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The North American Monsoon (NAM) is the large-scale atmospheric 

circulation system responsible for up to 55% of the annual precipitation in the 

southwestern U.S.  These summer thunderstorms, however, are highly variable and 

predicting the variability in the strength, location, and timing of monsoonal 

precipitation and streamflow is understandably very important for efficient water 

resources management. 

This research, comprised of three main components, analyzes the spatial and 

temporal variability of NAM precipitation and streamflow; and using this information 

it develops a statistical forecasting framework which is then integrated with a 

decision support system to evaluate water management strategies on the Pecos River 

Basin.  First, the interannual variability of precipitation and streamflow in the NAM 

region of southwest U.S. is studied and large-scale and local climate features that 

drive the variability are diagnosed using robust Spearman rank correlation analysis 

and Kendall Theil slope estimators.  These analyses led to the proposal of the 

following hypothesis: antecedent Pacific sea surface temperatures (SSTs) modulate 

the winter/spring hydroclimatology and land conditions of the NAM region, thus 

playing an important role in setting up the land-ocean temperature gradient (the key 

driver of the NAM), and, consequently, in modulating monsoonal rainfall and 

precipitation.  This offers increased hopes of long-lead forecasts of summer 
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hydrologic conditions in the NAM region.  The second component of this study 

develops a framework for generating ensemble forecasts of spring and summer 

streamflow at five lead times using the large-scale climate information obtained from 

the diagnostics.  In the third, and final, component of this study, streamflow 

exceedance probabilities calculated from the ensemble forecasts are used in a 

decision support system, modeled with RiverWare, to evaluate various water 

management options for reservoir releases, irrigation diversions and inter-state spill in 

the Pecos River Basin.  The Pecos River receives a significant portion of its annual 

streamflow in the summertime from monsoon thunderstorms, however operations on 

the river do not utilize forecasts of this important moisture source.  The research 

framework developed here demonstrates significant improvements to water 

management though decreased reservoir spills and increased irrigation water delivery. 
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CHAPTER 1 

INTRODUCTION 

 

Motivation 

The southwestern United States and northwest Mexico receive a significant 

portion of their annual precipitation during the summer months of July, August, and 

September.  This summertime precipitation phenomenon known as the North 

American Monsoon (NAM) accounts for up to 55% of the annual precipitation in the 

southwestern U.S. and up to 80% in northwest Mexico (Douglas et al. 1993).  

However, this important moisture source is highly variable, especially in the 

southwestern U.S. region comprising Arizona and New Mexico.  Presently, water and 

agriculture managers largely ignore the influence of summer monsoon rainfall in 

planning and management due to its high variability.  Nevertheless, the variability of 

the NAM is of particular concern for watershed managers, farmers, and planners in 

the arid region as too little summer rainfall has negative agricultural and 

environmental impacts and heavy summer thunderstorms present the danger of flash 

floods.  Thus, understanding and predicting the variability in the strength and location 

of monsoonal precipitation and streamflow and planning the coordination with spring 

streamflows is key to efficient water resources management in the region. 

NAM Background 

The NAM is the large-scale atmospheric circulation system that drives the 

dramatic increase in rainfall experienced in the desert southwest U.S. and 
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northwestern Mexico during the summer months of July, August and September.  

These summer thunderstorms typically begin in early July and last until mid-

September and can account for as much as 50-70 percent of the annual precipitation 

in the arid region (Carleton et al. 1990; Douglas et al. 1993; Higgins et al. 1997; 

Mitchell et al. 2002; Sheppard et al. 2002).   

Geographically, the NAM is centered over the Sierra Madre Occidental, a 

mountain range in northwestern Mexico (Douglas et al. 1993; Barlow et al. 1998), 

however it extends into New Mexico, Arizona, and southern Colorado and Utah (e.g., 

Douglas et al. 1993; Hawkins et al. 2002; Lo and Clark 2002).  Several researchers 

(e.g., Brenner 1974; Hales 1974; Houghton 1979; Tang and Reiter 1984; Reiter and 

Tang 1984) have defined the NAM region to be much larger, covering the entire 

plateau of western North America.   

The NAM is established when the winds shift from a generally westerly 

direction in winter to southerly flow in summer.  This shift is responsible for bringing 

moist air from the Gulf of California, the eastern Pacific Ocean and the Gulf of 

Mexico northward to the land during the summer months (Adams and Comrie 1997).  

The combination of moist air and warm land surfaces causes convective instability, 

thus producing frequent summer precipitation events (Adams and Comrie 1997; 

Barlow et al. 1998).  The seasonal shift in the winds that brings in monsoonal 

moisture depends primarily upon the relative location of the subtropical jet during the 

summer months.  The subtropical ridge typically migrates northward during the 

summer months.  Several studies have shown that a more northward displacement of 

the subtropical ridge is associated with a wetter monsoon over the southwestern U.S..  
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In years when the ridge stays in a more southerly position, the transport of tropical 

moisture is inhibited (Carleton 1986; Carleton et al. 1990; Adams and Comrie 1997; 

Comrie and Glen 1998; Ellis and Hawkins 2001; Hawkins et al. 2002). 

The source of moisture for the NAM, either the Gulf of Mexico or the Gulf of 

California, has been debated for decades (e.g., Bryson and Lowry 1955; Reitan 1957; 

Rasmussen 1967; Hales 1972; Brenner 1974; Mullen et al 1998).  Determining the 

source of monsoonal moisture is particularly important for prediction purposes.  The 

current consensus is that while the Gulf of California and eastern Pacific provide the 

majority of total monsoonal moisture, the Gulf of Mexico also provides an important 

contribution.  

The complex nature of the moisture source and transport mechanism together 

with extremely varied topography in the region makes it difficult to understand the 

spatial variability of the NAM.  Regionally, the intensity of the NAM decreases and 

the variability increases as one moves northward of the Sierra Madre Occidental into 

in the regions of Arizona, New Mexico, and southern Colorado.   

Temporal variability of the NAM ranges from diurnal to seasonal, to 

interannual, to interdecadal.   Diurnal variability is dominated by precipitation 

peaking in the afternoon and early evening (Dai et al. 1999; Berbery 2001; Trenberth 

et al. 2003; Anderson and Kanamaru 2004).  On an intra-seasonal scale, particularly 

the northern parts of the monsoon region experience wet and dry spells within a 

monsoon season.  This is likely related to a gulf surge phenomenon that brings 

moisture up the Gulf of California in intermittent bursts (Hales 1972; Brenner 1974).  

Carleton (1986, 1987) demonstrated that periods of convective activity across the 
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southwestern U.S. are associated with passing upper-level troughs in the westerlies.  

Also, as noted earlier, the position of the subtropical ridge significantly affects 

convective activity (Carleton 1986; Carleton et al. 1990; Adams and Comrie 1997; 

Comrie and Glen 1998; Ellis and Hawkins 2001; Hawkins et al. 2002).  

Interannual variability is presumed to result from variability in certain 

synoptic-scale patterns as well as variability in the initial conditions of the landmass 

and Pacific Ocean Sea Surface Temperatures (SSTs).  Carleton et al. (1990) observed 

that shifts in the subtropical ridge are related to the phase of the Pacific/North 

American (PNA) pattern (which is related to the El Niño-Southern Oscillation 

(ENSO)), where a positive (negative) PNA pattern in winter is typically followed by a 

northward (southward) displacement of the subtropical jet and a wet (dry) summer 

monsoon.  Higgins et al. (1999) found that cold (warm) tropical Pacific SST 

anomalies appear near the dateline prior to wet (dry) monsoons and that the 

anomalies increase in amplitude during the spring.  Other studies (Higgins and Shi 

2000; Mo and Paegle 2000) found that anomalously cold SSTs in the northern Pacific 

and anomalously warm SSTs in the subtropical northern Pacific contribute to a wetter 

and earlier monsoon season. Castro et al. (2001) observed similar relationships with 

Pacific SSTs linking a high (low) Pacific Decadal Oscillation (PDO) phase and El 

Niño (La Niña) with a southward (northward) displaced monsoon ridge and a late 

(early) monsoon onset and below (above) average early monsoon rainfall.  Mitchell et 

al. (2002) determined certain threshold SST values for the northern Gulf of California 

that are associated with the regional onset of the NAM.  
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Land surface conditions also play an extensive role in the onset and intensity 

of the NAM. Within a monsoon season increased soil moisture impacts 

evapotranspiration between storm events, thus enhancing future storm systems and 

precipitation (Matusi et al. 2003).  On an interseasonal scale, several studies have 

demonstrated an inverse relationship between winter precipitation, particularly 

snowfall, and subsequent summer precipitation (Higgins et al. 1998; Gutzler 2000; 

Higgins and Shi 2000; Lo and Clark 2002; Zhu et al. 2005).  This relationship is 

thought to result from snowfall acting as an energy sink.  Greater amounts of snowfall 

in winter require more energy to melt and evaporate the moisture by summer.  Larger 

snow cover areas also increase the albedo in spring, thus reinforcing the relationship.  

The resulting delayed and decreased warming of the North American landmass upsets 

the land-ocean heating contrasts necessary for monsoonal circulation patterns, thus 

delaying and decreasing the intensity of the NAM.  The relationship between 

antecedent land conditions and monsoonal precipitation, however, appears to vary 

spatially and temporally (Lo and Clark 2002; Zhu et al. 2005) and the intensity of the 

monsoon may depend more on large-scale forcings than local antecedent soil 

moisture conditions (Zhu et al. 2005).   

There have been few studies on understanding the spatio-temporal variability 

of monsoonal streamflow in the NAM region (e.g., Gochis et al., 2003).  This is very 

important for improving water management in the region.  Furthermore, the 

variability in the timing of the monsoon seasonal cycle is important, especially for 

crop planting and water management (Ray et al., 2005), though this aspect of the 

NAM is not well understood.  Several recent studies have illustrated an earlier onset 
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of spring in the western United States (e.g., Dettinger and Cayan 1995; Cayan et al. 

2001; Mote 2003; Stewart et al. 2004; Regonda et al. 2005), however this has not 

been studied in relation to the NAM.   

Outline of the study 

Given this motivation and background, there is a clear need to incorporate the 

understanding of interannual variability in NAM precipitation and streamflow into 

water resources management.  Thus, three key questions emerge:  (i) What is the 

spatial and temporal variability of NAM hydroclimatology (i.e. precipitation and 

streamflow and their seasonality) and its potential drivers?  (ii) What is the potential 

for seasonal streamflow forecasting in the NAM region?  (iii) How can this potential 

be realized to improve water resources management?  An integrated framework, 

consisting of three inter-related components shown in Figure 1, is proposed to address 

the above questions.  The thesis is outlined as follows. 

NAM Hydroclimate
Variability

Streamflow
Forecast of Pecos

River

Water Management
in Pecos River

 

Figure 1.  Flowchart of study. 
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In Chapter 2, a systematic analysis of daily and monthly precipitation in the 

NAM region is undertaken.  The objective is to understand the spatial and temporal 

variability of NAM precipitation (both magnitude and seasonal cycle) at interannual 

and interdecadal time scales and also to discern the role of land-ocean-atmospheric 

features in modulating this variability.    

A similar detailed analysis of the variability of streamflow (both spring and 

summer) in the NAM region is performed in Chapter 3.  The understanding of the 

interannual variability of the streamflow will also shed light on the potential 

predictability of seasonal streamflow in the NAM region. 

Chapter 4 develops a seasonal streamflow forecasting model.  Water resources 

management on the Pecos River Basin is chosen to demonstrate the utility of the 

knowledge of hydroclimate variability acquired from the diagnostics efforts in 

Chapters 2 and 3.  Based on operations and management in the Pecos Basin, the 

various seasonal streamflows of interest and the lead times of their desired prediction 

are established.  Predictors of these seasonal flows and at the desired lead times are 

identified from large-scale land-ocean-atmosphere variables.  Using the predictors, a 

nonparametric functional estimation model is developed to generate cross-validated 

ensemble seasonal streamflow forecasts and the skills of these forecasts are evaluated. 

In Chapter 5, the ensemble forecasts are used to drive policy alternatives in a 

decision support model of the water resources management in the Pecos River Basin. 

Thus, improvements to management based on the streamflow forecasts are evaluated 

relative to current practices that do not consider seasonal streamflow forecasts.  This 
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integration of hydroclimate variability knowledge and predictions with a decision 

support model constitutes a unique and important contribution.    

A summary of the key findings and contributions from each component of the 

research along with recommendations for future extensions is presented in Chapter 6. 
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CHAPTER 2 

PRECIPITATION ANALYSIS 

 

Introduction 

This chapter presents a systematic analysis of the space-time variability of 

North American monsoon (NAM) precipitation over the southwestern U.S. and its 

land and oceanic drivers.  An overview of the data sets and methodology is presented 

first.  Next, the monsoon seasonal cycle is studied, followed by an analysis of rainfall 

volume trends.  A hypothesis that explains the trends is proposed.  The hypothesis is 

tested by investigating the links between antecedent land and oceanic conditions and 

the timing and strength of the monsoon.  The chapter closes with a summary and 

conclusions. 

Data 

The data sets used in this study are described below. 

Climate Division Data 

 Monthly precipitation, temperature, and Palmer Drought Severity Index 

(PDSI) data from 8 climate divisions covering New Mexico (NM) and 7 divisions for 

Arizona (AZ) for the years 1948-2004 were used.  The climate divisions and data sets 

are obtained from www.cpc.ncep.noaa.gov. 



 10

NWS COOP Data 

 Daily precipitation data were obtained from the National Weather Service 

(NWS) cooperative network (COOP).  Most COOP stations have records beginning 

from the mid-1900s.  Stations with continuous daily records from 1948-1999 across 

NM and AZ were selected amounting to 219 stations in total. 

NCEP/NCAR Re-analysis Data 

  Monthly values of large-scale ocean and atmosphere variables, e.g., sea 

surface temperatures (SSTs), geopotential heights, precipitable water, winds, etc., 

from the NCEP/NCAR Re-analysis data set (Kalnay et al. 1996) were obtained from 

www.cdc.noaa.gov for the years 1948-2004. 

Methodology 

To understand the seasonal cycle and ‘timing’ of the monsoon, the Julian day 

when the 10th, 25th, 50th, 75th, and 90th percentile of the monsoonal (July to 

September) precipitation occurred is first identified for each year at all the COOP 

stations.  The Julian day at these five thresholds helps capture the entire monsoon 

cycle.  This provides an objective means for representing the monsoon cycle 

uniformly across all locations without resorting to subjective definitions for 

determining the monsoon onset or end.  Various researchers (e.g., Higgins et al. 1998, 

1999; Ellis et al. 2004) have used different methods to determine/define the onset and 

demise of the NAM.  These typically involve analyses of detailed humidity and 

precipitation data and the development of different threshold criteria, some of which 

are location specific.  The approach employed in this research is both simple and 
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unique in that it captures the entire seasonal cycle of the NAM, rather than just the 

onset or closing of the monsoon. 

Nonparametric trend analysis based on Spearman rank correlation (Helsel and 

Hirsch 1995) is performed on the 10th, 25th, 50th, 75th, and 90th percentile Julian days 

at all the stations.  The Spearman rank correlation is similar to the standard 

correlation coefficient (i.e., Pearson’s R), except that it does not require that data be 

normally distributed and it is robust against outliers.  To perform the Spearman rank 

correlation in this study, one station’s time series of Julian days when 50 percent of 

monsoonal precipitation occurred is selected and these Julian day values are 

converted to ranks.  These ranks are then plotted against the corresponding year in 

which the value occurred and a linear regression is fit.  The robust Kendall Theil 

slope estimator (Helsel and Hirsch 1995) is used to calculate the magnitude (number 

of days) and direction (earlier or later) of the timing shift.  The Kendall Theil method 

is robust to outliers and estimates slope by calculating the median of the slopes 

between all combinations of two points in the data.  This process is repeated for each 

station and for the other percentiles (10th, 25th, 75th, and 90th) of precipitation.  The 

estimated trends in ‘timing’ are then spatially mapped.  Stations exhibiting a trend at 

the 90% significance level or above are highlighted.  The spatial maps of the 90% and 

95% significance results were found to be, largely, the same and almost all of them 

are field significant at the 95% significance level.  However, the 90% significance 

figures are shown so as to better illustrate the spatial extent of the trends.  Similar 

analyses are performed on the monsoon monthly and seasonal rainfall amounts as 

well as the precipitable water.  It is recognized that the Spearman rank correlation 
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trend analysis, like other trend analyses, is sensitive to the data at the beginning and 

the end of the period of record.  However, because the Spearman rank correlation 

trend analysis uses ranks and is thus robust against outliers, the trends are less 

sensitive to extreme wet periods and dry periods.  

The field significance of the spatial patterns of the trends and correlations is 

determined using the method proposed by Livezey and Chen (1983).  For a spatial 

map to be field significant at the 95% confidence level at least 16 locations (out of 

219 coop stations) and 2 divisions (out of 15 climate divisions) should exhibit 

significant trends and correlations. 

To understand the physical mechanisms driving the trends, the relationship 

between antecedent (Dec-May) land/ocean conditions and summer rainfall is 

analyzed.  First, the Spearman rank correlation analysis is performed to detect trends 

in antecedent precipitation and soil moisture (PDSI is used as a proxy for this).  The 

PDSI is used as a surrogate for soil moisture primarily because the quality and 

quantity of soil moisture data required for this study was unavailable.  The PDSI is an 

integrated measure of rainfall and temperature and is thus a good indicator of the soil 

moisture.  Simms et al. (2002) found good correspondence between PDSI and soil 

moisture in North Carolina and Guttman et al. (1992) suggested that the PDSI is best 

suited for semiarid and dry climate regions.  Together, these studies suggest that 

PDSI is an appropriate proxy for soil moisture in the NAM region.  

Next, the leading modes of timing and rainfall amounts from the summer 

season are correlated with the antecedent ocean, atmosphere and land conditions.  The 

leading modes are obtained by performing principal component analysis (PCA) on 
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the Julian day and monthly rainfall time series.  PCA, which is widely used in climate 

research, decomposes a space-time random field into orthogonal space and time 

patterns using Eigen decomposition and effectively reduces the dimensions of the 

data (von Storch and Swiers 1999).  In PCA the patterns are automatically ordered 

according to the percentage of variance captured; that is, the first space-time pattern, 

also called the leading mode or first principal component (PC), captures the most 

variance present in the data, and so on.  In this research, for example, the 50th 

percentile rainfall Julian days of the multivariate data is represented by a 52 by 219 

matrix with the years in rows and the stations in columns.  PCA is performed 

resulting in 219 PC time series, the first few of which capture most of the variance 

among the stations.  This is repeated for the other Julian day time series (i.e., 10th, 

25th, 75th, and 90th percentiles) and the monthly (i.e., July, August and September) 

rainfall time series.  In all cases the first spatial pattern or Eigen vector was found to 

have similar magnitude and sign across the spatial locations and the first PC was 

highly correlated with the spatial average time series.  Thus the first PC was used to 

represent the timing and amount across the region rather than a straight spatial 

average.  This first PC, as an average spatial index, is then correlated with the 

antecedent ocean, atmosphere and land conditions.  

Analysis of the rainfall amount is performed using the monthly climate 

division data since, unlike the COOP data, this data set extends until the present.  The 

COOP and climate division data, however, are quite consistent, and a comparative 

analysis found that the results are insensitive to the data set.  For the timing analysis, 

the daily COOP data is required. 
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Results 

The results from the trend analysis of the timing and rainfall amounts are 

presented first, followed by the relationships to antecedent large-scale climate 

variables and the physical mechanisms. Based on these results a hypothesis for the 

monsoon variability is proposed. 

