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ABSTRACT 

Decision Making Under Deep Uncertainty (DMDU) is an emerging field of model-based decision 

support methods.  Deep uncertainty exists when decision-makers disagree on how to prioritize conflicting 

performance goals and when there is no consensus on which assumptions to make about uncertain future 

conditions, such as climate and human population. DMDU tests policy alternatives in many plausible 

futures, prioritizes policies that perform well in many futures (robust policies), and discovers conditions 

causing poor performance (vulnerability analysis). 

There is growing demand for participation by stakeholders in decision-making. In DMDU-based 

decision support, participation includes the modelling process since methodological decisions can have 

unexpected (and undesirable) impacts on policy recommendations. Participation requires that 

stakeholders and decision-makers can interpret complex relationships between policies, plausible futures, 

and system performance. Participation also requires that the analysis can be iterated based on their 

feedback. 

The goal of this thesis is to address four barriers to participatory DMDU: large computing 

requirements, choosing robustness metrics considering tradeoffs, choosing policies considering 

conflicting goals, and choosing methods for vulnerability analysis that are interpretable for decision-

making. 

This thesis contributes novel algorithms and interactive tools to address these barriers. Chapter 2 

contributes a framework to test the number of futures required to accurately identify the most robust 

policies compared to testing more futures, potentially reducing computing requirements. Chapter 3 

contributes a framework for a posteriori choosing of robustness metrics, which enables stakeholders to 

refine their choice of robustness metrics after seeing robustness tradeoffs. Chapter 4 uses the Self-

Organizing Map, a machine learning method, to create a negotiation framework that helps decision-
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makers identify compromise policies. Chapter 5 contributes a review of vulnerability analysis methods 

and identifies best practices for choosing interpretable methods.   

The research contributions are demonstrated using a case study of reservoir operation policy in 

the Colorado River Basin (CRB). Since 2000, extended periods of low inflow have depleted storage in Lakes 

Mead and Powell, threatening hydropower infrastructure and water deliveries. Current policies expire in 

2026, thereafter a new policy takes effect. This research evaluates a set of Lake Mead policies in 500 

futures of streamflow and demand conditions. The robustness of these policies is discussed in Chapters 

2-4, and Chapter 5 uses the CRB to illustrate purposes and methods for vulnerability analysis. 
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1 Introduction 
1.1 Motivation 

By the end of the century, the global risk of water management disputes could increase by 40% 

(Farinosi et al., 2018, p. 293). This risk is due in part to future imbalances between water supply and 

demand, driven by changing climate and growing populations (Reclamation, 2012a; Kasprzyk et al., 2013; 

Herman et al., 2014). Facing water supply deficits, it can be impossible for freshwater systems to provide 

the same benefits to stakeholders as historically expected. Decision-makers must then choose how to 

prioritize competing uses of the available supply, e.g., how much water to allocate for different 

populations and economic sectors (Jafino and Kwakkel, 2021).  

Water resources systems are managed with policies to provide benefits to stakeholders. Policies 

refer to specific rules defined by values of decision levers (Lempert, Popper and Bankes, 2003). In river 

systems, for example, reservoirs are operated according to policies, and the decision levers determine 

levels of storage that trigger actions such as delivery reductions or flood releases (Alexander, 2018; Quinn 

et al., 2018). The purpose of these policies is to ensure the sustainability of the system while providing 

benefits to stakeholders (e.g., water deliveries, hydropower). Due to complex policies and system 

behavior, it can be difficult to know the impacts of policies on stakeholder benefits. To provide decision 

support, policies are tested in simulation models. The model quantifies costs and benefits of the policy 

using performance metrics, such as the percent of time demands are met or average hydropower 

production (Alexander, 2018). 

A challenge, however, is the lack of an objectively ‘best’ policy, i.e., no policy achieves maximum 

benefits for all stakeholders. Rather, policy alternatives are characterized by tradeoffs, meaning a policy 

that improves performance in one metric diminishes performance in another (Kasprzyk et al., 2013; 

Herman et al., 2014). For example, a reservoir policy could increase the maximum allowable storage to 
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augment water supply, but doing so increases flooding risk. Tradeoffs can inhibit decision-making, 

especially when decision-makers disagree on how best to prioritize conflicting goals (Wheeler et al., 2018).  

The benefits provided by the system also depend on factors beyond the control of decision-

makers, such as future climate, population, and trade patterns (Alexander, 2018; IPCC, 2022; Yarlagadda 

et al., 2023). In the context of long-term planning (e.g., 40 years into the future), the future state of these 

factors is unknown. To quantify the impacts of uncertain factors on performance, States of the World 

(SOW) can also be tested in the model, where a SOW is defined by values for the uncertain factors. Due 

to the complexities of climate and socio-economic changes, many plausible SOW may exist. Further, the 

likelihood of any SOW is often unknown or contended, meaning it is unclear which SOW to assume when 

measuring the performance of policies. Such conditions are known as deep uncertainty (Knight, 1921; 

Kasprzyk et al., 2013). 

There are emerging methods for modelling and data analysis to address these challenges, called 

Decision Making Under Deep Uncertainty (DMDU) (Herman et al., 2015; Kwakkel and Haasnoot, 2019). 

Although there exist multiple DMDU frameworks, they have the following in common: testing policy 

performance in numerous SOW, prioritizing robust policies, and discovering vulnerabilities. To evaluate 

impacts of uncertain factors on system performance, policies are tested in hundreds to thousands of 

plausible SOW (McPhail et al., 2018). The SOW are created using a statistical design of experiments to 

broadly sample values for the uncertain factors (Bryant and Lempert, 2010). Because the likelihood of any 

SOW is contended, policies are chosen based on their performance across the SOW ensemble (i.e., 

robustness), which is measured with robustness metrics (McPhail et al., 2021). Then, vulnerability analysis 

uses factor mapping to discover the conditions (uncertain factors and their values) that lead to decision-

relevant outcomes, such as the inability of a policy to achieve historically-expected benefits (Bryant and 

Lempert, 2010; Hadjimichael, Quinn, et al., 2020). These conditions are communicated to decision-makers 

as scenarios, which can be used in a monitoring and adaptation system (Haasnoot et al., 2013) or motivate 
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the search for more robust policies (Watson and Kasprzyk, 2017). These DMDU techniques are 

appropriate when many plausible SOW exist and their probabilities are unknown; case studies where 

many policy options exist; and when policy performance is difficult to anticipate without testing it in a 

model (Marchau et al., 2019, chap. 1.4). This is mostly used for long planning horizons (i.e., multiple 

decades), but systems that are highly complex with multiple extenuating factors could benefit from DMDU 

techniques at shorter timescales. 

In DMDU, input from stakeholders and decision-makers informs multiple methodological 

decisions and, ultimately, policy recommendations (Figure 1-1, a). For example, risk-tolerances inform the 

choice of robustness metric , and choice of robustness metric determines which policies are most robust 

(Herman et al., 2014; McPhail et al., 2018). These choices can lead to unforeseen and undesirable 

outcomes, such as a policy favoring one stakeholder at the expense of another (Herman et al., 2014; 

Alexander, 2018) or scenarios that are uninterpretable for decision-making (Rudin, 2019). Due to complex 

relationships between policies, SOW, performance, and robustness, it is difficult to anticipate these 

consequences a priori (Miller, 1956; LeCompte, 1999; Quinn et al., 2018; Smith, Kasprzyk and Rajagopalan, 

2019). Therefore, it is important for stakeholders to explore the policy recommendations that result from 

their input and the subsequent methods chosen by analysts. Then, stakeholders can update their 

preferences after exploring the results, a form of a posteriori decision support (Kwakkel and Haasnoot, 
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2019).  Updated preferences may motivate additional analysis prior to choosing a final policy.  In this 

thesis, this iterative loop of feedback and updated analysis is called participatory DMDU.  

The goal of this thesis is to address several barriers to participatory DMDU (Figure 1-1, b).  First, 

simulating large SOW ensembles can require significant computing resources, which can be challenging 

for practitioners with time and budget constraints or when stakeholder feedback warrants additional 

modelling. Second, choosing robustness metrics is non-trivial because policies that are robust with respect 

to one metric may be non-robust with respect to other metrics, i.e., policies exhibit robustness tradeoffs. 

In the presence of tradeoffs, decision-makers may disagree on which policies are most robust, requiring 

negotiation and compromise to choose policies (the third barrier). Fourth, there is a plethora of machine 

learning methods to perform a vulnerability analysis. However, the choice of method has consequential 

impacts on the interpretability of scenarios, and therefore the usefulness of the scenarios for decision-

making. Currently, there is limited guidance for choosing methods that are interpretable for the decision-

making context.  

Figure 1-1. a) Barriers to participatory DMDU. b) Novel methods and tools to address the barriers. 
SOW stands for States of the World. 



5 
 

 

This thesis contributes novel algorithms and interactive tools to address these barriers. To reduce 

computing requirements, Chapter 2 contributes a comprehensive framework that evaluates the number 

of SOW required for accurate robustness ranking compared to a larger SOW ensemble. We show that, 

depending on the robustness metric, fewer SOW can achieve similar robustness ranking compared to 

more SOW. Chapter 3 contributes a framework for a posteriori robustness analysis, which enables 

stakeholders to refine their performance goals and risk-tolerances after seeing tradeoffs. We demonstrate 

our framework with a web tool that provides interactive visualizations, an interface to update choice of 

metrics, and rapid recalculation of robustness based on updated input. Chapter 4 uses the Self-Organizing 

Map (SOM), a machine learning method, to create a negotiation framework that helps decision-makers 

identify compromise policies. The SOM places policies intro groups within which performance is similar, 

organizes the groups according to predominant tradeoffs, and helps identify policies that strike a balance 

between competing interests. Chapter 5 contributes a comprehensive review of vulnerability analysis 

methods and identifies best practices for choosing methods that are interpretable for the decision-making 

context.   

1.2 Background 

1.2.1 chosen DMDU framework: Many Objective Robust Decision Making 

The specific DMDU framework used in this thesis is Many Objective Robust Decision Making 

(MORDM) (Kasprzyk et al., 2013). MORDM expands on other DMDU frameworks by generating policies 

using multi-objective optimization (Hadka and Reed, 2013; Maier et al., 2019).  This process couples a 

multi-objective optimization algorithm with a simulation model, in a loop. The optimization algorithm 

suggests a policy (i.e., values for the decision levers), the model evaluates policy performance with respect 

to performance objectives, then the optimization algorithms uses performance objective values to 

suggest a new policy. Over thousands of iterations, this loop ‘evolves’ a large set (e.g., hundreds) of high-

performing policies that are non-dominated (Quinn et al., 2018; Wheeler et al., 2018). Policy a dominates 
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policy b if policy a is equal or better in each objective and better in at least one compared to policy b. In 

the resulting set, no policy dominates any other policy – they are non-dominated. In effect, the policies 

demonstrate tradeoffs (Kasprzyk et al., 2013; Raseman et al., 2020), meaning a policy that improves 

performance in one objective has worse performance in other objectives. In this step, the simulation 

model uses a baseline set of SOW, not encompassing all plausible futures, so it is possible that the 

performance values do not capture the full range of possible performance or important tradeoffs under 

conditions of deep uncertainty (Herman et al., 2014; Alexander, 2018). 

The policies are then reevaluated in a large SOW ensemble to test performance under diverse and 

challenging SOW beyond those in the optimization step (Herman et al., 2015; McPhail et al., 2018). Here, 

the analyst defines the plausible upper and lower limits of the uncertain factors then uses a statistical 

design of experiments to globally sample them. Each sample is a SOW. The policies are then reevaluated 

in the SOW ensemble.  

Robustness analysis quantifies how well policies perform across the SOW ensemble using 

robustness metrics (McPhail et al., 2018). Robustness metrics involve two decisions: the choice of 

performance objective, and the method for aggregating performance objective values across the SOW 

ensemble (i.e., SOW aggregation) (Zatarain Salazar, Castelletti and Giuliani, 2022). Common SOW 

aggregation methods include calculating the average performance, worst-case performance, or fraction 

of SOW where a performance threshold is satisfied. The SOW aggregation method reflects a stakeholder’s 

tolerance for uncertainty-related risk (McPhail et al., 2021). Policies can be ranked from most to least 

robust, helping decision-makers prioritize a small number (e.g., four) of robust policies (Alexander, 2018).  

Vulnerability analysis then uses factor mapping to discover scenarios causing ‘decision-relevant’ 

performance outcomes (Bryant and Lempert, 2010; Hadjimichael, Quinn, et al., 2020). Input from 

stakeholders and decision-makers helps define these decision-relevant outcomes, such as a reservoir 

policy failing to meet 100% of demands. Factor mapping then identifies the subset of uncertain factors 
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and their values that are the strongest predictors of that outcome. For example, factor mapping could 

reveal that average precipitation is the strongest determinant of reservoir levels, and that unacceptable 

levels are expected if precipitation is less than 85% of the historical average (Groves et al., 2013; Reis and 

Shortridge, 2020). The uncertain factors and their values are concise descriptions of consequential SOW, 

which can be communicated to decision-makers as scenarios (Steinmann, Auping and Kwakkel, 2020). 

Because these scenarios are discovered to have decision-relevant outcomes, rather than assumed as 

consequential, they help avoid perceptions of subjectivity or bias in policy deliberations (Lempert et al., 

2006; Bryant and Lempert, 2010). 

1.2.2 Participatory decision support 

As climate and population stressors deteriorate benefits provided to stakeholders, there is 

increasing demand for robust and fair policies (UN General Assembly, 2015; IPCC, 2022; Reclamation, 

2023e). Participatory decision support engages stakeholders and decision-makers throughout the analysis 

so their perspectives on robustness and fairness are reflected in decision-making (Smith, Kasprzyk and 

Dilling, 2017; Kasprzyk et al., 2018; Moallemi et al., 2021). Participation in DMDU-based decision support 

is particularly important because of the large number of methodological decisions during the analysis and 

path dependency between those decisions and policy recommendations (Lahtinen, Guillaume and 

Hämäläinen, 2017; McPhail et al., 2020; Quinn et al., 2020; Reis and Shortridge, 2020). Due to complex 

relationships between policies, SOW, and robustness, initial input can lead to unanticipated and 

undesirable policy recommendations. Ideally, stakeholders and decision-makers iteratively update their 

preferences after seeing the results of analysis (Kollat and Reed, 2007; Woodruff, Reed and Simpson, 

2013), a form of a posteriori decision support. 

Specifically, this thesis addresses the participation of three groups in DMDU: practitioners, 

stakeholders, and decision-makers. Practitioners include engineers and scientists performing DMDU 

analyses (Colorado Springs Utilities, 2017; Smith et al., 2022). Stakeholders include those whom policy 
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decisions impact, such as agriculture districts and environmental non-profits (Reclamation, 2023e). 

Decision-makers include policy-makers and managers who advise the methodological decisions made by 

analysts. The delineation between these three groups is flexible, meaning an individual may belong to 

more than one group. For example, practitioners and decision-makers are part of organizations that also 

have specific interests impacted by policy decisions, so they can also be considered stakeholders (Stanton 

and Roelich, 2021). Likewise, practitioners make methodological decisions (i.e., how best to represent the 

system with a model, methods for creating a SOW ensemble) which can impact policy recommendations 

(i.e., which policy is most robust) (Quinn et al., 2020; Reis and Shortridge, 2020). In this sense, practitioners 

are also decision-makers.  

Despite the flexibility of the group definition, this thesis frames its contributions specifically to 

benefit different groups. Chapter 2 seeks to reduce the computing requirements faced by analysts 

performing DMDU; Chapter 3 contributes a tool to help stakeholders identify robustness metrics and 

policies that reflect their interests; Chapter 4 contributes a framework to help decision-makers negotiate 

to compromise policies; Chapter 5 contributes a review to help analysts choose vulnerability analysis 

methods that are interpretable for different decision-making contexts. 

1.3 Overview of work 

This thesis addresses four challenges to participatory DMDU, which correspond to Chapters 2-5. 

1.3.1 Subsampling and space-filling metrics for computational efficiency (Chapter 2) 

The first challenge is the computational requirements for DMDU. This challenge is particularly 

relevant for studies using climate and population projection data for the uncertain factors, which is 

common in government-level planning (Reclamation, 2012a; River Management Joint Operating 

Committee, 2020; Smith et al., 2022). The use of projections for multiple uncertain factors requires a 

strategy for combining them into SOW, which is commonly done by making every possible combination 

of the projections – a full-factorial design (Alexander, 2018; Jafino and Kwakkel, 2021). In full-factorial 
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designs, the number of SOW grows exponentially as either the number of uncertain factors or the number 

of projections per factor increase (Choi et al., 2021). This method can produce large SOW ensembles, and 

testing them all in the model can exceed the computing resources and deadlines faced by practitioners. 

In the absence of projections for the uncertain factors, space-filling methods (i.e., Latin Hypercube 

Sampling) are used, in part because the analyst can choose a feasible number of SOW (Herman et al., 

2015; Joseph, 2016). However, these methods create new SOW, meaning predetermined projections 

cannot be used. Ideally, SOW ensembles could be created from existing projections and practitioners 

could choose the number of SOW.  

Another challenge is determining the number of SOW to simulate in the model. Given 

computational requirements and time constraints, is it appropriate to perform a robustness analysis with 

fewer SOW? For fewer SOW to be appropriate, the ranking of policies by robustness would need to be 

similar compared to if more SOW were used, since these rankings can inform which policies are preferred 

by decision-makers. Other studies have concluded that the ranking of policies can change depending on 

the probability distributions, upper and lower bounds, and pairwise correlations of the uncertain factors 

(McPhail et al., 2020; Quinn et al., 2020; Reis and Shortridge, 2020, 2021). However, it remains unknown 

if fewer SOW can achieve the same policy rankings as a larger SOW ensemble. 

This thesis introduces a comprehensive sampling framework to improve the computational 

efficiency of DMDU analyses. First, subsampling methods select a subset of SOW from existing data such 

that the subset maximally covers plausible values of the uncertain factors (Minasny and McBratney, 2006). 

Then, the sensitivity of policy rankings to ensemble size is tested by subsampling smaller SOW ensembles 

from an existing, larger ensemble. The robustness rankings are recalculated using each of the smaller 

ensembles, and their rank accuracy is measured relative to the larger ensemble (McPhail et al., 2020). 

Whereas existing strategies for testing sensitivity of DMDU results require simulations for multiple SOW 

ensembles (McPhail et al., 2020; Quinn et al., 2020; Reis and Shortridge, 2020), the approach in this thesis 
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reduces computing requirements by recycling existing SOW and model runs. Lastly, the sampling 

framework creates a statistical relationship between model-free metrics of ensemble quality and rank 

accuracy. So-called space-filling metrics use distance calculations in the uncertainty space, and thus are 

model-free (Dupuy, Helbert and Franco, 2015). This relationship can determine if a SOW ensemble of a 

given size will produce similar robustness rankings as a larger SOW ensemble before testing it in the 

simulation model. 

1.3.2 a posteriori selection of robustness metrics (Chapter 3) 

The second challenge is choosing robustness metrics. A body of research has shown that the  

policy deemed most robust often varies depending on which robustness metric is used (Herman et al., 

2015; McPhail et al., 2020; Reis and Shortridge, 2020). McPhail et al (2021) addressed the choice of 

robustness metrics using a questionnaire to solicit the stakeholder’s understanding of the problem (e.g., 

performance thresholds) and preferences (e.g., risk tolerance), and then algorithmically recommend 

robustness metrics based on their statistical properties. Such mapping of initial preferences to robustness 

metrics is a form of a priori decision making since it is done before performance outcomes are investigated 

(Kasprzyk et al., 2013; Kwakkel and Haasnoot, 2019). Complex human-environmental systems, though, 

can result in  incomplete and inaccurate understanding of how decisions (such as choice of robustness 

metrics) can lead to undesirable performance outcomes (Zeleny, 1989; Roy, 1990; Kasprzyk et al., 2012; 

Woodruff, Reed and Simpson, 2013; Herman et al., 2014). In other words, basing policy decisions on a 

priori preferences can result in in unexpected tradeoffs between performance objectives and exhibit 

alarmingly poor robustness under alternative metrics.  

Alternatively, a posteriori decision support helps stakeholders establish their preferences after 

exploring what performance outcomes are possible (Kollat and Reed, 2007; Kasprzyk et al., 2013; 

Woodruff, Reed and Simpson, 2013). These methods use interactive visualization techniques that allow 

the stakeholder to explore performance tradeoffs, learn the relationships between policies and 
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performance, and iteratively refine their preferences. A posteriori methods are frequently used to explore 

tradeoffs between multiple performance objectives, but have seen limited applications for robustness 

analysis (e.g., Herman et al. (2014, 2015)). 

This thesis contributes a framework for a posteriori robustness analysis.  For each performance 

objective, a broad selection of robustness metrics is calculated to reflect varying degrees of risk-tolerance 

and different methods to summarize performance over the SOW ensemble. Then, the framework provides 

stakeholders with background information and training to interpret what the metrics mean, rather than 

propose what metrics are most appropriate. Interactive visualizations help explore tradeoffs between 

robustness metrics and objectives, discover relationships between policies and robustness, iteratively 

refine which metrics and objectives are important, and remove non-robust policies. To do so, our 

framework introduces several novel tools for robustness analysis, namely ‘on-the-fly’ non-dominated 

robustness sorting and decision tracking. Our dynamic and interactive framework requires an integrated 

platform, which we create via a web application.  

1.3.3 Robustness-informed negotiation and compromise (Chapter 4) 

The third challenge is decision-makers is choosing policies when they hold conflicting 

performance priorities. DMDU-based decision support requires understanding of how alternative policies 

lead to different performance and robustness tradeoffs. However, having this understanding is non-trivial 

because the policy set often consists of hundreds of policies characterized by complex interactions 

between decision variables, objectives, and robustness metrics (Miller, 1956; LeCompte, 1999; Quinn et 

al., 2018; Smith, Kasprzyk and Dilling, 2019). Moreover, decision-makers may struggle to use all this data 

to overcome foundational disagreements, such as different weighing of performance objectives (Smith, 

Kasprzyk and Dilling, 2019) or tolerance for uncertainty-related risk (McPhail et al., 2018; Hadjimichael, 

Quinn, et al., 2020; McPhail et al., 2021). These challenges demonstrate the need for a framework that 
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synthesizes the relationships between policies, tradeoffs, and robustness while illuminating policies that 

strike a compromise between competing goals. 

This thesis addresses these challenges by coupling DMDU with the Self-Organizing Map (SOM), a 

machine learning method (Kohonen, 1982). We use the SOM to place similarly performing policies into 

groups (clusters), then arrange policy groups on a two-dimensional, tradeoff-based coordinate system, 

i.e., a tradeoff map. Different DMDU ‘layers’ can be plotted on this map using the policy clusters, such as 

performance objectives and decision levers. Doing so reduces the number of policies and tradeoffs to 

consider by decision-makers while preserving the most pertinent information. We extend previous 

applications of the SOM (Obayashi and Sasaki, 2003; Zhang et al., 2018) to add robustness layers to the 

map. Specifically, we add one robustness layer per decision-maker to show their preferred robustness 

metric. Although each decision-maker can have a unique robustness layer, they share a common 

coordinate system. We demonstrate how this combination of individual robustness preferences and a 

shared coordinate system can facilitate a process of negotiation and compromise. 

1.3.4 Taxonomy of purposes, methods, and recommendations for vulnerability analysis (Chapter 5) 

The fourth challenge is choosing methods for vulnerability analysis that are interpretable for the 

decision-making context. Early applications of vulnerability analysis used a binary structure of ‘decision-

relevant’ outcomes, e.g., a reservoir operation policy is acceptable if it meets 100% of demands, and 

unacceptable otherwise. Recently, novel methods have demonstrated new structures for specifying 

decision-relevant performance outcomes. These include multi-class structures, introduced to address 

performance inequalities between stakeholders (Jafino and Kwakkel, 2021) and non-stationarity of 

performance outcomes (Jafino and Kwakkel, 2021). Moreover, recent studies have departed from PRIM 

for factor mapping, opting instead for more flexible methods such as logistic regression (Hadjimichael, 

Quinn, et al., 2020) and boosted trees (Trindade, Reed and Characklis, 2019). More flexible methods can 

address non-linear relationships between policies, SOW, and performance outcomes. The benefit of this 
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body of literature is exposing DMDU to advanced tools that can address technical challenges. However, a 

potential limitation is that the resulting scenarios from more complex algorithms may be less 

interpretable for decision-making (Rudin et al., 2022). Previous reviews have covered the difference 

between factor mapping and factor ranking for vulnerability analysis (Herman et al., 2015; Kwakkel and 

Haasnoot, 2019), but have not given a systematic comparison of performance outcome structures, 

alternative factor mapping methods, or best practices for choosing interpretable methods. 

This thesis contributes a review of vulnerability analysis methods and best practices for creating 

interpretable scenarios. Our review identifies three performance outcome structures – binary, multi-class, 

and continuous – and demonstrates that different structures can be better suited for different decision-

making contexts. We use these three structures to create a taxonomy of factor mapping methods. A 

helpful framing taken in this review is that factor mapping is a classification and regression exercise, a 

type of machine learning (James et al., 2013; Rudin et al., 2022). Therefore, we apply the machine learning 

concepts of interpretability and flexibility to systematically compare factor mapping algorithms. Our 

review shows that interpretability depends both on the flexibility of the chosen methods and on the 

specific decision-making purpose. We identify five common purposes for vulnerability analysis and discuss 

the interpretability of different performance outcome structures and factor mapping methods for those 

purposes. Lastly, we demonstrate how comparing factor mapping algorithms with testing accuracy, rather 

than training accuracy, can help improve the interpretability of scenarios for decision-making. 

1.4 Case study: reservoir operation policy in the Colorado River Basin 

To demonstrate the novel frameworks and interactive tools, this thesis uses a single case study: 

reservoir operation policies in the Colorado River Basin (CRB). 

The CRB is managed with a system of reservoirs to provide water for nearly 40 million people 

across seven U.S. states, Northwest Mexico, and 30 tribal nations (Reclamation, 2012a, 2018a). Lake 

Powell and Lake Mead are the largest reservoirs in the system, with storage capacity of four to five times 
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the historic annual inflow. Annual releases from these reservoirs are chosen to meet delivery-related 

objectives – e.g., current demands by irrigators and water utilities – and storage-related objectives – e.g., 

maintaining necessary levels for hydropower and storing water for drought years (Alexander, 2018). These 

objectives are often-times characterized by tradeoffs, especially during extended periods of low reservoir 

inflows. 

Since 2000, extended periods of low inflow have depleted storage in Lakes Mead and Powell to 

historic levels, mobilizing federally-mandated delivery reductions to downstream users (DOI, 2022). In an 

attempt to protect reservoir storage, a delivery reduction policy was established in 2007 (Figure 1-2,a) 

(Reclamation, 2007). This policy defines pool elevations (y-axis) and corresponding release reductions 

(shown with colors) for Lake Mead. The policy also determines how releases from Lake Powell, the 

upstream reservoir, are used to balance storage with Lake Mead. As storage continued to decline, 

however, additional delivery reductions were added in 2017 and 2019, resulting in a combined policy 

(Figure 1-2,a) (International Boundary and Water Commission, 2012, 2017; Buschatzke et al., 2019). 

Storage levels continued to decline, leading to shortages for downstream users in 2022-2024, pursuant 

the policy (Reclamation, 2023d).  The current policy expires in 2026, thereafter a new policy will take 

effect. Under low inflow conditions, the new policy will determine the relative priority of storage and 

delivery objectives. 

The Bureau of Reclamation, the organization leading post-2026 negotiations, is using DMDU to 

explore tradeoffs and identify policies robust to future climate (Smith et al., 2022; Reclamation, 2023c). 

Reclamation seeks meaningful participation from stakeholders throughout the DMDU analysis, requiring 

mass-communication of modelling results and efficient systems for stakeholders to provide feedback. 

However, deadlines for this participatory DMDU process are constrained by the 2026 expiration of existing 

policies.  
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Inspired by post-2026 negotiations, this thesis uses the CRB as a testbed to develop novel 

methods for participatory DMDU. Chapters 2-4 use a set of 463 Lake Mead policies provided by 

Reclamation. These policies were created with multi-objective optimization, as described in those 

chapters and in Alexander (2018). The 463 policies implement diverse delivery reductions beginning at 

different reservoir levels, demonstrating different prioritizations of storage vs. delivery objectives. Two 

examples are given Figure 1-2, b. The policy on the left uses small delivery reductions and favors delivery 

objectives, whereas the policy on the right uses large reductions and favors storage.  

In this thesis, the policies are tested in 500 SOW to evaluate performance in plausible reservoir 

inflow, demand, and initial storage conditions. The resulting database of model runs is used to 

demonstrate the novel frameworks and tools in Chapters 2-4 (see Table 1-1). Chapter 5 then uses the CRB 

as an illustration of purposes and methods for vulnerability analysis. 

 

 

 

Figure 1-2: a) current reservoir operation policies in the CRB expire in 2026. b) two examples of Lake 
Mead policies used in this thesis, demonstrating tradeoffs between storage and delivery. 
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Chapter Summary of Colorado River Basin case study 

2: Subsampling and Space-
filling Metrics to Test 

Ensemble Size for 
Robustness Analysis 

• 463 Lake Mead policies tested in 500 SOW 

• Subsample 50 to 450 SOW from all 500 SOW to test sensitivity of policy rank 
to number of SOW 

• Test six robustness metrics, the combination of two SOW aggregation 
strategies and three performance objectives  

• Find that fewer than 500 SOW can accurately rank policies, depending on 
robustness metric 

3: Interactive, Multi-Metric 
Robustness Tradeoffs in 
the Colorado River Basin 

• Contribute a robustness analysis web tool to explore tradeoffs for 463 Lake 
Mead policies 

• Policies tested in 500 SOW 

• Tool supports more than 50 robustness metrics 

• Tool available online: www.nabocrb.shinyapps.io/CRB-Robustness-App-
JWRPM/   

• Use tool to identify 7 robust Lake Mead policies 

4: Mapping Policies to 
Synthesize Optimization 

and Robustness Results for 
Decision-Maker 

Compromise 

• Self-Organizing Map trained on performance objective values of 463 Lake 
Mead policies 

• Create a map of 15 Lake Mead policy clusters organized by storage and 
shortage tradeoffs 

• Use robustness maps to identify compromise policies between two 
hypothetical decision-makers 

5: Taxonomy of Purposes, 
Methods, and 

Recommendations for 
Vulnerability Analysis 

• Use CRB examples (both from the literature and hypothetical examples) to 
explain methods and purposes for vulnerability analysis 

• Perform a simplified, numerical simulation of reservoir storage to 
demonstrate accuracy and interpretability of two factor mapping methods 
(logistic regression and random forest) 

Table 1-1. Summary of Colorado River Basin case studies in Chapters 2-5 

1.5 Research outcomes and organization 

Chapter 2 is the journal article “Subsampling and Space-filling Metrics to Test Ensemble Size for 

Robustness Analysis with a Demonstration in the Colorado River Basin.” It is under review in 

Environmental Modelling & Software, and it is co-authored by Drs. Joseph Kasprzyk, Edith Zagona, and 

Balaji Rajagopalan. This paper demonstrates that, by subsampling SOW with space-filling designs, smaller 

SOW ensembles can accurately rank policies by robustness compared to larger ensembles. In our CRB case 

study, for example, a fraction of SOW can identify the ten most robust Lake Mead policies. However, the 

number of SOW depends on the robustness metric. The study also shows that space-filling metrics are 

skillful predictors of rank accuracy, creating a simulation-free method to test if a smaller SOW ensemble 

will yield similar robustness rankings compared to a larger SOW ensemble. This chapter contributes to the 

participation of practitioners in DMDU by establishing methods that can reduce computing requirements. 

http://www.nabocrb.shinyapps.io/CRB-Robustness-App-JWRPM/
http://www.nabocrb.shinyapps.io/CRB-Robustness-App-JWRPM/
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Chapter 3 is the journal article “Interactive, Multi-metric Robustness Tradeoffs in the Colorado 

River Basin.” It is accepted for publication in the Journal of Water Resources Planning and Management. 

The article is co-authored by Drs. Joseph Kasprzyk, Edith Zagona, and Rebecca Smith. The article 

implements our a posteriori framework for robustness analysis, and it is demonstrated with a robustness 

analysis of Lake Mead policies. We showed that robustness metrics chosen a priori for the CRB can lead 

to poor robustness with respect to worst-case shortages, as discovered with a posteriori exploration. We 

demonstrated how interactive visualizations and a graphic user interface empowers discovery of 

tradeoffs, efficient stakeholder feedback, and rapid recalculation of robustness. This research was in 

collaboration with Reclamation, contributing to an upcoming interactive tool that will support post-2026 

negotiations. 

Chapter 4 is the journal article “post-MORDM: mapping policies to synthesize optimization and 

robustness results for decision-maker compromise.” It was published in Environmental Modelling & 

Software in 2022, coauthored by Drs. Joseph Kasprzyk and Edith Zagona. The article demonstrates our 

negotiation framework by organizing 463 Lake Mead policies into 15 representative groups, and 

synthesizes the two predominant tradeoffs when choosing between policies. Those tradeoffs are 1) 

storage vs. delivery objectives, and 2) magnitude vs. duration of shortages. Using this tradeoff map, we 

create robustness layers for two hypothetical decision-makers, one who favors storage and one who 

favors deliveries. We use their individual robustness layers and the tradeoff coordinates to identify 

compromise Lake Mead policies.  

Chapter 5 is the journal article “Taxonomy of purposes, methods, and recommendations for 

vulnerability analysis”. The article is in preparation for submission to Earth’s Future, co-authored by Drs. 

Joseph Kasprzyk and Edith Zagona. The article explains the three performance outcome structures (binary, 

multiclass, and continuous) and reviews three methods for defining multi-class performance outputs. The 

article compares four factor mapping algorithms for binary performance structures based on 
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interpretability and flexibility. We compare two algorithms for multi-class performance structures based 

on overlapping versus mutually exclusive scenarios, explaining their suitability for finding compromise 

policies versus comparing policies. We explain how continuous factor mapping can empower stakeholders 

to define performance goals after seeing what performance outcomes are possible. Lastly, we 

demonstrate how testing accuracy can reveal when a more interpretable scenario is just as accurate at 

predicting performance outcomes compared to a less interpretable scenario. 

Chapter 6 provides a summary, describes where this research has been disseminated, explains 

ongoing work, and concludes with future research opportunities.  
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2 Subsampling and Space-filling Metrics to Test Ensemble Size for 
Robustness Analysis 

2.1 Introduction 

Decision-makers are faced with irreducible uncertainties such as climate change (IPCC, 2021), 

population growth (Gold et al., 2019a), global trade patterns (Yarlagadda et al., 2023), and energy market 

transitions (Steinmann, Auping and Kwakkel, 2020). Scenarios can represent plausible realizations of how 

the uncertain factors may unfold in the future (Bryant and Lempert, 2010; Kasprzyk et al., 2013; Smith et 

al., 2022).  However, these severe uncertainties can be challenging to represent with a small number of 

scenarios, since decision-makers do not know or disagree on their probabilities. This condition is referred 

to as deep uncertainty (Knight, 1921; Lempert, Popper and Bankes, 2003), and analytical methods termed 

Decision Making Under Deep Uncertainty (DMDU) have been used to combat this (Lempert et al., 2006; 

Kwakkel and Haasnoot, 2019). Instead of using a small number of scenarios as was traditionally done, a 

large ensemble of scenarios is used to broadly sample the uncertainty space (Lempert et al., 2006; Bryant 

and Lempert, 2010). This is especially appropriate due to the multi-dimensional nature of the uncertain 

factors and their wide range of possible values (Chapman et al., 1994; Jones, Schonlau and Welch, 1998; 

Loeppky, Sacks and Welch, 2009; Levy and Steinberg, 2010). The resulting ensemble of scenarios creates 

challenging conditions in which to test policy alternatives.  

These large scenario ensembles are used to test policy alternatives in a robustness analysis. 

Because the probability of any scenario occurring is unknown, policies that perform well in many scenarios 

– robust policies – are preferred to policies that perform well in one or a few (Lempert et al., 2006; 

Kasprzyk et al., 2013). Robustness is quantified with robustness metrics, which are statistics that 

summarize each policy’s performance across the scenarios (McPhail et al., 2018). Decision-makers can 

prioritize policies using robustness (i.e., they are likely to prefer more robust policies to less robust 

policies).  
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In a robustness analysis, a large number of scenarios and policies can result in impractical 

computational overhead. These analyses may test hundreds of policies and hundreds to thousands of 

scenarios (Quinn et al., 2018; Gold et al., 2019b; Hadjimichael, Quinn, et al., 2020), which can require 

weeks to months of computing time (Alexander, 2018) and/or supercomputing (Trindade, Reed and 

Characklis, 2019). This challenge is further exacerbated by models with exceptionally long run times such 

as global climate-economy models (Nikas, Doukas and Papandreou, 2019; Yarlagadda et al., 2023) and 

military models (Hill and Miller, 2017), which can require hours to months per simulation. Large 

computational requirements can be problematic for research studies, but it can be especially challenging 

for government-level agencies, who may need to hire external consultants to meet deadlines and financial 

constraints (Means et al., 2010; Reclamation, 2012a; Groves and Bloom, 2013; Molina-Perez et al., 2019). 

