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Abstract 

Mitchell Frischmeyer (M.S., Civil, Environmental, and Architectural Engineering) 

Advancing Decision Support for Water Management Operations in the Klamath River Basin 

Thesis directed by Dr. Edith Zagona 

Droughts, highly uncertain forecasts, and competition for limited supply are persistent 

management challenges within the Klamath River Basin. As a result, the Bureau of Reclamation is 

subject to a recurring cycle of litigation and reanalysis over stakeholder’s seasonal supply allocations. 

This drives the need for Reclamation to a) improve forecasts’ skill and b) develop a more flexible and 

transparent operations management tool. Our research addresses the need for a better operations 

management tool by utilizing a widely used hydro policy model software, RiverWare, to build one. The 

design is based on Reclamation’s defined functional requirements. Additionally, features are incorporated 

that improve the user experience through intuitive run and output management. As for improving 

forecasts’ skill, our research investigates potentially informative climate teleconnections and alternative 

regression methods to reduce uncertainty. These are sea surface temperature anomaly and 700 hectopascal 

geopotential height signals and local polynomial and random forest regression respectively. The outcome 

is a climate informed version of the existing forecast that effectively reduces error at January through 

March lead times. The practical value of these forecasts is assessed by integrating them into operational 

projections. Resultant projections of competing agricultural, environmental, and flood control uses of 

supply have a meaningfully smaller range of error, therefore, advocating for their application. 

 

 

 

 

 

 



 
iii 

 

Acknowledgements 

I would like to thank my adviser Dr. Zagona for giving me the amazing opportunity to work on 

this research effort. Her guidance throughout the study and push to advance water management in the 

Klamath River Basin through the application of RiverWare were invaluable to the research’s completion 

and positive reception from our collaborators respectively.  

I would like to acknowledge David Neumann for his constant availability to answer my model 

development questions and general RiverWare modeling advice. The array of model features and their 

quality benefitted greatly from it.  

Special thanks to my committee members Dr. Kasprzyk and Dr. Balaji for their suggestions that 

enhanced the quality of the thesis. I learned a great deal about this research’s statistical forecasting 

techniques and approach to water management for conflicting objectives from Dr. Balaji’s and Dr. 

Kasprzyk’s classes respectively. 

Bureau of Reclamation for funding the development of the KRMO under the contract 140R8120F185. 

Collaboration from the Klamath Basin Area Office and Denver Technical Service Center. 

 

 

 

 

 

 

 

 

 

 

 



 
iv 

 

Contents 

CHAPTER 1: INTRODUCTION .................................................................................................... 1 

1.1. STUDY OBJECTIVES ............................................................................................................3 
1.2. STUDY DESCRIPTION ..........................................................................................................3 

CHAPTER 2: DEVELOPMENT AND TESTING OF THE KLAMATH RIVERWARE 
OPERATIONS MODEL.................................................................................................................. 5 

2.1. MODEL REQUIREMENTS  .....................................................................................................6 
2.1.1. Extent and Features ..................................................................................................... 7 
2.1.2. Data ........................................................................................................................... 7 
2.1.3. Policy ......................................................................................................................... 8 
2.1.4. Workflow .................................................................................................................. 10 

2.2. MODEL DESIGN  ................................................................................................................ 12 
2.2.1. Model Layout ............................................................................................................ 12 
2.2.2. Objects and Methods ................................................................................................. 14 
2.2.3. Data and Management ............................................................................................... 18 
2.2.4. Rpl Sets..................................................................................................................... 22 
2.2.5. Run and Scenario Management .................................................................................. 27 
2.2.6. Output Products ........................................................................................................ 28 
2.2.7. Adjusted Workflow..................................................................................................... 34 

2.3. TESTING ........................................................................................................................... 35 
2.3.1. Comparison Variables ............................................................................................... 35 
2.3.2. Methodology ............................................................................................................. 36 
2.3.3. Results ...................................................................................................................... 38 

2.4. STAKEHOLDER WORKSHOP .............................................................................................. 41 
2.4.1. Feedback .................................................................................................................. 42 

CHAPTER 3: METHODOLOGY ................................................................................................. 43 

3.1. PREDICTIVE VARIABLE IDENTIFICATION .......................................................................... 43 
3.1.1. Potential Climate Teleconnections Identification ......................................................... 44 
3.1.2. Strongest Signals Selection......................................................................................... 45 
3.1.3. Incorporation of Existing Forecast Products ............................................................... 46 

3.2. REGRESSION MODEL DEVELOPMENT AND SELECTION ..................................................... 47 
3.2.1. Local Polynomial Regression ..................................................................................... 47 
3.2.2. Random Forest Regression......................................................................................... 51 
3.2.3. Model Comparison and Skill Assessment..................................................................... 53 

3.3. OPERATIONS WITH IMPROVED FORECASTS ANALYSIS ...................................................... 54 
3.3.1. Performance Metric Definitions.................................................................................. 55 
3.3.2. Model Setup, Runs, and Results .................................................................................. 56 
3.3.3. Performance Metric Computation and Analysis ........................................................... 57 

CHAPTER 4: RESULTS ............................................................................................................... 58 

4.1. BEST PREDICTIVE VARIABLES .......................................................................................... 58 
4.1.1. Sea Surface Temperatures .......................................................................................... 59 
4.1.2. 700 Hectopascal Geopotential Heights ....................................................................... 60 
4.1.3. Adjusted NRCS Forecasts........................................................................................... 61 



 
v 

 

4.2. REGRESSION MODEL SKILL.............................................................................................. 63 
4.2.1. Local Polynomial Models........................................................................................... 64 
4.2.2. Random Forest Models .............................................................................................. 69 
4.2.3. Regression Model Rankings ....................................................................................... 72 

4.3. PERFORMANCE METRIC SCORES  ...................................................................................... 74 

CHAPTER 5: CONCLUSIONS AND FUTURE WORK ............................................................... 84 

5.1. VALUE OF IMPROVED EARLY SEASONAL FORECASTS ....................................................... 84 
5.2. EXPLANATION FOR LACK OF IMPROVEMENT IN LATE SEASONAL FORECASTS .................. 86 
5.3. STUDY ACCOMPLISHMENTS .............................................................................................. 88 
5.4. FUTURE WORK ................................................................................................................. 92 

REFERENCES .............................................................................................................................. 95 

APPENDIX.................................................................................................................................... 98 

A. PREDICTIVE VARIABLE CORRELATION MATRICES ................................................................... 98 
B. SCREE PLOTS....................................................................................................................... 101 
C. PREDICTOR/PRINCIPAL COMPONENT CORRELATION MATRICES .............................................. 102 
D. VARIABLE IMPORTANCE SCORES .......................................................................................... 107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
vi 

 

Tables 

TABLE 1. OBJECTS ON THE KROM WORKSPACE.................................................................................. 15 
TABLE 2. OBJECTS AND THEIR SLOTS THAT REPRESENT THE PER RUN SETTINGS. .................................. 19 
TABLE 3. SLOTS THAT REPRESENT THE OBSERVED HYDROLOGY.......................................................... 20 
TABLE 4. OBJECTS AND THEIR SLOTS THAT REPRESENT THE HYDROLOGY TABLE ................................. 21 
TABLE 5. COMPARISON VARIABLES USED TO ASSESS THE MODEL. ........................................................ 36 
TABLE 6. SEASONAL FORECAST PERIOD BASED ON FORECAST LEAD TIME. ............................................ 46 
TABLE 7. PERFORMANCE METRICS SPECIFICATIONS. ........................................................................... 56 
TABLE 8. SIGNIFICANT TELECONNECTIONS AT EACH FORECAST LEAD TIME. ........................................ 61 
TABLE 9. ORIGINAL NRCS SEASONAL INFLOW FORECASTS FROM 1986. .............................................. 62 
TABLE 10. THE FEBRUARY-SEPTEMBER NRCS INFLOW FORECASTS FOR JANUARY AND FEBRUARY LEAD 

TIMES AND THE HISTORICAL FRACTION OF FEBRUARY-SEPTEMBER INFLOW VOLUME THAT COMES IN 
MARCH. .................................................................................................................................... 62 

TABLE 11. THE APPROXIMATED MARCH INFLOW VOLUME FROM THE NRCS FORECAST AND THE 
ESTIMATED MARCH-SEPTEMBER UPPER KLAMATH LAKE INFLOW FORECAST. .............................. 63 

TABLE 12. THE 1986 MAY INFLOW VOLUME AND THE COMPUTED JUNE-SEPTEMBER UPPER KLAMATH 
LAKE INFLOW FORECAST. .......................................................................................................... 63 

TABLE 13. CORRELATION MATRIX OF THE CLIMATE (SST’S AND GPH’S) AND NRCS PREDICTORS FOR 
THE JANUARY LEAD TIME. .......................................................................................................... 64 

TABLE 14. LOADINGS MATRIX OF THE PREDICTIVE VARIABLES (TOP: CLIMATE-PLUS-NRCS, BOTTOM: 
CLIMATE-ONLY) AND PRINCIPAL COMPONENTS USED TO FIT THE LOCAL POLYNOMIAL REGRESSION 
MODEL AT THE JANUARY LEAD TIME........................................................................................... 66 

TABLE 15. BEST MODEL SPECIFICATIONS FOR THE LOCAL POLYNOMIAL REGRESSION ON THE CLIMATE-
ONLY AND CLIMATE-PLUS-NRCS PRINCIPAL COMPONENTS. ......................................................... 68 

TABLE 16. BEST CLIMATE-PLUS-NRCS MODEL FOR EACH LEAD TIME................................................... 74 
TABLE 18. CORRELATION MATRIX OF THE CLIMATE (SST’S AND GPH’S) AND NRCS PREDICTORS FOR 

THE FEBRUARY LEAD TIME......................................................................................................... 98 
TABLE 19. CORRELATION MATRIX OF THE CLIMATE (SST’S AND GPH’S) AND NRCS PREDICTORS FOR 

THE MARCH LEAD TIME. ............................................................................................................ 98 
TABLE 20. CORRELATION MATRIX OF THE CLIMATE (SST’S AND GPH’S) AND NRCS PREDICTORS FOR 

THE APRIL LEAD TIME. ............................................................................................................... 99 
TABLE 21. CORRELATION MATRIX OF THE CLIMATE (SST’S AND GPH’S) AND NRCS PREDICTORS FOR 

THE MAY LEAD TIME. ................................................................................................................ 99 
TABLE 22. CORRELATION MATRIX OF THE CLIMATE (SST’S AND GPH’S) AND NRCS PREDICTORS FOR 

THE JUNE LEAD TIME. .............................................................................................................. 100 
TABLE 24. LOADINGS MATRIX OF THE PREDICTIVE VARIABLES (TOP: CLIMATE-PLUS-NRCS, BOTTOM: 

CLIMATE-ONLY) AND PRINCIPAL COMPONENTS USED TO FIT THE LOCAL POLYNOMIAL REGRESSION 
MODEL AT THE FEBRUARY LEAD TIME. ..................................................................................... 102 

TABLE 25. LOADINGS MATRIX OF THE PREDICTIVE VARIABLES (TOP: CLIMATE-PLUS-NRCS, BOTTOM: 
CLIMATE-ONLY) AND PRINCIPAL COMPONENTS USED TO FIT THE LOCAL POLYNOMIAL REGRESSION 
MODEL AT THE MARCH LEAD TIME. .......................................................................................... 103 

TABLE 26. LOADING MATRIX OF THE PREDICTIVE VARIABLES (TOP: CLIMATE-PLUS-NRCS, BOTTOM: 
CLIMATE-ONLY) AND PRINCIPAL COMPONENTS USED TO FIT THE LOCAL POLYNOMIAL REGRESSION 
MODEL AT THE APRIL LEAD TIME.............................................................................................. 104 



 
vii 

 

TABLE 27. LOADING MATRIX OF THE PREDICTIVE VARIABLES (TOP: CLIMATE-PLUS-NRCS, BOTTOM: 
CLIMATE-ONLY) AND PRINCIPAL COMPONENTS USED TO FIT THE LOCAL POLYNOMIAL REGRESSION 
MODEL AT THE MAY LEAD TIME. .............................................................................................. 105 

TABLE 28. LOADING MATRIX OF THE PREDICTIVE VARIABLES (TOP: CLIMATE-PLUS-NRCS, BOTTOM: 
CLIMATE-ONLY) AND PRINCIPAL COMPONENTS USED TO FIT THE LOCAL POLYNOMIAL REGRESSION 
MODEL AT THE JUNE LEAD TIME. .............................................................................................. 105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
viii 

 

Figures 

FIGURE 1. WORKSPACE OF THE PROPOSED KROM. ARROWS SIGNAL THE DIRECTION OF FLOW .............. 13 
FIGURE 2. INITIALIZATION RULESET, BROKEN DOWN BY POLICY GROUP AND RULES, FOR THE KROM .... 23 
FIGURE 3. SIMULATION RULESET, BROKEN DOWN BY POLICY GROUP AND RULES, FOR THE KROM ........ 25 
FIGURE 4. INITIALIZATION RULES THAT ASSIGN SLOT VALUES FOR THE MULTIPLE RUN CONFIGURATIONS