Monsoon Cycle 

 Julian day trends at the five threshold levels (10th, 25th, 50th, 75th, and 90th 

percentile) significant at the 90% level are shown in Figure 2.  It can be seen that 

there is a significant delay in the entire monsoon cycle (i.e., all five percentiles) over 

the monsoon region.  With well over 21 stations exhibiting a statistically significant 

trend across the NAM region, the spatial trend maps are field significant at the 95% 

confidence level for all threshold percentiles.  The shifts are on the order of 10 to 20 

days, depending on the station.  To put these shifts in perspective, the median Julian 

days, that is, the median of all historical data for all stations, for these thresholds are 

also shown in Figure 2.  Climatologically, the monsoon begins in early July, reaching 

10% of the total precipitation by (or on) July 19th; the peak of the monsoon (when 

50% of the precipitation has fallen) occurs around August 13th (roughly a week earlier 

in Arizona than in New Mexico) and the monsoon typically nears its end (when 90% 

of the total precipitation has fallen) roughly at the end of August and into the 

beginning of September.  
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       < 10 days                                     before July 19 
      10-15 days                                   July 20 - 29 

    16-21 days                                  July 30 - Aug 8 

   > 21 days                                 Aug 8 - 18 
             Aug 19 - 28 

                                                            after Aug 29  
Figure 2.  Trends in Julian day of summer (Jul-Sep) seasonal rainfall 
accumulation at five thresholds (10th, 25th, 50th, 75th, and 90th percentile) (left 
column, top to bottom, respectively) and the corresponding climatological Julian 
days (right column, top to bottom, respectively).  For the Julian day trends, 
point up triangles indicate delay and point down triangles indicate advancement.  
Filled triangles indicate 90% significance.  
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 Figure 3 shows the timeseries of the first PC for the 10th and 50th percentile 

Julian days.  As described in the methodology section, these PCs can be thought of as 

a spatial average for the region.  The trend line shown in the figures is the 

nonparametric Kendall Theil slope of the data. As can be seen, the timing PCs exhibit 

similar trends to those exhibited in the COOP station data presented in Figure 2. 

   (a)    (b)          

Figure 3.  Timeseries of PC1 for the Julian day when the 10th (a) and 50th (b) 
percentile of the summer (Jul-Sep) seasonal rainfall has accumulated.  The trend 
line is the nonparametric Kendall Theil slope of the data.   
 

The timing shift that delays the monsoon cycle would suggest an increase in 

August and September rainfall and a corresponding decrease in July rainfall.  For 

supporting evidence to the trends seen with the coop data in Figure 2 and the timing 

PCs in Figure 3, the annual cycle of the rainfall is analyzed using the monthly climate 

division data.  The annual cycle of the rainfall at four representative climate divisions 

from the region for the period 1948-1975 and 1976-2004 are shown in Figure 4.  A 

comparison of the two time periods shows a general decrease in precipitation in July 

and an increase in August and September from the first half of the period of record to 

the second.  Other climate divisions, particularly those in the lower regions, show 
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similar changes to the annual cycle.  These shifts are consistent with the shifts 

identified in Figure 2. 
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     (c)         (d)  

Figure 4.  Annual cycle of precipitation during 1948-1975 (dashed line) and 
1976-2004 (solid line) at two climate divisions in New Mexico (a, b) and two 
climate divisions in Arizona (c, d) 

Monsoon Rainfall 

 Spatial trends in the monthly rainfall amount for July to September are shown 

in Figure 5.  It can be seen that precipitation is generally decreasing in July and 

increasing in August and September, with NM exhibiting a stronger trend. Also, a 

general increase in total monsoonal precipitation (Jul-Sep) is evident largely for NM 

– consistent with the increasing trend in August and September.  The spatial trend 

maps are field significant at the 95% confidence level.  The daily COOP station data, 
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which has a shorter period of record, shows very similar trend results indicating that 

the trend is not dependent on the beginning and end of the data set (figure not shown).  

To further corroborate this result, the trends in the July to September precipitable 

water (Figure 6) are computed.  The precipitable water shows trends similar to the 

rainfall results.  It should be noted that the trends seen in the timing and rainfall 

amount should not be used for predictive purposes in and of themselves, but rather as 

a diagnostic tool to help shed light on the key drivers of monsoon variability. 

 

   (a)       (b) 

(c)               (d)  

Figure 5.  Trends in July (a), August (b), September (c) and July to September 
(d) rainfall.  Point up triangles indicate an increasing trend and point down 
triangles indicate a decreasing trend.  Size indicates the relative magnitude of 
the trend.  For July, August and September, the triangle sizes correspond to 
approximately < 0.4 inches, 0.4-0.7 inches, and > 0.7 inches.  Filled symbols 
indicate 90% significance. 
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(a) (b) 

(c) (d)  

Figure 6.  Trends in July (a), August (b), September (c) and July to September 
(d) precipitable water.  Shaded regions indicate approximate 90% significance.  
Images provided by the International Research Institute for Climate and Society 
from the website at www.iridl.ldeo.columbia.edu. 
 

Hypothesis   

 The key question that emerges from the above analysis is:  what is driving the 

delay in the monsoon cycle?  The basic driver the monsoon process, that is, the pre-

monsoon land-ocean gradient, is explored for answers.  This study hypothesizes that 

there is increased antecedent (pre-monsoon) soil moisture in the southwestern U.S. 
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that requires longer summer heating and delays the development of the necessary 

land-ocean temperature gradient, consequently delaying the summer monsoon.  It is 

reasoned that the wetter winter and spring conditions in the southwestern U.S. are 

largely driven by winter ocean-atmosphere conditions, especially Pacific SSTs, the 

Pacific Decadal Oscillation (PDO)/ El Niño-Southern Oscillation (ENSO) pattern and 

the observed increase in ENSO activity in recent decades (Trenberth and Hoar 1996; 

Rajagopalan et al. 1997).  Links to the antecedent land, ocean, and atmosphere 

conditions offer hope for long-lead forecasts of the summer monsoon. This 

hypothesis is tested in the following sections.  A similar hypothesis was proposed by 

Zhu et al. (2005) though their hypothesis and analysis focused on the role of the 

antecedent land and atmosphere conditions (not ocean conditions) and monsoon 

precipitation in the Monsoon West region of western New Mexico and eastern 

Arizona.  The results presented below generally corroborate those of Zhu et al. 

though the analysis and data sets are different.   

Antecedent Land Conditions  

To determine whether the antecedent land conditions are getting wetter, trends 

in the precipitation and PDSI for the December to May season are examined (Figure 

7).  A significant increasing trend in the winter/spring precipitation and PDSI over the 

desert southwest can be seen.  Also, a corresponding decreasing trend over the Pacific 

Northwest is apparent.  These trends are field significance at the 95% confidence 

level.  Increased precipitation in the southwest and decreased precipitation in the 

northwest is typical of ENSO teleconnections in the western U.S. identified by 
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several researchers (Ropelewski and Halpert 1986; Redmond and Koch 1991; Cayan 

and Webb 1992; Cayan et al. 1999).  

 

(a) (b)  

Figure 7.  Trends in antecedent winter/spring (December-May) land conditions – 
precipitation (a) and PDSI (b).  Point up triangles indicate an increasing trend, 
point down triangles, a decreasing trend. Symbol size indicates the relative 
magnitude of the trend and filled symbols indicate 90% significance. 
 

To further demonstrate the strength of the link between antecedent land 

conditions and the timing of the monsoon, the leading mode of the monsoon timing is 

correlated with the pre-monsoon land conditions.  The first PC explains 28% of the 

total variance and the first Eigen vector has similar magnitude and sign across all 

stations; hence the first PC can be regarded as the regional monsoon “timing index”.  

Figure 8 (a, b) shows the correlations between the first PC for the monsoon peak, i.e., 

the Julian day when the 50th percentile of the total seasonal rainfall has occurred, and 

the winter/spring (Dec-May) precipitation and PDSI.  Significant positive correlations 

exist between the regional monsoon timing index and antecedent precipitation and 

PDSI over the monsoon region.  These positive correlations indicate that an increase 
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in the monsoon peak’s Julian day (i.e., a late shift in the monsoon) occurs with 

increased rainfall and soil moisture during the preceding winter/spring, thus 

supporting the proposed hypothesis.  When the timing of the onset of the monsoon is 

considered, this correlation pattern becomes even stronger.  Figure 8 (c, d) presents 

the correlations between the first PC of the onset (i.e., the Julian day when the 10th 

percentile of the seasonal rainfall has occurred) and the antecedent conditions.  The 

 

(a) (b) 

(c) (d)  

Figure 8.  Correlation map of the 50th percentile (a,b) and 10th percentile (c,d) of 
the timing PC with antecedent winter/spring precipitation (a,c) and PDSI (b,d) 
Point up triangles indicate a positive correlation, point down indicate a negative 
correlation.  Symbol size indicates the relative magnitude of the correlation and 
filled symbols indicate 90% significance. 
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10th percentile PC captures 31% of the total variance and can be thought of as the 

leading mode of the monsoon onset.  It is noted that the relatively low values of 28% 

and 31% of the total variance accounted for by the first PCs can be explained by the 

noise in the daily data.  The leading PC in all the cases, however, provides a robust 

measure of the spatial average.  

Correlations between the leading mode of the summer (Jul-Sep) monsoon 

rainfall amount and antecedent precipitation (Figure 9a) show a negative correlation 

pattern over the monsoon region and positive pattern over the northwestern U.S.  The 

results are similar for the antecedent PDSI (figures not shown).  Interestingly, the 

correlation pattern for the leading mode of the July rainfall amount (Figure 9b) is 

even stronger, indicating that the onset of the monsoon is most affected by antecedent 

conditions.  These results are consistent with the timing results presented above:  as 

pre-monsoon land moisture increases the monsoon is delayed, thus decreasing 

 (a) (b)  

Figure 9.  Correlation map of the rainfall amount’s first PC for July to 
September (a) and July (b) with antecedent winter/spring precipitation. Point up 
triangles indicate a positive correlation, point down triangles indicate a negative 
correlation.  Symbol size indicates the relative magnitude of the correlation and 
filled symbols indicate 90% significance. 
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monsoonal precipitation in July.  The negative relationship between winter/spring 

precipitation and summertime precipitation over the southwestern U.S. has also been 

noted in previous studies (e.g., Gutzler 2000; Lo and Clark 2002).  Similar results 

were obtained when the PCA was performed separately for Arizona precipitation and 

New Mexico precipitation and each of these leading PCs were correlated with 

antecedent land conditions.  In general, correlations with Arizona tended to be 

slightly stronger.  Table 1 shows the percent of total variance captured by all the 

leading PCs.   

Table 1.  Percent of total variance captured by each leading PC of monsoonal 
precipitation in varying months and regions. 

State Month variance
NM and AZ July 45% 
NM and AZ August 53% 
NM and AZ September 58% 
NM and AZ July-September 43% 

AZ July 80% 
AZ August 78% 
AZ September 75% 
AZ July-September 77% 
NM July 61% 
NM August 64% 
NM September 71% 
NM July-September 63% 

 

These results indicate that the preceding winter/spring land conditions (i.e., 

precipitation and soil moisture) tend to most strongly affect the timing of the 

monsoon initiation and the early monsoon rainfall amount (i.e., July rainfall).  That is, 

a wetter winter/spring tends to delay the monsoon cycle and decrease monsoon 

rainfall in July, and vice-versa. 
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Antecedent Ocean Conditions 

 It is generally accepted that the enhanced wet (dry) conditions over 

southwestern (northwestern) U.S. in winter and spring are largely due to warm ENSO 

(i.e., El Niño) conditions (Ropelewski and Halpert 1986; Redmond and Koch 1991; 

Cayan and Webb 1992; Cayan et al. 1999).  Consequently, winter and spring ocean 

conditions should also be related to the following monsoon.  To investigate this 

explicitly, the monsoon attributes (i.e., timing and rainfall amount) are correlated with 

antecedent ocean conditions. 

 Correlations between the winter/spring (Dec-May) SSTs and the leading mode 

of the following monsoon’s peak Julian day exhibit strong negative values (between  

-0.5 and -0.6) in the northern Pacific Ocean (Figure 10a) around 30N, just east of the 

dateline. Weaker positive correlations are seen to the southeast of this region (around 

10N) and in the tropical Pacific.  This pattern is larger and stronger with the leading 

mode of the early monsoon Julian day (Figure 10b).  Shaded regions are statistically 

significant at the 90% confidence level based on the normal test for correlation 

(a) (b)  

Figure 10.  Correlations between the winter/spring (Dec-May) SSTs and the first 
PC of the Julian day of the 50th (a) and 10th (b) percentile.  Shaded regions are 
statistically significant at the 90% confidence level.  Blue indicates a negative 
correlation; green indicates a positive correlation.  Images provided by the 
NOAA-CIRES Climate Diagnostics Center in Boulder, Colorado from their web 
site at www.cdc.noaa.gov. 
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coefficient (Helsel and Hirsch 1995).  These correlations indicate that a dipole pattern 

of below average SSTs in the north Pacific and above average SSTs to the southeast 

and in the tropical Pacific in winter/spring tend to increase (i.e., delay) the monsoon 

timing.  This study hypothesizes that this occurs via an increased winter/spring 

precipitation over the monsoon region resulting in a weaker land-ocean gradient 

which delays the monsoon cycle (Figure 2).  Though ENSO activity has been shown 

to increase winter and spring precipitation in the southwest U.S., the SST correlation 

pattern with the monsoon timing is suggestive of ENSO, but does not show an 

explicit ENSO pattern. 

 The leading mode of the monthly and summer seasonal monsoon rainfall 

amounts are correlated with the antecedent ocean conditions (Figure 11).  The SST 

patterns for the July rainfall (Figure 11a) show positive correlations (between +0.4 

and +0.5) in the northern Pacific region (same as Figure 10) and negative correlations 

 

(a) (b) 

(c) (d) 
 

Figure 11.  Same as Figure 9 except for correlations between the winter/spring 
(December-May) SSTs and the first PC of the July (a), August (b), September 
(c), and July-September (d) monsoon rainfall. 
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 (between -0.3 and -0.4) to the southeast of this region extending down to the tropics.  

That is, warmer northern Pacific SSTs and cooler tropical Pacific SSTs during 

winter/spring are related to increased monsoon rainfall during July.  It is hypothesized 

that these SST conditions result in decreased winter/spring precipitation over the 

southwest U.S. (e.g., Ropelewski and Halpert 1986) increasing the land-ocean 

temperature gradient and the resulting monsoonal precipitation in July.  The 

correlation pattern reverses and is much weaker (Figure 10b, c, d) for the August, 

September, and total seasonal precipitation.  In August, the correlations are between 

+0.3 and +0.4 in the northern Pacific and between -0.2 and -0.3 to the south and east.  

By September the correlations are not statistically significant.  This indicates that the 

antecedent winter/spring ocean conditions have a stronger impact on the early 

monsoon (July) rainfall.  This is consistent with the results obtained for the 

antecedent land conditions described in the previous section.  

This leaves one to question what large-scale features, if any, affect the late 

monsoon (August to September) rainfall. To explore this, the leading modes of 

August and September rainfall were correlated with the near term and concurrent 

ocean conditions.  The leading mode of rainfall in these months is related to SSTs 

near the California coast and Gulf of California, where correlations are above +0.4 

and are stronger for August than for September.  (Figures not shown.)  These results 

generally corroborate those of Kim et al. (2005) who showed through modeling that 

increases in SSTs around the Gulf of California are linked with increased monsoonal 

precipitation after the onset of the monsoon.   
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Summary and Conclusions 

A systematic analysis of the spatio-temporal attributes of NAM in Arizona 

and New Mexico was performed in this study.  Trends in the Julian day of summer 

rainfall indicate a significant delay (approximately 10-20 days) in the entire cycle of 

the summer monsoon in Arizona and New Mexico.  This delay in the monsoon cycle 

is manifested with a decrease in rainfall during the early monsoon (July) and 

corresponding increase during the later period (August and September).  The 

antecedent (winter/spring) rainfall and PDSI show an increasing trend over the 

southwestern U.S. monsoon region and a decreasing trend over the northwestern U.S. 

– this is consistent with the well-known ENSO teleconnections in the western U.S.  

Combining these observations, the following hypothesis was proposed: increased 

antecedent (pre-monsoon) soil moisture in the monsoon region will take longer 

summer heating to set up the land-ocean gradient and consequently delay the 

monsoon cycle.  The wetter antecedent conditions in the southwestern U.S. are 

largely driven by winter ocean-atmospheric conditions, especially ENSO.  

Correlations between antecedent SSTs and the leading modes of the monsoon timing 

and rainfall amount show that the monsoon (particularly the early monsoon) is related 

to winter/spring SSTs in the tropical/ extra-tropical Pacific, however, no explicit 

ENSO pattern emerged in this analysis.  It is reasoned that the detected shift in the 

timing of the monsoon is a direct response to increased ENSO activity in recent 

decades and that future winter/spring SSTs anomalies and antecedent soil moisture 

will likewise modulate the timing of the monsoon via the proposed mechanism (i.e., 

later (earlier) monsoon with warm (cool) tropical SST anomalies) .  These antecedent 

links to the land and ocean offer hope for long-lead forecasts of the summer 
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monsoon.  The late season monsoon precipitation appears to be more related to SSTs 

near the Gulf of California.  Further analysis using climate models is needed to more 

rigorously test the proposed hypothesis. 
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CHAPTER 3 

STREAMFLOW ANALYSIS 

 

Introduction 

Understanding streamflow variability in the semi-arid western United States is 

important for efficient and sustainable water resources management and development.  

This is underscored by the increasing challenges of population and economic growth, 

environmental concerns together with climate variability and climate change.  It is 

increasingly evident that large-scale climate features, particularly the El Niño-

Southern Oscillation (ENSO) (Allan et al. 1996, Trenberth 1997) and the Pacific 

Decadal Oscillation (PDO) (Mantua et al. 1997, Mantua and Hare, 2002), have a 

strong influence on the variability of regional hydrology in the western U.S.  In 

particular, warming in the central and eastern equatorial Pacific Ocean (i.e., El Niño) 

typically shifts the southern branch of the winter subtropical jet stream southward, 

increasing precipitation and streamflow in the southwestern U.S. and shifts the 

northern branch of the subtropical jet stream northward above the Pacific Northwest, 

decreasing precipitation and streamflow in that area (Cayan and Webb 1992).  Almost 

the opposite hydroclimate response is realized, albeit with some asymmetry (Hoerling 

et al. 1997, Clark et al. 2001), during the cooling of the central and eastern Pacific 

Ocean (i.e., La Niña).  The PDO has also been found to impact western U.S. 

hydroclimatology in conjunction with ENSO (Jain and Lall 2000, 2001; Pizarro and 

Lall 2002), although there is debate regarding its independent nature from ENSO 
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(Newmann 2003).  Several studies (among others, Cayan and Peterson 1989; 

Redmond and Koch 1991; Kahya and Dracup 1993a,b, 1994a,b; Dracup and Kahya 

1994; Piechota et al. 1997; Clark et al. 2001; Pizarro and Lall 2002; Tootle et al. 

2005) have identified the origins of interannual streamflow variability in the western 

U.S. to be large-scale climate features such as ENSO and PDO.  As would be 

expected, the use of large-scale climate information improves the skill in streamflow 

forecasts (e.g., Hamlet and Lettenmaier 1999; Clark et al. 2001) and water 

management (e.g., Hamlet et al. 2002). 

These large-scale climate features have been shown to affect extreme 

hydrologic occurrences such as droughts and floods in the western U.S.  For example, 

Piechota and Dracup (1996) found a significant relationship between El Niño and 

drought in Pacific Northwest and La Niña and drought in the southern U.S. (i.e., 

Texas).  Pizarro and Lall (2002) found that El Niño years present an enhanced 

possibility of winter floods in California and Oregon, spring floods in S. Idaho, NE 

Utah and Colorado and summer floods in New Mexico and S. Colorado.  In 

Washington, N Idaho, Montana and Wyoming the likelihood of flooding appeared 

reduced.  However, when they considered the recent weakening of the negative PDO 

signal, the probability of floods decreased in California, N. Washington and S. 

Colorado, and increased in the other regions. 

Other studies of streamflow variability seek to classify streamflow regions.  

For example, Lins (1997) used rotated principal component analysis (PCA) to classify 

streamflow regimes across the entire U.S.  Among other patterns, the well 

documented Western Opposition (i.e., northwest-southwest opposition) pattern (e.g., 
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Cayan and Peterson 1989; and Redmond and Koch 1991; Piechota et al. 1997) 

emerged.  In the 1997 study Lins found this pattern to be strongest in the summer 

months of June, July, and August.  

Most of the studies described above focus on winter and spring streamflows, 

which are generally driven by the stronger and more organized larger-scale climate 

patterns of winter and which are larger in magnitude relative to streamflows in other 

seasons.  There have been relatively few studies on warm season streamflow 

variability, particularly that in the desert southwest driven by the North American 

Monsoon (NAM) system.  One of the recent studies by Gochis et al. (2003) used the 

fifth-generation Pennsylvania State University—National Center for Atmospheric 

Research (PSU—NCAR) Mesoscale Model (MM5) with three different 

parameterization schemes to model, among other hydrologic responses, rainfall 

runoff in northwest Mexico.  With all three schemes, the generation of surface runoff 

depended more on precipitation rates in individual local storms than on monthly total, 

basin-averaged precipitation.  However, they also found large differences in the 

monthly total surface runoff between the three schemes, underscoring that model 

parameterization can significantly affect streamflow analyses.  Though NAM 

streamflow studies are sparse, the variability of NAM precipitation has been studied 

quite extensively (as described in Chapter 1).  Predicting the variability in the 

strength, location, and timing of monsoonal precipitation and streamflow is 

understandably very important for efficient water resources management. 