The challenge of planning under deep uncertainty amidst time and computing constraints is 

epitomized by the Colorado River Basin (CRB). During the 21st century, streamflow has declined to roughly 

72% of the historical average (Lukas and Payton, 2020), which, combined with over-allocation, has steadily 

depleted the system’s largest reservoirs, Lake Mead and Lake Powell (Rosenberg, 2022; Wheeler et al., 

2022). Although most climate change projections agree that the future will be hotter with less water 

supply, they exhibit vast uncertainty in the magnitude and direction of change (Lukas and Payton, 2020). 

There also exists great uncertainty in future water consumption, since various water users, such as Upper 

Basin states and Tribal Nations, could utilize more of their water rights in the future (Upper Colorado River 

Commission, 2016; Reclamation, 2018a, 2023e).  

Amidst this uncertainty, the current operating policies that govern releases from Lakes Mead and 

Powell expire in 2026, and a federal-level renegotiation has begun (Reclamation, 2023b). Recognizing that 

the current policies have not protected system reservoirs from the risk of reaching power or dead pool 

(the required storage levels to produce hydropower and make releases), the government is using 

robustness analyses to evaluate alternative operating policies in streamflow and demand scenarios 
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(Alexander, 2018; Smith et al., 2022). Since the CRB supports copious stakeholders with often-times 

conflicting goals (Bonham, J. Kasprzyk and Zagona, 2022a; Reclamation, 2023e), it is critical that these 

robustness analyses are flexible, meaning they can be reiterated as new policy alternatives are proposed. 

However, with only a few years remaining until 2026, repeating these robustness analyses with current 

large scenario ensembles may be impractical. This challenge has been demonstrated in a previous 

robustness analysis of the CRB, which required two months of continuous computing (Alexander, 2018).  

Given this computational burden and time constraint, is it appropriate to perform these 

robustness analyses with fewer scenarios? This paper contributes a comprehensive framework to explore 

whether scenario ensembles of different sizes can provide a stable rank-ordering of the policies from most 

to least robust, following prior research that has used this ranking approach (Herman et al., 2014; 

Alexander, 2018; McPhail et al., 2018, 2020, 2021). For fewer scenarios to be appropriate, the robustness 

rankings would need to be similar compared to if more scenarios were used, since these rankings can 

inform which policies are preferred by decision-makers. Other studies have concluded that the ranking of 

policies can change depending on the probability distributions, upper and lower bounds, and pairwise 

correlations of the uncertain factors (McPhail et al., 2020; Quinn et al., 2020; Reis and Shortridge, 2020, 

2021). However, it remains unknown if fewer scenarios can achieve the same policy rankings as a larger 

scenario ensemble.  

A major challenge to testing the sensitivity of robustness rankings to the scenario ensemble used 

is that it has required the repeating of computer simulations for multiple scenario ensembles (McPhail et 

al., 2020; Quinn et al., 2020; Reis and Shortridge, 2020, 2021). Since the simulations required for one 

scenario ensemble can be computationally intensive, multiple ensembles of such simulations can be 

intractable.  

To overcome this challenge, our framework performs computer simulations with a single scenario 

ensemble. Then, statistical methods are used to subsample the resulting database, creating smaller 
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ensembles of varying sizes. For each subsampled ensemble, the objective values corresponding to the 

sampled scenarios are used to recalculate robustness and re-rank policies. The framework demonstration 

in the CRB uses generalizable water resources objectives (reliability, resiliency, and vulnerability) and 

explores how ranking accuracy changes as a function of objective and robustness metric type.  To 

determine the number of scenarios needed, the subsamples’ policy rankings are compared to the rankings 

that result from all scenarios.  

Furthermore, our framework utilizes model-free metrics of scenario ensemble quality to indicate 

if a smaller ensemble will yield similar policy rankings compared to a larger ensemble. So-called ‘space-

filling’ metrics measure the quality of scenario ensembles with distance calculations in the uncertainty 

space (Damblin, Couplet and Iooss, 2013; Dupuy, Helbert and Franco, 2015). They require no information 

about model outputs (i.e., objectives or robustness metrics) and thus are model-free. To develop this 

method, we calculate space-filling metrics for each ensemble, then build statistical models that predict 

how similarly a smaller ensemble ranks policies compared to a larger ensemble as a function of its space-

filling properties. Multiple space-filling metrics are tested to determine which is the most accurate 

indicator of rank similarity, then we demonstrate how these metrics can indicate the minimum number 

of scenarios required for a robustness analysis, potentially reducing computational overhead.  

The rest of this paper is organized as follows. Section 2.2 explains our framework, using example 

data for illustration. Section 2.3 gives the details of the case study of reservoir operation policies in the 

CRB. Results are in Section 2.4, followed by a discussion and conclusion in Sections 2.5 and 2.6. 

2.2 Methods 

An overview of the framework is provided in Figure 2-1.  In step 1, an, an existing ensemble of 

scenarios and set of policies are input to a simulation model, the outputs of which are used to calculate 

robustness and rank policies from most to least robust. In step 2, smaller scenarios ensembles are created 

by subsampling from the ensemble of all scenarios used in step 1. The objective values corresponding to 
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the sampled scenarios are then used to recalculate robustness and rank policies. The policy rankings from 

each subsampled ensemble are compared to that of all scenarios via a rank correlation statistic. Three 

space-filling metrics are calculated for each scenario ensemble. Lastly, in step 3, statistical models are 

built to predict rank correlation as a function of the space-filling metrics. Proportion of variance explained 

and prediction intervals are reported to determine the most skillful space-filling metric. In the following 

subsections, we use example data and calculations to describe each step. The specific implementation for 

the case study is given in Section 2.3.  
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Figure 2-1: Subsampling framework overerview. In step 1, an existing ensemble of scenarios is input to a 
simulation model to evaluate the performance objectives of a set of a policies. Robustness is calculated 
for each policy, then the policies are ranked from most to least robust. The ranking of policies from step 
1 is used as the baseline for comparision. In step 2, subsampling experiments are performed to create 
ensembles with fewer scenarios.  The objective values are subsetted based on which scenarios are 
sampled, and are then used to recalculate robustness and rank policies. The policy rankings from each 
subsampled ensemble are compared to the rankings from all scenarios using a correlation statistic. Space-
filling statistics are calculated for each scenario ensemble. In step 3, statistical models of rank correlation 
as functions of the space-filling metrics are computed, and their accuracy are compared using R2 and 
prediction intervals. 
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2.2.1 Baseline Robustness rankings 

2.2.1.1 Model simulations 

The purpose of step 1 (Figure 2-1.1) is to establish the robustness rankings of the policy 

alternatives relative to the baseline ensemble – a large set of ‘all scenarios’ (orange in Figure 2-1.1). Our 

framework assumes the baseline ensemble is given (e.g., established in previous work), as the purpose of 

this framework is to explore how many scenarios are needed to achieve similar robustness rankings. The 

ensemble of all scenarios is input to a simulation model to evaluate a set of policies (Figure 2-1.2). A policy 

is defined by a set of decision variable values, which are model inputs that establish how the system will 

be designed or governed (Lempert, Popper and Bankes, 2003). The policies can be created manually 

through expert knowledge or generated from optimization (Herman et al., 2015).  

2.2.1.2 Performance objectives 

The output of the model simulations is a database of performance objective values, which are 

quantitative measures of system performance. In time-series models, they aggregate the status of a state 

variable over time, relative to a single policy in a single scenario (Zatarain Salazar, Castelletti and Giuliani, 

2022). Although the framework can be implemented with any performance objectives, we demonstrate 

with three well-known objectives: reliability, resiliency, and vulnerability (Hashimoto, Stedinger and 

Loucks, 1982). As shown in Figure 2-2a, reliability is the cumulative percentage of time a state variable 

fails a performance target (shown with green), resiliency is the maximum time required to recover from 

a failure (orange), and vulnerability is the magnitude of the maximum failure (purple). The example given 

in Figure 2-2a shows all three objectives calculated for one state variable; however, performance 

objectives are often calculated for multiple state variables representing alternative pieces of 

infrastructure, sectors, and/or stakeholders (Kasprzyk et al., 2013; Smith, Kasprzyk and Basdekas, 2018), 

as illustrated by the case study in Section 2.3.  
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2.2.1.3 Robustness calculations 

Robustness analysis investigates the range of performance objective values of a policy set when 

tested in many scenarios; e.g., how much worse is a policy’s performance in extreme scenarios, relative 

to a baseline? Robustness metrics are specific calculations that summarize a policy’s performance across 

the scenario ensemble (McPhail et al., 2018; Zatarain Salazar, Castelletti and Giuliani, 2022). Due to their 

requirement to summarize complex multivariate data, different robustness metrics exist that could yield 

different rankings of policy alternatives (Herman et al., 2014; McPhail et al., 2018).  

Figure 2-2: The performance objectives and robustness types used for robustness calculations. a) Three 
types of performance objectives are calculated. Reliability (green) is the percent of time a failure level 
is violated. Resiliency (orange) is the maximum duration below the failure level. Vulnerability (purple) is 
the maximum failure. b) For each objective, we calculate two types of robustness. Satisficing (left) is the 
fraction of scenarios where perfomance threshold is achieved. 90% regret from best measures a policy’s 
deviation from the best performing policy in each scenario. The 90th percentile of the deviations is taken 
to summarize performance across the scenarios. 
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We demonstrate the framework with two types of robustness metrics: satisficing and 90% regret 

from best (Figure 2-2b). Satisficing (left) is the fraction of scenarios in which a performance objective value 

meets a performance threshold. Figure 2-2b, left, shows an example where policy A is less than or equal 

to the performance threshold of 50 in 6 of 10 scenarios (a satisficing score of 0.6). The threshold is specific 

to each performance objective but constant for all policies and scenarios. 90% regret from best measures 

the magnitude by which a policy’s performance deviates from the best performing policy in each scenario. 

Figure 2-2b, right, gives an example calculation for Policy A. The column labelled ‘Best’ records the best 

performance between policies A, B, and C (assuming 0 is the ideal value). Then, deviation is calculated as 

the performance of policy A minus the best performance (the ‘A-best’ column). A value of 0 means policy 

A is the best performing policy in that scenario (e.g., scenario 10), and larger values indicate another 

alternative performs substantially better. To summarize regret across the scenarios, the 90th percentile is 

taken. We use these two robustness types because they implement different techniques for summarizing 

performance across scenarios (McPhail et al., 2018) and because they are common in robustness analysis 

case studies (Herman et al., 2015; Reis and Shortridge, 2020, 2021). 

Robustness is calculated using each combination of the two robustness types and three 

performance objectives, resulting in six total robustness metrics. Hereafter, we refer to the robustness 

metrics using the convention objective.robustness-type , e.g., reliability.satisficing. We will abbreviate 90% 

regret from best as regret, e.g., vulnerability.regret. 

2.2.1.4 Robustness ranking 

For each robustness metric, the policies are ranked from most to least robust, where rank one is most 

robust. Our framework assumes the policy rankings that result from all scenarios (e.g., ‘rank-all’ in Figure 

2-1.1) is the most accurate because it samples the uncertainty space more densely than the subsamples.  
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2.2.2 Subsampling experiments 

2.2.2.1 Subsampling scenarios with conditioned Latin Hypercube Sampling 

To explore the extent to which robustness rankings change when fewer scenarios are used, Step 

2 reevaluates the robustness metrics and policy rankings using subsamples of the scenarios (Figure 2-1.2). 

Subsampling is performed via observational sampling, which creates smaller ensembles by selecting 

subsets of all scenarios (Kennard and Stone, 1969; Brus, 2019; Wadoux, Brus and Heuvelink, 2019). For 

example, Figure 2-1.2 shows two subsampled ensembles with ‘few scenarios’ (green) and ‘many 

scenarios’ (blue). 

The observational sampling method used in this study is conditioned Latin Hypercube Sampling 

(cLHS). cLHS uses an optimization procedure to select a subsample of all scenarios that form a Latin 

Hypercube in the uncertainty space (e.g., x1 and x2 in Figure 2-1) (Minasny and McBratney, 2006, 2010). 

To determine which scenarios are selected, cLHS stratifies the empirical cumulative distribution functions 

(eCDFs) of the uncertain factors into n equal strata, where n is the number of scenarios. For example, if n 

= 2, then each eCDF would be divided into 2 strata that go from 0 to 0.5 and 0.5 to 1.0. In the first iteration 

of the optimization procedure, n scenarios are randomly selected from all scenarios. Next, the objective 

function is calculated, which is to minimize the number of strata occupied by more than one scenario – 

i.e., minimize the number of scenarios that violate the definition of a Latin Hypercube. In each subsequent 

iteration, the objective function is improved by one of two ways: randomly replacing one of the selected 

scenarios, or randomly replacing scenarios occupying the most overpopulated strata. Because of this 

randomness, each implementation may yield a different set of scenarios, even for a constant sample size. 

Therefore, it is recommended to create multiple scenario ensembles (i.e., replicates) per sample size 

(Worsham et al., 2012; Ma et al., 2020; Wadoux and Brus, 2021).  

Our framework uses cLHS because it creates scenario ensembles with similar ranges and 

probability distributions of the uncertain factors compared to the set of all scenarios (due to the 
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aforementioned stratification procedure being performed on eCDFs). Maintaining similar probability 

distributions and uncertainty ranges is important because other studies have shown that the ranking of 

policies can change if uncertainty ranges or probability distributions are altered (McPhail et al., 2020; 

Quinn et al., 2020; Reis and Shortridge, 2020). The purpose of our framework is to test the impact of the 

number of scenarios on policy ranking, so we use cLHS to minimize discrepancies in the range or 

probability distributions between scenario ensembles.  

2.2.2.2 Reevaluation of robustness metrics and policy rankings 

The database of objective values from step 1 is then subsetted to contain only the values 

corresponding to the scenarios selected by cLHS. This process is illustrated by ‘obj-few’ and ‘obj-many’ in 

Figure 2-1.2. The subsetted objective values are then used to reevaluate robustness (e.g., ‘robust-few’ 

and ‘robust-many’) and policy rankings (e.g., ‘rank-few’ and ‘rank-many’). 

The policy rankings that result from subsampled scenario ensembles may be more or less similar 

to that of all scenarios depending on the number of scenarios and which scenarios are included (e.g., the 

cLHS replicate). For example, the ‘few scenarios’ ensemble (green) has large disagreements with all 

scenarios (orange) in Figure 2-1.2 – policy A is ranked 6 instead of 1, policy B is ranked 5 instead of 2, etc. 

In contrast, the ‘many scenarios’ ensemble (blue) results in policy rankings similar to all scenarios with 

only minor discrepancies (e.g., policy B is ranked 3 instead of 2). 

2.2.2.3 Measuring rank similarity with Kendall’s tau-b correlation 

To measure the similarity between the subsamples’ rankings and all scenarios, our framework 

uses Kendall’s tau-b correlation (labelled ‘rank correlation’ Figure 2-1.2). This metric was proposed by 

McPhail et al. (2020) to compare the ranking of policies between multiple scenario ensembles. Kendall’s 

tau is calculated with equation 1. 

Equation 1:   
#𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠− # 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑖𝑟𝑠
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Consider policies A and B, ranked using all scenarios and again with subsampled ensemble J.  If 

the conclusion about which policy is more robust does not change when using all scenarios compared to 

ensemble J, then A and B are concordant (Kendall, 1938; McPhail et al., 2020). If the conclusion is reversed 

between the scenario ensembles, then A and B are discordant. If policies A and B are tied, they are neither 

concordant nor discordant. This comparison is done for all pairs of policies to find the total number of 

concordant and discordant pairs. A correlation of 1 means all policies are ranked identically between the 

two ensembles, -1 means they are ranked in exact opposite order, and 0 means there is no correlation 

between the rankings. Note that equation 1 does not account for policies that are tied, meaning that 

values of 1 and -1 are not possible in the presence of ties (even if the same policies are tied using both 

ensembles). To account for this, Kendall’s tau-b makes an adjustment to equation 1 such that the range 

is restored to [-1,1] in the presence of ties (Kendall, 1945; McPhail et al., 2020). Following McPhail et al. 

(2020), we use tau-b in this research. As an example, the ensemble of few scenarios has a correlation of 

0.24 with all scenarios, while the ensemble of many scenarios has a correlation of 0.91. 

2.2.2.4 Space-filling metrics 

The quality of a scenario ensemble can be measured by how well the scenarios cover the 

uncertainty space. For each ensemble, our framework calculates three model-free metrics of ensemble 

quality: mindist, MSTmean, and MSTsd (Figure 2-1.2). mindist is the minimum Euclidean distance between 

any two scenarios (Damblin et al., 2013; Dupuy et al., 2015). MSTmean and MSTsd are calculated from 

the Minimum Spanning Tree (MST) (Damblin et al., 2013; Dupuy et al., 2015; Franco et al., 2009). An MST 

connects all scenarios with lines whose summed length is minimal. Figure 2-1.2 shows two example 

scenario ensembles (‘few scenarios’ and ‘many scenarios’) with their respective MSTs. To evaluate space-

filling properties, the mean and standard deviation of the edge lengths are taken, which we call MSTmean 

and MSTsd, respectively. The space-filling values shown in the tables in Figure 2-1.2 demonstrate that 

each space-filling metric decreases with sample size – i.e., for ensembles with more scenarios, the 
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scenarios are closer together. The magnitude of these metrics also depends on the number of uncertain 

factors, which will depend on the case study. Therefore, it is more meaningful to scale the space-filling 

metrics relative to the set of all scenarios.  For example, a mindist of 2.8 for few scenarios means the 

mindist is 2.8 times greater than the value for all scenarios. 

The advantage of the space-filling metrics is that they quantify how well the scenarios broadly 

cover the uncertainty space without using model-derived outputs such as performance objectives or 

robustness metrics (Joseph, 2016). If these metrics are strong indicators of rank correlation, they could 

inform the number of scenarios needed without the computational expense of repeating computer 

simulations for multiple ensembles. 

2.2.3 Linear models of rank correlation and space-filling metrics 

Next, linear regression models are built to predict rank correlation as a function of space-filling 

metrics (Figure 2-1.3). The models are trained on the rank correlation and space-filling metric values 

calculated from the subsampling experiments in step 2. One model is built for each combination of 

robustness metric and space-filling metric (18 total) according to Equation 2. 

Equation 2:    𝑟𝑎𝑛𝑘 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐵𝑗,𝑘 ∗ 𝑆𝐹𝑀𝑗  

𝑟𝑎𝑛𝑘 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the expected (mean) value of Kendall’s tau-b for robustness metric k; SFMj 

refers to mindist, MSTmean, or MSTsd; and 𝐵𝑗,𝑘  is the slope for robustness metric k and space filling metric 

j.  The most skillful space-filling metric is selected via R2, the proportion of variance in actual (observed) 

rank correlation captured by the models. For the selected metric, the 95% prediction intervals are also 

reported as an additional quantitative and visual diagnostic of model skill. The 95% prediction interval is 

the deviation from the model within which 95% of actual rank correlation values are expected to fall 

(James et al., 2013, chap. 3). 
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2.3 Case study: shortage policies in the Colorado River Basin 

In the case study, we consider shortage operations of Lake Mead in the CRB. In this system, 

snowmelt from the Rocky Mountains is stored primarily in two reservoirs, Lake Mead and Lake Powell. 

These reservoirs are the two largest in the US by volume, capable of holding 4-5 years of historical average 

streamflow (Reclamation, 2012a). Annual releases are set by the federal government with the goals of 

balancing reservoir storage, generating hydropower, and delivering water to the Southwest and northern 

Mexico (Alexander, 2018; Bonham, J. Kasprzyk and Zagona, 2022a; Smith et al., 2022).  

During the so-called ‘millennium drought’ (2000-present), storage at Lakes Mead and Powell has 

declined to critical levels, threatening hydropower production and deliveries (Gangopadhyay et al., 2022; 

Salehabadi et al., 2022; Wheeler et al., 2022). Under these low storage conditions, releases from Lake 

Mead have been reduced according to operating policies established under federal law (Reclamation, 

2007), interstate agreements (Buschatzke et al., 2019), and an international treaty (International 

Boundary and Water Commission, 2012, 2017). These reductions result in shortages for downstream users 

in an attempt to protect reservoir levels. 

As the drought has continued, these policies have not curtailed water usage enough to protect 

the reservoirs from the threat of dropping below minimum power pool or dead pool, at which point no 

releases could be made. Moreover, the current operating policies expire in 2026, and a large national 

process to renegotiate when shortages occur and how they are distributed across users in the Southwest 

has begun (Reclamation, 2023b, 2023e). Thus, the government is using computer simulations to test new 

shortage operations and their robustness to climate change and increasing population (Smith et al., 2022; 

Reclamation, 2023e). This case study explores alternative shortage policies for Lake Mead and evaluates 

their robustness to plausible but uncertain future streamflow and demand scenarios. Because similar 

analyses are underway as part of the policy renegotiation, and it is likely these analyses will be repeated 
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as new policy alternatives are proposed by stakeholders (Reclamation, 2023e), we use the framework 

proposed in section 2.2 to explore how many scenarios are required. 

We assume that releases from Lake Powell, which is upstream of Lake Mead, are determined to 

balance storage with Lake Mead pursuant regulatory requirements (Reclamation, 2007). 

2.3.1 Baseline robustness rankings 

2.3.1.1 Ensemble of ‘all scenarios’ 

For our ensemble of all scenarios, we use 500 scenarios of streamflow, demand, and initial 

storage. This scenario set was used in two previous studies in the Colorado River Basin to demonstrate a 

policy negotiation tool (Bonham, J. Kasprzyk and Zagona, 2022a) and robustness-tradeoff framework 

(Bonham, Joseph Kasprzyk, and Edith Zagona, 2023). Streamflow values were obtained from existing 

datasets commonly used in the Colorado River Basin for long-term planning studies (Reclamation, 2012a; 

Groves et al., 2013; Alexander, 2018), which were derived from the historical record, paleo-

reconstructions, CMIP-3 based projections, and statistical resampling (Reclamation, 2012a). Demand and 

initial storage conditions (i.e., Lake Mead and Lake Powell pool elevations) were sampled via a Latin 

Hypercube design, where the limits of each factor were informed from demand and pool elevation 

projections (Upper Colorado River Commission, 2016; Reclamation, 2020). For further details, the reader 

is referred to Bonham et al. (2022a). In this study, we consider the ranking of alternatives that results from 

all 500 scenarios as most accurate, and we investigate the accuracies of rankings that result from fewer 

scenarios. 

2.3.1.2 Lake Mead policy alternatives 

The policy alternatives provide different values of annual releases from Lake Mead under low 

storage conditions. The 463 policies were created in previous research using multi-objective simulation-

optimization as described in Alexander (2018). Each policy is defined by a vector of pool elevations (i.e. 

storage levels) at which delivery reductions are enacted and a vector of corresponding volumes by which 
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the annual release is reduced. Further details of the problem formulation, an exploration of performance 

and robustness tradeoffs, and visualizations of the policies are given in Bonham et al. (2022).  

The policies implement diverse shortage operations, demonstrating different strategies for 

prioritizing reservoir storage vs. deliveries. These storage and delivery outcomes are quantified in 

objectives and robustness metrics. Through investigating how different scenario ensembles yield different 

robustness rankings, this study explores the appropriateness of using smaller numbers of scenarios. 

2.3.1.3 Simulation model 

To evaluate the performance of Lake Mead policies, we use the Colorado River Simulation System 

(CRSS), the model historically used by the government for long-term planning studies in the Colorado River 

Basin (Reclamation, 2012a; Groves et al., 2013; Bloom, 2014; Alexander, 2018; Smith et al., 2022). CRSS is 

built in RiverWare (Zagona et al., 2001), a hydro-policy modeling software that takes decision variables, 

streamflow, and demand schedules as inputs, evaluates reservoir storage and deliveries over time via 

mass-balance calculations subject to regulatory constraints, and outputs multiple user-defined 

performance objectives. CRSS is run with a monthly time-step, and we implement a 44-year planning 

horizon in this study as was done in Alexander (2018) and Bonham et al. (2022a). For more information 

on CRSS, the reader is referred to (Reclamation, 2022). 

2.3.1.4 Performance objectives 

CRSS is used to evaluate reliability, resiliency, and vulnerability performance objectives (Table 

2-1). We consider two state variables: Lake Mead pool elevation (reservoir storage) and delivery 

shortages. As illustrated in Figure 2-2a, reliability is calculated as the percentage of months that Lake 

Mead pool elevation drops below a threshold critical for hydropower and water deliveries (1000 feet 

above mean sea level). Resiliency and vulnerability are calculated on the shortage state variable. In this 

case, failure occurs whenever shortage occurs (i.e., a failure threshold of 0). Resiliency is the maximum 

number of consecutive years with shortage, and vulnerability is the maximum cumulative shortage in any 
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one year. Note that these objectives are three of eight total objectives in the optimization problem used 

in Alexander (2018) and Bonham et al. (2022a). We chose these three objectives to illustrate how 

robustness rankings can vary for different types of performance objectives.  

 

Type Description Satisficing requirement 

reliability 
% months that Lake Mead pool 
elevation < 1000 ft msl 

< 10 % 

resiliency 
maximum duration of 
consecutive years with shortage 

< 10 years 

vulnerability 
maximum annual shortage in 
thousand acre feet (KAF) 

< 1375 KAF 

Table 2-1: The specific implementation of the performance objectives in the Colorado River Basin case 
study. The performance requirements used in the calculation of satisficing are also reported. 
 

2.3.1.5 Robustness metric parameters 

In order to calculate robustness metrics, an analyst must choose objectives and additional 

performance parameters. Specifically, satisficing metrics require performance thresholds to delineate 

acceptable from unacceptable performance. For our case study, we require reliability < 10% (Alexander, 

2018; Bonham, J. Kasprzyk and Zagona, 2022a) and resiliency < 10 years (Bonham, J. Kasprzyk and Zagona, 

2022a), as these thresholds have been recommended in previous studies. For vulnerability, we require 

maximum shortages1 < 1375 thousand acre feet (KAF). These requirements are also listed in Table 1. 90% 

regret from best is calculated as described in Figure 2-2b.  

2.3.2 Subsampling experiments 

2.3.2.1 cLHS implementation 

To create smaller scenarios ensembles, the ensemble of 500 scenarios is subsampled using the 

‘clhs’ package (Roudier et al., 2021) in R (R Core Team, 2023). The inputs to cLHS are the uncertain factors 

 
1 Summing the current Lake Mead shortage guidelines (Reclamation, 2007; International Boundary and Water 
Commission, 2012, 2017; Buschatzke et al., 2019), 1375 KAF is the maximum shortage. Given that this shortage 
volume was approved, we assume that shortages at or below this level are acceptable, whereas larger shortages 
are not. 
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describing the scenarios: demand, initial Lake Mead pool elevation, initial Lake Powell pool elevation, and 

4 features describing the streamflow traces. The streamflow features are the average annual flow of each 

trace’s driest 20-year period, wettest 20-year period, driest 2-year period, and wettest 2-yr period. These 

features were selected to represent long term wet-dry conditions and short-term wet-dry conditions. See 

Appendix A.1 for details. 

We create scenario ensembles of varying sizes with multiple replicates each. 50 to 450 scenarios 

are tested at an interval of 50 scenarios (a total of 9 sample sizes). 30 replicates are performed per sample 

size, resulting in 270 scenario ensembles (9 sample sizes x 30 replicates). For each subsampled ensemble, 

the performance objective values that resulted from all 500 scenarios are subsetted to correspond with 

the scenarios included in the subsample. Robustness and policy rankings are then reevaluated for each 

subsampled scenario ensemble. 

2.3.2.2 Our definition of ‘accurate ranking’ using rank correlation 

The policy rankings are compared to that of all 500 scenarios using Kendall’s tau-b correlation, 

calculated using the Kendall package (McLeod, 2022) in R. To determine how many scenarios are needed 

for ‘accurate ranking’, we defined ‘accurate ranking’ as rank correlation of 0.975 or greater. We decided 

on this threshold based on visual inspection of scatter plots of subsample rankings vs all scenarios rankings 

(Quinn et al., 2020) for varying values of correlation (Appendix A.2). These plots show the number of 

positions by which a policy is misranked relative to all scenarios. For some robustness metrics, scenario 

ensembles with correlation of 0.95 can produce rankings where many policies are tied (i.e., same 

robustness score), whereas fewer of those policies are tied when using all scenarios. For a correlation of 

0.975 and greater, these erroneous ties are resolved and very similar ranking between the subsamples 

and all scenarios are observed, especially among the top 10 most robust policies. For example, Appendix 

A.2 shows that scenario ensembles with 0.975 correlation identify the same 10 policies as all scenarios as 

most robust, and, within the top 10, policies are ranked correctly or are misranked by only 1-3 positions. 
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We consider that scenario ensembles meeting the 0.975 target would accurately communicate to 

decision-makers the policies that are most robust but note that other studies could use a more lenient or 

strict threshold.  

2.3.2.3 Calculation of space-filling metrics 

The three space-filling metrics are calculated with the DiceDesign package (Dupuy, Helbert and 

Franco, 2015). Before calculating, the uncertain factors are scaled 0-1 to account for different units and 

magnitudes. Mindist is calculated using the function of the same name, and MSTmean and MSTsd are 

calculated using the mstCriteria function.  The MST plots in Figure 2-1 were also created using the 

mstCritieria function with only slight modifications to allow for our chosen color palette. After these 

calculations, each scenario ensemble has three values for the space-filling measures and corresponding 

rank correlation values for six robustness metrics. 

2.3.3 Calculation of linear models 

Next, linear models are built to predict rank correlation as a function of the space-filling metrics. 

The models are fit with least-squares regression implemented in R using the lm function of the stats 

package (R Core Team, 2023). R2 and 95% prediction intervals are calculated using the summary and 

predict functions, respectively. To check the assumptions of linear models – namely that residuals are 

homoscedastic and normally distributed with a mean of zero (James et al., 2013, chap. 3) – we provide 

scatterplots of residuals vs predicted correlation in Appendix A.3.   

2.4 Results 

2.4.1 How many scenarios are needed for accurate robustness ranking? 

To show how many scenarios are needed to accurately rank Lake Mead policies relative to all 

scenarios, Figure 2-3 shows boxplots of rank correlation vs. sample size. Results are shown as boxplots 

because each sample size has 30 replicates, as described in Section 2.2.1. Following standard definitions, 

the horizontal lines in the boxplots show the 1st quartile, median, and third quartile. The upper whiskers 
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show the maximum rank correlation less than the third quartile plus 1.5 times the interquartile range, 

while the lower whisker shows the minimum value greater than the first quartile minus 1.5 times the 

interquartile range. Points show outliers located beyond the whiskers (Wickham, Chang, et al., 2023). The 

boxplot color indicates reliability (green), resiliency (orange), and vulnerability (purple). The top plot 

shows the results for the satisficing robustness type, and the bottom plot shows 90% regret from best. 

Lastly, the bold horizontal line marks our target correlation of 0.975. As discussed in Section 2.3.2.2, 

scenario ensembles meeting this threshold yield very similar rankings relative to all scenarios, especially 

among the top 10 most robust policies. In other words, scenario ensembles that meet this threshold would 

correctly communicate to decision-makers which Lake Mead policies are most robust to streamflow and 

demand uncertainties.  

Fewer scenarios are required for satisficing than regret from best robustness types to achieve 

accurate ranking relative to all scenarios (Figure 2-3). For satisficing robustness metrics (Figure 2-3, top), 

ranking is accurate for as few as 50 to 300 scenarios, depending on the objective. vulnerability.satisficing 

requires 50 scenarios (except one outlier), reliability.satisficing requires 250 (except one outlier), and 

resiliency.satisficing requires 300. In comparison, 90% regret from best (Figure 2-3, bottom) requires 400 

to 500 (all) scenarios for accurate ranking. For reliability.regret and resiliency.regret, most scenario 

ensembles with 350 scenarios yield accurate ranking – only outliers and the lower whiskers do not – while 

all ensembles with 400 or more scenarios obtain accurate ranking. For vulnerability.regret, none of the 

sample sizes yield rank correlations consistently greater than 0.975. Even with 450 scenarios, only the 

third quartile reaches the 0.975 threshold, meaning only about 25% of the replicates (7 to 8 out of 30 

scenario ensembles) meet the threshold. Furthermore, there is a greater range of possible rank 
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correlation values for vulnerability.regret compared to all other metrics, as indicated by the height of the 

purple boxplot in Figure 2-3, bottom. 

2.4.2 Are space-filling properties skillful indicators of rank accuracy? 

The three space-filling metrics were calculated for each scenario ensemble, then linear models 

were fit between them and rank correlation to evaluate if space-filling metrics can accurately determine 

the number of scenarios required for a robustness analysis. In this section, we discuss the results for 

MSTmean only because the MSTmean models achieved larger R2 than MSTsd or mindist for every 

robustness metric (Appendix A.4). The MSTmean models are shown in Figure 2-4. Recall from Section 

2.2.2.3 that one model is built per robustness metric – six total. To measure how accurately MSTmean 

Figure 2-3: Boxplots of rank correlation vs number of scenarios (n) for each objective and robustness 
type.The top plot shows the results for the satisficing robustness metrics, and the bottom plot shows 
90% regret from best. The boxplot color indicates the performance objective. We define rank correlation 
above the bold horizontal line (correlation = 0.975) as accurate ranking. 
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predicts rank correlation, R2 and prediction intervals for each robustness metric are reported in Figure 

2-4, left. To compare each model’s slope, which shows the rate at which rank correlation improves as 

MSTmean decreases, all six models are shown in one plot in Figure 2-4, right. Solid lines are satisficing, 

dotted lines are regret from best, and color indicates the performance objective. Note that the results in 

Figure 2-4 do not extrapolate to MSTmean values smaller than one. Such values would represent 

ensembles with more than 500 scenarios, and the linear regression models could predict correlation 

greater than 1, which is not meaningful. 

The model accuracy differs depending on both the objective type and the robustness metric type. 

R2 and prediction intervals show that MSTmean models more accurately predict rank correlation for 

reliability compared to resiliency or vulnerability objectives and more accurately for satisficing compared 

to regret from best robustness types (Figure 2-4, left). R2 varies from 0.27 to 0.91, with all but the least 

accurate model (vulnerability.regret) obtaining R2 of 0.77 and greater. R2 decreases from reliability to 

vulnerability (left to right) and from satisficing to regret from best (top to bottom). The prediction intervals 

demonstrate similar conclusions about model accuracy. Prediction intervals are smallest for reliability, 

larger for resiliency, and largest for vulnerability, shown by the height of the prediction intervals increasing 

Figure 2-4: Models of rank correlation (y axis) as a function of MSTmean (x axis). a) R2, 95% prediction 
intervals, and slopes for each robustness metric. The top row shows satisficing metrics, and the bottom 
row shows 90% regret from best. The colors are reliability (green), resiliency (orange), and vulnerability 
(purple). b) All six models are summarized in one plot to compare slopes and intercepts. Solid lines are 
satisficing, dashed lines are 90% regret from best, and color indicates the performance objective. 
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left to right. The exception to this pattern is vulnerability.regret, which has the smallest prediction interval. 

This exception is likely because rank correlation for this robustness metric only ranges from 0.97 to 1.00. 

Comparing robustness types, the prediction intervals are smaller for satisficing compared to regret from 

best. 

Comparing the slopes of each model (Figure 2-4, right), the values are similar for all but one 

robustness metric – vulnerability.satisficing. This is shown qualitatively by the slopes of the lines in Figure 

2-4, right, and the slope values, B, which are reported in Figure 2-4, left. The slope is the rate at which 

correlation is expected to increase per unit decrease in MSTmean. For instance, the slope of -0.053 for 

reliability satisficing means that rank correlation is expected to increase from about 0.94 to 0.99 if 

MSTmean is reduced from 2 (MSTmean equal to twice that of all scenarios) to 1 (MSTmean value of all 

scenarios). Across the models, slopes range from -0.053 to -0.070, except for vulnerability.satisficing, 

which has a slope of -0.019. The models also show that rank correlation is expected to be higher for 

satisficing compared to regret from best robustness types. This is seen by the solid lines (satisficing) being 

above the dashed lines (regret from best).  