 ................................................................................................................................................ 27 
FIGURE 5. SAMPLE PLOT OF THE UKL POOL ELEVATION ...................................................................... 29 
FIGURE 6. SAMPLE PLOT OF THE IGD RELEASE ................................................................................... 30 
FIGURE 7. SAMPLE MODEL REPORT OF THE PAST WEEK’S HYDROLOGY ................................................. 31 
FIGURE 8. SAMPLE RUN METRIC CANVAS........................................................................................... 32 
FIGURE 9. SAMPLE COMPLIANCE METRIC CANVAS ............................................................................. 33 
FIGURE 10. COMPARISON PLOTS OF UKL MEASURES........................................................................... 38 
FIGURE 11. COMPARISON PLOT OF IRON GATE DAM MEASURES AND EWA USE .................................... 39 
FIGURE 12. COMPARISON PLOTS OF THE ACCRETION MEASURES .......................................................... 40 
FIGURE 13. SPATIAL CORRELATION PLOT OF SST’S WITH SEASONAL UKL INFLOW............................... 59 
FIGURE 14. SPATIAL PLOTS OF 700 HPA GEOPOTENTIAL HEIGHTS WITH SEASONAL UPPER KLAMATH 

LAKE INFLOWS.......................................................................................................................... 61 
FIGURE 15. SCREE PLOTS FOR THE PRINCIPAL COMPONENTS FORMED FROM THE (LEFT) CLIMATE-PLUS-

NRCS AND (RIGHT) CLIMATE PREDICTOR SETS FOR THE JANUARY LEAD TIME .............................. 65 
FIGURE 16. VARIABLE IMPORTANCE SCORES, PERCENT INCREASE MSE (LEFT) AND INCREASED NODE 

PURITY (RIGHT), FOR THE SEASONAL INFLOW FORECAST ON JANUARY 1ST .................................... 70 
FIGURE 17. VARIABLE IMPORTANCE SCORES, PERCENT INCREASE MSE (LEFT) AND INCREASED NODE 

PURITY (RIGHT), FOR THE SEASONAL INFLOW FORECAST ON MARCH 1ST....................................... 70 
FIGURE 18.VARIABLE IMPORTANCE SCORES, PERCENT INCREASE MSE (LEFT) AND INCREASED NODE 

PURITY (RIGHT), FOR THE SEASONAL INFLOW FORECAST ON JUNE 1ST........................................... 71 
FIGURE 19. FORECAST MODELS’ RMSE (TOP) AND NSE (BOTTOM) SKILL SCORES AT EACH LEAD TIME .. 73 
FIGURE 20. ERROR OF PROJECTED EWA SPENT BY JUNE 1 (TOP) AND OCTOBER 1 (BOTTOM) FOR LEAD 

TIMES JANUARY THRU MARCH WITH RESPECT TO THE PERFECT FORECAST RESULTS ...................... 76 
FIGURE 21. ERROR OF PROJECTED AGRICULTURAL DELIVERIES FROM MARCH-MAY (TOP), JUNE-JULY 

(MIDDLE), AND AUGUST-SEPTEMBER (BOTTOM) FOR LEAD TIMES JANUARY THRU MARCH ............ 78 
FIGURE 22. ERROR OF PROJECTED FLOOD RELEASE FOR LEAD TIMES JANUARY THROUGH MARCH ......... 80 
FIGURE 23. ERROR OF PROJECTED STORAGE ON JUNE 1 (TOP) AND OCTOBER 1 (BOTTOM) FOR LEAD TIMES 

JANUARY THROUGH MARCH ...................................................................................................... 82 
FIGURE 24. SEASONAL VOLUMETRIC INFLOW AT UKL FROM 1981 TO 2019 .......................................... 93 
FIGURE 25. SCREE PLOTS FOR THE PRINCIPAL COMPONENTS FORMED FROM THE (LEFT) CLIMATE-PLUS-

NRCS AND (RIGHT) CLIMATE-ONLY PREDICTOR SETS FOR THE FEBRUARY LEAD TIME ................. 101 
FIGURE 26. SCREE PLOTS FOR THE PRINCIPAL COMPONENTS FORMED FROM THE (LEFT) CLIMATE-PLUS-

NRCS AND (RIGHT) CLIMATE-ONLY PREDICTOR SETS FOR THE MARCH LEAD TIME...................... 101 
FIGURE 27. SCREE PLOTS FOR THE PRINCIPAL COMPONENTS FORMED FROM THE (LEFT) CLIMATE-PLUS-

NRCS AND (RIGHT) CLIMATE-ONLY PREDICTOR SETS FOR THE APRIL LEAD TIME ........................ 101 
FIGURE 28. SCREE PLOTS FOR THE PRINCIPAL COMPONENTS FORMED FROM THE (LEFT) CLIMATE-PLUS-

NRCS AND (RIGHT) CLIMATE-ONLY PREDICTOR SETS FOR THE MAY LEAD TIME.......................... 102 
FIGURE 29. SCREE PLOTS FOR THE PRINCIPAL COMPONENTS FORMED FROM THE (LEFT) CLIMATE-PLUS-

NRCS AND (RIGHT) CLIMATE-ONLY PREDICTOR SETS FOR THE JUNE LEAD TIME.......................... 102 



 
ix 

 

FIGURE 30. VARIABLE IMPORTANCE SCORES, PERCENT INCREASE MSE (LEFT) AND INCREASED NODE 
PURITY (RIGHT), FOR THE SEASONAL INFLOW FORECAST ON FEBRUARY 1ST ................................ 107 

FIGURE 31. VARIABLE IMPORTANCE SCORES, PERCENT INCREASE MSE (LEFT) AND INCREASED NODE 
PURITY (RIGHT), FOR THE SEASONAL INFLOW FORECAST ON APRIL 1ST ....................................... 107 

FIGURE 32. VARIABLE IMPORTANCE SCORES, PERCENT INCREASE MSE (LEFT) AND INCREASED NODE 
PURITY (RIGHT), FOR THE SEASONAL INFLOW FORECAST ON MAY 1ST......................................... 107 

 



 
1 

 

Chapter 1: Introduction 

Nestled among the southern pasture and marsh lands of southern Oregon spanning to the coast of 

northern California, the Klamath River Basin is no stranger to the struggles of water management in the 

western United States. Each year presents the challenge of properly distributing a dwindling and highly 

variable supply of water to numerous competing objectives. Transported from mountainous headwaters 

and trickling into streams passing through the lowlands of the region, a large portion of the 

spring/summer water supply originates from snowmelt runoff, approximately 75 to 85%1 [Pasteris & Lea, 

2002]. Due to the semiarid climate and the frequently dry summers, demands in March thru September 

rely heavily on this source. Water for demands is managed through a network pumps, canals, and dams 

that form the water management project called the Klamath Project. The primary control point in the 

Project is Upper Klamath Lake which is the largest and most upstream reservoir. The Project operator, the 

Bureau of Reclamation (Reclamation), controls the storage and distribution of water supply from UKL to 

provide irrigation water to farmlands, flood control, recreation, and ecosystems needs of Endangered 

Species Act listed fish [Reclamation, 2019].  

Historically, conflicts over irrigation supply and ecosystems needs have been points of frequent 

contention. Most notable examples of this dispute involve the severe droughts of 2001 and 2002 that 

reached national headlines. In 2001, low forecasts drove Reclamation to shut off diversions to 

approximately three fourths of irrigable farmland it supplies, around 150,000 of a total 200,000 acres. In 

reality, forecasts underestimated supply by a substantial 70 thousand acre-feet (TAF). Experts assess the 

estimated cost between $27 and $46 million in agricultural losses [Boehlert and Jaeger, 2010]. To prevent 

similar agricultural losses in 2002, Reclamation allowed higher diversions which gave way to lower flows 

and increased water temperatures. By late summer, tens of thousands Chinook and coho salmon died from 

parasitic blooms triggered by the poor stream conditions. While no similar catastrophes have occurred 

                                                                 
1 Based on statistics of snowmelt and supply relationships for basins in the western United States. 
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since, water stress continues to be an issue. As of 2018, the Upper Klamath Basin has experienced a 

governor declared drought in 10 of the past 16 years [Burns, 2018]. Concerns about growing drought 

severity remain too as the year 2015 saw record low observations of snow water equivalent across the 

majority of the station monitoring network [ORWD, 2018].  

All signs indicate basin mangers face increasing planning and distribution challenges. The 

manifestation of these challenges is perhaps best shown by how frequently operation policies change. 

Operations policies change through reconsultation with the United States Fisheries and Wildlife Services 

(USFWS) and National Marine and Fisheries Services (NMFS). Usually, it is initiated by some form of 

ligation over water allocations. Since 2010, three Biological Opinions resulting in new policies have been 

implemented with work on a fourth starting in 2020 for 2021 operations. Since Reclamation lacks a 

robust modeling tool, a new excel sheet-based tool must be created with every reconsultation. For daily 

operations, it is tedious to operate. The excel sheet-based tool is versioned daily, receives frequent 

adjustments, and requires manual transfers between data sets. Thus, updates to operations are tedious and 

hamper their ability to communicate reasoning/projections to stakeholders. 

While water stress shorts demands, its effect could be mitigated or even prevented by better 

planning.  Planning water allocations is predicated on seasonal volumetric forecasts. From January thru 

July, the National Resources and Conservation Service (NRCS) releases forecasts on the first day of each 

month. When forecasts are highly uncertain, basin managers have difficulty assessing the impacts of their 

management decisions. Compared to forecast products for other basins in the West, the Klamath River 

Basin’s forecast has one of the highest standard errors. Take, for example, the April 1st forecast standard 

error. At UKL, it averages around 20%. Whereas, a site such as the northern Rocky Mountains averages 

around 10% [Risley et al., 2005]. Multiple efforts have been made to address the forecasts’ inherent 

uncertainties. Such efforts include studies of groundwater interactions, sediment transport, ecosystem 

dynamics, and hydrologic forecasting methods [Wagner and Garnett, 2014; Schenk et al., 2016; Risley et 

al., 2018]. The latter is of chief interest to this study. In total, three papers have been published on 
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improving forecasts in the Klamath River Basin over the past 15 years. Two focus on streamflow 

modeling with hydrologic simulation methods and one focuses on water supply modeling with statistical 

methods [Risley et al., 2005; Hay et al., 2009; Risley, 2019]. These studies investigate the ability of large-

scale climate teleconnection indices (El Nino Southern Oscillation and Pacific Decadal Oscillation) as 

well as groundwater states, air temperatures, etc., to improve skill. Overall, the studies find that 

generalized indices lack strong correlations with seasonal inflow volumes, whereas the local physical 

metrics such as groundwater states add some value to the forecasts [Risley et al., 2005; Hay et al., 2009].  

1.1. Study Objectives 

Frequent reconsultations, cumbersome management tools, lack of adequate forecasts, and 

growing water stress remain a constant challenge to managing the Klamath Basin. To address these 

problems, this study has four objectives:  

1. Develop a basin RiverWare model with a robust framework that adjusts to accommodate new 

policy logic associated with different reconsultations and an intuitive design that makes for better 

data, run, and output management. 

2. Identify strong, basin specific climate teleconnections to seasonal volumetric inflow that can 

inform forecasts at various lead times.  

3. Develop climate and local information-based regression models that are more skillful at 

forecasting seasonal volumetric inflow than the NRCS.  

4. Demonstrate meaningful improvement to the quality of operational objective projections when 

they are based on our climate and local information-based forecasts. 

1.2. Study Description 

These objectives are accomplished in the following chapters: 

Chapter 2 describes the development and testing of the Klamath Basin RiverWare Operations 

Model (KROM) including the model’s requirements, design, and testing as well as stakeholder’s feedback 
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from our modeling workshop. Requirements include the extent and features, data, and policy the 

RiverWare model must represent and the existing daily workflow that it must support. Lastly, we give a 

brief overview of the stakeholder workshop and their feedback on the RiverWare operations model we 

presented to them. 

The technical approaches and methods used to develop the forecasts are described in Chapter 3. 

This includes methods utilized in the study’s statistical forecasting effort, which include predictive 

variable identification, regression model development and selection, and operational analysis of improved 

forecasts. How to find strong climatic teleconnections to seasonal volumetric inflow and convert the 

teleconnections and NRCS’s forecast products into predictive variables are detailed in predictive variable 

identification. Then we describe, the regression techniques, i.e. local polynomial and random forest, used 

to create forecast models informed by those predictive variables. Model selection lays out the criteria used 

to compare and define the forecasts’ skill. Operational analysis closes out the chapter by explaining 

performance metric used to judge operational projections based on our forecasts compared to the 

NRCS’s.   

Chapter 4 presents the results, organized according to the statistical forecasting methodology: 

best predictive variables, regression model skill, and operational performance metrics. Best predictive 

variables are the representations of the strongest climate teleconnections and adjusted NRCS forecast 

products. Regression model skill shows the rankings of the regression models’ and NRCS’s forecasts at 

each lead time. Operational performance metrics compare the quality of objective projections that are 

based on our forecasts or the NRCS’s.  

The final chapter, Conclusions and Future Work, discusses the results of the operations modeling 

and statistical forecasting findings. The statistical forecasting discussion focuses on why more skillful 

forecast were or weren’t achieved and how the more skillful forecasts are useful for operators and 

stakeholders. Then, both operations modeling and statistical forecasting accomplishments are recapped 
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together to summarize the accomplishments of our entire study. The chapter ends with some thoughts on 

future work that could improve or further analyze the results.   