The above background and needs motivate this research to investigate the 

space-time variability of streamflow in the NAM region of the southwestern U.S.  
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This chapter is organized as follows.  The study area, data and methods are first 

described followed by a classification of the streamflow stations in the study area.  

Analysis of the winter/ spring streamflow is then presented, followed by space-time 

trends in summer streamflow and their relationship to antecedent land-ocean-

atmosphere conditions.  A physical hypothesis is then proposed for the streamflow 

variability in the region.  A discussion and comparison of the results with those of the 

NAM precipitation analysis (Grantz et al. 2006 and Chapter 2) concludes the chapter. 

Study Area 

It is recognized that the center of NAM activity is in northwestern Mexico 

(Douglas, et al., 1993, Barlow et al., 1998), however, for this study the focus in on 

streamflow variability in the NAM region of Arizona and New Mexico.  This was the 

study region in the recent NAM precipitation analysis (Grantz et al. 2006 and Chapter 

2) and also this understanding will be used in a water management application in the 

Pecos River Basin in New Mexico. 

Data 

HCDN Streamflow Data 

 Daily streamflow data for the period 1948-2004 were obtained from U.S. 

Geological Survey (USGS) stations in the Hydro-climatic Data Network (HCDN).  

HCDN streamflow data are relatively free from such anthropogenic influences as 

regulation and diversion and meet certain measurement accuracy criterion outlined by 

Slack et al. (1993).  This study used daily streamflow data for the period 1949-2004 

from 43 stations across New Mexico and Arizona.  For monthly analyses, the daily 
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data were summed to monthly values.  The stations were filtered to include a 

minimum of 90% of total data.  Missing values were filled in with the daily or 

monthly climatological value for that station.  For the summer streamflow analyses, 

only stations that had at least 20% of the annual streamflow occurring in July to 

October were selected.  Together these two filtering criteria resulted in 18 stations.  

The streamflow data were obtained from www.water.usgs.gov. 

Climate Division Data 

 Monthly precipitation, temperature, and Palmer Drought Severity Index 

(PDSI) data from 8 climate divisions covering New Mexico and 7 divisions for 

Arizona for the years 1948-2004 were used.  The climate divisions and data sets are 

obtained from www.cpc.ncep.noaa.gov. 

NCEP/NCAR Re-analysis Data 

  Monthly values of large-scale ocean and atmosphere variables, e.g., sea 

surface temperatures (SSTs), geopotential heights, precipitable water, winds, etc., 

from the NCEP/NCAR Re-analysis data (Kalnay et al. 1996) were obtained from 

www.cdc.noaa.gov for the years 1948-2004. 

Methodology 

The annual hydrograph for each of the stations was computed to identify the 

peak streamflow month and to classify the stations as spring runoff dominated or 

summer monsoon dominated.   

To understand the seasonal cycle and ‘timing’ of monsoonal streamflow, the 

Julian day when 10, 25, 50, 75, and 90 percent of the monsoonal (July to October) 
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streamflow occurred was identified for each year at each of the HCDN stations.  The 

Julian day at these five thresholds helps capture the entire monsoon cycle. 

Nonparametric trend analysis based on Spearman rank correlation (Helsel and Hirsch 

1995) is performed on these Julian days at all the stations.  The Spearman rank 

correlation is similar to Pearson’s correlation coefficient, R, except that it doesn’t 

require that data be normally distributed, the values are converted to ranks before 

computing the correlation coefficient, and it is robust against outliers.  To perform the 

Spearman rank correlation in this study one station’s time series of Julian days when 

50 percent of monsoonal streamflow occurred was selected and these Julian day 

values were converted to ranks.  These ranks are linearly regressed against the 

corresponding year in which the value occurred.  The Kendall Theil slope estimator 

(Helsel and Hirsch 1995) is then used to calculate the magnitude (number of days) 

and direction (earlier or later) of the timing shift.  The Kendall Theil method is robust 

against outliers and estimates slope by calculating the median of the slopes between 

all combinations of two points in the data.  This process is repeated for each station 

and for the other percentages (10, 25, 75, and 90) of streamflow.  The estimated 

trends in ‘timing’ are then spatially mapped.   

To understand the physical mechanisms driving the streamflow variability the 

leading mode of variability is correlated with large-scale land and ocean conditions. 

The leading modes are obtained by performing a principal component analysis (PCA) 

on the spatial streamflow timeseries. PCA, which is widely used in climate research, 

decomposes a space-time random field into orthogonal space and time patterns using 

Eigen decomposition, thus reducing the dimensions of the data (e.g., von Storch and 
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Swiers 1999).  In PCA the patterns are automatically ordered according to the 

percentage of variance captured, i.e., the first space-time pattern, also called the 

leading mode or first principal component (PC), captures the most variance present in 

the data, and so on.  Typically, the first few modes capture most of the variance 

present in the data.  In this research, the time component, or PC, of the leading mode 

was used. 

Results 

Streamflow Classification 

From the annual hydrograph at each location, the peak streamflow month was 

identified and plotted in Figure 12.  Stations in the north have a late spring (April to 

June) peak indicating that they are snowmelt dominated.  Stations in the central 

region have an early spring (March) peak suggesting that they are winter snow and 

rain dominated, melting earlier relative to stations further north, likely because of 

warmer temperatures in the region.  For stations in the south or at lower elevations, 

the streamflow peak occurs during late summer (August to October), likely due to 

monsoon rainfall runoff.  Given the variation in peak runoff timing, the streamflow 

stations were grouped into three categories based on the peak runoff month: north, 

central, and south.  The “northern” stations are stations that peak in April to June, 

“central” stations peak in March, and “southern” stations peak in August to October.  

The hydrographs at all the stations in each of the three categories are shown in Figure 

12 (b).  It can be seen that station hydrographs may have two peaks, one due to runoff 

from winter snow/precipitation and another due to runoff from summer monsoon 

rainfall.  For several northern stations the spring peak lasts into summer making it 
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difficult to differentiate between spring snowmelt and summer monsoon runoff – this 

aspect will be further investigated and discussed later.  The central stations, too, have 

a peak in spring and in summer.  The southern stations have very little spring runoff 

and peak only in summer.   

                     (a)                                                                 (b) 
 

Figure 12.  (a) Peak streamflow month.  Color indicates the month when the 
most streamflow occurs. Circled stations contained enough data to be included 
in this study.  (b) Scaled hydrographs of northern, central, and southern 
stations. 
 

The relationship between monsoon precipitation (Jul-Sep) and the resulting 

streamflow (Jul-Oct) is shown in Figure 13.  The relationship is generally linear, 

however streamflow variability is greater for the larger precipitation seasons.  This 

could be due, in part, to runoff resulting in streamflow only after ponding takes place.  

During intense events, this can occur before the soil is completely wetted; during less 

intense events, the rainfall will soak into the soil before eventually contributing to 



 38

runoff.  The philosophy taken here is that years of high seasonal precipitation are 

made up of more of the large monsoon precipitation events. 

 

Figure 13.  July to October precipitation PC1 versus streamflow PC1. 
 

Winter / Spring Streamflow Analysis 

 Spatial maps of robust trend estimates of the winter/spring streamflow volume 

and precipitation from the Spearman rank correlation and Kendall-Theil slope 

estimator are shown in Figure 14.  It can be seen that the winter and spring 

streamflow in the NAM region has been increasing over the past half century (Figure 

14(a)) which is consistent with the increasing precipitation trend (Figure 14(b)) in the 

region.  A simultaneous decrease in winter/spring precipitation over the Pacific 

Northwest (Figure 14(b)) is consistent with well-known ENSO teleconnection 

patterns (e.g., Cayan and Webb 1992).  The spatial trend maps are field significant 

(Livezey and Chen 1983) at the 95% confidence level.  These results are consistent 

with those of Regonda et al. (2005), who found significant increasing trends in the 

April 1st snow water equivalent (SWE) over northern New Mexico and decreasing 

trends over the Pacific Northwest.  Winter/spring streamflows in this NAM region are 

strongly related to ENSO (e.g., Redmond and Koch 1991 and Dracup and Kahya 
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1994).  Recent decades have experienced enhanced ENSO activity (Trenberth and 

Hoar 1996, Rajagopalan et al. 1997) and hence, an increased winter moisture (Figure 

2b, Grantz et al., 2006) and consequently, increased streamflow.  

 

                           (a)                                                                 (b) 
 

Figure 14.  (a) Trends in the December to June streamflow volume.  (b) Trends 
in the December to May precipitation.  Blue indicates increasing trend, red 
indicates decreasing trend.  Filled circles are significant at the 90 percent 
confidence level and circle size indicates relative magnitude of the trend. 
 

 To investigate the relationship between the streamflow variability in the NAM 

region and large-scale ocean and atmosphere features, the leading PC of the 

December to June streamflow is correlated with the coincident (Dec-May) Pacific 

SSTs and winds.  The December to June time period was used because the central 

streamflow stations can have flow in both winter and the early spring months, and the 

other regions are not affected by including the winter months because they have very 

little flow during this time.  PCA was performed separately on streamflows in the 

three regions and also on the entire NAM region.  The leading (first) PC, henceforth 

referred to as PC1, of north, central, and southern regions, captured 78, 90, and 46 

percent of the variance, respectively.  Table 2 to Table 5 show the percent variance 

explained by PC1 for the three regions and for different monthly and seasonal 
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streamflows, and also their correlation with the regional averaged streamflow.  The 

PC1s are highly correlated with the regional averaged streamflow in all the regions, 

suggesting that they are a good representation of the regional streamflow.  

   
Table 2.  Percent variance explained by streamflow PC1 

 North Central South Regional 
Winter 78 90 46 61 

July 61 66 44 42 
August 59 61 65 41 

September 56 68 53 40 
October 60 68 55 40 
Summer 61 61 58 41 

 
 
Table 3.  Correlation of area average and streamflow PC1 

 North Central South Regional 
Winter 0.95 0.98 0.42 0.96 

July 0.90 0.93 0.92 0.87 
August 0.83 0.95 0.82 0.86 

September 0.73 0.96 0.75 0.80 
October 0.73 0.93 0.40 0.43 
Summer 0.82 0.92 0.87 0.78 

 
 
Table 4.  Percent variance explained by timing PC1 

 North Central South Regional 
10% 45 50 50 50 
25% 52 51 47 51 
50% 51 57 50 57 
75% 47 67 44 67 
90% 46 60 44 60 

 
 
Table 5.  Correlation of timing area average and timing PC1 

 North Central South Regional 
10% 0.97 0.98 0.99 0.98 
25% 0.99 0.99 0.87 0.99 
50% 0.99 0.99 0.71 0.99 
75% 0.98 0.99 0.89 0.99 
90% 0.96 0.99 0.76 0.99 
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A positive correlation exists between equatorial Pacific SSTs and the PC1 of 

winter/spring streamflow of the NAM (New Mexico and Arizona) region (Figure 

15a).  This suggests that above normal equatorial Pacific SSTs (i.e., El Niño 

conditions) tend to result in higher winter/spring streamflows over the NAM region, 

and vice-versa.  This result corroborates the well documented ENSO teleconnection 

pattern of an El Niño (La Niña) event resulting in above (below) normal winter 

precipitation in the southwestern United States (Ropelewski and Halpert 1986; 

Redmond and Koch 1991; Cayan and Webb 1992; Cayan et al. 1999). 

When streamflows are considered by region, the northern region (Figure 15b) 

shows the strongest ENSO correlation pattern, with the central stations (Figure 15c) 

showing a somewhat weaker connection, and the southern stations (Figure 15d) 

showing no significant correlation with equatorial Pacific SSTs.  It is presumed that 

the weak correlation for the southern stations is due to the insignificant amount of 

winter/spring streamflow in the southern region.  Consistent correlations were seen 

between the PC1 of streamflow and atmospheric variables such as geopotential 

heights, etc.  As an illustration, the correlation pattern of December to May 200mb 

zonal winds and the NAM regional streamflow PC1 is shown in Figure 15e, 

corroborating the SST correlations.  Negative correlations along the equator indicate a 

decrease in the normal east to west tropical winds (i.e., El Niño) which is linked with 

increased streamflow (from the enhanced jet stream) in the southwestern U.S. 
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(a) (b) 

(c) 
 

(d) 
 

(e)  

Figure 15.  Correlations between December to May SSTs and PC1 of December 
to June streamflow in (a) New Mexico and Arizona, (b) northern stations, (c) 
central stations, and (d) southern stations.  Correlations between December to 
May 200mb zonal winds and PC1 of December to June streamflow in New 
Mexico and Arizona (e).  Shaded regions are statistically significant at the 95% 
confidence level.  Green indicates a positive correlation, blue indicates a negative 
correlation.  Image provided by the NOAA-CIRES Climate Diagnostics Center 
in Boulder, Colorado from their web site at www.cdc.noaa.gov. 
 

The relationship between the winter/spring streamflows in the NAM region 

and ENSO and PDO is further corroborated by its correlation with one of the standard 

ENSO indices, NINO3 (Mann et al. 2000), and the PDO index (Mantua et al. 1997).  

The NAM regional PC1 correlations with NINO3 and PDO are statistically 

significant at 0.36, and 0.37, respectively.  The correlations of the North, Central and 

Southern regional PC1 are 0.35, 0.38, -0.01, respectively, with NINO3 and 0.38, 0.26, 

0.24, respectively, with PDO.  
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Summer Streamflow Analysis:  Volume Trends 

Trends in monthly summer (Jul-Oct) streamflow at all the stations in the 

NAM region are shown in Figure 16.  In general, it can be seen that the early 

monsoon months show a decreasing trend and the later monsoon months show an 

increasing trend.  The July and October trends pass field significance (Livezey and 

Chen 1983).  It could be surmised that the decreasing trend in streamflow during the 

early monsoon month of July is related to the trend of late arrival of the monsoon 

precipitation as found in Grantz et al. (2006).  They proposed the hypothesis that 

increased winter/spring moisture over the southwestern U.S. monsoon region requires 

more time and solar energy to heat up the land and set up the necessary land-ocean 

gradient to drive the monsoon, thus delaying the monsoon cycle.  Accordingly, they 

 

(c) 

(a) (b) 

 (d) 
 

Figure 16.   Same as Figure 14, except for trends in the July (a), August (b), 
September (c) and October (d) streamflow volume. 
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found a decreasing rainfall trend over the NAM region in July (see their Figure 4) 

consistent with Figure 16 here.  The validity of applying this hypothesis to the 

streamflow variability is investigated below.  

The PC1 of streamflows in each of the summer months for the three regions 

are correlated with the antecedent winter/spring precipitation over the western U.S. 

(Figure 17).  Results for the correlation with antecedent PDSI were similar (figures 

not shown).  The southern regional streamflow PC1 of the early summer months 

shows a negative correlation with the antecedent precipitation over the NAM region 

while the central region exhibits no statistically significant correlation.  The negative 

correlation between the early monsoon streamflow in the southern region and the 

antecedent precipitation is consistent with the hypothesis described above and 

proposed by Grantz et al. (2006) for the monsoon rainfall variability.  In this, a wetter 

winter/spring tends to delay the monsoon initiation and consequently leads to lower 

streamflow during early monsoon months.  This corroborates previous studies (e.g., 

Gutzler 2000; Higgins and Shi 2000; Lo and Clark 2002; and Zhu et al. 2005) that 

show an inverse relationship between winter precipitation, particularly snowfall, and 

subsequent summer monsoon precipitation.  Again, the correlations are strongest for 

the early monsoon period (i.e., July) when the antecedent soil moisture will have the 

strongest affect.  Results for the central streamflow stations are not statistically 

significant, presumably because the monsoon driven streamflow in this region is 

relatively small. 
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(a)         (b)                           (c)                          (d) 
 

Figure 17.  Correlations between December to May precipitation each climate 
division in the western U.S. and the PC1 of July (a), August (b), September (c), 
and October (d) streamflow for southern (top), central (middle) and northern 
(bottom) stations.  Red circles indicate a positive correlation, blue circles 
indicate a negative correlations.  Filled circles are significant at the 95 percent 
confidence level and circle size indicates relative magnitude of the correlation. 
  

On the contrary, and interestingly so, the PC1 of the northern regional 

streamflows (Figure 17, bottom) exhibits a positive correlation with the antecedent 

winter/spring precipitation over the NAM region.  Streamflows in the northern region 

are largest during the spring season due to snowmelt, as seen in Figure 12.  In years 

of high winter precipitation the ensuing spring runoff lasts well into the typical 

monsoon time period, thus increasing the July to October streamflow and 

consequently resulting in the positive correlation with antecedent precipitation.  The 

correlations are strongest for the early monsoon months when the effects of the spring 
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runoff are most evident.  To test this deduction, the spring flow component was 

removed from the summer streamflow in the northern region.  

Separating the spring and summer components of streamflow is not trivial, 

thus a simplified method was utilized to obtain a sense of the summer streamflow in 

the northern region. The method is represented as: 

∑
=

−≥=
N

in
ii QQoxyeamflowMonsoonStr 1Pr  

where Q is streamflow for day i for N total days in the monsoon season July 1st to 

October 31st.  The premise is that the spring streamflow due to snowmelt appears as 

baseflow in the summer months and, thus, removing the baseflow component leaves 

the streamflow component due to summer rainfall.  The method adds up all the daily 

increases in streamflow; these are presumed to be the rising limb of the streamflow 

response to individual rainfall events.  It is recognized that this method does not 

actually calculate the exact volume of monsoon streamflow and that there are other 

comprehensive methods for subtracting out baseflow (e.g., Chow et al. 1988).  That 

said, the value obtained from this method is proportional to monsoon rainfall driven 

streamflow and can be used as a good proxy for monsoon streamflow.  

Figure 18 shows the correlation between the monsoon streamflow proxy, 

obtained from the above method, for one of the northern stations and the antecedent 

precipitation. The northern station chosen was the one that exhibited the highest 

correlation with streamflows at all other northern stations.  With the baseflow (i.e., 

the effect of spring streamflow) subtracted out, the early summer flow shows a 

negative correlation with the antecedent precipitation in the monsoon region, 

consistent with that of the southern regional streamflow (Figure 17, top).  
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(a)            (b)                              (c)                             (d)  

Figure 18.  Same as Figure 17, except for correlations between the monsoon 
streamflow proxy for a northern station and December to May precipitation. 
 

To investigate the relationship between the early summer streamflow and 

antecedent ocean conditions, the PC1 of July streamflow from the three regions is 

correlated with December to May Pacific SSTs (Figure 19).  The southern regional 

streamflow exhibits a negative correlation with equatorial Pacific SSTs.  In this, 

warmer SSTs in this region of the Pacific (i.e., El Niño conditions) lead to a wetter 

winter/spring in the NAM region, thus reducing the land-ocean temperature gradient.  

This in turn delays the initiation of the following summer monsoon, resulting in 

reduced early monsoon rainfall and streamflow.  The central region shows no 

significant correlations.  The northern region is positively correlated with equatorial 

Pacific SSTs.  It is proposed that this is because the winter/spring streamflow impacts 

the early summer flow:  higher streamflows in winter/spring (due to El Niño) lead to 

higher early summer streamflow, thus the positive correlations.  However, the 

northern monsoon streamflow proxy (as calculated using the method described 

earlier) exhibits a negative correlation with equatorial Pacific SSTs (Figure 19d) 

consistent with results obtained for the southern region.  The positive correlations 

along the equator for the northern stations suggest that above average tropical SSTs in 

winter (i.e., El Niño) are followed by above average streamflow in the early summer 
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months.  This relationship weakens for streamflow in the later summer (August to 

October) months (figures not shown).   

 

       (a)                                                           (b) 

       (c)                                                          (d)  

Figure 19.  Same as Figure 15, except for the PC1 of northern (a), central (b), 
and southern (c) stations July streamflow and northern monsoon (Jul-Oct) 
streamflow proxy (d).    

 

It thus seems apparent that winter tropical Pacific SSTs impact the 

winter/spring moisture (i.e., precipitation) and land conditions over the NAM region 

which, in turn, modulate the timing and the strength of the early monsoon rainfall and 

streamflow.  This connection between the large-scale land-ocean-atmospheric 

conditions in the antecedent winter/spring and the early monsoon rainfall and 

streamflow is very interesting and offers hope for long-lead forecasts of at least the 

state of the summer streamflow in the NAM region.  This information could be very 

useful to water managers in the region.   

