater amounts of dissolved solids. These areas

characterize the valleys and lower lying plains, which are the predominant areas

agriculture.

Agriculture increases salinity concentration through two processes: (1) sa

concentration and (2) salt loading. The salt concentration process is a result of e

transpiration from crops, which results in the concentration of dissolved solids in

remaining return flow. Evapotranspiration from crops consumes water but leaves

behind in the soil. Return flows to the river from the diversion typically contain the

same salt mass present in the diversion water, but have less water, hence, highe

centrations of salt. Additionally, reservoirs concentrate salt during evaporation, i.

water is lost from the reservoir and salt is conserved.
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Salt loading occurs when salt is added (from deposits) or removed (by lea

ing) from salts present in the soil as water is transported through the soil. The wa

can be introduced into the soil from human-induced sources, such as irrigation p

tices, or from natural sources, such as precipitation. Irrigation practices increase

flow through soils, which increases the total salt loading from previous natural sa

loading levels.

Federal agencies fund extensive efforts, costing millions of dollars per yea

reduce the human-induced and natural loading salt to the Colorado River. Figure

shows the extent of salinity projects and studies throughout the basin. USBR has

farm projects designed to reduce irrigation return flows by lining irrigation canals a

laterals. Additional projects not related to agriculture include capping saline sprin

from abandoned gas and oil exploratory wells. The U.S. Department of Agricultu

has implemented on-farm salinity reduction, helping farmers to improve irrigation

practices that increase irrigation efficiency, thereby reducing return flows. The Bu

of Land Management has implemented programs to reduce erosion on public lan

limit the release of dissolved solids. As of 1998, salinity control projects, with a

reported total cost of approximately $426 million, had removed an estimated 634

tons of salt from the river. An additional $170 million is projected to remove an ad

tional 390,000 tons in order to maintain current salinity standards (USBR, 1999).

1.3.3 Laws of River Relating to Water Quality

Since 1922, legislation, court decrees, and agreements have been establis

form the operational policies of the Colorado River. These are documented in a si

volume by Nathanson (1978) and are known as the “Law of the River.” These poli

are concerned mainly with water quantity. Problems with salinity did not start to b

discussed until 1961. At that time, the Mexican government strongly objected to 

quality of the water the country was receiving. The average annual salinity of wa

delivered to Mexico in 1962 was 1,500 mg/L. This water was not suitable for irrigat
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and was adversely affecting crops. The rise in salinity in the water delivered to Me

was caused by two independent factors. Deliveries were reduced because water

being held back in Lake Mead in preparation for filling Lake Powell and, at the sa

time, highly saline groundwater from the Wellton Mohawk irrigation district was

being pumped into the Colorado River above the Mexico boundary. These highly

saline waters greatly deteriorated the quality of the Colorado River water.

In response to Mexico’s concerns and after years of negotiations, Minute 

242 of the International Boundary and Water Commission dated August 30, 1973,

signed. Minute No. 242 stipulated that water delivered to Mexico have an averag

salinity of no more than 115 ppm± 30 ppm above the annual salinity at Imperial Dam

Subsequently, the Colorado River Basin Salinity Control Act of 1974 provid

measures to ensure the United States could meet its obligation to Mexico under

Minute No. 242. The Act authorized construction of a desalting plant and addition

Figure 3: Locations of Title II Salinity Reduction Projects and Studies (U.S. Dep
ment of Interior, 2001).
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salinity control projects.

Minute No. 242 sets a variable standard for the Mexico delivery, but does 

set numerical water quality standards at any fixed points in the basin. Numerical

dards resulted from separate U.S. legislation that set policy regarding water qual

The Federal Water Pollution Control Act Amendments of 1972 required developm

of water quality standards across the nation. The EPA interpreted the new legisla

as a requirement to set fixed point numerical standards for salinity levels in the C

rado River basin. The Salinity Control Forum was founded by the basin states (W

ming, Colorado, Nevada, Utah, Arizona, New Mexico, and California) to help deve

the numerical salinity standards, including numeric salinity criteria required by th

new legislation.

The following numeric salinity criteria were set in 1975 requiring maintenan

of a flow-weighted average total dissolved solids concentration:

• 723 mg/L below Hoover Dam

• 747 mg/L below Parker Dam

• 879 mg/L at Imperial Dam

The standards were developed from the 1972 average annual salinity con

trations at each location and are currently unchanged (USBR, 1999 and Lee, 19

1.3.4 Previous Modeling Efforts

The existing Colorado River Simulation System was developed in the late

1970’s in response to a need for a modeling system that could simulate operatio

various hydrologic and demand sequences. It evaluates how proposed developm

occurring high in the basin might impact locations downstream from the developm

CRSS includes a simulation model of the entire Colorado River system. It also

includes a stochastic natural flow model to generate future stochastic flows and a

regression model that estimates natural salinity associated with natural flows. The
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ulation model, termed the Colorado River Simulation Model (CRSM), has recent

been re-implemented in RiverWare and is still used for operational planning.

A technique called index sequential modeling (ISM) develops risk-based e

mates for CRSM results. A study by Ouarda et al. (1997) assesses the validity o

by analyzing synthesized streamflow developed from stochastic techniques com

with ISM. The study explains, “ISM utilizes a synthetic hydrologic database con-

structed from a series of overlapping short-term inflow sequences extracted direc

from the historical record.” Figure 4 illustrates the method in whichT is the total num-

ber of historical years on record,N is the number of years to be modeled, andk is the

generating index determined by the modeler. Indexing defines the separation in 

years of each successive sequence. A total of years or 250 years of synthe

flow is generated for the values given in the Figure 4.

Using CRSS, the study found that with indexing of 1 to 2 years, the index

sequential modeling matches well with the stochastic properties of statistically ge

ated hydrologies. Currently, the hydrologic database contains historical data for fl

and salt mass from water years 1906 to 1995 for 29 inflow points included in CR

which are used by ISM.

A shortcoming of the method is that it requires an extensive historical recor

produce synthetic streamflow of adequate length. Additionally, there is no compar

for salinity modeling in the system. The validity of ISM for risk-based estimates o

salinity projections has not been verified. Using ISM to produce a synthetic salin

database should be verified to correspond well with stochastically generated sali

data before ISM is accepted as an adequate method for producing a synthetic sa

database.

Salinity predictions need to provide the probability of critical low-flow period

These periods are of interest when trying to predict periods of increased salinity 

centrations. ISM cannot provide this needed analysis, but times series analysis c

N T×
k

--------------
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used to find the probability of low-flow periods.

1.4 Research Tasks Performed

This research identified several specific technical issues as a result of the l

ture review and an evaluation of the shortcomings of current prediction models. T

are methodological issues relating to modeling uncertainty in a long-term, basin-s

salinity planning model. This research addressed these issues in order to define

combination of methodologies, which together form an effective modeling system

with quantifiable uncertainties. These issues are described briefly in the following

tions.

1.4.1 Research Issues

1.4.1.1 Identifying Sources of Uncertainty and Determining How to Model Them

The first task of this research was to identify the important sources of unc

tainty in predicting future salinity levels in a basin, then to determine how these un

Figure 4: Illustration of Index Sequential Modeling adapted from Ouarda et
al., 1997.

0 5010

data wrapped from beginning

2nd synthetic hydrology

29th synthetic hydrology

28rd synthetic hydrology

1st synthetic hydrology
25 extracted overlapping 10

year ISM sequences

T = 50 years
N = 10 years

Index k=2 years
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tainties should be represented in the modeling system. Table 1 and Table 2 list a

possible sources of uncertainty for both water quantity and salinity in their relativ

order of magnitude. The modeling system does not include some of these sourc

uncertainty because they have small relative magnitudes of uncertainty and/or th

uncertainties would not have a significant effect on the results of the basin-scale

diction modeling system. This research identified the following sources of uncerta

as the most important in a long-term planning model:

• hydrologic variability

• estimation of natural salt loading given natural flow

• estimation of historical salt loading from human-induced sources

• estimation of changes in salt loading due to future land use changes

We found that other sources of uncertainty, such as those contributed by m

surement errors and modeling processes, contribute a minimal source of uncerta

compared to sources such as natural variability. Therefore this research exclude

uncertainty resulting from measurement error.
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Table 1: Uncertainty in Water Quality

parameter magnitude (source)

natural salt load
-natural variability vs. measurement error

(USGS)

human-induced salt load
-salinity pickup

extension of salt load record
-from salinity-flow regression relationship

(USGS)

modeling process(theory vs. observation)

-fully mixed reservoir
-effects of stratification
-bank storage relation to natural flow

(Hendrick, 1972) (USBR, 1987 p79)

conservative substance
-concentrating effect
-no precipitation in reservoirs (Liebermann et al., 1988 p90)

EC or TDS measurement (USGS)

Table 2: Uncertainty in Water Quantity

parameter magnitude (source)

natural flow
-natural variability vs. measurement error

(USGS)

consumptive use - upper basin
- irrigated land estimates
- Blaney Criddle method (Jensen et al., 1990)

unmeasured returns - lower basin (Owen-Joyce, 1987)

extension of streamflow record
-from correlated gauges

(USGS)

modeling process(theory vs. observation)

- elevation to volume table
- elevation to area table
- CRSS bank storage
- CRSS evaporation

(Carron, 2000)
(Carron, 2000)
(USBR)
(USBR)

measurement error
- USGS stream gauge
- pool elevation
- precipitation

+/- 5% (USGS)
+/- 0.1 feet (USBR)
(USGS)(NOAA)

greatest
uncertainty

greatest
uncertainty

least
uncertainty

least
uncertainty
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As discussed previously, uncertainty can generally be separated intorandom

(stochastic) andknowledge uncertainty (Tung, 1996). Natural variability represents

random uncertainty. The natural variability of hydrology cannot be reduced but m

be included in uncertainty analysis. The uncertainty in measured data and the sim

cation of physical process for modeling purposes represents knowledge uncerta

For example, uncertainty can originate from errors when measuring a value, inclu

streamflow or conductivity. Models represent physical processes with simplified m

ematical relationships. Using these simplified mathematical relationships to repre

complex physical processes introduces uncertainty in a model. For example, the

ical process of salt loading will have an error associated with the simplified mathe

ical relationships used to represent it in a model. If salt loading is not related to fl

the variations in the loading due to changes in flow will not be modeled. We know

loading is related to flow; therefore, this simplification should be developed aroun

relationship between salt loading and flow to reduce error in this simplification.

Knowledge uncertainty is due to the current level of knowledge we have about th

measured data or the physical processes. Knowledge uncertainty can be reduce

improved data collection methods and additional research.

1.4.1.2 Representation of Stochastic Hydrology

The greatest influence on salinity in the river basin is the stochastic nature

hydrology resulting from natural variability. Hence, a useful salinity planning mod

must incorporate the natural variability of flow to provide useful predictions. In the

stochastic salinity model previously discussed, Malone et al. (1979) used the sto

tic properties of the historical record to incorporate the uncertainty in the change

salt loading for each reach. He did not use these stochastic properties to incorpo

natural variability in flow because a relationship between flow and salt was not d

oped for the model.

In the existing CRSS, ISM generates synthetic streamflow sequences tha
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exactly match the historical record, shifted in time. ISM only produces synthetic

streamflow sequences that have occurred in the past. Hydrologic events that hav

occurred in the historical period we recorded cannot be captured in either uncert

analysis.

Of particular interest for salinity modeling are sustained low-flow periods

(droughts). During these periods, we would expect increases in salt concentratio

throughout the system. Being able to incorporate the uncertainty of hydrologic ev

that are possible, but have not occurred historically, extended the modified mode

beyond past modeling efforts on the Colorado River and allowed the model to inc

critical low-flow analysis not included in current uncertainty studies.

Time series analysis techniques provide methods to generate synthetic hy

logic events that have not occurred historically, but are possible given the statisti

properties of the historic data. These properties include basic statistics, such as 

standard deviation, skewness coefficient, coefficient of variation, and maximum a

minimum values. The analysis can find correlations between multiple stream gau

and specific statistics related to drought, flood, and storage.

There are two key categories of time series analysis and modeling techniq

parametric and nonparametric technique. Parametric techniques include auto re

sive (AR), auto regressive moving average (ARMA), and periodic auto regressive

(PAR) models. Most parametric models assume the time series is distributed in a

Gaussian (normal) distribution. If the time series is not in a Gaussian distribution

time series must be transformed. A hydrologic time series is typically transforme

with a log or power transformation. The transformed data can then be used in the

metric model. After the model generates synthetic hydrologies, the hydrologies m

be back-transformed. The data is back-transformed by multiplying the time serie

the inverse log or power transformation. The back-transformed data is not guara

to preserve the basic statistics of the transformed data (Sharma et al., 1997; Sal
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1985; Bras and Rodriguez-Iturbe, 1985).

Many software packages can help to develop parametric models. Stochas

Analysis, Modeling, and Simulation (SAMS) (Salas et al., 2000) is a software pack

designed for parametric time series analysis of hydrologic data. SAMS can help 

analyze the statistical properties of the historic flows and then fit the streamflow da

a model that can be used to synthesize streamflow sequences. It can generate sy

streamflow with longer periods of drought than the original sequence. By genera

many sequences, it is possible to determine the probability of droughts of a parti

length.

Nonparametric techniques use splines, kernel functions, nearest neighbor

methods, and orthogonal series methods to perform statistical estimation (Silver

1986). Nonparametric statistical estimation is performed by resampling the histo

time series. The techniques are nonparametric because they do not require estim

any parameters for the model from the historic time series. Additionally, the mod

does not require an assumption of the time series probability density function. Th

fore, nonparametric techniques preserve higher order statistics, like the probabil

density function and bivariate probability density function when they are not Gaus

or nonlinear.

Another advantage of nonparametric techniques are that they can easily b

driven by multiple variables. The variables can include precipitation or climate inf

mation. Using climate information with a nonparametric technique allows the mo

to capture shifts and trends related to climate (Rajagopalan and Lall, 1999). Con

versely, incorporating this information in a parametric model can be involved and

ficult.

The current technique to generate stochastic hydrology, ISM, is a simple n

parametric technique. Recently developed nonparametric techniques eliminate s

of the problems that are found in synthetic streamflows generated with ISM, such
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producing only values and time series sequences that are seen in the historic re

Nonparametric techniques, such as the modified k-nearest neighbor algorithm de

oped in this research, eliminate many of the drawbacks of ISM, providing and alt

nate nonparametric technique.

1.4.1.3 Separation of Natural Flow from Gauged Flow

Past modeling efforts raised the issue of separating natural flow from gau

flow to estimate the future inflows to the system. The separation of natural flow fr

gauged flow forces the separation of natural salt mass from gauged salt mass. W

measured data is available to support the separation of flow, there is little to no m

sured data available to support the separation of salt mass.

In an ideal modeling scenario, we would have gauges at the top of all tribu

ies in a river basin. Theseideal gauges would have no human development upstrea

therefore, the gauged data would represent thenatural flow into the river. With a his-

torical record of the natural flow, the record could be used directly to predict futur

inflow into the system. In reality, we do not have gauges above human developm

for all tributaries. Most of the historical gauged data includes the effects of huma

development, which poses a problem when attempting to use this data to predict f

inflow into the system. If the variations are not considered, predictions will consid

the natural and human-induced changes in flow. When modeling future variation

human development, we do not want past variations influencing the prediction. T

human-induced variations in flow must be accounted for in the historical record. Th

variation can be accounted for in one of two ways. The historical record either mus

adjusted to represent a single time of development (i.e. the development in the ba

2000), or the effects of human development must be removed from the historical

record. CRSS removes the effects of human development from the historical reco

produce a natural flow database that is used for predictive modeling.

Human development, including diversions, reservoir regulation, exports, a
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imports, impacts the flow. Gauged data with human development upstream of th

gauge includes natural and human-induced effects on flow. Because human dev

ment on many rivers began before flow gauging, natural flow cannot be determin

directly. Natural flow can only be calculated by removing the effects of human de

opment from gauged flows.

The same is true for calculating gauged salinity concentrations. The conce

tions represent natural and human-induced sources of salt loading into the river. I

ural flow is separated from gauged flow, it is also necessary to separate natural s

mass from gauged salt mass to predict future salinity levels. Gauged salt mass c

be used with the separated natural flow for prediction. The gauged salt mass mus

have the salt (mass) loading resulting from human-induced sources removed. Ne

natural nor human-induced salt loading can be directly measured. Typically, a m

balance technique is used to separate salt loadings.

In addition to requiring a natural salt loading, future land uses must have a

associated human-induced salt loading to predict their effects on future salinity c

centrations. A critical area for this research is finding an appropriate method to m

natural and human-induced salt loading with the available data.

When modeling uncertainty, trying to reduce gauged data to represent natur

and human-induced sources of uncertainty introduces additional uncertainty in th

model. For example, if we use natural flow, we cannot directly find the uncertaint

the natural flow. The natural flow uncertainty can only be developed from uncerta

in the historical gauge measurements and all the measured and unmeasured eff

human development. Therefore, the uncertainty in gauged flow is much less than

natural flow. Disaggregating the gauged flow into natural and human-induced flo

introduces additional uncertainty in the model.

This investigation did not find an alternate technique to model future salin

levels without using a model that separates historic flow and salt to natural and hu
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induced flow and salt. For this reason, we found it necessary to use natural flow 

salt to drive the modified CRSS model. The analysis of the existing stochastic te

nique to generate natural flow, ISM, and two alternate techniques is detailed in Ch

2, “Modified Nonparametric K-NN Model for Generating Stochastic Natural Strea

flow.”

1.4.1.4 Method of Modeling Salinity Concentrations

The literature review found standard simplifications of physical processes

when modeling salinity at a long-term, basin-scale. The modified CRSS simulatio

model uses the simplifications that were implemented with the existing CRSS sim

tion model. The simplification includes modeling salinity as a conservative substa

Modeling dissolution and precipitation of salts becomes cumbersome and imprac

at a basin-scale. An extensive amount of data is required to include chemical reac

This type of modeling is usually reserved for field-scale models in which acquiring

required data is possible. Therefore, reservoirs were modeled as completely mix

systems. As stated previously, research has generally shown that variations in sa

centration entering a reservoir are greatly reduced when salt leaves the reservoi

(Helsel and Hirsch, 1992). Modeling reservoirs as a completely mixed system ad

quately represents the reservoir’s physical salinity process for the long-term, bas

scale.

We developed the process to describe natural salt load in the modified CR

from a relationship between calculated natural flow and calculated natural salt. T

technique includes a means to incorporate the uncertainty in the relationship tha

erates the natural salt time series. The proposed technique is introduced and exp

further in Chapter 3, “Statistical Nonparametric Model for Natural Salt Estimation

1.4.1.5 Issues of Scale in Human-Induced Salt Loading

Salt loading from land use needs to be represented at an accurate and me
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ful scale. Using a small scale introduces many uncertainties. Large scale (up to a p

is more accurate, but may not satisfy the needs of the model. To have a meaning

uncertainty analysis, an appropriate scale for each set of data must be found. Fo

example, the model for the Colorado River must be able to model future changes

land use. Thus, we needed a scale for diversions that reflects the scale of land u

We needed a methodology to predict changes in salt load with changes in

use. For example, diversions needed a scale to allow different land uses in the C

simulation model. Salt loading values needed a scale to complement the scale o

diversion information. Each land use will result in a different salt loading from the u

To predict the effects of changing land use on salinity concentrations, we needed

quantify the change in salt load when land use changes. For example, if land tha

torically was used for agriculture is proposed to be set fallow, we needed to quan

the reduction in salt loading from the land since it will no longer be used for agric

ture.

After collecting the data available describing salt loading into the basin fro

human-induced sources, salt loading can be understood at a very basic level. Co

tion of salt loading from human-induced source is difficult to quantify because sa

enters the basin from many diffused sources. Mass balance techniques are used

studies such as Iorns et al. (1965). Iorns provided the most detailed salt loading 

performed within the Colorado River basin. Smaller scale studies provided additi

salt loading information for specific regions of the basin (USBR, 1974). Because

the lack of available data, a limited choice of scales was available. Currently, the b

is broken down into regions between gauges. Generally, agriculture contributes a

gle constant salt loading between each gauge. Additionally, exports remove the s

that is present in water transported from the river basin. Most exports occur near

basin boundary and are high in the basin. Generally, the water high in the basin 

excellent quality; in the Colorado River basin the salinity of this water is generally l
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than 100 mg/L annually. This information directed the modeling of human-induce

salt addition and removal.

1.4.1.6 Overall Modeling Approach and Representation of Results

We considered two types of uncertainty propagation for this model: Monte

Carlo simulation and first- order second moment (FOSM) techniques. Both techni

have advantages and disadvantages that we considered in deciding the appropr

method for the CRSS simulation model.

Monte Carlo simulation uses multiple simulations to directly build the prob

bility density function for the output variables. A probability density function is firs

approximated for the input variables, and the method then approximates the dist

tion of the output variables. Monte Carlo simulation presents output uncertainty v

effectively with highly uncertain systems or when the system responds in a non-lin

fashion (LaVenue et al., 1989). The major disadvantage of the Monte Carlo simula

is the added computer time needed to run numerous (100-500) simulations to ge

output distribution with minimal sample error.

In contrast, FOSM uses the mean and variance of the input variables and

correlations between the variables to determine the statistical properties of the m

output. This technique mathematically propagates the statistical properties of the

variables to the output variables. The advantage of FOSM is that highly complex

cesses can be modeled because only one simulation is required to achieve result

disadvantage is that a highly nonlinear system is not represented well, and highl

uncertain systems may not provide meaningful output uncertainty (LaVenue et a

1989).

On the basis of this analysis, Monte Carlo simulation is the most effective

method to model the system. The primary need in this research was the ability to

model a highly uncertain, nonlinear system. Computing time was not a critical iss

with available computing facilities.
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Possible methods to report or show uncertainty to a modeler include:

• mean and variance

• boxplots

• confidence interval, i.e., 95 percent confidence bands

Mean and variance provide basic statistical properties of the output value.

plots graphically display the median, interquantile range, and the approximated t

percent and 95 percent confidence range of a series of data. Confidence interva

vide bounding lines around the mean that specify the probability a value will be

between them. Typically, the lower bounding line represents the 5 percent proba

a value will be below the line, and the upper bounding line represents the 95 per

probability a value will be below the line.