2.5 Discussion 

2.5.1 Scenario subsampling can lessen the computational burden of robustness analyses  

This research demonstrates that by subsampling scenarios it is possible to lessen the 

computational burden required for robustness analyses without sacrificing accuracy. Subsampling can be 

accomplished using observational sampling methods such as Kennard Stone sampling (Kennard and 

Stone, 1969), Feature Space Coverage Sampling (Brus, 2019; Wadoux, Brus and Heuvelink, 2019), or cLHS 

(Minasny and McBratney, 2006). These methods select a subset of scenarios that maximally cover the 

model uncertainty space. Observational sampling methods are an active area of research in the field of 

digital soil mapping (Schmidt et al., 2014; Wadoux, Brus and Heuvelink, 2019; Ma et al., 2020; Wadoux 

and Brus, 2021), from which additional methods may arise for subsampling scenarios. In the case study, 
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we used cLHS because it creates scenario ensembles with similar probability distributions of the uncertain 

factors. However, our framework can be implemented with other sampling methods to control additional 

properties of  the ensemble, such as correlation between uncertain factors (Minasny and McBratney, 

2006; Reis and Shortridge, 2021). Using cLHS, accurate ranking of the policies was obtained using 

ensembles that were subsampled from a set of 500 scenarios. These policies represent Lake Mead 

shortage policies that were generated in previous studies on the Colorado River Basin. The implication of 

this work is that fewer scenarios could be used in similar policy analyses supported by large simulation 

models, such as the upcoming policy renegotiation in the Colorado River Basin. 

2.5.2 Effect of robustness metric on rank accuracy 

Ensembles with 50 to 400 scenarios achieved accurate ranking for all robustness metrics except 

vulnerability.regret. Satisficing type robust metrics required fewer scenarios (50 to 300) compared to 90% 

regret from best (400 scenarios). The exception is vulnerability.regret: not even the largest sample size of 

450 scenarios was able to meet our accuracy requirement (0.975 correlation or greater) for all replicates.  

These results are relevant for the CRB case study because, in the ongoing policy renegotiation, states, 

Tribes, water utilities, irrigation districts, environmental agencies, and copious other stakeholders are 

likely to propose their own policy alternatives, which will need to be tested for their robustness to 

uncertain streamflow and demand conditions (Reclamation, 2023e, 2023c). If the computational 

resources of a planning agency are limited, the results suggest that satisficing robustness metrics can 

obtain accurate robustness ranking with fewer scenarios. However, the results for both vulnerability-

based metrics show that more scenarios and/or additional analysis are warranted, which we discuss in 

detail in the following subsections. 

2.5.2.1 vulnerability.satisficing: suggest iterative reformulation and multi-metric analysis 

vulnerability.satisficing required the least number of scenarios for accurate ranking (50). 

However, many policies achieve the same robustness scores and rankings. Recall that satisficing measures 
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the fraction of scenarios in which a policy meets a performance threshold. We defined the vulnerability 

performance threshold as a maximum annual shortage of 1375 KAF or less, which is the maximum 

shortage under the current policies in the Colorado River Basin. Some of the policy alternatives tested in 

this study, however, implement a maximum annual shortage of less than 1375 KAF. Since the maximum 

allowable shortage is a decision variable, these policies meet the performance requirement in every 

scenario, achieving a satisficing score of one regardless of the scenario ensemble they are tested in. This 

means many policies obtain the same robustness rank, which may be unhelpful for decision-makers 

looking to prioritize a few of the most robust policies. 

Although this result depends on the specific policies, vulnerability objective, and satisficing 

threshold, it highlights that robustness metrics must be crafted thoughtfully, iteratively, and considered 

in conjunction with other metrics. The results suggest that our vulnerability.satisficing metric is not helpful 

for ranking policies, something that can be difficult to know a priori. Other studies suggest that the 

performance threshold could be iteratively refined by exploring how ranking changes for different 

performance thresholds (Hadjimichael, Quinn, et al., 2020), and/or that policy robustness could be further 

evaluated by exploring tradeoffs with respect to additional metrics (Woodruff, Reed and Simpson, 2013; 

Herman et al., 2014; Bonham, Joseph Kasprzyk, and Edith Zagona, 2023). Such exploratory, iterative 

approaches may help decision-makers identify preferred policies even in the presence of ties and discover 

important insights that change which policies they prefer. 

2.5.2.2 vulnerability.regret: ranking highly sensitive to scenario ensemble 

vulnerability.regret resulted in highly sensitive policy rankings across the scenario ensembles. This 

result is demonstrated by the large range of rank correlation values, 0.86 to 0.99, shown in Figure 2-3 and 

Figure 2-4. This sensitivity may result from combining a vulnerability objective – maximum failure in one 

time step – with regret from best – which summarizes performance across scenarios by taking the 90th 

percentile. Because of this sensitivity, even our largest sample size (450 scenarios) failed to achieve 
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accurate ranking in the majority of scenario ensemble replicates. In our analysis, we kept the ranges and 

probability distributions between scenario ensembles approximately equal by using cLHS. Nevertheless, 

rank correlation varied substantially, even among scenario ensembles of the same size. This result is 

concerning because it suggests the ranking of policies is highly sensitive to exactly which scenarios are 

included in the scenario ensemble. In future robustness analyses in the Colorado River Basin, we caution 

against using this metric or similar in isolation as the basis for ranking polices. Again, the metric could be 

redefined and/or considered in conjunction with additional metrics. Other studies with similar metrics 

may also find that the ranking of alternatives is highly sensitive to the scenario ensemble used.  

2.5.3 Space-filling metrics as indicators of rank accuracy 

The results show a strong linear relationship between MSTmean and rank correlation. Although 

mindist and MSTsd also achieved strong R2 values, MSTmean was superior for every robustness metric. 

Except for vulnerability.regret, MSTmean was able to explain between 77% and 91% of the variance in 

rank correlation. This is an interesting result because the linear models show that rank correlation 

increases at a similar rate for each robustness metric, between 0.05 and 0.07 per unit decrease in 

MSTmean (again, vulnerability.regret being the exception). If this relationship is generalizable, it could be 

used as a model-free method for planning agencies in the Colorado River Basin to determine the number 

of scenarios required for a robustness analysis. From Figure 2-4, an analyst could determine the required 

MSTmean to achieve a target rank correlation (e.g., 0.975). Then, they would compute MSTmean for a 

candidate ensemble of scenarios – if it is larger than the value pulled from Figure 2-4, then more scenarios 

would be needed. 

There are several limitations to the MSTmean models. First, it is not known if these models are 

accurate for other case studies or if the linear relationship holds for a larger range of sample sizes. We 

tested 50 to 450 scenarios sampled from 500, but would these relationships hold if, for example, 100 

scenarios were sampled from one million scenarios? Moreover, our results are based on subsampling 
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from a larger set of scenarios, not creating new scenario ensembles as done, for example, with Latin 

Hypercube Sampling. However, other studies suggest similar results could be expected so long as the 

ranges, correlations, and probability distributions are consistent in each scenario ensemble (McPhail et 

al., 2020; Reis and Shortridge, 2020, 2021). Nevertheless, our simple linear regression models with 

MSTmean achieved admirable accuracy, demonstrating the potential usefulness of model-free measures 

of scenario ensemble quality to indicate if a given ensemble will yield accurate robustness rankings. Future 

studies could implement our framework with alternative statistical models, such as non-linear regression 

or regression trees. 

2.6 Conclusion 

Planning agencies often acknowledge that their systems are faced with climatic and/or 

socioeconomic uncertainty that cannot be reduced nor easily characterized (Knight, 1921; Kasprzyk et al., 

2013; Kwakkel and Haasnoot, 2019). To combat this uncertainty, they desire to capitalize on exploratory 

modeling methods such as multi-objective optimization, robustness, and vulnerability analyses (Brekke et 

al., 2011; Molina-Perez et al., 2019; Smith, Kasprzyk and Dilling, 2019; Smith et al., 2022). However, such 

analyses are resource intensive, requiring substantial investment in technical skills, time, computational 

resources, and/or external consultation (Means et al., 2010). This burden is compounded by the 

accelerating rate at which such methods are developed (Kasprzyk and Garcia, 2023) and by the recent 

trend of repeating these analyses for several scenario ensembles – as done in this current study, McPhail 

et al. (2020), Quinn et al. (2020), and Reis and Shortridge (2020, 2021). 

In this research, we present a framework for testing the number of scenarios needed to achieve 

similar robustness ranking of policies compared to a larger scenario ensemble. Our framework uses a large 

ensemble of scenarios to evaluate the performance objective values of a set of policies in a simulation 

model, then ranks policies from most to least robust. Then, an observational sampling technique is used 

to create smaller scenario ensembles by subsampling from the larger ensemble. The performance 
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objective values corresponding to the sampled scenarios are then used to reevaluate the ranking of 

policies. By using this subsampling approach, our framework can determine the minimum number of 

scenarios required for robustness rankings to be sufficiently similar to the larger scenario ensemble 

without needing to perform additional model runs.   

We demonstrated our framework with a case study of water shortage policies in the Colorado 

River Basin. We used two common robustness types (satisficing and 90th percentile regret from best) and 

three common performance objectives (reliability, resiliency, and vulnerability) to demonstrate that our 

framework can be easily adopted for other case studies. The results show that 50 to 400 scenarios are 

needed to accurately rank Lake Mead policies compared to a larger ensemble of 500 scenarios, depending 

on the robustness metric. The exception to this finding is the vulnerability.regret metric – only a small 

number of scenario ensembles resulted in accurate policy ranks with this metric, and the ranking was 

highly variable depending on the ensemble used, even comparing ensembles with the same number of 

scenarios. 

Next, we investigated model-free methods to determine if a scenario ensemble will yield accurate 

ranking. Because robustness analyses can be resource intensive, it would be beneficial if there existed a 

method to test if a given scenario ensemble will yield accurate results without performing additional 

computer simulations. Space-filling metrics are potentially useful because they measure the quality of 

scenario ensembles based on distance calculations in the model-input space, meaning no computer 

simulations are required to evaluate them. Using our case study, we built linear models between three 

space-filling metrics and rank accuracy. The results show that the MSTmean metric is a particularly skillful 

indicator of rank accuracy, and that the rate at which rank accuracy improved as a function of MSTmean 

was similar for most robustness metrics. This research suggests that model-free measures of scenario 

ensemble quality may be a practical and skillful tool for determining how many scenarios are needed for 

robustness analyses. 
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We encourage future research to expand on our efforts, analyzing existing sets of scenario 

ensembles and performance objective outputs demonstrated in other studies (Quinn et al., 2018; Gold et 

al., 2019b; Hadjimichael, Quinn, et al., 2020; Jafino and Kwakkel, 2021). Our case study used common 

robustness types and performance objectives, yet the numbers of scenarios required for each robustness 

metric and the regression models are likely to change for case studies with different uncertain factors, 

policy alternatives, simulation models, performance objectives, and robustness types. Because our 

framework subsamples existing model simulations, other studies could test the generalizability of our 

results and build new statistical models for their case study with relatively small computing time. For 

example, the analysis for our case study required 11 minutes of computing time on a laptop computer 

(tested on a Dell Latitude 5501). Future studies could also test additional sampling methods, robustness 

metrics, and different numbers of scenarios; test the number of scenarios needed for vulnerability analysis 

(e.g., (Kwakkel, 2019; Steinmann, Auping and Kwakkel, 2020)); and investigate other model-free methods 

to decrease the computing costs of DMDU analyses.  

2.7 Software and data availability 

All code and data to reproduce this study are available on GitHub: 

https://github.com/nabocrb/Scenario-subsampling-framework. 
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3 Interactive, Multi-metric Robustness Tradeoffs in the Colorado 
River Basin 

3.1 Introduction 

 The Colorado River Basin (CRB) is the preeminent source of water in the southwestern United 

States, serving roughly 40 million people and sustaining an annual economic impact of $1.4 trillion 

(Reclamation, 2012a; James et al., 2014). Since 2000, historic drought conditions amidst relatively stable 

consumptive use has depleted Lake Mead and Lake Powell to roughly 25% of their capacity (Reclamation, 

2023a). Full, these reservoirs hold roughly four times the historical annual streamflow. But, the current, 

low levels pose risks to water supply reliability, hydropower production, environmental health, 

recreational benefits, and more (Reclamation, 2007). To reduce these risks, the Bureau of Reclamation 

(hereafter, Reclamation) has established interim shortage policies whereby releases from the reservoirs 

are cut depending on Lake Mead’s pool elevation (Reclamation, 2007). The current policy expires 

December 31st, 2025, and Reclamation is tasked with creating a new policy that balances the various 

benefits provided by CRB water. 

Post-2026 planning typifies complex water resources management that is confronted with deep 

uncertainty. Deep uncertainty exists when decision-makers do not know or disagree on the probability 

distribution of the uncertain factors that drive system performance (Knight, 1921; Lempert, Popper and 

Bankes, 2003; Kwakkel and Haasnoot, 2019). Water resources systems commonly have deep uncertainties 

in future streamflow conditions and water demand (Kasprzyk et al., 2013; Herman et al., 2015; Smith, 

Kasprzyk and Basdekas, 2018). In the CRB, for instance, the 21st century drought (Salehabadi et al., 2022), 

paleo-reconstructions (Gangopadhyay et al., 2022; Salehabadi et al., 2022), and climate-change 

projections (Lukas and Payton, 2020, chap. 11) suggest future streamflow may be less than 20th century 

observations. However, future projections vary widely, and the CRB exhibits large interannual variability, 

so periods of high streamflow are also possible (Lukas and Payton, 2020, chap. 11). Other uncertain 
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factors, such as demand upstream of Lake Powell, further obfuscate the CRB’s future supply-demand 

balance (Upper Colorado River Commission, 2016).  

Planning under deep uncertainty is further complicated by the presence of many stakeholders 

who often disagree on how to judge the performance of policy alternatives. These disagreements include 

the relative importance of conflicting performance goals (i.e., objectives) (Smith, Kasprzyk and Dilling, 

2019). Moreover, given that the drivers of system performance are deeply uncertain, stakeholders may 

disagree on the appropriate methods to measure performance outcomes and the degree to which policy 

decisions should hedge against uncertainty-related risk (Hadjimichael, Quinn, et al., 2020; McPhail et al., 

2021). 

Several frameworks have been proposed to help identify policies that are robust to deep 

uncertainty (Ben-Haim, 2004; Lempert et al., 2006; Brown et al., 2012; Haasnoot et al., 2013). In this 

research, we implement the Many Objective Robust Decision Making (MORDM) framework (Kasprzyk et 

al., 2013). However, a common element across these frameworks is the explicit consideration of deep 

uncertainty by ‘stress-testing’ policy alternatives under many diverse future scenarios. These frameworks 

seek to identify robust policies, meaning they perform well across the scenarios, as quantified with 

robustness metrics. There exist many robustness metrics, which use various statistical transformations to 

summarize performance outcomes across the scenarios (McPhail et al., 2018). Ideally, robustness metrics 

should allow for rank-ordering to choose policies; in other words, a policy that exhibits the best 

performance with respect to a robustness metric is deemed “most robust” (Herman et al., 2014; 

Alexander, 2018; McPhail et al., 2020).  

A body of research has shown that the  policy deemed most robust often varies depending on 

which robustness metric is used (Herman et al., 2015; McPhail et al., 2020; Reis and Shortridge, 2020). 

McPhail et al (2021) addressed the choice of robustness metrics using a questionnaire to solicit the 

stakeholder’s understanding of the problem (e.g., performance requirements) and decision preferences 
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(e.g., risk tolerance), and then algorithmically recommend robustness metrics based on their statistical 

properties (McPhail et al., 2021). Such mapping of stakeholder preferences to robustness metrics is a form 

of a priori decision making since it is done before alternatives’ performance outcomes are investigated 

(Kasprzyk et al., 2013; Kwakkel and Haasnoot, 2019). Complex human-environmental systems, though, 

can result in  incomplete and inaccurate understanding of how decisions (such as choice of robustness 

metrics, objectives, and/or policies) can lead to undesirable performance/robustness outcomes (Zeleny, 

1989; Roy, 1990; Kasprzyk et al., 2012; Woodruff, Reed and Simpson, 2013; Herman et al., 2014). In other 

words, basing policy decisions on a priori preferences can leave critical tradeoff information undiscovered, 

thus depriving stakeholders of valuable insights that could change what robustness metrics and, 

ultimately, policies they choose.  

Alternatively, a posteriori decision support helps stakeholders choose policies after exploring 

what performance outcomes are possible (Kollat and Reed, 2007; Kasprzyk et al., 2013; Woodruff, Reed 

and Simpson, 2013). These methods use interactive visualization techniques that allow the stakeholder to 

explore performance tradeoffs, learn the relationships between decisions and outcomes, and iteratively 

refine their preferences. A posteriori methods are frequently used to explore tradeoffs between multiple 

objectives, but have seen limited applications for robustness analysis (e.g., Herman et al. (2014, 2015)). 

This research demonstrates a real-world robustness tradeoff analysis for the Colorado River using 

a posteriori decision support. For each performance objective, a broad selection of robustness metrics is 

calculated to reflect varying degrees of risk-tolerance and different methods to summarize performance 

over future scenarios. Then, we provide stakeholders with background information and training to 

interpret what the metrics mean, rather than propose what metrics are most appropriate. We provide 

interactive visualizations for them to explore tradeoffs between robustness metrics and objectives, 

discover relationships between decisions and outcomes, iteratively refine which metrics and objectives 

are important, and remove non-robust policies. Doing so, we introduce several novel tools for a posteriori 
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decision support, namely ‘on-the-fly’ non-dominated robustness sorting and global linking across multiple 

web pages of robustness metric visualizations. Our dynamic and interactive framework requires an 

integrated platform, which we create via a web application (app). The code is open source, and although 

CRB data are included in the app, users can adapt this for their own purposes by changing the app’s 

underlying database. We hypothesize that our framework can reveal salient performance tradeoffs that 

refine which objectives and robustness metrics stakeholders include in their analysis, avoiding undesirable 

and unexpected performance outcomes.  

We test this hypothesis using a case study of Lake Mead shortage policies. Previous research in 

the CRB has used MORDM to generate Lake Mead shortage policies and identify policies that are robust 

with respect to a single type of robustness metric (Alexander, 2018; Bonham, J. Kasprzyk and Zagona, 

2022a; Smith et al., 2022).  This paper will expand on these efforts to demonstrate our novel a posteriori 

framework. 

3.2 Methods 

3.2.1 Many Objective Robust Decision Making 

MORDM consists of four steps (Kasprzyk et al., 2013). First, the decision problem is framed in 

terms of uncertain factors, decision variables, a simulation model, and objectives (Lempert, Popper and 

Bankes, 2003; Lempert et al., 2006). Uncertain factors are exogenous factors outside the control of 

decision makers, such as precipitation or streamflow. Decision variables (DVs) describe the management 

options decision makers can control to achieve their desired system goals. A policy is defined by a set of 

values for the DVs. The simulation model is used to evaluate multiple performance objectives, which 

measure the performance outcomes of a policy given specified values for the uncertain factors.  

After formulating the problem, tens to hundreds of policies are generated using multi-objective 

simulation-optimization (Hadka and Reed, 2013; Maier et al., 2019). In this step, an optimization 

algorithm, is coupled with the simulation model in a loop. The optimization algorithm suggests a new 
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policy, then the simulation model evaluates the performance objectives and returns that information to 

the optimizer that uses it to improve the policy for the next iteration. At this step in MORDM, the model 

is forced with a narrow set of assumptions about uncertain factors, often using historical values (Kasprzyk 

et al., 2013; Alexander, 2018). This loop occurs for thousands of iterations to ‘evolve’ better performing 

policies using techniques inspired by nature (e.g., survival of the fittest, genetic crossover, mutations). The 

output is a set of non-dominated policies. A policy is non-dominated if, when compared to any other 

policy, it is better in at least one objective. The resulting policies exhibit tradeoffs, where improving 

performance in one objective necessitates inferior performance in one or more other objectives. 

After generating the set of non-dominated policies, deep uncertainty is explicitly considered in 

robustness analysis (Herman et al., 2015; McPhail et al., 2018). Each policy is stress-tested in several 

hundred States of the World (SOW), where each SOW is a plausible future realization of the uncertain 

factors. The range of values for the uncertain factors is greatly expanded compared to that used in the 

optimization step, often encompassing the range of values observed in paleo-reconstructions and future 

climate projections (Alexander, 2018; Quinn et al., 2020; Reis and Shortridge, 2020). A policy is robust if 

it performs well across the SOW for specified objectives. Robustness is quantified with one or more 

robustness metrics, which are statistics that summarize a policy’s performance across the SOW. 

Stakeholders use the values of the robustness metrics to choose one or more policies of interest, often-

times via rank ordering (Alexander, 2018; McPhail et al., 2020).  

In the last step of MORDM, one or a small number of robust policies are subject to vulnerability 

analysis (Bryant and Lempert, 2010). Vulnerability occurs when a policy fails stakeholder-defined 

performance thresholds. Vulnerability analysis uses statistical learning to discover the uncertain factors 

that are the strongest predictors of vulnerable outcomes and the corresponding values under which 

vulnerability occurs (Jafino and Kwakkel, 2021). The current study is concerned with how stakeholders 

choose robustness metrics and identify robust policies; we do not perform vulnerability analysis. Instead, 
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the framework presented in this research helps identify a small number of robust policies that would then 

be subject to vulnerability analysis. 

3.2.2 Learning decision preferences by exploring robustness tradeoffs 

There exist many robustness metrics (McPhail et al., 2018, 2020), so a major challenge to finding 

robust policies is determining which metric(s) to use. Metrics include, for example, worst-case 

performance in the SOW ensemble (maximin), regret from best possible performance (regret from best), 

and fraction of SOW for which performance thresholds are satisfied (satisficing) (Herman et al., 2015; 

McPhail et al., 2018). Importantly, the choice of robustness metric is non-trivial because the ranking of 

policies can be sensitive to robustness metric selection (Herman et al., 2014; McPhail et al., 2018; Reis 

and Shortridge, 2020). 

To help stakeholders choose robustness metrics, McPhail et al. (2021) contributed a guidance 

framework that recommends robustness metrics based on the stakeholder’s response to a series of 

questions. Some of the questions include, for example: Does a “meaningful threshold or level of 

performance exist?”, and is it “most important to minimize magnitude of failure, or maximize the number 

of scenarios [i.e., SOW] with acceptable performance?” Overall, the questions solicit the stakeholder’s 

understanding of the decision problem (e.g., performance thresholds) and their decision preferences (e.g., 

risk tolerance).  Then, the framework recommends one or more robustness metrics. For instance, if a 

stakeholder has established performance thresholds and wants to maximize the number of SOW with 

acceptable performance, then the framework suggests the satisficing metric. Alternatively, if a 

stakeholder is highly risk averse, the framework could suggest the maximin metric. In the McPhail et al.  

(2021) framework, the stakeholder’s initial interpretation of the decision problem and decision 

preferences drive the selection of robustness metrics and policies.  

In contrast, others have demonstrated that, in complex environmental systems, decisions made 

on the basis of a priori preferences can result in undesirable tradeoffs and poor robustness in alternative 
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metrics (Zeleny, 1989; Roy, 1990; Kasprzyk et al., 2012; Woodruff, Reed and Simpson, 2013). Instead, 

these studies advocate for a posteriori decision support, wherein the stakeholder’s understanding of the 

problem and their decision preferences are iteratively refined by exploring tradeoffs between multiple 

metrics (Kwakkel and Haasnoot, 2019). For instance, in a workshop with nine water managers, Smith et 

al. (2019) observed that seven managers changed their selection of policies when given tradeoff 

information for four objectives compared to two. Similarly, Herman et al. (2015) showed that the most 

robust alternative according to a regret metric was one of the least robust according to a satisficing metric. 

These studies underscore that stakeholder preferences are contextual, meaning they evolve as 

stakeholders discover what performance tradeoffs exist (Brill et al., 1990; Woodruff, Reed and Simpson, 

2013). Indeed, the McPhail et al. (2021) framework acknowledges that such tradeoffs may exist (see also 

McPhail et al. (2018, 2020)). However, the choice of metric(s) is still determined from the stakeholder’s 

responses to the questionnaire.  

To help stakeholders discover pertinent tradeoffs, this research contributes an a posteriori 

framework for robustness analysis, as shown in Figure 3-1. First, we test policies in many SOW and 

calculate a broad selection of robustness metrics. The metrics reflect varying degrees of risk-avoidance 

and use different methods to summarize performance over the SOW ensemble. We then provide training 

on the robustness metrics and the case-study’s performance objectives. The training material provides 

foundational knowledge and reference material that empowers stakeholders to iteratively explore 

tradeoffs, refine preferences, and choose policies using a dynamic web application, the details of which 

are given below. 
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3.2.3 Linking interactive plots of robustness metrics and decision variables 

Parallel coordinate (PC) plots are a proven tool for exploring tradeoff information (Inselberg, 

2009; Herman et al., 2014; Smith, Kasprzyk and Basdekas, 2018). In a PC plot, objectives are plotted as a 

series of parallel axes, and policies are shown as individual traces crossing the axes at their respective 

performance in each objective. Tradeoffs are shown wherever traces cross between two adjacent axes. 

PC plots are interactive with features like ‘brushing’ (highlighting policies that meet performance goals), 

reordering of axes (to explore tradeoffs between different pairwise-combinations of objectives), and 

‘marking’ (highlighting policies by selecting them in a data table) (Raseman, Jacobson and Kasprzyk, 2019). 

These features enable stakeholders to rapidly select and remove policies. Notably, PC plots were used in 

the aforementioned workshop of water managers, who effectively used them to interpret tradeoffs 

between two to five objectives and choose their preferred policies (Smith, Kasprzyk and Dilling, 2019). 

However, there have been limited applications of PC plots to compare across several different 

types of robustness metrics. In a study of four interconnected water utilities, Herman et al. (2014) 

calculated the satisficing metric for each utility’s respective performance thresholds (resulting in four 

metrics), then used a PC plot to demonstrate tradeoffs between them. In a follow-up study, Herman et al. 

(2015) expanded their tradeoff analysis to consider two versions each of satisficing and regret-based 

Figure 3-1. Overview of  the a posteriori robustness framework proposed in this research. 
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robustness metrics (also a total of four metrics). Building on these studies, this research uses PC plots to 

explore tradeoffs between over 50 robustness metrics, the result of calculating several types of 

robustness metrics for every performance objective. A PC plot with such large number of axes would be 

difficult to interpret due to visual clutter (Raseman, Jacobson and Kasprzyk, 2019). Therefore, we organize 

the robustness metrics using multiple linked PC plots, meaning a stakeholder can select/remove policies 

using one PC plot (corresponding to one type of robustness metric) and their selection is automatically 

shown on the other PC plots. By greatly expanding the number of robustness metrics and objectives, we 

enable the stakeholder to explore what robustness/performance outcomes are possible and refine their 

decision preferences. 

Our framework also capitalizes on previous work that has linked PC plots to plots of DV values 

(Kollat and Reed, 2007; Raseman, Jacobson and Kasprzyk, 2019; Smith, Kasprzyk and Dilling, 2019). In 

these, as stakeholders use PC plots to select policies according to performance outcomes, the DV plot is 

updated to show the corresponding DV values. DV plots can use case-study specific figures to illustrate 

the DV values, such as reservoir operation diagrams (Alexander, 2018; Bonham, J. Kasprzyk and Zagona, 

2022a), or can use generic, high-dimensional figures like PC plots (Smith, Kasprzyk and Dilling, 2019). 

Building on these previous studies, our framework links each PC plot of robustness metrics/objectives to 

a DV plot, helping the stakeholder see what decisions led to specific robustness outcomes.   

3.2.4 A web application for dynamic decision support 

Central to our framework is iterative and rapid exploration. So, in addition to interactive 

visualizations, stakeholders dynamically redefine robustness parameters, such as performance thresholds 

and risk tolerances. After exploring outcomes of their choices, stakeholders can add their preferred 

metrics and objectives to a custom PC plot. To identify policies that perform well with respect to their 

selection, we introduce ‘on-the-fly’ non-dominated robustness sorting, which extends the traditional use 

of non-dominance for optimization problems to user-selected robustness metrics (demonstrated below). 
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Our framework allows for many-iteration and unique robustness analyses. To make each analysis 

reproducible and easily communicated, our framework records which robustness metrics, objectives, and 

filters are used with an activity log, an example of visual analytics provenance (Ragan et al., 2016; 

Chakhchoukh, Boukhelifa and Bezerianos, 2022).  

To accommodate these decision support methods, this research contributes an interactive web 

app with functionality that differs from existing MORDM-related software. The Exploratory Modelling 

Workbench (Kwakkel, 2017), Rhodium (Hadjimichael, Gold, et al., 2020), and OpenMORDM (Hadka, 2015) 

provide functions for established MORDM tasks such as optimization, creating SOW, robustness 

simulations, and vulnerability analysis. In contrast, the focus of our app is interactive visualizations and 

filtering methods necessary for our robustness framework. The RAPID package calculates robustness 

metrics using the guidance given in McPhail et al. (2021),  as described earlier. In contrast, our app 

demonstrates an alternative robustness framework. Lastly, Parasol is a library to create web apps of linked 

PC plots (Raseman, Jacobson and Kasprzyk, 2019). Our software is different first because it is an app that 

demonstrates our novel robustness analysis, not a library to create apps. As such, our app performs 

robustness calculations and non-dominated sorting, features beyond the scope of Parasol. Further, to our 

knowledge, our app is the first demonstration of simultaneously linking multiple pages of PC and DV plots. 

3.3 Case study: shortage operations in the Colorado River Basin 

In this section, we discuss the CRB decision problem used to demonstrate our framework. First, 

we explain how we used simulation-optimization to generate Lake Mead shortage policies. Then, we 

describe the SOW ensemble we used to evaluate those policies under various streamflow and demand 

conditions. From those simulations, we calculate eight types of robustness metrics. Finally, we 

demonstrate how our robustness framework discovers insightful tradeoffs that iteratively refine the 

robustness metrics, objectives, and policies of interest. 
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3.3.1 Multi-objective optimization of Lake Mead policies 

This case study considers shortage operation policies for Lake Mead. In 2007, Reclamation 

established interim guidelines that define pool elevations and corresponding volumes by which deliveries 

to the Lower Basin (LB) would be reduced during times of low reservoirs levels. The guidelines also 

determined how Lake Powell, the primary reservoir for the Upper Basin (UB), would be operated in 

coordination with Lake Mead. These guidelines are intended to balance storage related objectives, such 

as protecting hydropower-related pool elevations, and delivery objectives, such as meeting LB demand. 

After 2007, however, the drought continued, and storage in both reservoirs has continued to decline. So, 

additional delivery reductions were added to the guidelines via a US-Mexico agreement (International 

Boundary and Water Commission, 2012, 2017) and a LB drought contingency plan (Buschatzke et al., 

2019). Together, these policies result in a cumulative delivery reduction volume at Lake Mead. Hereafter, 

we refer to these delivery reductions as a ‘shortage policy’. The current policy expires December 31st, 

2025, thereafter a new policy will take effect. 
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In this research, we created alternative shortage policies using multi-objective simulation-

optimization. Consistent with the current policy, each policy is defined by a vector of DV values for the 

pool elevations at which shortages begin and corresponding shortage volumes. To demonstrate, Figure 

3-2. shows three hypothetical policies, demonstrating how the generated policies can vary in the number 

of shortage tiers, shortage volumes (T1V-T6V), and pool elevations (T1e-T6e). For the optimization, we 

used the Borg evolutionary algorithm (Hadka and Reed, 2013) coupled with the Colorado River Simulation 

System (CRSS). CRSS is a hydro-policy model built in RiverWare (Zagona et al., 2001) that Reclamation uses 

for long-term planning. We used CRSS to evaluate eight objectives that describe performance for the UB 

and LB in terms of water storage and deliveries (Table 3-1). For further details, we refer the reader to 

Alexander (2018). The result of the optimization is 463 shortage policies. 

 

Figure 3-2. Example Lake Mead shortage policies to illustrate the decision 
variables used in optimization. afeet above mean sea level, bthousand acre-feet. 
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Table 3-1: Optimization objectives 

 

3.3.2 Future scenarios of streamflow, demand, and initial reservoir storage 

To calculate robustness metrics, we first reevaluate each shortage policy in many future SOW. For 

this analysis, we used conditioned Latin Hypercube Sampling (Minasny and McBratney, 2006) to select a 

subset of 500 SOW from a larger set, the details of which are given in Bonham et al. (2022a). The uncertain 

factors are streamflow, demand, and initial storage. For streamflow uncertainty, we sample annual 

natural flow at Lees Ferry, Arizona from a combination of historical observations, paleo-reconstructions, 

and CMIP-3 based climate change projections (Reclamation, 2012a). Each SOW assumes a value for 

demand in the UB ranging from 4.2 to 6.0 million acre-feet (MAF), which accounts for both curtailments 

and growth (Upper Colorado River Commission, 2016). Lastly, each SOW assumes initial pool elevations 

at Lake Mead, ranging from 1000 to 1185 feet above mean sea level (ft msl) (16 to 76% capacity), and 

Lake Powell, ranging from 3450 to 3675 ft msl (18 to 85% capacity) (Reclamation, 2011, 2020; Root and 

Jones, 2022).  

3.3.3 Robustness metrics 

Our case study includes eight types of robustness metrics as summarized in Figure 3-3. We 

selected these metrics because they use various methods to summarize performance over the SOW 

ensemble and reflect different degrees of risk-tolerance demonstrated in the literature (Kasprzyk et al., 

 
Objective Units Description 
Upper Basin   

LF.Deficit % Minimize % of time that annual 10 year compact volume falls below 75 MAFa at Lees Ferry 
P.WYR MAFa Minimize cumulative average annual Water Year release from Lake Powell 
P3490 % Minimize % of time that monthly Lake Powell Pool Elevation is less than 3,490' 

Lower Basin   

M1000 % Minimize % of time that monthly Lake Mead Pool Elevation is < 1,000' 
LB.Avg KAFb Minimize the cumulative average annual Lower Basin total shortage volume 
LB.Freq % Minimize the frequency (% of time) that the system is in an annual shortage operation 
LB.Max KAFb Minimize the maximum annual Lower Basin policy shortage volume 
LB.Dur Years Minimize the maximum duration of consecutive years in shortage operation 

amillion acre-feet, bthousand acre-feet 
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2013; Herman et al., 2014, 2015; McPhail et al., 2018, 2021). The left half of Figure 3-3, Description, 

provides conceptual definitions and guidance on interpreting robustness values. The right half, 

Calculation, describes how the metrics are calculated using a taxonomy adapted from McPhail et al. 

(2018). Metrics highlighted with an asterisk require stakeholder-defined parameters (e.g., performance 

thresholds or percentiles), which can be iteratively defined in app. Figure 3-3 is taken directly from the 

CRB robustness app’s For Reference page, which also provides example calculations. Additional details are 

given in the ‘For Reference page’ section below. We use this broad selection of robustness metrics and 

adjustable parameters to facilitate extensive tradeoff exploration. 

 

Figure 3-3. Screenshot from the CRB robustness app summarizing the included robustness metrics with 
example calculations. 
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3.3.4 Example robustness analysis 

Our demonstration of the CRB robustness app occurs in two phases.  The first phase uses a single 

type of robustness metric, satisficing, following a previous study (Alexander, 2018). For a policy to be 

robust in this phase, it must obey M1000 < 10%, P3490 < 5%, and LB.Avg < 600 thousand acre-feet (KAF). 

These thresholds protect critical reservoir levels while maintaining small average shortages. See Table 3-1 

for additional details.  We calculate the satisficing metric for each performance threshold (resulting in 

three metrics), instead of aggregating the performance thresholds into one metric as done in Alexander 

(2018). Then, we explore tradeoffs between the three metrics and use non-dominated sorting to select 

the best performing policies. We use this phase of the analysis to establish a baseline set of policies that 

are robust with respect to predetermined performance thresholds and a single robustness metric type, 

but that might not be robust with respect to additional metrics available in the app. In the demonstration 

below, we call this phase ‘non-dominated sorting with existing performance thresholds’. 

In the second phase, we take the remaining policies from the first-phase and explore tradeoffs 

with additional objectives and robustness metrics. We use multiple pages of linked PC plots to refine our 

robustness preferences and reduce the number of remaining policies based on the tradeoffs we discover. 

We call this phase ‘refining robustness preferences’. The analysis demonstrates the extent to which 

adding different robustness metrics will lead to choosing different policies. 

3.4 Results 

3.4.1 Accessing the app 

To use our app, the stakeholder simply clicks on the following url: 

https://nabocrb.shinyapps.io/CRB-Robustness-App-JWRPM/. The only software requirements are a web 

browser and internet connection. The app is built with the R language (R Core Team, 2022) and depends 

on several open source packages for the graphic user interface (Chang et al., 2022; Sievert et al., 2023), 

interactive visualizations (Sievert et al., 2022; Wickham, Chang, et al., 2023), and data management 

https://nabocrb.shinyapps.io/CRB-Robustness-App-JWRPM/
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(Wickham, François, et al., 2023).  We encourage the interested reader to open the tool and follow along 

with this demonstration. Please note the app will disconnect from the server after 40 minutes of inactivity. 

It will be useful to define several terms and provide a brief overview of the graphic user interface. 