Summer Streamflow Analysis:  Timing Trends 

As mentioned earlier, Grantz et al. (2006) found a late shift in the monsoon 

precipitation cycle in the NAM region and hypothesized this to be related to 
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antecedent land-ocean-atmospheric features.  To investigate the validity of the 

hypothesis in relation to the timing of summer streamflow, analysis was performed on 

the time series of the Julian day when 10, 25, 50, 75, and 90 percent of the monsoon 

(Jul-Oct) streamflow accrued in each year at each of the stations.  The five percentage 

thresholds are used to capture the entire cycle of monsoonal streamflow.  Trends in 

the Julian day for these thresholds at each location are shown in Figure 20.  It can be 

seen that the early stage of the monsoon (i.e., the Julian day when 10 percent of the 

seasonal streamflow occurred) shows no significant trend while the middle and later 

stages of the monsoon show a late shift.  It is speculated that the insignificant results 

for the early stage of the monsoon are due to the arbitrary assignment that the “start” 

of the monsoon is July 1st.  Though precipitation may generally start in early July, the 

resulting streamflow may not be realized until several weeks later.  Thus, the 10 

percent results shown in Figure 20 (left) may not accurately reflect the beginning of 

monsoonal streamflow for all stations across the region.  To address this, the same 

analysis was performed on the Julian day time series for the August to October 

streamflow period (Figure 20, right).   Results for the August to October period show 

a late shift in all stages (i.e., percentage thresholds) of the monsoon streamflow cycle.  

This is consistent with the findings of Grantz et al. (2006) (see their Figure 1) for the 

NAM precipitation. 
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   (a)                                            (b) 

(c)                                           (d) 

   (e)                                            (f) 

(g)                                            (h) 

   (i)                                              (j)  

Figure 20. Same as Figure 14 except for trends in the Julian day when 10 (a,b), 
25 (c,d), 50 (e,f), 75 (g,h), and 90 (i,j) percent of July to October (left column) 
and August to October (right column) streamflow occurred. 
 

To investigate the relationship between the shifts in the streamflow cycle seen 

above and antecedent land conditions, the PC1 of the Julian days at each of the 

thresholds and for each of the three regions is correlated with the December to May 
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precipitation across the western U.S. (Figure 21).  The positive correlations between 

the PC1 for the southern stations and the antecedent NAM regional precipitation 

corroborate the findings from the precipitation analysis of Grantz et al. (2006).  In 

 

          (a)                                   (b)                                      (c)      

Figure 21.  Same as Figure 17 except for the summer streamflow timing PC1 (10, 
25, 50, 75, and 90 percent, top to bottom) for the northern (a), central (b) and 
southern (c) stations.     
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this, above average antecedent precipitation decreases the land-ocean gradient thus 

delaying the initiation of the monsoon and the Julian day of the early streamflow (i.e., 

the 10 percent threshold).  Northern and central stations, as expected, show the 

opposite correlation, presumably because of the influence of snowmelt.  The 

correlations become weaker for the PC1s of the other thresholds, indicating that the 

early stages of the monsoon are most affected by antecedent precipitation.  Results for 

correlation with the antecedent PDSI were similar (figures not shown).   

To check the sensitivity of the above results to the definition of monsoon 

initiation, the same analysis is performed on the August to October (rather than July 

to October) monsoon streamflow.  The results are similar to those seen for the July to 

October streamflow (Figure 21), however, the negative correlations are not quite as 

strong (figures not shown).  

 To investigate the role of ocean conditions in modulating the monsoon 

streamflow cycle, the PC1s of the timing are correlated with antecedent winter/spring 

SSTs (Figure 22).  The early timing (i.e., 10th percent) of the streamflow in the 

southern region exhibited a significant positive correlation, albeit small, with tropical 

Pacific SSTs.  This suggests that a warmer equatorial Pacific (i.e., El Niño 

conditions) tends to delay the timing of early monsoon streamflow, and vice-versa for 

cooler SSTs, via the mechanism proposed earlier.  The northern region early monsoon 

flow timing shows negative correlations with the antecedent equatorial Pacific SSTs. 

This is likely due to the winter/spring flows impacting the early monsoon flow in this 

region, as seen earlier.  The later timing (e.g., 50th percent) PCs show decreased 

correlations. 
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Figure 22.  Same as Figure 17, except for PC1 of northern (a), central (b), and 
southern (c) stations 10% (top) and 50% (bottom) of monsoon season 
streamflow.  

 

Caution is advised when interpreting these and other streamflow timing results 

and it is emphasized that the timing of streamflow is complex due, in part, to 

baseflow and the delayed nature of runoff.  The timing of precipitation, in contrast, is 

much more direct to interpret:  whenever it rains, the data indicate an accumulation of 

precipitation.  Nevertheless, in a broad sense, these streamflow timing results do 

support the hypothesis and the previous precipitation results (Grantz et al 2006). 

Summary and Conclusions 

A systematic spatial and temporal analysis was performed on winter, spring 

and summer streamflows in the NAM region consisting of New Mexico and Arizona.  

Based on streamflow climatology and peak flow months, the stations were grouped 

into north (snowmelt dominated), central (early snowmelt and rain dominated), or 

south (summer rainfall dominated) regions.  A significant increasing trend in the 

winter/spring streamflow was observed for recent decades.  This trend is likely driven 

largely by enhanced ENSO activity.  Both the magnitude and timing of early summer 

streamflows showed a significant relationship with antecedent winter/spring 

 

  (a)             (b)                                        (c)       
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precipitation in the NAM region with increased precipitation favoring a weaker and 

later streamflow cycle, and vice-versa.  Summer streamflows in the northern region 

are largely impacted by the antecedent spring runoff.  A simple approach was applied 

to remove this influence.  

The results of this study motivated the following hypothesis to describe 

streamflow variability in the NAM region.  Warmer than average equatorial Pacific 

SSTs and cooler than average northern Pacific SSTs lead to increased winter/ spring 

moisture over the NAM region.  This increased moisture requires more time and solar 

energy to evaporate the moisture and heat up the land and set up the land-ocean 

gradient that drives the monsoon, thus delaying the monsoon and summer 

streamflow.  This hypothesis was previously tested and validated with an analysis of 

monsoon precipitation (Grantz et al. 2006).  The southern region monsoon 

streamflow showed a much closer association with this hypothesis relative to the 

northern region streamflow.  The results for the northern region streamflow are 

mainly due to the effect of spring snowmelt extending into the summer months in the 

northern region.  

The role of antecedent land and ocean conditions in modulating the following 

summer monsoon streamflow appears to be quite significant.  This enhances the 

prospects for long-lead forecasts of monsoon streamflow timing and amount over the 

southwestern U.S., which could have significant implications for water resources 

planning and management in this water-scarce region.  
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CHAPTER 4 

STREAMFLOW FORECAST 

 

Introduction 

Farmers in the desert southwest rely heavily on North American Monsoon 

(NAM) rains, in conjunction with spring runoff water held in storage, to irrigate their 

crops.  Water management in this region, however, typically neglects monsoon 

streamflows in seasonal planning and operational strategies.  The extreme variability 

of the summer monsoon presents a unique challenge that water managers often regard 

as too much risk for operations.  As a result, runoff from large monsoon events, 

which can amount to a significant portion of the annual streamflow in the semi-arid 

region, must sometimes be spilled or released, thus disallowing the use of that water.  

If these events could be predicted and the operations could be adapted accordingly, 

the additional water would significantly benefit water users in the basin.  

This chapter develops a seasonal (spring/monsoon) streamflow forecasting 

model for the Pecos River in New Mexico.  First an overview of the Pecos River 

water resources system is provided; this includes a brief description of the physical 

basin and the policies and operations on the system.  This is followed by the 

forecasting requirements for the basin.  Next, predictors for forecasting the seasonal 

streamflow are identified and subsequently, the forecasting model is developed and 



 56

the best set of predictors in the modeling framework is selected.  Finally, the skill and 

utility of the forecast model is evaluated. 

Pecos River Basin 

Selection Criteria 

For the forecasting and water management application of this research a 

streamflow basin that meets the following criteria was identified. 

• Has a significant summer streamflow component 

• Is affected by large-scale and/or local-scale climate features (this is 

important for forecasting) 

• Has significant water management issues impacted by summertime 

streamflow (e.g., irrigation, municipal and industrial, hydropower, 

environmental needs) 

• Has policies or operations that rely on or could benefit from 

knowledge of the summer hydroclimate 

• Has natural flow data available, either from the HCDN data set or 

computed 

• Ideally, has a decision support tool already built and in use 

Given the above criteria, the Pecos River Basin in New Mexico was selected 

because the river and its tributaries exhibit a significant summer streamflow 

component and have various water management issues and operations that may 

benefit from improved knowledge of the NAM variability and predictability. 
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Physical Description 

The Pecos River originates in the Sangre de Cristo Mountains near Santa Fe, 

New Mexico.  It flows in a southerly direction across the plains of eastern New 

Mexico for approximately 500 miles until crossing into Texas south of Carlsbad, New 

Mexico.  In Texas, the Pecos River flows another 400 miles to its confluence with the 

Rio Grande near Shumla, Texas.  The total drainage area at its confluence with the 

Rio Grande is 33,000 square miles, 19,000 of which lie within New Mexico 

(Boroughs and Stockton 2005).  Figure 23 shows the topography and location of the 

Pecos River watershed. 

 

Figure 23.  Pecos River Basin topography.  Image courtesy of NMISC. 
 

The Pecos River Basin occupies most of the eastern half of the state of New 

Mexico. The headwaters of the Pecos River lie at an elevation of over 12,000 feet and 

at the New Mexico-Texas state line the basin elevation is less than 2,000 feet. 

Average annual precipitation varies throughout the Pecos River Basin.  In the 

northern mountainous regions, average annual precipitation is 16 to 17 inches per 
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year, much of it in the form of snow during the winter months.  The eastern and 

northeastern plains receive an average of 13 inches per year, partly from snow and 

partly from rain.  The lower elevation areas in the central and south basin receive an 

average of 11 inches per year, primarily from summer rainstorms.  (NMOSE 2006)  

Operations and Policies 

Like most rivers in the western United States, the Pecos River has many 

competing demands for its limited water resources.  These include agriculture, 

municipalities and industry, the environment, recreation, and inter-state delivery 

requirements.  The U.S. Bureau of Reclamation (Reclamation), the U.S. Army Corps 

of Engineers (USACE), and the New Mexico Interstate Stream Commission 

(NMISC), among others, work together to manage the Pecos River to best meet the 

needs of these various interests. 

The Pecos River in New Mexico is dammed at four major reservoirs, Santa 

Rosa, Sumner, Brantley, and Avalon, and supplies water to two major irrigation 

districts, the Fort Sumner Irrigation District (FSID) and the Carlsbad Irrigation 

District (CID) (Figure 24).  Santa Rosa Dam, the north-most reservoir, is located 

north of the town Santa Rosa in Guadalupe County.  Sumner Dam is approximately 

50 miles downstream of Santa Rosa Dam near the town Ft. Sumner in De Baca 

County and Brantley Dam is upstream of Carlsbad in Eddy County.  Avalon Dam is 

located 10 miles downstream of Brantley Dam.  The three larger reservoirs, Santa 

Rosa, Sumner, and Brantley were built for flood control and to provide storage for 

CID, while Avalon Dam primarily provides elevation head for the main CID 

diversion.  CID is located near the town of Carlsbad and diverts an annual average of 
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76,000 acre-feet to irrigate a potential 25,055 acres.  The smaller FSID is located 14 

miles below Sumner Dam near the town of Ft. Sumner and diverts an average of 

38,200 acre-feet annually to irrigate 6,500 acres.  River pumpers not formally 

organized as an irrigation or conservancy district also divert an annual average of 

4,200 acre-feet between Sumner Dam and Brantley Dam. 

 

Figure 24.  Pecos River Basin.  Large triangles represent reservoirs.  Image 
courtesy of Craig Boroughs. 
 

The reservoirs of the Pecos River system are operated primarily to optimize 

water delivery to CID farmers.  A main objective is to keep Pecos River water stored 

upstream in Santa Rosa and Sumner reservoirs for as long as possible, then release 

the water in block releases when addition water is needed in Brantley Reservoir.  The 

purpose of the block releases is to limit evaporation and seepage in the middle 
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stretches of the river.  Block releases are made only during the irrigation season, 

March 1st to October 31st, and are initiated and stopped based on storage triggers in 

Brantley Reservoir.  Other releases include flood control releases, the evacuation of 

water above the conservation storage limit, and releases for FISD, which can divert 

up to 100 cfs of natural river flow during irrigation season.  (Boroughs and Stockton 

2005) 

In addition to irrigation, Pecos River water must also be managed for 

environmental objectives as well as inter-state stream deliveries, among other 

objectives.  In 1987, the Pecos bluntnose shiner (Notropis simus pecosensis) (shiner) 

was listed as federally threatened under the Endangered Species Act (ESA) of 1973.  

A biological opinion issued in 1991 concluded that pre-1991 operations would likely 

jeopardize the continued existence of the shiner and adversely modify the critical 

habitat of this species.  Under the ensuing National Environmental Policy Act 

(NEPA) process, Reclamation developed a daily-timestep water operations computer 

model of the Pecos River and Reasonable and Prudent Alternatives (RPAs) to 

existing operations.  These alternatives include limiting block releases to 15 

consecutive days, requiring 14 days between block releases and eliminating block 

releases for a 6-week period around the beginning of August.  (Boroughs and 

Stockton 2005) 

Litigation between New Mexico and Texas over Pecos River water is a major 

component of the river’s history.  The 1949 Pecos River Compact divides the water 

of the Pecos River between the States, but, because of the river's irregular flow, does 

not specify a particular amount of water to be delivered by New Mexico to Texas 
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each year.  Lawsuits, amended decrees, and settlements followed and today’s 

agreement is the result of New Mexico paying Texas of a large sum of money, the 

purchasing and leasing water rights to deliver water to Texas, and conjunctive use 

with groundwater.  Today CID still operates the reservoirs as efficiently as possible to 

yield the most water to their farmers to either irrigate or lease to the State. 

Pecos River operations for CID make use of existing storage levels in the 

basin and do not utilize forecasts of incoming water.  Annual irrigation allotments are 

established on March 1st based on the basin storage on that date.  This allotment is 

increased throughout the irrigation season (on May 1st, June 1st, July 15th, and 

September 1st) if additional water enters the system.  An advanced knowledge of the 

incoming spring and summer runoff could provide a better estimate of the irrigation 

season’s allotment, thus allowing farmers to better plan types and sizes of crops.  In a 

similar vein, block releases are based on storage in Brantley Reservoir and do not 

account for the possibility of inflows below Sumner from monsoon rainfall.  

Consequently, after a block release Brantley Reservoir is often unable to 

accommodate monsoon runoff and the system is forced to spill water to Texas.  Given 

an advanced knowledge of monsoonal runoff, operators could better manage block 

releases, thus potentially reducing spills to Texas and increasing deliveries to CID.   

Forecasting requirements 

 It is apparent from the previous section that improved management on the 

Pecos River Basin can potentially be achieved by using skillful forecasts of spring 

and summer runoff to adjust block release and allotment criteria and minimize spill to 

Texas.  For the allotment criteria, a forecast is required at each allotment calculation 
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date:  March 1st, May 1st, June 1st, July 15th, and September 1st.  At each of these 

dates, the total remaining irrigation season inflow volume to the entire basin must be 

predicted to determine how much additional water will be available for irrigation.  

For the adjustment of block releases, forecasts of basin inflows below Sumner 

Reservoir are required.  Because of the localized and erratic nature of monsoon 

thunderstorms, it is impractical to predict basin-wide monsoon precipitation on sub-

seasonal timescales.  Hence, for the block releases seasonal streamflows were 

forecasted at the above listed five dates.  At each lead time the inflow volume for the 

remainder of the irrigation season is forecasted (e.g., on March 1st the March 1st to 

October 31st inflow volume is required, on May 1st the May 1st to October 31st inflow 

volume, and so on) in the upper and lower Pecos basin. 

For each forecast lead time, potential predictors of the seasonal streamflow are 

identified from the land-ocean-atmosphere system.  The best predictor combination is 

obtained for a nonparametric forecasting model (Grantz et al., 2005; Prairie et al., 

2006), thus producing the best forecast model.  Forecasts are issued in a cross-

validated mode and their skills evaluated.  This process is described in the following 

sections.  

Data  

The following data sets for the period 1949 – 1999 were used for the forecast 

component of this research. 

Streamflow 

Monthly streamflow data for the Pecos River Basin were obtained from Craig 

Boroughs of the Hydrology/Water Operations Work Group for the Carlsbad Project 
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Water Operations and Water Supply Conservation NEPA process.  This data set is the 

result of an extensive study of inflows to the Pecos River performed for the NEPA 

process.  The study designated seven sub-basins in which inflows to the Pecos River 

were calculated.  The seven sub-basins are:  above Santa Rosa reservoir, Puerto de 

Luna, Acme, Lake Arthur, Artesia, Kaiser, and Dam Site 3.  For the inflows to Santa 

Rosa reservoir, United States Geological Survey (USGS) gaged flow could be used. 

Due to damming and diversions, gaged flow in the remaining six subbasins does not 

accurately reflect natural river flow, thus calculations were required to establish a 

natural flow data set for these river reaches.   

 Annual hydrographs of the seven side inflows to the Pecos River are shown in 

Figure 25.  It can be seen that the runoff in the first two subbasins and bottom five 

subbasins are climatologically similar.  Of all the stations, the two northern stations 

(i.e., the upper basin) contain a significant amount of streamflow in the months before 

July.  Conversely, the bottom five stations (i.e., lower basin) are monsoon streamflow 

(i.e., after July) dominated.  Though Puerto de Luna could also be grouped with the 

lower stations, the requirements of the forecast locations make clustering the top two 

stations together a good option. 

 Grouping the stations, an index of upper-basin (above Santa Rosa and Puerto 

de Luna) streamflow was developed by adding the flow at these two locations for 

each season separately (March to June, May to June, June, July to October, and 

September to October).  An index of the lower-basin below Sumner Reservoir (Acme, 

Lake Arthur, Artesia, Kaiser, and Dam Site 3) was similarly estimated.  Henceforth, 

these two indices are referred to as upper and lower basin streamflow.  As an 
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Figure 25.  Pecos River side inflow hydrographs.  Stations a to g are listed from 
north to south. 
 

illustration, the upper and lower basin streamflow of the March to June season are 

shown in Figure 26.  Operationally, lower basin streamflows are needed for 

adjustment of block releases.  Both the upper and lower basin streamflows are used 

for the calculation of allotments. 



 65

 

        (a) 

        (b)  
Figure 26.  March to June streamflow in the upper (a) and lower (b) Pecos 
River. 
 

Precipitation, PDSI, Temperature, and SWE 

Monthly precipitation, Palmer Drought Severity Index (PDSI), a surrogate for 

soil moisture, and temperature data for climate divisions in the western U.S. were 

obtained from the U.S. climate division data set from the NOAA-CIRES Climate 

Diagnostics Center (CDC) website (www.cdc.noaa.gov).   Monthly snow water 

equivalent (SWE) data were obtained from the Natural Resources Conservation 

Service (NRCS) National Water and Climate Center website 

(www.wcc.nrcs.usda.gov).  The SWE data is gathered from snow course and snotel 

stations in upper Pecos Basin, however, due to paucity of locations (five in the basin) 

and incomplete data sets, only one station, Panchuela snow course site, could be used 

in this study.  The Panchuela site is located near the headwaters of the Pecos River 

just north of the town of Pecos at an elevation of 8,400 feet.    
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Large-Scale Climate Variables 

Monthly values of large-scale ocean and atmospheric variables such as sea 

surface temperatures (SSTs), geopotential heights, precipitable water, air 

temperatures, sea level pressures, and zonal winds come from the NCEP/NCAR Re-

analysis data set (Kalnay et al. 1996).  These were obtained from the NOAA-CIRES 

CDC website (www.cdc.noaa.gov).   

Identification of Predictors 

 The first step in the forecasting framework is to identify predictors of flows in 

the basin.  From Chapters 2 and 3, it is known that winter, spring, and early summer 

large-scale land-ocean-atmosphere features are well related to spring and summer 

streamflows in the NAM region.  Therfore, the upper and lower Pecos irrigation 

season streamflows developed earlier are correlated with the preceding season’s 

large-scale land-ocean-atmosphere variables. 