These different methods convey different information regarding the model

uncertainty. We considered the availability of these multiple methods because ea

useful to modelers, depending on the type of analysis they are trying to perform.

Examples of each reporting method, along with others, are included throughout t

thesis.

1.4.2 Model Integration

The methodologies selected to model flow and salinity are dependent on 

characteristics of the specific basin and the data available for the basin. The final r

sentation of each of the sources of uncertainty in the prediction model depended

the magnitude of the contribution to the uncertainty of the final prediction, 2) the 

nificance of the contribution in the prediction, in terms of intended purpose of the

model, 3) how the processes and uncertainties can most effectively be represen

view of available data, and 4) compatibility with the overall modeling approach.

The model results included random uncertainty resulting from hydrologic v

ability and knowledge uncertainty resulting from measurement error and simplific
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tion of complex processes for modeling purposes. As discussed previously, a

disaggregation of gauged flow and salinity was needed to provide future prediction

salinity concentrations in the basin. The scale for the CRSS simulation model wa

defined by the data available for quantifying human-induced flow and salt.

1.4.3 Case Study - Colorado River

A case study tested a modified CRSS. The case study modeled a portion o

Colorado River basin. Modeling methods and data limitations restrict the case stu

a single gauge within the Colorado River basin. Figure 5 shows a detail of the sin

gauge 09072500 (Colorado River near Glenwood Springs, CO) and the correspon

drainage area that were modeled in this research. Working with a single gauge all

investigation of multiple methods that generate stochastic hydrology representing

ural flow.

Figure 5: Detailed outline of the case study drainage area and stream gauge

USGS stream
gauge 09027500
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1.4.3.1 Interconnection for Modeling System

The modified CRSS developed in this research was composed of three prim

models. The first model was used to generate synthetic hydrology. The synthetic

hydrology represented a time series of hydrology that is statistically possible given

data fit to the model. The incorporation of climate data to condition the natural flow

briefly explored. The second model used the synthetic hydrology to calculate the

ral salt mass as a function of the natural flow. The output from the first model (nat

flow), along with the output from the second model (natural salt mass), were inpu

the final model. The final model was developed in the RiverWare river basin mode

environment. RiverWare allows varying spatial scales and flexibility to expand the

model further as more details are learned about the physical system. A monthly 

step was used to facilitate use of the existing set of river policy available with the e

ing CRSS simulation model.

Together, these three models simulated the historic flow, salt mass, and s

concentration at USGS stream gauge 09072500 (Colorado River near Glenwood

Springs, CO). Figure 6 depicts the interconnection of the modeling techniques.

Investigating the existing CRSS models and data has been ongoing since

August 1999. A series of six status reports presented to the Colorado River Salin

Control Forum describe the investigation in detail. The information gained from th

investigations provided data and knowledge used to develop a modified nonparam

K-NN model for generating streamflow. The development of this model and comp

son to the existing model and an equivalent parametric model are presented in Ch

2, “Modified Nonparametric K-NN Model for Generating Stochastic Natural Strea

flow.” A discussion of conditioning the generation of natural flows on climate inform

tion is included in a discussion concluding Chapter 2. A statistical nonparametric l

linear regression with K-NN residual resampling for estimating salt mass is develo

and compared to the existing salt model in Chapter 3, “Statistical Nonparametric
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Model for Natural Salt Estimation.” The results from the models to generate synth

natural flow and an associated natural salt were then taken into the CRSS simul

model. The CRSS simulation model modeled both historic and future flow, salt m

and salt concentration at USGS stream gauge 09072500. The modified modeling

tem results are compared with the existing modeling system in Chapter 4, “Histo

and Future Salt Concentration Modeled in RiverWare.” which discusses the deve

ment and results from the modified CRSS.

The final chapter, Chapter 5, “Conclusion and Recommendations for Futu

Work,” provides a summary of the result from each model within the modified mo

ing system and describes future work that could develop from this research.

1.4.3.2 Model Validation and Metric of Success

We performed model validation to ensure the model performed as intende

We also wanted to ensure the model reproduced observed data. If a model is ab

reproduce observed data well, there is more confidence the model can produce 

priate projected results.

The model was validated over the time period of water years 1941 to 1995

Each model in the modified modeling system was validated at the completion of 

development. The final CRSS simulation model ensured that all the models in th

tem could together model historic flow, salt mass, and salt concentration to an ac

able degree.

The first model generated the stochastic natural flow. To validate the para

ric (PAR) and nonparametric (K-NN) model, each generated an ensemble of 100

ulations, and the probability density functions (PDF) from each ensemble were plo

against the historic PDF to ensure each technique was able to preserve the PDF
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Interconnection of Research Topics

Modified 
nonparametric k-nn 
model for generating 

natural streamflow

Climate Diagnostic

Statistical  nonparametric 
model for natural salt mass 

estimation

CRSS simulation model 
for modeling historic 
flow, salt mass, and  

concentration 

Conclusions and 
Future Work

Investigation of 
existing CRSS 

models and data

Figure 6: Flowchart depicting interconnection of modeling system.
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The second model generated natural salt mass associated with synthetic n

flow. This model was first validated by using the model to generate a natural salt m

for a historic period. Historic flow and salt data were both available from water ye

1941 to 1995. The natural flow and salt data fit the regression from water years 19

1985. The fitted salt model was then used to generate natural salt mass from wa

years 1941 to 1995. The model’s ability to reproduce the period it was fit to (wate

years 1941-1985) and an independent period (water years 1986-1995) is checked

results from the statistical nonparametric natural salt model and the existing USG

natural salt model were also compared.

The third model generated the historic flow and salt mass given the result

from the first two models. To validate this model, the historic period from 1941 to

1995 again was generated with the existing CRSS model and the modified CRSS

PDF for simulated historic and natural flow, salt mass, and salt concentration we

each compared with the PDF for the observed historic data. We deemed the mo

system appropriate if the probability density function was preserved.

1.4.3.3 Uncertainty in Predictions

A simulation for future predictions was performed. The most recent predic

tions for demands in the basin were input in the CRSS simulation model, and the

model was used to predict salinity levels with uncertainty until 2062. This model 

demonstrated use of the modeling system and uncertainty analysis for future pre

tion. The results were compared from the existing CRSS and the modified CRSS

were developed in this research. The results from the comparison were analyzed

discussed.

1.4.3.4 Policy Modeling

Using the modified CRSS will allow more informed policy decisions to be

made. To demonstrate the applicability and advantages of the modified CRSS, s
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ios considering violations of a fictional salinity concentration and salt mass stand

above USGS stream gauge 09072500 were simulated. The uncertainty analysis

informs policy makers how well the system is understood and where focused rese

could improve the understanding.

Violation statistics were generated that display the number of times a stan

is violated with uncertainty for the statistic. For the time period 1941 to 1995, the

number of simulated violations was compared to the historic number of violations

For the future simulation, the number of violations simulated by the new m

eling system was compared to the existing modeling system.

In the future, when the new modeling system is expanded to a basin-scale

model, the influence on river basin policy analysis and decisions can further be e

ated. Policy analysis might include changes in operational and basin planning po

Reservoir releases designed to dilute high salinity concentrations downstream of

ervoir would be a possible operational policy scenario. Planning policy can analyze

impacts of new water quality improvement projects or changes in land use. With

uncertainty analysis, the scenarios could incorporate the uncertainty of the proje

effectiveness and also look at how multiple projects throughout the basin will affe

salinity levels at points of interest (i.e., where salinity standards are established).

Operational policy was modeled with the rule language available in RiverWa

Planning policy was modeled by changing water uses or demand levels entered 

the model as inputs.

1.5 Summary

The basic problem this research addresses is the long-term prediction of 

ity with uncertainty at a basin scale. We expand on existing techniques employed

risk assessment, such as index sequential modeling. We found Monte Carlo simul

to be a readily accepted technique for uncertainty modeling in water resources a
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very effective in highly uncertain systems such as the Colorado River basin. The

uncertainty analysis will advance and consolidate the current information regardi

the uncertainty of inputs for models of the Colorado River basin and the uncertai

inherent in the methods used to model a system as complex as the input and tra

of salt at a basin-scale.

The modified CRSS provides modelers and policy makers with a prelimina

step toward creating a tool to predict salinity at a basin-scale. Confidence was ap

to the outputs from the model and the uncertainty of inputs was prioritized. Rese

can focus on reducing the uncertainties that exhibit the greatest influence on the

model.
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Chapter 2

Modified Nonparametric K-NN Model for Generating Stochastic Natural

Streamflow

2.1 Introduction

Long-term operational and planning studies in a river basin require the ab

to predict streamflow variability (McMahon, 1996). Typically, this ability involves

developing a stochastic streamflow model to generate synthetic sequences of st

flow. The generated sequences preserve the historic statistics (mean, standard d

tion, lag(1) correlation, and skewness coefficient) and higher order statistics depen

upon the model. These models work on the premise that the statistics of the hist

flows are likely to occur in the future, i.e., the stationary assumption.

In the Colorado River basin, modeling natural flow variability is important

because it is the largest source of uncertainty, as we identified in Chapter 1, “Pro

Definition.” Investigating and improving the generation of stochastic flow improve

modeling uncertainty in the Colorado River basin. The current technique for gene

ing stochastic natural flow for the Colorado River used by the Colorado River Sim

tion System (CRSS) simulation model has some limitations. Improving the techn

for generating synthetic streamflow sequences would allow basin policy manage

fully understand the effects of natural streamflow variability on future streamflow

sequences. We also would like to provide basin managers with a modeling techn

that will allow future scenarios of drought or surplus events to be developed in a s
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tically accepted method. Further, recent studies show a link between climate and

extreme streamflow events. We investigated relationships between climate and st

flows in the upper Colorado River mainstem, which can condition streamflow gen

tion on climate data.

One of the first steps of our research was to investigate monthly streamflo

data in the Colorado River basin, a required input to the CRSS to model operation

various hydrologic and demand sequences. We studied the Colorado River basin

streamflow at a single gauge, USGS stream gauge 09072500 (Colorado River n

Glenwood Springs, CO). The probability density function (PDF) for monthly natu

streamflow from water years 1906 to 1995 exhibits non-Gaussian features that v

from month to month. Generally, the natural streamflow data is skewed towards t

low flows, with an extended tail in the high flows. The annual PDF is slightly skew

towards the low flows, with a concentrated point at the higher flows.

The most effective stochastic flow generation model should preserve the s

ness and extended tail behavior seen in the natural flow data. Preserving the tail

particular interest because the tails exhibit the probability of extreme low or high fl

During periods of extreme low flows, salinity has historically increased in concen

tion. Modeling these periods to our best ability provided confidence in the results

the entire modeling system. The technique should be capable of generating synt

streamflow values and sequences that have not occurred in the historic record, b

statistically possible given the historic record’s statistics. Generating values abov

below the maximum and minimum of the historic record should also be possible.

We investigated three different techniques for generating synthetic streamfl

(1) a nonparametric index sequential method (ISM) that is currently used by the 

Bureau of Reclamation (USBR) to generate synthetic hydrology for the CRSS, (2

parametric periodic auto regressive (PAR) model that is traditional and widely us

and (3) a nonparametric k-nearest neighbor (K-NN) model developed in this stud
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Our motivation for this investigation was to identify alternatives to the currently us

ISM, which has limited ability to generate a variety of synthetic streamflow sequen

We first present a background of stochastic models followed by a description of t

three models and results.

2.2 Background

Stochastic streamflow models were traditionally developed in an auto regr

sive (AR) framework and subsequently ARMA and PAR models (Shama et al., 19

These are also referred to as parametric models because they involve selecting 

appropriatemodel andfitting parameters to it. Parametric models assume that the ti

series is normally (Gaussian) distributed (Salas, 1985). More often than not, stre

flows are not Gaussian distributions, thereby violating this assumption. To addre

this, the data istransformed to a Gaussian distribution using a log or power transfo

mation before fitting a parametric model to the transformed data (Shama et al., 19

The synthetic sequences generated from the model are back-transformed into th

inal space. This process of fitting the model on the transformed data and then ba

transforming it often does not guarantee the preservation of statistics (Sharma e

1997; Salas, 1985; Bras, 1985; Benjamin, 1970).

The parametric models generally preserve the mean, variance, and auto c

lations (depending on the order of the model). As the time series is transformed 

Gaussian distribution (or near Gaussian) by appropriate transformation, the skew

is preserved to the extent the transformations are good.

Parametric models require estimating multiple model parameters, depend

on the type of model. Considerable uncertainty can exist in the estimation, depen

on the length of the historical data, which adds to variability in the simulations. F

thermore, because they are restricted to a Gaussian framework (Gaussian distrib

assumption), parametric models cannot reproduce non-Gaussian features such 
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heavily skewed distributions or bimodal distributions that may be present in the hi

ical data (Sharma, et al., 1997; Lall and Sharma, 1996), which is one of the majo

drawbacks of the parametric model. Such features are not uncommon in Colorad

River basin flow data (Lall and Sharma, 1996), as we show later in this chapter w

we compare the methods on the Glenwood Springs streamflow gauge.

Nonparametric models have been developed to address these drawbacks

parametric models. The simplest nonparametric model is the ISM, which involve

selecting chunks of historic data. For example, if we have 100 years of historical d

without wraparound we can generate 80 sequences of 20-year lengths, 70 sequen

30-year lengths, etc. The advantages are that it is simple and easy to implement

assumption free, and can reproduce the entire distributional properties of the his

data: the mean, variance, auto-correlation, etc. The main disadvantage is that on

torically observed sequences can be generated.

Recently developed nonparametric models, (Lall, 1995; Lall and Sharma,

1996; Tarboton et al., 1998) have tried to address the problems of ISM and param

models. A few types of nonparametric models exist for streamflow generation: ke

based (Sharma et al., 1999), nearest neighbor based (Lall and Sharma, 1996), a

hybrid parametric/nonparametric models (Srinivas and Srinivasan, 2001).

In effect, the nonparametric models estimate the marginal and conditiona

probability density functions locally and simulate sequences from them. They are

assumption free and can model any shape of the density function.

2.3 Index Sequential Method

USBR uses CRSS to simulate flows in the Colorado River basin. Natural flo

are a required input to drive the model when simulating historic flows. Natural flo

currently are generated using the ISM. Colorado River basin policymakers have 

using the ISM for more than a decade to develop risk-based estimates of importa
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system output.

The ISM is a nonparametric stochastic technique that generates synthetic

hydrologies by sequentiallyblock bootstrapping the historic time series. Block boot-

strapping is a technique in which a block of the historic time series is resampled 

synthetic trace. For example, our historic time series for stream gauge 09072500

years in length, from water years 1906 to 1995. To model 25 years into the future

method extracts a 25-year block from the historic streamflow record then shifts o

year forward and extracts 25 years again, repeating the process 90 times. When th

of the historic record is reached, the record is continued from the beginning of the

series. A schematic of the technique is shown in Figure 7. The intent is that every

to be simulated sees all the hydrologies of the historic record. Consequently, the

lated sequences have the same distributional properties as the historic data.

Figure 7: Schematic of the ISM (adapted from Ouarda et al., 1997). The synthet
hydrologies, each 25 years in length, are shown below the original 90-year time
series. The additional 24 years used for wraparound are shown in shading.

1906 1995

1906 1931

1907 1932

data wrapped from beginning

2nd synthetic hydrology

90th synthetic hydrology

89rd synthetic hydrology

1st synthetic hydrology
90 extracted overlapping 25

year ISM sequences

1993 1929

1994 1930
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Ouarda (1997) compared the nonparametric ISM to a traditional parametr

autoregressive method to determine how well the two modeling techniques allow

project dependable capacity to be estimated. The study found using ISM, syntheti

generated sequences statistically corresponded acceptably with sequences gen

from an AR(1) model. Because power generation was of interest, the study looke

the cumulative density function for total energy out and found that the two techniq

compared well at the lower and middle sections which are critical to energy produc

modeling, of the function.

Kendall and Dracup (1991) also compared ISM and an AR(1) model. Aga

an annual model was developed to compare the two techniques. Their study com

reservoir storage capacity at Lake Mead and Lake Powell. They also found that t

two techniques generated sequences that are not significantly different. Generally

found that flows generated by the AR(1) model result in slightly higher storage le

than the ISM. They also stated that the AR(1) model has a tendency to underest

the occurrence of severe droughts. Further, the ISM did not perform well when th

tails of the distribution were of interest. They found at 90 percent exceedance an

greater, the AR(1) model produced lower flows. They recommended considering

AR(1) models if tails of the distribution are important.

Neither of these studies explored higher order statistics, such as the PDF o

generated synthetic flows or the bivariate probability of the current month’s flow

dependent on the previous month’s flow. Higher order flow statistics were importan

our work because of our interest in a stochastic techniques performance during

extreme events such as high or low flows. We needed to be able to simulate sev

droughts to accurately simulate the effects of low flow periods on salinity levels. Th

events are described in the tails of higher order statistics, such as the PDF of the g

ated synthetic flows, an area in which the ISM did not perform as well as a param

model.
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Advantages of this technique, which have led to its widespread use, are th

is simple to implement and that it does not require the modeler to estimate param

(Shama et al., 1997). Because it reproduces the historical data, it preserves all o

statistics, along with the probability density function.

A limitation of this technique is that it cannot generate synthetic hydrologies

sequences that did not occur in the past record. Consequently, it cannot create dro

or surpluses of lengths different from those that have occurred in the past record

2.4 Periodic Auto Regressive Method

The parametric periodic auto regressive (PAR) model is a traditional and

accepted method to model synthetic streamflow. The PAR model is also termed 

sonal auto regressive model and is distinguished from other auto regressive metho

that it explicitly models seasonality, such as the case with streamflow.

The general equation for a PAR model of order  is given by

Eq. 2.1

where: y is the streamflow process,

 is the year.τ is the season,

 is the mean of the process in season  streamflow,

 is the auto regressive parameter,

 is the uncorrelated normally distributed noise term with mean 0 and v

ance .

The season could represent months or another subset of a year. In our in

gation, we developed a lag(1) monthly model or a model of order  with

. This model can be written as

Eq. 2.2

ρ

yϑ τ, µτ Φ j τ, yϑ τ j–, µτ j––( )
j 1=

p

∑ εϑ τ,+ +=

ϑ

µτ τ

Φ

εϑ τ,
σ2 ε( )

ρ 1=

τ 12=

yϑ τ, µτ Φ1 τ, yϑ τ 1–, µτ 1––( ) εϑ τ,+ +=
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which means each season represents a month, and the current month flow is dep

linearly on the previous month’s flow. The model parameters  are estima

for each month from the data. With and (representing 12 seasons)

estimates of , , and  have to be computed, requiring estimation of 3

parameters. Method of Moments, approximating Least Squares, or Yule-Walker 

tions are used to estimate the auto regressive parameters (Salas, 1985; Bras, 19

The PAR method is a parametric method. Traditionally, stochastic models w

developed with parametric models, such as AR, ARMA and PAR models. The PA

parametric method preserves the mean, standard deviation, and lag(1) correlation

parametric technique is only able to preserve a Gaussian probability density func

An additional step is required to preserve the skewness coefficient of a time serie

Colorado River monthly hydrologic data has months that do not exhibit a Gaussi

distribution. The months must be transformed to change the shape of the PDF to

approximate a Gaussian distribution. We transformed the Colorado River data w

log transformation using the equation where: is the transformed p

cess,  is the original process, and  is estimated to bring the skewness coeffici

towards zero.

Transformations can be used to approximate a time series skewness coeffi

this additional step is required for the parametric method but not for nonparamet

methods. After generating the synthetic hydrology with the parametric model, the

thetic hydrology must be “back-transformed” by the inverse log transformation. T

back-transformed data is not guaranteed to preserve the basic statistics of the tr

formed data (Sharma, 1997; Salas, 1985; Bras, 1985; Benjamin, 1970).

A software package developed at Colorado State University, “Stochastic A

ysis, Modeling, and Simulation” (SAMS) (Salas, 2000) was used to develop the

PAR(1) model. SAMS transforms the flow data to approximate a Gaussian distribu

by the transformation process described earlier. The transformed data is then fitte

Φ σ2 ε( ),

ρ 1= τ 12=

Φp τ, µ σ2 ε( )

y x a+( )ln= y

x a
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PAR(1) model using least squares to solve the auto regressive parameters. The 

model is then used to generate synthetic sequences. Using SAMS facilitates trans

ing the data that is used to fit the parametric model and reduces the time required

parameters to the model.

The simulation process for a month, February for example, is

Eq. 2.3

Using generated January flows, we generated a normal random variable with me

variance  and from Eq. 2.3 generated the value for February. The process 

repeated for as many simulations as needed.

The advantages to using a parametric model like PAR are that (1) it can s

late values and sequences not seen in the past, (2) much past work exists that u

these methods for various simulations, and (3) a fully developed theoretical back

ground exists. The main disadvantages are that the data must be transformed to

Gaussian distribution to satisfy the assumption of the model and that  is genera

from a normal distribution; hence, any values from -∞ to +∞ can be simulated, which

can generate unrealistic values.

2.5 Traditional K Nearest Neighbor Method

Recent developments in nonparametric models have tried to address som

the concerns statisticians have with using the index sequential method and para

methods. The concerns with the index sequential method are that it cannot creat

ues or time series sequences that did not occur in the past. One of the goals of st

tic modeling is to explore values and sequences that did not occur in the past but c

occur based on the statistics of the historic record. Parametric methods cannot pre

the non-Gaussian features of a PDF.

Recently developed nonparametric techniques include kernel based (Sha

yFeb µFeb yJan µJan–( ) N 0 σ2 ε( )( , )( )∑+ +=

σ2 ε( )

ε
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al., 1997), and K-NN based resampling (Lall, 1995). As mentioned earlier, the no

parametric techniques approximate the conditional and marginal densities of a ti

series and simulate from these. The simulation problem can be assumed to be a

tional simulation problem, i.e., a lag(1) model can be thought of as simulation fro

conditional PDF. For example, a lag(1) model can be expressed as simulation from

conditional PDF

Eq. 2.4

where  is a time series of flows.