A screenshot of the app is shown in Figure 3-4. We use the term page to refer to the options provided in 

the blue ribbon at the top of Figure 3-4 (e.g., For reference page). The For reference and Optimization 

objectives pages include subpages which are accessed with tabs (e.g., the Mean tab on the Robustness 

metrics page). Lastly, we use the term buttons to refer to actions taken by the stakeholder in the left 

sidebar (e.g., Download button). 

 

Figure 3-4. A screenshot of the CRB robustness app to demonstrate the user interface. 
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3.4.2 Parallel coordinate plots and operation diagrams 

The Optimization objectives, Robustness metrics, and Select your own pages use the same layout 

with PC plots and DV diagrams. In the PC plot (Figure 3-4, top), the left-most vertical axis shows the unique 

ID for each policy, and the other axes correspond to the performance objectives in Table 3-1. Depending 

on which page of the app the user is on, the values shown on the axes correspond to either the 

performance during optimization (Optimization objectives page) or a robustness metric (Robustness 

metrics page). The right-most axis, labelled ‘front’, shows each policy’s non-dominated front with respect 

to the selected robustness metric. A demonstration is given below in the section ‘Phase 1: non-dominated 

sorting’. The axes are oriented such that the best performance is always downward (i.e., the best policy 

would be shown with a straight line across the bottom). The PC plots allow for interactive brushing and 

reordering of axes. The color shows the value of a stakeholder-selected metric or DV (selected with the 

ParCoords color variable button). For instance, blue traces in Figure 3-4, top, indicate policies that are 

robust with respect to the M1000 objective and mean robustness metric, whereas red traces indicate 

poor robustness. 

The PC plot is linked to a plot of Lake Mead policies (Figure 3-4, bottom). The y-axis shows the 

pool elevation at which LB shortages begin (T1e-T6e in Figure 3-2), and the color shows the shortage 

magnitude (T1V-T6V in Figure 3-2). Policies are ranked left to right according to a stakeholder-selected 

objective or DV. For instance, the policies in Figure 3-4 are ranked according to the maximum duration 

the LB experiences shortage conditions (the LB.Dur objective, Table 3-1). The top 20 policies are shown 

by default, and the stakeholder can zoom or scroll to view more. The second y-axis (on the right) and the 

dashed purple line show the magnitude of the selected objective. This axis can be rescaled by clicking and 

dragging along it to improve readability, which was done to produce Figure 3-4. The magnitude is helpful 

for illustrating how similar/dissimilar performance is between ranks.  
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3.4.3 For reference page: foundation for exploration 

Upon opening the app, the stakeholder reviews the For reference page to establish familiarity 

with the objectives and robustness metrics. On this page, the experimental design tab describes the DVs 

and objectives and how we used CRSS to reevaluate policies in 500 SOW. The robustness metrics tab opens 

a pdf that provides background on the definition of robustness and how robustness metrics are calculated. 

The final tab, example calculations, opens a Google Sheet that contains a summary table of the robustness 

metrics and example calculations as shown in Figure 3-3. After reviewing this material, stakeholders 

explore tradeoff information to learn what objectives and robustness metrics are of interest. 

3.4.4 Phase 1: non-dominated sorting with existing performance thresholds  

In this demonstration, we create custom robustness metrics based on the performance thresholds 

described earlier (from Alexander 2018). To insert our performance requirements, we navigate to the 

Robustness metrics page and the satisficing-related tab, and then select the Satisficing calcs dropdown 

button. Under Select objectives(s), we select M1000, P3490, and LB.Avg. Then, we use the slider buttons 

to set the performance thresholds of 10%, 5%, and 600 KAF, respectively. After pressing the Calculate 

button, the PC plot is updated to show the satisficing and satisficing deviation metrics calculated with our 

user-defined performance thresholds. 

Next, we use on-the-fly non-dominated sorting to select policies that perform well with respect 

to our custom satisficing metrics. We describe the process below, and the result is shown in Figure 3-5. 

First, we navigate to the Select your own page and click the select metrics button. We select our satisficing 

metrics by choosing satisficing under the metric 1 type button, then selecting sat.M1000 with the metric 

1: button. We repeat this process to select sat.P3490 and sat.LB.Avg under the auto-created metric 2: and 

metric 3: buttons. After clicking apply selected metrics, our metrics are added to the PC plot. The satisficing 

metrics are labelled with the prefix ‘satisficing.sat’ (e.g., satisficing.sat.M1000). A value of one means the 

performance threshold is satisfied in all SOW, and zero indicates the requirement is never satisfied (see 
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Figure 3-5). Next, we select the Calculate fronts button, which adds an axis to the far right labeled ‘front’. 

A policy belongs to the first front, if it is non-dominated with respect to the three satisficing metrics. To 

select the non-dominated policies, we use a brush filter by clicking and dragging over front=1 (see the 

heavy pink line at 1 on the front axis in Figure 3-5). Note that sat.P3490 is always greater than 0.7, but 

sat.M1000 and sat.LB.Avg are as low as 0.31 and 0.51, respectively. We choose to balance the three 

satisficing metrics, so we use brushing to select policies with at least 0.7 for both sat.M1000 and 

sat.LB.Avg￼We used brush filters in this example, but the stakeholder can manually type thresholds using 

the manual filters button in the left sidebar (Figure 3-4)￼After selecting the save brush filters button, 14 

policies remain. 

 

3.4.5 Phase 2: refining robustness preferences  

Next, we explore tradeoffs of the remaining policies with additional robustness metrics using 

global linking. While on the Select your own page, we select the save filters globally button, which means 

only the remaining policies will be shown on other pages and tabs. For example, we navigate to the 

Figure 3-5. Parallel coordinate plot showing user-created robustness metrics and on-the-fly non-
dominated sorting. 
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Robustness metrics page and maximin tab, which shows the worst performance across all SOW for the 

specified objective (see description Figure 3-3). The resulting PC plot is also shown in Figure 3-6. This 

metric reflects a high level of risk aversion (McPhail et al., 2018, 2021), which is a common preference of 

water providers (Smith, Kasprzyk and Dilling, 2017). Only the 14 remaining policies are shown, but, 

importantly, the range of each axis shows the possible values across all 463 policies. Five policies result in 

severe annual shortages (the LB.Max axis), annotated with the black-dotted oval in Figure 3-6. There 

remain other policies that reduce maximum annual shortages by 1000 KAF or more (seen by the gap 

between the policies within the oval and those below 2500 KAF). To remove the severe-shortage policies, 

we use a brush filter to highlight the policies below 2500 KAF on the LB.Max axis and select save brush 

filters. During this step, we added an additional robustness metric to our initial selection because of the 

tradeoffs we discovered, leaving nine policies remaining.  

 

Figure 3-6. Parallel coordinate plot demonstrating global linking for a posteriori exploration of additional 
robustness metrics. 
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3.4.6 Choosing policies with interactive data-tables 

Next, we select a small number of interesting policies, which could become the focus of 

deliberation or interrogated further in a vulnerability analysis. One way to accomplish this, besides with 

brush or manual filters, is via an interactive data table. To do so, select save filters globally, navigate to 

the Regret from best tab, and select the Table of filtered policies tab. The result is shown in Error! R

eference source not found.. This metric describes the deviation of a policy’s performance from the best 

performing policy, averaged across the SOW (see Figure 3-3). Since public agencies can be criticized when, 

in hindsight, the decision made could have yielded better results, this metric may be of interest to water 

resources agencies (McPhail et al., 2021). Indicated by crossing lines, Error! Reference source not found., t

op, shows that reservoir storage (M1000 and P3490) trades off with average shortage (LB.Avg), and that 

average shortage trades off with frequency of shortage (LB.Freq). As shown in Error! Reference source n

ot found., bottom, we use the interactive data table to select (by clicking on) one policy that prioritizes 

reservoir storage (ID 402), one with low average shortage (ID 364), and two that balance the tradeoffs 

(IDs 256 and 177). The resulting shortage policies (Error! Reference source not found.) can be viewed by s

electing the keep button under table selections: in the left sidebar, then navigating back to Rank of filtered 

policies for selected metric tab. In Error! Reference source not found., the policies are ranked ordered 
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according to the P3490 objective and Regret from best metric, which can be changed with the Metric for 

ranking button in the left sidebar. 

 

3.4.7 Decision provenance for reproducibility and communication  

Since our framework allows for unique, dynamic, and multi-step analyses, it is important that the 

results are reproducible. So, the app uses an activity log to track the objectives/robustness metrics that 

Figure 3-7. The shortage operation diagrams of the chosen policies. 

Figure 3-8. Screenshot showing an interactive data table to choose four policies with interesting 
tradeoffs. 



71 
 

 

filters are applied to and the corresponding filter criteria. The activity log is downloaded as a spreadsheet 

using the Download button at the bottom-left of Figure 3-2. A screenshot of the activity log for this 

demonstration is in Appendix A Figure 3-9.  

It is also important that the results are easily communicated between stakeholders. As such, all 

PC plots and DV plots are downloadable, and several download parameters can be adjusted to fit the 

needs of reports, presentations, etc. Plot settings are accessed with the blue plot options button (to the 

right of the Download button in Figure 3-4). The PC plots are highly adjustable, with settings for color 

palette, title size, label size and angles, image size, and file type. For example, Figures 3-5, 3-6, and 3-8 

were downloaded directly from the app. 

3.5 Discussion and conclusion 

This research demonstrates a robustness tradeoff analysis of Lake Mead shortage policies using 

an interactive web app. In our analysis, we show how a posteriori robustness exploration can reveal 

significant tradeoffs that refine stakeholders’ robustness definitions and rapidly remove non-robust 

policies. We tested if existing performance thresholds and the satisficing metric were sufficient to identify 

robust shortage policies. Using non-dominated robustness sorting and interactive PC plots, we identified 

policies that are robust with respect to the three satisficing metrics. Because performance thresholds 

were already established in previous research (Alexander, 2018), existing robustness frameworks suggest 

that it would be appropriate to choose policies based on the satisficing metric alone (McPhail et al., 2018, 

2021). However, using our framework, we discovered that several remaining policies resulted in very 

severe LB shortages (the maximin metric), roughly 1 MAF larger than the other remaining policies. Had 

we chosen policies based on our initial priorities (the three satisficing metrics), this knowledge would have 

gone undiscovered. Instead, our a posteriori framework challenged and refined our initial preferences, 

and the policies resulting in severe LB shortages were removed. Finally, we demonstrated how other tools 
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in our framework, such as data tables, marking, and activity logs, help stakeholders choose a small number 

of policies and communicate their decision to others. 

We see several opportunities for future research. First, we hope that future studies apply our 

framework to new decision problems. Although the app as presented in this article uses CRB data, it can 

be modified for other studies by changing the underlying database of policies, performance objectives, 

and robustness metrics. We refer the interested reader to our GitHub repository (Bonham, 2023), which 

includes the source code and instructions to download and run the app locally. Building on our robustness 

framework, future research could investigate the effectiveness of interactive web tools for other robust 

decision making techniques, such as vulnerability analysis (Bryant and Lempert, 2010; Hadjimichael, 

Quinn, et al., 2020), adaptation pathways (Haasnoot et al., 2013), and negotiation (Gold et al., 2019b; 

Bonham, J. Kasprzyk and Zagona, 2022a). Our framework uses an activity log to make the robustness 

analysis reproducible and communicable, an example of provenance. Future research could build on this 

effort with recent advances in provenance methods that record what insights were learned during an 

analysis, the rationale behind decisions, and integrate the provenance information into interactive 

visualizations (Ragan et al., 2016; Chakhchoukh, Boukhelifa and Bezerianos, 2022). Such methods could 

improve the efficacy of a posteriori methods for decision support. Given the rise in interactive web apps 

for education (Peñuela, Hutton and Pianosi, 2021) and decision support (Raseman, Jacobson and Kasprzyk, 

2019), future research could use workshops, surveys, and retrospective studies to test their efficacy and 

guide future research questions (Smith, Kasprzyk and Dilling, 2017; Pianosi, Sarrazin and Wagener, 2020). 

Through demonstrating our a posteriori framework, our research opens up further opportunities 

for collaborative MORDM analyses. For example, we used the CRB robustness app in a participatory 

workshop where Reclamation explored robustness metrics, applied the interactive filtering tools, and 

tested the various mechanisms for customizing robustness metrics and PC plots. Building on our 

collaboration, Reclamation is adopting and expanding the CRB robustness app for use in post-2026 



73 
 

 

planning (Smith et al., 2022; Reclamation, 2023c). Reclamation will use the expanded app to communicate 

policy performance, robustness, and vulnerability to solicit preferences from a diverse group of 

stakeholders including water utilities, state agencies, irrigation districts, environmental agencies, Tribal 

leadership, etc.  In parallel with the app development, Reclamation is holding training sessions to ensure 

stakeholders can meaningfully engage with the tools (Reclamation, 2023c). We believe our app and 

Reclamation’s ongoing development are a significant milestone in the adoption of robust decision making 

techniques in collaborative, international water resources management. We encourage future studies to 

develop decision support frameworks and tools in collaboration with end users to improve their efficacy, 

increase likelihood of organizational uptake, and expedite their real-world application (Stanton and 

Roelich, 2021).  

3.6 Appendix A: Activity log of example robustness analysis  

The activity log for the example analysis above is shown in Figure 3-9. The activity log tracks which 

pages, robustness metrics/objectives, and filters were used to arrive at the chosen policies.  

3.7 Data availability statement  

Some or all data, models, or code generated or used during the study are available in a repository 

or online in accordance with funder data retention policies. It can be accessed at the corresponding 

author’s GitHub repository: https://github.com/nabocrb/CRB-robustness-app---JWRPM (Bonham 2023).  

Figure 3-9. Activity log of the robustness analysis performed above. 
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4 Mapping policies to synthesize optimization and robustness results 
for decision-maker compromise 

4.1 Introduction 

 Decision making for coupled human-environmental systems is a paramount challenge of the 21st 

century. Decision-makers (DMs) need to identify policy actions that are simultaneously equitable, balance 

competing objectives, and are robust to future uncertainty (UN General Assembly, 2015; Committee to 

Advise the U.S. Global Change Research Program et al., 2021; IPCC, 2021). Simulation models are often 

used to support DMs by quantifying their system’s key performance outcomes, and elucidating how 

performance outcomes relate to policy decisions and exogenous driving forces of system behavior. 

However, analysts and DMs often disagree on the relationships between the driving forces and 

performance outcomes of their systems. Further, the probability distributions of driving forces are 

unknown, and/or disagreement exists on how to weigh performance outcomes of alternative decision 

actions. Such decision problems are described as deeply uncertain (Lempert, Popper and Bankes, 2003; 

Kwakkel and Haasnoot, 2019). When facing deep uncertainty, implementing a policy can require 

negotiation between DMs, but reaching a compromise can be difficult because of foundational 

disagreements such as divergent framings of the problem (Wheeler et al., 2018; Lempert and Turner, 

2020), different prioritization of performance outcomes (Smith, Kasprzyk and Dilling, 2019), or different 

tolerances of uncertainty-related risk (McPhail et al., 2018, 2021). 

Many-Objective Robust Decision Making (MORDM) is a simulation-based decision support 

framework that helps DMs identify promising policy actions when faced with deep uncertainty (Kasprzyk 

et al., 2013). MORDM has been shown to be effective for various human-environmental systems, with 

applications such as municipal water supply portfolios (Herman et al., 2014, 2015; Gold et al., 2019a), 

irrigation and groundwater sustainability (Li and Kinzelbach, 2020), and reservoir operation policies 

(Alexander, 2018; Quinn et al., 2018). MORDM produces three types of decision-relevant information for 

DMs to consider: decision variable values, objective values, and robustness values (Figure 4-1a). In panel 
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i, a simulation model of the system is coupled with an optimization algorithm to generate a set of many 

policy alternatives. Each policy is defined by a vector of decision variable values (yellow box), and each 

policy has corresponding data on its performance objective values (green box). MORDM then ‘stress-tests’ 

each policy in a robustness analysis (panel ii). At this stage, uncertainty regarding driving forces of the 

system is explicitly considered by simulating each policy in many plausible future States of the World, 

which densely sample the range of plausible future scenarios. Robustness metrics are used to quantify 

how well a policy performs in performance objectives across all the SOW. This produces the third type of 

decision-relevant data (blue box). 

Several challenges hinder DMs from utilizing the decision-relevant information produced from 

MORDM to select one or a small subset of policies for potential implementation. First, interpreting the 

cause-effect relationships between DMs’ actions (i.e. DV values) and performance/robustness tradeoffs 

is non-trivial because the policy set often consists of hundreds of policies characterized by complex 

interactions between decision variables, objectives, and robustness metrics (Miller, 1956; LeCompte, 

1999; Saaty and Ozdemir, 2003; Herman et al., 2014; Alexander, 2018; Quinn et al., 2018; Wheeler et al., 

2018; Smith, Kasprzyk and Dilling, 2019). Moreover, in environmental systems that provide services to 

diverse stakeholders, DMs may struggle to use all this data to overcome foundational disagreements, such 

as different framings of the decision problem (Wheeler et al., 2018; Lempert and Turner, 2020), different 

weighing of performance objectives (Smith, Kasprzyk and Dilling, 2019), or different risk tolerances 

towards uncertain future conditions (McPhail et al., 2018, 2021; Hadjimichael, Quinn, et al., 2020).  

Multiple studies in the engineering design domain have highlighted the Self-Organizing Map 

(SOM) as a promising machine learning algorithm to alleviate the cognitive burden faced by DMs 

(Obayashi and Sasaki, 2003; Koishi and Shida, 2006; Li, Liao and Coit, 2009; Mosnier, Gillot and Ichchou, 

2013; Zhang et al., 2018). In this research, we uniquely couple the SOM with MORDM, introducing an 

alternative paradigm for how the relationships between decision variables, objectives, and robustness are 
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interpreted. As an analogy, consider Figure 4-1b. Panel i shows four geospatial map layers of Lake Mead, 

located just east of Las Vegas, Nevada. Each layer shows a different type of data (satellite imagery, 

hydrologic drainage network, administrative boundaries, and major road network), but, importantly, the 

data is organized by latitude and longitude. In other words, every coordinate pair has multiple layers of 

corresponding data types. Moreover, the geographic arrangement of map layers helps explain the 

relationships between data layers. For example, as you move westward from Lake Mead (leftward on the 

longitude axis), the number of administrative units and major roads increases, which is because you are 

moving away from Lake Mead and into downtown Las Vegas. The SOM creates analogous means for 

interpreting the MORDM data as multiple data layers organized by a two-dimensional coordinate system. 

The SOM learns the many-dimensional patterns of the policy set, groups and arranges policies into a two-

dimensional coordinate system, and establishes a map-like visualization for elucidating the relationships 

between decision variables, objectives, and robustness. In this paper, we refer to performance objective 

values, decision variable values, and robustness values as ‘layers’ in accordance with this paradigm.  
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Our review of the SOM literature has shown two critical research gaps as it pertains to MORDM 

and decision support applications (Obayashi and Sasaki, 2003; Koishi and Shida, 2006; Li, Liao and Coit, 

2009; Mosnier, Gillot and Ichchou, 2013; Zhang et al., 2018). First, SOM applications have not considered 

robustness, a critical component of MORDM, instead being limited to the decision variable and 

Figure 4-1: An overview of the MORDM data layer paradigm presented in this paper. a) The MORDM 
framework outputs decision variable data and performance objectives data from simulation-assisted 
optimization, which generates many policy alternatives (panel i). Then, robustness analysis is performed, 
which is where all P policies are simulated in S States of the World, which are plausible future scenarios 
used to test the performance of policies in various realizations of exogenous uncertainty. Robustness 
metrics quantify how well a policy performs in a given objective across the States of the World, which 
results in the third decision-relevant data type, robustness data (panel ii). b) This research uses the Self-
Organizing Map (SOM) as a MORDM post-processing tool to help DMs visualize and navigate large sets of 
policies while considering objective values, decision variable values, and robustness values in their 
decision processes, creating an alternative paradigm where each data type is considered its own layer, 
and the layers are arranged according to a map-like coordinate system. We use panel i to explain this 
paradigm with an analogy to the geospatial sciences. Geospatial data is organized according to a latitude 
and longitude coordinate pair and by layers, where each layer is a collection of data of the same type. For 
example, satellite imagery, drainage network information, administrative boundaries, and road network 
information are each a different map layer, and the data within each layer are arranged spatially according 
to latitude and longitude. This research uses the SOM to organize, visualize, and navigate MORDM-derived 
data as MORDM data layers (panel ii). We use the SOM to discover the topological patterns exhibited by 
objective values, decision variable values, and robustness values, then arrange each layer according to a 
two-dimensional, map-like coordinate system. 
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performance objective layers. Second, SOM applications have been implemented in the context of a single 

analyst, design team, or organization gaining important system understanding or selecting an engineering 

design. Such applications are fundamentally different than the policy or management decisions in an 

environmental system, where the problem is often characterized by negotiation between multiple local, 

state, or federal governments, NGOs, landowners, and various other interest groups (Reclamation, 2007, 

2012a; Wheeler et al., 2018; Molina-Perez et al., 2019). To our knowledge, the SOM has not been 

implemented in such a negotiation context. 

Building on previous SOM applications, this paper introduces post-MORDM, a framework that 

assists DMs and analysts interpret, visualize, and negotiate large sets of policies. Post-MORDM augments 

MORDM by using the SOM to a) elucidate the relationships between decision variables, objectives, and 

robustness, b) reduce the number of alternatives DMs need to consider, and c) establish a visual, 

structured platform whereby DMs with divergent performance priorities and risk tolerances are assisted 

in a process of negotiation towards compromise policies. Post-MORDM contributes to the SOM literature 

by expanding layer visualization to robustness, and demonstrating how the construction and utilization of 

the SOM can be implemented in negotiation contexts for human-environmental systems. 

The remainder of the paper is organized as follows: Section 4.2 provides background on MORDM, 

then motivates our use of the SOM with a review of machine learning algorithms that have been used to 

post-process MORDM data. Section 4.3 describes the SOM algorithm and its fundamental benefits before 

outlining the post-MORDM framework. Section 4.4 demonstrates post-MORDM in a case study of 

reservoir operation policies in the Colorado River Basin, USA. The discussion and conclusion follow in 

Sections 4.5-4.6. 
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4.2 Background and motivation 

4.2.1 Many Objective Robust Decision Making (MORDM) 

Many-Objective Robust Decision-Making (MORDM) is a simulation-assisted decision-support 

framework that helps DMs identify promising policies when faced with deep uncertainty (Kasprzyk et al., 

2013). The framework consists of four steps – problem formulation, policy generation, robustness 

analysis, and scenario discovery. This section describes the steps and how they result in three MORDM 

data layers – decision variable values, objective values, and robustness values. MORDM is broadly 

applicable to policy analysis and environmental problems. For clarity, the examples we provide in this 

section focus on a specific familiar human-environmental system, namely a river system managed by 

water storage reservoirs. 

First, problem formulation defines the scope of the decision problem in terms of decision 

variables, performance objectives, and driving forces characterized by exogenous uncertainties (Lempert, 

Popper and Bankes, 2003; Lempert and Collins, 2007; Kasprzyk et al., 2013). Exogenous uncertainties are 

factors outside the explicit control of the DMs, like hydroclimatic factors (e.g. temperature, precipitation, 

runoff) and socioeconomic factors (e.g. water demand, irrigation efficiency). Uncertainty is characterized 

using what-if scenarios called States of the World (SOW). Each SOW is a multivariate sample of the 

uncertainty factors, and an ensemble of SOW is created to extensively sample each factor’s plausible 

bounds. Decision variables (DVs), x = x1, x2, …, xL, represent policy actions where x can be continuous (e.g. 

volume of water to release from a reservoir at a given time step) or discrete (e.g. augment water supply 

by either expanding a reservoir, building a desalination plant, or purchasing water rights). Performance 

objectives, f = f1, f2, … , fM, are metrics that quantify how well the system performs, such as reliability of 

meeting water demands or average hydropower production. For each policy and SOW, a simulation model 

calculates the values of the performance objectives. 
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After problem formulation, policy generation is performed using multi-objective simulation-based 

optimization, commonly using Multi-Objective Evolutionary Algorithms (MOEAs). The MOEA is coupled 

with the simulation model in a loop where the MOEA generates policies, and the model evaluates 

performance objectives. In this paper, we use the term ‘policies’ to refer to MOEA solutions, i.e., vectors 

of DV values (Giuliani et al., 2014). At this stage in MORDM, a small number of SOW is used to force the 

simulations and calculate performance objective values, often using SOW that reflect values of uncertain 

factors observed in the historical record (Kasprzyk et al., 2013; Alexander, 2018). The MOEA creates new 

policies over thousands of iterations of the simulation-optimization loop, using operators inspired by 

concepts of evolutionary theory like genetic crossover, random mutations, and ‘survival of the fittest’ 

(Hadka and Reed, 2013; Maier et al., 2019). The output of the MOEA is a set of non-dominated policies. 

Policy a dominates policy b if the performance of policy a is equal to or better than the performance of b 

in all objectives while being better than the performance of b in at least one objective. In the resulting 

policy set, no policy dominates any other policy, i.e., they are non-dominated.  In effect, the policies exhibit 

performance tradeoffs, where improving performance in one objective necessitates inferior performance 

in one or more other objectives. As a result of the policy generation step, each policy has two 

corresponding MORDM data layers – objective values and DV values. 

DMs use interactive visualizations to explore tradeoffs and interpret the relationships between 

DV and objective layers. Visualization types include glyph plots (Kollat and Reed, 2007; Kasprzyk et al., 

2013) and parallel axis (PA) plots (Inselberg, 2009), which are commonly used because of the relative ease 

with which greater than three dimensions are visualized. Using PA plots, DMs apply their preferences by 

changing the order of the axes, filtering policies that meet performance goals, and clustering policies with 

similar DV and/or objective values (Inselberg, 2009; Raseman, Jacobson and Kasprzyk, 2019). To elucidate 

the relationships between objective and DV layers, previous studies have ‘linked’ a PA plot of objectives 

to a PA plot of DVs (Smith, Kasprzyk and Basdekas, 2018; Raseman, Jacobson and Kasprzyk, 2019; Li and 
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Kinzelbach, 2020; Raseman et al., 2020). For example, Smith et al. hosted a workshop with Colorado water 

managers to query how MOEA results could improve decision-making in their respective agencies (2019). 

Participants identified policies of interest according to performance objective preferences in one plot, and 

the corresponding DV values were highlighted in another ‘linked’ plot, demonstrating the types of actions 

needed to achieve their performance preferences. 

The objectives layer is calculated using a small number of SOW. Although policies are non-

dominated with respect to the objectives layer, it is possible their performance deteriorates when the 

assumptions about deeply uncertain factors are incorrect. Therefore, policy generation is followed by 

robustness analysis, where policy alternatives are ‘stress-tested’ by simulating them in the ensemble of 

SOW defined in the problem formulation step. Robustness is the degree to which a policy’s performance 

is insensitive to this broad sampling of SOW (Kasprzyk et al., 2013; Herman et al., 2015; McPhail et al., 

2018). Performance sensitivity is quantified with robustness metrics, which are statistics that describe 

how well a policy performs across its distribution of performance for specified objectives in the SOW 

ensemble. Robustness metric values define the third MORDM data layer.  

There exist different robustness metrics, which use varying transformations and statistical 

calculations across the sampled SOW (McPhail et al., 2018, 2021). These different robustness metrics 

reflect differing prioritization of objectives, minimum performance thresholds, and risk tolerances of DMs 

(McPhail et al., 2018, 2021; Quinn et al., 2018; Gold et al., 2019a; Hadjimichael, Quinn, et al., 2020). 

Examples of robustness metrics include the expected value of performance (Laplace’s Principle of 

Insufficient Reason), regret from best possible performance (regret from best), the ‘worst-case’ 

performance (maximin), or the fraction of SOW where a DMs expressed performance criteria are achieved 

(satisficing) (McPhail et al., 2018). The previously described interactive visualization techniques can also 

be used to explore the tradeoffs between different robustness metrics and their relationships to DVs 

(Giuliani et al., 2014; Herman et al., 2015; Cohen and Herman, 2021). Notably, in a study of four connected 
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water utilities, Herman et al. demonstrate how a different policy is the most robust for each utility because 

they each define robustness based on their respective performance criteria. In other words, there exists 

“interutility robustness tradeoffs”, and settling on a single policy would require the utilities to negotiate 

and compromise (2014). This example underscores the challenge of selecting a policy in a system 

characterized by deep uncertainty and multiple DMs, plus the potential benefits of a structured 

negotiation platform that facilitates negotiation and compromise. 

In the last step of MORDM, policies are interrogated further via Scenario Discovery. Scenario 

Discovery is a type of vulnerability analysis, where vulnerability is defined by the violation of DM-defined 

performance criteria. Scenario Discovery identifies the uncertainty factors sampled in the SOW ensemble 

that are the best predictors of when a policy will be vulnerable, and the corresponding values of the 

factors in which vulnerability occurs. Traditionally, Scenario Discovery is performed on a small subset of 

policies selected based on the results of policy generation and robustness analysis (Kasprzyk et al., 2013; 

Giuliani et al., 2014; Quinn et al., 2018). In this paper, we focus on using MORDM data layers – objective, 

DV, and robustness values – to identify a small subset of policies. These policies would subsequently be 

input to a separate Scenario Discovery process and/or real-world implementation; the workflow in this 

paper does not include Scenario Discovery. 

4.2.2 Challenges and gaps to MORDM decision support 

In the selection of policies using MORDM techniques, DMs will want to consider the DV, objective, 

and robustness layers. However, several challenges arise when using MORDM data layers to select 

policies. For instance, the quantity of policy alternatives and the dimensionality of MORDM data layers 

exceeds average human processing limitations. We use ‘dimension’ to mean the numbers of DVs, 

objectives, and robustness metrics in each MORDM data layer. For example, published applications of 

MORDM have exhibited hundreds of policies (Herman et al., 2014; Zeff et al., 2014; Quinn et al., 2018; 

Wheeler et al., 2018), less than five to over 100 DVs (Herman et al., 2014; Quinn et al., 2018), three to 
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eight objectives (Alexander, 2018; Quinn et al., 2018; Wheeler et al., 2018), and one to four or more 

robustness metrics (Herman et al., 2014). However, studies suggest that fewer than three to a maximum 

of nine alternatives be ideally examined at one time (Miller, 1956; Brill, Chang and Hopkins, 1982; 

LeCompte, 1999; Saaty and Ozdemir, 2003). Moreover, in the context of negotiation between DMs, large 

quantities of information can have negative consequences by increasing egocentric interpretations of 

what constitutes a fair resolution, thus increasing the time needed to identify a compromise policy 

(Thompson and Loewenstein, 1992; Tsay and Bazerman, 2009). These studies highlight the cognitive 

burden DMs face when selecting policies from large, many-dimensional policy sets. 

Selecting policies also requires DMs to understand the cause-effect relationships between their 

actions (i.e., DV values) and the performance/robustness tradeoffs of the system. However, when the 

policy set is very large and/or the relationships between MORDM data layers is complex, elucidating such 

relationships is non-trivial. Although interactive visualization methods like PA plots can be effective for 

linking DV values to objective values for one or a small subset of policies, it remains a challenge to 

synthesize the relationships across the entire policy set because of the large number of dimensions in 

each MORDM data layer; complex and non-linear interactions within the system (Smith, Kasprzyk and 

Basdekas, 2018; Hadjimichael, Gold, et al., 2020); noisy or low-signal DVs, objectives, or robustness 

metrics (Smith, Kasprzyk and Rajagopalan, 2019); and surprising effects of challenging SOW on robustness 

values. Indeed, the participants in Smith et al. described that training personnel in their respective 

organizations to understand MOEA results and communicating them to DMs remains a challenge, and the 

study concluded that “structured information about the relationships between decision levers [variables] 

and performance [objectives] would be beneficial for interpreting tradeoffs (2019).” This study 

demonstrated the difficulty of synthesizing relationships between DV and objective layers; moreover, the 

addition of the robustness layer, which potentially includes multiple definitions of robustness, would likely 

exacerbate this challenge.  
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Another challenge to selecting policies is that DMs and stakeholders involved in environmental 

decision problems may have foundational disagreements that are not easily overcome by only exploring 

the objective, DV, and robustness layers. As described in the previous section, DMs may hold conflicting 

prioritization of objectives, which, combined with different degrees of risk tolerance, can result in 

different definitions of robustness. Further, DMs may not agree on a single problem formulation, instead 

using multiple problem formulations that reflect their respective world views (Quinn et al., 2017; Wheeler 

et al., 2018; Lempert and Turner, 2020). For DMs with foundational disagreements to identify compromise 

policies, MORDM data layers need to be presented to DMs in such a way that facilitates discussion, 

negotiation, and compromise.  

4.2.3 Clustering and dimension-reduction methods with MORDM 

Previous studies have reduced the number of alternatives DMs need to consider and improved 

the interpretability of MOEA-derived objectives and DV layers via two classes of statistical techniques – 

namely clustering and dimension reduction. Clustering is a method to group data such that data within a 

cluster are similar and data in different clusters are more dissimilar (Hastie, Tibshirani and Friedman, 2009, 

chap. 14.3). Clustering has previously been used to group policies with similar DV and/or objective values 

(Kansara, Parashar and Xue, 2015; Raseman et al., 2020). In this approach, DMs consider a small number 

of clusters rather than hundreds of individual policies, which can help reduce the cognitive load faced by 

DMs to be within the range of practical human processing limitations discussed in the previous section. 

For example, Raseman et al. group MOEA-derived water treatment plant policies using k-means 

clustering, summarizing the DV and objective layers with three clusters and a representative policy from 

each (2020). Although clustering techniques can reduce the number of alternatives DMs consider, it does 

not elucidate the interactions between objectives or the relationship between objectives and DVs. 

Further, to our knowledge, clustering applications have not considered robustness. 



86 
 

 

To elucidate the interactions between objectives and DVs, clustering can be complemented with 

dimension reduction methods. Dimension reduction is the process of either selecting a subset of the most 

important features of a data set (feature selection) or creating a low-dimensional representation of the 

data by linear or non-linear combinations of features (feature extraction) (Khalid, Khalil and Nasreen, 

2014; Hira and Gillies, 2015; Ghojogh et al., 2019). In both cases, the goal of dimension reduction is to 

‘simplify’ a dataset meanwhile preserving the information contained within it by removing or combining 

noisy, redundant, or irrelevant features. In MOEA applications, dimension reduction methods have helped 

DMs relate DV values to objective outcomes. For example, Smith et al. perform feature selection via 

multivariate regression trees to identify the DVs that are most influential on objectives, meanwhile using 

a tree-based visualization to intuitively guide decision-makers towards DV values that achieve their 

desired objective outcomes (2019). Kansara et al. utilize principal component analysis, a feature extraction 

method, to reduce 12 objectives into a two-dimensional summary that highlights the most important 

objectives and the correlation structures between them (2015). Dimension reduction also helps reduce 

the cognitive burden faced by DMs; instead of interpreting the relationships between many DVs and 

objectives, the relationships can be synthesized in a low-dimensional summary that captures the most 

decision-relevant information. These studies demonstrate the benefits of clustering and dimension 

reduction techniques to enhance decision-support efficacy with DV and objective layers, and they 

motivate similar techniques to be expanded to the robustness layer. 

4.2.4 Motivation for Self-Organizing Maps in post-MORDM 

In summary, MORDM-based decision support for environmental systems is characterized by many 

policies; three multi-dimensional data layers – DVs, objectives, and robustness; and negotiation between 

DMs to overcome foundational disagreements.  Previous studies have demonstrated the utility of 

clustering and dimension reduction techniques applied to DV and objective layers, revealing two research 

gaps for this study. First, the robustness layer should also be considered in clustering and dimension 
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reduction applications. Second, decision-support via MORDM data layers also needs to address the 

foundational disagreements between DMs described above, providing a structured, visual, and easily-

interpretable methodology that encourages the discussion and negotiation needed to identify 

compromise policies.  

To address these gaps, we introduce the post-MORDM framework, which augments MORDM via 

a novel implementation of the Self-Organizing Maps (SOM). The SOM is a type of artificial neural network 

wherein the neurons learn the cluster structure and feature space patterns of a multivariate data set 

(Kohonen, 1982). We apply the SOM to MORDM data layers, providing the benefits of policy clustering 

and dimension reduction in a single algorithm (Kohonen, 1990; Clark, Sisson and Sharma, 2020). 

Moreover, the SOM enables DMs to simultaneously visualize DV, objective, and robustness layers with an 

intuitive, map-like visualization of the relationships within and between each layer. 

The post-MORDM framework builds on previous SOM applications by expanding to robustness, a 

decision-relevant data layer for human-environmental systems. Previous studies in the mechanical 

engineering domain have trained a SOM on an MOEA objectives layer, then used the resulting SOM to 

visualize the inverse relationship to the DV layer. Example design problems include aircraft wings 

(Obayashi and Sasaki, 2003), automotive tires (Koishi and Shida, 2006; Mosnier, Gillot and Ichchou, 2013), 

and switched reluctance machines (Zhang et al., 2018). In contrast, environmental decision problems 

often consider objectives, DVs, and robustness because they are characterized by deeply uncertain hydro-

climatic and socioeconomic factors (Herman et al., 2014, 2015; Quinn et al., 2018; Gold et al., 2019a; Li 

and Kinzelbach, 2020). Therefore, we build on these previous MOEA-SOM studies by expanding the SOM 

to the robustness layer.  