Chapter 2: Development and Testing of the Klamath RiverWare Operations Model 

To manage operations, the Klamath Basin Area Office computes official releases and projections 

using a multi-sheet Excel Workbook called the Proposed Action Calculator (PA Calc). The PA Calc is 

based on the 2019 Basin Biological Opinion, which was developed by the United States Fisheries and 

Wildlife Service (USFWS). Due to frequent changes in policy from reconsultations, the Excel operations 

management tool regularly gets replaced by a tool tailored to the new policy. To accommodate policy 

changes and reduce the recurring model development burden, KBAO wants a more robust and capable 

tool to manage current and future operations. Additionally, KBAO would like the new operations 

management tool to have the following features to make daily operations more efficient and outputs more 

communicable with stakeholders: 

1. Multiple operational runs with predeterminable settings that eliminate the trial and error setting 

configuration process that operators currently use. 

2. Scenario operational runs that use hydrology from selected years in the period of record. 

3. Custom basin reports and output products that are automatically generated and can be sent 

stakeholders. 

With collaboration from CADSWES and TSC, KBAO decided RiverWare was a viable option for 

replacing the Excel operations management tool. RiverWare is a generalized river basin modeling tool 

used to develop and run detailed, site-specific models [Zagona et al., 2001]. Current examples of 

Reclamation projects that use RiverWare to manage operations include the Truckee Carson Basin and 

Colorado River System [Rieker et al., 2005]. As an added benefit of familiarity, this effort will leverage a 

RiverWare model developed collaboratively with Reclamation for a previous research project in which I 

implemented logic from the last Excel workbook model that reflected the 2013 biological opinion. 



 
6 

 

Covered in this chapter is the development and testing of the RiverWare model. This 

encompasses the step taken to lay out the model requirements, form a comprehensive design, and 

complete rigorous testing to ensure the model can handle day-to-day management of operations. In 

addition, this chapter explicitly discusses the RiverWare model’s added usability features and our 

RiverWare model presentation at the October 2020 stakeholder workshop. The chapter starts by breaking 

the requirements into the extent, policy and data that the model needs to run operations and the workflow 

that operators follow during daily setup and use. Then, it describes our model’s design in the categories of 

model layout, objects and methods, Rpl2 sets, run and scenario management, output products, and 

adjusted workflow. The testing work that this chapter covers details the outputs compared between the 

two management tools (Excel and RiverWare) and the extent to which they are matched. The chapter 

finishes with the impressions and feedback from stakeholders at the October 2020 workshop. Each step 

and topic in this chapter is broken down further in the following subsections. 

2.1. Model Requirements 

The model requirements are the 1) extent and features, 2) data, 3) policy and 4) workflow that the 

RiverWare model must include to be a viable replacement to the PA Calc. Data is the per run settings, 

observed hydrology, and hydrology tables. Policy consists of operational logic that sets releases and 

projects throughout the water year. Workflow capabilities are features such as a dashboard to configure 

model runs, plot to visualize results, and tables to show the satisfaction of run criteria metrics. These 

requirements were identified through a thorough analysis of the PA Calc and the operator’s daily 

workflow. We use the requirements later to guide our design for the RiverWare model, which members of 

the KBAO reviewed and confirmed. A more detailed explanation of each requirement is provided in the 

sections below. 

                                                                 
2 The coding language specific to RiverWare 
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2.1.1. Extent and Features 

Operations consider the headwaters of the Klamath River basin starting at Chiloquin on the 

Williamson River all the way to the last controlled release point on the Klamath River at Iron Gate Dam. 

Major regions/sections on or adjacent to the Klamath River that are actively managed are as follows: 

Upper Klamath Lake: The main control points that KBAO uses to release water for agricultural, 

environmental, and flood control objectives.  

Lost River Diversion Canal: Connects the Klamath River to the Lost River System. Allows for water 

transfer between the two and distribution of water to agricultural area 1. 

Agricultural Area 1: Agricultural lands that make up the Klamath Irrigation District (KID).  

Agricultural Area 2: Refuge and agricultural lands that make up the Lower Klamath National Wildlife 

Refuge and Klamath Drainage District (KDD). Together, Agricultural Areas 1 and 2 are referred to as the 

Klamath Project. 

Pacificorp Managed: The section of the Klamath River that runs from Keno Dam to Iron Gate Dam. It is 

managed by Pacificorp to generate hydropower. In addition to Keno and Iron Gate, there is JC Boyle and 

Copco 1 that are hydroelectric dams in this section. 

2.1.2. Data 

Data for operations is classified into three groups, which are per run settings, observed hydrology, 

and hydrology tables. A more comprehensive explanation of each are as follows: 

Per Run Settings: Settings that the operator sets before each model run. They consist of adjustment 

factors and seasonal supplies for forecasts, switches for climate scenarios, exceedance percentages for 

table lookups, contribution percentages for accretions to Iron Gate Dam, and operation dates. Many of the 
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settings vary by their period of application. Some apply for a week, others for a month, and some for an 

entire season. The operator has access to change that period along with their value. 

Observed Hydrology: The hydrology that has been measured throughout the basin from the run start 

date until the operation start date. The operation start date can be thought of as the day at which the 

system is being operated, often the current day. It could also be a previous day if the system has to be re-

operated due to missing data, holidays, etc. The operation start date is used to determine whether the data 

is in after-the-fact mode (Observed Hydrology) or is in a forecast mode. Thus, if either the run start or 

operation start date changes, so does the hydrology data in the model. Observed Hydrology takes many 

forms, it is accretions to or diversion from the Klamath River, inflows at Upper Klamath Lake (UKL), 

releases at Iron Gate Dam, external volumetric forecasts for the season, or etc. Reclamation stores this 

data in an external file or database. 

Hydrology Tables: Store datasets for several forecast and release computations. Where Per Run Settings 

vary from one run to the next and Observed Hydrology differs with the operation or run start date, the 

Hydrology Tables remain constant throughout computations. Tables range from datasets for the 

minimum/maximum releases at the major reservoirs, flood control pool elevations, daily forecasts at 

multiple locations, and UKL trajectory correction factors. 

2.1.3. Policy 

Policy that controls operations is split between pre- and peri- computations. Pre-computations set 

daily forecasts and account supplies. Their logic is non-competitive and generates the data necessary for 

simulating operations past the point of observations. Peri-computations determine daily releases. Their 

logic is competitive and aims to satisfy the basin objectives when possible. An elaboration of main pre- 

and peri- computations are as follows: 

Pre-Computations 
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Hydrological Forecasts: Generates the daily values for two types of hydrology; 1) the inflow at Upper 

Klamath Lake and 2) accretions for locations along or adjacent to the Klamath River. As forecasts, the 

values are computed from the operation start date through the end of the run timestep. 

Demand Forecasts: Generates the daily diversion requests for the major canals and pumping stations that 

supply the agricultural and refuge lands. Additionally, generates daily flows that offset those areas’ 

requests. Since these are also forecasts, the demands and offsets are computed from the operation start 

date through the end of the run timestep. 

Account Supplies: Determines the total volume of water to distribute from Upper Klamath Lake for 

agricultural and environmental objectives over the Spring/Summer timeframe. This is computed on the 

first of each month from January through June.  

Peri-Computations 

Agricultural Release: Fulfills the agricultural areas’ diversion requests. Other sources can supply some 

of these demands, this release supplies the portion of demand that remains.  

Environmental Release: Keeps the river stage at a level that maintains a healthy habitat for the species 

in the Klamath River. It is critical that enough water is sent from UKL to sustain that stage below IGD.  

Central Tendency Controlled Release: As a safeguard against excessive pool elevation drawdown at 

UKL, the Central Tendency Controlled Release rate allows the pool elevation to gradually rise and 

eventually reach the historical mean. In addition to the reservoir release, the policy imposes limits on the 

diversion request rates for the canals in agricultural area 2. 

Ramping and Minimum Release: At any given timestep, the lowest reservoir release is the Ramping 

and Minimum Release. The policy defines ramping as the gradual release reduction that prevents sharp 

dips from day to day. The policy defines minimums as lowest allowable release that sustains the aquatic 

habitat. 
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Flood Control Release: Ensures that UKL’s pool elevation does not overtop its dam. Commonly, the 

Flood Control Release persists for a brief period of around 4 to 15 days, which gradually decreases the 

pool elevation until it is under the flood control threshold elevation. 

2.1.4. Workflow 

Workflow is the step-by-step process that the operator uses to prepare the data, run the model and 

generate outputs that are used for operations or sent to stakeholders. At a minimum, the RiverWare model 

must be able to support the workflow followed by operators when using the PA Calc. If the RiverWare 

model supports more steps than the PA Calc, that would be an added benefit since that reduces the 

number of different tools the operator uses. An explanation of each workflow step is as follows: 

1. Acquire, Review, and Archive the Data: The operator receives the measurements from the 

USGS/NWIS, Hydromet, and basin reports. Then, they validate and if needed correct the data 

before transferring to the PA Calc. On the data is reviewed, the operator archives the data. The 

data can be corrected or updated later, but the data that was used in the operational computations 

must be known in case of litigation. The operator performs this step in Excel workbooks that 

serve as the database for the daily data (one for formatting and archiving, another for exporting to 

PA Calc). 

2. Prepare the Model for Today’s Use: The operator transfers the observed hydrology from the 

database workbooks to the PA Calc. Then, the operator configures the per run settings such as the 

operation start date or adjustment factors that control daily hydrology and demand forecasts. 

Lastly, the operator enters any manual inputs or overrides. The operator performs this step with 

the export database workbook and PA Calc. 

3. Operate and Plan for the Season based on Observed and Projected Hydrology: Once the 

operator’s finished model preparation, they run the model and check results. To configure setting 

properly, the operator usually performs multiple iterative runs. After each iterative run, they 

check the results to see if hydrology and deliveries match expectations. If satisfied, the operator 
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sets the operational releases and reports projection to stakeholders. The operator performs this 

step with the PA Calc. 

4. Run Scenarios and Analyze Possibilities: After operation are set, the operator makes scenario 

runs based on historical hydrology. The historical hydrology that is used for the scenarios is the 

accretions and/or UKL inflow. Also, to estimate the portion of UKL storage committed to 

agricultural deliveries, the operator runs the model with and without agricultural deliveries. Then, 

they compare the UKL storage over each run. The operator also performs this step with the PA 

Calc. 

5. Generate Reports and Output Products: Every week, the operator creates and delivers reports 

to stakeholders. Stakeholders include irrigation districts, tribes, and other water users. The weekly 

reports that the operator generates are as follows: 

a. USBR Daily Numbers Update: Observed hydrology from the past week. 

b. Klamath Project Deliveries and Demands: Observed deliveries for the current water year.  

c. Cumulative UKL Inflow: The cumulative, observed UKL inflow for the current water.  

d. Smoothed UKL Inflow: The smoothed, observed UKL inflow for the current water year.  

e. Wormtrails: The observed UKL pool elevation for the current water year. 

Report a. is in the format of tabular data. Reports c. through e. are in the format of plots. Report 

b. has a data table and plot. Reports b. through e. include previous year’s hydrology for 

comparison. Excel workbook of the same name as the reports are used to perform this step. 

6. Archive the Model: Each day, the operator archives the model with the settings used to compute 

the official operational releases and projection. This is done to record and preserve the exact data 

and logic used for assignments. These archives may be need later if litigation requires review of 

operational decisions. 
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2.2. Model Design 

Model design covers all aspects the of the Klamath RiverWare Operations Model (KROM), 

which was developed based on the requirements discussed in the prior section. We discuss the design in 

the order of development, starting with the model workspace and the specifications of the objects on it. 

The Rpl sets are discussed next, which are either global function sets, initialization rulesets, or simulation 

rulesets. Usability feature that make the KROM intuitive for the operator to use follows. Then, the output 

products that the KROM can automatically generate are presented last. Each aspect is explored in depth 

below. 

2.2.1. Model Layout 

The model layout is a spatial representation of the Klamath River Basin’s physical features on the 

workspace. Important river reaches, reservoirs, irrigation canals, and etc. are represented as objects on the 

workspace, which house data and simulate physical processes (i.e. flow routing, reservoir storage, canal 

diversions, and etc.). The headwaters of the model start at the Williamson River since it is the most 

upstream location with data in the PA Calc. From the Williamson River, the layout represents locations 

on or directly adjacent to the Klamath River until IGD, which is where the most downstream releases are 

assigned. We discuss locations on or directly adjacent to the Klamath River in terms of the major sections 

described in “Extent and Features” above, i.e., the Lost River System, Klamath Project (Agricultural 

Areas 1 and 2), and Pacificorp Managed. While the sections much more physically intricate, our proposed 

layout is simple since it is tailored to run operations rather than comprehensively model every process. 

The simplified representations of these sections are discussed next, and Figure 1 shows the KROM’s 

workspace afterwards. 
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Figure 1. Workspace of the proposed KROM. Arrows signal the direction of flow. 
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Lost River Diversion Canal: The Lost River Diversion Canal (LRDC) system encompasses the section 

of the workspace that starts as the flows leaving Wilson Dam and ends at the canal’s overflow into the 

Klamath River. Additionally, it includes the transfer from the Klamath River to the LRDC. We input and 

forecast the flows from the Lost River to the LRDC. Sections upstream or downstream from Wilson Dam 

are left unmodeled due to a lack of available logic. 

Klamath Project: The Klamath Project covers the network of canals, pumps, and water users on the 

workspace that make up the basin’s agricultural and refuge lands. These lands are classified into two 

regions, Agricultural Area 1 and 2. Area 1 represents the Klamath Irrigation District (KID) that A Canal, 

Station 48, and Miller Hill Pump supply with diversions. Area 2 represents the Refuge and Klamath 

Diversion District that North and Ady Canal supply with diversions. F/FF Pump returns runoff flow back 

to the Klamath River. Secondary reaches and diversion objects are represented in Area 2 to split flows 

between the two water users. 