The parametric models, such as PAR, essentially simulate from a Gaussia

conditional distribution because they assume the data is normally distributed, as

described in the previous section. The nonparametric models approximate the co

tional PDF shown in Eq. 2.4, from the data. Thereby, they have the ability to reprod

any arbitrary PDF structure without any prior assumptions, unlike the parametric

counterpart.

Lall and Sharma (1996) introduced a k-nearest neighbor (K-NN) model, dis

quishing it from the ISM. Unlike ISM, the K-NN model does not use a block of the

historic time series for each generated time series. Instead, the K-NN model resam

one month at a time, generatingsequencesof synthetic flow time series not seen in the

historic record. To find successive months, the k-nearest neighbors to the curren

are found. The Euclidian distance between each neighbor and the current flow a

culated. The distances are then weighted, with the closest neighbor receiving the

est weight. A discrete kernel is used to resample one of the k weighted neighbors

resampled neighbor then becomes the current month flow. The process then mov

to the next month and is repeated. Rajagopalan and Lall (1999) demonstrated th

NN technique in developing a daily precipitation model. The daily precipitation mo

uses six weather variables in a K-NN framework to choose an appropriate precip

f yt yt 1–

( )

y
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One of the drawbacks of the K-NN technique is that the synthetic time ser

do not have values that differ from the historic time series. Nonparametric models

use a kernel density estimators alleviate this problem (Shama et al., 1997). How

the kernel based methods have problems in the tails of the distribution, creating un

istic values like the parametric techniques do, but to a lesser degree. Also, this me

can get unwieldy in higher dimensions (Lall, 1995).

To further address these problems, Srinivas and Srinivasan (2001) recent

developed a stochastic model that incorporates the strengths of parametric and 

parametric models in a single technique. Theyprewhitenedthe streamflow time series

with a periodic autoregressive model that removes the dependence in the historic

sequence, then use a nonparametric moving block bootstrap to resample the pre

ened streamflow. The prewhitened streamflow smoothed the historic time series 

filled in values between the historic data. This smoothing allows the technique to

erate streamflows not seen in the historic record while preserving non-Gaussian

tures in the historic streamflow. The method performs well but still requires exten

steps to generate streamflows.

We adopted the K-NN model because it is simpler, effective, and more flex

than the kernel based models (Lall and Sharma, 1996; Rajagopalan and Lall, 19

We modified this model to address some of the drawbacks of the K-NN model. T

modification developed and tested here is one suggested by Lall and Sharma (1

The K-NN model developed by Lall and Sharma (1996) is a nearest neigh

bootstrap because the neighbors are computed to the flow at the current time ste

one of them isselected from a weight function that gives more weight to the neares

neighbor and less weight to the farthest neighbor. The successor to theselected neigh-

bor becomes the flow in the next time step. The algorithm is described in detail in

and Sharma (1996) and also in Rajagopalan and Lall (1999). This algorithm is ak
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approximating the conditional PDF (Eq. 2.4) and simulating from it. The advantag

that the traces generated are not exactly the same as historical traces, as for ISM

ever, values not seen in the historical record cannot be generated, which is one o

main drawbacks. The modified version of the model, described in the next sectio

eliminates this concern.

2.6 Modified K Nearest Neighbor Method

The K-NN algorithm developed in our work is an improvement on tradition

K-NN techniques. To keep the modeling simple but to allow creation of values th

were not seen in the historic time series, we developed a technique discussed in

conclusion of Lall and Sharma (1996) and Rajagopalan and Lall (1999). They sug

a variation of the traditional K-NN model that addresses the inability to recreate va

that had not occurred in the past. The techniques also reduced the problems of th

nel estimator while remaining simple to implement.

The modified K-NN technique develops a regression relationship between e

month’s flows and saves the residuals from the regression. The succeeding mon

flow is first calculated from the appropriate regression, then the k-nearest flows t

flow from the regression are found. A residual from the k-nearest flows is resamp

and added to the flow from the regression to perturb the regression. This scheme

allow the K-NN method to perturb the historic data within its representative neigh

hood and allow extrapolation beyond the sample.

We describe the modified K-NN algorithm for a lag(1) model, indicating th

current month’s flow is solely dependent on the previous month’s flow. Figure 8 sh

the scatter plot of February and March streamflows. The solid line shows a nonp

metric fit through the scatter. The nonparametric fit is a locally weighted regressi

scheme (Loader, 1999; Rajagopalan and Lall, 1997). Fit at any given point is base

a local polynomial fitted to the k nearest neighbors. The number of neighbors k is
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determined with cross validation. The details are presented in Chapter 3, “Statist

Nonparametric Model for Natural Salt Estimation.” The algorithm starts by fitting 

nonparametric fit for each month dependent on the previous month:

Eq. 2.5

1. The residuals from the fit are saved.

2. Once we have the value of the flow for the current month , we estim

the mean flow of the next month yt
* from Eq. 2.5.

3. We compare k-nearest neighbors to yt-1 (these are shown in big circles in

Figure 8).

4. We then select a neighbor from the weight function:

. Eq. 2.6

This weight function gives more weight to the nearest neighbor and les

weight to the farthest neighbor.

5. The residual corresponding to the selected et
* neighbor that was computed

and saved in Eq. 2.5 above is added to the mean estimate yt
*. The simu-

lated value for the next time step becomes, yt
*  + et

*.

6. The process is repeated for each month.

Lall and Sharma (1996) suggested both an objective criteria based on gen

ized cross validation and a heuristic scheme to select a k, the number of nearest

bors. They mentioned that the heuristic scheme works well in almost all the case

and , and we adopted the same scheme here, where is the di

sion of the model and  is the number of data points in our monthly lag(1) (

model, it is the number of years of data. The heuristic scheme is .

yt f yt 1–( ) et+=

yt 1–

yj

yj
j 1=

k

∑
 
 
 
--------------------

1 p 6≤ ≤ N 100≥ p

N p 1=

k N=
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The modified version of the K-NN model generates values not seen in the

toric record and also has the ability to generate extreme values not seen in the h

Further, it retains the basic capability of the traditional K-NN methodology of repr

ducing PDF structure. The K-NN model of lag(1) will reproduce all the basic stati

tics, lag(1) autocorrelation, and also the PDF structure, which is a significant

improvement over the PAR model.

This nonparametric method is easy to implement, with few parameters to 

mate, and makes no assumption about the underlying model. A further advantag

the K-NN framework is that it incorporates multiple variables in a stochastic mod

more easily than parametric techniques do. This ability allows nonparametric K-N

techniques to be conditioned on additional variables, such as climate variables. C

tioning on climate can allow a model to capture interannual variability caused by 

Figure 8: Nonlinear local regression fit to March natural flows dependent on Feb
ary natural flows is depicted by the solid line (alpha = 0.3). A least square fit is sho
with the dotted line.

yt-1

yt*
et*
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mate. These features of the K-NN framework make the technique a flexible and e

framework to work with than the parametric techniques.

2.7 Model Evaluation

We compared the three models by applying them to the natural streamflow

USGS stream gauge 09072500 (Colorado River near Glenwood Springs, CO). T

monthly flow data was available for the period 1906 to 1995. We generated 100 

lations from the modified K-NN model and 90 simulations from the ISM, each of 

same length as the 90-year historical data. We computed a suite of statistics from

simulation and compare them to statistics from the historical data.

2.7.1 Test Ensembles

The three stochastic flow models were applied to natural flows at USGS str

gauge 09072500. Natural flows were calculated from historic gauge records by re

ing anthropogenic effects such as consumptive use, reservoir regulation, imports

exports. USBR calculated the monthly natural flows from October 1905 through 

tember 1995. The monthly natural flow mean is 178,000 acre-feet/month, and stan

deviation is 217,000. The 90 years of aggregated annual natural flows from water

1906 to 1995 has a mean of 2,132,000 acre-feet/year and standard deviation of

550,000. High variability in both annual and monthly flows can be seen in Figure
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Figure 9: (a) A time series of annual water year natural flow and (b) monthly natu
flow from water year 1906 to 1995 for USGS stream gauge 09072500 (Colorado
River near Glenwood Springs, CO). The time series exhibit a high rate of variabi
both annually and monthly.

a

b

Natural Monthly Flow
USGS stream gauge 09072500 (Colorado River near Glenwood Springs, CO)
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2.7.2 Model Evaluation Criteria

The three modeling techniques were each compared to the 1906-1995 his

flow data and then compared to each according to the following criteria.

The first criterion addresses how well the generated ensembles preserved

basic statistics, mean, standard deviation, lag(1) correlation, coefficient of skewn

and maximum and minimum of the historic data. A model that preserved all the st

tics well is deemed appropriate to model the original time series.

The second criterion addressed how well the modeling techniques preser

the higher order statistics of the original data. Preserving higher order statistics en

the modeling technique’s ability to project variability and be realistic. These abilit

can be checked by how well the modeling technique reproduces the probability de

function (PDF). We also looked at the bivariate probability density function, which

shows how well a technique can preserve the probability of choosing the current

month’s flow based on the magnitude of flow during the previous month (i.e., con

tional PDF).

The last criterion addressed drought, surplus, and storage statistics. Drou

surplus, and storage statistics are important in river basins for reservoir operation

These statistics allow river basin managers to understand the characteristics of ex

events. Neither the parametric nor nonparametric model explicitly models these 

tics. The longest drought statistic shows the number of consecutive years the flo

below the median flow. The maximum drought statistic is the maximum volume o

water during a drought. Surplus statistics are the opposite. The storage statistics

(rescaled range and hurst coefficient) capture long-range memory in the time se

All of these were calculated for each technique.

2.8 Results

The statistics from simulation ensembles and the historic data are shown 

boxplots. The boxplots display the interquantile range (IQR) and whiskers extend
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to 1.5 * IQR for the PDFs of the 100 synthetic natural flow traces. The interquant

range indicates the range for 50 percent of the data around the mean. The horiz

line inside the IQR depicts the median of the data. The whiskers approximate the

percent and 95 percent confidence for the traces. Data beyond the whiskers (1.5

IQR) are termed outliners and indicated by a solid circle. An example boxplot is gi

Historic data is shown as a solid circle with a solid line connecting each month.

 As expected, all the models preserved well the mean and standard devia

for ISM (Figure 10), PAR (Figure 11), and K-NN (Figure 12). Note that the ISM

exactly reproduced the statistics with no variation around the historic statistic, bec

the ISM uses the historic recordexactly to develop the ensembles. All the statistics

throughout our analysis exhibit this trait. For the remainder of our analysis, we on

discuss the comparison with the PAR(1) and K-NN model.

(IQR)

whiskersmedian

1.5*IQR

1.5*IQR

25% of data above mean

25% of data below mean

outliner

interquantile range
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Figure 10: The ISM technique generates an ensemble of simulations. The ense
of simulations are compared to historic statistic with boxplots. Boxplots show the
interquantile range of an ensemble in the box and the vertical dashed lines (“wh
kers”) approximate the 5% and 95% range of the ensemble. The historic statisti
the fitting period (water year 1906 to 1995) is shown with the solid line and the so
circle. When the historic statistic falls in the box, the statistic is preserved by the
technique. The upper graph shows the mean, while the lower graph shows the s
dard deviation. Both the monthly and annual statistics are preserved.
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Figure 11: The PAR technique generates an ensemble of simulations. The ense
of simulations are compared to historic statistic with boxplots (see Figure 10 for
explanation). The upper graph shows the mean, while the lower graph shows th
standard deviation. Both the monthly and annual mean are preserved. The PAR
model overestimates the standard deviation monthly and annually.
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Figure 12: The modified KNN technique generates an ensemble of simulations. 
ensemble of simulations are compared to historic statistics with boxplots. (See
Figure 10 for explanation.) The upper graph shows the mean, while the lower gr
shows the standard deviation. Both the monthly and annual statistics are preser
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The modified K-NN model and PAR(1) models preserved well the lag(1) c

relation for ISM (Figure 13), PAR (Figure 14), and K-NN (Figure 15). PAR(1) did n

preserve the skew coefficients because this depends on how well the transformat

able to approximate a Gaussian distribution. The modified K-NN model preserved

coefficient of skewness very well. The modified K-NN models preserved the max

mum and the minimum for ISM (Figure 16), PAR (Figure 17), and K-NN (Figure 1

flows well. The parametric PAR(1) model overestimated the maximum and minim

values because PAR(1) can simulate unrealistic values, as mentioned earlier. The

ified K-NN generated maximum and minimum values that are not seen in the his

cal data; this is a significant aspect of the modified K-NN.
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Figure 13: The upper graph shows boxplots (see Figure 10 for explanation) of th
lag(1) correlation of the ISM. The lower graph shows the coefficient of skewness
ISM preserved both statistics annually and monthly.
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Figure 14: The upper graph shows boxplots (see Figure 10 for explanation) of th
lag(1) correlation of the PAR model. The lower graph shows the coefficient of sk
ness. The lag(1) correlation is preserved monthly for most months in the interqua
range. The coefficient of skewness is not preserved in the interquantile range for
either the monthly or annual time step.
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Figure 15: The upper graph shows boxplots (see Figure 10 for explanation) of th
lag(1) correlation of the K-NN. The lower graph shows the coefficient of skewnes
K-NN preserves both statistics monthly. The annual time step is preserved on th
fringes of the interquantile range.
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Figure 16: The upper graph shows boxplots (see Figure 10 for explanation) of th
lag(1) maximum value of the ISM. The lower graph shows the minimum value. T
ISM exactly reproduces both statistics.
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Figure 17:  The upper graph shows boxplots (see Figure 10 for explanation) of t
lag(1) maximum value of the PAR(1). The lower graph shows the minimum value
The PAR(1) technique tends to overestimate the maximum and minimum both
monthly and annually.
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Figure 18:  The upper graph shows boxplots (see Figure 10 for explanation) of t
lag(1) maximum value of the K-NN. The lower graph shows the minimum value. T
K-NN technique slightly underestimates certain months maximum but preserves
other months and annual statistics well.
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The higher order statistics continued to show the strengths of nonparame

techniques. Figures 19- 21 show select PDFs for the month of January. In the up

graph, a Gaussian distribution approximates the historical data quite well. The sim

tions from the PAR(1) and K-NN reproduced this fairly well. The month of Februa

for ISM (Figure 19), PAR (Figure 20), and K-NN (Figure 21), in the lower graph,

exhibits a skewed distribution. The parametric PAR(1) tended to reproduce a Gau

equivalent of the original probability density function, while the nonparametric K-N

model was able to preserve the non-Gaussian structure. Similar observations ca

seen for the PDF of September flows (upper graph) and annual flows (lower graph

ISM (Figure 22), PAR (Figure 23), and K-NN (Figure 24).
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Figure 19: The upper graph shows the PDFs for ISM for January, which approxi
mates a Gaussian distribution. The ISM can only reproduce the historic probabi
density function because every simulation includes all the historic time series; h
ever each simulation is sequentially shifted. The lower graph shows the PDFs fo
February, which is skewed towards the low flows.
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Figure 20: The upper graph shows the PDFs for PAR(1)for January, which appro
mates a Gaussian distribution. The lower graph shows the PDFs for February, whi
skewed towards the low flows. This parametric technique cannot preserve the ske
distribution in the interquantile range of the simulations.
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Figure 21: The upper graph shows the PDFs for K-NN for January, which approx
mates a Gaussian distribution. The lower graph shows the PDFs for February, w
is skewed towards the low flows. Both distributions are preserved by the K-NN te
nique.
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Figure 22: The upper graph shows the PDFs for ISM for September, which is ske
to the lower flows with a long tail in the higher flows. The lower graph shows the
PDFs for annual flows. The ISM exactly recreates the PDF, again as stated in
Figure 19.
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Figure 23: The upper graph shows the PDFs for PAR for September, which is ske
to the lower flows with a long tail in the higher flows. The lower graph shows the
PDFs for annual flows. The PAR technique can only approximate the annual PD
Annual flow is not directly modeled.
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Figure 24: The upper graph shows the PDFs for K-NN for September, which is
skewed to the lower flows with a long tail in the higher flows. The lower graph sho
the PDFs for annual flows. The K-NN technique can preserve the skewness and
behavior best, but can only approximate the annual PDF, although the K-NN tec
nique can reproduce the frequency of higher flows better than the parametric tec
nique.
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The bivariate PDF (Figure 25) was computed for the months May and Jun

from the historic time series and for one of the simulations from the PAR(1) and K-

models. The historic time series show nonlinear features, indicating a non-Gauss

relationship in the transition of flow between months May and June. The PAR(1)

model was only able to recreate a Gaussian bell-shaped distribution, as expecte

while the K-NN model preserved the nonlinear features seen in the bivariate prob

ity density function of the historic values.
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The final statistics compared the drought, surplus, and storage statistics. 

the PAR(1) and K-NN preserved the longest drought within the upper interquanti

range. The parametric model preserved the maximum drought better. The nonpar

ric model tended to underestimate the maximum drought. This underestimation m
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Figure 25: Bivariate probability density function for May/June estimated using a
S-plus library from (a) historic values, and a single realization from 100 simula-
tions using the (b) PAR(1), and (c) K-NN model. The nonparametric technique ca
preserve the historic bivariate PDF’s non-Gaussian features, while the paramet
technique can only approximate a bell-shaped distribution.
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the nonparametric model generated lower drought values than the historic record

cating that the technique produced more conservative drought estimates than th

metric model. Both the K-NN and PAR(1) models preserved the surplus statistics

(longest surplus and maximum surplus) well, ISM (Figure 26), PAR (Figure 27), a

K-NN (Figure 28). Both the parametric and nonparametric techniques overestima

the storage statistic (rescaled range and hurst coefficient). The nonparametric m

preserved the storage statistics within the whiskers, while the parametric model 

not preserve either storage statistic within the whiskers.

Figure 26: This figure shows boxplots of storage, surplus, and drought statistics 
the nonparametric ISM model’s annual values. The drought statistics include LD
(longest drought), MD (maximum drought). The surplus statistic include LS (longe
surplus), MS (maximum surplus). All the values are exactly preserved because t
entire historic record is resampled for each of the 100 simulations.
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Figure 27: This figure shows boxplots of storage, surplus, and drought statistics
the parametric PAR(1) model’s annual values (see Figure 26 for explanation). T
parametric model preserves the drought statistics are preserved slightly better. 
parametric PAR(1) technique cannot preserve the storage statistic within the wh
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2.9 Climate Link

Large-scale climate in the western United States modulates streamflows

(Cayan and Webb, 1992). Relationships between large-scale climate and stream

vary in strength throughout the Colorado River basin. Strong relationships have b

documented in the southern basin, while weaker relationships have been identifi

the upper Colorado River mainstem (Cayan et al., 1999; McCabe and Dettinger,

1999). We explored establishing links between large-scale climate patterns and

monthly streamflow in the upper Colorado River mainstem.

Streamflows generated by the K-NN technique can be conditioned on clim

variables. To condition the flows on climate, we needed to find an index that exhib

correlation with the streamflows. To develop such an index, we explored the rela

Figure 28: This figure shows boxplots of storage, surplus, and drought statistics
the nonparametric K-NN models annual values (see Figure 26 for explanation). 
model preserves the storage statistic within the whiskers.
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ship between natural flow and climate indicators in the upper Colorado River ma

stem.

We performed the analysis on annual natural flow at USGS gauge 090163

Colorado River at Colorado/Utah state line from 1909 to 1996, provided by the C

rado Water Conservation Board, and three snow water equivalent gauges for the r

upstream of USGS gauge 09163500, which have a correlation of 0.72 with the U

stream gauge. Both the snow water equivalent and stream gauge are first correla

with an ENSO index. We found that the correlations not strong enough to directly

dition the streamflow with the ENSO index, which is not surprising because prev

research has shown the upper Colorado River mainstem has weak correlations w

ENSO (Cayan et al., 1999).

Another technique to develop an index first generates composites from th

streamflow data. Composites explore climate patterns for various flow regimes, s

as high and low flows. Exploring various sections of flow can uncover nonlinear r

tionships between flow and large-scale climate. We looked at the average climat

tern for three different flow regimes: periods of high-, normal-, and low-flow. The

separate flow regimes are developed using salinity concentration that is modeled

upstream gauge (0909550: Colorado River near Cameo). The flow regimes repre

thresholds that can be chosen by many methods. The regimes are usually chosen

to find unique patterns in climate for particular flows. Our thresholds were based

the behavior of the CRSS salinity model. The CRSS model overpredicted salt co

tration during the low-flow years 1977 and 1981. During the high-flow years of 19

to 1989 and 1995, salt mass was underpredicted when compared to normal yea

this gauge, we determined the low-flow period as flows below 3,500,000 ac-ft/ye

normal-flow between 3,500,000 ac-ft/year and 7,500,000 ac-ft/year, and high-flow

above 7,500,000 ac-ft/year. This criteria allowed us to categorizes flows that are 

or underpredicting salt relative to the average flow regime.
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We were interested in looking at the climate patterns for each flow regime

determining if there is a significant difference in the average climate pattern for e

flow regime. We examined multiple indicators for climate to verify that they are al

consistent with the pattern we uncover. We examined the following climate indicat

sea surface temperature, sea level pressure, geopotential heights at 500 mb leve

tor winds at 1000 mb level, outgoing long wave radiation, velocity potential, and

divergence. Many of these indicators are complementary, and we used them to v

the accuracy of our analysis. We performed this verification by finding the average

mate pattern for the high-, low-, and high-minus-low-flow regimes. We identified a

particular climate pattern for each flow regime. We used these patterns in the next

in which the patterns helped to generate natural flow sequences.