Further, the post-MORDM framework implements the SOM to guide DMs through a process of 

policy negotiation and compromise. In the published MOEA-SOM studies, the purpose has been to 

support a single analyst or organization in the choice of a design. Conversely, environmental decision 
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problems often involve multiple DMs who reflect the interests of local, state, or federal government, 

environmental NGOs, and various other interest groups (Reclamation, 2007, 2012a; Wheeler et al., 2018; 

Molina-Perez et al., 2019). The post-MORDM framework uniquely implements the SOM as a discussion 

and negotiation platform for multiple DMs, using the SOM to navigate to compromise policies. 

Moreover, we desire the SOM to reduce the number of alternatives that DMs consider from 

several hundred policies to a reasonably small number of neurons. In this context, a neuron is a model 

that represents one or more policies, similar to a cluster. The size of the SOM, i.e. the number of neurons, 

is determined by the user. Previous SOM applications have used a SOM with several hundred neurons, 

which is often determined by heuristics that calculate the number of neurons given the sample size of the 

user’s data set (Kohonen, 2001, chap. 3; Obayashi and Sasaki, 2003; Koishi and Shida, 2006; Mosnier, Gillot 

and Ichchou, 2013; Clark, Sisson and Sharma, 2020). In contrast, the post-MORDM framework uses the 

smallest SOM possible to adequately represent the cluster structure of MORDM data layers (see Section 

4.3.1.1). The result is a SOM that summarizes hundreds of MOEA policies with a relatively small number 

of neurons to reduce the cognitive burden faced by DMs.  

4.3 Self-Organizing Maps and the post-MORDM framework 

This section is organized as follows. We define the SOM algorithm in Section 4.3.1, then describe 

the essential attributes of SOM via an example with DV and objective layers. We describe the post-

MORDM framework in Sections 4.3.2 – 4.3.5.  

4.3.1 Self-Organizing Maps (SOM) 

A SOM is a type of two-dimensional artificial neural network used for feature extraction, 

clustering, and topologic visualization of multidimensional data sets with many samples or points 

(Kohonen, 1990, 2001, 2013; Clark, Sisson and Sharma, 2020). A SOM consists of an interconnected grid 

of neurons, where a neuron is a prototype data point. Each neuron is defined by a vector of values, one 

value for each feature of the data. Each neuron is parametrized with an integer-based coordinate pair 
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that identifies the location of the neuron within the grid and the topologic, or neighborhood-based, 

relationships between neurons (Kohonen, 2001; Hastie, Tibshirani and Friedman, 2009, chap. 14.4). 

During the training process, the neurons are iteratively updated to better represent the multi-dimensional 

structure of the input data, meanwhile maintaining their topologic relationships to each other within the 

grid. After training, the data points are projected onto the two-dimensional grid, resulting in a topology 

map that visualizes the data’s cluster structure and most salient patterns (Clark, Sisson and Sharma, 2020). 

In this paper, we describe the steps of creating a SOM in two categories: pre-training setup, and the 

neuron update function. 

4.3.1.1 pre-training setup 

Before training a SOM, the user must normalize or scale the features of the input data so that 

differences in their magnitudes and variances do not bias the training process. Next, the length-width 

ratio of the SOM is calculated such that it represents the shape of the data. To accomplish this, the user 

sets the length-width ratio equal to the ratio of the first and second eigenvalues of the data’s correlation 

matrix (Kohonen, 2001; Clark, Sisson and Sharma, 2020). In effect, this process allocates proportionally 

more neurons to the SOM along the direction of the data’s feature space with the most variance.  

After establishing the length-width ratio, the user chooses the total number of neurons and several 

hyperparameter values, both of which requires training multiple SOMs and evaluating quality of fit 

metrics. First, to establish a practical upper and lower limit on the number of neurons to test, the user 

estimates the number of clusters that best represents the intrinsic cluster structure of the input data. This 

process can be performed via the k-means clustering ‘elbow’ method, which requires calculating a cluster 

quality metric, such as the Silhouette or Davies-Bouldin Index, for 1 to kmax k-means clusters. The user 

then identifies k such that larger numbers of clusters exhibit sharply diminishing marginal improvement 

in cluster quality (Hastie, Tibshirani and Friedman, 2009, chap. 14.3; Rendón et al., 2011; Clark, Sisson and 
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Sharma, 2020). The user then tests multiple SOMs of different sizes, ranging from a lower and upper limit 

centered around k, where the limits are based on the computational and time constraints of the user.  

Second, the user sets the hyperparameter values. Hyperparameters include neighborhood radius, 

neighborhood function, distance function, and edge neuron behavior. We describe these 

hyperparameters in Appendix B.1. The user can also decide between a rectangular or hexagonal grid 

structure, but in this study we use a hexagonal topology because they tend to outperform rectangular 

grids both in terms of visualization and quality of fit (Kohonen, 2001; Clark, Sisson and Sharma, 2020). The 

user selects the number of neurons and hyperparameter set based on the tradeoff between two fit 

metrics. Percent of variance explained (PVE) captures the degree to which neuron prototype vectors 

represent the input data. Topographic error (TE) measures the degree to which the mapping of input data 

onto the two-dimensional map preserves the many-dimensional data structure (Clark, Sisson and Sharma, 

2020; Boelaert et al., 2021). For equations and further descriptions of these metrics, see Appendix B.2. 

PVE and TE conflict, where PVE improves and TE worsens with an increasing number of neurons. Thus, 

the user tests multiple SOMs with different map sizes and hyperparameter sets, then makes a selection 

that balances the metrics.  

Once the number of neurons and the hyperparameter values are set, the user initializes the neurons 

by uniformly aligning them along the plane formed by the first and second principal components of the 

data’s feature space. Principal component one (PC1) is the linear projection of the feature space along 

which the data varies the most, and the direction along which the longer edge of the SOM is aligned. 

Principal component two (PC2) is orthogonal (uncorrelated) to PC1, and indicates the second greatest 

mode by which the data varies (Hastie, Tibshirani and Friedman, 2009, chap. 14.5; James et al., 2013, 

chap. 10.2). In this paper, all visualizations of the SOM will be oriented such that PC1 and PC2 are aligned 

with the horizontal and vertical directions, respectively. Because SOM neurons are initialized along PC1 

and PC2, the resulting topology map can be ‘navigated’, interpreting movement along the topology map 
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according to the contributions of each feature to the PCs. For practical guidance on all pre-training steps 

described above, see the code included in Appendix B.5.  

4.3.1.2  SOM update function 

During SOM training, the neurons are iteratively fit to the data points via an update function 

whereby individual neurons compete to ‘win’ data points, and neurons within neighborhoods cooperate 

to win data points. The neighborhood of a neuron is defined to be all neurons within a user-defined 

neighborhood radius, measured in two-dimensional map space. At every iteration, each data point is 

assigned to its best matching unit (BMU), which is the neuron closest to the data point, measured in data 

space, according to a distance function. Neurons compete to be the BMU of each data point, while also 

cooperating with neurons within their neighborhood, via an update function. The update function awards 

neurons and their neighbors by moving them closer to the data points. Effectively, the grid of neurons is 

bent, twisted, and stretched from its original position on the principal component plane to better 

represent the non-linear patterns of the data (Hastie, Tibshirani and Friedman, 2009, chap. 14.4; Clark, 

Sisson and Sharma, 2020).  We employ the batch version of the SOM update function because it converges 

faster than the stepwise recursive function and has no random component (Kohonen, 2013). For further 

information on the batch update function, see Appendix B.1.  

After training iterations are complete, the final step in creating a SOM is assigning the data points 

to their BMU (Clark, Sisson and Sharma, 2020). The assignment of data points to neurons is analogous to 

k-means clustering, where neurons are akin to cluster centroids (Hastie, Tibshirani and Friedman, 2009, 

chap. 13.2; James et al., 2013, chap. 10.3; Raseman et al., 2020). Importantly, SOM neurons are arranged 

based on their similarities because of the neighborhood-based cooperation during training (Clark, Sisson 

and Sharma, 2020). For practical assistance in creating a SOM, several packages are supported in R 

(Wehrens and Kruisselbrink, 2019; Boelaert et al., 2021), Python (Smith, 2021; Vettigli, 2021), and MATLAB 

(Cluster with Self-Organizing Map Neural Network - MATLAB & Simulink, no date). 
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After creating the SOM, the user visualizes it on a topology map, which is created by plotting the 

data onto the SOM’s two-dimensional grid. Within the topology map, neurons close to each other are 

more similar than neurons far apart. Moreover, the most significant data patterns along the horizontal 

and vertical dimensions of the topology map can be interpreted via the relative contribution of features 

to PC1 and PC2 (Clark, Sisson and Sharma, 2020). In the next section, we demonstrate a SOM applied to 

MOEA-derived DV and objective layers. We use the illustration to describe the benefits of the SOM and 

to introduce the plot types used in the post-MORDM framework. 

4.3.1.3 example SOM on MOEA-created policies 

To demonstrate the benefits of the SOM, we provide an example in Figure 4-2. Figure 4-2a shows 

MOEA-derived objective values, symbolized with a PA plot. Each vertical axis is an objective, fi (i = 1, 2, …, 

M, where M is the number of objectives), and each trace corresponds to one policy. Using the SOM, the 

M-dimensional objective space is summarized with a two-dimensional topology map, which we 

demonstrate with Figure 4-2b. In the topology map, each neuron is represented by a radar plot, and each 

axis of the radar plot is an objective. PC1 summarizes the largest variations in objective values and the 

correlation between objectives. For example, moving from left to right in Figure 4-2b, f1 and f3 decrease, 

and f2 and fM increase. From bottom to top, f2 decreases and fM increases slightly. The objectives 

demonstrate greater variance along PC1 compared to PC2, which is determined via their eigenvalues but 

can also be observed visually. For instance, contrast the neuron on the bottom-left to the neuron on the 

bottom-right; the blue surface area is markedly smaller. Then, compare the bottom-left neuron to the 

top-left neuron – the surface area is also smaller, but with relatively less change. Thus, PC1 is allocated 

four neurons compared to three neurons for PC2 to better capture the larger variation of objective values. 
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By utilizing principal component-based dimension reduction, SOM summarizes the most important 

patterns of the objective layer in two dimensions and creates a navigable visualization. 

We use Figure 4-2b to demonstrate the clustering of policies and the intuitive arrangement of 

clusters provided by SOM. Figure 4-2 symbolizes the clustering process via lines connecting part a to 

neurons in part b. Effectively, SOM reduces the number of alternatives a DM would consider from the 

hundreds of MOEA-derived policies to the number of neurons in the SOM. Moreover, neurons close 

together in the topology map are more similar than those far apart. For instance, compare any two 

adjacent neurons in Figure 4-2b. The shape of the blue area is more similar than that of neurons on 

Figure 4-2: An example SOM applied to MOEA data. Subplot (a) symbolizes the objective values of MOEA-
derived policies, where each axis is an objective and each trace corresponds to one policy. Subplot (b) 
shows the trained SOM, where each neuron is visualized as a radar plot and objectives are plotted on each 
axis. Policies are clustered to a neuron, and the objective layer is dimensionally reduced to principal 
components one and 2 (PC1 and PC2). Subplot (c) shows the corresponding decision variable values 
projected onto the trained SOM. Each hexagon is a neuron, and the position of each circle on its axis 
shows the value of DVs. Relationships between decision variables and objectives are elucidated via 
comparison of (c) and the PCs of (b).  
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opposite ends of the map. Effectively, SOM both clusters policies and arranges the clusters based on their 

similarities. 

SOM topology maps are also a powerful tool for synthesizing and visualizing the relationships 

between various data layers. We demonstrate the visualization of a DV layer in Figure 4-2c. Each hexagon 

is one neuron, and within each neuron are DVs. The value of the DV is indicated by the position of the 

circle on its axis. Note that Figure 4-2 b and c are one and the same SOM, meaning the assignment of each 

policy to a neuron and the location of the neurons are the same, but they visualize two different MORDM 

data layers. Therefore, any patterns observed in the objective layer can be related to patterns observed 

in the DV layer. For example, we discussed earlier that f2 decreases top to bottom in Figure 4-2b. In Figure 

4-2c, x2 decreases from top to bottom. Thus, the conclusion is that decreasing the DV x2 results in the 

decrease of objective f2. In the next section, we describe how the post-MORDM expands on previous SOM 

applications to also visualize the robustness layer. 

4.3.2 the post-MORDM framework 

To implement post-MORDM, three data layers are needed: DV values, performance objective 

values, and robustness metric values. Figure 4-3 demonstrates the workflow of post-MORDM, which we 

describe in the following subsections. 
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Figure 4-3: The post-MORDM framework for synthesizing the relationships between decision variables 
(DVs), performance objectives, and robustness, and establishing a negotiation-compromise platform. Top) 
the post-MORDM framework begins by training a SOM on the objective layer of MOEA-derived policies, 
establishing the one and only SOM used in the framework. 1) First, the objective layer is visualized on the 
SOM, called SOMobj, utilizing principal components 1 and 2 (PC1, PC2) to interpret the most prominent 
patterns. 2) Next, the DV layer is projected onto the SOM, called SOMDV, to investigate the inverse 
relationship of performance objectives to decision variables. 3) Post-MORDM augments previous SOM 
applications by then superimposing decision maker-defined robustness metric(s) onto the SOM, 
collectively called SOMrobust. The color of each hexagon shows the robustness value averaged over all 
policies assigned to the neuron, where darker is preferred. Decision makers identify their neuron(s) of 
preference, demonstrated by the green-circles, blue-squares, and pink-arrows for decision makers 1 
through N. 4) Individual robustness preferences are projected onto the SOM, called SOMnegotiation, 
displaying the different robustness preferences on a single platform. Decision makers engage in a 
negotiation process, navigating from their individually identified neurons towards each other. While 
navigating SOMnegotiation, the objective and robustness tradeoffs and changing decision variable values are 
interpreted via SOMobj and its PCs, SOMrobust, and SOMDV. The goal is for decision-makers to identify a 
neuron, or small subset of neurons, that represent mutually-feasible compromise policies. 
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4.3.2.1 Train SOM on performance objective layer 

The first step of post-MORDM is training a SOM on the objective layer of a set of policies. As 

described in Section 4.3.1.1, creating the SOM first requires normalizing or scaling each objective, 

calculating the length-width ratio, determining the number of neurons, setting hyperparameter values, 

initializing the neurons along PC1 and PC2, then implementing the training algorithm. We recommend 

testing multiple SOMs with different sizes and hyperparameter values, then selecting the smallest SOM 

that achieves sufficient PVE and TE. After training, the objective layer is plotted on the SOM. In this paper, 

we denote the MORDM data layer being visualized with a subscript; for example, SOMobj shows the 

topology map of the objective layer (Figure 4-3.1). Each neuron in SOMobj is depicted with a radar plot, 

which we described in Section 4.3.1.3.  

4.3.2.2 Analyze inverse relationships to decision variables 

Next, the DV values for each neuron are visualized via SOMDV, shown in Figure 4-3.2. This 

visualization is the result of training SOM on the objective layer, then projecting the DV layer onto the 

SOM. We use the visual patterns in SOMDV and the principal components of SOMobj to investigate the 

relationships between the objective and DV layers, as discussed earlier in Section 4.2.3.2 with Figure 4-2 

b-c. In Figure 4-3, we summarize each DV with a single value per neuron, which could be the mean or 

median value. However, alternative visualizations that show the DV values of each policy assigned to the 

neuron (see Section 4.4.3.2), or a visualization of their distribution (box plots, violin plots, etc.), can also 

be used.  

4.3.2.3 Superposition robustness metrics 

After establishing SOMobj and SOMDV, the DMs define their robustness metrics of choice. This 

includes the type of robustness metric, such as regret or satisficing, any performance objectives and 

corresponding thresholds, and any considerations of risk tolerances that result in unique definitions of 

robustness (see section 4.2.1). For a review of robustness metrics and guidance on selecting them, we 
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refer the reader to McPhail et al. (2018, 2021). We denote each DM and their robustness definition with 

an index, 1,2, …, N. Because the SOM is trained on the objective layer, not robustness layer, DMs can 

change or modify robustness metrics without needing to retrain the SOM. 

We then superposition each unique robustness metric onto a topology map, shown in Figure 

4-3.3, resulting in N robustness visualizations collectively called SOMrobust. The creation of SOMrobust is 

similar to the visualization of DV with SOMDV; the SOM was trained on the objective layer, after which the 

robustness layer is superpositioned onto it. In Figure 4-3.3, we plot each DM’s robustness value on an 

individual topology map, coloring each hexagon by the robustness value averaged over policies assigned 

to each neuron. In the SOM literature, topology maps that show only one feature are called component 

planes (Clark, Sisson and Sharma, 2020). The relationships between MORDM data layers are explored 

visually and via the PCs of SOMobj. For example, we discussed earlier that, moving from bottom to top, DV 

x2 decreases (Figure 4-3.2), resulting in the decrease of objective f2 (Figure 4-3.1). Now consider SOMrobust. 

Darker neurons represent better robustness values, so when x2 and f2 both decrease, this is related to 

decrease in robustness for DM1, increase in robustness for DM2, and decrease in robustness for DMN. 

In a negotiation context, each DM is presented their unique robustness visualization, which they 

use collectively with SOMobj and SOMDV to identify their preferred neuron(s). In the example illustrated in 

Figure 4-3.3, DMs 1, 2, and N maximize their individual robustness preferences in the lower left, top right, 

and bottom right neurons, respectively. We have highlighted each DM’s preferred neuron with green 

circles, blue squares, and pink arrows, respectively. 

4.3.2.4 Navigate SOM to compromise neurons 

To encourage discussion, negotiation, and compromise, we establish a topology map that is 

shared between the DMs. In Figure 4-3.4, we begin with a colorless topology map, meaning the neurons 

are not colored by robustness values, but the assignment of policies to neurons and the position of 

neurons are the same as SOMobj, SOMDV, and SOMrobust. Then, we project the DMs’ robustness preferences 
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established in Figure 4-3.3 onto the colorless topology map, establishing a shared negotiation platform 

called SOMnegotiation. When the DMs’ preferred neurons are located far apart, this indicates conflicting 

preferences in the weighing of objectives, DVs, and robustness. For example, DM1 prefers the lower left 

neuron, which is characterized by policies with high values of x1 and f3, but, in contrast, DM2 prefers the 

top right neuron, where policies have a small x1 and f3. To negotiate and compromise, DMs navigate from 

their individual preferences towards a neuron between DMs, the tradeoffs of which are interpreted via 

SOMobj and its PCs, SOMDV, and SOMrobust. For instance, the example DMs in Figure 4-3.4 negotiate to a 

neuron that requires each to compromise a similar amount. For DM1, this requires a decrease in objectives 

f1 and f3 (left to right along PC1), decrease in f2, and increase in fM (moving upward along PC1). Considering 

DVs, the compromise neuron implements less of DVs x1 and x2 and more of xL. 

DMs may negotiate to a single neuron of mutual interest, or several neurons of mutual interest. 

In either case, the number of policies under consideration is significantly reduced, and the neurons can 

now be investigated further by analyzing the individual policies within them. In the next section, we 

provide an example with a case study of reservoir operation policy in the Colorado River Basin. 

4.4 Post-MORDM case study: reservoir operation policy in the Colorado River Basin 

4.4.1 Motivation 

The Colorado River Basin (CRB) supplies municipal water for nearly 40 million people in seven US 

states (Basin States), 29 federally recognized tribes, and northern Mexico. The CRB is a significant source 

of hydropower, producing about ten billion kilowatt-hours of electricity annually – enough to power one 

million US households (Reclamation, 2018b; Frequently Asked Questions (FAQs) - U.S. Energy Information 

Administration (EIA), 2020, 2021b). Moreover, CRB surface water is the primary source for the Basin 

States’ agriculture sector, which is responsible for 70% of the CRB’s consumptive use and losses 

(Reclamation, 2018a).  
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The CRB is regulated according to the Law of the River, a compilation of compacts, treaties, federal 

law, and court decisions dating back to 1922 (Reclamation, 2015). Pursuant to the Law of the River, the 

Basin States are divided into the Upper Basin (UB) – Colorado, Wyoming, Utah, and New Mexico – and the 

Lower Basin (LB) – Arizona, Nevada, and California – divided by a streamflow gauge at Lees Ferry, Arizona. 

Each basin is allocated 7.5 million-acre feet (MAF) annually for consumptive use, of which the UB is yet to 

fully utilize. In addition, Mexico is allocated 1.5 MAF, totalling 16.5 MAF basin-wide.  

During the 21st century, persistent drought in the CRB has exacerbated the risk of ‘temporary or 

prolonged interruptions in water supplies’ (Buschatzke et al., 2019). Average annual streamflow has 

dwindled to 72% of the historical average (Lukas and Payton, 2020), and, as of November 2021, system 

reservoirs are filled to only 38% of full capacity (Reclamation, 2021a). Potential consequences of this 

drought include LB shortages, curtailments of UB consumptive use, and critically low reservoir levels, 

which can also diminish hydropower production, recreational services, and environmental benefits 

(Reclamation, 2007). 

 In an effort to minimize these risks, the US Bureau of Reclamation (Reclamation), the Basin States, 

and Mexico have recently legislated multiple shortage operation policies for Lake Mead, the largest 

reservoir in the system. The 2007 Interim Guidelines (Guidelines) defined the pool elevations and 

corresponding volumes by which deliveries to the LB would be reduced during times of low reservoir levels 

(i.e. shortage volumes). Further, the Guidelines dictate how Lake Powell, the upstream reservoir from 

Lake Mead and the second largest in the system, would be operated in coordination with Lake Mead 

(Reclamation, 2007). Three Lake Mead policy alternatives were considered for the Guidelines: two 

alternatives prioritized water delivery and storage, respectively, and the third alternative, which was 

selected, ‘incorporates operational elements’ from both of the other two alternatives (Reclamation, 2007, 

p. 8). After 2007, drought persisted and reservoir levels continued to decline. Therefore, CRB stakeholders 

later augmented shortage volumes established in the Guidelines via Minute 323 between the US and 
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Mexico and the LB Drought Contingency Plan (DCP). Collectively, the Guidelines, Minute 323, and the LB 

DCP establish the cumulative shortage operations in effect at the time of writing this paper (International 

Boundary and Water Commission, 2017; Colorado River Basin Drought Contingency Plans | Bureau of 

Reclamation, 2019). Although these policies differ in terms of whether or not users can ‘recover’ delivery 

reductions when reservoir storage increases, all policies functionally decrease the risk of pool elevations 

at Lakes Mead and Powell declining to critically low levels.  

We provide an overview of the Lake Mead shortage operations in Figure 4-4. The projected pool 

elevation for January 1st of the coming year is shown on the y-axis in feet above mean sea level (msl). The 

pool elevation determines the volume of water by which downstream deliveries are reduced for the 

calendar year (i.e. the shortage volume), as indicated by color. The Guidelines, Minute 323, and the LB 

DCP are ordered chronologically by year of implementation along the x-axis, and the cumulative shortage 

operation is shown on the right. The policies expire December 31st, 2025, thereafter a new policy will take 

effect. 
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In this case study, we contribute to the negotiation of new Lake Mead shortage operations 

beginning in 2026. First, we employ MOEA to identify a set of non-dominated Lake Mead shortage 

operations and quantify objective values. Then, we calculate multiple robustness metrics to reflect the 

conflicting interests of storage and delivery stakeholders. Finally, we use post-MORDM to demonstrate a 

process of learning, negotiation, and compromise between two illustrative DMs. 

Figure 4-4: The current Lake Mead operation policy will expire at the start of 2026, and decision makers 
will need to negotiate a new policy. This figure provides an overview of the policies that sum to the 
current, combined Lake Mead shortage operations, with policies arranged chronologically from left to 
right. The y-axis shows Lake Mead pool elevation in feet above mean seal level (msl) and color shows the 
volume of water subtracted from downstream deliveries in thousand-acre feet (KAF), which we refer to 
as ‘shortage volumes’. The 2007 Interim Guidelines was established first, then Minute 323 between the 
US and Mexico and the Lower Basin Drought Contingency Plan (DCP) took further precautions in an effort 
to avoid critically low pool elevations, resulting in the combined shortage policy in effect until expiration. 
*Shortage volumes under the Minute 323 Binational Water Scarcity Contingency Plan are DCP are 
‘recoverable’ during periods of high pool elevations, unlike the Interim Guidelines or Minute 323 delivery 
reductions; nevertheless, they all contribute to a cumulative shortage volume at the pool elevations 
shown. 
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4.4.2 Implementation of MORDM 

Our MORDM problem formulation is summarized in Table 4-1. We describe the DVs, simulation 

model, and objectives when discussing MOEA-optimization. Next, we describe the sources of uncertainty 

and the methods for creating the SOW ensemble. Then, we define the robustness metrics of two example 

DMs in the CRB before demonstrating post-MORDM. 

 

 
Table 4-1: The Colorado River Basin case-study problem formulation. Decision variables (x), the simulation 
model, and performance objectives (f) are described in section 4.4.2.1. Decision variables (right), include 
6 pool elevations (T1e-T6e) in feet above mean sea level (msl) with 6 corresponding shortage volumes 
(T1V-T6V) measured in thousand-acre feet (KAF).  d1 and d2 determine surplus operations and were 
included in MOEA optimization, but this case study will discuss only shortage operations. The 
characterization and sampling of uncertainty are described in Section 4.4.2.2. 
 

4.4.2.1 Policy alternatives 

We use a policy set adapted from Alexander (2018) provided by Reclamation. Policies were 

generated with the Borg-MOEA (Hadka and Reed, 2013), which was coupled with the Colorado River 

Simulation System (CRSS), a hydro-policy model built in RiverWare that serves as Reclamation’s long-term 

planning model for the CRB (Zagona et al., 2001). The simulation is 44 years long and uses a monthly 

Problem 
formulation 

Description 

Uncertainty Hydrology, demand, initial reservoir pool elevations 

Decision 
variables (x) 

14 variables for operation of Lake Mead. Defines pool elevations at which 
shortage operations occur and the associated shortage volumes (right). 

Simulation 
model 

Colorado River Simulation System 
- Hydro-policy model in RiverWare 
- 44 year simulation 
- Monthly timestep 

Performance 
objectives (f) 

LF.Deficit: percentage of months annual 10yr compact volume falls below 
75 maf 
P.WYR: average annual water year release from Lake Powell 
P3490: percentage of months Lake Powell pool elevation < 3490 ft msl 
M1000: percentage of months Lake Mead pool elevation < 1000 ft msl 
LB.Avg: average annual Lower Basin total shortage volume 
LB.Freq: percent of years Lower Basin is in shortage conditions 
LB.Max: max annual Lower Basin policy shortage volume 
LB.Dur: max consecutive years Lower Basin is in shortage 
(All minimization objectives) 
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timestep, evaluating eight performance objectives. The objectives quantify tradeoffs between UB and LB 

interests and delivery vs. storage objectives. See Table 4-1 for definitions. Borg seeks to minimize the 

objectives by adjusting 14 DV (Table 4-1, right). 12 DVs control shortage operations – of which six define 

the pool elevations where shortage operations begin (T1e – T6e), and six are the corresponding shortage 

volumes subtracted from LB deliveries (T1V – T6V). The remaining two DVs are the elevations at which 

surplus operations begin, but this case study will discuss shortage operations only. The result is a set of 

463 policy alternatives, the objectives and tradeoffs of which are explored via post-MORDM in section 

4.4.3.   

4.4.2.2 Robustness analysis 

4.4.2.2.1 SOW ensemble generation 

Our robustness analysis considers three sources of uncertainty. 1) annual cumulative natural flow 

above Lees Ferry, Arizona, 2) annual consumptive use in the UB, which is sampled for each simulation but 

held constant with respect to time, and 3) initial reservoir pool elevations at Lake Mead and Lake Powell. 

This section describes how we sampled the uncertainty with a 500-member SOW ensemble, the result of 

which is shown in Appendix B.4. 

We considered four hydrology ensembles historically used by Reclamation and thus familiar to 

CRB DMs (Reclamation, 2007, 2012a, 2018a). 1) The Observed Resampled ensemble is the result of the 

Index Sequential Method (ISM) applied to the observed 1906-2007 cumulative natural flow record. 2) The 

Global Climate Model (GCM) ensemble is based on bias corrected and spatially downscaled CMIP3 climate 

projections of future high, medium, and low emission scenarios run through the Variable Infiltration 

Capacity (VIC) model. 3) The Paleo Resampled ensemble applies the ISM method to paleo-reconstructions 

dating 762 to 2005. 4) Lastly, the Paleo Conditioned ensemble uses a non-parametric technique to “blend” 

the wet/dry sequences from the paleo record with magnitudes from the observed record. In sum, there 

are 1963 streamflow traces that describe the envelope of hydrologic uncertainty. Consistent with the 
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philosophy of MORDM, we use the traces to broadly sample the hydrologic uncertainty space as described 

below. For more information on the ensembles, we refer the reader to the 2012 CRB Supply and Demand 

Study (Reclamation, 2012a). 

Next, we created a 1000 sample Latin Hypercube (LH) of annual UB consumptive use, initial pool 

elevation at Lake Mead, and initial pool elevation at Lake Powell. Annual UB consumptive use ranges from 

4.2 to 6.0 MAF, which considers both curtailments and growth. For comparison, in 2016 the Upper 

Colorado River Commission estimated consumptive use at 4.33 MAF and forecasted 5.22 MAF in 2060 

(2016). Initial reservoir levels consider Lakes Mead and Powell because their combined storage accounts 

for about 87% of the entire system (Reclamation, 2021a). Sampling ranges were informed from the 10th 

(low end) and 90th (high end) percentile values from Reclamation’s April 2020 five-year projections, 

rounding the low end down to the nearest 50 feet (Reclamation, 2020). Thus, Powell’s initial pool 

elevation ranges from 3450 to 3675 feet above mean sea level (msl), and Mead ranges from 1000 to 1185 

feet msl. The pool elevation projections end December 2026, accounting for the range of possible pool 

elevations at the expiration of the current operation policy. After creating the LH, we combine every 

sample of pool elevations and UB consumptive use with every hydrology trace to create a large set of 

SOW from which to select a subset for robustness simulations. 

To reduce computational costs, we sample a subset of 500 SOW using conditioned Latin 

Hypercube Sampling (cLHS), which is an extension of Latin Hypercube Sampling (LHS) (Minasny and 

McBratney, 2006). Instead of creating new multivariate samples that form a LH, cLHS employs an 

optimization algorithm to select existing observations that form a LH in the multivariate feature space 

while mimicking the distributional properties of the original population (Minasny and McBratney, 2010; 

Brus, 2019; Roudier, 2020). Practically, cLHS allowed us to use existing hydrology traces (our existing 

‘observations’), select a subset of SOW with minimal repeats of hydrology traces, and preserve the desired 

uncertainty ranges.  



105 
 

 

4.4.2.2.2 Decision-maker robustness metrics 

Our robustness analysis uses two illustrative DMs with conflicting preferences, namely Delivery 

and Storage. Delivery is of greatest concern to the LB since LB allocations are 100% utilized for irrigation, 

municipalities, groundwater recharge and all other uses. The Storage DM reflects hydropower interests 

at Lake Powell and Lake Mead. Moreover, storage is of special concern for shoreline recreational services 

like boat ramps and marinas (Reclamation, 2012a). 

The robustness preferences of Delivery and Storage are both quantified with the satisficing 

metric. Satisficing is the fraction of SOW where a policy satisfies minimum performance thresholds 

defined by the DM. Satisficing ranges from 0 (performance thresholds satisfied in zero SOW) to 1 

(performance thresholds are satisfied in 100% of SOW).  

The performance requirements for Delivery are shown in condition 1: 

- Delivery performance requirements: LB.Avg < 600 KAF and LB.Dur < 10 years 

LB.Avg is the annual shortage volume in the LB, averaged over the simulation. LB.Dur is the maximum 

consecutive years the LB is in shortage conditions (see Table 1). Thus, Delivery’s performance thresholds 

require both acceptable average magnitudes and maximum duration of shortages. The performance 

requirements for Storage are shown in condition 2: 

- Storage performance requirements: M.1000  < 10% and P.3490 < 5% 

M.1000 is the percentage of simulation months where Lake Mead’s pool elevation is below 1000 feet msl, 

and P.3490 is the percentage of simulation months where Lake Powell’s pool elevation is below 3490 feet 

msl. Together, the performance thresholds for Storage require that both Lake Mead and Lake Powell 

consistently stay above critical pool elevations.  

The DMs performance thresholds are used to calculate satisficing for each policy and DM 

according to the equation 
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where S is the total number of SOW, j is a SOW index, x is the decision variable vector for policy p, and gi,j 

is an indicator function. gi,j = 1 if the performance thresholds of DM i (Delivery or Storage) are satisfied in 

SOW j, and gi,j = 0 otherwise.  

4.4.3 Implementation of post-MORDM 

4.4.3.1  Training the SOM on the objective layer 

After normalizing the objectives, we selected the number of neurons and SOM hyperparameter 

values using a grid search of 1000 LH samples. The tested hyperparameters include neighborhood radius, 

neighborhood function, distance function, and edge behavior. The number of neurons in length-width 

directions of the SOM was calculated given the number of total neurons sampled in the LH and the 

calculated ratio of the first and second eigenvalues of the objective layer.  We chose a hexagonal 

neighborhood topology according to the recommendation of Clark et al. (2020). We evaluated the number 

of neurons and each hyperparameter set with PVE and TE. SOM training was performed in R using the 

kohonen package (Wehrens and Buydens, 2007; Wehrens and Kruisselbrink, 2019), and fit metrics were 

calculated using the aweSOM package (Boelaert et al., 2021; R Core Team, 2022). The selected SOM is 5x3 

neurons because larger maps achieved small increases in PVE while smaller ones saw significant decrease 

in PVE, in both cases attaining similar TE. For additional details on the training process, the number of 

neurons to use, and the selection of hyperparameter set, including code, see Appendix B.5.  

Figure 4-5 shows SOMobj, which reveals the two most important modes by which policies vary with 

respect to the objective layer. Within the radar plots, each objective is scaled 0 (center) to 1 (outer edge), 

where 0 is ideal because they are minimization objectives. Every policy is plotted in its assigned neuron, 

using a transparent blue fill to visualize the number of policies and the degree to which their objective 
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values are similar. For example, consider neuron 6 (middle row, far left). These policies result in low 

average and maximum shortages (LB.avg and LB.max) at the expense of frequent, long-duration shortages 

(LB.Freq and LB.Dur). They also perform poorly in water storage reliability at Lakes Powell and Mead 

(M.1000 and P.3490). The black borders around each policy overlay each other almost exactly, indicating 

high similarity among the policies. In contrast, consider neuron 15 (top row, far right).  The policies have 

large average and maximum shortages; however, they perform comparatively well with respect to 

shortage frequency, shortage duration, and reservoir storage. The borders around each policy are easy to 

distinguish from one another, especially for LF.Deficit. This indicates notable variation of performance for 

the policies assigned to neuron 15. For the interested reader, Appendix B.6 reports the average objective 

value in each neuron (i.e, component planes). 

 

Figure 4-5: Using SOMobj to synthesize the most pertinent patterns in the objective layer and cluster similar 
policies. Each neuron is visualized by a radar plot, where the axes show performance objectives scaled 0 
(best) to 1 (worst). Each policy is plotted with a transparent blue fill circumscribed by a solid black line to 
visualize the number of policies per neuron and the degree of similarity between them. Neurons near 
each other in the map exhibit more similar objective values than neurons further apart in the map. SOMobj 
is aligned with the first and second principal components (PC1 and PC2, respectively), for which the 
loading scores are given with bar plots. The height of the bar indicates the degree to which the objective 
contributes to the PC, and the color indicates the direction of change. 
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To facilitate the interpretation of the PCs, we include the loading scores of each objective, shown 

in the bar plots. Loading scores quantify the degree to which each objective contributes to the PC, where 

larger magnitudes mean the objectives contribute more to the change in performance (James et al., 2013, 

chap. 10.2). Green bars indicate decreasing values from left to right (increase in performance), whereas 

gold-dashed bars indicate increasing values (decrease in performance). For example, consider PC1, left to 

right. P.3490, P.WYR, and M.1000 are improving, but LB.Avg and LB.Max are worsening. The other 

objectives have relatively little to no change in the horizontal direction. Moving from bottom to top along 

PC2, LB.Freq and LB.Dur are decreasing, while LB.Max is increasing. In other words, the two most 

significant tradeoffs for the DMs to navigate is first the tradeoff between reservoir storage reliability and 

LB shortage magnitudes (average and maximum) and, second, the tradeoff between shortage 

duration/frequency and maximum magnitude. 