Pacificorp Managed: The facilities that PacifiCorp manages include the stretch of objects on the 

Klamath River that start at Keno Dam, continue through both a lag and gains reach, and end at IGD. The 

gains and lag represent the aggregate influx/outflux between the reservoirs and total travel time between 

the workspace’s headwaters and tailwaters respectively. In addition to Keno Dam and IGD, PacifiCorp 

also manages two reservoirs between called JC Boyle and Copco 1. We exclude those from the model 

since PacifiCorp does not provide the logic nor data to solve for them. 

2.2.2. Objects and Methods 

The physical features in the Klamath River Basin are represented by seven types of objects on the 

workspace: Storage Reservoir, Reach, Diversion Object, Water User, Confluence, Data Object, and Inline 

Pump. Each object represents physical processes and contains physical data that the model uses to route 

flows, as part of operating policies, and forecast hydrology. Table 1 shows an inventory of the objects in 

the model organized by their type. 
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Table 1. Objects on the KROM workspace. 

 

Storage Reservoirs: The Storage Reservoirs represent reservoirs with a release and spillways. Since 

Reclamation does not manage the basin’s hydropower operations, which is done by PacifiCorp, we model 

all the reservoirs as Storage Reservoirs. This means we exclude IGD’s energy production. The reservoir’s 

storage is a function of the pool elevation, which the model determines with the Elevation Volume Table. 

In the PA Calc, that table is available for UKL. For Keno and IGD, we use tables provided by 

Reclamation from previous modeling studies. The previous model contains physical data associated with 

the 2013 Biological Opinion, which the PA Calc lacks nor requires for its operation. On the Storage 

Reservoir, the total Outflow is composed of Spill and Release. In many models, Release represents a 

lower flow control structure, while Spill represents either controlled gates or uncontrolled spillway crests. 

In this model, we will use the Release to represent the entire outflow; spill will remain zero. Thus, we set 
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the “Spill” method to “None”. Additionally, one reservoir (UKL) directly supplies a diversion canal. Its 

“Diversion from Reservoir” method is set to “Available Flow Based Diversion”. 

Reaches: A Reach represents a section of the river that routes water downstream. In addition to 

downstream passage, Reaches may route accretions or diversions, and sometimes lag the flow. Based on 

these physical processes, we present the relevant methods and objects. 

• Diversions: We set the “Diversion from Reach” method to “Available Flow Based Diversion”, 

which creates a diversion slot that links to the adjacent Diversion Object. The LRDC Draw from 

Klamath, Diversion to Miller, Diversion to Station 48, Diversion to Ady, and Diversion to North 

are Reaches with this configuration. 

• Accretions: If the accretion comes as an influx from the surrounding environment, we set the 

“Local Inflow and Solution Direction” to “Specify Local Inflow, Solve Outflow” or “Solve Local 

Inflow”. This creates a slot where we can set or solve the hydrologic gain. The Reaches with 

“Gain” in their name possess this configuration. If the accretion comes as a return flow from a 

pump, we link the Reach’s return flow slot to the outflow slot of the pump, and set no method. 

The Returns and Pumping is the Reach with this configuration. 

• Lag: While incremental in reality, the model represents it as one lag on the Keno to IGD Lag 

object. For this Reach, we set the “Routing” method to “Time Lag”. The time lag duration is 3 

days, which is taken from the PA Calc, and is set on the time lag slot. 

Diversion Objects: A Diversion Object represents the physical structure that diverts water from a reach 

or reservoir. In the Klamath Basin, this is either a canal or pump, which transports water to the irrigation 

districts and/or refuge lands. The two physical processes that represent the water exchange are the 

diversion to and outflow from the object. The Diversion Object’s diversion slot links to the adjacent 

reach’s or reservoir’s diversion slot. As for the irrigation district and/or refuge lands, its diversion slot 

links to the Diversion Object’s outflow slot. We set the Diversion Object’s methods as follows: 
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• “Diversion Object Solution Direction” = “Solve for Outflow” 

• “Diversion Request” = “Input Diversion Request” 

• “Available Flow” = “Available Flow Diversion” 

Water Users: A Water User represents irrigation districts or refuge lands along the Klamath River. On 

the Water User, the physical processes are the diversion and return flow. The return flow is optional since 

there is no explicit logic that computes it in the PA Calculator. Rather, the PA Calculator assumes that the 

return flow contributes some unknown portion to the accretion. The model includes the return flow for 

Area 2’s Water Users since it can estimate the return flow proportions with algebra between the objects’ 

known physical processes. The algebra works because two canals divert water from the river and one 

pump returns it back. As for Area 1, we know the canals that divert water, but lack the location where 

water returns back to the river. Thus, the Water User in Area 1 does not represent the return flow. We set 

the methods on the Water Users as follows: 

• “Diversion and Depletion Request” = “Input Request” 

• “Return Flow” = “Fraction Return Flow” 

• “Fraction Return Flow Input” = “Input Fraction” 

Inline Pumps: An Inline Pump is RiverWare’s representation of a pumping station. We set the “Inline 

Pump Solution Direction” to “Solve Downstream”, which prevents looping errors. No energy 

consumption or head is modeled in this model. 

Confluence: A Confluence represents a flow junction with two inflows and one outflow. We set the 

“Confluence Solution Direction” to “Solve Downstream Only” to prevent looping errors. 

Data Objects: A Data Object is an object that holds user-defined data in the model. In this model, we 

store data on a Data Object if it applies to multiple objects or is not location specific (i.e. climate 

scenarios and dates respectively). These objects have no methods and do not solve. Thus, there is no 

physical data they require. The Dashboard data object holds slots that classify as Per Run Settings and 
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Account Supplies. The Compliance Metrics data objects hold post processed slots, which are discussed 

near the end of the report. 

2.2.3. Data and Management 

The data that we defined in the requirements is stored on the objects. Operators have the option to 

manually input data through a few features or the KROM can automatically import it. First, we will 

discuss the data management features. This introduces how the operator can interact with the data. Then, 

we will discuss the format, itemization, storage location, and management of the required data. Our 

discussion is broken down by the types of data management features; then, by the types of required data 

listed in the “Data” section above. 

Management Features: 

Data Management Interface (DMI): A feature that transfers data into or out of the RiverWare model 

from or to a database respectively. The DMI’s in the KROM are connected to Excel databases since 

KBAO stores their data in Excel workbooks. For timeseries data, the operator specifies the time range that 

data is imported or exported, i.e., run start timestep through operation start date. 

Scripts: A feature that automates tasks that the operator would otherwise manually perform whilst 

operating the model. Each individual task a script performs corresponds to a script action. Some actions 

ask for the operator’s input and others require no interaction to set up. Each individual action can be 

turned “On” or “Off”. This allows the operator to select the actions the script performs upon execution. 

Examples of data management actions the KROM’s script performs are execute a DMI to import data, 

clear values from series slots, and set timestep parameters. Script actions that affect policy are discussed 

in the “Rpl Sets” section below.  

System Control Table (SCT): A feature that is a tailored user interface for the operator. For example, 

the operator can use the SCT to access and edit data, make runs, and open scripts. The SCT has multiple 
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sheets, which contain either series, scalar, or other slot types. For the KROM’s SCT’s, we organize the 

slots on each sheet by the operation the data is associated. 

Required Data: 

Per Run Settings: The operator sets these before each run. Table 2 shows an inventory of the slots that 

represent the Per Run Settings. 

Table 2. Objects and their slots that represent the Per Run Settings. 
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The objects store Per Run Settings’ slots as scalars or tables. If the slot is location specific, such 

as the seasonal volume adjustment factor for Ady Canal, that location’s object stores the slot (i.e. Ady 

Canal.Season Adj). Otherwise, we house Per Run Settings that multiple locations use on data objects, 

such as the climate scenario switch (i.e. Dashboard.Climate). Apart from access on the objects, the Per 

Run Settings can be accessed and edited on the “Scalar Slots” and “Other Slots” sheets of the SCT named 

“KlamathOps2019PA”.  

Observed Hydrology: Hydrology measurements prior to the operation start data. Table 3 shows an 

inventory of the slots that represent the Observed Hydrology. 

Table 3. Slots that represent the Observed Hydrology. 

 

These slots are time series since the measurements occur over the run period. The operator can 

automatically import the data in Table 3 for a pre-specified period by executing the “Import Hydrology” 

DMI. Additionally, this data can be accessed and input on the slot viewer.  

Hydrology Tables: Forecast and release computations use data from these tables as an input. Table 4 

shows an inventory of the Hydrology Tables’ slots.  
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Table 4. Objects and their slots that represent the Hydrology Table. EP is short for exceedance 
percentages, the values in the parenthesis show the exact percentages used. 

 

 

Objects store most Hydrology Tables as periodic table slots since the rows vary by date or month. 

The exception is UKL’s maximum release table, which is elevation based. Since these don’t change 

frequently, the operator accesses the object to get to the relevant table (i.e. the Iron Gate Dam Maximum 

Release Table is on the Iron Gate Dam object.) No data objects store these since the tables are all location 

dependent. 
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2.2.4. Rpl Sets 

There are three primary Rpl Sets in the KROM. These are the initialization ruleset, simulation 

ruleset, and global function set. The initialization ruleset is comprised of rules that are executed during the 

initialization phase preceding the run. These perform the pre-computations that forecast hydrology and 

demands as well as assign the supply for each water account. Initialization rules fire once per run. The 

simulation ruleset is comprised of rules that are executed on each run timestep. These perform the peri-

computations that assign releases from UKL and Iron Gate Dam. Simulation rules can fire and re-fire on a 

timestep if their dependencies change due to another rule’s execution. This feature is necessary since the 

rules often set conflicting values for competing objectives. The peri-computations and their order of 

priority and execution in the simulation ruleset from lowest to highest are 4) Environmental Release, 3) 

Central Tendency Controlled Release, 2) Ramping and Minimums Release, and 1) Flood Control Release. 

See the “Policy” section in the “Model Requirements” for a breakdown of the pre and peri-computations. 

Lastly, the global function set are comprised of functions that replace commonly used or complicated 

logic structures to make the rules easier to understand. Some functions have arguments that allow them to 

be manipulated/tailored for specific computations. We present the initialization and simulation rulesets in 

the tables below. The global function set is excluded since it focuses on explicit logic statements, which is 

too detailed for the scope of the paper.  

Initialization Ruleset: Rules in the initialization ruleset are sorted by the policy they are associated, 

which are discussed individually below. While initialization rules do have priorities, we do not have 

different rules set a slot for the same timestep. Thus, the priorities only signal the order of execution, 

which is high to low index numbers. The initialization rules have two flags, the R and Z flag. These are 

tied to priority. For initialization rules with the R flag, the priority of slot values they set is IR. This 

allows those values to be overwritten by any simulation rule. For initialization rules with the Z flag, the 

priority of the slot values they set is 0, which prevents those values from being overwritten by any 

simulation rule. See Figure 2 for the KROM’s initialization ruleset.  
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Figure 2. Initialization ruleset, broken down by policy group and rules, for the KROM. 

Area Initialization: These rules set slot values for timesteps prior to the operation start timestep that 

allow objects to dispatch or simulation rules to solve. Multiple object or regions (collection of objects) 

require initialization since by default their value is NaN. NaN values can prevent the objects from solving 

and flow not to be routed through them.  

Account Supply Table: These rules set table slot values for the account supplies in the basin. To set the 

agricultural and environmental account volumes, the rules need to solve for two inputs beforehand. These 

inputs are stored in the table slots that initialization rules 8 and 9 set.  
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Demand Forecasts: These rules set the daily agricultural demand forecasts. This includes forecasts for 

diversion requests and offsets. The refuge and agricultural diversion requests have separate rules since 

their logic differs. 

Hydrological Forecasts: These rules set the daily hydrological forecasts. This includes forecasts for 

basin accretions and UKL inflow. Commonly, the operator sets overrides for the accretions. We create a 

separate rule to assign the overrides; then, the accretion forecast rule checks for and does not set the 

timesteps with overrides.  

Initial Mass Balance: This rule performs a simple mass balance calculation that assigns slot values that 

other initialization rules use as an input. The slot is the Lake Ewuana Gain.Local Inflow. 

Simulation Ruleset: Rules in the simulation ruleset are sorted by the policy they are associated, which are 

discussed individually below. The priority of simulation rules matters since multiple can set a slot value 

for the same timestep. In that case, the highest priority rule assigns that value. The order of execution is 

still low to high priority. The flag each rule sets is R#, where # is the priority index of the rule. Lower #’s 

override higher #’s. Also, the rules highlighted in blue set a slot that allows an object to dispatch. See 

Figure 3 for the KROM’s initialization ruleset.  
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Figure 3. Simulation ruleset, broken down by policy group and rules, for the KROM. 

Flood Release: These rules set the flood release at Iron Gate Dam and UKL. They only execute when the 

UKL pool elevation exceeds the flood curve. The highest priority rules since they prevent dam 

overtopping.  
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Ramping and Minimums Release: This rule sets the ramping and minimums release at Iron Gate Dam. 

There is no rule to set this release at UKL since the minimum release is factored into the UKL 

environmental release logic and there are no ramping operations at UKL.  

Central Tendency Controlled Release: These rules set the central tendency controlled release at Iron 

Gate Dam and UKL. Additionally, they reduce the diversion requests if UKL’s pool elevation is low 

enough. Rules 8 and 9 compute slot values that are inputs to one or multiple of the other rules. Those 

values are an elevation difference ratio (between current and central tendency elevation) and daily 

borrow/payback volume respectively.  