From this analysis, we were able to identify climate patterns that typically p

duce the high- and low-flow regimes. To incorporate climate information in our mod

we needed to develop a relationship between a climate indicator and natural flow.

geopotential height at the 500mb level climate indicator showed the strongest rela

ship to natural streamflow. Figure 29 show the composite plots for the geopotent

height at the 500mb level. The upper plots shows the composite for the low-flow ye

A high-pressure system over the western United States can be seen, which tend

bring in cold dry air over the upper Colorado River basin and, consequently, caus

reduced snow cover and lower flows. The lower plot shows the high-flow years in

which the pattern is weaker than that seen in the low-flow years; this also highlig

the asymmetry of the relationship. Figure 30 shows the composite of high-minus

flow years (difference of the two plots in Figure 29). The signal is highlighted in th

difference plot.
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Figure 29: Both plots are anomaly composites for the geopotential height at 500
mb.The upper plot displays the composite of low-flow years. The lower plot displa
the composite of high-flow years. The low-flow years show strong high pressure o
the western United States an strong low-pressure over the northern Pacific.
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To use this data in developing a climate index, we performed a principal c

ponent (PC) analysis on the high-minus-low geopotential height and examine the

results. We found the spatial structure for the first PC accounts for 33 percent of 

variance and matched the pattern that is found in the geopotential heights relatio

flow. A scatterplot of the natural flow dependent on the first PC (PC(1)) revealed 

weak relationship during low and high flows. Unfortunately, we found the relations

is not strong enough to condition the flow on climate. Further research needs to b

formed to find an index that provides a stronger relationship between the index an

natural flow in the upper Colorado River mainstem.

Figure 30: This figure shows an anomaly composite for high-minus-low-flow year
the geopotential height at 500 mb. The plot shows a strong negative difference o
the western United States and positive difference of the northern Pacific.
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2.10 Discussion and Conclusions

We compared three stochastic hydrology modeling techniques, one of whic

ISM, USBR’s currently used technique. We looked at how well each technique pr

served basic statistics and the PDF for the time series they modeled.

We compared the ISM to a PAR(1) and modified KNN technique, uncover

the limitations of the ISM and PAR(1) techniques. The ISM is limited because it c

not generate synthetic hydrologies or sequences that did not occur in the past re

Consequently, droughts or surpluses of lengths different from those that have occ

in the past record cannot be created.

The main disadvantages of the PAR(1) technique are (1) that the data has

transformed to a Gaussian distribution to satisfy the assumption of the model an

that is generated from a normal distribution; hence any values from -∞ to +∞ can be

simulated, which can result in generating unrealistic values.

With a traditional K-NN technique, the advantage is that the traces genera

are not exactly the same as historical traces, as in the case of ISM. However, value

seen in the historical record cannot be generated, which is seen as one of the m

drawbacks. The modified version of the traditional K-NN technique eliminated th

concern and the drawbacks found with the ISM and PAR(1) technique.

The modified version of the K-NN model generated values not seen in the

toric record, and it also has the ability to generate extreme values not seen in the

tory. Further, it retains the basic capability of the traditional K-NN methodology o

reproducing PDF structure.

We compared the generated synthetic ensemble time series to the historic

ral flow record for water year 1906 to 1995 to determine which technique best pr

serves the historic statistics. Specifically, all methods preserve the mean monthly

annually. The nonparametric methods best preserve the standard deviation. The

metric method tended to overestimate the standard deviation both monthly and a

ε
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ally. One of the drawbacks of the ISM was evident when comparing statistics. Th

statistics from the ISM exactly matched the historic statistic because the techniq

uses the direct historic record. We could not achieve any variability in the statistic

which limits the method when generating synthetic streamflows. One of the goal

modeling with stochastic hydrology is to explore future streamflows that are stati

cally possible given the historic record. With no variability around the historic stat

tics, the method is incapable of providing as wide a variety of flows as the PAR(1

K-NN techniques.

The nonparametric models best preserve the lag(1) correlation. Again, the

NN nonparametric model displayed a wider range of possible values monthly an

annually while the ISM technique could only produce the exact historic statistic.

Because the modified K-NN method is able to produce values that did not historic

occur, it is not limited to reproducing the historic record like the ISM technique. O

disadvantage of past nonparametric models is that they were limited to recreatin

numbers that occurred in the past record. Parametric models are able to reprodu

ues that did not occur in the past, which is why the parametric PAR technique is 

able to reproduce a wider range of flows. The parametric PAR technique can pro

the wider range of flows because the PDF is not limited on the tails; therefore, th

model can reproduce extreme values. The unbounded tails in the parametric dis

tion allow the parametric model to generate unrealistic values. The K-NN techniqu

limited to generating the most extreme values in the historic record, plus the mos

extreme residual. The ISM is limited to the most extreme historic values, reducing

variability the ISM technique can model.

The ISM is also limited because it requires an extensive record. The histo

record used for the model was 90 years, only allowing the ISM to generate 90 si

tions. The simulations of the PAR and K-NN techniques were not limited to the n

ber of years in historic record. We were able to produce 100 simulations for each
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technique, which allowed us to converge on an actual estimate of the statistic of 

est with more confidence. We were also able to apply the PAR and modified K-N

techniques to a wider range of datasets; we were not limited to datasets with exte

records.

Comparing the PDFs for the three techniques showed the strengths of the

ified K-NN method, such as preserving the coefficient of skewness and non-Gau

features. Incorporating a dissaggregation scheme would allow the modified K-NN

method to better preserve the annual PDF along with the monthly PDFs.

Another strength of the modified K-NN technique is that the flows it genera

can be conditioned on a separate variable, such as climate, without much difficu

Conditioning on a climate variable, such as the PNA index, would allow the modi

K-NN technique to incorporate interannual variability in the generated synthetic

streamflows. Incorporating interannual variability would allow the model to vary fro

the historic record based on future predictions of changing climate. Adding such 

framework to a parametric technique is much more complicated than with a nonp

metric K-NN technique.

For these reasons, we see the modified K-NN technique as easier to imple

than the parametric PAR(1) technique and more flexible than either the PAR(1) or

techniques.
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Chapter 3

Statistical Nonparametric Model for Natural Salt Estimation

3.1 Salinity Standards on the Colorado River

The most important water quality parameter in the Colorado River basin is

total dissolved solids. Total dissolved solids is an accepted measure of water sal

High levels of salinity in the Colorado River basin are damaging to agricultural,

municipal, and industrial water users.

Salinity of the Colorado River became an important issue when the Mexic

government strongly objected to the quality of the water Mexico was receiving. T

average annual salinity of water delivered to Mexico in 1962 was 1,500 mg/L. Th

water was not suitable for irrigation and was adversely affecting crops. Two indep

dent factors caused the rise in the salinity of the water delivered to Mexico. Delive

were reduced because water was being held back in Lake Mead in preparation f

ing Lake Powell and, at the same time, highly saline groundwater from the Wellto

Mohawk irrigation district was being pumped into the Colorado River above the M

ico boundary. These highly saline waters greatly deteriorated the quality of the C

rado River water.

In response to Mexico’s concerns and after years of negotiations, Minute 

242 of the International Boundary and Water Commission (IBWC) dated August 

1973, was signed. Minute No. 242 stipulated that water delivered to Mexico have
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average salinity of no more than 115 ppm± 30 ppm above the average annual salinity

at Imperial Dam.

Subsequently, the Colorado River Basin Salinity Control Act of 1974 was

passed to ensure that the United States could meet its obligation to Mexico unde

Minute No. 242. The Act authorized construction of a desalting plant and addition

salinity control projects in the upper basin.

Minute No. 242 sets a variable standard for the Mexico delivery, but does 

set numerical water quality standards at any fixed points in the basin. Numerical 

dards resulted from separate U.S. legislation that set policy regarding water qual

The Federal Water Pollution Control Act Amendments of 1972 required developm

of water quality standards across the nation. The EPA interpreted the new legisla

as a requirement to set fixed point numerical standards for salinity levels in the C

rado River basin. The basin states (Wyoming, Colorado, Nevada, Utah, Arizona,

Mexico, and California) found the Salinity Control Forum to help develop numeric

salinity standards, including numeric salinity criteria required by the new legislati

The following numeric salinity criteria were set in 1975 requiring maintenan

of a flow-weighted average total dissolved solids concentration:

• 723 mg/L below Hoover Dam

• 747 mg/L below Parker Dam

• 879 mg/L at Imperial Dam

The standards were developed from the 1972 average annual salinity concentrati

each location and are currently unchanged (USBR, 1999 and Lee, 1989). To ma

these salinity standards, we must understand the sources for increased salinity.

3.2 Salinity Sources and Remediation

Natural and human-induced salinity result from point and non-point source
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Natural point sources that have been identified include seeps and saline springs.

springs originate from deep geological formations containing brackish water. Nat

non-point sources of salinity generally originate from the weathering and dissolu

of underlying rocks or soils overlaying the rocks.

The underlying rocks strongly characterize the natural salinity contributed

each subbasin. In some areas of the basin, the underlying rocks are relatively res

to dissolution by water. Igneous and metamorphic rock types, for example weathe

very slow rate and contribute small amounts of dissolved solids (total salts). High

mountain areas, such as the upper reaches of the Colorado, Green, and San Ju

ers, are characterized by these types of formations. The middle and lower reach

these subbasins contain sedimentary rock, which dissolves more readily in wate

therefore, contributes greater amounts of dissolved solids to the river. Soils in the

regions have chemical dissolution characteristics similar to the underlying parent

rocks. Valleys and lower lying plains, which are the predominant areas for agricult

are characterized by these types of soil.

Agriculture increases salinity concentration through two processes: (1) sa

concentration and (2) salt loading. The salt concentration process is a result of e

transpiration from crops which consume water but leave salts behind in the soil.

Return flows to the river from the diversion typically contain the same salt mass

present in the diversion water but with less water, hence, higher concentration of

Additionally, reservoirs concentrate salt by evaporation, when water is lost from t

reservoir but salt is conserved.

Salt loading occurs when salt is added or removed from the river when wa

transported through soil leaches or deposits salts present in the soil. The water c

introduced into the soil from human-induced sources, such as irrigation practices

from natural sources, such as precipitation. Irrigation practices increase the flow

through soils, which increases the total salt loading from previous natural salt loa
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levels.

Federal agencies fund extensive efforts, costing millions of dollars per yea

reduce the human-induced and natural loading salt to the Colorado River. U.S. Bu

of Reclamation (USBR) has off-farm salinity control projects designed to reduce 

gation return flows by lining irrigation canals and laterals. Additional salinity cont

projects not related to agriculture include capping saline springs from abandoned

and oil exploratory wells. The U.S. Department of Agriculture has implemented o

farm salinity reduction, thereby helping farmers to improve irrigation practices tha

increase irrigation efficiency, reducing return flows. The Bureau of Land Managem

has implemented programs to reduce erosion on public lands to limit the release o

solved solids. As of 1998, salinity control projects, with a reported total cost of

approximately $426 million, had removed an estimated 634,000 tons of salt from

river. An additional $170 million is projected to remove an additional 390,000 ton

order to maintain current salinity standards. (USBR, 1999).

3.3 Previous Modeling Efforts

In 1996, USBR performed salt-routing studies to estimate future salinity lev

under normal hydrologic conditions given three scenarios: (1) without any salinity

control projects, (2) with salinity control projects currently in place, (3) with addi-

tional salinity control projects to meet the numeric salinity standards in 2015 (U.S

Department of Interior, 2001). A modeling system developed by the USBR assis

basin planners project these future salinity control needs.

The modeling system, Colorado River Simulation System (CRSS) (USBR

1987), simulates future salinity levels, considering changing human-induced wate

in the basin. CRSS was developed in the late 1970’s in response to a need for a m

ing system that could simulate operations for various hydrologic and demand

sequences. It allowed evaluation of impacts of proposed development high in the b
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CRSS includes various components of the physical mechanism that adds s

the Colorado River basin. Agricultural diversions in the CRSS simulation model

deplete water, but conserve salt mass, simulating the concentrating effect. In add

the agricultural diversions model agricultural salt loading, termedsalinity pickup.

Limited data is available describing salinity pickup throughout the basin. O

extensive study (USBR, 1983 (1)) explains how salinity pickup was calculated in 

Grand Valley using a mass balance of salt. The value for salinity pickup in the Gr

Valley is an average salinity pickup from 1952 to 1980. The report states that the

human-induced salinity pickup for the Grand Valley averages 580,000 tons per y±

90,000 tons with 95 percent confidence. To explain this large variance, the author

this report attempt to correlate the salinity pickup with the annual flow of the Colora

River near Cameo, the annual flow of the Dolores River near Cisco, the annual s

loading on the Dolores, mean annual temperature, and annual precipitation. But 

ity pickup could not be correlated with any of these. The report goes on to sugges

variations in salinity pickup cannot be due to changes in irrigation practices beca

variations in practices could not account for the magnitude of annual variations th

data showed. The report concludes, “The variance from the mean is due to the ina

to measure inflow and outflow with sufficient accuracy. Even with the adjustment

unaccounted flow, the variation about the mean salt load is significantly large.”

In addition to agricultural salt loading, CRSS must use estimates of natural

loading. Natural salt loading contributes an estimated 47 percent of the total salini

the Colorado River basin (U.S. Department of Interior, 2001). Natural flow is calc

lated, described in Chapter 2, “Modified Nonparametric K-NN Model for Generat

Stochastic Natural Streamflow,” by removing the human-induced effects on flow fr

observed historic flow. Human-induced effects include agricultural consumptive u

exports, and reservoir regulation, all of which are measured or can be estimated.
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ral salt can be calculated by removing the human-induced effects on salt from

observed historic salt. Unfortunately, human-induced effects on salt are much mo

difficult to quantify than effects on flow because salt from agricultural salinity pick

originates from many diffuse sources that are difficult to measure.

The USGS developed the current technique to estimate natural salt enterin

river using historic flow and salt data from 1941 to 1983, along with 12 predevelo

ment months that assist calibration (Mueller and Osen, 1988). USGS used a mu

linear regression to develop an expression for historic salt as a function of historic

and several human-induced development variables, such as consumptive use, irr

acres, diversions, net reservoir releases, or a summation of all human induced a

ments (diversions + consumptive use± reservoir regulation). The regressions (one fo

each gauge) were calibrated to equalize the variance of the residuals. Then, eac

development variable was assigned a value of zero, and the historic flows were

replaced by calculated natural flows provided by the USBR. The resulting relation

was proposed to relate natural salt to natural flow (Mueller and Osen, 1988).

CRSS requires an estimate of the natural dissolved solids as an input to t

CRSS simulation model, along with the natural flow estimate associated with the

ral dissolved solids estimate. Figure 31 displays the interconnection of the existin

CRSS components, including a stochastic natural flow model to generate future 

chastic flows, a salt regression model that estimates natural salinity associated w

natural flows, and the CRSS simulation model. The stochastic natural flow model

for many years is the index sequential method (ISM). The CRSS simulation mode

culates simulated historic salt mass by adding the natural salt mass to the salinit

picked up by agriculture and subtracting the salt that leaves with water exported 

the basin.



96

auge

an

500

verage

 salt

ontrib-

-

The existing CRSS overpredicts the historical salt mass at USGS stream g

09072500 (Colorado River near Glenwood Springs, CO), from 1970 to 1990, by 

average 140,000 tons/year. The overprediction could result from

• salinity pickup from agriculture being too high,

• natural salt loading being too high.

From 1970 to 1990, the historic salt mass in the river passing gauge 09072

averaged 570,300 tons/year. The relationship proposed by the USGS estimates a

annual natural salt mass of 583,000 tons/year. For CRSS to simulate the historic

mass, the human-induced salinity pickup sources would need toremove salt from the

river. Current estimates, as reflected in CRSS, are that human-induced sources c

Interconnection of existing 
CRSS Components

Index Sequential 
Method for 
generating 
streamflow

USGS salt model 
for generating salt 

mass

Historic salt 
concentration 

modeled in CRSS 
simulation model

Figure 31: Flowchart depicting interconnection of existing CRSS modeling sys
tem.
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ute 137,000 tons/year from agriculture salinity pickup and exports remove an ave

44,000 tons/year. The estimate for salinity pickup by agriculture is developed from

extensive study that quantified estimates of natural and human-induced salt (Iorn

al., 1965). The report estimates that, in 1957, natural sources contributed 516,200

year, and human-induced sources contributed 138,881 tons/year from agriculture

salinity pickup and removed 15,881 ton/year by exports above Glenwood Spring

These values were adjusted for current basin conditions then input in the CRSS 

lation model.

Using these numbers, if human-induced sources contributed no salt abov

gauge 09072500, the existing CRSS would still overpredict salt mass. The Iorns re

indicates that the human-induced sources of salinity are not removing salt, but are

ing significant amounts. These findings point to an overestimation of natural salt 

the USGS model. To correct or refine the USGS model would require a reanalys

the detailed data on which the regressions were based. However, this data is no

able. Therefore, we propose a new technique to relate natural flow to natural salt t

more accurate and for which the uncertainty can be quantified.

3.4 Statistical Nonparametric Natural Salt Model

To address the problems of overprediction by the existing model technique

developed a new modeling approach to estimate natural salt mass given natural 

The model is a nonparametric statistical model, based on a local polynomial met

that fits a function to relate natural salt to natural flow. The uncertainty in the estim

of the natural salt from this model is incorporated via a k-nearest neighbor (K-NN

bootstrap technique.

3.4.1 Local Regression (Nonparametric Regression)

Parametric techniques generally are limited to fitting a linear relationship to

function , i.e., linear regression. Furthermore, parametric techniques fit an equaf
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(linear or nonlinear) to the entire data, which restricts the ability to capture non-lin

ities in the data. In addition, hypothesis testing requires normality assumption of 

error term, thus further restricting the model (Helsel and Hirsch, 1992).

A relationship between a dependant variable (y) and a set of independent

ables (x) taken in the form of

Eq. 3.7

where  is the error term.

Nonparametric methods, on the other hand, fit the function locally and m

no prior assumption about the functional form, i.e., linear, quadratic. Thereby, the

have greater flexibility in capturing any arbitrary relationship. Several nonparame

methods exist: kernel based, splines, local polynomials. For a detailed descriptio

these methods and comparisons, refer to Owosina (1992) and references therein

adopted a local regression scheme that has been shown to be easy to implemen

effective (Rajagopalan, and Lall, 1998, and Loader, 1999). The method and the a

rithm are described through the following example.

The synthetic dataset was generated from the following equation:

Eq. 3.8

where  is a mean zero, variance 0.1, Gaussian random variable adding noise t

function. The function is shown in Figure 32, where  is a sequence of 100 poin

from . The solid circles indicate points generated from Eq. 3.8. The long-

dashed line shows the true function (i.e., ) without the noise term. T

short-dashed line is a linear regression fit to the data, and the medium-dashed lin

quadratic regression fit. It is evident that neither of these regressions is able to ca

y f x( ) et+=

et

f

yt xt( )sin 0.2
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0 2π→
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the nonlinear sinusodal function, the true underlying function.

Local regression, shown by the solid line, is able to fit this data well. We u

the library, LOCFIT, designed for use with Splus (Loader, 1999). The local regress

technique, as the name suggests, performs local regression at each point of esti

We explain this methodology, with reference to Figure 32, as follows:

(i) Let us assume that we want to estimate the function at .

(ii) A neighborhood is defined around . The size of the neighborhood is

, where is a parameter between 0 and 1. Bigger indicates m

smoothing. (For example, for and a local linear fit; it is the same

the parametric linear regression).

(iii) For the neighbors captured in the neighborhood (shown in the dashed

angles) a regression of order is fit. Typically, a linear fit works very we

(shown as the heavy solid line within the neighborhood).

(iv) The fitted regression is used to estimate at .

(v) This is repeated at all points where we need the estimate.

The advantages to this method are apparent. Because we fit local regress

there is great flexibility in modeling any structure that might be present in the data

ear and nonlinear). The neighborhood size ( ) provides the amount of smoothin

Furthermore, this approach is assumption free, unlike the parametric models tha

require data to be Gaussian distributed.

xt

xt

α n× α α

α 1=

p

xt

α
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Alpha can be chosen by various methods; typically a function is chosen (i.e

linear regression it is the least square minus the sum of the squares of the differe

between the observed and estimated values). However, the performance of a fitt

model in terms of predicting future values is not assured. Therefore, fitting the m

over predictive sum of squares instead of least squares would be very effective. 

method is the cross-validation (CV) in which a point is dropped and it is predicted

fitting a model to the rest of the data.

Eq. 3.9

xt

yt

Figure 32: This figure shows several data fitting techniques for data generated by
function with noise.The solid line is a local linear regression with alpha = 0.2, ca
lated by the LOCFIT algorithm. The dashed rectangle depicts the neighbors cho
around point xt to develop the local linear regression. A local least square linear
regression on the points in the rectangle is indicated by a heavy solid line.

CV α( ) 1
n
---- Yi y i–

–( )2

i 1=

n

∑=
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where is the estimate at by dropping from the fit. This approach choo

different s and selects the one that minimize Eq. 3.9. When a dataset is small Lo

(1999) recommends using CV; therefore, we used this technique to find .

The generalized cross validation (GCV) function, on the other hand, is a g

estimate of the predictive error when the dataset is larger. The GCV score functio

provides an estimate of the CV. The GCV uses all points from a neighborhood, th

estimates  with various neighborhood sizes and finds the neighborhood size th

gives that lowest score. The neighborhood size with the lowest GCV score determ

the appropriate alpha.

The GCV score function for a local estimate of  is given as

Eq. 3.10

where:  is the fitted degrees of freedom,

 is the sample size,

 is the residual.

This local regression technique is used to fit the natural salt as a function 

natural flow. This modeling technique uses the human-induced salt loading data 

in the current CRSS model to calculate natural salt mass. Calculated natural salt

is “back-calculated” from the observed historic salt mass by adding the mass fro

agricultural salinity pickup and removing the mass that leaves with exports. Using

calculated natural salt, a direct relationship between natural flow and salt is found

developed 12 relationships, one for each month, for years 1941 to 1985. Using t

mass added by agriculture and removed by exports from the CRSS model allows

statistical nonparametric natural salt model results to easily be incorporated in th

model.

Figure 33 shows a scatter plot of the calculated natural salt and natural flow

y i–
xi xi yi,

α

α

yi

µ̂

GCV α( ) n

Yi yi–( )2

i 1=

n

∑

n ν1–( )2
-------------------------------------=

ν1

n

Yi yi–
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the month of April for the years 1941 to 1985. The dotted line represents a param

least squares linear regression; it fits the regression using the entire dataset at on

cannot capture nonlinearities of the data distribution. The nonparametric local re

sion, shown by the solid line, captures nonlinear features of the calculated natural

and natural salt relationship using an alpha of 0.95. Rajagopalan and Lall (1998)

describe similar nonparametric regression in which they use a locally weighted p

nomial regression to estimate spatial data describing precipitation.