 It is recognized that the signals that affect spring streamflow distinctly differ 

from those that affect monsoon streamflow (e.g., Figure 15 and Figure 19 in Chapter 

3).  In light of this, predictors for the spring component of the irrigation season 

(March to June) and the summer component (July to October) were investigated 

separately.  Thus, predictors for 16 different seasonal streamflows on the upper and 

lower Pecos, at all five lead times were identified separately.  The 16 forecasts are: 

• March 1st:   March-June upper Pecos, March-June lower Pecos,  

July-October upper Pecos, July-October lower Pecos 

• May 1st:  May-June upper Pecos, May-June lower Pecos,  

July-October upper Pecos, July-October lower Pecos 
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• June 1st: June upper Pecos, June lower Pecos,  

July-October upper Pecos, July-October lower Pecos 

• July 15th:  July-October upper Pecos, July-October lower Pecos 

• Sept 1st: Sept-October upper Pecos, Sept-October lower Pecos 

 The results presented in Chapters 2 and 3 suggest that irrigation season 

streamflows in the Pecos River Basin are likely modulated by large-scale land-ocean-

atmosphere climate patterns potentially related to well known phenomena such as the 

El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO).  

The standard indices of these phenomena, PDO, NINO3, NINO3.4, NINO4, 

NINO1.2, bivariate ENSO, North Atlantic Osciallation (NAO), Pacific/North 

American (PNA) pattern, Southern Osciallation Index (SOI), Tropical Northern 

Atlantic (TNA) index, and Trans-NINO Index (TNI) showed little or no statistically 

significanct correlation with the irrigation season streamflows in the basin.  This is 

not surprising given that these teleconnection patterns, though dominant on a large 

scale, often fail to provide predictive skill in individual basins, particularly if the 

basin is outside the defined core teleconnection regions (e.g., McCabe and Dettinger, 

2002).  Moreover, relatively minor shifts in large-scale atmospheric patterns can 

result in large differences in the surface climate (e.g., Yarnal and Diaz, 1986), 

suggesting that predictive indices may need to be basin-specific.  Thus, the seasonal 

streamflows were correlated with the land-ocean-atmosphere variables (e.g., 500mb 

geopotential height fields, SSTs, etc.) from preceding seasons to identify potential 

predictors in the Pecos River Basin.  This method of predictor identification has been 

successfully used in the forecast of streamflows in western U.S. and rainfall forecast 
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over Thailand (e.g., Grantz et al. 2005; Regonda et al. 2006; Singhrattna et al. 2005) 

Figure 27 presents the correlations between the winter (Dec-Feb) SSTs, 

500mb geopotential heights (henceforth, referred to as Z500) and 200mb zonal winds 

in the Pacific Ocean with the upper Pecos spring (Mar-Jun) and summer (Jul-Oct) 

streamflow.  The figure demonstrates that patterns related to spring streamflow differ 

dramatically from, and are almost opposite to, those for the summer streamflow.  For 

the March to June streamflow, there are strong positive correlations (approximately 

0.5) with SSTs in the equatorial Pacific and strong negative correlations 

                      (a)                                                          (b) 
   

Figure 27.  December to February Z500, SSTs, and 200mb zonal winds (top to 
bottom, respectively) correlated with upper Pecos March to June (a) streamflow 
and July to October (b) streamflow.  Images provided by the NOAA-CIRES 
Climate Diagnostics Center, in Boulder, Colorado from their web site at 
www.cdc.noaa.gov. 
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(approximately -0.5) with SSTs in the northern Pacific.  Above normal equatorial 

SSTs in winter (i.e., El Niño conditions) are known to be related to above average 

winter precipitation and streamflow in the southwestern U.S. (e.g., Cayan and 

Peterson 1989, Redmond and Koch 1991, Piechota et al. 1997, and the findings from 

this research in Chapters 2 and 3).  Thus, the correlation pattern seen in this figure is 

consistent with prior findings.  

Correlations between the Z500 and the March to June streamflow (Figure 27, 

a, middle) resemble the PNA pattern (e.g., Wallace and Gutzler 1981; Barnston and 

Livezey 1987; Leathers et al. 1991), though shifted slightly south.  The negative 

correlation pattern off the coast of California indicates that when winter pressures in 

this region are below average, spring streamflow in the Pecos River Basin is above 

average.  This is consistent, in that negative pressure anomalies in the northern 

hemisphere induce counter-clockwise winds around the pressure centers, in this case 

bringing southerly winds over the Pecos River Basin.  Southerly winds tend to be 

warm and moist, thus increasing the chances of enhanced winter precipitation and, 

consequently, higher streamflows the following spring.  Hence, the negative 

correlation pattern emerges. 

The 200mb zonal winds (Figure 27, a, bottom) corroborate the correlation 

patterns seen in the Z500, showing positive correlations in the region below and to 

the right of the negative pressure center where the winds are strongest.   

The correlation patterns for July to October monsoonal streamflow (Figure 27, 

b) are effectively opposite to those for the spring streamflow, though they are 

somewhat weaker.  This inverse relationship is consistent with the results of Chapter 
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3 and the known inverse relationship between winter precipitation and subsequent 

summer precipitation in southwestern U.S. (e.g., Gutzler, 2000; Higgins and Shi, 

2000; Lo and Clark, 2002).  Large-scale climate patterns that increase winter 

precipitation, and hence spring streamflows, tend to decreased summer precipitation 

and streamflow by decreasing the land-ocean temperature contrast, a key driver of the 

summer monsoon.  The comparably weaker correlation patterns are likely due to the 

fact that NAM precipitation is highly variable and relatively weakly modulated by 

antecedent large-scale climate features.  

The correlations between the December to February SSTs, Z500 and 200mb 

zonal winds in the Pacific Ocean and the lower Pecos spring and summer streamflow 

are presented in Figure 28.  The correlation patterns for the lower Pecos, though 

 

                    (a)                                                            (b)  

Figure 28.  Same as Figure 27, except for the lower Pecos streamflow. 
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generally that same as those for the upper Pecos (Figure 27), are significantly weaker 

and less organized.  This is particularly true for the March to June correlations when 

streamflow signal in the lower Pecos is considerably smaller than that for the upper 

Pecos (see Figure 25).  In addition, the lower Pecos streamflow is a sum of the inflow 

at five locations that do not correlate well with each other, and thus may not exhibit 

as cohesive a signal as the upper two stations.  

 Correlations between the upper Pecos streamflow and the December to 

February PDSI and Precipitation across all U.S. climate divisions are presented in 

Figure 29.  The correlations over the New Mexico region are positive for March to 

 

(a)                                                                 (b)  

Figure 29. December to February PDSI (top) and Precipitation (bottom) 
correlated with upper Pecos March to June (a) streamflow and July to October 
(b) streamflow.  Images provided by the NOAACIRES Climate Diagnostics 
Center, in Boulder, Colorado from their web site at www.cdc.noaa.gov. 
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June indicating that increased winter soil moisture and precipitation lead to increased 

spring streamflow in the Pecos.  Conversely, the correlations over the New Mexico 

region are negative for the July to October streamflow, suggesting that wetter winters 

lead to drier summers, and vice versa.  Correlations for the lower Pecos River are 

similar, though not as strong (figures not shown). 

For the May 1st forecast, correlations between the December to April large-

scale climate variables and May to June and July to October streamflow in the upper 

Pecos are investigated (Figure 30).  It can be seen from this figure that the patterns 

are similar to the December to February correlations (Figure 27). Correlations with 

 

(a)                                                                (b) 
 

Figure 30.  Same as Figure 27 except for December to April climate variables. 
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the antecedent PDSI and precipitation correlations (Figure 31) are also comparable 

with those of the December to February period (Figure 29).  Correlations for the 

lower Pecos are similar, though weaker (figures not shown).  This suggests that the 

large-scale climate patterns modulating the winter, and in particular spring, 

streamflows are persistent and well organized and, thus, can potentially help provide 

skillful seasonal streamflow forecasts. 

 

                   (a)                                                           (b)  

Figure 31.  Same as Figure 29 except for December to April PDSI and 
Precipitation  
 

Predictors for the June 1st and July 15th forecast lead times present similar 

correlation patterns to those for the March 1st and May 1st lead times.  This is because 

it is the winter large-scale climate that most affects monsoon streamflow and 

December to May variables are used as predictors for all lead times.   
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For the September 1st forecast lead time, correlations of the September to 

October streamflow with antecedent July to August large-scale climate and 

hydroclimate (i.e., PDSI and precipitation) variables are shown in Figure 32.  The 

 

         (a)                                                              (b)  

Figure 32.  Predictors September to October streamflow in the upper Pecos (a) 
and lower Pecos (b).  From top to bottom they are: Jul-Aug Z500 (a) and (b); 
Jul-Aug air temperature (a) and Dec-Jul air temperature (b); Jul-Aug 200mb 
zonal winds (a) and (b); Jul-Aug precipitation (a) and Dec-Jun PDSI (b).  Images 
provided by the NOAACIRES Climate Diagnostics Center, in Boulder, Colorado 
from their web site at www.cdc.noaa.gov. 
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patterns are considerably weaker and less organized than those for the earlier forecast 

dates.  It is also interesting to note that the patterns driving the lower Pecos River are 

stronger than those driving the upper Pecos River; this is the converse of the findings 

for the earlier forecast dates.  This is consistent with the findings in Chapters 2 and 3 

which demonstrated that the drivers of late-season monsoon precipitation and 

streamflow are not nearly as obvious as those for the early season monsoon.   

A good portion of the irrigation season streamflow in the Pecos River comes 

in spring largely due to snowmelt runoff.  Thus, SWE could also be a potential 

predictor of the seasonal streamflow.  Figure 33 shows the scatterplots of the March 

1st and April 1st SWE with the May to June streamflow in the upper and lower Pecos.  

Figure 34 shows the same for the June streamflow.  As expected, SWE is positively 

 

       (a)                                                 (b) 

 (c)                                                 (d)  

Figure 33.  May to June streamflow with March 1st SWE (a, c) and April 1st 
SWE (b, d) in the upper (a,b) and lower (c,d) Pecos River. 
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correlated with spring streamflow.  For the upper Pecos, the April 1st SWE is a better 

indicator of spring runoff than the March 1st SWE.  This relationship is typical of 

basins across the western U.S. because the April 1st SWE usually provides a more 

accurate representation of total winter snowpack in a basin.  It is interesting to note 

that for most years in the Pecos River Basin, the April 1st SWE is actually lower than 

the March 1st SWE, implying that the winter snowpack begins to melt sometime in 

March.  The SWE—spring streamflow relationship, however, is not as strong as is 

typical in several other Western U.S. basins;  for example, the Truckee-Carson Basin 

(Grantz et al. 2005) and the Gunnison Basin (Regonda et al. 2006).  This could be due 

to the fact that only one snow course site was available for this study.  Because of 

anomalies and errors in snow course data, more measurements and locations provide 

 

(a)                                              (b) 

          (c)                                              (d)  

Figure 34.  June streamflow with March 1st SWE (a, c) and April 1st SWE (b, d) 
in the upper (a, b) and lower (c,d) Pecos River. 
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a better indication of total snowpack, and hence runoff, in a basin.  Also, in 1986, the 

lower Pecos River experienced a very wet June though the SWE in that year was 

below average.  It is believed that the June runoff in that year was due to early 

monsoon rainfall, rather than snowmelt.  This outlier significantly affects the 

Pearson’s R values reported here.  

 Correlations between SWE and the summer (Jul-Oct) Pecos streamflow 

(Figure 35) demonstrate the well-documented negative relationship between 

monsoonal streamflow and the preceding winter’s snowfall (Gutzler 2000; Higgins 

and Shi 2000; Lo and Clark 2002; Zhu et al. 2005).   

  
 

(a) (b)  

        (c)                                           (d)  
Figure 35.  SWE with July to October streamflow:  upper Pecos and March 1st 
(a) and April 1st SWE (b), lower Pecos and March 1st (c) and April 1st SWE (d). 
 
 

Streamflows are generally autocorrelated; thus to garner potential predictors 

from this phenomenon, seasonal streamflows were correlated with the preceding 
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seasonal or monthly streamflows (Figure 36).  Strong autocorrelations are evident 

especially with the May to June streamflows and the preceding April flows in the 

upper Pecos.  Also, the June streamflows demonstrate substantial correlation with the 

preceding May flows.  Weak autocorrelations in the spring streamflows were 

observed in the lower Pecos streamflows.  

 

           (a)                                         (b)                                        (c)      
Figure 36.  Lag-1 streamflow correlations for the upper Pecos River. 
 

Based on all the correlation maps and scatterplots developed (some of which 

are presented above), predictors to each seasonal streamflow are compiled.  Using the 

correlation maps, regions of high correlation (positive or negative) are identified and 

the variable is averaged over the region for each year, thus resulting in a predictor 

timeseries.  In cases when there are regions with significant positive and negative 

correlation, the timeseries are computed separately for each region and then one 

timeseries is subtracted from the other to result in a single predictor time series.  

Thus, for each forecast lead time all the potential predictors are identified and 

timeseries are computed.  These are compiled in Table 6. 
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Table 6.  Potential predictors. 
 Upper Basin  

Spring 
Upper Basin 

Summer 
Lower Basin 

Spring 
Lower Basin 

Summer 
Mar1st Dec-Feb: 

Z500 (pos-neg) 
SSTs (pos-neg) 
Z Winds (pos-neg) 
SWE (Mar 1) 
PDSI 
Precip 
Feb streamflow 

Dec-Feb:  
Z500 (pos-neg) 
SSTs (pos-neg) 
Z Winds ((pos-neg) 
SWE (Mar 1) 
PDSI 
Air Temp 

Dec-Feb: 
Z500 (pos-neg) 
SSTs (pos-neg) 
SWE (Mar 1) 
PDSI 
Precip 
 

Dec-Feb: 
Z500 (pos-neg) 
SSTs (pos-neg) 
Z Winds 
SWE (Mar 1) 
PDSI 
Precip 

May 1st Dec-Apr: 
Z500 (pos-neg) 
SSTs (pos-neg) 
Z Winds (pos-neg) 
SWE (Mar 1st) 
SWE (Apr 1st) 
PDSI 
Air Temp 
Apr streamflow 

Dec-Apr: 
Z500 (pos-neg) 
SSTs (pos-neg) 
Z Winds (pos-neg) 
SWE (Mar 1st) 
SWE (Apr 1st) 
PDSI 
Air Temp 
SSTs (gulf) 

Dec-Apr: 
Z500  
SSTs (pos-neg) 
SWE (Mar 1st) 
SWE (Apr 1st) 
PDSI 
Air Temp 
 

Dec-Apr: 
Z500  
SSTs (pos-neg) 
SWE (Mar 1st) 
SWE (Apr 1st) 
Precip 
 

Jun 1st Dec-May: 
Z500 (pos-neg) 
SSTs (pos-neg) 
Z Winds (pos-neg) 
SWE (Mar 1st) 
SWE (Apr 1st) 
PDSI 
Precip 
Air Temp 
May streamflow 

Dec-May: 
Z500 (pos-neg) 
SSTs 
Z Winds (pos-neg) 
SWE (Mar 1st) 
SWE (Apr 1st) 
PDSI 
Precip 
Air Temp 
 

Dec-May: 
Z500  
SSTs (pos-neg) 
Z Winds(pos-neg) 
SWE (Mar 1st) 
SWE (Apr 1st) 
PDSI 
Air Temp 
 

Dec-May: 
Z500  
SSTs (pos-neg) 
Z Winds (pos-neg) 
SWE (Mar 1st) 
SWE (Apr 1st) 
PDSI 
Precip 
Air Temp 
 

Jul 15th  Dec-May: 
Z500 (pos-neg) 
SSTs (pos-neg) 
Z Winds (pos-neg) 
SWE (Mar 1st) 
SWE (Apr 1st) 
PDSI 
Air Temp 

 Dec-May: 
Z500  
SSTs 
Z Winds  
SWE (Mar 1st) 
SWE (Apr 1st) 
PDSI 
Precip 

Sep 1st  Jul-Aug: 
Z500 
SSTs (Dec-May) 
Z Winds  
Z Winds (Dec-May) 
SWE (Mar 1st) 
SWE (Apr 1st) 
Precip 
Air Temp 
Jul-Aug streamflow 

 Jul-Aug: 
Z500  
Z500 (Dec-Jul) 
Z Winds  
Z Winds (Dec-Jul) 
SWE (Mar 1st) 
SWE (Apr 1st) 
PDSI (Dec-Jun) 
Air Temp (Dec-Jul) 
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Forecast Model 

 Many of the predictors selected for forecasting the seasonal streamflows in the 

Pecoso River Basin are highly correlated (e.g., SWE and precipitation or the Z500 

and 200mb zonal winds) and are likely responses to the same physical mechanism.  

Including all the correlated predictors in a forecasting model can lead to over-fitting 

and poor skill in prediction; this is known as multicollinearity.  Thus, the best subset 

of predictors needs to be identified.  This section presents the forecast modeling 

framework first, followed by the method for selecting the best subset of predictors. 

Forecast Model Framework 

Statistical forecast models can be generally represented as: 

Y = ƒ(x1, x2, x3, … xp) + e 

where f is a function fitted to the predictor variables (x1,x2,…,xp), Y is the dependent 

variable (in this case the spring or monsoon streamflows) and e is the errors, typically 

assumed to be normally (or Gaussian) distributed with a mean of 0 and variance σ. 

Traditional (also known as parametric) models assume that the underlying 

function relating the predictor and the dependent variable is linear and fit a linear 

equation by minimizing the errors.  This is also known as linear regression (Helsel 

and Hirsch 1995) and is of the form: 

Y = a1x1 + a2x2 + …+ apxp + b + e 

where the dependent variable Y is linearly fit to the predictor variables (x1,x2,…,xp), 

a1,a2,…,ap are the regression coefficients, b is the intercept, and e is the errors 

assumed to be normally distributed with a mean of 0 and variance σ.  The fitted linear 
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model is tested for adequacy.  The theory behind linear regression has been well 

developed and several software packages exist for ease of implementation.  

 However, linear regression has several shortcomings, including the following.  

(i) The assumption that the underlying function is linear can be restrictive. (ii) The 

data have to be normally distributed for testing model adequacy.  If the data are not 

normally distributed they have to be transformed.  This task can be quite difficult to 

achieve on real data.  (iii) The least squares method of model parameter estimation is 

very sensitive to outliers.  (iv) Higher order models (quadratic, cubic, etc.) require a 

larger number of model parameters to be estimated, thus increasing model 

uncertainty.  The main limiting feature of the traditional linear model is that a single 

model of the form of the equation above is fitted to the entire dataset and as a result 

local nonlinearities cannot be adequately captured. 

Nonparametric methods, which are data driven, address the drawbacks of the 

traditional models.  In this, the form of the underlying function, f, is not assumed for 

the entire dataset, but rather it is estimated “locally” at each point of interest.  This 

local estimation is the key difference from the traditional approach and one that 

provides the capability to capture any arbitrary feature (linear or nonlinear) that might 

be present in the data.  There are several nonparametric methods for functional 

estimation.  These include kernel-based techniques (Bowman and Azzalini 1997), 

splines, K-nearest neighbor (K-NN) local polynomials (Owosina 1992; Rajagopalan 

and Lall 1999), local weighted polynomials (Loader 1999), etc.  Owosina (1992) 

performed an extensive comparison of a number of traditional parametric and 

nonparametric regression methods on a variety of synthetic and real data sets.  He 



 82

found that the nonparametric methods out-performed the parametric alternatives in all 

the cases. 

The local weighted polynomials approach (henceforth, LOCFIT) developed 

by Loader (1999) is simple, robust and easy to implement.  Furthermore, it has been 

extensively applied to forecasting streamflow and precipitation (e.g., Grantz et al. 

2005;  Singhrattna et al. 2005; Regonda et al. 2006) with good success.  

Briefly, the LOCFIT method obtains the value of the function f at any point 

‘x*’ by fitting a polynomial to a small set (K) of nearest neighbors to ‘x*’.  Once the 

K-nearest neighbors are identified, there are two main options: 

(i)  The neighbors can be resampled with a weight function that 

gives more weight to the nearest neighbors and less to the 

farthest, thus generating an ensemble (e.g., Lall and Sharma 

1996; Rajagopalan and Lall 1999; Yates et al. 2003; Souza and 

Lall 2003) 

(ii)  A polynomial of order p can be fit to the neighbors using 

weighted least squares (where the nearest neighbor is given most 

weight and the farthest neighbor the least).  The polynomial is 

then used to estimate the dependent variable (Loader 1999).   