Environmental Release: These rules set the environmental release at Iron Gate Dam and UKL. Since the 

environmental release’s objective varies by season, so does the logic. Thus, rules 11-14 separately 

compute their objective’s release. Then, based on the season, rules 9 and 10 assign the appropriate 

release. Rules 15-18 compute slot values thar are inputs to one or multiple of the other rules. Those values 

are the remaining and used volume of the EWA, daily release difference from UKL, and extra volume 

available for release respectively.  

Project Supply: These rules set the agricultural release at UKL and the transfer of water from the 

Klamath River to the LRDC. The transfer occurs when there is not enough water in the LRDC to meet 

diversion requests at Miller Hill Pump and Station 48. No agricultural release occurs at Iron Gate Dam 

since the agricultural areas are all upstream of it.  

UKL Inflow Processing: This rule computes the smoothed inflow that is as an input for other simulation 

rules. The observed inflow at UKL is determined from a mass balance. Since there are many unknown 

fluxes at UKL, the computed inflow can greatly vary from day to day. Thus, some rules need the 

smoothed value to stop the erroneous variance being carried through the rest of the computations. 
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2.2.5. Run and Scenario Management 

The KROM has two modes for runs, single and multiple. Each uses the same types of data 

management features for setup. First, a script loads the Rpl sets, opens the associated SCT, sets the 

timestep parameters, clears data from previous runs, and imports the observed hydrology. Then, a SCT is 

used to enter any necessary manual input (overrides, reported data) and configure the per run settings. See 

the Appendix for the names of the script and SCT used for single and multiple run setup. 

As the name implies, the single run performs one run. It begins once the operator selects “Start” 

on the run control. The multiple runs are a few to many runs that occur successively and are based on 

preset configurations. The operator selects the configuration they want to run from the multiple run 

manager (MRM) and begins them by selecting “Start”. We developed three multiple run configurations 

for the KROM, which are discussed in detail below. Each are of the iterative MRM mode, which allows 

per run settings to be set and results stored in the model for each run. Additionally, each configuration 

needs initialization rules to assign values for iterative runs. These rules are discussed below as well and 

shown in Figure 4. 

 

Figure 4. Initialization rules that assign slot values for the multiple run configurations. 

Multiple Run Configurations: 
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Run Trials of Different Settings: The operator defines the number of runs and per run settings for each 

run. See the “Data and Management” section above for a complete list of the per run settings. The 

operator uses this configuration to determine which per run setting values compute the official operational 

releases. This is an iterative process that requires checking results and tuning per run settings as the 

operator sees fit. Performing this with multiple runs rather than single runs expediates the process greatly. 

Rules 18-21 assign the per run settings defined for each run; their names correspond to which settings 

they assign.  

Run Historical Hydrology Scenarios: The operator defines the number of runs and type(s) of 

hydrological scenario. The scenarios are 1) use historical UKL inflows instead of forecasts and 2) use 

historical accretions instead of forecasts. For this configuration, the operator can elect to perform either 

scenario or both. The historical hydrology is pulled from a specified year in the period of record, which 

goes from 1981 through the present. For the number of runs, the operator selects a year for each. Note that 

the historical hydrology is only set after the operation start date and not before. Rules 22 and 23 assign the 

daily historical values for UKL inflow and accretions respectively. Rules that forecast the same hydrology 

do not execute in this configuration, i.e. when historical UKL inflows are assigned, rule 15 does not 

execute.  

Run with and without Agricultural Deliveries: Performs two runs; one with and another without 

agricultural releases from UKL. All other settings remain the same. In the run without deliveries, the 

project supply volume remains as UKL storage. The operator compares the two run’s UKL storage to 

estimate the portion UKL holds for agricultural demands throughout the rest of the year. Rule 24 shuts off 

UKL’s agricultural release by setting the agricultural adjustment factors to zero.  

2.2.6. Output Products 

After the model runs, some of the daily observations and projections are post processed into 

seasonal or monthly volumes. These are used by the operator to evaluate their management decisions as 
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well as give an overall impression of the current and potential future state of the basin to stakeholders. To 

make regular and post processed results easier to assess and communicate, we developed some output 

products that the operator can generate. The output products fall into one of the three categories: Plots, 

Model Report, or Output Canvas. The specific product in each category are presented below.  

Plots: Visualize the pool elevation at UKL and release at IGD along with other associated values. 

Examples are shown in Figure 5 and Figure 6, respectively.  

 

Figure 5. Sample plot of the UKL pool elevation. Includes lines and points for dates, trendlines, and 
thresholds. 
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Figure 6. Sample plot of the IGD release. Includes lines and points for dates and UKL inflow. 

Each has time on the x-axis, which spans the entire water year. In addition, the operator can zoom 

in on the UKL pool elevation plot to see more detail. The operator may do this for the month of February 

if they want to track how UKL fills before the agricultural diversions begin in the spring. The operator 

can view as well as edit the plots from the plotting feature. 

Model Report: Organizes the basin hydrology from the past week into a tabular report that is generated 

and sent to stakeholders. The report is flexible and can be tailored in content and format by the operator to 

include other data they want to communicate. See Figure 7 for the model report.  
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Figure 7. Sample model report of the past week’s hydrology. 

Output Canvas: Presents an organized view of metrics that reflect the status of operations and hydrology 

in the basin. We developed two output canvases; they are named Run Metrics and Compliance Metrics. 

Run Metrics present results in tables for the operator to review after each run. Additionally, the operator 

can generate a html of the Run Metric canvas to send to stakeholders. It has many of the metrics of 

interest to stakeholders, i.e., supply remaining for agricultural deliveries and projected UKL inflow 

volume per month. Compliance Metrics presents results that are used to gauge compliance with the 

policy’s criteria. If the metrics fail to satisfy the criteria, the operator must adjust per run settings to 

generate results that comply. The Run Metrics and Compliance Metrics canvas is shown in Figure 8 and 

Figure 9 respectively.  
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Figure 8. Sample Run Metric canvas. 
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Figure 9. Sample Compliance Metric canvas. 
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2.2.7. Adjusted Workflow 

A step-by-step explanation of the workflow that uses KROM is presented in this section.  

1. Acquire, Review, and Archive the Data: The operator receives the measurements from the 

USGS/NWIS, Hydromet, and basin reports. Then, they validate and if needed correct the data. 

The validated data is linked to a new sheet that formats it for import to the KROM through a 

DMI. The operator still performs this step in Excel workbooks that serve as the database for the 

daily data (one for formatting and archiving, another that’s linked to the KROM’s DMI). 

2. Prepare the Model for Today’s Use: The operator sets up the KROM with a script and SCT.  

They use the script to load the Rpl sets, open the associated SCT, set the timestep parameters, 

clear data from previous runs, and import the observed hydrology. Then, they use the SCT to 

enter any necessary manual inputs (overrides, reported data) and configure the per run settings. 

The operator performs this step in the KROM. 

3. Operate and Plan for the Season based on Observed and Projected Hydrology: Once the 

operator has finished model preparation, they run the KROM and check results. To configure 

settings properly, the operator uses the multiple run configuration called “Run Trials of Different 

Settings”. After each multiple of runs, they check the results to see if any run’s hydrology and 

deliveries match expectations. If satisfied, the operator makes a single run with the per run 

settings chosen to compute the operational releases. Then, they report the projections to 

stakeholders. The operator performs this step with the KROM. 

4. Run Scenarios and Analyze Possibilities: After operational releases are set, the operator runs 

scenarios with the multiple run configurations called “Run Historical Hydrology Scenarios” and 

“Run with and without Agricultural Deliveries”. The operator performs this step with the KROM. 

5. Generate Reports and Output Products: Every week, the operator creates and delivers reports 

to stakeholders. Stakeholders include irrigation districts, tribes, and other water users. The weekly 

reports that the operator generates are as follows: 
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a. USBR Daily Numbers Update: Observed hydrology from the past week. 

b. Klamath Project Deliveries and Demands: Observed deliveries for the current water year.  

c. Cumulative UKL Inflow: The cumulative, observed UKL inflow for the current water.  

d. Smoothed UKL Inflow: The smoothed, observed UKL inflow for the current water year.  

e. Wormtrails: The observed UKL pool elevation for the current water year. 

The operator produces report a. with the KROM. The operator produces the other reports from 

Excel workbooks of the same name.  

6. Archive the Model: Each day, the operator archives the KROM with the per run settings used to 

compute the official operational releases and projections. Thus, a snapshot of the model, exact 

data and logic used for assignments is recorded.  

2.3. Testing 

For the KROM to be viable replacement of the PA Calc, its logic must be able to replicate the PA 

Calc’s results. Our testing plan validates this criterion by comparing a set of the models’ results from 

operational runs starting at various points throughout the water year. This section starts by presenting the 

set of results we compare. These results are also call comparison variables. The testing methodology is 

covered next, which goes over model setup, result management, and variable comparison. Results of the 

comparison are presented last, and we provide commentary on any differences. Each step of the testing 

plan is discussed in detail in below. 

2.3.1. Comparison Variables 

A comparison variable is a computed result’s timeseries of values, i.e., the Iron Gate Dam release 

for every timestep in the run range. A result is chosen as a comparison variable for two reasons: 1) they 

are a hydrologic measure that represents some important flow or delivery or 2) they are an input variable 

for one of those measures’ computation. If either type of variable is off, that difference is likely to 

propagate to other variables’ computed value. And if vice versa, we are confident that the KROM’s logic 



 
36 

 

is correct since a difference would most likely be observed in one or more of these variables. Table 5 

shows the comparison variables. 

Table 5. Comparison variables used to assess the model. 

UKL Storage 
Iron Gate Dam 

Central Tendency 
Release 

Keno to IGD 
Accretion 

LRDC 
Accretion 

EWA Used 
Through 

Yesterday 

Iron Gate Dam 
Environmental 

Release 

F and FF Pump 
Accretion 

Lake Ewauna 
Accretion 

Iron Gate 
Dam Outflow UKL Outflow 

UKL 
Agricultural 

Delivery 
UKL Inflow 

2.3.2. Methodology 

Our testing plan runs the models for multiple operation start dates, which is representative of the 

operator performing operations at different days throughout the year. In that way, we ensure that if the 

model computes releases in the summer or winter, which are based on different logic, they generate the 

intended results. Essentially, we are trying to have every logical statement execute/compute a value to 

ensure they were written correctly. We did not vary the per run settings between test runs since the 

conditions of the tested water year were diverse, i.e., there was flooding early spring and lack of supply 

mid-summer. That diverse hydrology allows most hydrology-based logic to execute. Whereas, changing 

the operation start date allows most timestep-based logic to execute. We perform test runs with an 

operation start date in each month of the year. Each test run follows a simple three step process. First, 

both models are set up with identical settings. Second, the models are run and the results gathered for 

comparison. Third and last, variables from each model are compared and we identify any difference in 

their values throughout the run range. Each step is covered next. 

Setup: For the results to match, the data input to each model must be identical. The following tasks are 

performed to meet this criterion: 
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• Match the hydrology tables, see Table 4 for a list of them. This is only done for the first run since 

their values remain the same regardless of the date that we are running operations.  

• Match the observed hydrology by setting the same operation start date in each model. Both 

models pull observed hydrology from the same database based on the operation start date.  

• Match the per run settings by setting everything in Table 2 (see “Data” section of “Model 

Requirements”) the same for each model.  

• Set the manual inputs/overrides the same for each model. Otherwise, policy will set those values 

for one model and not the other. 

Result Management: After each model is setup and ran, we export the results to databases. Our 

databases are separate Excel workbooks, one that stores the KROM’s results and another that stores the 

PA Calc’s results. Each workbook is linked to its associated model, with a DMI and cell formula 

respectively. To export results from the KROM, we execute the output DMI named “KROM Outputs”. 

To export results from the PA Calc, we open and save the workbook that stores the PA Calc’s results. The 

databases are formatted identically, i.e. each column represents a variable and each row represent the 

variable’s value on a timestep.  

Variable Comparison: We developed an R script that imports, computes the differences, and plots the 

differences of each variable’s values. Prior to running the R script, we input the test run’s operation start 

date so the code can distinguish between the observation- and projection-based values. The goal of testing 

is to confirm the KROM’s result adequately match the PA Calc’s. Thus, we define allowable differences 

for the models’ results. The allowable differences for observation- and projection-based values are as 

follows: 

• Based on Observed Data: Any difference must be caused by inconsistencies in processes 

fundamental to the model, i.e., one model performs a table lookup and the other an interpolation.  

• Based on Projected Data: Any difference must be less than 5% of the mean value. 



 
38 

 

These criteria were priorly approved by KBAO since they must be able to justify to stakeholders 

that the KROM run operations as intended. The comparison plots the R script creates are automatically 

formatted into a report. We archive these reports by each test run’s operation start date.  

2.3.3. Results 

The results of the test runs are interpreted through the comparison plots. In this section, we 

present each variable’s comparison plot for one test run. The x axis of each plot is the timestep. The y axis 

is the unit difference. Additionally, the values computed from observed and projected data are color 

coded orange and blue respectively. The compared and plotted values are from the 7/10/2020 test run, see 

the figures below.  