We developed a K-NN residual resampling technique to quantify the unce

tainty of the estimates from the local regression method. This technique is simila

the modified K-NN technique described in Chapter 2.

3.4.2 Residual resampling

The residuals from the regression indicate the uncertainty of the regression
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Natural Flow vs Natural Salt Mass for April WY 1941 to 1985

Figure 33: This figure shows nonparametric regression for natural salt depen-
dent on natural flow. Alpha equals 0.95.
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quantify the uncertainty of estimates for natural salt from the regression, we impl

mented a method to resample the residuals. The data is widely scattered around

regression, indicating large variance. To quantify the variance in the data genera

from the regression relationship, we used a K-NN technique as described in Chap

For example, in Figure 34, the stochastic flow model generated a natural flow xt. We

first found the mean xt associated salt mass yt from the regression. Next, we found the

k nearest neighbors, using a Euclidean distance, shown as circles. The k-nearest

bors are outlined with the dashed rectangle. We resampled one of the residuals,t
* ,

using a weighted kernel and added it to the mean salt mass estimate yt. We repeated

this technique for each value of natural flow developed from the stochastic natural

model. When we applied this method to 100 ensembles of simulated natural flow

resulting 100 ensembles of simulated natural salt reflected the variance around t

regression of the calculated natural salt as a function of natural flow.
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Figure 34: This figure shows nonparametric regression for natural salt depen-
dent on natural flow. Alpha equals 0.95.
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3.5 Model Evaluation

We used the statistical nonparametric natural salt model (SNNSM) to gene

natural salt mass for given values of natural flow. We compared the results to res

from the USGS salt model and the calculated natural salt. We evaluated each tech

on how well it reproduced the calculated natural salt, and we discussed the differe

3.5.1 Test Ensembles

The SNNSM takes natural flow data and generates an estimated value of

ral salt. We used calculated natural flow data from water years 1941 to 1985 and

calculated natural salt data from 1941 to 1985 above USGS stream gauge 0907

(Colorado River near Glenwood Springs, CO) to develop the regressions for the

SNNSM. The calculated natural flows are the observed historic flows minus the t

human-induced consumptive use. We calculated the calculated natural salt from

toric gauged data and salt load data from CRSS as

calculated natural salt = observed historic salt
+ salt with water exported out of the basin
- salinity pickup from agriculture (values
based on CRSS)

The salt removed by exports and the salt added by agriculture for the peri

1941 to 1985 were taken from the data used to drive the CRSS model. In the CR

model, agriculture annually adds 137,000 tons of salt above gauge 09072500. A

stant salinity pickup is a fair assumption because agricultural consumptive use w

basically constant from 1941 to 1995. The exports remove a constant concentrati

100 mg/L. The tons removed by exports vary with flow, according to the relations

between flow and salt mass.

We found the regression relationships for each monthly time series, i.e., w

developed 12 relationships between calculated natural flow and salt mass. Devel

these relationships was necessary because the current CRSS model simulates riv

icy at a monthly timestep. Enabling the model to accept an annual timestep is be
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the scope of this research.

We developed confidence intervals around the estimated salt mass, which

calculated directly from the regression, by running 100 synthetic traces of month

simulated natural flow through the statistical nonparametric natural salt model, in

porating residual resampling to generate 100 synthetic traces of monthly simulat

natural salt mass. We summed the simulations to an annual time step and then c

lated the 5 percent and 95 percent quantiles of the data, finding the confidence i

vals.

3.5.2 Model Evaluation Criteria

We compared results from the SNNSM to results from the USGS salt mod

for water years 1941 to 1995. We evaluated each model’s performance on a mon

and annual time scale. We derived the annual time series by summing the water

months, October through September. We compared three aspects for each salt m

First, we compared the regressions developed with the SNNSM to the US

salt model.

Second, we used both model regressions to generate estimated natural s

mass from 1941 to 1995 given the same estimated natural flows. We calculated 

mated historic salt from the estimated natural salt mass for each salt model. We 

lated estimated historic salt mass as

estimated historic salt = estimated natural salt
- salt from exports
+ salt from agricultural salinity pickup

We evaluated each technique on how well it matched the observed historic salt m

Third, we added the confidence interval developed from the residual resam

pling technique in the SNNSM and plotted the estimated natural salt and the estim

natural salt from the USGS salt model. We evaluated each technique on how we

matched the calculated natural salt. Of interest was if the SNNSM could capture
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calculated natural salt within the confidence intervals.

3.6 Results

Figure 35 shows the local linear regression relationship developed using o

SNNSM and the existing USGS salt model for April and June. The solid circles s

the data points for calculated natural flow versus calculated natural salt. The dot

line shows the relationship developed by the USGS salt model. It is a power curv

relationship developed for the month of April, from the USGS salt model technique

find estimated natural salt. The solid lines shows the SNNSM relationship. It sho

local linear regression of the solid circles. The local linear regression is able to cap

the nonlinear characteristics of the data. For April, the USGS salt model relations

underestimated the calculated salt mass when compared to the SNNSM. The low

graph compares the same relationships for the month of June, which displays data

a relatively linear relationship. June is a higher flow and salt mass month. During

month, the USGS relationship estimated higher salt mass than the SNNSM. The w

scatter of the data points indicates there is more variability around the relationsh

The USGS relationship has no method to incorporate the variance in the data ar

the regression, while the SNNSM can incorporate this variance by resampling th

residuals from the regression when generating salt mass.
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Figure 35: This figure shows the relationship for natural salt dependent on natura
flow for water years 1941 to 1985. The dashed line shows the USGS salt model 
tionship. The solid circles show SNNSM, and the solid lines show the local linear
regression. For April (upper graph) the USGS slightly under-estimates the result
taken directly from the natural flow and salt estimates. For June (lower graph) th
USGS relationship predicts a higher salt mass compared to the SNNSM. Both
LOCFIT’s have an alpha of 0.95.
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Figure 36 compares the regressions of annual values for calculated natural

and salt. The annual values are a summation of the monthly values, showing the U

salt model estimates higher natural salt mass than the SNNSM. At the higher flo

both regressions give a similar salt mass for a given high flow while at lower flows,

USGS salt model gives a significantly higher salt mass for a given low flow.

The graphs of Figure 37 display time series generated using both the new

posed regression of calculated natural salt as a function of natural flow and the r

sion proposed by the USGS. We used a single calculated natural flow time series

water years 1941 to 1995 to generate estimated natural salt given the calculated n

flow. The estimated natural salt was generated at a monthly time step. We summe
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Figure 36: The open squares show the annual natural salt mass, summed from
monthly natural salt, for the USGS salt relationship, and the dashed line shows a
squares fit. The solid circles show the data to find the SNNSM relationship, and 
solid line shows a LOCFIT through the data. The USGS salt model gives higher n
ral salt mass compared with the SNNSM.
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monthly data to annual to remove the seasonal signal from the time series. The 

dashed line shows the local linear regression without the residual resampling. Th

double-dot-dashed line is the result from the USGS salt model. In the upper grap

can be seen that the USGS salt model estimates a higher estimated natural salt 

than the SNNSM. The lower graph shows the estimated historic salt using the es

mated natural salt generated from both the SNNSM and the USGS salt model. T

heavy solid line is the observed historic salt mass. As shown, the SNNSM tracke

observed historic salt mass more accurately and tracked the salt mass well durin

flow periods.
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Figure 37: The upper graph compares the time series for natural salt generated 
the USGS relationship and the modified K-NN method with the historic natural flo
from 1941 to 1995. The lower graph compares the time series for simulated hist
salt using the natural salt generated from the USGS relationship and the modifie
NN method with the observed historic salt from 1941 to 1995.
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Annual Historic Salt Mass
@ Gauge 09072500 (Colorado River near Glenwood Springs, CO)
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Figure 38 shows the effects of adding the residual resampling step into th

SNNSM. With the residual resampling, we were able to incorporate the variance

our regression when generating simulated natural salt given an ensemble of sim

natural flow. The dot-dashed line labeled “Statistical Nonparametric Natural Salt

Model (SNNSM)” shows the estimated natural salt from the model if only the reg

sion were used and no resampling were performed. Adding resampling perturbs

result from the regression based on the variance of our regression. To show the e

of the perturbation, we developed confidence intervals (dashed line) around the 

tical Nonparametric Natural Salt Model line, as described in Section 3.5.1, “Test

Ensembles.” By incorporating the confidence intervals, we were able to capture t

variability of the estimated natural salt from the regression during the period 194

1985. After 1985, the estimated natural salt falls slightly below the 5 percent con

dence interval. This indicates that, for given natural flow, the natural salt is lower a

1985 than before 1985. Including the natural flow and salt data after 1985 when d

oping our SNNSM will allow our confidence intervals to capture the salt after 198

The heavy double dot-dashed line shows the natural salt from the USGS

regression. The USGS relationship is outside the upper confidence intervals for a

one year. The SNNSM rarely generated values as high as the USGS regression
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Figure 38: The upper graph shows the annual natural salt mass time series from
modified K-NN method with 5 percent and 95 percent confidence intervals. The
heavy solid line shows the calculated natural salt mass. The dot-dashed line show
natural salt mass taken directly from the local regression. The 5 percent and 95 
cent confidence shows the variation around the line direct from the regression th
occurs from the residual resampling. The lower graph removes the calculated na
salt and adds the natural salt determined from the USGS relationship. It is evident
the USGS relationship determines the natural salt mass to be higher than the na
salt mass we determined with our technique.
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3.7 Discussion and Conclusions

The current salt model proposed a relationship for calculated natural salt 

as a function of calculated natural flow with a weighted least-square regression fit

model of observed historic salt mass as a function of observed historic flow and se

development variables, which represent the human-induced water resource deve

ment throughout the basin.

We outlined a technique to calculate the natural salt based on the way CR

simulates estimated historic salt mass. The estimated natural salt and the human

induced salt determined the estimated historic salt mass. The observed historic sa

water years 1941 to 1995 was compared to the estimated historic salt generated

the USGS salt model and found to be 15 percent, or 86,000 tons, greater than th

annual average observed historic salt mass.

Using the calculated natural flow and salt mass, we created a relationship

between calculated natural flow and salt mass. Using the regression developed f

the relationship and the calculated natural flow, we were able the reduce the differ

between the annual average observed historic salt mass and the estimated histo

mass to 0.8 percent, or 4,000 tons. Further, we incorporated the residual resamp

technique in the SNNSM to enable the model to preserve the variance around th

regression of the calculated natural salt as a function of calculated natural flow.

The resampling technique allowed a greater variety of natural salt values t

generated for a given natural flow. These techniques allowed the SNNSM to repro

the calculated natural salt from 1941 to 1985 within confidence intervals created f

100 simulations of estimated natural salt mass.
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Chapter 4

Historic and Future Salt Concentration Modeled in RiverWare

4.1 Introduction

Salt concentration is important in the Colorado River basin because it is a

water quality parameter regulated by federal water quality standards. Federal wa

quality standards were set as a result of the Federal Water Pollution Control Act

Amendments of 1972. The Amendments, interpreted by the Environmental Protec

Agency, require numerical standards for salinity levels in the Colorado River bas

Modeling studies that predict long-term salinity levels under various operational s

narios and salinity control projects facilitate planning and operating the river to m

water quality standards. Operational and planning policies in the Colorado River b

are complicated because the basin is governed by many laws, statutes, and cou

decrees. To capture these complex policies in a modeling tool, the U.S. Bureau of

lamation (USBR) developed the Colorado River Simulation System (CRSS) (U.S

Department of Interior, 2001), a series of computer models for the entire basin.

Developed in the early 1970’s, one of the purposes of CRSS is to conduct l

term operational and planning studies that allow managers to understand the effe

future development on salinity throughout the Colorado River basin.

CRSS includes a simulation model of the entire Colorado River system. It a

includes a stochastic natural flow model to generate future stochastic flows and a
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regression model that estimates natural salinity associated with natural flows. Th

chastic natural flow model used for many years is the index sequential method (I

ISM is limited to generating flows and flow sequences that have occurred historic

which limits the ability of planning studies to consider flows that are statistically p

sible but have not occurred. The salt regression model consists of a series of 12

monthly regressions of natural salt mass as a function of natural flow that were d

oped by the USGS (Mueller and Osen, 1988), as discussed in Chapter 3. These

models provide the natural flow and natural salt input data for the CRSS simulati

model.

To ensure the CRSS simulation model is calibrated, it is periodically used

simulate a historic period and the results are compared to the observed historic re

If discrepancies are found, the model is not simulating the historic period correct

Recently, the historic runs have indicated that the simulation system overpredicts

throughout the basin, as discussed in Chapter 3, “Statistical Nonparametric Mod

Natural Salt Estimation.” We found that the salt entering and leaving the river from

human-induced sources appeared reasonable, based on Iorns et al. (1965) report

we concluded that the 12 monthly natural salt regressions developed by the USG

overestimate natural salt when the results from the regressions are summed to a

natural salt.

To improve CRSS performance, newly developed models replaced both th

stochastic natural flow model and the natural salt regression model. In this chapte

bring these new models together in a simulation model to demonstrate that they 

accurately reflect variability by improving flow variability prediction and quantifica

tion of risks, fully reflecting future salt variability by improving the relationship

between natural flow and salt, and reproducing historical results. These developm

result in an improved analysis of future salinity and quantified risks.

We performed our study on the upper mainstem of the Colorado River, at
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USGS stream gauge 09072500 Colorado River near Glenwood Springs, CO. We c

the upper Colorado River mainstem because this part of the basin contributed m

than 51 percent of the total annual historic salt load seen in the outflow from Lak

Powell from 1941 to 1990. Gauge 09072500 also exhibited an overprediction of 

toric salt mass in the calibration runs from 1970 to 1990 by 20 percent. One of ou

mary goals was to develop techniques to correct the overprediction. While

investigating the cause and means to correct the overprediction, we intended to e

our solutions were portable and easily implemented at the 28 remaining gauges

throughout the basin.

4.2 Existing CRSS

CRSS is used to simulate flow and salt over a historic period to verify that

model is calibrated. It is also used to simulate future periods and model propose

development and changing operational and planning policy. The model uses diffe

input data for different simulated time periods. The CRSS simulation model runs

monthly time step, as required by the operational rule set.

4.2.1 Historical Verification

When CRSS is used to verify a historic period the CRSS simulation mode

populated with historic data. Thecalculated natural flow,available from 1906 to 1995

at a monthly time step, is obtained as follows:

calculated natural flow = observed historic flow
+ agricultural consumptive use
+ exports
+ municipal and industrial consumptive use
± effects of off-stream reservoir regulation

The primary sources of data include the observed historic flow from USGS

stream gauge records, agricultural consumptive use estimated by the USBR usin

Blaney Criddle method, exports from USGS stream gauge records, off-stream re
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voir regulation from USBR records for off-stream reservoirs run by the USBR or 

independent manager (USBR, 1983(2); USBR, 1985; USBR, 1987; USBR, 1992

USGS stream gauge 09072500 recorded river flows from water year 1899

1966. Since 1966, flow has been determined at the gauge as the difference betw

flows at USGS stream gauge 09085000 (Roaring Fork River at Glenwood Spring

CO) and USGS stream gauge 09085100 (Colorado River below Glenwood Sprin

CO). A different gauge performs periodic conductivity measurements. The condu

ity measurements from USGS water quality gauge 09071100, from 1942 to presen

used to calculate total dissolved solids. In the Colorado River basin, total dissolv

solids is accepted as a measure of salt concentration. Salt mass is calculated by

plying flow volume and salt concentration, then using the appropriate conversion

tor. The salt gauge was extended back to 1941 as described in Mueller and Ose

(1988). After this work, a historic flow time series from 1906 to 1995 and a histor

salt time series from 1941 to 1995 were available. Together, these time series repr

the observed historic flow and salt mass in the Colorado River near Glenwood Spr

Colorado, at a monthly time step.

A series of 12 regressions, developed by the USGS, were used to compu

estimated natural salt mass associated with natural flows. The regressions were de

oped using observed historic flows and salt and several development variables (

ler and Osen, 1988).

Figure 39 depicts the CRSS simulation model’s water and salt balance wi

line diagram of the basin above USGS stream gauge 09072500. The inputs are 

top of the diagram: calculated natural flow, as described previously, and the assoc

estimated natural salt mass from the USGS salt model. The model routes these 

through the river reach above USGS gauge 09072500, where the historic month

depletions from agriculture, exports, municipal and industrial uses, and the effec

off-stream reservoir regulation are removed from the river reach. Reservoir regul
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describes the total monthly change in surface storage, surface evaporation, and 

storage (as appropriate) in reservoirs above USGS gauge 09072500. Salt mass is

with agricultural returns and removed with exports. The left side of the diagram sh

how simulated historic flow is related to calculated natural flow. The right side sh

how simulated historic salt mass is related to estimated natural salt mass. The C

simulation model simulates these processes and produces as output historic gau

flows and associated salt mass. The result of a historical verification run is show

the end of Chapter 3, “Statistical Nonparametric Model for Natural Salt Estimatio

saltflow

historic agriculture

historic exports

historic municipal and industrial

historic effects of off-stream

calculated natural flow estimated natural salt mass

simulated historic flow simulated historic salt mass

USGS stream gauge 09072500

Figure 39: Line diagram of the CRSS simulation model and data for historic verifi
tion.

consumptive use
irrigated
lands

reservoir regulation

salt loadings

salt removed
with exports

agricultural
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4.2.2 Stochastic Planning Runs

Long-term operational and planning studies are also conducted using CR

For these runs, the CRSS simulation model uses natural flows generated by the

The ISM resamples the 90 years of historic calculated natural flows, generating 9

individual time series sequences ofsynthetic natural flows. The CRSS simulation

model uses the 90 synthetic natural flow time series sequences, or traces, to pro

90 simulated results, which are then used to generate statistical probabilities of va

events.

The USBR has used the index sequential technique to generate synthetic

hydrology for the CRSS since the inception of the CRSS in the 1970’s. Various stu

have found that the ISM generates “statistically faithful” synthetic streamflow

sequences (Kendall and Dracup, 1991; Ouarda et al., 1997). The Colorado Rive

tem is well suited to using the index sequential modeling system because of the 

sive historic time series in the basin (water year 1906 to 1995).

Two attributes of the ISM that detract from its usefulness are that it requires

extensive time series and that it cannot generate values or hydrologic sequences

have not occurred in the original dataset. Thus, a hydrologic sequence such as a p

of drought or surplus that has not been seen in the past could not be generated.

The simulation model also requires thesynthetic natural salt mass associated

with each synthetic natural flow sequence. Again, the series of 12 regressions, d

oped by the USGS, are used to compute the associated synthetic natural salt mas

given synthetic natural flow. Thus, 90 individual synthetic natural salt traces are fo

using the regressions, one for each synthetic natural flow trace.

Figure 40 depicts the CRSS simulation model’s water and salt balance, w

line diagram of the basin above USGS stream gauge 09072500 when the simula

model simulates future flow and salt mass. The inputs are at the top of the diagra

synthetic natural flow, from the stochastic natural flow model and associated synt
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natural salt mass from the USGS salt model. The model routes these inputs thro

the river reach above USGS gauge 09072500, where the projected future month

depletions from agriculture, exports, municipal and industrial uses are removed f

the river reach. Projected salt mass is added with agricultural returns and removed

exports.

The left side of the diagram shows how simulated future flow is related to 

thetic natural flow. The right side shows how simulated future salt mass is related

synthetic natural salt mass. The simulation model performs Monte Carlo simulati

by running each synthetic natural flow and associated salt time series. The exist

CRSS has 90 synthetic natural flow and associated salt time series that are each

through the simulation model, one at a time, calculating 90 simulated historic or fu

flow and associated salt time series. Together, the 90 simulations of simulated his

or future flow, salt, and concentration can be used to approximate the PDF for th

observed historic or predicted future flow, salt, and concentration.

To verify that the stochastic planning runs simulate accurate traces of sim

lated flows and associated salt mass, the CRSS simulation model was populated

historic monthly depletions, instead of projected future depletions. Then, PDFs o

observed historic flow and salt mass were compared to the simulated historic flow

salt mass from the CRSS simulation model. If the simulation statistics preserved

observed historic flow and salt mass statistics, the CRSS is deemed verified.

We performed stochastic planning runs with both historic depletions to ve

the simulation runs and projected future depletions, to compare the existing CRS

explained previously, and the modified CRSS, explained next.
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4.3 Modified CRSS

To address the limitations of the existing CRSS modeling system, we dev

oped a modified stochastic natural flow model and statistical nonparametric natu

salt model. A description of these models follows. We used both models to gene

data for the CRSS simulation model. We compared the results from the simulatio

model to results from simulations using the ISM natural flow and USGS natural s

regression model described previously.

saltflow

future agriculture

future exports

future municipal and industrial

 synthetic natural flow associated synthetic natural salt mas

simulated future flow simulated future salt mass

USGS stream gauge 09072500

Figure 40: Line diagram of the CRSS simulation model and data for stochastic p
ning runs.

consumptive use
irrigated
lands

salt loadings

salt removed
with exports

agricultural
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4.3.1 Modified Stochastic Natural Flow Model

As stated many times, a drawback of ISM is that it cannot generate synth

sequences that did not occur in the past record. An alternate nonparametric meth

NN, eliminates this drawback. Traditional K-NN methods resample values from t

historic time series, one at a time (Lall, 1995). Because samples are not taken a

blocks, as in the ISM, this technique is able to produce time series sequences th

not occur in the historic data. However, values are limited to those in the data se

further developed the traditional K-NN technique to provide the ability to create v

ues not seen in the historic record. Our modified K-NN method developed a regres

relationship between successive months’ flows and saved the residuals from the

regression. The succeeding month’s flow was first calculated from the appropriat

regression. Then, the k-nearest flows to the flow from the regression were found

residual from the k-nearest flows was resampled and added to the flow from the re

sion to produce a new value. This scheme allowed the K-NN method to perturb t

historic data within its representative neighborhood and allows extrapolation bey

the sample, while maintaining the residuals of the data. The method is described

detail in Chapter 2, “Modified Nonparametric K-NN Model for Generating Stochas

Natural Streamflow.”