Thus, the parameters to be estimated are the size of the neighborhood (K) and 

the order of the polynomial (p).  These are obtained using the objective score function 

Generalized Cross Validation (GCV), which is given as: 
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where ie is the model residual, N is the number of data points, and q is the fitted 

degrees of freedom (related to the number of model parameters) of the forecasting 

model (Loader 1999).  The GCV score is calculated on several combinations of K and 

p and the combination producing the minimum GCV is selected as the best.  GCV has 

been shown to be a good approximation of the predictive capability of the model 

(Craven and Whaba 1979).  This is unlike other measures such as mean squared error 

or R2 which capture how well the model fits the data. 

 Also, it should be noted that if K is equal to N (all the data points), if all the 

neighbors are given equal weight, and if a linear polynomial is fit, then the model 

collapses to traditional linear regression.  Thus, the local polynomial approach is a 

general framework which includes the linear regression as a special case.   

The LOCFIT method also provides the error variance, σ, of the estimate at x*. 

This, in conjunction with an assumption of normally distributed errors, can provide 

the confidence interval.  Also, random deviates from a normal distribution with mean 

0 and variance σ can be added to the estimate from the local polynomial to generate 

ensembles.  This method was used for ensemble forecasting of streamflows (Regonda 

et al. 2006) and monsoon rainfall in Thailand (Singhrattna et al. 2005).  To better 

capture the local error distribution around x*, Prairie et al. (2005, 2006) proposed a 

residual resampling approach.  This approach was also used in Grantz et al. (2005) to 

provide ensemble forecasts of spring seasonal streamflows in the Truckee-Carson 
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River Basin. A brief description of the residual resampling methodology abstracted 

from Grantz et al. (2005) is given below: 

(i) For a given data set, the best choice of neighborhood size (K) and 

the order of polynomial (p) are obtained using objective criteria 

such as Generalized Cross Validation (GCV) or likelihood. 

(ii) At each observed data point, xj, K nearest neighbors are 

identified and a local polynomial of order p is fitted. This fit is 

then used to estimate the value of the dependent variable (i.e., the 

conditional mean) and consequently, the residual, ej.  

(iii) For a new data point, xnew, at which an estimate is required, the 

conditional mean value, Ynew, is obtained using the step ii, above. 

(iv) Next, one of the K nearest neighbors of xnew, say xi, is selected 

and its corresponding residual, ei is then added to the mean 

forecast (Ynew + ei)  thus obtaining one of the ensemble members. 

The selection of one of the neighbors is done using a weight 

function of the form: 

∑
=

= k

i i
j

jW

1

1
1)(  

This weight function gives more weight to the nearest neighbor 

and less to the farthest neighbors. The number of neighbors to be 

used to resample the residuals need not be same as the number of 

neighbors used to perform the local polynomial in step 1. In 

practice, square root of (n-1) is used to resample the residuals.  
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(v) Step iv is repeated to provide ensembles.  

The residual resampling approach can be better visualized in Figure 37.  The 

figure shows the scatter plot of the December to February PDSI and the March to 

June streamflow in the upper Pecos River.  The solid line is the LOCFIT estimates 

through the scatter.  The bootstrapping of the residuals for the ensemble forecast is 

depicted in the dashed box.  

Yt 

xt 

et 

Yt=f(xt)+et 

 

Figure 37.  Residual resampling 
 

Predictor Selection 

 As mentioned earlier, the predictors obtained for the streamflow forecast in 

the Pecos River Basin can be highly correlated with eachother.  Thus, the best subset 

of predictors must be selected for use in the forecasting model described above. 

Typically this is done using stepwise regression (e.g., Rao and Toutenburg 1999; 

Walpole et al. 2002) wherein an objective function such as Mallow’s Cp statistic, the 
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adjusted R2, Akaike’s Information Criteria (AIC), or an F-test is calculated from the 

fitted model to several predictor combinations.  The best subset is then selected based 

on the combination that gives the optimal value for the chosen objective function.  

   In this study the best set of predictors for each forecast lead time is obtained 

by minimizing the objective function GCV described earlier.  The GCV score can be 

used to obtain the best subset of predictors along with the parameters K and p of the 

LOCFIT.  This was proposed by Regonda et al. (2005) and subsequently used 

effectively in Grantz et al. (2005) and Regonda et al. (2006).  Because the GCV 

rewards for parsimony, typically only one of several related predictors is selected. 

In the Pecos River Basin, a wet forecast is particularly useful to water 

management as policy can be best modified in wet years.  If the forecast predicts a 

wet monsoon allotments can be increased and block releases can be limited.  In 

normal and dry years, the allotment calculation and block release criteria will remain 

largely the same. Therefore, the GCV score is computed for the wet years using all 

combinations of predictors and LOCFIT parameters.  The predictor combination that 

produced the minimum GCV score is selected for use in the forecasting model.  Wet 

years are defined as those with historical streamflows above the 66th percentile.   

The best predictor combinations for the upper and lower Pecos River 

streamflow forecasts at all lead times are shown in Table 7. 
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Table 7.  Selected predictors. 
 Upper Basin  

Spring 
Upper Basin 

Summer 
Lower Basin 

Spring 
Lower Basin 

Summer 
Mar1st Dec-Feb: 

SSTs (hi-lo) 
Z Winds (hi-lo) 
PDSI 

Dec-Feb:  
Z500 (hi-lo) 
PDSI 

Dec-Feb: 
Z500 (hi-lo) 
PDSI 

Dec-Feb: 
Z500 (hi-lo) 
Z Winds 
PDSI 

May 1st Dec-Apr: 
SWE (Apr 1st) 
Apr streamflow 

Dec-Apr: 
SWE (Mar 1st) 
SSTs (gulf) 

Dec-Apr: 
SSTs (hi-lo) 
SWE (Mar 1st) 

Dec-Apr: 
Z500  
SWE (Apr 1st) 

Jun 1st Dec-May: 
Z500 (hi-lo) 
SWE (Mar 1st) 
May streamflow 

Dec-May: 
SSTs 
SWE (Mar 1st) 
Air Temp 

Dec-May: 
SSTs (hi-lo) 
SWE (Mar 1st) 

Dec-May: 
Z500  
Air Temp 

Jul 15th  Dec-May: 
SWE (Mar 1st) 
Air Temp 

 Dec-May: 
Z500  
SSTs 

Sep 1st  Jul-Aug: 
SSTs (Dec-May) 
Z Winds (Dec-May) 
Air Temp 
Jul-Aug streamflow 

 Jul-Aug: 
Z500  
Z500 (Dec-Jul) 

 

Another approach to picking the best subset of predictors is to include several 

models in the final forecasting model.  This is also known as the multi-model 

approach and recent studies show that multi-model ensemble forecasts can perform 

much better than a single model forecast (Krishnamurti et al. 1999, 2000; 

Rajagopalan et al. 2002; Hagedorn et al. 2005).  Because real data sets are noisy, 

several predictor and parameter combinations produce GCV values that are close to 

the minimum GCV.  As a result, it is hard to select the combination with the least 

GCV and ignore the others (Regonda et al., 2006).  The best approach to address this 

is to produce a multi-model ensemble combination wherein ensembles are generated 

from all candidate models and optimally combined (e.g., Krishnamurti et al. 1999, 

2000; Rajagopalan et al. 2002; Hagedorn et al. 2005; Regonda et al. 2006)   
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Forecast Model Evaluation 

 Ensemble forecasts of seasonal streamflows are generated for each year at 

each of the five lead times using the best subset of predictors in the forecast modeling 

framework described above.  The ensemble forecasts are generated in a cross-

validated mode.  In this, for each year’s forecast, that year’s streamflow is dropped 

out of the model and the model is built on the rest of the data.  This is repeated for 

each year in the 1949-1999 period.  The ensembles provide a forecast of the 

probability density function (PDF) and, hence, probabilistic skill measures are 

required for forecast evaluation.  

One common probabilistic skill measure is the Ranked Probability Skill 

Scores (RPSS) (Wilks 1995).  The RPSS is typically used by climatologists and 

meteorologists to evaluate a model’s skill in capturing categorical probabilities 

relative to climatology.  Here, the tercile boundaries, i.e., 33rd percentile and 66th 

percentile are used to obtain three equal categories.  Values above the 66th percentile 

are in the above normal category, below the 33rd percentile are in the below normal 

category, and the remainder fall in the normal category.  The categorical probability 

forecast is obtained as the proportion of ensemble members falling in each category.  

The climatology forecast is the proportion of historical observations in each category 

– in this case, it is 1/3. 

 For a categorical probabilistic forecast in a given year, P = (P1, P2, ... Pk) 

(where k is the number of mutually exclusive and collectively exhaustive categories; 

here it is 3) the rank probability score (RPS) is defined as: 
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The vector d (d1, d2, ... dk) represents the observations, such that dk equals one if the 

observaion falls in the kth  category and zero otherwise. The RPSS is then calculated 

as: 

)yclimatolog(
)forecast(1

RPS
RPSRPSS −=  

The RPSS ranges from positive 1 (perfect forecast) to negative infinity. 

Negative RPSS values indicate that the forecast has less accuracy than climatology. 

The RPSS essentially measures how often an ensemble member falls into the 

category of the observed value and compares that to the climatological forecast.  In 

this application the RPSS is calculated for each year and the median value is reported.  

Another traditional skill measure, Pearson’s correlation coefficient R, is used 

to measure the correlation between the median of the ensemble forecast and the 

observed seasonal streamflow. 

Results 

Spring Forecast 

Figure 38 shows the results for the March 1st forecast for the upper Pecos 

March to June streamflow.  This model uses the December to February SST (high 

minus low), 200mb zonal wind, and PDSI indices in the forecast (see Table 7).  The 

solid line in the plots represents the historical flow values.  The boxplots at each year 

illustrate the ensemble forecast in that year.  Larger boxplots indicate greater forecast 

uncertainty, or a wider range of possible streamflow values in the ensemble.  The 
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dashed horizontal lines, which represent the quantiles (5th, 25th, 50th, 75th, and 95th 

percentile) of the historical data, help the viewer ascertain the relative streamflow in 

each year.  Though the forecasting model does not cleanly predict the observed 

streamflow in every year, every observed value is within the 5th and 95th percentiles 

of the ensemble forecast for that year, indicating that the observed flow was not out of 

the range of forecasted possibilities.  More importantly, the model does a good job of 

predicting whether the streamflow will be above average or below average.  It is also 

interesting to point out that the median of the ensemble is not in the center of the box, 

thus illustrating skew in the ensemble forecast, a feature that linear techniques cannot 

produce.  Representing skew in the ensemble is important in determining exceedance 

probabilities. 

 

Figure 38.  Timeseries of March to June upper Pecos streamflow with ensemble 
forecasts for each year (1949-1999). The solid line represents the historical 
timeseries. The boxplots represent the ensemble forecast issued from March 1st 
in each year. The dashed horizontal lines represent the quantiles of the historical 
data (5th, 25th, 50th, 75th, and 95th percentiles).  
 

The corresponding skill scores for the March 1st forecast are displayed in 

Figure 39.  Figure 39(a) illustrates the relationship between the median (most 
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probable value) of the ensemble forecast and the observed value in all years.  The 

correlation coefficient of 0.69 denotes that the model is good at predicting the 

observed value.  Boxplots of the RPSS values for all years, wet years and dry years 

are presented in Figure 39(b-d).  The wet and dry years are defined as years with 

streamflows above the 66th percentile and below the 33rd percentile, respectively. The 

median RPSS values are listed below the boxplots.  It can be seen that the model 

performs quite well overall, doing particularly well in wet years, with decreased skill 

in dry years.  

               (a)                              (b)                       (c)                      (d)  

Figure 39.  Skill scores for the March 1st forecast of March to June upper Pecos 
streamflow.  Median of the ensemble forecast vs. observed streamflow (a), and 
RPSS for all years (b), wet years (c) and dry years (d). Median RPSS values are 
listed below the boxplots. 
 

 The corresponding results for the spring flow forecast from May 1st are shown 

in Figure 40 and Figure 41.  Here too, the ensemble forecasts are quite skillful, 

particularly in the wet years.  The R value for the median of the forecast is 0.82 and 

the RPSS median values are 0.83, 0.97, and 0.71 for all years, wet years, and dry 

years, respectively.  The boxplots of the ensembles are tighter than those for the 

March 1st forecast signifying decreased uncertainty.  Also, the May 1st forecast has 



 92

higher skill.  This skill improvement is due to the predictors for the May 1st 

streamflow, April 1st SWE and April streamflow, both of which are very good 

indicators of streamflow.   

 
Figure 40.  Same as Figure 38, except for the May 1st forecast of May to June 
streamflow. 
 

 

                   (a)                               (b)                        (c)                        (d)  

Figure 41.  Same as Figure 39, except for the May 1st forecast of May to June 
streamflow. 
 

 Results for the lower Pecos River streamflows are less skillful than those for 

the upper Pecos streamflows (figures not shown).  For example, the March 1st 

forecast of March to June lower Pecos streamflow exhibits a positive RPSS (0.46) 

only in the wet years and Pearson’s R value of 0.42.  Results improve for the May 1st 
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forecast with RPSS values of 0.30, 0.50, and 0.23 for all years, wet years, and dry 

years, respectively.  The decreased forecast skill for the lower Pecos streamflow is 

consistent with the previous section’s finding that the predictor correlation patterns 

are weaker and less organized that those for the upper Pecos flows.  Also, the lower 

Pecos River does not receive very much streamflow in the spring and, thus, does not 

exhibit a strong response to the climate. 

Summer Forecast 

 Results for the May 1st forecast of the summer monsoon streamflows in the 

upper Pecos River are shown in Figure 42 and Figure 43.  As with the previous 

forecast, the RPSS values are highest for wet years (0.63) with decreased values in all 

years (0.57) and dry years (0.54) and the Pearson’s R is 0.55.  The July to October 

forecast for the upper Pecos will be used in the calculation of allotments.  In years 

with a wet forecast, the allotment will be increased, thus the wet years forecast skill is 

most important. 

 

Figure 42.  Same as Figure 38, except for the May 1st forecast of July to October 
streamflow. 
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               (a)                               (b)                        (c)                        (d)  
 
Figure 43.  Same as Figure 39, except for the May 1st forecast of July to October 
streamflow. 
 

 The June 1st forecast of summer monsoon streamflows in the upper Pecos 

River (Figure 44 and Figure 45) improves on the May 1st forecasts.  This indicates 

that the monsoon season streamflow forecast depends more on variables known 

immediately prior to the monsoon start (e.g., December to May variables, rather than 

December to April variables).  RPSS values for the June 1st forecast are 0.12, 0.73, 

and 0.22 in all years, wet years, and dry years, respectively and the Pearson’s R is 

 

Figure 44.  Same as Figure 38 except for the June 1st forecast of July to October 
streamflow. 
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                      (a)                              (b)                       (c)                       (d)  

Figure 45.  Same as Figure 39, except for the June 1st forecast of July to October 
streamflow. 
 

0.68.  It is interesting to point out that the RPSS values for all years and dry years are 

actually lower than those for the May 1st forecast.  This is not contradictory given that 

model selection was based on performance in wet years.   

 The July 15th forecast is actually issued on July 1st, since all predictors use 

monthly data.  The results for the July 1st forecast of the July to October streamflow 

on the lower Pecos are shown in Figure 46 and Figure 47.  RPSS values for this 

forecast are 0.12, 0.89, and 0.17 in all years, wet years, and dry years, respectively.  

Pearson’s R is 0.46.   

 
Figure 46. Same as Figure 38, except for the July 1st forecast of July to October 
streamflow on the lower Pecos. 
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          (a)                                 (b)                       (c)                       (d)  

Figure 47.  Same as Figure 39, except for the July 1st forecast of July to October 
streamflow on the lower Pecos. 
 

 The RPSS and correlation results for all the seasonal streamflow forecasts of 

the lower and upper Pecos River Basin at all five lead times are shown in Table 8. 

 

Table 8.  Skill scores for all forecasts 
RPSS  

All Years Wet Years Dry Years 

 
Correlation 

Upper Mar-Jun .86 .97 .68 .67 
Upper Jul-Oct .17 .46 .26 .47 
Lower Mar-Jun -.32 .46 -.44 .42 

Mar 1st 

Lower Jul-Oct .05 .55 .29 .17 
Upper May-Jun .83 .97 .71 .82 
Upper Jul-Oct .54 .63 .57 .55 
Lower May-Jun .30 .50 .23 .09 

May 1st 

Lower Jul-Oct -.09 .46 -.06 .23 
Upper Jun .45 1.00 .44 .76 
Upper Jul-Oct .12 .73 .22 .68 
Lower Jun -.07 .46 -.27 .30 

Jun 1st 

Lower Jul-Oct -.17 .49 .21 .15 
Upper Jul-Oct .22 .56 .24 .38 Jul 15th 
Lower Jul-Oct .12 .89 .17 .46 
Upper Sep-Oct -.07 .33 .01 .23 Sep 1st 
Lower Sep-Oct .14 .80 .23 .87 
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Summary and Discussion 

 A modeling framework to provide ensemble forecasts of irrigation season 

streamflows in the Pecos River Basin was developed and demonstrated.  Predictors 

were identified from the large-scale land-ocean-atmosphere system in preceding 

seasons.  A robust nonparametric method based on local weighted polynomials was 

used to select the best subset of predictors and, consequently, the ensemble forecasts 

of seasonal streamflows were issued.  Based on current operating criteria, irrigation 

season ensemble forecasts were generated at five lead times, March 1st, May 1st, June 

1st, July 15th, and September 1st, in the upper and lower Pecos River Basin.   

 The forecast framework exhibited significant skill overall, but more so during 

wet years.  Furthermore, the upper Pecos had higher skill than the lower Pecos. 

Operations and management on the Pecos, specifically the calculation of irrigation 

allotments and block releases, may be improved through skillful forecasts of spring 

and summer streamflows. To this end, improved skills in wet years are important as 

this is when policy can be best modified to take advantage of skillful spring and 

summer forecasts.   

The ensemble forecasts will next be used to calculate threshold exceedance 

probabilities for modifying existing policy and operations in a water operations model 

of the Pecos River.  Because existing policy and operations use reservoir storage 

values (i.e., volumes at single nodes in the river) it was acceptable to sum the inflows 

from the two and five sub-basins in the upper and lower basins, respectively.  If 

operations required actual inflows at nodes throughout the river the ensemble forecast 

of the upper and lower basins would need to be disaggregated (e.g., Prairie et al. 

2006) to flows at the desired locations. 
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CHAPTER 5 

WATER MANAGEMENT APPLICATION 

 

Introduction 

Decision support systems (DSSs) are used to make operational and planning 

decisions as well as to formulate strategies to satisfy the ever-changing legal 

requirements and multiple objectives of a river basin.  With the highly variable flows, 

complex operations and changing policies of the Pecos River system, water managers 

and policy makers have much to balance in the basin.  The Pecos River DSS provides 

the ability to model various flow and policy scenarios to help water managers with 

operational decision making.  

This chapter describes the coupling of streamflow forecasts developed in 

Chapter 4 with the Pecos River Basin DSS for the improvement of water 

management.  The chapter is organized as follows:  First a description of the Pecos 

River DSS and the implemented policies and operations is presented.  Next the 

coupling of streamflow forecasts with the DSS is described.  This is followed by the 

results and analysis of the model runs.  A summary and discussion concludes the 

chapter.  

Pecos River Decision Support System 

Background 

The Pecos River DSS was developed in response to a National Environmental 

Policy Act (NEPA) directive after the Pecos bluntnose shiner (shiner) was listed as 
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endangered in 1987.  The development of a DSS was deemed necessary to evaluate 

various management strategies and policy change scenarios on the Pecos River.  After 

an extensive data collection effort, a daily-timestep water operations computer model 

of the river was developed using the general-purpose river and reservoir modeling 

software RiverWare (Zagona et al. 1998 and 2001).  Development of the Pecos 

RiverWare model was a collaborative effort with contributions from the U.S. Bureau 

of Reclamation (Reclamation), the New Mexico Interstate Stream Commission 

(NMISC), the New Mexico Office of the State Engineer (NMOSE), Carlsbad 

Irrigation District (CID), the U.S. Fish and Wildlife Service (Service), the U.S. Army 

Corps of Engineers (Corps), the New Mexico Department of Game and Fish, Pecos 

Valley Artesian Conservancy District (PVACD), and the Center for Advanced 

Decision Support for Water and Environmental Systems (CADSWES).  After its 

completion, the model underwent an extensive evaluation and review process by 

stakeholders and representatives from different federal, state, and local agencies.  The 

Pecos River DSS models the policies and operations of the Pecos River as well as all 

of the physical processes associated with the river.  The Pecos RiverWare model is 

shown in Figure 48. 