     

  

Figure 10. Comparison plots of UKL measures. The outflow (left) and storage (right) are on the top row. 
The agricultural delivery (left) and inflow (right) are on the bottom row. 
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For the variables representing UKL hydrology, no differences occur in their observation-based 

values. The max differences of the projection-based values for outflow (0.08%), storage (0.02%), inflow 

(0%), and agricultural delivery (0.3%) are all well below 5%. Thus, the differences are allowable. Notice 

that the agricultural delivery’s difference distribution is similar to the outflow’s. This occurs since that 

agricultural delivery is portion of that total release. Thus, we can confidently identify the KROM’s 

agricultural delivery logic as the one source of the difference.  

      

   

Figure 11. Comparison plot of Iron Gate Dam measures and EWA use. The outflow (left) and central 
tendency release (right) are on the top row. The environmental release (left) and EWA use (right) are on 
the bottom row. 

The environemntal release’s and EWA use’s observation-based values exhibit differences. Both 

differences are caused by an incorrect cell reference error in the PA Calc (on 4/10/2020). Additionally, 

the EWA use’s observation-based values differ since the KROM’s flow to volume conversion is more 
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specific (significant digits) than the PA Calc’s. Note that the EWA use is a cumulative value, which 

means the differences compound with time. Since the differences are not logic induced, they are 

allowable. The max differences of the projection-based values for EWA use (0.02%) and Iron Gate Dam 

outflow (4.5*10-5%), minimum/ramping release (4.5*10-5%), and environmental release (0.1%) are all 

well below 5%. Thus, the differences are allowable. Iron Gate Dam’s outflow and ramping/minimum 

release difference distribution match since the ramping/minimum objective sets the operational release, 

i.e., had the greatest priority. This is also why differences shown in Iron Gate Dam’s environmental 

release are absent from the outflow, i.e., had lower priority. 

    

  

Figure 12. Comparison plots of the accretion measures. The F/FF Pump (left) and Keno to IGD (right) 
accretion are on the top row. The Lake Ewauna (left) and LRCD (right) accretion are on the bottom row. 

There is one observation-based value of Lake Ewauna accretion that differs. It is also caused by 

the incorrect cell reference error in the PA Calc (on 4/10/2020); the magnitude of difference matches. 
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Since that difference is not logic induced, it is allowable. No differences occur for the accretion variables’ 

projection-based values. 

Based on the comparison plots, the KROM was able to replicate the PA Calc’s results within the 

acceptable range of differences. The observation-based value differences were only caused by model 

process inconsistencies. The projection-based value differences were well under 5% of each variable’s 

mean. While the difference discussed in this section focus on the 7/01/2020 test run, acceptable standards 

were also met for the other test runs. Further testing was performed by collaborators KBAO and TSC to 

validate the KROM’s logic performs as intended for even more dates and hydrologic scenarios. These 

results are pending. 

2.4. Stakeholder Workshop 

To present the KROM to the basin’s stakeholders and receive feedback, we collaborated with 

KBAO and TSC to hold a workshop. This workshop took place on September 23rd, 2020. Initially, we had 

planned to hold it in Klamath Falls, Oregon, which is where KBAO is located. But, due to COVID-19, it 

was held virtually. The participant of the workshop were personnel from both collaborating branches of 

Reclamation (KBAO and TSC), CADSWES, National Marine Wildlife and Fisheries (NMFS), United 

States Fisheries and Wildlife Services (USFWS), MBK Engineering, and Confluence Consulting. The 

personnel from the latter two firms were the modeling consultants who designed the PA Calc. Since not 

all attendees were familiar with RiverWare, this served as an opportunity to present RiverWare as a 

software and show other applications where RiverWare is used to manage basin operations. The main 

topics covered at the workshop were as follows: 

• RiverWare Overview 

• KROM Tutorial and Demonstration 

• RiverWare Capabilities 

• Other Basin’s RiverWare Operations and Planning Models 
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• Discussion 

The workshop spanned over the entire workday. In this section, we will discuss the feedback 

from the stakeholders at the end of the day. This will cover impressions of the KROM and using 

RiverWare as the operations and planning model going forward. 

2.4.1. Feedback 

Participants’ comments on the KROM were quite positive. Most were centered around four key 

features. 1) Multiple run configurations: this form of run management is regarded as much more powerful 

and time efficient than the single run process currently used for operations and scenarios. 2) Data transfer: 

automated input of observed data and output of results is a quality of life improvement over the copy and 

paste methodology necessary for a few of their data management tasks. 3) Suite of output products: they 

like that results from multiple runs are presentable on the same plots and that other products are in a ready 

to distribute form immediately after generation, i.e. html. 4) Script and SCT: the centralized style of data 

management and quick setup is favored over the per run settings being spread across objective specific 

worksheets.   

Based on the KROM’s strong performance and reception at the workshop as well as commitment 

from KBAO to advance operations’ management with RiverWare, there are plans to develop Rpl sets and 

adapt the KROM for the 2021 operational policy. These tasks would be done alongside the development 

of the new Excel operations management tool. The reason being, this 1) confirms the KROM can produce 

the intended results and 2) allows operators to familiarize themselves with managing operations using the 

new tool. Currently, Reclamation is working with CADSWES to develop a new contract to build an 

operations/planning model for the 2021 operational policy. Consultants that develop the Excel model are 

willing to get on board with the switch, but first want to take some time to experiment and get proficient 

with the RiverWare software. To support this change, CADSWES may host a RiverWare training session 

for the Klamath River Basin stakeholders.  
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Chapter 3: Methodology 

The Klamath River Basin is no stranger to the water management challenges of the West. 

Frequent reconsultations, lack of adequate forecasts, and growing water stress persist as constant issues. 

To address these problems, this study has three objectives: 

1. Develop a basin RiverWare model with a robust framework that adjusts to accommodate new 

policy logic associated with different reconsultations. 

2. Develop and test improved forecasting techniques that have been successful in other Western 

Basins. 

3. Determine how much accurate forecasts could improve operational projections. 

The previous chapter describes the development and testing of the RiverWare model. This 

chapter focuses on the steps taken to improve forecasting techniques and operational projections. Our 

forecasting work starts at identifying basic relationships such as the seasonal inflow volume’s connection 

to climatic and local measurements. Then, it moves to comparing regression methods to identify one that 

best predicts seasonal inflow volumes based on those relationships. Our operational projections work is 

an evaluation of the improvement for each of the projected operational objectives. To do this, we run the 

RiverWare model with our forecast scenarios and analyze the agricultural, environmental, and flood 

outputs. An elaboration of each step is given in each of the following subsections.  

3.1. Predictive Variable Identification 

Currently, the NRCS generates forecasts at six different lead times, starting on January 1st and 

occurring on the first of each month until June 1st. The length of the season depends on the lead time. 

From January through March lead times, the inflow volume is forecast from March through September. 

From April through June lead times, the inflow volume is forecast from the month the forecast is made 

through September. These forecasts are based on short lead, local predictive variables, e.g. first of month 

snow-water equivalent (SWE), precipitation, and antecedent streamflow [USDA, 2011]. To improve 
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forecasts, we propose to identify climatic antecedent3 information that has strong connections to inflow 

during these timeframes, then add that information to the NRCS’s local information.  

To develop predictive variables from our information, we use three steps:  

1) Identify teleconnections that have been useful in other studies in the Western United States. 

2) Test the relationship between teleconnections and seasonal inflows in the Upper Klamath Basin 

and select the strongest signals from the datasets. 

3) Consider the teleconnection information and NRCS information as our new set of predictive 

variables 

A more detailed explanation of each action is provided in the sections below. 

3.1.1. Potential Climate Teleconnections Identification 

Each year, the National Resources and Conservation Service (NRCS) generates the Seasonal 

Inflow Forecasts for Upper Klamath Lake. These forecasts are based on local predictive variables, e.g. 

snow-water equivalent (SWE), precipitation, and antecedent streamflow. Noticeably, there is a lack of 

climate teleconnection variables informing forecasts. In other Western basins, Sea Surface Temperatures 

(SST) anomalies and 700 hectopascal Geopotential Heights (700 hPa GPH’s) have been shown to possess 

a strong correlation with seasonal inflow volumes [Wang and Tin, 2000; Sagarika, 2015]. Thus, we 

investigate both climatic data’s potential connection, spatially and temporally, with seasonal inflows at 

Upper Klamath Lake. The definition and scale of the climatic data is as follows: 

SST anomalies: The quantity sea temperatures depart from the historical mean at a given location. This 

study uses 5x5-degree gridded SST anomalies on a monthly temporal scale. “National Center for 

Atmospheric Research (2020)” 

                                                                 
3 Relative to the forecast’s lead time, e.g. the January Regression Model is only fit on info known prior to January. 
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700 hPa GPH’s:  The height that the 700 hectopascal pressure surface sits above sea level. This study 

uses a 2.5x2.5-degree gridded GPH’s on a monthly temporal scale. “National Center for Atmospheric 

Research (2020)” 

3.1.2. Strongest Signals Selection 

Spatially, each climatic dataset covers the globe. To limit size and improve the quality of the 

information, only the strongest spatial connections are kept. This prevents overfitting the regression 

model to the climatic teleconnections’ random noise. To develop predictive variables from each climatic 

dataset, the following step-by-step process is employed: 

1. Compile historical Upper Klamath Lake inflows by month. Aggregate into volumes for each 

seasonal period that is forecasted, e.g. March-September, April-September, May-September, and 

June-September.  

2. Average climatic data over three-month periods. This eliminates the influence of outliers from 

individual months. The first three-month period is September thru November. The periods step by 

one month until the February-April average is reached.  

3. Compute the spatial correlation for each viable combination of climatic and seasonal inflow 

datasets. A viable combination is Sep-Oct SST’s with Mar-Sep Inflows since the SST’s are 

available before the inflows occur. Whereas, Feb-Apr SST’s with Mar-Sep Inflow is an invalid 

combination since the March and April SST’s are unknown before that inflow period begins.  

4. Plot each grid point’s correlation to determine the regions with the strongest connections.  

5. To capture the signal from each region that has strong correlation coefficients, set a physical 

boundary by visual inspection around the points whose correlation coefficients exceed an 

absolute value of 0.4. Do this by approximating the max and min latitude and longitude of the 

box. Then, compute the average of the unit values inside the boundary. The averaged values serve 

as the predictive variables for the regression models. Each average is denoted by location and 

period, e.g. Pacific Northwest Sep-Nov SST’s. 
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6. Compile the predictive variables for each forecast date. Since variables vary spatially and 

temporally, two variables from the same region but different periods are usable for a regression 

model. To eliminate redundant information, select the variable from the period that shows the 

strongest correlation.  

3.1.3. Incorporation of Existing Forecast Products 

To include local information, the NRCS seasonal inflow forecasts are added to the sets. This is 

done for two reasons: (1) the NRCS forecasts contain highly predictive localized components such as 

precipitation, SWE, and antecedent flow in their computation, and (2) their inclusion shows if and how 

much skill the climatic predictors add when our forecasts are compared against them. Using the local 

variable sets that the NRCS inputs to their model is not a practical option since the exact composition is 

unknown to non-USDA personnel. To obtain the NRCS seasonal inflow forecasts, we access charts and 

reports on the USDA’s website “United States Department of Agricultural (2020)”. The seasonal forecast 

we need for each lead time are as follows: 

Table 6. Seasonal forecast period based on forecast lead time. 

Lead Time Seasonal Forecast 
January, February, March March-September Inflow Volume 

April April-September Inflow Volume 
May May-September Inflow Volume 
June June-September Inflow Volume 

 

The required seasonal inflow forecasts, specifically the periods, are dictated by the operations 

policy. Throughout the study’s analysis period (1982-2019), those exact forecast products are commonly 

unavailable, except for April and May lead time forecasts. This necessitates the available forecast 

products to be adjusted accordingly. Before April, the NRCS generates at least two forecast products for 

each lead time. One is the Month-July forecast and the other is either the March- or April-September 

forecast (NRCS only produces one of these). To approximate the March-September forecast from the 

April-September forecast, I estimate the March portion of the Month-July forecast where the “Month” 



 
47 

 

refers to the lead time’s month of the seasonal inflow forecast, e.g. if the lead time is January 1, the 

“Month” is January.  Then, that volume is added to the April-September forecast. The March portion is 

computed as follows. 

1. Retrieve observed Upper Klamath Lake inflows from 1981 through 2018. 

2. Sum the inflows into the March volume, January-July volume, February-July volume, and 

March- July volume. 

3. For each year, compute the quotient of the March and Month-July inflow volume. Thus, there are 

three quotients for each year. 

4. For each lead time, multiply the NRCS’s Month-July forecast by the average quotient from years 

prior. For example, if the year is 1999 and the lead time is January, use the average of the January 

quotients from 1981-1998. 

For June, half the forecast products are the May-September forecast. Since the May inflows are 

known by June, the June-September forecast is the difference between the May-September forecast and 

May inflow volume.  

3.2. Regression Model Development and Selection 

The regression model development and selection methodology is a two-step process. (1) Develop 

regression models to forecast seasonal inflows on the first day of January, February, March, April, May, 

and June; each with its own set of predictors suited to the month. (2) Select the best regression method for 

each month based on its models’ leave one out cross validation root mean square error (RMSE) and Nash 

Sutcliffe model efficiency coefficient (NSE). Two regression methodologies are employed in this study: 

local polynomial and random forest. 