Like the ISM, the modified K-NN has the advantage of nonparametric mod

there is no need to transform the data to fit an assumed probability density functio

has the further advantage of being able to generate synthetic time series contain

numbers and sequences that have not occurred in the past, but are “statistically 

ful” to the original time series.

Chapter 2, “Modified Nonparametric K-NN Model for Generating Stochast

Natural Streamflow,” demonstrated that the generated synthetic time series of na

flow PDFs preserved the PDF of the historic data. We used a PDF with boxplots o

annual synthetic natural flow to validate the modified stochastic natural flow mod



123

inity

ow

e the

alt

tural

ntile

tic

rcent

an of

 the

by a

in

a that
The monthly time series were summed to an annual time series because the sal

standard is based on an annual time step.

We used the K-NN flow model to generate one hundred 55-year natural fl

traces based on the monthly calculated natural flows from 1941 to 1995. We chos

1941-1995 period because of the availability of both observed historic flow and s

data to verify the model results. Figure 41 shows a plot of the annual calculated na

flow PDFs from 1941 to 1995 as the solid line. The boxplots display the interqua

range (IQR) and whiskers extending to 1.5 * IQR for the PDFs of the 100 synthe

natural flow traces. The interquantile range (the box) indicates the range for 50 pe

of the data around the mean. The horizontal line inside the IQR depicts the medi

the data. The whiskers approximate the 5 percent and 95 percent confidence for

traces. Data beyond the whiskers (1.5 * IQR) are termed outliners and indicated 

solid circle.An example boxplot is given:

Each plot in Figure 41 shows that the calculated natural flow PDF fell with

the interquantile range of the boxplots. Hence, the model generated synthetic dat

is statistically consistent with the historic data.

(IQR)

whiskersmedian

1.5*IQR

1.5*IQR

25% of data above mean

25% of data below mean

outliner

interquantile range
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Unlike the salinity data, the flow data was not limited to the time period 19

to 1995. Calculated natural flow data was available from 1906 to 1995 at this gau

Using the full time period increased the sample size for the stochastic model, inc

ing the certainty of the model results. In Figure 42, the solid lines show the PDF 

the calculated natural flow from 1941 to 1995, while the dotted line represents the

for the calculated natural flow from 1906 to 1995. Note that the PDF for the longe

time period is different from the PDF for the shorter period. When the longer peri

was used to generate synthetic natural flows, the boxplots from the 100 simulatio

follow the PDF for the calculated natural flow from 1906 to 1995, not the PDF for t

shorter period.

The boxplots in the upper graph represent the 100 synthetic natural flow P

Figure 41: The solid line shows the PDFs for the calculated natural flow from 1941
1995. The boxplots describe the interquantile range (IQR) and whiskers for app
mately 5 percent and 95 percent from the PDFs of the 100 synthetic natural flow
traces. The plot represents a single run of the KNN flow model. The run preserv
the calculated natural flow in the interquantile range over all flows.
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from the modified K-NN stochastic natural flow model, and, in the lower graph, 1

synthetic natural flow PDFs generated from the ISM. ISM performs best with an

extensive historic record, therefore, we compared ISM to the modified KNN flow

model using the full record, allowing ISM to produce its best results. Using the tim

period 1906 to 1995, ISM generated 90 simulations of synthetic natural flow.

The main disadvantage of ISM is that it cannot generate synthetic data th

statistically possible but has not occurred in history. As a result, ISM produced a

rower range of probabilities at each given flow than the modified K-NN flow mode

This narrower range is indicated by the longer boxplots produced by the modified

NN flow model, which can generate synthetic stochastic data that is statistically p

ble but has not occurred in history.
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PDF of natural flow
from 1941-95

PDF of natural flow
from 1906-95

Figure 42: The upper graph shows the PDF for K-NN synthetic natural flow. The
lower graph shows ISM synthetic natural flow. Both are based on calculated nat
flow from 1906 to 1995. In both graphs the solid line represents the PDF for the ca
lated natural flow from 1941 to 1995, while the dotted line represents the calcula
natural flow from 1906 to 1995. The boxplots represent the PDFs of 100 simulate
NN and 90 simulated ISM synthetic natural flows. The K-NN model simulated a
wider range of flows.
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4.3.2 Statistical Nonparametric Natural Salt Model

To replace the USGS model, we developed a statistical nonparametric na

salt model that computes a natural salt mass given a natural flow, either historic or

erated by the K-NN flow model. The computation is achieved using a nonparame

local regression fit to a scatter plot of calculated natural flow versus calculated na

salt, both from 1941 to 1995. The calculated natural salt is calculated from histor

gauged data and salt load data from the CRSS simulation model as follows:

calculated natural salt = observed historic salt
+ salt with water exported out of the basin
- salinity pickup from agriculture (values
based on CRSS)

The value computed from the local regression is perturbed with a local resid

chosen by a K-NN technique that resamples a residual from the nonparametric r

sion.

A detailed description of the statistical nonparametric natural salt model an

subsequent validation are in Chapter 3, “Statistical Nonparametric Model for Nat

Salt Estimation.” To validate the statistical nonparametric natural salt model, we 

the estimated natural salt time series into fitting and subsequent future projection

ods. The fitting period was from water year 1941 to 1985. The validation period w

from water year 1986 to 1995.

The upper graph in Figure 43 shows the annual calculated natural salt ma

PDF from 1941 to 1995 as a solid line. The boxplots represent the PDFs of the 1

simulations of monthly synthetic natural salt mass, summed to annual. The statis

nonparametric natural salt model, using synthetic natural flows, generated the mo

synthetic natural salt mass. The calculated natural salt mass did not fall within th

interquantile range of the synthetic natural salt mass. We hypothesized that this 

result of certain monthly regression data that have outliers, weakening the regres

relationship. To verify our hypothesis, we developed a regression of annual calcu
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natural flow as a function of annual calculated salt mass. We used the regression

generate the annual synthetic natural salt as a function of the annual synthetic n

flow, where the monthly synthetic natural flows were summed to annual. The low

graph in Figure 43 shows the PDFs of using the annual regression, rather than s

ming the results from 12 monthly regressions. The interquantile range of the sim

tion boxplots encompassed the PDF of the calculated salt mass over the entire r

These findings show that an annual regression model best preserves the a

natural salt PDF. Unfortunately, CRSS requires entering natural flow and salt data

monthly time step to accommodate the operational rule set. Work to move the op

tional ruleset to an annual time step is being considered. When the work is comple

annual regression salt model will best preserve the natural salt mass PDF, avoidin

summation of monthly salt mass values.
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Figure 43: The solid line shows the PDFs for the calculated natural salt from 1941
1995. The boxplots describe the interquantile range (IQR) and whiskers for app
mately 5 percent and 95 percent of the 100 synthetic natural salt traces. The up
graph uses a monthly statistical nonparametric salt model. The lower graph use
annual statistical nonparametric salt model, preserving the tail of the calculated n
ral salt PDF.
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The statistical nonparametric natural salt model was fitted with the calcula

natural salt mass data, from 1941 to 1995. Salt mass data before 1941 was not a

able. This regression relationship can be applied to estimate (find) natural salt ma

dates outside the 1941 to 1995 range. The statistical nonparametric natural salt 

model was used to compute natural salt associated with one hundred 90-year tra

synthetic natural flows based on the 1906 to 1995 calculated natural flows. In the

upper graph of Figure 44, the solid line shows the PDF for calculated natural salt f

1941 to 1995. (A PDF for calculated natural salt from 1906 to 1995 was not avail

because there is no historic salt mass data before 1941.) The interquantile range

100 synthetic natural salt mass traces did not include the calculated natural salt 

shown as a solid line, over the entire range. This resulted from using synthetic na

flows based on calculated natural flows from a longer time period than the period

the calculated natural salt mass.

The lower graph shows the results using the ISM to generate 90 traces of

thetic natural flows and USGS regressions to find the associated salt mass. The

line shows a significant shift in the peak of the boxplots compared to the PDF for

culated natural salt mass from 1941 to 1995 (solid line). This shift reveals that th

USGS regression gives a higher salt mass for a given flow than our statistical non

metric natural salt model.
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Figure 44: The upper graph shows the PDF for the modified CRSS synthetic natu
salt, while the lower graph shows the existing CRSS synthetic natural salt mass.
evident that the USGS regressions used in the existing CRSS overestimate the s
line that shows the calculated natural salt mass PDF.
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Although salt mass is typically the modeled value of interest, concentratio

the regulated value and the measured value. Thus, the model should be validate

concentration. Salt concentration is a function of both flow volume and salt mass g

by:

Eq. 4.11

where 735.29 is a conversion factor that converts tons/acre-foot to mg/L. In Figure

the upper graph displays thecalculated natural salt concentrationPDF as the solid

line, with boxplots from PDFs of 100 synthetic natural concentration traces. We fo

calculated natural salt concentration using equation 4.11 with the calculated natu

salt and natural flow. We found the 100synthetic natural salt concentration traces

using equation 4.11 and the 100 monthly synthetic natural flow and salt mass tra

described previously. We were not able to preserve the calculated natural salt co

tration PDF in the interquantile range over all flows. Again, we hypothesized that

is a result of summing the results from the monthly salt regressions. In the lower

graph, using a single annual salt regression preserved the calculated natural sal

in the interquantile range of the 100 synthetic natural salt concentration PDFs. T

result further indicates the importance of developing a simulation model that can

ulate natural flow and salt data at an annual time step.

salt concentration (mg/L) salt mass (tons) 735.29×
flow volume (ac-ft)

------------------------------------------------------------=
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Figure 45: The upper graph shows the PDF for synthetic natural salt concentrati
from 12 monthly regressions to calculate synthetic natural salt mass. The lower g
shows the synthetic natural salt concentration from a single annual regression to
culate synthetic natural salt mass. Using the single annual regression allowed the
ulation to preserve the calculated natural salt concentration (solid line) in the
interquantile range.
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Using 100 synthetic natural flow traces based on the 1906 to 1995 calcula

natural flow and the associated synthetic natural salt mass from the statistical non

metric natural salt model, we calculated 100 synthetic natural salt concentration tr

Figure 46 shows the calculated natural salt concentration PDF from 1941 to 1995

solid line, with the boxplots of the 100 synthetic natural salt concentration PDFs.

The natural flows from 1906 to 1995 were generally higher than flows from

1941 to 1995, causing the synthetic salt concentration to be lower than the calcu

natural salt concentration from 1941 to 1995. The lower graph of Figure 46 shows

results using the existing CRSS models to generate 90 synthetic natural salt conc

tion traces. Figure 46 shows that the boxplots from the PDFs of 90 synthetic trac

peaked at a higher salt mass than the calculated natural salt concentration PDF,

solid line, from 1941 to 1995. Again, this higher salt mass occurred because the 

thetic natural salt mass from the existing CRSS model is greater than the calcula

natural salt mass, as shown in Figure 44.
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Figure 46: The upper graph shows the PDF for the modified CRSS synthetic natu
salt concentration. The lower graph shows the existing CRSS synthetic natural 
concentration. The existing CRSS overestimated the calculated natural salt con
tration (solid line), while the modified CRSS slightly underestimated the calculate
natural salt concentration.
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The code for both the modified stochastic natural flow model and the statist

nonparametric natural salt model are included in Appendix C, “Sample Splus Co

4.3.3 Simulation Model

The final step in our modeling system used the CRSS simulation model a

implemented in RiverWare (Zagona, 2001). The USBR re-implemented the CRS

simulation model in RiverWare to simplify changing operational policies.

To test the modified stochastic nonparametric natural flow model, we used

segment of the CRSS simulation model that includes USGS gauge 09072500 (C

rado River near Glenwood Springs, CO). The modified stochastic natural flow mo

and statistical nonparametric natural salt model generated inputs for the CRSS si

tion model. The inputs included calculated or synthetic natural flow and associat

natural salt mass. Additionally, human-induced depletions and salt loading were

entered in the CRSS simulation model, as explained in Section 4.2, “Existing CR

Total depletions are a sum of depletions from agriculture, municipal and industria

sources, exports, and reservoir regulation. Human-induced salt results from agric

tural salinity pickup and the salt removed with exports. We concluded that reserv

regulation has minimal effect on salt at an annual scale; therefore, reservoir regul

did not model salt. The time period simulated by the model dictated the depletion

salt loading data used in the run. For example, if the run simulated the historic tim

period from 1941 to 1995, the model used the depletions and human-induced salt

ings from the 1941 to 1995 historic record. If the model simulated the future time

period of 2002 to 2062, it used projected depletions and salt loadings.

CRSS performs Monte Carlo simulations by running each trace of synthet

natural flow and associated salt time series through the CRSS simulation model.

modified CRSS used 100 synthetic natural flow traces and associated salt mass

that were each run through the simulation model, one at a time, calculating 100 s
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lated historic or future flows and associated simulated salt mass and concentrati

time series. These simulations could be used to approximate the PDF for the obs

historic or predicted future flow, salt, and concentration.

We first used the CRSS simulation model to validate the modified CRSS s

tem by showing that it could preserve the observed PDF for historic flow, salt ma

and concentration from 1941 to 1995. The inputs were 100 traces of synthetic na

flow and associated salt mass traces generated with the modified stochastic natu

flow model, using the 1941 to 1995 calculated natural flow, and the statistical nonp

metric natural salt model, using the synthetic natural flow traces generated from 

modified stochastic natural flow model. The total depletions were based on 1941

1995 historic records.

The results were compared to the observed historic PDF, as discussed pe

ously. Figure 47 displays the observed historic flow PDF from 1941 to 1995 as a s

line, with boxplots describing the PDFs of the 100 simulations of simulated histor

flow from the simulation model. The shape of the observed historic flow PDF was

served well; however, the peak of the PDFs from the simulated historic flows was

dued and the tails were elongated.

Figure 48, upper graph, displays the observed historic salt mass from 194

1995 as a solid line, with boxplots describing the PDFs of the 100 simulations of

ulated historic salt mass. The simulated historic salt mass could not preserve the

observed historic salt mass in the interquantile range across all flows. Again, we

hypothesized that this was a result of summing the results from 12 monthly natura

regression models to calculate an annual salt mass.

Subsequently, we created a simulation model equivalent to the CRSS sim

tion model in S-Plus programming language. S-Plus is a statistical programming

guage that simplifies designing and modeling statistical models. The S-Plus simul

model allowed the synthetic natural flow and associated salt mass traces to be in
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and modeled at an annual time step. Modeling at an annual time step was possi

this model because no major river reservoirs occur in the case study area. Major

reservoir operating policy is expressed at a monthly time step. With the S-Plus sim

tion model, the statistical nonparametric natural salt model used a single annual

regression to compute natural salt mass associated with natural flow. The lower 

of Figure 48 shows the results of using the single annual regression rather than s

ming the results from 12 monthly regression. The simulated historic salt mass PD

shown with the boxplots, preserved the observed historic salt mass PDF in the in

quantile range over all flows.

Figure 47: The PDF for observed historic flow, solid line, with boxplots of the sim
lated historic flow from the modified CRSS. The modified CRSS simulations hav
subdued peak and elongated tails compared to observed historic flows.
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Figure 48: The upper graph shows the PDF for simulated historic salt mass from
monthly regressions to calculate synthetic natural salt mass. The lower graph sh
the simulated historic salt mass from a single annual regression to calculate syn
thetic natural salt mass. Using the single annual regression allowed the simulat
to preserve the observed data in the interquantile range.
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Figure 49, upper graph, displays the observed historic salt concentration P

from 1941 to 1995 as a solid line, with boxplots describing the PDFs of the 100 s

lated historic salt concentration traces representing 1941 to 1995. The simulated

toric salt concentration could not preserve the observed historic salt concentratio

the whiskers of the boxplots for all salt concentrations. To verify if this was a resul

summing the salt mass from the 12 monthly regressions to derive annual salt mas

ues, we used the S-Plus simulation model results to calculate the annual simulate

toric salt concentration. As seen in Figure 49, lower graph, the simulation still cou

not preserve the observed historic salt concentration in the whisker of the boxplot

all salt concentrations. Both the RiverWare and S-Plus simulation models simula

much wider range of salt concentrations than observed concentrations.
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Figure 49: The upper graph shows the PDF for simulated historic salt concentrat
from 12 monthly regressions to calculate synthetic natural salt mass. The lower g
shows the simulated historic salt concentration from a single annual regression t
culate synthetic natural salt mass. Neither preserved the observed data in the in
quantile range.
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To explain why the observed historic salt concentration PDF could not be 

served, we investigated how the simulated historic salt concentration is calculate

Simulated historic salt concentration is a function of simulated historic flow and si

lated historic salt mass. From the previous figure (Figure 48), we see that the an

salt regression model preserved the historic salt mass well, but the simulated his

flow shows a subdued peak in the PDF, indicating a wider range of flows than th

observed historic flow. The wider range of flows produced a wider range of conce

tions, as indicated in Figure 49. It is apparent that reproducing historical flows is

important in reproducing salt concentration. Simulated historic flows are compute

removing total depletions from the synthetic natural flow. Because the natural flo

were well reproduced (Figure 41), it seems the depletions might have influenced

historic flow PDFs, which we investigated further.

We assumed that depletions are constant, but Figure 50 shows that the le

depletions in any given year is a function of the flows for that year. Our first attemp

model simulated historic flow did not consider this relationship. The modified stoc

tic natural flow model generated 100 synthetic natural flow traces based on 1941

1995 calculated natural flow. For each year, the 100 simulations represented a v

of natural flows. To find simulated historic flow, the same historic depletions from

1941 to 1995 were removed from every trace of synthetic natural flow, no matter w

flow was generated for each trace.

A more accurate model would consider the total depletion as a function of

natural flow. Figure 50 shows the relationship between total depletions as a functio

calculated natural flow from 1941 to 1995. The plot shows a tendency for total de

tions to increase with increased natural flow. The scatter of the points shows mu

variability around the regression.
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To incorporate the relationship between calculated natural flow and total de

tions, we used depletions as a function of natural flow based on the regression s

in Figure 50. We did this by computing a total depletion from the regression for e

synthetic natural flow value and removing the appropriate total depletion. We first

formed this by calculating the total depletion directly from the regression. The up

graph in Figure 51 shows the observed historic flow PDF (as a solid line) was no

served in the interquantile range for all the PDFs for the simulated historic flows 

boxplots). The lower graph shows similar results for the simulated historic salt co

centration.

Figure 50: The regression relationship between total annual depletion as a func
of the calculated natural flow. The solid line shows a LOCFIT through the data
points. There is wide scatter around the regression indicating a wide variance aro
the regression.
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Figure 51: The upper graph shows the PDF for historic flow, while the lower grap
shows the PDF for the historic salt concentration. Both graphs used the regressi
between total annual depletion as a function of calculated natural flow without res
pling. Both historic flow and salt concentration are preserved better incorporating
regression.
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Adding a K-NN technique to resample the residuals from the neighboring

points around the regression point and adding the residuals to the total depletion

improved the model results. In Figure 52, upper graph, the simulated historic flow

PDFs preserved the observed historic flow PDF in the interquantile range over m

flows. The simulated historic salt concentration PDFs, shown in the lower graph,

produced more lower concentrations than were seen historically, but to a lesser d

than when the total depletions were found directly from the regression with no re

pling. Generally, we were able to preserve most of the observed historic salt conce

tion PDFs in the interquantile range of the boxplots for the simulated historic salt

concentration PDFs.

This technique, which improves the simulation results when compared to 

observed historic salt concentration, cannot be used in the CRSS simulation mo

until a new set of operational policy rules is developed that can evaluate policy a

annual time step.
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Figure 52: The upper graph shows the PDF for historic flow, while the lower grap
shows the PDF for the historic salt concentration. Both graphs used the regressi
between total annual depletion as a function of calculated natural flow with resam
pling. Both historic flow and salt concentration are preserved best incorporating 
regression with the resampling.
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4.3.4 Simulated Policy

To gain an understanding of how using the modified CRSS model could in

ence policy decisions, we tested policies using some fictional salt mass and conc

tion standards. As discussed in the opening of this chapter, salinity concentration

standards are mandated at three locations in the lower basin of the Colorado Rive

segment of the CRSS simulation model did not include these locations, but develo

fictional standards in the modeled segment facilitated comparing the performanc

the existing and modified CRSS. We developed standards that occur in the tails 

PDF, where extreme events, such as high salt mass or concentration, occur. For t

tional salt mass standard, we determined the number of times 650,000 tons or mo

salt occurred at the simulated gauge. For the observed historic salt mass, this sta

was exceeded 6 times. Figure 53 shows the number of times the fictional standa

were exceeded by the simulation model that was run at a monthly time step and

summed to annual values. The upper graph shows a boxplot for the number of ti

100 simulated historic salt mass traces from the simulation model exceeded the 

tional standard. The solid circle indicates the number of times the observed histo

salt mass exceeded the standard. The simulation model preserved the fictional s

mass standard in the interquantile range. The lower graph shows the number of tim

salt concentration standard of 350 mg/L was exceeded and, therefore, violated. 

solid circle indicates that the observed historic salt concentration was exceeded 

times. The simulation model overestimated the number of times the standard wa

exceeded, as indicated by the interquantile range being well above the number of

the observed historic salinity concentration exceeded the fictional salinity concen

tion standard.
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Figure 53: The upper graph shows the number of times a theoretical salt mass targ
650,000 tons was exceeded. The lower graph shows the number of times a theor
salt concentration standard over 350 mg/L was exceeded and, therefore, violate
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Figure 54 shows how well the annual time step model estimates the numb

times the fictional standards were exceeded and, therefore, violated. In the upper

the number of times the observed historic salt mass exceeded the standard was

the interquantile range of the simulation model. In the lower plot, the model still o

estimated the number of times the observed historic salt concentration standard 

violated.