4.4.3.2  Lake Mead operation policies 

After we establish SOMobj, we visualize the inverse relationship to Lake Mead DVs with SOMDV, 

shown in Figure 4-6. Each vertical bar represents a Lake Mead policy, where the y-axis is water surface 

elevation, and the colors show the magnitude of shortage. The number of policies in each neuron is shown 

to the right of the neuron index in parentheses. For neurons with more than 20 policies, 20 policies are 

plotted at random to conserve space. For simplicity, the policies are ordered randomly along the x-axis, 

but could be ordered according to a DV, robustness metric, or objective. To facilitate comparisons 

between neurons and between MORDM data layers, we report the tier 1 elevation (T1e, also indicated by 

the horizontal dashed line, in feet msl) and volume of the first shortage (T1V, KAF), plus maximum 

shortage (maxV, KAF), averaged across all policies in a neuron.  
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Figure 4-6 shows salient patterns in shortage volumes and T1e corresponding to the PCs of SOMobj. 

From left to right, T1V, maxV, and T1e tend to increase. This is shown by the gradient of green-yellow-red 

and the increasing bar height. Comparing to SOMobj in Figure 4-5, the result is improved reliability of 

reservoir storage, the tradeoff being increased average and maximum shortages. From bottom to top, 

T1e tends to decrease, especially to the left side of SOMDV. T1V and maxV also tend to increase. The 

related performance outcome is decreasing frequency and duration of shortages at the expense of 

increasing maximum shortage. Interestingly, T1V and maxV increase both left to right and bottom to top, 

but the frequency and duration of shortages experienced by the LB responds almost exclusively in the 

Figure 4-6: Using SOMDV to visualize the inverse relationship of performance objectives to Lake Mead 
decision variables. Each bar represents a Lake Mead policy, where the y-axis denotes water-surface pool 
elevation and fill color indicates the corresponding shortage volume. In the top left of each neuron we 
report the volume of the first shortage (T1V, KAF), plus maximum shortage (maxV, KAF), averaged across 
all policies in a neuron. T1V and maxV are reported in the format (T1V,maxV). Further, the horizontal 
dashed line shows the average tier 1 pool elevation (t1e), averaged across all policies in the neuron. 
Although the SOM was trained on performance objectives, salient patterns in the decision variable layer 
are discovered. From left to right, shortage volumes increase (green to red gradient) and shortage 
elevations increase (height of bars increases). SOMDV is compared to SOMobj in Figure 4-4 to elucidate the 
relationships between decision variable values and objective performance.  
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vertical direction, as indicated by loading scores of near one for the vertical PC compared to loading scores 

less than 0.25 for the horizontal PC. Considering that T1e tends to increase left to right but decreases 

bottom to top, we conclude that reducing the frequency and duration of LB shortages meanwhile 

achieving reliable reservoir storage requires that larger LB shortages be paired with lower pool elevations. 

This is the difference between neuron 15 and 5; both implement large shortage volumes – an average T1V 

volume of 1825 and 1843 KAF, respectively, but policies in neuron 15 achieve less frequency and duration 

of LB shortages via being more ‘patient’, waiting until lower T1e (1065 vs 1092 ft msl) to implement the 

first shortage. This difference in operation philosophy results in shortage conditions occurring in 12.01% 

less simulation months in neuron 15 compared to 5 (not shown in Figure 4-5, see Appendix B.6).  

4.4.3.3  Decision-maker robustness maps 

Figure 4-7 a-b shows the individual robustness values of the Delivery and Storage DMs, SOMrobust. 

The color and label of each neuron indicates the average satisficing of the policies assigned to each 

neuron, where darker colors are preferred. Clear topologic patterns exist, demonstrating the effectiveness 

of robustness metrics superpositioned on a SOM fit to the objective layer. In this example we present two 

satisficing robustness metrics; moreover, we demonstrate the effectiveness of this method using TE and 

PVE for three additional metrics in Appendix B.7 – B.13.   
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For Delivery, neurons in the top left are the most robust, with satisficing decreasing left to right 

on the top row (decreasing robustness). Comparing to SOMDV in Figure 4-6, the policies that result in the 

best Delivery robustness do so by two operational strategies. First, consider neuron 11. These policies 

implement small shortage volumes (maxV of 650 KAF) at low pool elevations (T1e less than 950 feet in all 

but one policy), draining Lake Mead with minimal storage reliability safeguards. Alternatively, a policy can 

be robust by delicately balancing shortage volume and elevation (neurons 12-14).  These neurons 

implement moderate to severe T1V (1385 to 1720 KAF) at moderately high elevations (T1e from 987 to 

1028 feet msl). Other neurons do not exhibit this balance; for example, consider neurons 1 and 6. These 

policies implement small T1V shortage volumes (196 to 345 KAF) implemented at moderate to high 

Figure 4-7: Using SOMrobust to identify neurons of individual interest and establish a mutual negotiation 
area. Delivery and Storage satisficing metrics are superimposed on the SOM, where the color indicates 
the satisficing value averaged over each policy assigned to the neuron (a-b). The decision makers identify 
their preferred neurons (outlined in blue, defined by performance thresholds satisfied in greater than 70% 
of SOW) and unacceptable neurons (dashed red, less than 50% of SOW). One neuron is located within the 
intersection of the decision makers’ preferred regions (subplot c, purple fill). Further, five adjacent 
neurons lie outside both of the decision makers’ unacceptable regions, establishing a mutually feasible 
area to be investigated in further negotiation (purple outline). 
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elevations (1039 to 1056 feet). These neurons are not robust, likely because the shortage volume is not 

large enough to raise Lake Mead’s pool elevation out of shortage operations, resulting in durations of LB 

shortage exceeding 10 years. Contrast neuron 15 (top right) to neuron 5 (bottom right). Both implement 

large T1V shortage volumes (1825 and 1843 KAF, respectively), but neuron 15 policies wait until lower 

pool elevations to begin shortages (T1e of 1065 vs 1092 feet msl), satisfying Delivery’s performance 

thresholds in 10% more SOW, on average. By exploring the relationships between SOMrobust and SOMDV, 

the Delivery stakeholder can identify policies that achieve this balancing act to satisfy both average 

shortage and shortage duration performance thresholds. 

For Storage, neurons to the far right are the most robust, and satisficing decreases towards the 

left in each row. Considering SOMDV in Figure 4-6, the policies in neurons 5, 10, and 15 have the most 

aggressive shortage operations, implementing large T1V and maxV (1318 to 2182 KAF) at high pool 

elevations (T1e from 1064 to 1092 feet msl). Decreasing robustness is caused by smaller shortage volumes 

beginning at lower pool elevations.  

In a negotiation context, each DM is provided with the topology map showing their unique 

robustness definition, upon which they identify neurons with preferred and unacceptable performance. 

In Figure 4-7, we define preferable performance as greater than 0.70 (blue), unacceptable below 0.5 

(dashed-red), and for neurons from 0.5-0.7 the DMs have weak preferences. Then, we project the 

intersection of their preferences onto a blank topology map, shown in Figure 4-7-c. One neuron presides 

in both DMs preferred areas, shown in solid purple. This is an intuitive neuron for both DMs to investigate 

further. However, the adjacent neurons lie within either the preferred or weak preference areas of both 

DMs, thus we consider these neurons a feasible negotiation space. 

4.4.3.4 Negotiation navigation 

Next, we visualize only the neurons defined to be inside the feasible negotiation space. This 

enables the DMs to investigate further the DV, objective and robustness layers of mutually feasible 
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policies, shown in Figure 4-8. Here, we have replaced the robustness topology maps from Figure 4-7 with 

boxplots, providing information on the spread of robustness in each neuron. Delivery is shown in orange, 

and Storage is shown in blue. We have provided the boxplots of all neurons in Appendix B.14. 
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Neuron 14 mutually intersects both DMs preferred areas; however, additional negotiation can be 

facilitated with Figure 4-8. For example, Delivery may try to negotiate leftward to neuron 13, improving 

Figure 4-8: Decision makers negotiate Lake Mead policies within the mutually feasible area. Only the five 
neurons within the feasible negotiation area are plotted, shown in SOMobj (a), SOMDV (b), and SOMrobust (c).  
We truncated the bar plots in SOMobj (a) to include only objectives with loading scores exceeding 0.25. For 
SOMrobust (c), we have replaced the visualization from Figure 4-6 a-b with boxplots to show the distribution 
of satisficing values. The Delivery and Storage decision makers are shown with orange and blue, 
respectively. Section 4.3.4 describes how the decision makers could use objectives not considered in their 
robustness definitions to negotiate for neurons other than 14, the only neuron within each of their 
preference areas. The effects of negotiation are interpreted via SOMobj and its PCs, SOMDV, and SOMrobust. 
By negotiating the map and selecting a neuron, decision makers greatly reduce the number of policies 
under consideration and identify the characteristics of decision variable values that result in their mutually 
agreed upon performance and robustness tradeoffs. 
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their satisficing score and avoiding comparative disadvantage to Storage (Blount and Bazerman, 1996; 

Tsay and Bazerman, 2009). In this neuron, shortage volumes are smaller and implemented at lower pool 

elevations. Contrarily, Storage may negotiate to neuron 15 to increase robustness, meaning that pool 

elevations and shortage volumes would increase. 

The map-based visualization of multiple MORDM data layers, such as demonstrated in Figure 4-8, 

can also help DMs overcome cognitive myopia in a negotiation context. Cognitive myopia can occur when 

the expressed interests of a DM, such as their definition of robustness or weighing of objectives, limits the 

exploration of mutually feasible policy alternatives (Kasprzyk et al., 2013; Giuliani et al., 2014). For 

example, when considering only robustness, it does not appear that either DM would individually desire 

moving downward to neurons 9 or 10 because moving horizontally yields the greatest individual increases 

in satisficing. However, the consideration of objective and DV layers reveals other reasons these neurons 

may be of interest. For instance, LB.max is improved by moving downward to neurons 9 and 10. Perhaps 

the satisficing performance thresholds on LB.Avg and LB.Dur reflect Delivery’s highest and most well-

defined priorities, but other findings like this could make these neurons interesting. If so, Delivery may 

negotiate to neuron 10, which implements smaller shortage volumes at higher elevations. Storage may 

accept neuron 10 because their satisficing value is mostly unaffected. By simultaneously visualizing 

multiple MORDM data layers via topology maps, DMs are encouraged to explore policy alternatives they 

might not otherwise, which can help DMs negotiate to a compromise policy. 

4.4.4 Robust shortage policies vs existing Lake Mead operations 

The combined Lake Mead shortage operation (Figure 4-4) does not resemble the neurons within 

the feasible negotiation space of Delivery and Storage (Figure 4-7). This section describes how post-

MORDM can explore the potential reasons why and the consequences thereof.  

Compared to the feasible neurons, the combined operation implements T1e at too high of an 

elevation with too small of a T1V. Further, maxV of the combined operation is small in comparison to the 
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feasible neurons, except neuron 9. Notably, the combined operation resembles neuron 9 if the combined 

operation’s shortage volumes of less than 1000 KAF are removed. Without these smaller shortage 

volumes, T1e, T1V, and maxV of the combined operation are similar to the average values of neuron 9 

(1045 feet msl, 1013 KAF, 1375 KAF compared to 1046 feet msl, 1009 KAF, 1341 KAF).  

By navigating SOMDV, SOMobj, and SOMrobust, we can explore the potential consequences of these 

relatively high elevation, low volume shortage operations used in the combined operation. In this 

comparison, we will use neuron 3 to represent the combined operation because of similar T1e, T1V, and 

maxV. For a detailed comparison of neuron 3 and the combined operation, please see Appendix B.15. 

Using SOMDV (Figure 4-6), traverse from neuron 9 to neuron 3; T1e increases by 36 feet, T1V decreases by 

245 KAF, and maxV decreases by 39 KAF. This change in DV values resembles the difference between 

neuron 9 and the combined operation (increasing T1e, decreasing T1V, and similar maxV). The result of 

moving from neuron 9 to neuron 3, as indicated by SOMobj (Figure 4-5), is greater frequency, duration, 

and average volume of shortages. 

The increased frequency, duration, and average volume of shortages explains why the policies 

within the DMs’ feasible negotiation space are dissimilar to the combined operation. Policies that combine 

high T1e with small T1V fail to satisfy Delivery’s robustness criteria, which requires that the maximum 

duration of shortage not exceed 10 consecutive years and that average shortage volume not exceed 600 

KAF. This conclusion is consistent with SOMrobust, which shows that these policies satisfy both of Delivery’s 

performance criteria in only 44% of SOW (Figure 4-7).  

To summarize, the combined operation implements relatively small shortages at high pool 

elevations, and our results suggest that this operational strategy can result in high frequency, duration, 

and average volume of shortages unfavorable to water users. In contrast, policies that begin shortages at 

lower elevations and larger volumes can reduce the frequency, duration, and average volume of shortage, 

with the tradeoff being larger maximum shortages. Therefore, this tradeoff should be emphasized during 
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the renegotiation of Lake Mead shortage operations to solicit feedback from stakeholders. Further, these 

results highlight that DMs in the CRB and other river systems facing deep uncertainty need to consider 

which types of water reductions (high frequency vs. high magnitude) lend themselves towards more 

sustainable agriculture and public acceptance. 

4.5 Discussion 

In Sections 4.3 and 4.4, we have introduced the post-MORDM framework then demonstrated it 

with a case study of reservoir operation policy. In the following discussion, we describe several ways that 

post-MORDM allows for application-specific flexibility, meanwhile highlighting best-practices. Then, we 

discuss how flexibility in post-MORDM creates ample opportunity for future research to build on the case 

study presented in this paper. 

4.5.1 Flexibility and best practices with post-MORDM 

One goal of the post-MORDM framework is reducing the number of alternatives that DMs need 

to consider. In Section 4.4.3.4, DMs negotiated between five neurons, where each neuron summarizes 

the key attributes of a group of similar policies. This number of neurons is consistent with the psychology 

literature that suggests 3 – 9 alternatives be ideally considered at one time (see Section 4.2.2). However, 

in applications with more than two DMs and/or a large number of feasible neurons, 10 or more neurons 

may be needed to represent the negotiation space. After identifying one or more compromise neurons, 

DMs may want to consider the individual policies assigned to them. However, the number of policies 

assigned to each neuron may exceed 9 (it does in Section 4.4.3.4). In this case, additional steps can be 

taken to reduce the number of policies if so desired. For example, policies can be filtered by DV, objective, 

or robustness values. Alternatively, it is possible to reduce the number of policies the SOM is trained on 

by applying filters before implementing post-MORDM. Doing so could reduce the number of policies 

assigned to each neuron, result in neurons that are better approximations of the policies, and result in 

neurons that are more distinct from each other. For instance, the illustrative DMs in our case study 
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defined nine neurons as unacceptable, which suggests that some policies could have been removed 

before training the SOM. In other cases, however, defining the criteria by which policies are filtered may 

be non-trivial and not agreed upon by DMs. Thus, we advocate for a posteriori defining of filter criteria, if 

any, based on exploration of topology maps. 

In the post-MORDM framework, we have used robustness values as the data layer which DMs use 

to identify their policies of interest and the starting point for ensuing negotiation. We encourage this 

method because robustness metrics take into account critical driving forces of the system that are 

characterized by deep uncertainty. Alternatively, DMs could express their preferences based on the 

objective or DV layer, or a combination of layers. We advocate that DMs identify their preferred neurons 

beginning with the robustness layer; however, the post-MORDM framework allows for such flexibility. 

The post-MORDM framework is also flexible with respect to the types of plots used in topology 

maps. In our case study, we have created topology maps with radar plots (Figure 4-5), reservoir operation 

diagrams (Figure 4-6), component planes (Figure 4-7 and Appendix B.6), and box plots (Figure 4-8c). 

Alternative visualizations can be used based on the application or preferences of DMs, and future research 

can explore alternative methods for visualizing the intra-neuron variance besides the radar plots and box 

plots used in this case study. Regardless of the plot type, we believe it is critical to maintain the topologic 

arrangement of neurons produced by the SOM, and to use easily interpretable visualizations that facilitate 

the exploration of tradeoffs and the relationships between MORDM data layers. 

Another fundamental goal of post-MORDM is to provide DMs with a shared negotiation platform, 

which we accomplish with navigable topology maps. However, we do not prescribe the exact topology 

map visualization type to be used in negotiation. For instance, in Section 4.4.3.4 we facilitated DM 

negotiation with a blank topology map, meaning the hexagons in SOMnegotiation were colorless except for 

the outlines that indicated the preferred neurons of each DM. Then, the illustrative DMs used SOMDV, 

SOMrobust, and SOMobj to interpret the results of moving on SOMnegotiation. This plot type presents 
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SOMnegotiation as a neutral topology map, choosing not to visualize any objective, robustness, or DV values 

on it. However, we can imagine a circumstance where DMs would benefit from including additional 

information on SOMnegotiation. For instance, an objective or robustness metric that represents a shared 

concern of the DMs could be plotted to further encourage negotiation. In the CRB case study of the 

Delivery and Storage DMs, perhaps an environmental objective could be used. 

We have demonstrated how post-MORDM facilitates negotiation and compromise via topologic 

visualization of multiple MORDM data layers. We do not define the exact procedure by which negotiation 

occurs; instead, post-MORDM can be implemented with formal negotiation rules that are application 

specific and agreed upon by the parties to a negotiation. For example, Gold et al. implement fallback 

bargaining to identify two compromise water portfolios in a case study of four interconnected water 

utilities (2019b), building on the work of Herman et al. described in Section 4.2.1 (2014). Under fallback 

bargaining, DMs first rank policies according to their individual preferences. Then, DMs consider the top-

ranking policy for each DM; if they do not agree, each DM falls back one level in their ranking of policies. 

DMs continue to fall back until there exists a policy that is acceptable to every DM, and this policy is 

selected as a compromise (Brams and Kilgour, 2001; Madani, Shalikarian and Naeeni, 2011). The post-

MORDM framework could complement fallback bargaining by facilitating DMs in the ranking of policies. 

Using post-MORDM, DMs could rank a tractable number of neurons, as opposed to hundreds of policies 

in the context of MOEA. Further, post-MORDM could help DMs rank policies based on simultaneous 

consideration of the objective, DV, and robustness layers, as facilitated with topology maps.  Lastly, DMs 

could use SOMobj, SOMDV, and SOMrobust to track the tradeoffs resulting from each fallback step in the 

negotiation. Overall, the post-MORDM framework provides navigable visualizations that promote 

understanding and negotiation, but it does not prescribe a formal negotiation procedure. Thus, post-

MORDM could be used to enhance the efficacy of prescribed negotiation procedures such as fallback 

bargaining. 
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Throughout this paper we have emphasized post-MORDM in negotiation contexts. Indeed, we 

believe this to be a significant contribution to environmental modeling and decision support literature. 

Alternatively, post-MORDM can be utilized by an individual analyst, design group, or organization because 

the benefits of post-MORDM (clustering, dimension reduction, and map-based visualization of multiple 

data layers) can also help individual entities attain greater understanding of their system and make 

decisions.  

4.5.2 Future research opportunities: other data layers 

Future research could implement post-MORDM to explore additional decision-relevant data 

layers.  Scenario Discovery, the last step in MORDM, is traditionally performed on a small subset of 

policies. Alternatively, vulnerability information for each policy, or a representative policy from each 

neuron, could be calculated then displayed on a topology map. Then, vulnerability topology maps could 

be visualized alongside SOMDV to analyze the relationships between DVs and vulnerability. 

Several recent publications have highlighted another potentially decision-relevant data layer, 

which is the degree to which robustness values are sensitive to statistical properties of the SOW ensemble. 

These properties include the number of SOW, the upper and lower bounds of the uncertain factors, their 

correlation structure, and their probability distributions (Hadjimichael, Quinn, et al., 2020; Reis and 

Shortridge, 2020).  McPhail et al. established a framework to quantify the sensitivity of robustness 

magnitude and robustness ranking (2020), which could be combined with the post-MORDM framework 

to identify DV and objective values that correspond to policies whose robustness is the most insensitive 

to SOW ensemble design. 

In this paper, we have demonstrated the utility of the SOM for map-like interpretation of 

objective, DV, and robustness layers, and we discussed above how post-MORDM could be expanded to 

vulnerability and robustness sensitivity layers. Furthermore, we believe the foundational methods and 

goals of post-MORDM could be implemented with layers relevant to decision support frameworks other 
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than MORDM. Of particular interest, Dynamic Adaptive Policy Pathways (DAPP) is another popular 

framework for systems faced with deep uncertainty because it frames policy implementation as 

conditional on future observations of uncertain factors (Haasnoot et al., 2013; Kwakkel and Haasnoot, 

2019, p. 359). Like MORDM, DAPP is characterized by several layers of decision-relevant data, where 

understanding the relationships between them is important to DMs. Depending on how DAPP is 

implemented, these data layers can include long-term policy decisions (dynamic planning), adaptive policy 

decisions (short-term contingency planning), signpost variables, signpost triggers, and performance 

objectives (Haasnoot et al., 2013; Zeff et al., 2016). The benefits of post-MORDM, namely the 

simultaneous, map-based visualization of related data layers and a negotiation platform, could also 

enhance the synthesis and communication of other decision-support frameworks to DMs.       

4.6 Conclusion 

This paper presented the post-MORDM framework, which enhances MORDM-based decision 

support via a novel implementation of the SOM. Post-MORDM constitutes an alternative paradigm for 

how policy-relevant data is explored by interpreting MORDM data as multiple layers arranged according 

to a two-dimensional map system. Post-MORDM expands on previous applications of clustering, 

dimension reduction, and the SOM to 1) help DMs elucidate the relationships between DVs, objectives, 

and robustness; 2) reduce the number of alternatives DMs need to consider; and 3) establish a visual, 

structured platform whereby DMs with foundational disagreements are assisted in a process of 

negotiation and compromise. 

We demonstrated post-MORDM with a case study of reservoir operation policy in the Colorado 

River Basin, USA.  Using a topology map of objective values (SOMobj), our results showed that the primary 

tradeoff DMs need to navigate is the tradeoff between reservoir storage reliability and average magnitude 

of water delivery shortages. The second strongest tradeoff is between frequency/duration of shortages 

and maximum shortage magnitude. We illustrated how topology maps can be used in a process of 
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negotiation between two illustrative DMs that represent delivery and storage interests in the CRB. Based 

on individual definitions of robustness, we showed that five neurons of policies could be mutually feasible, 

and demonstrated how topology maps facilitate negotiation because of their map-like navigation and 

interpretation. We discuss how the combined Lake Mead shortage operation, which is in effect until 2026, 

contrasts with the mutually feasible neurons because of a combination of high elevation, low volume 

shortage tiers. We used topology maps of DV and objective values (SOMDV and SOMobj) to describe how 

high elevation, low-volume shortage tiers increase the frequency and duration of delivery shortages while 

reducing the maximum shortage volume. In the renegotiation of Lake Mead’s shortage policy, DMs will 

need to consider which tradeoff the CRB’s diverse stakeholders can tolerate - long, persistent water 

shortages of smaller magnitude, or less frequent, shorter, but harsher shortage magnitudes. Moreover, 

future research should incorporate DVs for Lake Powell operations into MOEA optimization, further 

investigating performance and robustness tradeoffs while maximizing the benefits of coordinated 

operation between Lakes Powell and Mead. 

The post-MORDM framework and the case study presented in this paper contribute to one of the 

grand challenges of the 21st century - identifying policies for human-environmental systems that balance 

competing objectives and are robust to uncertainty. Addressing the decision-related challenges posed by 

deep uncertainty requires the integration of research across multiple disciplines. Therefore, the post-

MORDM framework is a demonstration of this integration, pulling from research in the domains of 

machine learning, engineering design, psychology, and water resources management in an effort to build 

a bridge between decision support systems originating in academia to DMs. Our hope is that the post-

MORDM framework will facilitate negotiation and compromise as decision support frameworks like 

MORDM are increasingly implemented in real-world applications. Moreover, we believe this research 

offers an alternative paradigm through which tradeoff analyses and negotiations can occur, encouraging 
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future studies to expand upon our implementation of the SOM while also exploring other innovative 

approaches. 

4.7 Software and data availability 

All R code and data to reproduce the case study is available on GitHub: 

https://github.com/nabocrb/post-MORDM. We have formatted the code to facilitate straightforward 

application of post-MORDM in other case studies, including code for every step described in Section 4.3 

and the variety of topology maps used in this paper. 
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5 Taxonomy of purposes, methods, and recommendations for 
vulnerability analysis 

5.1 Introduction 

Coupled, human-environmental systems are managed with policies to provide benefits to 

stakeholders. Policies refer to specific rules defined by values of decision levers. In river systems, for 

example, reservoirs are operated according to policies (Alexander, 2018; Quinn et al., 2018); the decision 

levers would determine levels of storage that trigger actions such as flood releases, also defined by 

decision lever values. Due to their complexity, it can be difficult to know the impacts of policies on system 

benefits. To provide decision support, simulation models estimate system benefits under a given policy. 

Policy performance is impacted by uncertain factors that are out of the decision makers’ control, 

such as future climate and population (Lempert, Popper and Bankes, 2003; Kasprzyk et al., 2013). Values 

for these factors are unknown, so analysts model them as individual states of the world (SOW). Each SOW 

represents a combination of values of the uncertain factors. Traditional scenario analysis creates a small 

number of scenarios and estimates how likely each scenario is. However, environmental systems are 

characterized by deep uncertainty, in which decision makers do not know or do not agree on the likelihood 

of a given SOW (Knight, 1921; Kwakkel and Haasnoot, 2019). Decision Making Under Deep Uncertainty 

(DMDU) methods create many SOW to fully explore these uncertainties. These multiple SOW necessitate 

multiple runs of the simulation model to evaluate the performance of a single policy. 

In addition to multiple policies and SOW, systems must meet multiple, conflicting goals. River 

systems, for example, must often provide reliable water supply, produce hydropower, and prevent 

flooding (Alexander, 2018; Quinn et al., 2018). From the simulation model runs, system reliability and 

benefits are quantified using multiple performance metrics, such as the percent of time water demands 

are met, and the percentage of time with sufficient storage to produce hydropower. Tradeoffs exist when 

increased performance in one metric comes at the detriment of other metrics (Kasprzyk et al., 2013). For 

example, a reservoir policy could increase releases to downstream users, meanwhile reducing reservoir 
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storage and hydropower production (Alexander, 2018). In the presence of tradeoffs, decision-makers 

choose policies that obtain their desired prioritization of conflicting goals.  

Vulnerability analysis discovers concise descriptions of policies and SOW that result in ‘decision-

relevant’ performance outcomes (Steinmann, Auping and Kwakkel, 2020). A common example is using 

vulnerability analysis to discover values for the uncertain factors that bifurcate the performance outcomes 

into a binary classification: acceptable versus unacceptable performance (Bryant and Lempert, 2010; 

Hadjimichael, Quinn, et al., 2020). Multiple terms are used in the literature to describe these performance 

outcomes, including ‘interesting’ (Bryant and Lempert, 2010; Steinmann, Auping and Kwakkel, 2020), 

‘policy-relevant’ (Jafino and Kwakkel, 2021), and ‘consequential’ (Hadjimichael, Quinn, et al., 2020). 

 This review contributes a systematic treatment of how performance outcome structure is 

defined. Specifically, performance outcome structures are binary, multi-class, or continuous. For multi-

class structures, new methods define decision-relevant outcomes based on performance inequalities 

across multiple stakeholders (Jafino and Kwakkel, 2021) and non-stationarity of performance over time 

(Steinmann, Auping and Kwakkel, 2020). Depending on the decision-making context, however, binary 

(Dixon, Lempert, LaTourrette and Reville, 2007) and continuous outcome structures are also beneficial 

(Quinn et al., 2020). 

After the SOW ensemble, model runs, and the performance outcome structure are defined, factor 

mapping is performed. Factor mapping discovers the subset of model inputs (decision levers and uncertain 

factors) that are the strongest predictors of performance outcomes (Bryant and Lempert, 2010; Herman 

et al., 2015). Factor mapping also returns the values for the model inputs that lead to a decision-relevant 

outcome (e.g., which values cause performance to be in the “unacceptable” binary class). For example, 

factor mapping could reveal that average precipitation is the strongest determinant of reservoir levels, 

and that unacceptable levels are expected if precipitation is less than 85% of the historical average (Groves 

et al., 2013; Reis and Shortridge, 2020). These concise descriptions are communicated to decision-makers 
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as scenarios, which can be helpful for comparing policies (Groves et al., 2013) or identifying helpful 

modifications to an existing policy (Dixon, Lempert, LaTourrette and Reville, 2007).  

Novel methods for factor mapping are increasingly proposed in the literature. The new methods 

better address multi-class performance outcome structures (Steinmann, Auping and Kwakkel, 2020; Jafino 

and Kwakkel, 2021) and nonlinear interactions between policies, SOW, and performance (Trindade, Reed 

and Characklis, 2019; Quinn et al., 2020). The benefit of this body of literature is exposing DMDU to 

advanced tools that can address technical challenges. However, a potential limitation is that the resulting 

scenarios from more complex algorithms may be less interpretable for decision-making (Rudin et al., 

2022). In this review, we show how best practices from the field of machine learning can aid the selection 

of factor mapping algorithms for vulnerability analysis.  We discuss interpretability and flexibility and show 

how evaluating factor mapping methods using testing accuracy instead of training accuracy can help 

identify more interpretable scenarios for decision-making. 

This review will use a consistent example: reservoir operations in the Colorado River Basin (CRB). 

The CRB is managed with a system of reservoirs to supply water for 40 million people across seven states, 

northwest Mexico, and thirty tribal nations (Reclamation, 2012a). Releases from the two largest 

reservoirs, Lake Mead and Lake Powell, are determined to balance goals for storage (e.g., hydropower, 

conservation) and delivery (e.g., meeting demands for agriculture and municipalities). Storage and 

delivery goals are often conflicting, especially during low reservoir conditions. An extended drought since 

2000 has threatened the CRB (DOI, 2022). Federal-level policies sought to protect storage but have not 

prevented historically low storage in 2022. Specifically, policies are delivery reductions for downstream 

users, as a function of the level of storage in Lake Mead, and how storage in Lakes Powell and Mead are 

balanced. Current policies expire in 2026, and at time of writing, there is a formal process of negotiating 

new policies (Reclamation, 2023e). This process must cope with copious policy options, conflicting 

priorities among stakeholders, and deep uncertainty with respect to future exogenous conditions 
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(hydrology and demands). The consistent example in this review discusses how vulnerability analysis can 

survey multiple purposes in the context of CRB reservoir operations. 

5.2 A taxonomy of methods 

Figure 5-1 provides an overview of the distinct steps of a vulnerability analysis: simulation 

modelling, defining decision-relevant outcomes, and factor mapping. Each step is discussed in the 

subsections below.  

5.2.1 Simulation modelling 

The first step is simulation modelling, which tests the performance outcomes of policies in 

alternative SOW (Figure 5-1, 2.1). The analyst defines the model inputs (i in Figure 5-1). These include 

Figure 5-1: The steps of a vulnerability analysis 
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uncertain factors and decision levers, values for which define SOW and policies (Lempert et al., 2006; 

Kasprzyk et al., 2013). In systems characterized by deep uncertainty, there can be many plausible values 

for the decision levers and uncertain factors, and also many possible combinations of values. Their 

possible values are sampled using thousands of input sets (I in Figure 5-1), which are then tested in the 

model. The model evaluates performance metrics (m in Figure 5-1). The performance metrics often 

summarize a time-varying state variable, such as annual Lake Powell storage, using a summary statistic, 

such as the fraction of time the water level is below hydropower intakes (Alexander, 2018; Bonham, J. 

Kasprzyk and Zagona, 2022a). Multiple metrics can be used to capture different methods for aggregating 

a time-series (e.g., average of Lake Powell storage) and measure performance for different state variables 

(i.e., annual deliveries) (Bonham et al., 2023). The outcome of this step is a database of model inputs 

(SOW and policies) and performance outcomes, which is used in the factor mapping step. The following 

subsections describe methods for creating policies and SOW. 

5.2.1.1 Policies 

Policies can be predetermined or generated with optimization, as described by (Herman et al., 

2015). Policies may be predetermined due to the existence of only a small number (e.g., 4) of plausible 

options or because the polices were selected in previous studies. As an example, the current reservoir 

operation policy in the CRB was chosen from three alternatives analyzed in a 2007 Environmental Impact 

Assessment (Reclamation, 2007). Under low water supply conditions, one alternative uses large shortages 

to prioritize reservoir storage, the second used small shortages to prioritize deliveries to the Lower Basin 

states, and the third (the selected alternative) is a compromise between the former two. Each policy could 

be modelled by codifying the shortage rules as decision lever values. However, a small number of 

predetermined policies can leave many plausible values for the decision levers unexplored and fail to 

identify critical performance tradeoffs (Kasprzyk et al., 2013; Herman et al., 2015). 
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These challenges can be addressed by creating policies with multi-objective optimization (Hadka 

and Reed, 2013; Maier et al., 2019). This process couples an optimization algorithm, usually a multi-

objective evolutionary algorithm (MOEA), with a simulation model to automatically search for high-

performing policy alternatives. For example, Alexander (2018) coupled the Borg MOEA (Hadka and Reed, 

2013) with the Colorado River Simulation System to create several hundred shortage policies for Lake 

Mead. The policies are non-dominated with respect to multiple storage and delivery objectives, meaning 

no policies were found with equal or better performance in all objectives while being better in at least 

one. The policies exhibit tradeoffs, meaning improvement in one objective (i.e., storage) comes at the 

expense of others (i.e., deliveries). All the policies can be tested in a vulnerability analysis, or a small 

handful can be selected via robustness analysis (Kasprzyk et al., 2013; Bonham, Joseph Kasprzyk, and Edith 

Zagona, 2023).  

5.2.1.2  States of the World 

SOW can be predetermined, sampled using a design of experiments, or a hybrid approach. In the 

predetermined case, planning agencies develop projections of uncertain factors based on climate models 

(River Management Joint Operating Committee, 2020), paleo-records (Reclamation, 2012a), and 

population scenarios (Upper Colorado River Commission, 2016). For example, previous studies in the CRB 

have used demand projections - based on future population scenarios – and streamflow projections – 

based on historical data and climate change scenarios – in a vulnerability analysis (Reclamation, 2012a; 

Groves et al., 2013). Because these projections are time-series (e.g., annual streamflow projections for a 

40-year planning study), a requirement of this approach is to calculate time-series statistics for each 

projection, which later become the predictors in the factor mapping step. Said another way, the 

projections are predetermined, and values for the uncertain factors are calculated using time-series 

statistics of those projections. For example, Groves et al. (2013) calculated the average annual and driest 
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eight-year average streamflow for each streamflow projection, and these uncertain factors were later 

used as inputs to factor mapping. 

Uncertain factors can also be sampled using a space-filling design of experiments. Analysts choose 

the upper and lower bounds for each factor, the number of SOW (i.e.,  the number of model runs), then 

an algorithm chooses a set of SOW that maximizes coverage of the uncertainty space (Damblin, Couplet 

and Iooss, 2013; Joseph, 2016). One common space-filling algorithm is Latin Hypercube Sampling 

optimized for a space-filling objective (Dupuy, Helbert and Franco, 2015; Carnell, 2022). Space-filling 

designs are well-suited for vulnerability analysis because they provide a uniform, continuous sampling 

across each uncertain factor, which enables the factor mapping step to more finely resolve the boundary 

between decision-relevant outcomes (Section 5.3.2). In our CRB example, this could mean sampling future 

demand and reservoir inflow continuously such that factor mapping could identify precise values that lead 

to unacceptable shortages. Since these methods generate new SOW, however, they may not be ideal for 

agencies looking to use predetermined projections as SOW. 

Hybrid sampling methods use predetermined SOW to create space-filling designs. The analyst 

chooses the number of SOW, then a sampling algorithm selects a subset of SOW from existing data that 

maximizes coverage of the uncertainty space. Methods include conditioned Latin Hypercube Sampling 

(cLHS) (Minasny and McBratney, 2006), Kennard-Stone sampling (Kennard and Stone, 1969), and Feature 

Space Coverage Sampling (Wadoux, Brus and Heuvelink, 2019; Wadoux and Brus, 2021). For example, 

Bonham et al. (2022a) use cLHS to subsample 500 SOW from an existing ensemble of nearly two-million 

SOW. Subsampling allowed the authors to use existing streamflow projections, continuously sample 

streamflow and demand values, and do so with a small number of SOW compared to the entire dataset. 

The hybrid approach also has limitations, however. The subsampled SOW is not exactly the same set of 

projections the agency is familiar with (it is a subset of those projections), and the range and density of 
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uncertain factor values sampled by the algorithm is limited to that of the projections being subsampled 

from. 

5.2.2 Define decision-relevant outcomes 

After simulation modelling, the analyst works with stakeholders to define decision-relevant 

outcomes. A common example is when a policy fails to meet a stakeholder-defined performance 

threshold, such as a  reservoir policy failing to store enough water to produce hydropower (Bryant and 

Lempert, 2010; Alexander, 2018).  