3.2.1. Local Polynomial Regression 

Local polynomial regression is a non-parametric method that invokes the principle of weighted 

moving averages to smooth/fit the data. Flexible in nature, this method does not require assumptions of 
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normally distributed errors and variables that likely do not hold true in natural systems. As further 

motivation, local polynomial regression has proven effective in similar hydrologic studies in the western 

US, e.g. streamflow forecasting on the Colorado River basin [Bracken et al., 2010] and the Truckee and 

Carson river basins [Grantz et al., 2005]. Each of these prior studies utilized the local weighted 

polynomial method as laid out by Regonda et al. [2006]. Following this groundwork, this research 

implements a simplified version to obtain the “best model”. The “best model” is classified by the size of 

the neighborhood, the order of the polynomial, and the subset of predictor variables which are identified 

by some objective criteria. Allowing the neighborhood and order to be optimized by the “locfit” function 

developed for R, the only aspect to determine becomes the subset of predictor variables. The subset of 

predictor variables will be chosen from two sets, (1) climatic and (2) climatic and local. The climatic set 

lacks the NRCS forecasts, thus eliminating the local information. A purely climatic set is regressed to 

assess the teleconnection’s predictive value relative to the purely local (NRCS Forecasts) and local and 

climatic information (Combined Set Regression Forecasts).  

As a precursor to regression, predictive variables are tested for independence. This is done by 

developing a correlation matrix of the sets. For regression to work properly, the relationship between each 

predictive variable and the dependent variable must be isolatable [Frost, 2017; Haque, 2013]. To isolate 

the relationship, all predictive variables except one are held constant while the unit change in the 

dependent variable for each 1-unit change in the non-constant predictive variable is observed. That 

dependent variable’s unit change becomes the predictive variable’s regression coefficient. When 

predictive variables aren’t independent or are multicollinear, one predictive variable’s change correlates 

to a shift in another. If two predictive variables shift while observing the dependent variable’s change, we 

can’t identify the predictive variable that induced the change; thus, both predictive variable’s regression 

coefficients are altered from their true value. Thus, if multicollinearity is strong, a predictive variable’s 

regression coefficient changes depending on other predictive variables in the subset.  
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Based on the degree of correlation shown in the correlation matrix, we perform Principal 

Component Analysis (PCA) to make the predictive variables independent. PCA de-correlates predictive 

variables by finding independent, complex linear combinations of said predictive variables, which are 

called principal components. To perform PCA, we follow the methodology laid out by Brems [2017], 

which is as follows:  

1. Assemble a matrix of predictive variables (predictors), with each column a predictor and the rows 

as their time series of data.  

2. For each column, subtract the mean from the data so the column’s mean is zero. 

3. Since predictors do not have the same units, standardize the matrix. If left unstandardized, PCA 

will emphasize the features of predictors with greater variance. The centered and standardized 

matrix is called Z. 

4. Transpose the matrix Z. Then, multiply the matrix Z by the transposed matrix. The output is the 

covariance matrix.  

5. Perform an eigendecomposition of the covariance matrix to obtain the matrix of eigenvectors and 

matrix of their corresponding eigenvalues.  

6. Sort the eigenvalues from largest to smallest, which is done by rearranging the columns. Arrange 

the matrix of eigenvectors to match their corresponding eigenvalue column position. 

7. Multiply the matrix of sorted eigenvectors by the matrix Z. Now each centered and standardized 

observation is a linear combination of the raw predictors with the weights set by the eigenvectors. 

Since the eigenvectors are independent, now the predictors in the product matrix are also 

independent.  

To interpret the contribution of each predictor to individual principal components, we analyze the 

loadings. The columns are principal components and the row predictors. A high coefficient signals a 

greater contribution and vice versa.  
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As a last step before subset selection and regression, the unimportant features of the predictors are 

eliminated. This is also called feature reduction, which is another application of PCA. Feature reduction is 

based on a key PCA assumption. It follows that the importance of a principal component corresponds to 

the fraction of set variance it explains. If the variance explained is large, the more important it is at 

explaining the dependent variable’s behavior and vice versa. Thus, to select the set of principal 

components, a floor is defined based on the fraction of variance they explain. The floor is at 10% of the 

set's variance. If a principal component accounts for less than 10%, it is considered noise and left out of 

the regression set. Whereas, if a principal component represents greater than 10%, it is considered a signal 

and is valid to be considered in the regression set. 

With predictor variables properly prepared for each set (climatic, local and climatic), the 

simplified local polynomial regression procedure that is based on Regonda et al. [2006] and also used by 

Bracken et al. [2010] proceeds as follows:  

1. Select a subset of predictors 

2. Weighted least squares estimation fits a polynomial based on the predictor subset. Use the fit to 

get an estimate, denoted Ŷ. 

3. Compute the objective criteria, generalized cross-validation estimation 

 

where ei is the model residual (Yi − Ŷ) for the ith data point, N is the number of data points, q is 

the number of parameters in the local polynomial model. Generalized cross validation (GCV) 

provides a good estimate of predictive risk of the model, unlike other statistics, which are 

goodness of fit measures [Craven and Wahba, 1978]. 
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4. Repeat steps 1 and 2 until the GCV values of all the predictor subset combinations are obtained. 

The goal is to minimize the GCV score, thus the model with the lowest value is ranked the “best 

model”. 

5. Retain the top two “best models” as the candidates for the next step in comparing the regression 

methods since GCV score is not a definitive measure of the best predictive model. This ensures 

the consideration of a model that may excel at a different set of criteria.  

3.2.2. Random Forest Regression 

Random forest regression is the other method applied to this data set. It is a non-parametric 

method that uses an ensemble-learning algorithm to construct decision trees based on the data. The 

random forest operates by utilizing the decision trees to generate independent forecasts that are assembled 

into an ensemble. The mean of those forecasts or the ensemble produce the final estimate. Random forest 

regression is an excellent technique for capturing nonlinear interactions and has been proficient at 

forecasting reservoir inflows with climatic indices [Kim et al., 2019]. The main parameters to tune for a 

random forest are (1) the number of trees, (2) the number of variables each node split of the tree considers 

[Breiman 2001]. For this application, (1) is set at 500 to capture the signal without being too 

computationally expensive and (2) is set to the default of the number of predictors divided by three to 

avoid overfitting. Unlike the local weighted polynomial method, no “best model” is found from the 

random forest method since the fit is on the entire raw predictive variable sets (local and climatic). Thus, 

no PCA, objective criteria computation, or subset comparison steps are necessary. The entire raw 

predictive variable sets are suitable for two reasons. (A) Random forest regression does not require 

linearly independent predictive variables. Thus, PCA is unnecessary. (B) The weight/importance of      

each predictive variable in a random forest is interpretable, which makes fitting multiple subsets to 

determine what information is predictively powerful unnecessary. The weight/importance of the 

predictors are measured by the percent increase mean square error (MSE) and increase of node purity. 

The definition, formula, and purpose of each importance measure are as follows: 
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Percent Increase MSE: The squared deviation of the errors when a predictor is excluded from 

the model. In this study, the errors are the difference between the forecasted and observed inflow 

volumes. The formula for MSE is 

𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓 =
∑ (𝑧𝑧𝑓𝑓𝑖𝑖 −  𝑧𝑧𝑓𝑓𝑖𝑖)
𝑁𝑁
𝑖𝑖=1

2

𝑁𝑁
 

where N is the number of data points, 𝑧𝑧𝑓𝑓𝑖𝑖  is the ith forecasted data point, and 𝑧𝑧𝑓𝑓𝑖𝑖  is the ith 

observed data point. MSE indicates how close the model’s forecasts are to the observations. Thus, 

the greater the percent increase MSE, the more important the variable is since without it the 

forecasts are much less close to the observations. 

Increase of Node Purity: The reduction in sum of squared errors (SSE) when a predictor is 

selected to split4. The formula for SSE is 

𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓 = �(𝑧𝑧𝑓𝑓𝑖𝑖 −  𝑧𝑧𝑓𝑓𝑖𝑖)
2

𝑁𝑁

𝑖𝑖=1

 

where N is the number of data points, 𝑧𝑧𝑓𝑓𝑖𝑖  is the ith forecasted data point, and 𝑧𝑧𝑓𝑓𝑖𝑖  is the ith 

observed data point. SSE indicates how close the model’s forecasts are to the observations. Thus, 

the greater the SSE reduced, the more important the variable is since when it is selected to split 

the forecasts are much closer to the observations.  

For a comprehensive explanation of the local polynomial or random forest regression methods, 

refer to Loader [1999] and Brieman [2001] respectively.      

                                                                 
4 Determines which branch of the decision tree to follow at a given node. 
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3.2.3. Model Comparison and Skill Assessment 

From the above steps, there are the following regression models for January thru June: (1) Top 

local polynomial models, (a) two based on climatic info and (b) two based on local and climatic info. (2) 

One random forest regression model based on local and climatic information. To compare, the objective 

criteria are the leave one out cross validation (LOOCV) root mean square error (RMSE) and Nash-

Sutcliffe model efficiency coefficient (NSE). The LOOCV test removes 1 data point (p) out of the 

regression training dataset (n samples). In this study, the left-out point is data from a random year in the 

analysis period. Then, the model is trained on the altered dataset (n-1 samples) and predicts the removed 

data point (p). This is repeated until each data point, yearly data in this study, is the (p) removed and 

subsequently predicted [Shaikh, 2018]. As a result, the set of predictions is entirely based on unknown 

data5. A leave one out cross validation test is a great estimator of model quality in future applications. It 

analyzes how well a model predicts on new data and avoids overfitting or underfitting the existing data. 

From the set of predictions, the RMSE and NSE are computed. The definition, formula, and purpose of 

each objective criterion are as follows: 

RMSE: The standard deviation of the errors. The RMSE formula is 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓 = �∑ (𝑧𝑧𝑓𝑓𝑖𝑖− 𝑧𝑧𝑜𝑜𝑖𝑖)
𝑁𝑁
𝑖𝑖=1

2

𝑁𝑁
  

where N is the number of data points, 𝑧𝑧𝑓𝑓𝑖𝑖  is the ith forecasted data point, and 𝑧𝑧𝑓𝑓𝑖𝑖  is the ith 

observed data point. RMSE indicates how close the model’s forecasts are to the observations. 

Thus, the lower the RMSE score, the better the predictive skill of the model. 

NSE: Goodness-of-fit index, also called the efficiency index, proposed by Nash and Sutcliffe 

[1970]. The NSE formula is  

                                                                 
5 Data the model has not been trained on, which is what the model will  make predictions from in practice. 
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𝑁𝑁𝑀𝑀𝑀𝑀 = 1−  ∑ (𝑌𝑌𝚤𝚤�  − 𝑌𝑌𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ (𝑌𝑌𝑖𝑖  −  𝑌𝑌�)2𝑁𝑁
𝑖𝑖=1

 

where N is the number of data points, 𝑌𝑌𝚤𝚤� is the ith forecasted data point, 𝑌𝑌𝑖𝑖  is the ith observed data 

point, and 𝑌𝑌� is the mean of the observed data. NSE is widely used by the hydrology community 

to assess the predictive skill of models. A perfect model achieves NSE score of 1, a model with 

the same predictive skill as the mean achieves NSE score of 0, and a model with error variance 

greater than the observations achieves NSE score < 0. Thus, the closer the NSE score is to 1, the 

better the predictive skill of the model. 

The benchmark objective criteria scores are set by the NRCS’s model, in each month. Thus, the 

RMSE and NSE are computed from the NRCS forecast sets. If either regression model beats the NRCS’s 

score, the new predictive variables contain useful information and/or the regression method better 

represents the system. To visualize this comparison, two plots of the objective criteria scores are made. 

The Y axis represents the score and the X axis represents the lead time by month. To reduce redundancy, 

only the best of each local polynomial model (climatic, climatic and local) is plotted. In months the 

benchmark is beat, the forecast from the best scoring regression model is retained for operation testing. 

See the results in the “Regression Model Rankings” subsection of chapter 4 for the forecast lead times our 

models beat the benchmark.        

3.3. Operations with Improved Forecasts Analysis 

If any of the regression models shows better predictive skill than the NRCS Seasonal Inflow 

Forecast, the next step is to analyze the accuracy of projected operation's when based on the improved 

forecasts. Then, those projections are compared against projected operations based on the NRCS 

forecasts. To do this, we propose a three-step process. (1) Define the performance metrics. (2) For each 

forecast set, set up the operations model, run, and record results. (3) Compute the values of the 

performance metrics and plot for comparison.   
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3.3.1. Performance Metric Definitions 

Performance metrics are measures that represent the quality of a product. The product in this 

research is the seasonal inflow forecasts, which are evaluated for their ability to accurately project 

operations. The more accurate the projections are, the more useful they are for stakeholder planning. 

Thus, our performance metrics measure the error from the perfect projection. Error is computed for values 

that represent Reclamation’s three management objectives, which are (1) deliver water for agricultural 

demands, (2) maintain healthy hydrological conditions for Endangered Species Act (ESA) listed fish 

through making releases that sustain river stage and keeping adequate storage in Upper Klamath Lake, 

and (3) control flooding at Upper Klamath Lake. Values for each objective are as follows (number 

corresponds to objective): 

(1) Project Supply Use 

(2) Environmental Water Account (EWA) Use and UKL Storage 

(3) Cumulative UKL Flood Release 

Each value is projected on a daily timestep. All except UKL Storage are a cumulative distribution 

volume. To summarize their status, one to three assessment dates are selected to analyze the values. 

Agricultural objectives are the most detailed due to the crop's varying water requirements; it’s three 

assessment periods are March-May, June-July, and August-September. Environmental objectives have 

two assessment dates, July 1st and August 1st, that correspond to compliance dates defined by the 

operation policy. Lastly, there is one assessment date, October 1st, for the flood control objective since the 

timing of flooding is not of interest, but rather the total amount. The difference or error from the perfect 

value is computed on these dates. Those are the performance metrics, which are 8 in total. See Table 7 for 

a breakdown of each performance metric. 
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Table 7. Performance metrics specifications. 