Figure 55 shows the number of times the salinity concentration standard w

violated by the annual time step simulation model after the addition of the relations

between calculated natural flow and total depletions with resampling. In this case

number of violations from the observed historic salt concentration was within the

interquantile range of the simulation model results. This is consistent with the PD

from the simulation model, which did the best job of preserving the PDF of the hi

toric salt concentration.
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Figure 54: The upper graph shows the number of times a theoretical salt mass t
of 650,000 tons was exceeded. The lower graph shows the number of times a th
ical salt concentration standard over 350 mg/L was exceeded and, therefore, viol
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4.3.5 Comparison of the Existing CRSS and the Modified CRSS

The existing CRSS and the modified CRSS were compared by generating

synthetic natural flow traces using the entire calculated natural flow time series. T

ISM flow model, in the existing CRSS, performs best using the entire calculated 

ral flow time series.

We developed the next figures from the results of the monthly time step si

lation model. The synthetic natural flow traces of 55 years in length were genera

based on 1906 to 1995 calculated natural flow. The associated simulated synthet

ural salt mass was computed using the statistical nonparametric natural salt mod

based on calculated natural flow and salt mass from 1941 to 1995. The total deple

were based on historic records from 1941 to 1995. With these inputs, the simula

Figure 55: This figure shows the number of times a theoretical salt concentration
dard over 350 mg/L was exceeded and, therefore, violated. Incorporating the reg
sion from total depletions as a function of calculated natural flow with residual
resampling allowed the simulations to preserve the observed number of violation
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model approximated the observed historic flow, salt mass, and concentration from

1941 to 1995 using the most extensive data available.

Figure 56 shows the PDF for observed historic flow from 1941 to 1995 as

solid line. The boxplots describe the PDFs of the 100 traces of simulated historic

produced by the simulation model. The upper graph shows the results of the mo

CRSS, while the lower graph shows the results of the existing CRSS. Neither se

models reproduced the observed PDF in the interquantile range. The existing CR

could not preserve the observed PDF within the whiskers for all flows, but the mo

fied CRSS preserved the observed PDF. Generating synthetic natural flows base

1906 to 1995 calculated natural flows did not allow the simulation model to prese

the observed PDF for the time period 1941 to 1995 in the interquantile range. From

plots, it is evident that there are higher calculated natural flows in the years befor

1941 because the PDFs from the 100 simulations are skewed towards the higher

From our previous analysis, we can also attribute the high PDFs of the simulatio

not using a relationship between calculated natural flow and total depletions, wh

finds a depletion associated with each synthetic natural flow.

A significant difference between the modified and existing CRSS can be s

for the observed historic salt mass, as shown in Figure 57. The upper graph sho

results for the modified CRSS, while the lower graph shows the existing CRSS.

Because the synthetic natural flows, based on 1906 to 1995 data, are high, natu

concentrations are low. Figure 58 compares the simulated historic salt mass valu

generated by the 100 simulations of the modified CRSS and existing CRSS. The g

shows that the existing CRSS generated higher historic salt mass in a narrower 

of values than the modified CRSS, which is evident because the median, shown a

horizontal line within the interquantile range, is higher for the existing CRSS than

the modified CRSS. Also, the whisker for the existing CRSS spans a narrower ran

values than for the modified CRSS.
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Figure 56: The upper graph shows the PDFs for historic flow from the modified
CRSS. The lower graph shows the PDFs for historic flow from the existing CRS
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Figure 57: The upper graph shows the PDFs for historic salt mass from the modifi
CRSS. The lower graph shows the PDFs for historic salt mass from the existing

salt mass (tons/year)
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Figure 59 shows the annual historic salt concentration PDF for the modifie

CRSS in the upper graph and the existing CRSS in the lower graph. The existing

CRSS overestimated the observed historic salt concentration PDF, seen by the s

the peak of the simulated historic salt concentration PDFs. This overestimate is a r

of the overestimate seen in the PDFs of the historic salt mass. The modified CRS

slightly underestimated the observed historic salt concentration PDF because th

ulated historic flow was greater than the observed historic flow, diluting the simul

historic salt concentration.

Figure 58: Boxplots of the simulated historic salt mass from each of the 100 sim
tions. The modified CRSS generated lower salt mass and a wider range of value
when compared to the existing CRSS results. The existing CRSS could preserve
median of the observed historic salt mass (solid circles) in the interquantile rang
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Figure 59: The upper graph shows the PDFs for historic salt concentration from t
modified CRSS. The lower graph shows the PDFs for historic salt concentration
from the existing CRSS.
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Figure 60 shows the results from the simulated policy analysis. These plo

compare the results from the modified CRSS to the existing CRSS. The upper g

shows the number of times each CRSS generates results that exceeds a standa

650,000 tons. The existing CRSS results (boxplots) greatly overestimated the nu

of times the tons standard was exceeded compared to the observed historic reco

(solid circle), while the modified CRSS results preserved the number of times the

standard was exceeded compared to the observed historic record.

The lower graph shows the number of times a salinity concentration stand

of 350 mg/L was exceeded. The existing CRSS results greatly overestimated the

ber of times the salinity concentration standard was exceeded compared to the

observed historic record. The modified CRSS results also overestimated the numb

times the salinity concentration standard was exceeded compared to the numbe

times the observed historic record violated the standard, however the number of t

the observed historic record violated the standard was preserved within the whiske

the boxplot. The overestimation seen in the modified CRSS results could be rem

if the simulation model were run at an annual time step and the proposed relatio

for total depletions as a function of calculated natural flow were incorporated, as

cussed when the modified CRSS used the synthetic natural flow based on 1941 to

calculated natural flows.
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Figure 60: The upper graph shows the number of times each modeling system’s
results exceeded a tons standard of 650,000 tons. The lower graph shows the n
of times the modified and existing CRSS results violated a salt standard of 350 m
The solid circles show the number of times the observed historic record exceede
standards. The boxplots show results of 100 simulations from the modified CRSS
90 simulations from the existing CRSS.
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4.3.6 Stochastic Planning Run Simulations

Next, the existing CRSS and the modified CRSS were used to simulate st

chastic planning runs. The runs approximated the projected future flow, salt mass

concentration from 2002 to 2061 using the most extensive data available. Using 

entire calculated historic flow time series allowed the existing CRSS and the mod

CRSS to be compared.

Stochastic planning runs were developed from the results of the monthly t

step simulation model. A synthetic natural flow time series of 60 years length was

erated based on 1906 to 1995 calculated natural flow. The associated synthetic n

salt mass was computed using the statistical nonparametric natural salt model. T

total depletions were projected future depletions from 2002 to 2061. Running the

ulation for 60 years ensured the simulation was run until the future depletions rea

full development.

The upper graph in Figure 61 shows the PDF created from the median for

plots of probability at a given projected future flow. Both systems generated proje

future flow similarly. The lower graph shows the PDF created from the median fo

boxplots of probability at a given projected future salt mass. The modified CRSS

duced lower salt mass than the existing CRSS.
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Figure 61: The upper graph shows the PDF created from the median of boxplots
probability at a given projected future flow generated from the modified and existi
CRSS. The lower graph shows the projected future salt mass from the modified
existing CRSS. The shift in the projected future salt mass PDF shows that the e
ing CRSS generated greater salt mass.
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Boxplots showing all the simulations, in the upper graph of Figure 62, aga

show that the modified CRSS produced lower salt masses than the existing CRSS

lower graph shows the PDF created from the median for boxplots of probability a

given projected future salt concentration for each system. The difference betwee

two systems is shown; again the modified CRSS simulated lower projected futur

concentrations than the existing CRSS.

Figure 63 reiterates these results when the two modeling systems are com

with the simulated policy analysis. The upper graph shows the number of times a

standard of 750,000 tons was exceeded and the lower graph shows the number of

at salinity standard of 600 mg/L was exceeded and, therefore, violated. Again, the

mates of the existing CRSS exceeded the estimates of the modified CRSS.
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Figure 62: The upper graph shows the boxplots of the median from projected fu
salt mass. The modified CRSS generated lower salt mass and a wider range of v
than the existing CRSS. The lower graph shows the PDF created from the media
boxplots of probability at a given projected future salt concentration generated fr
the existing and modified CRSS. The slight shift in the PDFs shows that the exist
CRSS generated higher salt concentration.
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Figure 63: The upper graph shows the number of times the modified and existin
CRSS results exceeded a tons standard of 750,000 tons, while the lower graph sh
number of times a salt standard of 650mg/L was exceeded and, therefore, violat
during water year 2002 to 2062. For both graphs the existing CRSS results excee
the modified CRSS results.
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4.4 Discussion and Conclusions

We outlined and developed a modified CRSS modeling system to simulat

long-term historic flow, salt mass, and concentration at a single gauge in the upp

Colorado River mainstem. The modified modeling system consisted of two modifi

models. The first model was a nonparametric K-NN model with resampling that ge

ated synthetic natural flow. The second model used the generated natural flow a

computed an associated natural salt mass from a nonparametric local linear regre

with K-NN resampling. A simulation model used the generated synthetic natural 

and salt mass to perform Monte Carlo simulations, which model historic flow, sal

mass, and concentration with uncertainty.

We validated our modified modeling system by ensuring the modeling sys

reproduced all the distributional properties, i.e., the PDF of the observed historic

record. Reproducing the PDF of the historic record ensured the mean, standard 

tion, and skewness were all preserved. Validation was performed by using the mod

generate synthetic streamflows for the period 1941 to 1995. We found we were ab

preserve the PDF for the natural flow and salt, but we produced a greater range 

toric flow values. This greater range of historic flow values caused our historic sa

concentration to produce a greater range of values than observed. Upon investig

this problem, we found that the relationship between natural flow and total deple

must be preserved to preserve the correct distribution of historic flows. Once we in

porated the relationship between natural flow and total depletions, we were able to

serve the historic flow and salt concentration PDF.

We used two time scales to develop a monthly and annual nonparametric l

linear regression of natural salt mass as a function of natural flow with K-NN resid

resampling model. At a monthly time scale, 12 regressions were developed - one

each month. To calculate the annual natural salt the result from the 12 regressions

summed to an annual value. Using this method, we lost the ability to preserve the



165

ore

the

an

erate

ion of

del to

rela-

ddi-

e the

hly

nal

for

her

ed

han

ntra-

The

tural

sim-

odi-

ture

the
of the observed annual distribution. For policy analysis, the annual time step is m

important than the monthly time step. A monthly time step is only used to facilitate

use of the “rules” to simulate river basin policy. If the simulation model were run at

annual time step, an annual statistical nonparametric natural salt model would gen

better results. We showed that using a single annual natural salt mass as a funct

natural flow regression to generate annual natural salt mass best allowed the mo

preserve the observed annual natural salt mass PDF. Further, incorporating the 

tionship between total annual depletions as a function of annual natural flow in a

tion to an annual statistical nonparametric natural salt model allowed us to preserv

number of times a fictional salinity standard was violated.

After completing our validation, we used the modeling system at the mont

time step, accommodating the simulation model’s requirement to model operatio

policy rules. We first used hydrologies from 1906 to 1995 to generate natural flows

the period 1941 to 1995. We found that the flows before 1941 generally were hig

than flows after 1941. Thus, the generated natural flows were higher than observ

flows from 1941 to 1995, which caused the model to generate higher salt mass t

observed and a wider range of historic salt concentration. The historic salt conce

tion was skewed towards lower concentrations because the shift in natural flows

towards higher flows was larger than the shift in natural salt towards higher salt. 

additional natural flow diluted salt mass, lowering the salinity concentration.

We compared the existing CRSS to the modified CRSS using the entire na

flow dataset from 1906 to 1995. The comparison showed that the modified CRSS

ulated much lower salt mass and concentrations than the existing CRSS.

The final future simulations gave similar results. Projected future flow, salt

mass, and concentration were simulated from 2002 to 2061. We compared the m

fied and existing CRSS, finding again that the modified CRSS, simulated lower fu

projected salt mass (88,000 tons lower) and concentration (57 mg/L lower) than 
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Another strength of the modified CRSS that was not discussed previously

that the nonparametric K-NN stochastic flow model can be easily used to genera

high- or low-flow scenarios to test policies under adverse conditions. To add this

ity to the K-NN framework, the flow database that is used for resampling could be

ken in thirds. The first third would be high flows, the second normal flows, and th

third low flows. To generate a low-flow scenario, the K-NN model would generate

future streamflow time series by resampling only from the low flows in the databa

thereby generating a synthetic time series with a sustained drought. This could al

performed by resampling from only the high flows to generate the time series.

Our modified modeling system generated historic flow and salt mass that

matched the observed time period from which they were generated. We showed

our modified CRSS generated lower historic salt mass and salt concentration tha

existing CRSS. We developed the new modeling system from data used to run the

ulation model. By using the data from the simulation model, we kept our method

develop data to drive the simulation model consistent with the data used in the sim

tion model. Keeping the data consistent allowed the modified CRSS to reproduce

torical results and to fully reflect variability by improving the relationship between

natural flow and salt mass.
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Chapter 5

Conclusion and Recommendations for Future Work

5.1 Conclusions

This research developed a modified modeling system to simulate flow, sa

mass, and concentration at USGS gauge 09072500. The modified modeling sys

was built on three interconnected models: (1) a nonparametric stochastic natura

model, (2) a statistical nonparametric natural salt mass model, and (3) a river ba

simulation model, the CRSS simulation model.

The modified modeling system improved the accuracy of salinity modeling

when compared to the existing modeling system used in CRSS. The two systems

compared at a single gauge in the upper Colorado River mainstem, USGS strea

gauge 09072500 (Colorado River near Glenwood Springs, Colorado) and its ass

ated water quality gauge 09071100 (Colorado River near Glenwood Springs, Co

rado). The modified modeling system was validated over the time period 1941 to 1

when both historic flow and salt data were available. The validation step demonstr

that the modified modeling system preserves basic and higher order statistics fo

observed data. A discussion of each of the three interconnected models follows.

5.1.1 Modified Nonparametric Stochastic Flow Model

This task compared three techniques to generate stochastic flows. The exi

technique, nonparametric index sequential method (ISM), can only reproduce va
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for stream flow that occurred in the past. The variability of the generated stream fl

is also more limited than the other two techniques. These other techniques, a pa

ric periodic auto regressive (PAR) model and a nonparametric modified k-neares

neighbor (K-NN) model, develop stochastic stream flows values and sequences 

more variety because they generate values that did not occur in the historic record

are “statistically possible.”

The parametric PAR technique requires the modeled data to fit a Gaussia

(normal) distribution. If this requirement is not met, the data needs to be transfor

to fit a Gaussian distribution. Transformation is a time consuming task that does 

guarantee appropriate results. Further, the parametric technique cannot preserve

with non-Gaussian features, which the Colorado River streamflow data exhibit.

Conversely, the nonparametric technique does not require the data to fit a

Gaussian distribution. The technique improves current K-NN techniques by incor

rating a method to resample residuals from a regression, therefore allowing the m

fied K-NN technique to generate values not seen in the historic record. Traditiona

NN techniques resample directly from the historic dataset when generating a synt

time series. The modified K-NN technique is able to preserve both Gaussian and

Gaussian PDFs and does not require the modeled data to be transformed to a Ga

PDF when using the modified K-NN technique. The modified K-NN technique is

found to apply to a larger variety of data than the PAR technique.

The modified K-NN model was easy to implement and provided a flexible

framework. The flexible framework allowed the K-NN technique to generate synth

streamflows that simulated sustained low-flow or high-flow period. It was also eas

condition the flow data on an independent time series, such as climate indices. Cli

indexes have shown a strong correlation in many river basins, i.e., San Juan Riv

When flows are conditioned on climate, climate forecasts can drive future simulat

of streamflow.
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5.1.2 Statistical Nonparametric Natural Salt Model

The existing natural salt model was developed from weighted least-square

ear regressions based on historic flow, salt mass, and multiple development varia

including agricultural consumptive use, reservoir regulation, and exports. The mo

generates a higher natural salt mass than the new natural salt regression model

existing natural salt model does not incorporate any of the data for modeling salt in

CRSS simulation model. To maintain consistency between the CRSS simulation

model and the statistical nonparametric natural salt model, the data from the CR

simulation model was used to develop data for the statistical nonparametric natura

model. The new salt model is based on a regression between natural salt mass 

function of natural flow. The addition of a K-NN resampling algorithm allows the ne

salt model to incorporate the variance of the regression in the results from the m

5.1.3 CRSS Simulation Model

The CRSS simulation model uses the ensembles generated by the modifie

chastic natural flow model and the statistical nonparametric natural salt model to d

a model of USGS stream gauge 09072500 (Colorado River near Glenwood Sprin

CO). The modified stochastic natural flow model incorporates the uncertainty of fl

based on the observed historic flow. The statistical nonparametric natural salt mo

incorporates the uncertainty (variance) in the natural flow versus natural salt regr

sion. Together, these three models allow the river basin model to incorporate the

uncertainties in both the flow and salt together in a single river basin model. The C

simulation model simulates the flow, salt mass, and salt concentration with uncerta

at the stream gauge.

In the CRSS simulation model, the existing techniques to simulate future

stream flow, salt mass, and salt concentration were compared to our modified te

niques. The existing techniques use the ISM and a weighted least-square regress

find the natural salt mass as a function of natural flow. The modified techniques u
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modified K-NN stochastic model with residual resampling and a nonparametric lo

linear regression with K-NN residual resampling The modified techniques produc

lower salt mass and salt concentration values than the existing techniques. Both

niques generated flows that produced a similar median flow, although the modifie

techniques generated a wider variety of flows around the median.

5.2 Future Work

Many projects could further develop this research. Incorporating a tempor

and spatial disaggregation technique could allow the modeling system to preserve

an annual and monthly time scale and extend the model to additional gauges thr

out the Colorado River basin. A temporal disaggregation model would preserve b

statistics at both the monthly and annual time scale. If the operational policyrules

were written to function at the annual time step, a temporal disaggregation mode

would not be needed and an annual time step simulation model could be built.

Spatial disaggregation techniques could extend this framework to addition

gauges and preserve the correlation structure among the gauges. Once the mod

techniques have been extended to a basin-scale, their performance in predicting

concentration at the locations of the salinity standards could be investigated.

With the extended modeling framework, the impacts on operational and p

ning policy could be comprehensively studied. Considering the results of this rese

the modified modeling system can be expected to simulate lower salt mass and 

centration at the salinity standard locations.

Finally, we found that salt loading from human-induced sources is not wel

understood. Limited data allows little flexibility in designing a technique to model

human-induced salt loading. Efforts to better understand salt loading by humans

would improve our confidence in modeling human-induced salt loading. Further

efforts could explore the relationship between salt loading and land use and deve
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method to model salt loading based on land use. Currently, data does not suppo

mathematical relationship between salt loading and land use. Instead, estimates

loading for each reach in the existing CRSS model are taken from several salinity

ies.

Continued research efforts to understand highly uncertain data and metho

gies more effectively conveys uncertainty in the modeling system’s results, there

improving the policymaker’s decision support system.
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Appendix A

Glossary of Terms

observed historic flow - from gauged historic records

observed historic salt mass - from gauged historic records

total depletion = sum (agriculture consumptive use + exports± reservoir regu-

lation)

human-induced salt mass = sum (salt leaving with export water + agricultu

salinity pickup)

calculated natural flow = observed historic flow - total depletions

calculated natural salt mass = observed historic salt mass- human-induce

mass

estimated natural salt mass - natural salt mass estimated for the correspo

calculated natural flow from a natural salt model over a historic period

calculated natural salt concentration (mg/L) = calculated natural salt mass

(tons) * 735.29 / calculated natural flow volume (ac-ft)

calculated historic flow = calculated natural flow - total depletions

calculated historic salt mass = calculated natural salt mass - human-induc

salt mass

synthetic natural flow (100 synthetic traces) - generated natural flows from

stochastic natural flow model
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associated synthetic natural salt mass (100 synthetic traces) - estimates of

ral salt corresponding to synthetic natural flows

synthetic natural concentration (mg/L) = associated synthetic natural salt m

(tons) * 735.29 / synthetic natural flow volume (ac-ft)

simulated historic flow (100 synthetic traces) = simulated natural flow - tot

depletions

simulated historic salt mass (100 synthetic traces) = simulated natural salt m

- human induced salt mass

simulated historic concentration (mg/L) = simulated historic salt mass (tons

735.29 / simulated historic flow volume (ac-ft)

modified stochastic natural flow model (MSNFM)

statistical nonparametric natural salt model (SNNSM)

index sequential method flow model (ISM flow model)

US Geological Survey salt model (USGS salt model)
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Appendix B

CRSS Inputs, Outputs, and Sources of Data

2.1 Identify Primary Inputs, Outputs, and the Sources of the Data for Colorado
River Simulation System

a) The inputs and outputs for a projection run are as follows
(USBR, 1987)

Inputs: (1) Natural flow, calculated as described in following sec
tion (b)

(2) Demands, these are input into SMDID (Simulation
Model Demand Input Data) generation program. With
drawals and depletions are specified in the database.
values for each can be held constant or they can be
trended, varying either by a step or linear trend to mee
certain value a number of years in the future. All valu
are entered annually and distributed for each diversio
point according to a monthly distribution. Sources of
demands for the Upper Basin are typically taken from
theProjectedWaterSupplyandDepletions- UpperCol-
orado River. For the Lower Basin, demands are deter-
mined from theConsumptive Use of Diversions from
the Main Stem report. Diversions are determined eith
from historical consumptive use to diversion ratios,
maximum diversion capacity to maximum allowable
consumptive use ratios, or an assumed diversion to c
sumptive use ratio of approximately 167 percent whe
no better data is available.

(3) Initial reservoir elevation or storage, taken from USG
or USBR gauges

(4) Natural salt load input as concentration, calculated a
described in following section (b)
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For the Upper Basin, developed from historical flow an
salt load relationships (Mueller and Osen, 1988). For t
Lower Basin, this was deviated from a mass balance f
salt load within each reach of the lower basin.

(5) Salinity Pickup, input as concentration in the SMDID
generation program. Determined from project data or
estimated (Iorns et al., 1965) for the Upper Basin.
Included for only two projects in the Lower Basin. Sal
pickup values for Lower Basin obtained from project
data. The remaining salt pickup in the Lower Basin is
assumed to be captured in the salt gains and losses fr
the hydrology data base.