Simulation of Physical Processes 

The Pecos RiverWare model simulates the physical movement of water 

through the system using standard hydrologic and hydraulic principles. The model 

developers selected from a suite of different algorithms to simulate these processes 

based on the data they had available and the level of detail that was desired.  For  



 100

 

Figure 48.  Pecos RiverWare model 
 

example, routing through a reach can be simulated using time-lag, impulse response, 

Muskingum, Muskingum-Cunge, kinematic wave or storage routing routines.  Due to 

the morphology of the Pecos River and shape of typical inflow hydrographs, flood 

waves during the summer monsoon season significantly attenuate as these waves 

propagate down the river.  It was thus important to implement a routing methodology 

that would appropriately represent flood wave travel times (translation) and reduction 

in peak discharge (attenuation) of flood waves.  The Muskingum-Cunge routing 

method was selected for this reason.  Other selectable physical process algorithms 

include tailwater calculation, evaporation and streambank storage and returns.  By 

modeling the hydrologic and hydraulic mechanisms in the system, the Pecos 

RiverWare model aims to accurately simulate the total amount of water moving 

through the system at any place and any time during the simulation run.  
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Simulation of Policies and Operations 

The policies and operations of the Pecos River are implemented with rules. 

These rules, based on user-defined, prioritized logic, govern simulations of reservoir 

releases and diversions throughout the river system. The rules dictate how much 

water to release from each reservoir and to divert at each diversion site.  By using 

different rules to move water through the system, it is possible to simulate flow 

patterns using different policies.  These rules are written in the form of prioritized 

logic to govern the movement of the inflows throughout the system.  Flood control 

algorithms, flow requirements for fish and allotments and diversions for agriculture 

are examples of rules implemented in the Pecos RiverWare model.  Because the 

policies and laws are expressed as dynamic data (rather than compiled in the model 

code), water managers and policy makers can easily turn different rules on or off to 

test the outcome of different policy scenarios.  In this way, water managers and policy 

makers can determine the potential impacts of pending laws and policies to help in 

planning and decision making. 

Pecos River Operations and Policies 

 The Pecos River (Figure 49) has multiple competing demands for its limited 

water resources. These include agriculture, municipalities and industry, the 

environment, recreation, and inter-state delivery requirements.  The reservoirs of the 

Pecos River system are operated primarily to optimize water delivery to CID farmers.  

In addition to irrigation, Pecos River water must also be managed for protection of 

the shiner and its habitat as well as inter-state flow deliveries to Texas, among other 

objectives.  A general overview of Pecos River operations and policies was presented 
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in Chapter 4.  Here, a more detailed description of two major operating criteria, block 

releases and CID irrigation allotments, is provided.  Block releases and irrigation 

allotments are the two operations that this study examines to incorporate spring and 

summer streamflow forecasts and improve water management.  For a complete 

discussion of these and other river operations, see Boroughs and Stockton (2005). 

 

 

Figure 49.  Pecos River study area modeled with RiverWare.  Reservoirs are 
represented as triangles.  Image courtesy of Craig Boroughs. 
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Carlsbad Irrigation District Allotments and Diversions 

CID allotments and diversions are principally a function of storage levels in 

the four basin reservoirs.  Reservoir storage levels are referenced to calculate the 

allotment and then a diversion schedule is developed based on this allotment.  The 

allotment is the quantity of water assured to irrigators; diversions represent the actual 

water delivered.   

The annual allotment is set by CID on March 1st based on the water in storage 

at that date.  This spring allotment is considered partial and can be increased 

throughout the irrigation season as more water becomes available in the basin.  Five 

trigger dates, March 1st, May 1st, June 1st, July 15th, and September 1st, are used to 

review storage conditions and determine whether the allotment can be increased.  

These dates are based on the Pecos Basin’s irrigation season trends.  The March 1st 

allotment is used for the first big diversion of the season that begins mid-March for 

the first irrigation of alfalfa and the pre-planting of cotton.  Irrigation may increase in 

mid-May for the second planting of alfalfa.  In June there may be another increase for 

the first irrigation of cotton and hay.  Diversions are then typically continuous 

throughout July and August.  September brings the watering of new hay and then 

diversions typically decrease until October 31st. 

The allotment is calculated as: 
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where Basin Storage is the current CID storage in the four basin reservoirs,  Max 

Allotment is 3.7 acre-ft/acre, Delivery Efficiency is the efficiency for delivery of water 

from the CID diversion gate to the farms (74.2%), Irrigable Acres is 25,055 acres, 

and Storage to Retain is the water to be retained for the next irrigation season (1,000 

acre-ft).  This formula ensures that the allotment will either stay constant or increase 

through any given year’s irrigation season, but will not exceed the maximum 

allotment allowed by law.  

Diversion schedules are established using the allotment calculated from 

current basin conditions.  In RiverWare the diversion schedules are set based on the 

historical diversion-allotment relationship.  Irrigation season schedules are available 

for 1.0, 1.5, 2.0 … 3.5 acre-ft/acre allotments.  Once determined, the diversion 

schedule for the season is set as input at Avalon Reservoir.  Daily diversion rates at 

the Avalon diversion gate range from 100 cfs to 375 cfs.  Annual diversions to CID 

average 76,500 acre-ft and are limited to 125,200 acre-ft.  Because the Pecos 

RiverWare DSS models Santa Rosa to Avalon, return flows from CID are neglected 

in the model; a separate accounting model is used to calculate inter-state water 

deliveries to Texas.  The total allowable system storage (i.e., in all four reservoirs) for 

CID is 176,500 acre-ft; anything above this value must be released downstream to 

Texas.   

Block Releases 

Block releases are made from Santa Rosa and Sumner reservoirs to meet CID 

irrigation demands.  The premise of block releases is to store Pecos River water 

upstream for as long as possible, then release it in blocks to limit evaporation and 
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seepage in the middle stretches of the river.  Block releases are initiated and stopped 

based on storage triggers in Brantley Reservoir.  Most of the water moved 

downstream is then stored in Brantley Reservoir; Avalon Reservoir provides 

elevation head at the main CID diversion gate.  Block releases typically last 15 days 

and are usually made one to two times per irrigation season.  In some years there are 

zero or three block releases.   

The main criteria for block releases as implemented in the Pecos RiverWare 

model are outlined below:   

• Block releases only during irrigation season (Mar 1st to Oct 

31st) 

• Santa Rosa releases 1,150 cfs;  Sumner releases 1,250 cfs  

• Block releases initiated when Brantley drops below 8,000 acre-

ft and there is water available in Santa Rosa or Sumner. 

• Early season provision:  in March and April, block releases 

initiated when Brantley drops below 17,000 acre-ft.  (This is to 

move more water down to Brantley early in the season to 

improve the water quality at Brantley.) 

• No block releases are started from Santa Rosa if Sumner 

storage is above 33,000 acre-ft. 

• No block releases are started from Santa Rosa if Santa Rosa 

storage is less than 2,400 ac-ft. 

• Balance storages between Santa Rosa and Sumner regardless of 

the demand at Brantley:  if Santa Rosa to Sumner storage ratio 
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is 7:1 or greater OR if Sumner is below 6,000 acre-ft and Santa 

Rosa is above 2,400 acre-ft, release 1,050 cfs from Santa Rosa 

until storage ratio is 5:1 

• Stop block releases when Brantley is above 24,500 acre-ft (for 

Santa Rosa) and 26,000 acre-ft (for Sumner). 

• Stop thresholds are lower after Sept 1st: when Brantley 

exceeds 6,000 acre-ft plus the remaining CID diversion for the 

irrigation season. 

• Stop block releases in Santa Rosa if Santa Rosa storage drops 

below 6000 acre-ft; stop releases from Sumner if Sumner drops 

below 5480 acre-ft. 

There are several inherent assumptions associated with block releases.  The 

start triggers take into account the travel time between the upper reservoirs and 

Brantley Reservoir (approximately five days).  The stop triggers consider the block 

release water still traveling down the river.  Finally, the block release volumes are 

based on the assumption of additional water entering the river from Fort Sumner 

Irrigation District (FSID) returns and base inflows between Acme and Artesia. 

 NEPA policy alternatives for the protection of the shiner and its habitat are 

also included in the model.  These alternatives include limiting block releases to 15 

consecutive days, requiring 14 days between block releases and eliminating block 

releases for a 6-week period around the beginning of August.  Like the other block 

release criteria, the NEPA policy alternatives are written into the RiverWare rules 
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and, thus, can easily be turned on or off.  The NEPA policy alternatives were 

simulated in this study.   

Implementation of Forecasts in Pecos RiverWare Model 

Background 

Water management of the Pecos River does not utilize seasonal streamflow 

forecasts in reservoir operations.  The extreme variability of both spring and summer 

streamflow in this basin presents a unique challenge that is regarded as too much risk 

for operations.  As a result, water managers are never left empty handed after 

operating and planning for water that may not come.  The flip side of this, however, is 

that water managers and water users in the basin also never benefit from the advance 

planning made possible by streamflow forecasts.   

Annual allotments are estimated based on March 1st reservoir storage levels; 

typically well before the end of the spring runoff.  Current operations increase the 

allotment incrementally as water becomes available in the basin.  However, forecasts 

of the entire irrigation season runoff would allow for a better estimate of the annual 

allotment, thus providing farmers with better information to plan for the coming 

irrigation season.  The benefits of this might include providing farmers with better 

information for planning types and sizes of crops as well as a larger initial allotment 

and, thus, initial crop output.   

Block Releases are made assuming inflows only from FSID returns and base 

inflows between Acme and Artesia.  Runoff from monsoon events, which can amount 

to a significant portion of the basin annual streamflow, is not accounted for in the 

determination of block releases.  These extra inflows must sometimes be spilled or 
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released, thus disallowing the use of that water.  Forecasts of these inflows would 

allow operators to limit block releases, keep that water stored upstream for later use 

and, instead, utilize the monsoon runoff that might otherwise have been spilled.  

Overview of Approach 

The approach taken in this study is to capitalize on wet forecasts.  It is 

presumed that in normal or dry years operations will not change.  In effect, the 

current operations plan for the dry scenario on the Pecos River and a normal or dry 

forecast would make no difference in management strategies.  In wet years, however, 

an increase in the initial allotment and a decrease in block releases could increase 

deliveries to CID and decrease spills to Texas.  The approach of this research is to 

take advantage of wet forecasts while introducing minimum risk to the system. 

Because the policies implemented in the Pecos RiverWare ruleset do not 

incorporate streamflow forecasts, the rules were modified for this study.  The rules 

and functions associated with block releases and allotment calculations were adapted 

to incorporate streamflow forecasts.  Two new rulesets were created: one that 

includes block release modifications and one that integrates changes to the allotment 

calculations.  A baseline ruleset was maintained for comparison purposes.  In 

addition, all necessary forecast data was imported to the model.   

Modifications for CID Allotments 

The formula used to calculate CID allotments was modified to include the 

forecasted seasonal inflows as water available to CID.  The goal is to add the 
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forecasted inflows to the current basin storage value to improve the annual allotment 

estimate.  The calculation of allotments, as modified for this study is given as: 
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where Forecasted Additional Storage is the inflow forecast for the entire Pecos River 

Basin.  Because allotments cannot be decreased after the initial allotment on March 

1st, a conservative inflow forecast was used in this study.  The idea is to avoid the risk 

of assigning too large of an allotment on the March 1st date and running out of water 

before the end of the irrigation season.  A conservative inflow forecast will add very 

little to the allotment in a dry or normal year, but will increase the allotment in a wet 

year. 

The 5th, 10th, 25th, and 50th percentile forecasts of basin inflows were 

evaluated for use as the “conservative” Forecasted Additional Storage in this study.  

These percentile forecasts were calculated from the ensemble forecasts generated in 

Chapter 4.  Daily timeseries of the four percentile forecasts were created to hold the 

five forecasts dates for each year from 1949 to 1999.  These timeseries contained 

mostly NANs with values only on each of the five forecast dates in each of the years.  

These four timeseries were imported into the Pecos RiverWare model to be accessed 

by the rules. 

The function for calculating the CID allotment was changed to use the 

equation provided above in conjunction with the most recent Forecasted Additional 
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Storage value (i.e., conservative inflow forecast).  All rules that set the CID 

allotments and diversions call to the Estimate CID Allotment function, thus only one 

allotment function required modification.   

Modifications for Block Releases 

The stop triggers for block releases were adjusted based on the forecasts for 

inflows to the lower Pecos basin.  The general premise is that if the forecasted inflows 

for a given year are above some wet threshold, the threshold stop trigger (i.e., the 

reference storage level in Brantley Reservoir) is decreased.  It was decided that the 

stop triggers should be adjusted, rather than the start triggers (or both), to avoid undue 

risk of under-delivery to CID.  For example, block releases are initiated when 

Brantley Reservoir requires additional water for irrigation deliveries.  Given a wet 

forecast, block releases could be deferred assuming that the water would enter the 

system via runoff below Sumner Reservoir.  However, because the forecasts are 

seasonal, even a perfect forecast would provide no guarantee that the water would 

come in time to meet CIDs demands.  Adjusting the stop triggers, in contrast, allows 

Brantley Reservoir to receive water via block releases when storage levels are low, 

but only fill partway, thus leaving storage space to capture monsoon runoff below 

Sumner Reservoir.  If the runoff does not come, another block release can be initiated 

when the storage in Brantley Reservoir drops below the start threshold and, thus, CID 

is unlikely to be shorted. 

The forecasted probability of being wet was calculated from the ensemble 

streamflow forecasts for the lower Pecos basin.  In this study three definitions for 

“wet” were evaluated:  flows above the 66th, 75th, and 90th percentile of historical 
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data.  The probability of exceeding the 66th, 75th, and 90th percentile was calculated 

for each year at each of the five forecast lead times.  In addition, because the first 

three forecast dates each include two forecasts (e.g., the March 1st forecast consists of 

a forecast of the March to June streamflow and a forecast of the July to October flow) 

exceedance probabilities were calculated for the ‘near term’ forecast and for the ‘full 

season’ forecast.  The near term forecast is the forecast for the time period 

immediately following the forecast date.  The full season forecast is the sum of the 

spring and the summer forecasts.  For example, the near term forecast for one year 

would consist of forecasts for March to June (issued on March 1st), May to June 

(issued on May 1st), June (issued on June 1st), July to October (issued on July 1st), and 

September to October (issued on September 1st).  The full season forecast for one 

year would comprise the following forecasts: March to October, May to October, 

June to October, July to October, and September to October.  Both the near term and 

the full season forecasts were examined in this study to determine which provided 

better information for the adjustment of block releases.  Daily timeseries of the 

threshold exceedance probabilities were created to hold the five forecasts for each 

year from 1949 to 1999.  These timeseries, like the percentile forecasts for the 

allotment calculations, were mostly NANs, containing exceedance probabilities only 

on each of the five forecast dates in each of the years.  Timeseries of exceedance 

probabilities were created for the 66th, 75th and 90th percentile definitions of ‘wet’ for 

both the near term and full season forecasts.  The six timeseries were imported into 

the Pecos RiverWare model to be accessed by the rules. 
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The amount by which to reduce the storage thresholds was explored through 

trial and error.  The baseline Brantley Reservoir storage threshold levels of 24,500 

acre-ft and 26,000 acre-ft for Santa Rosa and Sumner reservoirs, respectively, were 

systematically reduced in increments of 2,000 acre-ft to 10,500 acre-ft and 12,000 

acre-ft, respectively, to evaluate improvements to water management. 

The rules for stopping a block releases were changed to first check the 

forecasted probability of exceeding the wet threshold.  If the forecast exceeded the 

wet threshold, the decreased Brantley Reservoir storage threshold levels (i.e., adjusted 

stop triggers) were used.  If the forecast did not exceed the wet threshold, the baseline 

storage threshold levels for Brantley Reservoir were used.  Since the forecasts are 

only issued at five dates during the irrigation season, the block release rules checked 

the most recent forecast date’s wet threshold exceedance probability.  Because block 

release rules are written separately for Santa Rosa Reservoir and Sumner Reservoir, 

the rules associated with each reservoir were modified.  The logic of all rules and 

functions modified or created for this study is provided in Appendix A.   

One risk associated with the adjustment of stop triggers is that block releases 

may be stopped early in anticipation of monsoon runoff.  If the monsoon runoff does 

not come, it is possible that due to NEPA restrictions an additional release may not be 

allowed during the timeframe required for the water to reach Brantley Reservoir and 

meet CID demands.  This could happen during the 6 week period in August or when a 

second block release is needed before the end of the 15 day wait period between 

block releases.  The risk of this scenario depends on the timing of the original block 

release, but may be reduced by limiting the decrease in the stop triggers.  Any 
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reduction in this risk is likely associated with a reduction in the benefits of changing 

the block releases. 

Skill Evaluation 

 The utility of incorporating forecasts into water management in the Pecos 

River Basin is evaluated based on two key variables:  deliveries to CID and spill from 

Avalon reservoir.  An increase in deliveries to CID and a decrease in spill from 

Avalon are considered improvements to existing operating procedures.  A single end-

of-run value is obtained for each of the variables by converting daily flow values to 

volumes and summing up all days of the model run.  Though the Pecos RiverWare 

model simulates daily operations from 1940 to 1999, data limitations restricted the 

forecasts to begin in 1949.  Thus, skill is evaluated on the 1949 to 1999 period.  The 

results from each of the two policy modification scenarios (i.e., block releases and 

allotments) are examined separately and independently.   

Results 

Scenario 1:  Adjustment of Allotment Criteria 

Simulations of the adjustment of allotment criteria scenario were run using the 

5th, 10th, 25th, and 50th percentiles of the inflow forecasts to entire Pecos River Basin.  

Of these, the 10th percentile forecast produced the best results and these are presented 

here.  The higher percentile forecasts overall delivered more water to CID, however, 

in a few years when the forecast was significantly greater than the observed value, 

Brantley Reservoir continued to try to meet the diversion schedule (based on the 

allotment) and ran out of water and the model run aborted.  A more thorough 
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sensitivity analysis would provide a better understanding of which forecasts are best 

utilized for the change of allotments.  The model was also run with the baseline 

scenario (i.e., no changes in the allotment calculation) for comparison purposes.   

When compared with the baseline scenario, the forecast scenario produced an 

increase in CID deliveries of approximately 540,000 acre-ft, or 14%, over the 51 year 

period.  Total spills from Avalon reservoir decreased by 240,000 acre-ft, or 18%.  

These results demonstrate that the incorporation of spring and summer streamflow 

forecasts into operations on the Pecos River significantly improves water 

management in the basin.  

Figure 50 shows the allotments for the model run using the baseline scenario 

(represented in black) and the model run using the forecast scenario (represented in 

blue).  Each “spike” in the plot represents the five allotments for one year.  In this and 

all subsequent timeseries plots, the baseline scenario and the forecast scenario 

produce the same results for the first 10 years of the model run.  This is because no 

forecast was available until 1949, thus the policy was only modified for simulations 

 

BaselineBaseline Modified  
Figure 50.  CID allotments.  
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after this date.  Comparisons are only made for the 1949 to 1999 time period.  Figure 

50 shows that the allotments are larger when the streamflow forecast is used in the 

allotment calculation.  In many years the baseline allotment starts out low and then 

increases throughout the season to eventually match, or come close to, that of the 

forecast scenario, thus demonstrating that streamflow forecasts help produce a better 

calculation of the annual irrigation allotment.  In some years the forecast scenario 

increases throughout the irrigation season.  This demonstrates that updated forecasts 

throughout the season (including the challenging late season monsoon forecast) help 

provide a better allotment calculations.   

 The PDFs of the annual allotments for March 1st, May 1st, June 1st, and July 

15th are shown in Figure 51(a-d, respectively).  The allotments from the forecast 

 

    (a)      (b) 

    (c)      (d) 
 

Figure 51.  PDFs of allotments (acre-ft/acre) for March 1st (a), May 1st (b), June 
1st (c) and July 15th (d). The solid and dashed lines represent the forecast and 
baseline scenarios, respectively. 
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scenario (solid line) are consistently larger than the baseline scenario allotments 

(dashed line) at all of the allotment calculation times.  The PDFs show how the 

allotments of the baseline scenario start out relatively low in the early season (Figure 

51 a,b) and then increase throughout the season (Figure 51 c,d) to eventually come 

much closer to those of the forecast scenario.  