Such a split between acceptable and unacceptable performance outcomes is a binary 

performance outcome structure. However, recent studies have demonstrated more flexible performance 

outcome structures, including multi-class and continuous structures (Quinn et al., 2020; Steinmann, 

Auping and Kwakkel, 2020). These three performance outcome structures are reviewed below. 

5.2.2.1 Binary 

When the performance outcome structure is binary, performance is either deemed acceptable 

(blue) or unacceptable (red, Figure 5-2). Acceptable performance is determined from stakeholder-defined 

performance thresholds – on a single metric (5-2a) or multiple metrics (5-2b). Although not pictured, other 

logical conditions can be used (e.g., using OR versus AND). 

Figure 5-2: Methods for defining binary performance classes 
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The binary performance outcome structure has the benefit of being easy to understand because 

it only partitions into two categories. However, the binary transformation loses information about the 

degree to which the threshold is satisfied or violated, which may be important information for decision-

makers. For example, decision-makers in the CRB may want to know not only if hydropower levels are 

maintained, but the margin of safety a given policy provides. In other cases, there is not a clear threshold 

between acceptable and unacceptable, but rather multiple ‘levels’ such as high, moderate, or low 

performance (Kravits et al., 2021). These cases can be addressed with continuous and multi-class 

structures. 

5.2.2.2 Multi-class 

There are three approaches for multi-class performance outcome structures (i.e., more than two 

classes). The first approach is to define each class manually (Figure 5-3a). As an example, decision-makers 

in the CRB may be interested high (green), moderate (purple), and low (orange) shortages.  Like binary 

classification, this process can be extended to an arbitrary number of performance metrics and thresholds 

(Rozenberg et al., 2014; Guivarch, Rozenberg and Schweizer, 2016). However, this process becomes 

difficult for multiple performance metrics and thresholds. 

Multi-metric clustering defines performance classes by finding groups of model outputs with 

similar performance across multiple metrics. The example in Figure 5-3b shows four performance metrics 

Figure 5-3: Methods for defining multi-class (more than two) performance classes 
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on a parallel coordinates plot (Inselberg, 2009). Multiple metrics can measure benefits to different 

stakeholders to parse how policies and uncertain factors can lead to performance inequalities (Jafino and 

Kwakkel, 2021). Or, the metrics could be different statistics of time-varying state variables (Alexander, 

2018). Since performance metrics aggregate a time-series, the use of multiple metrics could mitigate the 

loss of relevant information. In the CRB, for example, the metrics could measure deliveries to Arizona, 

California, Nevada, and Mexico. Or, they could describe the maximum, minimum, mean, and frequency 

of shortages (Alexander, 2018; Bonham et al., 2023). Clustering identifies performance classes within 

which performance is similar, doing so without prespecified performance thresholds (James et al., 2013, 

chap. 10.3). For example, class one (green) is characterized by small values for m1 and m4 and large values 

for m2 and m3. In contrast, class two (purple) has large values for m1 and m4, small values for m2, and 

medium values for m3.  

Time-series clustering defines performance classes as similar patterns of performance over time. 

In Figure 5-3c, each trace corresponds to one model run, showing a state variable changing in time. In the 

CRB, this could be Lake Mead storage. Decision-makers determine reservoir releases on the basis of 

storage levels and time of year (e.g., winter vs spring flood space requirements). So, it may be beneficial 

to define performance classes based on both magnitude and timing, as done with time-series clustering 

(Steinmann, Auping and Kwakkel, 2020). Class 1 (green) has high values at the beginning of the simulation 

and low values at the end, while class 3 (orange) has low values at the beginning of the simulation and 

high values at the end. Previously described performance classification methods use performance metrics, 

i.e., each trace in Figure 5-3c would be aggregated into a single value using a statistic (e.g., mean). Time-

series clustering, however, requires information about state variables at multiple time steps. Time-series 

clustering can be extended to multiple state variables, such as Lake Mead and Lake Powell storage, using 

multivariate time-series clustering (Li and Liu, 2021). 
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5.2.2.3 Continuous 

The continuous performance outcome structure uses a continuous function rather than 

transforming performance into two (binary) or more than two (multi-class) classes. This could mean using 

the values of the performance metrics directly (Quinn et al., 2020), such as Lake Mead storage, or using a 

transform on the metrics prior to factor mapping (i.e., some points are deemed acceptable, and 

unacceptable points have continuous values of performance violation).  

This method could be beneficial for cases where decision-makers disagree on performance 

thresholds or are dissatisfied with variance within binary or multi-class classes. Returning to Figure 5-3b, 

for example, the range of possible values for m1 within class one may be too dissimilar for decision-makers, 

who might instead prefer a prediction of the expected performance value. A potential limitation, however, 

is that continuous values may be difficult to interpret for decision-making. For example, what storage 

levels at Lakes Mead and Powell would indicate the need for adaptation versus continuing with the 

current policy? 

5.2.3 Factor mapping 

Factor mapping discovers a subset of model inputs, and the values of those inputs, that lead to 

decision-relevant outcomes – i.e., a mapping between inputs and binary, multi-class, or continuous outputs. 

This mapping is often called ‘scenario discovery’, where the inputs and their values define a scenario 

(Bryant and Lempert, 2010; Steinmann, Auping and Kwakkel, 2020; Jafino and Kwakkel, 2021). A simple 

example is binary classification with box-shaped factor mapping (Section 5.2.4.2). The factor mapping 

draws a box around values of the model inputs that result in unacceptable performance, and these 

conditions are communicated to decision-makers for comparing policies (Groves et al., 2013) or making 

changes to an existing policy (Dixon, Lempert, LaTourrette and Reville, 2007). Specific use cases of factor 

mapping are dependent on the purpose, however (Section 5.2.4). Therefore, this section focuses on the 

mechanics of factor mapping – the “shape” that the factor map uses to best describe the groups of inputs. 
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Due to the large number of factor mapping methods, concepts of flexibility and interpretability 

are helpful for understanding how they differ. This differentiation of the methods, and the outputs they 

create, is important to understand because it influences how the results might be used for policymaking. 

5.2.3.1 Flexibility and interpretability 

Flexibility describes how a factor mapping method can bend and flex to describe a dataset and 

make predictions (James et al., 2013; Rudin et al., 2022, chap. 2.1). For vulnerability analysis, flexibility 

determines the ‘scenario shape’. Different factor mapping methods create rectangular, triangular, and 

arbitrarily complex scenario shapes (Figure 5-1). We elaborate on these differences below. Ideally, more 

flexible methods are used only when the relationship between model inputs and performance class are 

so complex that less flexible methods do not accurately describe it (James et al., 2013; Rudin, 2019; Rudin 

and Radin, 2019; Rudin et al., 2022). We will return to this point on accuracy and method selection in 

Section 5.4.2. 

Interpretability is the extent to which the factor mapping results are easily understood and 

applied by the intended users (Bryant and Lempert, 2010; Kwakkel, 2019; Rudin et al., 2022). In 

vulnerability analysis, interpretability is a measure of how well the scenarios are applied by analysts, 

stakeholders, and decision-makers for the purposes described in Section 5.2.4. Since vulnerability analysis 

is used to inform policy decisions pertaining to public resources, interpretability is of utmost importance 

(Rudin et al., 2022). As a rule of thumb, increased flexibility comes at the expense of interpretability 

(James et al., 2013, chap. 2.1), as illustrated in Figure 5-1 part 2.3. At the same time, interpretability is 

subjective because it depends on the decision-making context (Rudin et al., 2022). For vulnerability 

analysis, interpretability has been quantified as the number of model inputs describing the scenario and 

the number of scenarios presented to decision-makers (Lempert, Bryant and Bankes, 2008; Bryant and 

Lempert, 2010). It is generally accepted that a scenario defined by one or two model inputs, as opposed 
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to many, is more interpretable, and so are fewer scenarios compared to more (Kwakkel, 2019; Lee and 

Shin, 2020). However, less attention has been given to how flexibility impacts interpretability. 

The remainder of this section will use flexibility and interpretability to review factor mapping 

algorithms for binary (Section 5.2.3.2), multi-class (5.2.3.3), and continuous (5.2.3.4) performance 

outcome structures. 

5.2.3.2 Binary 

Figure 5-4 arranges binary factor mapping algorithms by flexibility. To the left (less flexible) are 

PRIM and classification trees, while regression and ensemble methods are located to the right (more 

flexible). The algorithms are also in approximate order of decreasing interpretability, noting that decision-

makers can have different opinions given the subjective nature of interpretability. Two visualizations are 

shown for each algorithm. The fitting visualizations illustrate how the algorithms learn the relationship 

between inputs and performance classes. In these diagrams, the axes correspond to model inputs (i1 and 

i2), showing only two inputs for simplicity. Depending on the decision-making purpose (Section 5.2.4), 

the inputs can be uncertain factors or decision levers. Each point corresponds to one model run, colored 

red (unacceptable) or blue (acceptable) as determined in the performance classification step. The second 

row of figures, output, illustrate common ways of communicating the results, elaborated below. 



137 
 

 

 

a. PRIM) The original binary method is the Patient Rule Induction Method (PRIM, Figure 5-4a) (Lempert, 

Bryant and Bankes, 2008; Bryant and Lempert, 2010). PRIM places constant constraints, i.e. logical rules 

(Rudin et al., 2022), on the model inputs to find values likely to yield unacceptable performance (Friedman 

and Fisher, 1999). These logical rules make a box-shaped scenario (Bryant and Lempert, 2010; Kwakkel 

and Cunningham, 2016). PRIM is often considered interpretable because the logical rules can be 

communicated to decision-makers  for policy creation and comparison (Dixon, Lempert, LaTourrette and 

Reville, 2007; Dixon, Lempert, LaTourrette, Reville, et al., 2007). In the CRB, for example, a reservoir 

operation policy could be vulnerable if streamflow is less than 90% of the historical average and demand 

exceeds 110% average (Figure 5-4a). The results of PRIM are commonly shown like in Figure 5-4a, output. 

Each input has a line, and inputs constrained by PRIM are highlighted (with red, in this example). Not all 

inputs are necessarily constrained, depending on if that input was statistically significant in separating 

Figure 5-4: Common factor mapping algorithms for binary performance structures, organized by 
interpretability/flexibility 
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acceptable from unacceptable performance outcomes. This visualization is helpful for more than three 

model inputs, in which case scatter plots like those in the fitting row are limited. 

Although the high interpretability of PRIM can be useful (Dixon, Lempert, LaTourrette and Reville, 

2007; Dixon, Lempert, LaTourrette, Reville, et al., 2007; Kasprzyk et al., 2013; Herman et al., 2014; Reis 

and Shortridge, 2020), the algorithm has several limitations. The logical rules can be too inflexible when 

performance class depends on interactions between model inputs (Trindade, Reed and Characklis, 2019; 

Hadjimichael, Quinn, et al., 2020). Further, PRIM provides a homogenous prediction for all inputs that 

meet the conditions of the logical rules (unacceptable or acceptable), even though the performance class 

for inputs located near the boundary are less certain than inputs located well within the boundaries. PRIM 

can also constrain more inputs than necessary, reducing interpretability (Kwakkel, 2019).  Generally, these 

limitations have been addressed by either modifying PRIM (Table 5-1) or using an alternative factor 

mapping method. The subsections below describe alternative factor mapping methods while referring to 

Table 5-1 for related PRIM modifications.  

Table 5-1: Summary of modifications to the Patient Rule Induction Method (PRIM) 
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b. classification trees) Like PRIM, Classification Trees use logical rules to predict performance class, but 

with some additional flexibility. Classification trees iteratively place constraints on the model inputs, each 

new constraint building upon previous constraints. Using a CRB example, a reservoir policy could be 

vulnerable if streamflow is less than 90% and demand exceeds 110%, or if demand exceeds 130% (Figure 

5-4b). Note that similar results can be obtained via multiple iterations of PRIM (‘modified covering 

process’ in Table 5-1, see also (Lempert, Bryant and Bankes, 2008)). The results are often communicated 

with a decision tree diagram (Almeida et al., 2017; Smith, Kasprzyk and Rajagopalan, 2019; Cohen and 

Herman, 2021). Like the constraint diagram for PRIM, the tree diagram is easily extended to three or more 

model inputs. 

Although classification trees are more flexible than PRIM, the use of logical rules mean they have 

similar limitations. Although they can describe and/or type interactions, classification trees can still 

struggle to accurately capture linear and non-linear interactions (Almeida et al., 2017). Like PRIM, all 

model runs that fall within a certain set of logical rules are treated as equally likely to have the predicted 

performance class. 

c. logistic regression) Logistic regression captures interactions between model inputs and predicts the 

probability of unacceptable performance (Figure 5-4c) (Hadjimichael, Quinn, et al., 2020). The probability 

is a continuous function of both i1 and i2. In Figure 5-4c, if both i1 and i2 increase at the same rate, the 

probability of acceptable performance stays at 50%. But, i2 greater than i1 increases the probability of 

unacceptable performance. In the CRB, this could be the relationship for demands that exceed reservoir 

inflows. The probability information could inform the magnitude of delivery reductions, i.e. - larger 

delivery reductions may be desired when the probability is 95% compared to 55%. Note that this is the 

probability of unacceptable performance assuming values for i1 and i2 – it is not the probability that the 

model input values will be observed. Logistic regression can be expanded to non-linear relationships by 

using higher-order regression equations (e.g., i1
2+i2) or by adding interaction terms (i.e., i1+i2 +i1*i2) 
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(Hadjimichael, Quinn, et al., 2020). Note that PCA-PRIM (Table 5-1) also describes interactions between 

model inputs, but does not provide probability information. 

The additionally flexibility and probability information of logistic regression can diminish 

interpretability. The continuous function created by logistic regression may be less interpretable than the 

logical rules of PRIM or classification trees, i.e., the scenario is not described with if-then statements. This 

limitation is especially relevant when more than two inputs are included in the regression equation since 

it is difficult to expand the factor mapping visualizations in Figure 5-4c, fitting, to three or more 

dimensions. Depending on the purpose, e.g., decision-makers comparing policies, the probability 

information could also be misinterpreted.  

d. ensemble methods) Ensemble methods can describe complex interactions between inputs and 

performance. In Figure 5-4d, the shapes of the unacceptable and acceptable regions are non-linear and 

non-monotonic, meaning the probability can both increase and decrease as the inputs increase. Ensemble 

methods use many ‘weak’ prediction models that work together to predict the performance class. 

Classification trees are common for this method (Trindade, Reed and Characklis, 2019), but PRIM has also 

been used (‘random boxes’ in Table 5-1) (Kwakkel and Cunningham, 2016). Each model in the ensemble 

is ‘weak’ because it is uses a random subset of model outputs and input variables (Breiman, 2001; Kwakkel 

and Cunningham, 2016), or because the complexity of each model is constrained (James et al., 2013, chap. 

8.3). The predictions of each weak model are aggregated to provide the ensemble’s final prediction. The 

fraction of weak models that agree on the final prediction is reported as the probability, similar to logistic 

regression (Trindade, Reed and Characklis, 2019). 

Ensemble methods have the same potential limitations as logistic regression with additional 

interpretability concerns. Because the prediction is determined from a large ensemble of models, the 

relationship between inputs and performance outcomes cannot be described with a single decision tree, 

nor is the relationship described with an equation, like in logistic regression. Therefore ensemble methods 
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are often called ‘black box’ algorithms (Rudin, 2019; Rudin et al., 2022). Like logistic regression, results 

are communicated using the visualization in Figure 5-4c (Trindade, Reed and Characklis, 2019), but the 

challenge of visualizing more than two model inputs remains. 

5.2.3.3 Multiclass 

a. iterative binary algorithm Like binary classes, there are multiple factor mapping methods for multi-

class classification. One approach is to iteratively train a binary model for one performance class at a time 

(Steinmann, Auping and Kwakkel, 2020). This process relabels the performance classes such that there 

are only two classes in each iteration. As an example, assume classes one through three (green, purple, 

and orange) as shown in Figure 5-5. To discover conditions that lead to class one, the analyst could relabel 

all simulations not belonging to class one as not class one. This is now a binary problem (class one and not 

class one), and binary algorithms such as PRIM, CART, and logistic regression can be applied (Kwakkel and 

Jaxa-Rozen, 2016; Steinmann, Auping and Kwakkel, 2020).  

The iterative binary approach can lead to overlapping scenarios. In other words, the same values 

for the model inputs can lead to multiple class outcomes, as demonstrated with PRIM boxes in Figure 

5-5a. For negotiation and compromise, the regions of overlap could indicate decision lever values that 

meet the goals of two or more stakeholders (Lempert and Turner, 2020; Bonham, J. Kasprzyk and Zagona, 

2022a). However, the overlapping conditions can be less interpretable to decision-makers for the 

purposes of policy creation and comparison (Section 5.2.4). This is because the same conditions predict 

more than one performance outcome (Kwakkel and Jaxa-Rozen, 2016; Jafino and Kwakkel, 2021).  
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b. multiclass/multivariate algorithms Overlapping scenarios can be avoided with multi-class-specific 

algorithms, which discover the conditions that lead to each class in a single iteration. The resulting 

scenarios are non-overlapping, as illustrated with Figure 5-5b (Jafino and Kwakkel, 2021). Many binary 

methods have multiclass extensions such as multiclass PRIM and classification trees (Kwakkel and Jaxa-

Rozen, 2016). A limitation of both the iterative binary and multiclass methods is the requirement for two 

distinct steps – first defining performance classes via clustering, then factor mapping (Jafino and Kwakkel, 

2021). 

An alternative approach is to use multivariate regression trees (MRT), which discover both the 

performance classes and the conditions concurrently (Smith, Kasprzyk and Rajagopalan, 2019; Jafino and 

Kwakkel, 2021). The tree predicts one or more continuous performance metrics (m), not prespecified 

performance classes. The MRT then applies logical rules to the inputs, like a binary classification tree, to 

find groups of model outputs with similar performance. As explained by Jafino and Kwakkel (2021) this 

process is similar to the clustering step. i.e., the discovered groups are the performance classes. 

Effectively, the MRT accomplishes factor mapping and performance clustering concurrently, removing the 

Figure 5-5: Overlapping compared to separable scenarios in multi-class factor mapping 
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need for the pre-clustering step. Like multiclass classification trees, the conditions leading to each class 

will be mutually exclusive – the same pros and cons described in the previous two paragraphs apply. 

5.2.3.4 Continuous 

There are numerous methods for continuous factor mapping with analogs to binary and multiclass 

methods. Figure 5-6 is an example of linear regression (Quinn et al., 2020). The background color shows 

the predicted performance metric value (𝑚�̂�), and the colored points are performance metric values from 

the model simulations. More flexible methods, such as non-linear regression and ensemble methods, can 

also be used. Continuous factor mapping can be extended to multiple performance metrics by training 

one model per metric (similar to the iterative binary method) or using multivariate methods like 

multivariate regression trees (Smith, Kasprzyk and Rajagopalan, 2019; Jafino and Kwakkel, 2021). Like 

binary and multiclass methods, increased flexibility can reduce interpretability. 

Continuous factor mapping allows performance thresholds to be defined after the factor mapping 

is complete. As an example, the performance metric in Figure 5-6 could be average Lake Mead storage. 

The two performance thresholds, a and b, could represent the performance goals for irrigators upstream 

versus downstream of the reservoir (Hadjimichael, Quinn, et al., 2020). Alternatively, the thresholds could 

Figure 5-6:  Continous factor mapping with linear regression 
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represent how a stakeholder’s performance goals could change after seeing what performance outcomes 

are possible (Kasprzyk et al., 2013; Bonham, Joseph Kasprzyk, and Edith Zagona, 2023). For instance, a 

stakeholder could update their definition of unacceptable performance from the more lenient threshold 

of a to the more challenging threshold of b after seeing that only a few model runs result in performance 

worse than a. In either case, the factor mapping is not affected because it is performed with the 

continuous values of the performance metrics, independent of performance classes. 

5.2.4 Purposes 

This review identifies five purposes for vulnerability analysis: scoping, creating policies, comparing 

policies, negotiation and compromise, and monitoring and adaptation (Figure 5-7). These purposes are 

synthesized from three bodies of literature – Environmental Impact Assessments, Adaptive Environmental 

Management, and DMDU. Although specific requirements vary by country, common requirements for 

Environmental Impact Assessments include scoping and comparing policy alternatives (Yang, 2019, 2023). 

Monitoring and adaptation is advocated by the field of Adaptive Environmental Management (Holling, 

2005), and has been identified by the International Panel on Climate Change as critical for sustainable 

management in the 21st century (IPCC, 2022). DMDU studies also use vulnerability analysis in the creation 

of policies (Watson and Kasprzyk, 2017) and negotiation between decision-makers (Lempert and Turner, 

2020; Bonham, J. Kasprzyk and Zagona, 2022a). The following subsections expand on these purposes.    

Figure 5-7: common purposes for vulnerability analysis 
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5.2.4.1 Scoping 

Scoping determines the breadth of topics to be considered  in an environmental impact 

assessment (Snell and Cowell, 2006; Reclamation, 2012b). These topics include policy alternatives, 

uncertain factors, and their impacts on system performance. It is common for the performance of a 

system to be driven by a small number of decision levers and uncertain factors (Herman et al., 2015; 

Joseph, 2016), and these impactful factors can be discovered with vulnerability analysis (Almeida et al., 

2017). Removing less impactful factors from the scope can reduce the number of model inputs and save 

computing resources during future simulation modelling. Moreover, narrowing the scope can improve 

communication between analysts and decision-makers (Reclamation, 2012b, p. 31).  

As an example, decision-makers in the CRB must consider the potential impacts of alternative 

polices and climate change (Smith et al., 2022).  Stakeholders have proposed a large list of policy options, 

including new reservoir operation strategies, modification or removal of dams, market strategies, and 

interbasin transfers (Rosenberg, 2022; Reclamation, 2023e). These options could be represented as 

decision levers, then tested in a simulation model. Stakeholders have also expressed concern over the 

potential impacts of climate change, which could reduce supply via reduced reservoir inflows and 

increased evaporative losses. Likewise, these uncertain factors can be tested in a model. However, it could 

be intractable for all of these elements to be covered in an environmental review. Factor mapping could 

be applied to existing (Reclamation, 2012a; Groves et al., 2013; Bonham, J. Kasprzyk and Zagona, 2022a) 

or new model runs to provide mathematical justification for what decision levers and uncertainties are 

within the scope of the review. 

5.2.4.2 Creating policies 

Vulnerability analysis can be used directly in the process of creating policies. This is accomplished 

in two ways: refining policies based on identified vulnerable conditions, or including the conditions in a 

simulation-optimization problem. 
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For refining policies, the conditions in which a policy is vulnerable are communicated to decision-

makers, who then suggest modifications to the policy to improve performance in those conditions 

(Lempert et al., 2006; Lempert, 2013). In the CRB, a policy could result in unacceptable water shortages if 

reservoir inflows fall below some percentage of the historical average (Reclamation, 2012a; Groves et al., 

2013). That percentage of the historical average could be used to modify the current policy, such as 

adapting releases based on the historical percentage trigger (Rosenberg, 2022; Reclamation, 2023e). The 

efficacy of the changes could then be tested with more simulation modelling. 

The second approach is to use conditions causing poor performance as model inputs in 

simulation-optimization that automates the search for new policies (Hadka and Reed, 2013; Watson and 

Kasprzyk, 2017). In the CRB, this approach would enhance the prior example, where different scenarios 

of historical streamflow could provide tailored input to a simulation model, where multiple sets of policies 

can be created via optimization to ameliorate those vulnerable conditions. 

5.2.4.3 Probabilistic policy comparison 

For this purpose, the resulting vulnerable conditions are compared, where decision-makers can 

take two sets of vulnerable conditions (i.e., for two different policies) and make a judgement on which set 

of vulnerable conditions is more likely (Dixon, Lempert, LaTourrette and Reville, 2007; Dixon, Lempert, 

LaTourrette, Reville, et al., 2007; Groves and Lempert, 2007; Shortridge and Zaitchik, 2018). 

Consider the following example with two policies for the CRB, inspired by Groves et al. (2013). 

Policy one is the ‘status quo’ operating rules and infrastructure, while policy two adds desalination plants. 

Vulnerability analysis could discover the reservoir inflow values below which each policy will be 

unacceptable. The results could indicate, for example, that the status quo is vulnerable to reservoir inflow 

less than 95% the historical average, whereas status quo plus desalination is vulnerable when inflow falls 

below 90%. If decision-makers believe future inflows may drop below 95%, then they may prefer the 
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policy with desalination plants. However, the desalination policy could perform poorly with respect to 

other performance metrics, such as cost or environmental impacts, warranting further analysis.  

5.2.4.4 Negotiation and compromise 

Negotiation can also be facilitated with vulnerability analysis by discovering policies that meet the 

goals of multiple stakeholders (Smith, Kasprzyk and Rajagopalan, 2019; Lempert and Turner, 2020; Jafino 

and Kwakkel, 2021). To do so, decision levers are used as the inputs to the factor mapping algorithm, 

which identifies values for the decision levers (i.e., policies) that achieve a specified performance 

outcome. The factor mapping is repeated for each stakeholder’s desired performance outcomes to 

identify their preferred policies. This process could identify policies that simultaneously meet their goals, 

or it could revela that no such policy exists. In the latter case, the goals could be revised via negotiation 

(Gold et al., 2019b), and the factor mapping repeated to identify compromise policies.  

Consider the following example with two hypothetical stakeholders in the CRB, inspired by 

Bonham et al. (2022a). Stakeholder one wants to maximize hydropower production while stakeholder two 

wants to minimize shortages to downstream users. Factor mapping could identify the reservoir release 

rules (policies) that favor each group. If no policy simultaneously meets both stakeholder’s goals, each 

group would need to compromise on their goal, arriving at a balance between hydropower production 

and deliveries. Factor mapping could be reapplied to find the reservoir release rules that achieve the 

compromise. 

5.2.4.5  Monitoring and adaptation 

Monitoring and adaptation systems track system conditions to indicate when new policy is 

needed to avoid poor performance outcomes (Groves et al., 2013; Zeff et al., 2016). These systems use 

signpost variables, triggers, and policy interventions (Haasnoot et al., 2013; Kwakkel and Haasnoot, 2019, 

chap. 4; Molina-Perez et al., 2019). The signpost variables are monitored in real-time, watching for a 
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trigger value that mobilizes a policy intervention to avoid unacceptable performance. These policies can 

include temporary or long-term actions.  

Signpost variables and triggers can be informed from vulnerability analysis. Consider the following 

example, inspired by Groves et al. (2013) and Reclamation (2012a). Vulnerability analysis could identify 

that unacceptable shortages are likely if average reservoir inflows (the signpost variable) fall below 80% 

the historical average. A more proactive flow threshold, say 90% the historical average, could be used as 

the trigger value. If the trigger value is observed, policy interventions such as conservation programs or 

interbasin transfers could be enacted. A more complex, time-varying analysis of inflows, reservoir levels, 

and other system conditions could help identify the signpost variables and thresholds that most accurately 

predict if unacceptable performance is likely, at various lead times (Robinson, Cohen and Herman, 2020). 

5.3 Recommendations 

5.3.1 Clearly establish the purpose and audience 

It is critical for methodological decisions to be informed by the purpose and end-users of the 

scenarios. For example, consider two purposes: 1) analysts identifying the most impactful model inputs 

(scoping) and 2) decision-makers comparing policy alternatives. The former application may require less 

interpretability, so complex performance classifications and flexible factor mapping methods may be 

appropriate (Trindade, Reed and Characklis, 2019; Steinmann, Auping and Kwakkel, 2020). In the latter 

case, simple narrative scenarios are used to facilitate policy debate, so simple performance classifications 

(i.e., binary) and interpretable factor mapping (i.e., PRIM) may be preferred (Dixon, Lempert, LaTourrette 

and Reville, 2007; Dixon, Lempert, LaTourrette, Reville, et al., 2007).   

A defined purpose is often lacking in environmental modelling studies (Sojda et al., 2012). When 

purpose is defined, it is commonly defined with respect to a methodological innovation, and not a 

policymaking purpose (Razavi et al., 2021). It is also common for analysts to choose methods they are 

familiar with, rather than methods best suited for the purpose (Razavi et al., 2021). Defining the purpose 
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prior to methodological decisions can help avoid these shortfalls (Falconi and Palmer, 2017; Lahtinen, 

Guillaume and Hämäläinen, 2017). 

5.3.2 Consider a space-filling sample of the uncertain factors 

There are potential shortfalls of using climate and population projections for use as SOW. First, 

such projections are often biased toward moderate conditions, which can have unintended consequences 

during the factor mapping stage because relatively fewer ‘challenging’ SOW have been tested (Quinn et 

al., 2020; Reis and Shortridge, 2020). Further, predetermined projections for two or more uncertain 

factors requires a strategy for combining them into sets of model inputs (i.e., SOW). The most common 

strategy is to make every possible combination of each uncertain factor, a so-called full-factorial design 

(Alexander, 2018; Jafino and Kwakkel, 2021). However, this strategy can require a prohibitively large 

number of simulations, since the number of SOW increases exponentially according to nu, where n is the 

number of projections per uncertain factor, and u is the number of uncertain factors (Choi et al., 2021).  

With a space-filling design, the analyst chooses how many simulations to do given their computing 

resources. Further, a full-factorial design can result in large, unsampled regions of the uncertainty space, 

as demonstrated with the solid line in Figure 5-8. In contrast, space-filling designs minimize such gaps, 

which can enable the factor mapping to more accurately describe non-linear relationships (Choi et al., 

2021). Code for Figure 5-8 is given in Appendix C1. The gaps in the full-factorial can be reduced by 

increasing the number of values per uncertain factor, but doing so causes an exponential increase in the 

number of SOW. 
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In cases where predetermined projections are to be used, consider using a hybrid method to 

subsample from a large full-factorial design (Bonham, J. Kasprzyk and Zagona, 2022a; Bonham et al., 

2023). Although large SOW ensembles can be simulated with high-performance computing (e.g., 

Microsoft Azure and Amazon Web Services), doing so may be cost prohibitive and contribute substantially 

to carbon dioxide emissions (Stevens et al., 2020).  

5.3.3 Work with stakeholders to define decision-relevant outcomes 

Analysts and stakeholders should collaborate when defining decision-relevant outcomes because 

it involves numerous preference-informed decisions. These decisions include the performance outcome 

structure (binary, multi-class, continuous), the performance metrics and thresholds, clustering methods, 

and number of classes. It is up to the analyst to use cluster validation (Rendón et al., 2011), expert 

judgment, and feedback from stakeholders in making these decisions. Frequent communication between 

analysts and stakeholders (Merritt et al., 2017; Stanton and Roelich, 2021) can reveal preferences (Smith, 

Kasprzyk and Dilling, 2017; Bonham, Joseph Kasprzyk, and Edith Zagona, 2023) and help ensure ‘decision-

relevant outcomes’ are relevant to decision-makers (Falconi and Palmer, 2017). 

Figure 5-8: Gaps in the sampling space for full-factorial compared to 
space-filling designs. Both designs include 64 model input sets. 
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5.4 Discussion 

5.4.1 Model inputs, performance classes, and probability also impact interpretability 

Inherent in factor mapping are the model inputs and performance outcomes on which they are 

trained, so they too impact interpretability. For example, previous CRB studies have used parameters of 

a synthetic streamflow generator as predictors of water shortages (Hadjimichael, Quinn, et al., 2020; 

Quinn et al., 2020). Used by analysts, these uncertain factors may be sufficiently interpretable. For other 

purposes, such as decision-makers comparing policies, they may not be. Interpretability could be 

improved by transforming them into statistics familiar to decision-makers, such as moving averages of 

streamflow (Reclamation, 2012a; Groves et al., 2013). Also consider whether the inclusion of more 

information, such as additional performance classes or probability information, are adding necessary 

information for decision-makers or if it distracts from the purpose (Miller, 1956; Kasprzyk et al., 2018; Bell 

et al., 2022).  

5.4.2 More flexible factor mapping is not always more accurate 

Testing accuracy can help avoid overfitting of scenarios (James et al., 2013, chap. 2; Robinson, 

Cohen and Herman, 2020; Rudin et al., 2022). Overfitting means the scenarios do poorly at predicting the 

performance outcomes for new model inputs because the scenario is overly sensitive to noise (Hastie, 

Tibshirani and Friedman, 2009, chap. 7; James et al., 2013, chap. 2). Testing for overfitting involves 

splitting model inputs and outputs into training and testing datasets, training the factor mapping 

algorithms on the former (training accuracy), then evaluating their accuracy on the latter (testing 

accuracy). This process can be repeated several times to account for randomness in the train-test split, 

e.g., with k-fold cross-validation (Hastie, Tibshirani and Friedman, 2009, chap. 7). 

Following this best practice can identify cases where a more interpretable scenario is as accurate 

as a more flexible scenario (James et al., 2013, chap. 2; Makridakis, Spiliotis and Assimakopoulos, 2018; 

Rudin et al., 2022). We provide an example in Figure 5-9, which is based on the numerical simulation 
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model and performance threshold described in Appendix C2. Part a shows the model inputs, colored by 

acceptable vs unacceptable performance class. They are split into 80% training (solid) and 20% testing 

(hollow) sets. In part b, two factor mapping algorithms, logistic regression (a linear model, left) and a 

random forest (an ensemble method, right), were fit to the training set. Recall that the predicted 

probability of unacceptable performance is shown as the background color.  The training (top) and testing 

(bottom) accuracies are reported for each. We define accuracy as the fraction of SOW correctly classified 

by the factor mapping algorithm as acceptable or unacceptable, where the predicted classification is 

unacceptable if the probability is greater than 0.5 and acceptable, otherwise. More sophisticated accuracy 

metrics can be used and may yield different results. We use this simple accuracy metric to highlight the 

benefits of using a train-test split to compare factor mapping algorithms. 

 On training data, both algorithms do well, but random forest outperforms logistic regression 

(accuracy of 1 versus 0.78).  When compared with testing data, however, the methods have nearly 

identical testing accuracy – 0.73 and 0.72 for logistic regression and the random forest, respectively. The 

Figure 5-9: Testing accuracy for logistic regression vs random forest for a linear system.a) the dataset is 
split into 80% training and 20% testing points. b) training (top) and testing (bottom) accuracy are reported 
for logistic regression (left) and random forest (right)  
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figure demonstrates, though, that the logistic regression model is more interpretable than the random 

forest. 

This example demonstrates that, for some case studies, more interpretable factor mapping 

algorithms can be as accurate as more flexible methods. By design, this example used a simulation model 

with a linear relationship between inputs and performance (Appendix C2). In practice, the relationship 

may be unknown. The analyst can explore the relationships using data visualizations like scatter matrices 

(James et al., 2013, chap. 2) and by comparing multiple algorithms as done in this example. Several studies 

have demonstrated that more flexible algorithms are frequently (but incorrectly) assumed to be more 

accurate (Makridakis, Spiliotis and Assimakopoulos, 2018; Rudin and Radin, 2019). In vulnerability 

analysis, this assumption can unnecessarily reduce scenario interpretability. 

5.4.3 Vulnerability analyses are often repeated 

Repeatable vulnerability analyses can be beneficial for planning agencies. As emphasized in 

Section 5.3.3, defining decision-relevant outcomes and choosing interpretable methods requires iteration 

with stakeholders. Further, since a vulnerability analysis is predicated on a simulation model, deeply 

uncertain factors, and evolving policy alternatives (Lahtinen, Guillaume and Hämäläinen, 2017), it is 

possible a vulnerability analysis will be repeated. It also important that the analysis can be easily adapted 

for other systems (McIntosh et al., 2011) since organizations often manage more than one system (e.g., 

World Bank, Bureau of Reclamation).  

There are numerous best practices for creating repeatable analyses. These best practices include: 

a) code modularity – i.e., using separate code chunks to perform each step in the vulnerability analysis, 

plus prerequisite tasks like data wrangling (Wilson et al., 2014; Pianosi, Sarrazin and Wagener, 2020; 

Peñuela, Hutton and Pianosi, 2021); b) documenting the programming environment (Peñuela, Hutton and 

Pianosi, 2021); c) creating example workflows with a high frequency of in-code comments (Pianosi, 

Sarrazin and Wagener, 2020; Alsudais, 2021; Hall et al., 2022); d) minimizing dependencies on 
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programming libraries that could become obsolete (Pianosi, Sarrazin and Wagener, 2020). Obsolescence 

is especially relevant because there exist open source libraries for each step of vulnerability analysis 

(Bryant and Lempert, 2010; Pedregosa et al., 2011; Hadka, 2015; Kwakkel, 2017; Hadjimichael, Gold, et 

al., 2020), but these libraries can vary significantly in terms of their maintenance.  