Concentration assumed constant in the current mode
Why not use salt load? This does not represent salt lo
dependent on flow.

(6) Initial reservoir concentration, taken from outflow salt
concentration of initial month for model run. Deter-
mined from USGS measurements, estimates, or exte
sions of existing data. (Nordlund and Liebermann,
1990; Mueller and Osen, 1988).

Outputs: (7) Flows and Salt Concentration at all modeled diversio
and reservoirs in the Colorado River basin

2.2 Generating the Natural Flow Database

In order to present all gauged information at the same conditions, a time m

be chosen to adjust all gauged data. In the CRSS model, the common level of dev

ment chosen was “natural” level. Natural flow represents the streamflows that occ

humans had not used any water from the basin. Natural flow is developed by sub

ing human-induces effects (i.e., reservoir regulation, depletion, exports, municipal

industrial uses) from the historical gauge data. The uncertainty in the natural flow

salt would be determined from the uncertainty in the data used to calculate the na

flow database.

b) The inputs and outputs for generation of natural flow data a
as follows:

Inputs: (1) Inputs and sources for the Upper Basin natural flow
(USBR, 1983 (2))
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(a) Historical Flow, USGS gauged data

(b) Consumptive Use, modified Blaney-Criddle
method

(c) Reservoir Regulation

i) monthly change in surface storage, measur

ii) monthly change in bank storage, 10% of
change in surface storage

iii) monthly evaporation, determined from
monthly average surface area x monthly
evaporation rate

(d) Exports, USGS and irrigation districts, assumed
measured

(e) M and I Uses, determined from annual consump
tive powerplant use, annual value is divided by 1
to get monthly

(f) Imports, USGS and irrigation districts, assumed
measured

(g) Incidental depletions, account for stock pond
evaporation, fish and wildlife uses, etc. Generall
only annual totals, measured and calculated

Outputs: (2) Outputs total natural flow at specific stream gaging
points

Inputs: (3) Inputs and sources for the Upper Basin natural salini
(USBR, 1987)

(a) The determination of natural salt load has evolve
from different attempts to determine natural salt
load given measured historical data. Currently sa
load is derived from a relationship developed by
the USGS taking the form of a regression equatio

C = aQb; C is concentration in mg/L, Q is flow in

ft3/s, and a and b are empirical constants. The re
tionship was developed from a weighted least-
squares regression from a model of historical sa
load as a function of historical streamflow and se
eral variables representing development. Develo
ment variables include upstream adjustments to
stream flow, consumptive use, diversions, and ir
gated acreage

Outputs: (4) Outputs total natural salinity at specific stream gaging
locations
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(a) Total natural salt concentration at specific stream
gauging points

Inputs: (5) Inputs and sources for Lower Basin natural flow (USBR
1985; USBR, 1992)

(a) Historical outflows from reservoirs, USGS gauge
data

(b) Diversion and measured returns, Decree Accou
ing Records

(c) Phreatophyte consumptive use, Blaney Criddle

(d) Unmeasured returns, (Owen-Joyce, 1987)

Outputs: (6) Outputs natural flow data for specific actual and inter
vening flow stations

Inputs: (7) Inputs and sources for Lower Basin natural salinity
(USBR, 1985; USBR, 1992)

(a) Historical outflow salt load. Determined from
USGS measurements, estimates, or extensions
existing data (Nordlund and Liebermann, 1990;
Mueller and Osen, 1988).

(b) Diversion and measured returns salt load, Deter
mined from USGS measurements, estimates, or
extensions of existing data (Nordlund and Liebe
mann, 1990; Mueller and Osen, 1988).

(c) Unmeasured returns (Owen-Joyce, 1987)

Outputs: (8) Outputs natural salinity for specific actual and interve
ing flow stations.
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Appendix C

Sample Splus Code

3.1 Sample Splus Modeling Code

#*************************************************************
#NP modified k-nn stochastic flow model
#
#models natural flow for gauge 09072500 from water year 1906 to 1995
#100 simulations each 90 years long are created.
#*************************************************************
{
WYmonflow_matrix(BCNatFlow[1:1080,1], ncol=12, byrow=T) #10/1905 to
9/1995
KNNtnflow_matrix(0,1080,100)

annlee_1:90
for(i in 1:90)annlee[i]_sum(WYmonflow[i,1:12])
x_annlee

#fit lowess and get the residuals series..
resids_matrix(0,nrow=89,ncol=12)
alpha_seq(0.2,0.8,by=0.05)
alpha1_seq(0.2,0.8,by=0.05)
alpha2_c(alpha, alpha1)
for(i in 1:12){
i1_i-1
if(i == 1){
zz_gcvplot(WYmonflow[2:90,1]~WYmonflow[1:89,12], alpha=alpha, deg=
ev="cross")
#z1_gcvplot(WYmonflow[2:90,1]~WYmonflow[1:89,12],alpha=alpha,deg=
#z2_order(c(zz$values,z1$values))
z2_order(zz$values)
deg1_1
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2)
#if(z2[1] > 13)deg1_2
zz_locfit(WYmonflow[2:90,1]~WYmonflow[1:89,12], alpha=alpha2[z2[1]],
deg=deg1)
x1l_zz
resids[,i]_residuals(zz)} else
        {
zz_gcvplot(WYmonflow[1:89,i]~WYmonflow[1:89,i1], alpha=alpha, deg=1,
ev="cross")
#z1_gcvplot(WYmonflow[1:89,i]~WYmonflow[1:89,i1], alpha=alpha, deg=
#z2_order(c(zz$values,z1$values))
z2_order(zz$values)
deg1_1
#if(z2[1] > 13)deg1_2
zz_locfit(WYmonflow[1:89,i]~WYmonflow[1:89,i1], alpha=alpha2[z2[1]],
deg=deg1)
if(i == 2)x2l_zz
if(i == 3)x3l_zz
if(i == 4)x4l_zz
if(i == 5)x5l_zz
if(i == 6)x6l_zz
if(i == 7)x7l_zz
if(i == 8)x8l_zz
if(i == 9)x9l_zz
if(i == 10)x10l_zz
if(i == 11)x11l_zz
if(i == 12)x12l_zz
resids[,i]_residuals(zz)}
}

armean_matrix(0,101,13)
arstdev_matrix(0,101,13)
arcor_matrix(0,101,13)
arskw_matrix(0,101,13)
mondiffs_matrix(0,101,347)
armax_matrix(0,101,13)
armin_matrix(0,101,13)

### drought stats..
mxsp_1:101
mxdef_1:101
maxs_1:101
maxd_1:101

index_1:90
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kk_sqrt(89)
kk_round(kk)
W_1:kk
W_1/W
W_W/sum(W)
W_cumsum(W)

frac_1
th_frac*mean(array(t(WYmonflow[1:90,1:12])))
th_quantile(array(t(WYmonflow[1:90,1:12])),0.5)

#       Get the first year..

for(k in 1:100){
xsim_1:1080
i_round(runif(1,1,89))
xsim[1]_WYmonflow[i,1]
xprev_xsim[1]
for(i in 2:1080){
j_i %% 12
if(j == 0)j_12
j1_j-1
if(j == 1){xx_abs(xprev-WYmonflow[1:89,12])}
else
{xx_abs(xprev-WYmonflow[1:89,j1])}

xz_order(xx)
xz_xz[1:kk]
xx_runif(1,0,1)
xy_c(xx,W)
xx_rank(xy)
i1_xz[xx[1]]

if(j == 1)xm_predict(x1l,xprev)
if(j == 2)xm_predict(x2l,xprev)
if(j == 3)xm_predict(x3l,xprev)
if(j == 4)xm_predict(x4l,xprev)
if(j == 5)xm_predict(x5l,xprev)
if(j == 6)xm_predict(x6l,xprev)
if(j == 7)xm_predict(x7l,xprev)
if(j == 8)xm_predict(x8l,xprev)
if(j == 9)xm_predict(x9l,xprev)
if(j == 10)xm_predict(x10l,xprev)
if(j == 11)xm_predict(x11l,xprev)
if(j == 12)xm_predict(x12l,xprev)
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xsim[i]_xm + resids[i1,j]
#print(c(i,j,xprev,xm,resids[i1,j]))

xprev_xsim[i]}

simdismon_matrix(xsim,nrow=12)
simdismon_t(simdismon)

KNNtnflow[,k]_xsim

}
#*************************************************************
#Calculate historic flow
#
#*************************************************************
cu41to95_scan(file="cu41t095.txt")

KNNthistflow_matrix(99,660,100)
for (i in 1:100){
#        KNNhistflow[,i]_KNNnflow[1:660,i]-cu41to95[1:660]   #10/1941 to 9/
1995
       KNNthistflow[,i]_KNNtnflow[1:660,i]-cu41to95[1:660]  #10/1941 to 9/
1995
        }
ISMhistflow_matrix(99,660,100)
for (i in 1:100){
       ISMhistflow[,i]_KNNtnflow[1:660,i]-cu41to95[1:660]  #10/1941 to 9/
1995
        }

#*************************************************************
#Regression for natural flow and "back calculated" natural salt

#for monthly data
#fit lowess and get the residuals series..
#
#Required Input
BCNatFlow_matrix(scan("0725RebuiltNatFlow.txt"),ncol=1,byrow=T)
monBCNatFlow_matrix(BCNatFlow[1:1080,], ncol=12, byrow=T)

rebuiltNatSalt_USGSglen[1:660,4]+rebuiltExportMass[421:1080]-rebuilt-
MonRtnmass[421:1080] #10/1940 to 9/1995
rebuiltNatFlow_matrix(scan("0725RebuiltNatFlow.txt"),ncol=1,byrow=T)
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mon0725Nflow_matrix(BCNatFlow[421:960], ncol=12, byrow=T) #10/1940
to 9/1985
mon0725Hmass_matrix(rebuiltNatSalt[1:540], ncol=12, byrow=T) #10/194
to 9/1985

mon0725Nflow_matrix(BCNatFlow[421:1080], ncol=12, byrow=T) #10/194
to 9/1995
mon0725Hmass_matrix(rebuiltNatSalt[1:660], ncol=12, byrow=T) #10/194
to 9/1995

#*************************************************************
resids_matrix(0,nrow=55,ncol=12)
alpha_seq(0.2,0.95,by=0.05)

for(i in 1:12){
#zz_gcvplot(mon0725Hmass[,i]~mon0725Nflow[,i], alpha=alpha, deg=1,
ev="cross")
zz_gcvplot(mon0725Hmass[,i]~mon0725Nflow[,i], alpha=alpha,d eg=1)
z2_order(zz$values)
deg1_1
zz_locfit(mon0725Hmass[,i]~mon0725Nflow[,i], alpha=alpha[z2[1]],
deg=deg1)

if(i == 1)x1s_zz
if(i == 2)x2s_zz
if(i == 3)x3s_zz
if(i == 4)x4s_zz
if(i == 5)x5s_zz
if(i == 6)x6s_zz
if(i == 7)x7s_zz
if(i == 8)x8s_zz
if(i == 9)x9s_zz
if(i == 10)x10s_zz
if(i == 11)x11s_zz
if(i == 12)x12s_zz
resids[,i]_residuals(zz)
}
#*************************************************************
# validate improved salt model
#*************************************************************

ISMflow_matrix(BCNatFlow[421:1080,], ncol=12, byrow=T) #10/1940 to 9
1995

ISMsalt40to95_matrix(0,55,12)
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data_(ISMflow)
#data2_monResReg

 ISMsalt40to95[,1]_predict(x1s,data[,1])
 ISMsalt40to95[,2]_predict(x2s,data[,2])
 ISMsalt40to95[,3]_predict(x3s,data[,3])
 ISMsalt40to95[,4]_predict(x4s,data[,4])
 ISMsalt40to95[,5]_predict(x5s,data[,5])
 ISMsalt40to95[,6]_predict(x6s,data[,6])
 ISMsalt40to95[,7]_predict(x7s,data[,7])
 ISMsalt40to95[,8]_predict(x8s,data[,8])
 ISMsalt40to95[,9]_predict(x9s,data[,9])
 ISMsalt40to95[,10]_predict(x10s,data[,10])
 ISMsalt40to95[,11]_predict(x11s,data[,11])
 ISMsalt40to95[,12]_predict(x12s,data[,12])

write(t(ISMsalt40to95),file="ISMsalt40to95.txt",ncol=1)

#*************************************************************
#Improved Natural Salt Model
#
#*************************************************************
#stats_array(99, dim=c(660,5,100))
KNNVhnsalt_matrix(0,660,100)

index_1:45

kk_sqrt(45)
kk_round(kk)
kk_12
W_1:kk
W_1/W
W_W/sum(W)
W_cumsum(W)

#       Get the first year..

for(k in 1:100){
#WYmonflow_matrix(KNNhflow[1:348,k], ncol=12, byrow=T) #10/1940 to
9/1969
#WYmonflow_matrix(USGSglen[1:348,3], ncol=12, byrow=T) #10/1940 to
1969
#WYmonflow_matrix(BCNatFlow[421:1080,1], ncol=12, byrow=T) #10/194
to 9/1995
Modelflow_matrix(BCNatFlow[421:1080,1], ncol=1, byrow=T) #10/1940 to
9/1995
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o
WYmonflow_matrix(BCNatFlow[421:960,1], ncol=12, byrow=T) #10/1940 t
9/1985

xsalt_1:660

for(i in 1:660){
#xprev_KNNtnflow[i,k]
xprev_Modelflow[i,1]
j_i %% 12
if(j == 0)j_12
j1_j
xx_abs(xprev-WYmonflow[,j1])

xz_order(xx)
xz_xz[1:kk]
xx_runif(1,0,1)
xy_c(xx,W)
xx_rank(xy)
i1_xz[xx[1]]

if(j == 1)xm_predict(x1s,xprev)
if(j == 2)xm_predict(x2s,xprev)
if(j == 3)xm_predict(x3s,xprev)
if(j == 4)xm_predict(x4s,xprev)
if(j == 5)xm_predict(x5s,xprev)
if(j == 6)xm_predict(x6s,xprev)
if(j == 7)xm_predict(x7s,xprev)
if(j == 8)xm_predict(x8s,xprev)
if(j == 9)xm_predict(x9s,xprev)
if(j == 10)xm_predict(x10s,xprev)
if(j == 11)xm_predict(x11s,xprev)
if(j == 12)xm_predict(x12s,xprev)

#cat(i1)
xsalt[i]_xm + resids[i1,j]
#xsalt[i]_xm
stats[i,,k]_c(i,j,xprev,xm,resids[i1,j])

}

simdismon_matrix(xsim,nrow=12)
simdismon_t(simdismon)

#KNNhsalt[,k]_xsalt
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KNNVhnsalt[,k]_xsalt
cat(k)
}

#write(t(KNNhsalt),file="KNNhsalt.txt",ncol=100)
#write(t(KNNnsalt),file="KNNnsalt.txt",ncol=100)
write(t(stats),file="stats.txt",ncol=5)

#*************************************************************
#Calculate Historic Salt Mass
#
#*************************************************************
rebuiltExportMass_scan(file="RebuiltExportMass.txt")  #9/1905 to 12/1995
rebuiltMonRtnmass_scan(file="0725monRtnmass.txt")  #9/1905 to 12/199

KNNthsalt_matrix(99,660,100)
for (i in 1:100){
        KNNthsalt[,i]_KNNthnsalt[1:660,i] - rebuiltExportMass[421:1080] +
ebuiltMonRtnmass[421:1080]   #10/1970 to 9/1995

        }

ISMhsalt_matrix(99,660,90)
for (i in 1:90){
        ISMhsalt[,i]_ISMNsalt[1:660,i] - rebuiltExportMass[421:1080] + rebui
MonRtnmass[421:1080]   #10/1970 to 9/1995

        }

SAMSNflowMatrix_matrix(99,1080,100)
for(k in 1:100){
        for(i in 1:1080){
        j_i %% 12
        l_i %% 90
        if(j == 0)j_12
        if(l == 0)l_90
        SAMSNflowMatrix[i,k]_SAMSNflow[j,l,k]
        }
        cat(k)
        }

3.2 Sample Splus Data Plotting Code

#************************************************************
#Calculates basic statistical data then produces boxplots of the statistics
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data_array(matrix(KNNHistflows),c(12,85,100))

tdata_array(99, dim=c(85,12,100))
for(i in 1:100){
tdata[,,i]_t(data[,,i])
}

#calculates statistical parameters

sammean_matrix(99,100,13)
samstdev_matrix(99,100,13)
samvar_matrix(99,100,13)
samcor_matrix(99,100,13)
samskw_matrix(99,100,13)

for(i in 1:100){
        for(j in 1:12){
                sammean[i,j]_mean(tdata[,j,i])
                samstdev[i,j]_stdev(tdata[,j,i])
                samvar[i,j]_var(tdata[,j,i])
                samskw[i,j]_sum((tdata[,j,i]-sammean[i,j])^3)
                samskw[i,j]_samskw[i,j]/85
                samskw[i,j]_samskw[i,j]/samstdev[i,j]^3
        }

        for(j in 2:12) {
                samcor[i,j]_cor(tdata[,j,i],tdata[,j-1,i])
        }
samcor[i,1]_cor(tdata[1:74,12,i],tdata[2:85,1,i])

samann_1:85
        for(l in 1:85){
                samann[l]_(sum(tdata[l,,i]))
        }
        sammean[i,13]_mean(samann)
        samstdev[i,13]_stdev(samann)
        samskw[i,13]_sum((samann-sammean[i,13])^3)
        samskw[i,13]_samskw[i,13]/85
        samskw[i,13]_samskw[i,13]/samstdev[i,13]^3
        samcor[i,13]_cor(samann[1:84],samann[2:85])
}

monbox_function(data)
{

#data is the matrix containing the monthly flows - 77 rows and 13 columns
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months_c("Oct","Nov","Dec","Jan","Feb","Mar","Apr","May","Jun","Jul","A
ug","Sep","Ann"
)

xs_1:13
zz_boxplot(split(t(data),xs),plot=F,cex=1.0)
zz$names_rep("",length(zz$names))
z1_bxp(zz,ylim=range(data),xlab="",ylab="",style.bxp="old",cex=1.25)
axis(1,at=z1,labels=months,cex=1.25)
points(z1,obs,pch=16,cex=1.25)
lines(z1[1:12],obs[1:12],lty=1)
#title(main="Boxplots of monthly mean",cex=1.0)
}

monbox(sammean)
title(main="Boxplots of Simulated Mean of Flows PAR(1) ",cex=1.0)
dev.copy(postscript, file="sammean.ps")
dev.off()
dev.off()
monbox(samstdev)
title(main="Boxplots of Simulated Standard Deviation of Flows PAR(1)
",cex=1.0)
dev.copy(pscript, file="samstdev.ps")
dev.off()
dev.off()
monbox(samcor)
title(main="Boxplots of Simulated Lag(1) Correlation of Flows PAR(1)
",cex=1.0)
dev.copy(pscript, file="samcor.ps")
dev.off()
dev.off()
obs_obsskw
monbox(samskw)
title(main="Boxplots of Simulated Skew of Flows PAR(1) ",cex=1.0)
dev.copy(pscript, file="samskw.ps")
dev.off()
dev.off()

monbox(ismmean)
title(main="Boxplots of Simulated Mean of Flows ISM ",cex=1.0)
dev.copy(postscript, file="ismmean.ps")
dev.off()
dev.off()
monbox(ismstdev)
title(main="Boxplots of Simulated Standard Deviation of Flows ISM
",cex=1.0)
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dev.copy(pscript, file="ismstdev.ps")
dev.off()
dev.off()
monbox(ismcor)
title(main="Boxplots of Simulated Lag(1) Correlation of Flows ISM
",cex=1.0)
dev.copy(pscript, file="ismcor.ps")
dev.off()
dev.off()
obs_obsskw
monbox(ismskw)
title(main="Boxplots of Simulated Skew of Flows ISM ",cex=1.0)
dev.copy(pscript, file="ismskw.ps")
dev.off()
dev.off()

#*************************************************************
#produces pdf with 100 simulations compared to history

SAMS data
#11 is August shows bivariate

h_hnorm(nat1805[,1])
zx_sm.density(nat1805[,1],h)
points_zx$eval.points
hden_zx$estimate

samdensity0_matrix(0,100,100)
for(i in 1:100){
        h_hnorm(tdata[,1,i])
        zy_sm.density(tdata[,1,i],h,eval.points=points)
        samdensity0[,i]_zy$estimate
}

#*************************************************************
#routine to produce and graph boxplots for 100 pdf’s

pdfbox_function(data,points)
{
#data is the matrix containing the monthly flows - 85 rows and 13 columns

xs_1:100
zz_boxplot(split((data),xs),plot=F,cex=1.0)
zz$names_rep("",length(zz$names))
z1_bxp(zz,xlim=c(0,714),ylim=range(data),xlab="flow (acre-feet/
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month)",ylab="Probability Density",style.bxp="old",cex=1)
#points(z1,hden,cex=1.25)
lines(z1[1:100],hden,lty=1,xaxt="s",lwd=2)
evalloc_points
ntot_length(z1)
n1mid_as.integer(ntot/4)
n2mid_as.integer(ntot/2)
n3mid_as.integer(ntot*3/4)
z2_1:5
z2[1]_z1[1]
z2[2]_z1[n1mid]
z2[3]_z1[n2mid]
z2[4]_z1[n3mid]
z2[5]_z1[ntot]
n1_1:5
n1[1]_0
n1[2]_evalloc[n1mid]
n1[3]_evalloc[n2mid]
n1[4]_evalloc[n3mid]
n1[5]_evalloc[ntot]
n1_round(n1,digit=0)
n1_as.character(n1)
axis(1,at=z2, label=n1)
#title(main="SAMS AR(1) for October",cex=1.0)
}

#title(main="SAMS AR(1) for August",cex=1.0)

#title(main="K-NN nonparametric for October",cex=1.0)

#title(main="K-NN nonparametric for August",cex=1.0)

pdfbox(samdensity0)
title(main="PDF’s from SAMS AR(1) method for October",cex=1.0)

pdfbox(xdensity1)
title(main="PAR(1) parametric for annual totals",cex=1.0)
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