The increase in deliveries to CID is shown in Figure 52.  Because diversion 

schedules are determined based on allotments, these diversions closely match the 

results of the allotments shown in Figure 50.  The PDFs of the deliveries during each 

of the five subseasons (March 1st to April 31st, May 1st to May 31st, June 1st to July 

14th, July 15th to August 31st, and September 1st to October 31st) are shown in Figure 

53.  Like the allotments (Figure 51), the baseline scenario deliveries are relatively low 

in the early irrigation season and then increase throughout the irrigation season.  By 

comparison, the forecast scenario deliveries are consistently larger (or equal to, at the 

end of the irrigation season) the baseline scenario deliveries, thus demonstrating that 

using a forecast in the irrigation allotment calculations results in increased water 

delivery to CID. 

BaselineBaseline Modified  
Figure 52.  Deliveries to CID.   
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             (a)                (b) 

             (c)            (d) 

              (e) 
 

Figure 53.  PDFs of annual deliveries to CID (acre-ft) during the March 1st to 
April 31st (a), May 1st to May 31st (b), June 1st to July 14th (c), July 15th to August 
31st (d), and September 1st to October 31st (e) seasons.   The solid and dashed 
lines represent the forecast and baseline scenarios, respectively. 
 

The decrease in spill between the forecast and baseline scenarios is shown in 

Figure 54.  Because more basin water is utilized through the increased allotments, 

less water is spilled at Avalon Reservoir.   
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BaselineBaseline Modified  
Figure 54.  Spills from Avalon Reservoir. 
 

 The differences in deliveries to CID between the modified and baseline 

scenarios in each of the five subseasons are shown in Table 9.  The largest 

improvements to the baseline scenario are made during the mid-irrigation season (i.e., 

June 1st to July 14th) with the smallest improvements coming at the end of the 

irrigation season (i.e., September 1st to October 31st).  Figure 55 shows the typical 

stages of crop development for cotton, hay, and alfalfa—the main CID crops.   For all 

these crops, water requirements are low in the early vegetative period, approximately 

10 percent of the total water requirements.  They are high during the flowering period 

when leaf area is at its maximum, approximately 50 to 60 percent of total and then 

later in the growing period, the water requirements decline (Food and Agriculture 

Organization 2006).  Based on the natural water requirements for CID crops, the large 

increase in water deliveries during the mid-irrigation season could directly improve 

overall crop production.   
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Table 9.  Difference in deliveries to CID between modified scenario and baseline 
scenario is the five subseasons. 

Season Total difference in deliveries 
(modified scenario – baseline scenario) 

March 1st to April 31st 145,000 acre-ft 
May 1st to May 31st 80,000 acre-ft 
June 1st to July 14th 190,000 acre-ft 

July 15th to August 31st 115,000 acre-ft 
September 1st to October 31st 5,000 acre-ft 

 

 
Figure 55.  Crop stages of cotton, alfalfa and hay.  Image courtesy of the Food 
and Agriculture Organization of the United Nations. 
 

   
Assigning a dollar value to the benefit of increased irrigation water is 

somewhat arbitrary without having a predetermined use for the water.  However, one 

cost estimate for pumping to augment irrigation water in the Pecos basin is $100/ 

acre-ft water (NMOSE 2006).  Using this estimate and the increase of 540,000 acre-ft 

of CID deliveries, the benefit of using a forecast is $540 million over the 51 year 

period, or approximately $10.6 million per year.  CID farmers could potentially use 

the increased deliveries instead of relying on pumped water or if they could lease the 
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water to the State of New Mexico for deliveries to Texas.  Alternatively, CID farmers 

could use the increased mid-season deliveries for increased crop production and lease 

the extra water to the State during the early- and late- irrigation season.  Regardless of 

the use, the increase in water available for irrigation would be of significant value to 

CID farmers.   

Scenario 2:  Adjustment of Block Releases 

For the adjustment of block releases multiple simulations were run using 

combinations of near term and full season forecasts, the three definitions for wet (66th 

75th, and 90th percentile), various changes to Brantley Reservoir storage threshold 

levels, and the wet threshold exceedance value.  For determining the best combination 

of variables, both observed flow values and forecasted values were used.  

Interestingly, between the near term and full season forecasts, one did not consistently 

produce better results than the other.  Also, sequential decreases in storage threshold 

levels for Brantley Reservoir did not produce sequential changes in total spill.  

Similarly, there appeared to be no trend among the 66th, 75th and 90th percentile 

results.  Furthermore, many of the simulations actually produced an increase in total 

spill.  This was seen using both forecasted and observed inflow values with the 

modified block releases.  After an extensive analysis, only a 1% reduction in spill was 

obtained using the observed flow values.  No combinations used in this study 

produced measurable improvements using the forecast.  The results of the observed 

flows are presented here with an analysis of the problem.  It is emphasized that the 

values for these variables reported in this study cannot be deemed the optimal values 
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for operations.  Additionally, other policy adjustments to block releases (e.g., start 

triggers, block release flow rates, etc.) were not explored. 

 Using the 75th percentile of lower basin ‘near term’ streamflow and decreasing 

the stop threshold levels to 16,500 and 18,000 for Santa Rosa and Sumner reservoirs, 

respectively produced the best results with the observed data in this study.  The 

improvement was a less than 1% reduction in the spills from Avalon Reservoir and 

less than 1% increase in deliveries to CID.  Figure 56 shows how the block releases 

(a)  

(b)
BaselineBaseline Modified  

Figure 56.  Outflow from Santa Rosa Reservoir over the entire time range (a) 
and in 1962 (b).   
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are altered by the change in policy.  The block releases are the outflow values at 1150 

cfs.  For the most part, the baseline and modified policy scenarios produce the same 

block releases.  However, as shown in Figure 56(b), in some instances (i.e., in years 

with a wet forecast), the modified policy scenario shuts off the block release earlier 

than the baseline scenario.  

Figure 57 shows the spill comparison between the baseline scenario and the 

scenario that uses observed flows to modify block releases.  It can be seen that the 

spills are largely the same for the baseline scenario and the reduced block release 

scenario.  For only one of the large storms, did the change in block releases reduce 

the resulting spill; and even this reduction was relatively small.  For several other 

additional small events, the change in block releases created space in Brantley 

Reservoir to hold the incoming event. 

 
BaselineBaseline Modified  

Figure 57.  Spill from Avalon Reservoir.   
 

 So why is the reduction in block releases not creating space in Brantley 

Reservoir to capture the large monsoon events?  Figure 58 shows the inflows to 

Brantley Reservoir during two different years.  Figure 58 (a) shows how the block 
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release flood wave spreads out by the time it reaches Brantley Reservoir.  Figure 58 

(b) shows a block release arriving at Brantley, followed by the largest monsoon event 

in the time period.  The block release volume is very small in comparison to the 

volume of water from monsoon runoff, thus leaving any reduction in the block release 

insignificant.   

 

(a)  
 

block 
release

monsoon
event

block 
release

monsoon
event

(b)  
BaselineBaseline Modified  

Figure 58.  Inflows to Brantley Reservoir in 1967 (a) and 1966 (b).   
 

 The goal of holding back on block releases to create space for large monsoon 

events is not very practical in this application.  Due to the relative sizes of block 

releases and large monsoon runoff events, even a perfect forecast could not 
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significantly alter operations.  Improvements could potentially be greater if more risk 

was taken and in forecasted wet years block releases were not initiated at all.  

However, any further reduction of spill might also adversely affect deliveries to CID 

if water was not available in Brantley Reservoir in time for diversions. 

Summary and Conclusions 

Irrigation season streamflow forecasts on the Pecos River were used to drive a 

DSS to demonstrate potential improvements to water management in the basin.  

Policies and operations in the Pecos RiverWare water operations model were 

modified to implement seasonal streamflow forecasts.  Two scenarios were tested:  (i) 

the inclusion of streamflow forecasts in the calculation of irrigation allotments to 

provide a better estimate of the season’s available water and, thus, deliver more water 

to irrigators, and (ii) the reduction of block releases in forecasted wet years to better 

capture monsoon runoff in the lower Pecos basin and, thus, reduce spill to Texas.  

The results of these two scenarios were compared with exiting operations.  Results for 

the allotment scenario show a 14% increase in irrigation deliveries.  Results for the 

adjustment of block releases show insignificant improvements due to relative size of 

block releases in comparison with large monsoon events.  The coupling of streamflow 

forecasts with a decision tool in the Pecos River Basin demonstrates that using large-

scale climate information to predict NAM streamflow can have significant positive 

impacts on water management in the region. 

Discussion 

The results presented here demonstrate the utility of incorporating streamflow 

forecasts of the spring runoff and summer monsoon into water management on the 
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Pecos River Basin.  These results by no means represent the optimal adjustments to 

policy or combination of forecasts, but rather are used to demonstrate potential 

benefits.  A more in-depth study, including a sensitivity analysis, is necessary before 

the optimal scenario can be established. 

The issue of inter-state stream deliveries to Texas was not directly addressed 

in this study.  This complex issue is an important component of management in the 

Pecos River Basin.  The reduction of spill, or outflow, from Avalon Reservoir was a 

primary objective of the water management application of this research.  This 

objective translates to increased water for CID, but also to decreased deliveries to 

Texas.  The reduction of spills to Texas is legal given the existing laws of the basin, 

as long as the total CID storage in the basin never exceeds 176,500 acre-ft (with 

42,000 of that at Brantley Reservoir).  However, if the spills to Texas were 

significantly decreased for sustained periods of time, this could potentially cause 

problems for the State of New Mexico.  Though CID would be operating legally, the 

State would be required to make up for any deficits in deliveries to Texas.  Currently 

the State does this by purchasing and leasing water rights from CID and other farmers 

in the basin.  CID operates the reservoirs as efficiently as possible to avoid spills and 

yield the most water to their farmers to irrigation or, now, to lease to the State. 

Another item of discussion is that the July 15th forecast is actually issued on 

July 1st, since the forecast predictors are based on monthly data.  Operationally, 

however, the forecast is used on July 15th.  This means that any streamflow that 

comes in the first two weeks of July will not be accounted for in the adjustment of 

block releases and allotment criteria.  Generally speaking, this should not have a 
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significant negative impact on water management.  However, in situations when a 

very large monsoon even occurs in the first weeks of July, the system may not operate 

to total efficiently.  In this situation, if the July 1st forecast predicts wet, block releases 

may be reduced on July 15th to allow for inflows below Sumner Reservoir.  However, 

because the monsoon event already happened, the inflows will not come, thus 

triggering a second block release sooner than may have otherwise occurred. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter summarizes and concludes this thesis. The motivation of this 

research is reviewed, the final results and conclusions are summarized, and the main 

contributions of this research are highlighted.  Lastly, recommendations for future 

work that will improve and extend this study are provided. 

Summary and Conclusions 

The North American Monsoon (NAM) delivers roughly half of annual 

precipitation in the southwestern U.S.  However, this important moisture source is 

highly variable and predicting the space-time variability of monsoonal precipitation 

and streamflow is key to efficient water resources management in the region. 

This study developed a framework for diagnosing NAM hydroclimate 

variability, forecasting this variability and then applying the forecasts to improve 

water management in the region.  The results of this study demonstrate the utility of 

incorporating large-scale climate information in forecasts of monsoon streamflow to 

improve water management in the NAM region.  Though this study focused on the 

Pecos River Basin, the framework presented here is general and could be applied to 

any basin in the NAM region. 
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Precipitation Analysis 

The first component of this study examined the variability of precipitation in 

New Mexico and Arizona.  The results showed a significant delay in the monsoon 

rainfall cycle over the past 50 years.  This was manifested as a decrease in July 

rainfall, a corresponding increase in August and September rainfall, and a delay in the 

Julian day when the 10th, 25th, 50th, 75th, and 90th percentile of seasonal precipitation 

had accumulated.  Relating these attributes to antecedent winter/spring land and 

ocean conditions inspired the following hypothesis: warmer tropical Pacific sea 

surface temperatures (SSTs) and cooler northern Pacific SSTs in the antecedent 

winter/spring leads to wetter than normal conditions in the southwestern U.S..  This 

enhanced antecedent wetness delays the seasonal heating of the North American 

continent that is necessary to establish the monsoonal land-ocean temperature 

gradient and, in turn, delays the initiation and strength of the ensuing monsoon.  

Through this relationship, it was proposed that increased ENSO activity in recent 

decades has lead to the evident delay in the seasonal cycle of NAM precipitation.   

The result that the monsoon cycle has been delayed by an average of two 

weeks over the past 50 years is interesting and is not known to have been reported in 

the literature.  This shift in the monsoon cycle has significant implications for water 

management in the region.  Furthermore, the hypothesis presented here is unique in 

its linking monsoon variability (and the recent delay) to large-scale climate via 

interaction with the land.  While similar hypothesis exist, none have included both 

large-scale climate and the land, nor have they related the linkages to the timing of 

the monsoon. 
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Streamflow Analysis 

The streamflow analysis component of this study was performed on winter, 

spring and summer streamflows in New Mexico and Arizona.  Streamflow stations 

were grouped into north (snowmelt dominated), central (early snowmelt and rain 

dominated), or south (summer rainfall dominated) regions based on streamflow 

climatology and peak flow month.  The winter/spring streamflow exhibited a 

significant increasing trend, likely driven by enhanced ENSO activity in recent 

decades.  Both the magnitude and timing of early summer streamflows showed a 

significant relationship with antecedent winter/spring precipitation in the NAM 

region, with increased precipitation favoring a weaker and later streamflow cycle, and 

vice-versa.  Because summer streamflows in the northern region are significantly 

impacted by the antecedent spring runoff, a simple approach was applied to remove 

this influence.  The hypothesis proposed in the precipitation chapter was tested and 

validated with streamflow variability.  Results for the southern region monsoon 

streamflow supported the hypothesis more than the northern region streamflow.  The 

results for the northern regions streamflow are mainly due to the effect of spring 

snowmelt extending into the summer months in the northern region.  

While NAM precipitation has been widely analyzed, only one known study 

has been conducted on the NAM streamflow.  This research is unique in that it 

analyzed streamflow using observational data (rather than models) and it focused on 

the more variable region of New Mexico and Arizona (rather than Mexico).  In 

addition, the technique of grouping stations based on peak flow month provided 

important insight to the relative importance of monsoon runoff in each region.  This 
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grouping technique could be useful in other streamflow studies (monsoon or 

otherwise) in the region.  That the streamflow results corroborate those of the 

precipitation analysis strengthens the conclusions of both analyses.  

Seasonal Streamflow Forecast 

A modeling framework to provide ensemble forecasts of streamflows during 

the irrigation season on the Pecos River Basin was developed and demonstrated. 

Predictors were identified from the large-scale land-ocean-atmosphere system from 

the preceding seasons.  Based on current operating criteria, irrigation season forecast 

ensembles were generated at five lead times, March 1st, May 1st, June 1st, July 15th, 

and September 1st, in the upper and lower Pecos River Basin.  A robust nonparametric 

method based on local weighted polynomials was used to select the best subset of 

predictors and consequently generate the ensemble forecasts.  The forecast 

framework exhibited significant skill overall, but more so during wet years.  

No known study has attempted to forecast the interannual variability of the 

NAM.  This research succeeded in the difficult task of forecasting this highly variable 

phenomenon and the skill was remarkably high, particularly in the wet years.  

Because water management in the region operates under the dry monsoon 

assumption, the high forecast skill in wet years has important implications for 

capitalizing on this “extra” water.   
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Water Management Application 

Irrigation season streamflow forecasts on the Pecos River were coupled with 

the Pecos River Basin water operations model to demonstrate potential improvements 

to water management in the basin.  Because current operations do not utilize forecasts 

of spring or monsoon streamflow, existing policies and operations in the DSS were 

modified to make use of the forecasts.  Two scenarios were tested:  (i) the inclusion 

of streamflow forecasts in the calculation of irrigation allotments to provide a better 

estimate of the season’s available water and, thus, deliver more water to irrigators, 

and (ii) the reduction of block releases in forecasted wet years to better capture 

monsoon runoff in the lower Pecos Basin and, thus, reduce spill to Texas.  The results 

of these two scenarios were compared with exiting operations.  Results for the 

allotment scenario showed a 14% increase in irrigation deliveries. Results for the 

adjustment of block releases showed insignificant improvements due to relative size 

of block releases in comparison with large monsoon events.  

 Though many studies acknowledge the NAM’s importance to water and 

agriculture management in the region, the process of using monsoon streamflow 

forecasts in a water operations model to improve planning and management is new.   

The coupling of streamflow forecasts with a water management tool in the Pecos 

River Basin demonstrates that using large-scale and local-scale climate information to 

predict the NAM can have significant positive impacts on water management in the 

region. 
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Recommendations for Future Work 

Many areas of this research warrant further research and analysis. Several 

issues that should be addressed to complete this study as well as possibilities for 

extending the techniques of this research to new realms are addressed here.   

1. This study put forth a hypothesis that links sea surface temperatures (SSTs) 

in the Pacific Ocean to the modulation of monsoon variability via the land.  

This hypothesis was supported through statistical analysis of observational 

data.  More rigorous testing is necessary before this theory can be confirmed.  

Additional studies should include physical models.  One analysis might 

simulate heating in the areas of the Pacific Ocean identified in this research 

to determine the effects on monsoon precipitation and streamflow.  Another 

study might investigate the link between the land and the monsoon directly.  

For example, if pre-monsoon moisture is increased via model simulation, do 

the model results show a delay in the ensuing monsoon precipitation and 

streamflow? 

2. The streamflow analysis in this study used a very simple method to remove 

the baseflow from northern stations and thus isolate monsoon streamflow.  

Because the north has many more streamflow stations, relative to the central 

and south regions, this region presents a wealth of data that would be helpful 

to produce more statistically robust results.  It would be beneficial to use a 

more sophisticated method to isolate monsoon streamflow in the region and 

potentially strengthen the streamflow results of this study.  

3. The water management application of this research modified existing policy 

in the Pecos River Basin to demonstrate the utility of incorporating 
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streamflow forecasts of the spring and summer monsoon into water 

management.  The results of this study by no means represent the optimal 

adjustments to policy or combination of forecasts, but rather are used to 

demonstrate potential benefits.  A more in-depth study, including a 

sensitivity analysis, is necessary before the optimal scenario can be 

established and operations can be adequately adjusted.  One approach might 

be to use optimization to maximize irrigation water deliveries and minimize 

spill to Texas by changing the variables of reservoir thresholds, forecast 

percentiles and exceedance probability thresholds, etc. 

4. This research applied a framework of monsoon diagnostics and forecasting to 

water management in the Pecos River Basin.  Using this framework in other 

NAM basins would be helpful to further the understanding of how NAM 

variability affects water management in the region. 

5. The improvements to water management in this study were monetarily 

quantified using only one dollar value estimate for water in the Pecos River 

Basin.  A comprehensive economic analysis of the improvement to water 

management would provide a more tangible understanding of the value of 

including forecasts in water management in the Pecos River Basin.   

6. This study did not address the implications of increased CID efficiency 

relative to inter-state deliveries to Texas.  Before any policies or operations 

could be modified in the basin, a comprehensive analysis should be 

undertaken to determine the impact on this important legal requirement.  It is 

important to point out that CID’s gain does not translate linearly into Texas’ 
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loss.  A more efficient management of the system may actually result in 

decreased evaporation and seepage, rather than simply a reduction in spill.  

The relative changes in each of these variables should be evaluated. 

7. The modification of block releases, a bi-weekly timescale operation, was 

based on season streamflow forecasts.  It is possible that shorter timescale 

forecasts (e.g., two weeks) might show a larger improvement to block release 

policy modifications.   

8. The public health and safety implications of utilizing a monsoon forecast 

could be explored.  For example, does the potential for mosquito born viruses 

and/or flash floods increase in wet monsoon years?  And if so, could a 

forecast of the monsoon benefit local public health and safety agencies in 

planning operations.  
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APPENDIX A 

POLICY CHANGES TO PECOS RIVERWARE MODEL 

 

Rules and Functions for Block Release Modifications 

RULE:  Continue Santa Rosa Block Release – WET Forecast 
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RULE:  Continue Sumner Block Release – WET Forecast 
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RULE:  Continue Sumner Block Release – WET Forecast (Fish Counter) 
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FUNCTION:  Most Recent Forecast Date 

 

 

In addition to the rules and functions listed above, the following rules were 

turned off for the modification of block releases. 

• Continue Santa Rosa Block Release – Alternatives & BO 

• Continue Sumner Block Release – Alternatives & BO 

• Continue Sumner Block Release – Alternatives & BO- Counter  
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Rules and Functions for Allotment Calculation Modifications 

FUNCTION:  Estimate CID Allotment 

 

FUNCTION:  Forecasted Additional Storage 

 

FUNCTION:  Most Recent Forecast Date 

 