5.5  Conclusion 

Simulation modelling provides decision support by testing system performance under alternative 

policies and plausible futures. However, because of the large number of policy options, uncertain factors, 

and complex system behavior, communicating the relationship between them can be challenging, 

inhibiting decision-making. Vulnerability analysis uses machine learning techniques to discover concise 

descriptions of policies and future conditions that cause performance outcomes relevant to decision 

makers – i.e., scenarios. These scenarios can be used in political debate and motivate the search for 

policies less vulnerable to challenging futures.  

Recently, methods for vulnerability analysis have become increasingly complex to address 

performance outcomes for multiple interest groups, temporal performance dynamics, and non-linear 

relationships between policy decisions, uncertain factors, and performance. This means the resulting 

scenarios may also be less interpretable for decision-making, and that analysts have the difficult task of 

choosing methods that best address the decision-making purpose.  

To provide guidance for analysts, this research establishes a taxonomy of methods, purposes, and 

recommendations for creating interpretable scenarios. We organize vulnerability analysis methods first 

by the performance outcome structure (binary, multi-class, and continuous), and we compare the 

methods by flexibility and interpretability. Vulnerability analysis purposes are identified from the broader 

environmental management literature, and include scoping, policy creation, policy comparison, 

negotiation and compromise, and monitoring and adaption. Purpose informs methodological decisions. 

Finally, we surveyed literature in machine learning, sensitivity analysis, and design of experiments to 
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identify recommendations. These include space-filling sampling of uncertain factors to improve 

computationally efficiency and the use of testing accuracy to create more interpretable scenarios. To 

illustrate purposes, methods, this review used a single environmental system – water supply management 

in the Colorado River Basin.  

This review revealed several opportunities for future research. To reduce the number of computer 

simulations, future studies could investigate adaptive sampling methods, which use a sequential sampling 

procedure to discover regions of model input space that result in highly non-linear performance outputs, 

then strategically samples from those regions to improve factor mapping accuracy (Garud, Karimi and 

Kraft, 2017). Another challenge is how to account for time-varying model inputs in subsampling and factor 

mapping algorithms – perhaps the time-series clustering techniques being used for performance 

classification (Steinmann, Auping and Kwakkel, 2020) could also be applied to model inputs, and the 

resulting cluster information used as inputs to subsampling and factor mapping. A limitation of non-rule 

based factor mapping (i.e., logistic regression, ensemble methods) is the challenge of communicating 

results for more than two model inputs. There is a growing field called ‘explainable artificial intelligence’ 

that seeks to improve the interpretability of flexible machine learning methods (Saranya and Subhashini, 

2023). Novel methods from this field could also improve the interpretability of flexible methods for 

vulnerability analysis. 
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6 Conclusion 
6.1 Summary 

This thesis contributes novel frameworks and interactive tools to empower participatory DMDU. 

In Chapter 1, this thesis explained how DMDU uses simulation models to create policy alternatives, 

explore tradeoffs, evaluate robustness, and discover drivers of vulnerability. The insights provided by 

DMDU can aid decision-making in the presence of uncertain climate and population changes and 

conflicting goals held by decision-makers. However, as stressors on environmental systems degrade the 

benefits received by stakeholders, there is increasing demand for participation in the analysis and 

choosing of polices that impact them. 

Participation in DMDU-based decision support is particularly important because of many 

(consequential) decisions during the analysis. A DMDU analysis begins with initial input from stakeholders 

to help define the uncertain factors, decision levers, and performance objectives. These decisions impact 

the policies and SOW tested in the analysis. Then, input from stakeholders informs how robustness is 

quantified during robustness analysis. These decisions reflect stakeholders’ initial prioritization of 

performance objectives and tolerance for uncertainty-related risk. The choice of robustness metric 

impacts which policies are prioritized by decision-makers. Then, during vulnerability analysis, analysts 

define policy-relevant performance outcomes and choose machine learning methods to identify 

scenarios. These choices can impact which conditions are discovered to be driving system performance 

and the interpretability of scenarios for decision-makers.  

It is difficult to know, a priori, the policy recommendations that result from this sequence of 

interdependent methodological decisions. Further, it is possible such decisions can lead to undesirable 

policy recommendations, such as policies that prioritize one stakeholder at the expense of others or 

scenarios that are uninterpretable for decision-making. The participation of stakeholders and decision-

makers throughout the analysis has the potential to identify and correct such problems. 
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However, there are several barriers to participatory DMDU. First, simulating large SOW ensembles 

can require significant computing resources, a challenge when faced with computing and time constraints 

or when feedback from stakeholders warrants additional modelling. Second, choosing robustness metrics 

is non-trivial because they can exhibit tradeoffs, and current guidance for selecting metrics can overlook 

such tradeoffs because it depends on the a priori preferences of stakeholders. Third, in the presence of 

tradeoffs, decision-makers may disagree on which policies are most robust, requiring negotiation and 

compromise to choose policies. However, robustness-informed negotiation requires that decision-makers 

can interpret complex relationships between multiple policies, many SOW, and robustness tradeoffs. 

Fourth, there is limited guidance on choosing methods for vulnerability analysis that produce 

interpretable scenarios for a given decision-making context.  

This thesis addressed four barriers to participatory DMDU. Chapter 2 introduced a novel 

framework for creating SOW ensembles using subsampling and space-filling metrics to improve the 

computational efficiency of DMDU, especially for practitioners using climate and demand projections for 

uncertain factors. Chapter 3 introduced an a posteriori robustness framework to help stakeholders choose 

robustness metrics and policies after identifying critical tradeoffs. Chapter 4 used the Self-Organizing Map 

to synthesize the predominant tradeoffs when choosing between many policies, organize policies 

according to those tradeoffs, and facilitate negotiation between decision-makers. Chapter 5 reviewed 

purposes and methods for vulnerability analysis, establishing best practices to help analysts choose 

methods that are interpretable and relevant to decision-makers. 

6.2 Dissemination of work 

In addition to journal articles, this research has been disseminated through six oral presentations 

and one poster at academic conferences. These conferences include AGU Fall Meetings (Bonham, 

Kasprzyk and E. Zagona, 2020; Bonham, Kasprzyk and Zagona, 2021; Bonham, J. R. Kasprzyk and Zagona, 

2022a, 2022b), the DMDU Society Annual Meeting (Bonham, J. Kasprzyk and Zagona, 2022b), the 
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international Environmental Modelling & Software meeting (Bonham, Kasprzyk and E. A. Zagona, 2020), 

and the Hydrologic Sciences Symposium at the University of Colorado Boulder (Bonham, Zagona and 

Kasprzyk, 2021).  

Importantly, this research is part of a longer overall project that utilizes DMDU in the Colorado 

River Basin, documented in a co-authored paper entitled ‘Decision Science Can Help Address the 

Challenges of Long-Term Planning in the Colorado River Basin”, published in the Journal of the American 

Water Resources Association (Smith et al., 2022). This paper motivates the need for and describes the 

evolution of DMDU in the CRB, including research activities prior to and including this thesis. 

This research has also been disseminated to practitioners with Reclamation through technical 

reports and presentations. Preliminary research for Chapters 2, 3, and 5 were disseminated as four 

technical reports for analysts in the CRB. Multiple presentations on Chapter 5 were given to analysts, 

decision-makers, and stakeholders in the Columbia River Basin. 

In an effort to contribute to DMDU education, the contents of this thesis were used to teach a 

seven-hour course at the 2023 DMDU Summer School in Mexico City (‘DMDU Summer School 2023’, 

2023). The course was entitled ‘Participatory DMDU Methods for Water Policy’. The course was attended 

by approximately 25 individuals including graduate students, post-doctoral researchers, and practitioners.  

6.3 Discussion 

6.3.1 Model uncertainty 

This thesis discussed how uncertainty with respect to exogenous factors (e.g., streamflow) can be 

analyzed using a SOW ensemble and simulation model to evaluate policy robustness and vulnerability. 

However, uncertainty also arises when the outputs of the simulation model (e.g., reservoir storage) differ 

from observations made in real life, so-called model uncertainty (Kennedy, 2023). Ideally, model 

uncertainty would be minimized using model calibration techniques prior to a DMDU analysis to isolate 

the impacts of exogenous uncertainties (Mai, 2023). Because models are representations of complex 
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systems, however, some degree of model uncertainty is unavoidable. Future research could incorporate 

model uncertainty in DMDU. For example, robustness analysis could include uncertainty intervals that 

show by how much the ranking of policies could change as a function of model uncertainty. Likewise, 

scenarios discovered in vulnerability analysis could use uncertainty intervals to show how model 

uncertainty could impact precisely what conditions lead to, for example, acceptable versus unacceptable 

performance.  

6.3.2 Policy sets: non-dominated, dominated, and other policies 

The case study results in Chapters 2 through 4 use 463 Lake Mead policies generated with multi-

objective optimization and that are non-dominated with respect to eight specific performance objectives. 

Policies in such a tradeoff set are non-dominated because of their performance in a specific set of 

objectives. However, decision-makers may be interested in policies that are dominated with respect to 

this specific set of objectives for different reasons, such as additional performance goals. These other 

goals could include, for example, goals that are difficult to quantify as objectives (e.g., how ‘palatable’ a 

policy appears to a stakeholder) or robustness with respect to specific robustness metrics. Moreover, 

decision-makers may also consider policies not generated from optimization at all. 

The methods and tools introduced in Chapters 2-5 can be implemented with policy sets that 

contain either non-dominated or dominated policies. For example, both dominated and non-dominated 

policies can be ranked according to robustness to test SOW ensemble size as in Chapter 2, and the web 

tool in Chapter 3 can show the performance of both non-dominated and dominated policies on parallel 

coordinate plots. In fact, the parallel coordinate plot in Figure 3-5 shows that many of the 463 policies are 

dominated with respect to stakeholder-selected robustness metrics (not the eight performance objectives 

used during optimization), and they are shown on the same parallel coordinate plot as non-dominated 

policies.  
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Special considerations may be made within methods that perform mathematical analyses on the 

policy set. For example, in Chapter 4, the SOM organizes policy clusters according to a two-dimensional 

coordinate system. In our case study, the coordinate system represented a tradeoff (e.g., improving 

storage objectives at the expense of delivery objectives). However, if the SOM were applied to a set of 

policies in which some were dominated, it is possible the coordinate system would represent increasing 

or decreasing performance without a tradeoff. For example, policies on the left side of the map could 

have small shortages while policies on the right could have large shortages, but this would not necessarily 

tradeoff with storage objectives if the low-shortage policies on the left dominated policies on the right 

(i.e., they performed better with respect to both storage and shortage objectives). In this case, the SOM 

would still be helpful for organizing policies into similarly performing clusters, describing the major 

differences in performance between policy clusters, and illuminating policies that strike a compromise 

between different performance goals. 

6.4 Ongoing work 

In collaboration with Reclamation, this research is contributing to the analysis of post-2026 

policies in the CRB. These efforts include space-filling, subsampling methods for identifying diverse and 

challenging streamflow projections to use in robustness and vulnerability analyses, utilizing methods from 

Chapter 2. The Self-Organizing Map framework from Chapter 4 is being applied to new and more complex 

policy sets that include decision levers for Lakes Mead and Powell plus delivery rules that adapt with 

observed streamflow conditions. There is ongoing development of a web tool that expands on the 

robustness tradeoffs tool presented in Chapter 3 (Smith et al., 2022; Reclamation, 2023c). Reclamation 

will use this tool to communicate policy performance, robustness, and vulnerability and solicit preferences 

from a diverse group of stakeholders including water utilities, state agencies, irrigation districts, 

environmental agencies, Tribal leadership, etc.  In parallel with the app development, Reclamation is 

holding training sessions to ensure stakeholders can meaningfully engage with the tools (Reclamation, 
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2023c), and information from this thesis has been used in those sessions. There may also be a desire to 

integrate other DMDU methods into Reclamation's ongoing processes, including aiding decisions at 

shorter timescales for which existing probabilistic processes are insufficient to capture the variability in 

the system. We believe this thesis, combined with ongoing collaboration with Reclamation, mark a 

significant milestone in the adoption of DMDU for participatory environmental management. 

Ongoing work is applying the novel methods and tools in this thesis to other water resources 

systems. After instructing the course at the 2023 DMDU Summer School, requests have been made for 

other case studies to insert their data into the robustness tradeoffs tool presented in Chapter 3. Future 

work will collaborate with interested analysts to adapt the CRB version of the tool as needed. The 

presentations on methods and purposes for vulnerability analysis given to Reclamation analysts have also 

contributed to two preliminary vulnerability analyses in the Columbia River Basin.  

6.5 Future research opportunities 

This thesis has identified several research opportunities to further empower participatory DMDU. 

To reduce computing requirements, future research could investigate the efficacy of adaptive sampling 

for creating SOW ensembles. Adaptive sampling begins with a small number of space-filling samples, then 

receives feedback from the simulation model to strategically sample more from regions of the model input 

space that lead to highly variable and non-linear model outputs (Garud, Karimi and Kraft, 2017). These 

methods could reduce the number of SOW required for accurate robustness rankings and vulnerability 

analysis (i.e., similar results compared to a larger SOW ensemble). 

A remaining challenge is how to account for time-varying uncertain factors in the creation of SOW 

ensembles and vulnerability analysis. Time-varying uncertain factors, e.g., streamflow, have been 

summarized using scalar values, such as multiplicative factors (Kasprzyk et al., 2013), time-series statistics 

(Bonham, J. Kasprzyk and Zagona, 2022a), or parameters of statistical models (Quinn et al., 2020). 

However, these methods lose information about the time-varying nature of uncertain factors, meaning 



162 
 

 

that sampling methods and vulnerability analyses using these scalar statistics may be missing significant 

predictors of system performance. As described in Chapter 5, recent research has used time-series 

clustering to find groups of performance metric values whose temporal dynamics are similar. These 

methods could be extended to uncertain factors, and this information be used in the creation of SOW and 

as predictors in vulnerability analysis. The continued development of time-series approaches will also be 

important within efforts to apply DMDU to different types of problems in the CRB and elsewhere that 

have different decision horizons. 

A potential challenge for a posteriori tradeoff analysis is recording and communicating decisions 

to stakeholders and decision-makers. Because such analyses are exploratory by nature, there is not a 

prescribed workflow. However, it is important for such analyses to be repeatable and interpretable such 

that stakeholders can provide feedback. The a posteriori robustness framework presented in Chapter 3 

tracks the user’s decisions during an analysis and provides an activity log to enable repeatability, an 

example of decision provenance (Chakhchoukh, Boukhelifa and Bezerianos, 2022). More sophisticated 

methods could further record why decisions were made and use this information to recommend policies 

based on the preferences expressed by stakeholders (Häubl and Trifts, 2000). Further research in these 

areas could improve the interpretability of DMDU, empowering participation. 

Another interpretability challenge is explaining the predictions of flexible machine learning 

methods in a vulnerability analysis. As described in Chapter 5, flexible machine learning methods like 

random forests can produce more accurate predictions of performance outcomes, compared to less 

flexible methods like PRIM, when the relationship between uncertain factors and performance is non-

linear. However, it can be unclear why a flexible method makes the predictions that it does, e.g., what are 

the specific values of streamflow, demand, and other uncertain factors that caused the algorithm to 

predict ‘unacceptable’ for one SOW and ‘acceptable’ for another? If flexible methods are to be used for 

decision-making, such as determining when adaptation is required to avoid unacceptable performance, 
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the predictions made by the model must be justifiable (Rudin, 2019). But, justifying the predictions can 

be challenging due to the model’s black-box nature. More interpretable methods, like PRIM, could be 

used instead, but their accuracy for non-linear systems is limited. Future research could couple flexible 

vulnerability analysis methods with techniques from explainable artificial intelligence, a growing research 

area in machine learning that uses mathematical and visualization techniques to provide simple 

explanations of why black-box models make the predictions they do (Saranya and Subhashini, 2023). For 

cases where interpretable models like PRIM are insufficiently accurate, novel methods from explainable 

artificial intelligence could improve the interpretability of highly flexible methods for vulnerability 

analysis. 

Congruent with the motivation of this thesis, we encourage future research in these areas to be 

driven by the decision-making purpose with the goal of empowering participatory DMDU.  
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A. Supplementary Material for Subsampling and Space-filling Metrics to Test Ensemble Size for 

Robustness Analysis with a Demonstration in the Colorado River Basin 

A.1. Streamflow features used as inputs to cLHS 

To subsample from the existing 500 scenarios, we calculated 4 streamflow features for every 

streamflow time series. These 4 features were then used as inputs to cLHS (in addition to Lake Mead pool 

elevation, Lake Powell pool elevation, and demand). The 4 features are the average of the driest 20-year 

period, wettest 20-year period, driest 2-year period, and wettest 2-year period. The two features that 

capture the driest periods are calculated as argmin(AVGW), where AVGW is the moving window average of 

the previous W years (either 2 or 20 years). The features that capture the wettest periods are calculated 

as argmax(AVGW). The figure below shows an example calculation of the driest and wettest 2-year 

averages. The annual flow, in Million-Acre Feet (MAF), is shown in the ‘Q (MAF)’ column, and the trailing 

2-year average is in the ‘2yr AVG’ column. The wettest and driest 2-year periods are highlighted in blue 

and red, respectively. 

 

A.2. Rank diagrams illustrating why we chose 0.975 correlation as ‘accurate’ threshold 

We defined ‘accurate ranking’ as scenario sets that achieved a rank correlation of 0.975 or greater. 

This decision is based upon visual inspection of scatter plots of subsample rank (y axis) vs all scenarios 

rank (x axis, labelled n500.rank), as shown in the figure below. There are six plots, one per robustness 



184 
 

 

metric, where the top row shows satisficing- type metrics, the bottom row is regret from best, and the 

columns are the three performance objectives. For each robustness metric, we selected three 

representative scenario sets with correlations closest to 0.95, 0.975, and 1.00 (maximum rank 

correlation). These are shown in red, green, and blue, respectively. The legend of each plot uses the 

format correlation_number-scenarios, e.g., 0.95_50 in the reliability.satisficing legend (top left plot) 

means the scenario set achieved a rank correlation of 0.95, and the scenario set has 50 scenarios in it. 

Policies that are ranked identically between the subsample and all scenarios are located on the black, 1-

to-1 line, and the orthogonal distance between a point and the line is the number of positions by which 

the policy is misranked. 

From this plot, we observed that scenario sets with correlation of 0.95 can have many policies 

that are incorrectly tied, especially for the satisficing metrics. This is shown by horizontal runs of red 

points. For example, we observe several such ties in the reliability.satisficing, resiliency.satisficing, and 

vulnerability.satisficing plots.  
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In contrast, these erroneous ties are resolved for the scenario sets with rank correlations of 0.975 

and above (i.e., we do not observe horizontal runs of green or blue points). Some exceptions are seen in 

the vulnerability.satisficing plot, which shows horizontal runs at roughly rank 250 and 300. However, these 

ties are not very interesting, since they occur for policies that are not ranked near the top. 

 

We are most concerned with how accurately a scenario set ranks the most robust policies, as 

these most robust policies would ideally be prioritized by decision-makers. The plot below zooms in on 

the plot above to the top 10 policies, showing only the scenario set with rank correlation of 0.975. The 

dots are plotted with a transparency such that policies with the same x-y coordinates (e.g., they are 

correctly tied) are darker green. These plots reveal that our selected scenario sets with correlation of 

0.975 accurately identify the most robust policy (rank 1 is located on the diagonal line). Moreover, the 

subsampled scenario sets agree with all scenarios on which policies belong in the top 10. Lastly, policies 

in the top 10 are correctly ranked and/or misranked by only 1-3 positions (the orthogonal distance from 

a point to the line is 1-3 positions). There are few exceptions, which are caused by ties. Consider 

reliability.regret (bottom-left), for example. The dark green point at position 1-1 indicates multiple policies 
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are correctly tied for most robust. Policies ranked 9 and 10 using the subsample are ranked 1 using all 

scenarios. Although the vertical distance suggests the ranking is wrong by 8 plus positions, this is simply 

because 8 policies are given rank 1, then the next most robust policy is given rank 9. The selected scenario 

sets provide a useful and accurate description of which policies are most robust; therefore, we define 

accurate ranking as any scenario set that meets or exceeds this 0.975 correlation threshold. 

 

A.3. Residual plots of rank correlation vs MSTmean linear models 

For the space-filling metric with highest R2 (MSTmean), we checked that the residuals had 

approximately a mean of 0 and that the errors were homoscedastic. These are assumptions of linear 

models upon which prediction intervals are calculated. Residuals vs. predicted correlation are shown in 

the figure below, each subplot being for one robustness metric. As before, the rows indicate the 

robustness type, and columns indicate objective type. Each point corresponds to one subsampled scenario 

set, the y axis is the residual between the scenario set’s actual rank correlation and the linear model’s 

predicted correlation, and the x axis is the predicted correlation. The blue line is a loess fit to highlight any 

trends in the residuals. The blue line shows that the average residual is approximately zero for each model, 

and there is no strong trend as a function of the predicted correlation. We note that the residuals can be 
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slightly larger for smaller predicted correlations; however, most residuals are of similar magnitude 

regardless of the predicted correlation (i.e., they are homoscedastic). 

 

A.4. Linear models using mindist and MSTsd as predictors 

In the main text, we presented the linear models that use MSTmean because it achieved higher 

R2 than mindist and MSTsd, as shown in the figure below. The columns are for mindist, MSTmean, and 

MSTsd, respectively, and each row is a robustness metric. In the subplots, each point is a scenario set, the 

y axis is rank correlation, and the x-axis is the value of the space-filling metric. The line shows the fitted 

linear model, and each model’s R2 is reported. For every robustness metric, the highest R2 is obtained by 

the MSTmean model, followed by MSTsd and mindist, respectively. 
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B. Supplementary Material for post-MORDM: mapping policies to synthesize optimization and 

robustness results for decision-maker compromise 

B.1. The SOM batch update function 

The SOM update function is iterated over every neuron until the neurons stabilize. The governing 

equation for the batch version of the update function is 

Eq. (A.1)           𝑚𝑗 =
∑ 𝑤𝑘𝑣𝑘

∑ 𝑤𝑘
 

where mj is the (updated) prototype vector of neuron j, k is an index for each data point whose BMU is 

within the neighborhood of neuron j, vk is data point k as defined by its vector of feature values, and w is 

a weight (Hastie, Tibshirani and Friedman, 2009, chap. 14.4; Kohonen, 2013). The weight applied to every 

data point can be 1, or it can decrease with increasing map distance between the data point’s BMU and 

mj according to a user-defined neighborhood function shape. Effectively, all data points within a neuron’s 

neighborhood contribute to the updated neuron’s prototype vector, and closer data points contribute 

more (in the case where the weight is not constant).  

We tersely describe several hyperparameters that the user must define when using the batch update 

function. 

Neighborhood radius: the neighborhood radius defines how many neurons are considered to be in the 

neighborhood of a neuron and thus affect the neuron’s updated prototype vector. The radius is measured 

in two-dimensional map space. A smaller radius tends to result in better QE, whereas a larger radius 

results in better TE. 

Neighborhood function (also called neighborhood shape): Neighborhood function determines the value 

of the weight, wk, as a function of the map distance between the neuron being updated and the BMU of 

vk. Common neighborhood functions include bubble (also called uniform), Gaussian, and parabolic. 
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Distance function: The distance function determines how distance is measured in data space, and thus 

controls the assignment of data points to BMUs. Common distance functions include Euclidean, 

Manhattan, and sum of squared distance. 

Edge neuron behavior: Neurons on the outer edges of the SOM have less neighbors than other neurons, 

thus they can be unequally ‘pulled’ by their neighbors into the middle of the SOM. Thus, edge behavior 

can be defined as toroidal (as opposed to planar), connecting the neurons on the left and right (and 

bottom/top) in a torus shape to avoid this inward-pull effect. 

For further details, we refer the reader to (Clark, Sisson and Sharma, 2020).  
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B.2. SOM quality metrics: percent of variance explained and topographic error 

The number of neurons and hyperparameter set are evaluated by percent of variance explained 

(PVE) and topographic error (TE). PVE quantifies how well the SOM neurons represent the input data. PVE 

is calculated from quantization error, scaled 0 to 100% using the total variance of the data set, according 

to the equation  

Eq. (A.2.1)  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = 100 −  
100∗𝑞𝑒

𝜎2  

where 𝜎2 is the total variance of the data and qe is the quantization error calculated as 

Eq. (A.2.1)         𝑞𝑒 =
1

𝑃
∑𝑃

𝑝=1 𝑑𝑖𝑠𝑡(𝑚𝑐 , 𝑣𝑝) 

where P is the total number of data points, p is the data point index, vp is the feature vector of data point 

p, and mc is the vector of the closest neuron to vp (Clark, Sisson and Sharma, 2020; Boelaert et al., 2021). 

dist() is the distance function, which can be Euclidean, Manhattan, or sum of squares. The range of percent 

variance explained is 0 to 100%, with 100% percent being ideal. 

TE measures how well the mapping of data onto the SOM preserves the data’s topologic patterns. 

TE is calculated according to 

Eq. (A.2.2)        𝑡𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑒𝑟𝑟𝑜𝑟 =
1

𝑃
∑𝑃

𝑝=1 𝑢𝑣𝑝
 

where 𝑢𝑣𝑝
 = 0 if the first and second closest neuron to data point vp according to the distance function 

are not adjacent neighbors in the SOM (i.e, an instance of topographic error), and 1 otherwise. 

Topographic error ranges from 0 to 1, where 0 means no instances of topographic error occur, and 1 

means every data point is characterized by a topographic error. TE and PVE typically conflict, where a map 

with more neurons results in better representation of the data points at the expense of topologic 

preservation (Clark, Sisson and Sharma, 2020). Therefore, both metrics are considered when selecting the 

number of neurons and hyperparameter set. 
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B.3. Parallel coordinates plot of Lake Mead polices from MOEA-optimization 

Section 4.4.3.1 uses radar plots and a SOM topology map to visualize the tradeoffs that policies 

exhibit with respect to optimization objectives. Because parallel axis plots are commonly used for 

exploring the tradeoffs of a non-dominated policy set, we have provided this common visualization here. 

This plot shows the optimization objectives of 463 Lake Mead operation policies created with the Borg 

MOEA. Each parallel axis is an objective, and each colored trace is a policy. Policies are colored by M.1000. 

The preferred direction is downward for all axes. For a description of the objectives and units, see Table 

4-2. 
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B.4. 500-member State of the World (SOW) ensemble sampled with conditioned Latin Hypercube 

Sampling (cLHS) 

 

a) Scatter-matrix of uncertainty metrics sampled in the SOW ensemble. Demand is Upper Basin 

annual depletion in million-acre feet (MAF) held constant over the simulation. Mead.PE and Powell.PE are 

the pool elevations at Lakes Mead, respectively, at the beginning of the simulation in feet above mean 

sea level. Mean is the annual cumulative natural flow averaged over the 44-year simulation at Lees Ferry, 

Arizona, in MAF. The lower triangle shows values for each SOW, and the diagonal shows a histogram with 

the average in red. 

b) The Cumulative Distribution Function (CDF) of hydrology traces used in the SOW ensemble. The 

plot shows the CDF of the annual cumulative natural flow measured at Lees Ferry, Arizona. Blue traces 

are those sampled via cLHS for use in the SOW ensemble. Light gray traces are traces in the cumulative 

1963 traces contained in the Observed Resampled, GCM, Paleo Resampled, and Paleo Conditioned 

ensembles but not included in the SOW ensemble.  
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B.5. Grid search of SOM size and hyperparameters 

 

a) To select the SOM size and hyperparameters in section 4.4, we trained SOM on the optimization layer 

using 1000 parameter sets derived from Latin Hypercube Sampling. The hyperparameters include: 1) 

neighborhood radius from 0 – 1, measured as the fraction of total two-dimensional map distance, 2) 

distance function, including Euclidean, Manhattan, and sum of squares, 3) neighborhood function, either 

Gaussian or bubble, 4) edge behavior, either toroidal (1) or planar (0), 5) total number of neurons, from 

3-28 (neuron axis is labeled as ‘nodes’).  
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The range of neurons was informed by calculating the Davies-Bouldin index (DB) for k-means 

clusters of k = 2 to 100 clusters. DB measures cluster performance, where large separation between 

different clusters and small separation within a cluster is preferred (Xiao, Lu and Li, 2017).  Because SOM 

is a constrained form of k-means clustering that collapses to k-means clustering at the end of the training 

procedure, we used DB to identify a reasonable range of neurons to test (Clark, Sisson and Sharma, 2020). 

We found DB to be smallest at k=13 except where k exceeded 80, but only offering a small improvement. 

Note that the ratio of neurons in the x to y dimensions are calculated from the total number of neurons 

by setting the ratio equal to the ratio of the first and second eigenvalues of the objective layer according 

to the recommendations of (Kohonen, 2001; Clark, Sisson and Sharma, 2020). For more information on 

the eigenvalues calculated in this case study, see part c below. 

Davies-Bouldin index was calculated in R using the clusterSIM package (R Core Team, 2021; 

Walesiak and Dudek, 2021). SOM training was performed with the kohonen package, and fit metrics were 

calculated using the aweSOM package (Kruisselbrink, 2019; Boelaert et al., 2021; R Core Team, 2021). To 

reduce the number of parameter sets under consideration, we applied a non-domination filter considering 

minimization of the number of neurons, maximization of percent variance explained, and minimization of 

topographic error. We performed this task with the ecr package (Bossek et al., 2017). 

b) We used the interactive brushing features of plotly parallel coordinate plots to select the final 

parameter set, highlighted in yellow (Sievert et al., 2021). The SOM consists of 15 neurons, 5 in the x 

direction and 3 in the y direction. Larger maps had relatively small improvements in TE or PVE, whereas 

smaller maps had relatively large decrease in performance. Several parameter sets with identical x and y 

dimensions, distance function (sum of squares), neighborhood function (Gaussian), and edge behavior 

(planar, 0) but slightly different neighborhood sizes resulted in the same SOM and thus the same PVE and 

TE. We chose the parameter set with the smallest neighborhood distance. 
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All code required to create a SOM, including the steps discussed in Section 4.3.1.1 and a grid 

search of SOM size and hyperparameters, are available on GitHub:  https://github.com/nabocrb/post-

MORDM 

c) We have included the variance explained by each principal component (PC) in the figure below. The 

proportion of variance explained (PVE) by each PC is calculated as the PC’s eigenvalue divided by the sum 

of all eigenvalues, since an eigenvalue is the variance of a principal component (James et al., 2013, chap. 

10.2). As indicated in the figure, PC1 and PC2 explain 83% of the cumulative variance (cumulative variance 

explained, or CVE). Thus, in our case study, arranging the SOM along PC1 and PC2 is especially helpful for 

visualizing tradeoffs and supporting negotiation. However, it is possible that PC1 and PC2 will explain less 

CVE in other applications. In this case, aligning the SOM along PC1 and PC2 is still valid, but the user may 

find that individual neurons, or neighborhoods of neurons, capture other patterns of the feature space 

(such as non-linear patterns or patterns described by PC3, for example). We could imagine a case where 

a DM may be more interested in the tradeoffs represented by, say, PC1 and PC3. Then, the SOM could be 

initialized along PC1 and PC3, instead. 

 

https://github.com/nabocrb/post-MORDM
https://github.com/nabocrb/post-MORDM
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B.6. Component planes of performance objectives 

 

Component planes are topology maps that show one dimension per map, plotting the average 

value per neuron. In this figure, each component plane shows the objective value averaged over the 

policies per neuron. Component planes are helpful for visualizing the patterns of one objective in the 

topology map. 



199 
 

 

B.7. Method for testing quality of robustness superposition method 

 

Because this research presents the first superposition of robustness metrics onto a SOM trained 

to to the optimization layer, we performed an experiment to affirm the quality of the resulting robustness 

topology maps. First, we establish our SOM using the parameter set used in Section 4.4, described in 

Appendix B.5. This establishes the assignment of each Lake Mead policy to a neuron. We then 

superposition three robustness metrics, mean, 90% maximin, and 90% regret from best, creating three 

robustness topology maps (Appendix B.11 – B.13, below). For descriptions and example calculations, see 

B.8-B.9. For a baseline to compare the superposition method to, we also train a new SOM for each 

robustness metric, using the same SOM parameters (d). Finally, we compare the percent variance 

explained and topographic error. The results are summarized in Figure B.10. 
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B.8. Description of robustness metrics tested 
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B.9. Example calculations for the tested robustness metrics 

  

Each example calculation is for a hypothetical policy 1 that was simulated in 10 SOW. We perform 

the calculation using the LB.AVG objective.  90th percentile regret from best requires data for other 

policies, so we include data for hypothetical policies 2 and 3. The calculation first involves finding the best 

performance in each SOW, then subtracting this value from the performance of policy 1. The final value 

is obtained by taking the 90th percentile. 
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B.10. Skill of robustness metric superposition method 

 

a) Fraction of variance explained of training a new a new SOM to each robustness metric (salmon color) 

compared to the robustness superposition method (blue). Fraction of variance explained for both 

methods exceeds 0.75. Note that fraction of variance explained is the same as percent of variance 

explained in A2 divided by 100. 

b) Topographic skill of training a new SOM to each metric compared to the superposition method. We 

plot topographic skill, 1 – topographic error, such that up is the desired direction for both plots a and b. 

Topographic skill exceeds 0.75 for both methods. We conclude robustness superposition attains 

satisfactory skill for implementation in the post-MORDM framework. 
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B.11. Superposition results for mean (Laplace’s Principle of Insufficient Reason) 

a) The resulting radar plot topology map of the superposition method applied to the mean 

robustness metric.  

b) The robustness component planes of each objective, showing the value averaged over policies in 

each neuron. 
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B.12. Superposition results for 90th percentile maximin 

 

a) The resulting radar plot topology map of the superposition method applied to the 90th percentile 

maximum robustness metric.  

b) 90th percentile maximin component planes. 
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B.13. Superposition results for 90th percentile regret from best 

a) The resulting radar plot topology map of the superposition method applied to the 90th percentile 

regret from best. 

b) 90th percentile regret from best component planes. 

 

 

 

 

  



206 
 

 

B.14. Stakeholder robustness satisficing map using boxplots 

The satisficing values of the Delivery (orange) and Storage (blue) decision makers, plotted with 

boxplots on the SOM. Figure 8 in the text shows neurons 9-10 and 13-15, which were included in the 

decision makers’ negotiation area. This figure shows all neurons. 
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B.15. Combined shortage operation vs similar policies in neuron 3 

 

Section 4.4.4 uses neurons 9 and 3 to compare the neurons in the feasible negotiation space to 

the current, combined Lake Mead policy.  We use neuron 3 to represent the combined Lake Mead policy 

because of similar T1e, T1V, and maxV. The average T1e, T1V, and maxV of neuron 3 are 1082 feet msl, 

764 KAF, and 1302 KAF, respectively, compared to 1090 feet msl, 241 KAF, and 1375 KAF for the combined 

policy. Although the average T1V of neuron 3 is 523 KAF greater than the combined policy, there exists 

three policies within neuron 3 whose T1V values range from 325 to 375 KAF, which is more comparable 
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to the combined operation (IDs 85, 233, 416, see above figure). These MOEA-derived policies implement 

T1e only five feet higher than the combined operation (1090 feet msl vs 1095 feet msl). T1V is larger for 

the MOEA-derived policies, but their T1V values are more similar than the average in neuron 3. The maxV 

of these three policies and the overall average of neuron 3 is also similar to the combined operation. 

Interestingly, no neuron (or individual policy) closely mimics all shortage tiers of the combined operation. 

Neuron 3 is the most similar when comparing T1e, T1V, and maxV, but, from visual inspection of Figure 6, 

it appears the combined operation enacts maxV at a higher elevation than do policies in neuron 3.   
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C. Supplementary material for Taxonomy of purposes, methods, and recommendations for 

vulnerability analysis 

C.1. Details of the full-factorial vs space-filling design in Fig. 9. 

Both the full-factorial and space-filling design use 64 samples. Values for i1 and i2 range from 0 

to 1. The full-factorial is created by making a uniformly-spaced sequence of 8 points for both i1 and i2, 

then making all combinations of those points, resulting in 64 samples. The space-filling design was 

created with the improvedLHS function of the lhs package in the R programming language. The code is 

available on the corresponding author’s GitHub: https://github.com/nabocrb/Vulnerability-analysis-

examples-GitHub  

C.2. Details of the training versus testing accuracy example in Fig. 10 

The example uses a linear simulation model: m1 = i1-i2+noise. We simulated 300 Latin 

Hypercube samples of i1 and i2, where the values range from 0 to 1. The noise represents smaller 

impacts on performance from other model inputs and any randomness inherit in the system being 

modelled. The noise is randomly sampled from a normal distribution with a mean of 0 and standard 

deviation of 0.3. We defined unacceptable performance as being less than the average value of m1. The 

dataset was randomly split into 80% training and 20% testing (Fig. 10a). A logistic regression model (a 

linear method) and random forest (a flexible ensemble method) were then trained and evaluated for 

testing accuracy (Fig. 10b). 

The code is available on the corresponding author’s GitHub: 

https://github.com/nabocrb/Vulnerability-analysis-examples-GitHub  
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