Objective Agricultural Environmental Flood Control 

Measure Project Use EWA Use 
UKL Storage 

Cumulative UKL Flood 
Release 

    

Assessment Date 
 

June 1st 
August 1st 
October 1st 

July 1st 
October 1st October 1st 

3.3.2. Model Setup, Runs, and Results 

Every day, the Reclamation Klamath Basin operator will use the Klamath RiverWare Operations 

Model (KROM) to compute official releases and project the basin’s hydrology and demands. One of the 

main inputs that controls those projections is the seasonal inflow forecast. By configuring the model to 

the expected supply, which is informed by the forecast, the operator generates projections and informs 

stakeholders of the potential basin outlook (available supply and how it is distributed).    

The seasonal inflow forecast must be disaggregated to daily inflows at UKL. This involves a 

search and selection from a table of historical daily inflow time series that are disaggregates of historical 

yearly inflow volumes. They are organized by exceedance percentages, e.g., the yearly volume that 

exceeds 50% of the historical UKL inflow volumes. The time series is selected for which the total most 

closely matches the forecasted seasonal volume, and is used for inflows from March thru September. For 

generating inflows in other months, the operator uses their best judgement of the year’s conditions to 

select the time series of inflows from the table.    

  The same principles and process the operator follows is performed in our study to generate 

projections as if we are operating based on our forecasts. Since the KROM is an operations model and not 

a planning model, each run generates projections for one water year. Thus, each set (NRCS, Best 

Regression, Perfect) of model forecasts requires 38 individual runs (WY 1982 through 2019). The 

operator’s process that we tailored to setup the model, run, and record results for our study is as follows: 

1. Select a water year in the analysis period (WY 1982-2019) 
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2. For that year, select a forecast on which to base operation projections (NRCS, Best Regression, 

Perfect) 

3. Configure the KROM to model the selected year and forecast 

a. Execute the Historical Hydrology Data Management Interface (DMI) to import that 

year’s hydrology 

b. Set the Operation Start Date to the forecast’s lead time 

c. Input the forecast 

d. Adjust the projection table lookup settings to correspond with the expected supply6 

4. Run the KROM 

5. Execute the Record Results DMI to export and record the run’s results 

6. Repeat for each combination of year and forecast 

It should be noted that there are many other adjustable settings or overrides that can affect the 

outcome of a run. In actual operations, the operator uses these to fine tune projections for periods as small 

as weeks or days rather than the entire season. In our study, these adjustments are kept constant7 since 

such detail is unnecessary. Additionally, anything that adds variability other than step 3’s actions should 

be negated to best capture the forecast’s influence. 

3.3.3. Performance Metric Computation and Analysis 

For each lead time, there are three sets of results. Each set belongs to runs based on the following 

types of forecasts: (1) Best Regression, (2) NRCS, and (3) Perfect Foresight. For naming, each set will be 

named after the forecast it is based, e.g. NRCS set. The result sets are composed of eight variables that are 

laid out in the Performance Metric Definition subsection, see Table 7. The performance metrics represent 

the error of each variable from perfect foresight. To compute the error or performance metrics for the 

                                                                 
6 When adjusted accordingly, (1) the cumulative daily demands equal the project supply and (2) the cumulative 
UKL inflows match the seasonal inflow forecast, and (3) the accretions lookup settings match the inflow settings. 
7 Overrides are set to “No Value” and adjustment factors are set to one to negate their influence 
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NRCS and Best Regression sets, we find the difference from the Perfect Foresight set for each variable. 

To capture the overall variance and average of the errors, performance metrics are shown in boxplots. For 

each performance metric, there are two boxplots. One represents the NRCS based results and the other the 

Best Regression based results. From these boxplots, the value of the improved seasonal inflow forecast 

can be assessed. 

Chapter 4: Results 

This chapter describes the results beginning with identification of the best predictive variables for 

each lead time, which are based on either climatic or local information. The climatic variables are formed 

from strong SST anomaly and 700 hPa GPH teleconnections to seasonal inflow volumes. The local 

variables are NRCS forecasts, which are adjusted to the seasonal lengths defined by the operations policy. 

Regression model are fit to these variables or variations of them. The importance of the variables in each 

model are determined to understand the drivers of our forecasts. Then, the climate-plus-NRCS forecasts 

are compared with the NRCS forecasts to evaluate when the climatic information can improve forecasting 

skill. The extent that improved forecasting skill is useful is based on the performance of operational 

projections. Thus, the last results this section describes are the eight performance metric scores from runs 

based on the climatic-plus-NRCS and NRCS-only forecasts. 

4.1. Best Predictive Variables 

To identify the information on which to fit our regression model, the strength of climatic 

teleconnections to seasonal inflow volume was evaluated. The climatic datasets we worked with were 

SST anomalies and 700 hPa GPH’s. From our investigation, significant regional teleconnections were 

found across multiple periods. By averaging the values of those regions, we developed our climatic 

variables. To add local variables to our sets, we utilized the NRCS forecasts. Most of these forecasts 

weren’t for the timeframe the operational policy required. Thus, we estimated from the available NRCS 
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forecasts and historical data the forecasts for the policy specified timeframes. This produced the adjusted 

NRCS forecasts that serve as our local variables. 

4.1.1. Sea Surface Temperatures 

SST anomalies from October through December were identified with significant teleconnection 

strength with the seasonal inflows at all lead times. These SST anomalies are located in the East Atlantic, 

Pacific Northwest, Central Pacific, and Indian Ocean regions. The connections are ranked by the 

correlation coefficients. Each region that informs predictive variables possesses a moderate to moderately 

high correlation coefficient that ranges from 0.4 to 0.6. The spatial correlation plot of the October through 

December averaged SST anomalies are shown in Figure 13.  

 

Figure 13. Spatial correlation plot of SST’s with Seasonal UKL Inflow. The area that corresponds to each 
delineated ocean region is as follows: 1) East Atlantic, 2) Pacific Northwest, 3) Central Pacific, and 4) 
South Indian. 

To form the predictive variables, we delineate boundaries around the specified regions and 

average the values within. The resulting boundaries are also shown in Figure 13. 
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4.1.2. 700 Hectopascal Geopotential Heights 

Unlike the SST variables, information from multiple periods is found to be significant. The 

earliest information comes from September thru October and the latest in February thru April. Spatially, 

the set’s information comes from four regions: Pacific Northwest, Southwest Atlantic, Gulf of Mexico 

and Northwest Atlantic. These produce significant teleconnections during different periods since those 

regional connections remain strong throughout winter and into spring. Each connection that informs 

predictive variables possesses a moderate to moderately high correlation coefficient that ranges from 0.4 

to 0.6. The spatial correlation plots of the three-month averaged 700 hPa GPH’s are shown in Figure 14, 

and are organized by period. 
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Figure 14. Spatial Plots of 700 hPa Geopotential Heights with Seasonal Upper Klamath Lake Inflows. 
Each boxed region represents the area averaged value that is a predictive variable. Plots are organized by 
period. The first row is left) Sep-Oct and right) Oct-Nov average heights, second row is left) Nov-Jan and 
right) Dec-Feb average heights, and third row is left) Jan-Mar and right) Feb-Apr average heights. 
Longitude is shifted 30 degrees and inversed. 

To form the predictive variables, we delineate boundaries around the specified regions and 

average the value within. The boundaries are also shown in Figure 14. 

For each region, Table 8 shows the periods for which teleconnections are significant for various 

forecast lead times, providing for the identification of a predictive variable. 

Table 8. Significant teleconnections at each Forecast Lead Time. 

Region Jan 1 Feb 1 Mar 1 Apr 1 May 1 Jun 1 
      
Pacific Northwest Sep-Nov Nov-Jan Dec-Feb Jan-Feb Feb-Apr Feb-Apr 

Gulf of Mexico NA NA NA Jan-Mar Feb-Mar Feb-Mar 

Southwest Atlantic Oct-Nov Oct-Nov Oct-Nov Oct-Nov Oct-Nov Oct-Nov 

Northwest Atlantic NA NA NA Jan-Mar Jan-Mar Jan-Mar 

Month-Month, i.e., Sep-Nov, specifies the period the regional teleconnections are significant for that 

forecast lead time. If NA, a significant teleconnection was not found for that region for that forecast 
lead time. When the regional correlation coefficient is at least 0.4, the most recent period averaged 
values are used at a that lead time (e.g., April 1st forecast uses the January thru March avg. GPH’s). 

4.1.3. Adjusted NRCS Forecasts 

The NRCS produces seasonal inflow forecasts at six lead times: the first of every month from 

January through June. Commonly, the seasonal timeframe of the forecast product changes throughout the 
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period of record. Since the operational policy requires a temporally specific forecast, see Table 6, we 

estimate that forecast from the available NRCS products and historical hydrology. To demonstrate the 

estimation process and results, we select a year and walk through the steps. For this example, the year 

1986 is chosen. First, we retrieve the NRCS Seasonal Inflow Forecasts from the USDA’s website, 

organize them in a table, and denote the forecast season. See Table 9 for color coded breakdown of the 

forecasts.  

Table 9. Original NRCS Seasonal Inflow Forecasts from 1986. 

 Upper Klamath Lake Inflow Forecast 
Year 1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 
1986 667 605 700 502 314  184 

        
Key   Mar-Sep   Apr-Sep   

   May-Sep   Jun-Sep   
 

Next, we compare the forecasts in Table 9 with Table 6 in the Methodology chapter to determine 

if the original NRCS forecasts need to be adjusted. The January and February forecasts need to be 

converted from an April-September to a March-September volume. Also, the June forecast must be 

converted from a May-September to June-September volume. Since the adjustments differ, they are 

discussed separately. Starting with the earlier lead times, we estimate the March inflow volume to add to 

the April-September forecast. The March volume is approximated from two products, the NRCS Inflow 

Forecast for February-September and the historical fraction of inflow volume that comes in March over 

the February-September period. See Table 10 for both. 

Table 10. The February-September NRCS Inflow Forecasts for January and February lead times and the 
historical fraction of February-September inflow volume that comes in March. 

 

February-September Upper 
Klamath Lake Inflow 

Forecast 

March Fraction 
of Feb-Sep 

Inflow 

Year 1-Jan 1-Feb 1981-1985 
1986 815 739 0.221 
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Now, by taking the product of the Forecasts and Fraction, March volumes are approximated. The 

March volumes, which are summed with the April-September Inflow Forecasts, and the resultant March-

September Forecasts are shown in Table 11. 

Table 11. The approximated March Inflow Volume from the NRCS Forecast and the estimated March-
September Upper Klamath Lake Inflow Forecast. 

 

March Inflow 
Volume 

March - September Upper 
Klamath Lake Inflow 

Forecast 
Year 1-Jan 1-Feb 1-Jan 1-Feb 
1986 180 163 667 605 

 

For the June lead time, we find the May inflow volume to subtract from the May-September 

Inflow Forecast. Since the May inflows are known on June 1st, it is a simple subtraction. See Table 12 for 

May volume and resultant June-September Forecast. 

Table 12. The 1986 May Inflow Volume and the computed June-September Upper Klamath Lake Inflow 
Forecast. 

 
May Inflow Volume 

June - September Upper 
Klamath Lake Inflow 

Forecast 
Year 1-Jun 1-Jun 
1986 136 184 

 

The rest of the adjusted NRCS Seasonal Inflow Forecasts can be found in the appendix. The 

tables for the other intermediary values such as the March or May Inflow Volume for the relevant lead 

times are located in appendix as well. These adjusted NRCS forecasts are our local variables. 

4.2. Regression Model Skill 

For each forecast lead time, regression models (local polynomial and random forest) were fit to 

the predictive variable set or subset variations (climatic, local & climatic). First, we present the “best 

model” from each regression method and the most important information in the “best model”. For local 

polynomial models, this is shown with correlation matrices (predictors/predictors, predictors/principal 
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components) and GCV scores. For the random forest model, this is shown with the MSE and node purity 

importance scores. Second, we compare the predictive skill of the best regression models and NRCS 

models at each forecast lead time. Predictive skill is measured by the objective criteria scores RMSE and 

NSE from a LOOCV test. Two plots, one for each criterion, show each model’s scores. 

4.2.1. Local Polynomial Models 

Initially, the information for regression is represented as predictive variables, which were formed 

from SST’s anomalies, 700 hPa GPH’s, and adjusted NRCS forecasts in step 1 of the Methodology 

chapter. Local polynomial regression requires these variables to be independent from each other. 

Otherwise, the fit will not capture the true relationships between variables and seasonal inflow volume. 

We tested the independence of our predictors by computing their joint correlation coefficients. The 

coefficients are displayed in correlation matrices, see in Table 13 for January’s. the matrices for the other 

months are in the Appendix. 

Table 13. Correlation matrix of the climate (SST’s and GPH’s) and NRCS predictors for the January lead 
time. 

 East 
Atlantic 
SST 

Pacific 
NW     
SST 

Central 
Pacific   
SST 

South 
Indian 
SST 

Pacific 
NW 
GPH 

SW 
Atlantic 
GPH 

Jan 1st 
NRCS 
Forecast 

East 
Atlantic SST 1.00 0.27 0.20 0.58 0.24 0.29 0.80 

Pacific NW 
SST 0.27 1.00 0.52 0.18 0.48 0.07 0.27 

 Central 
Pacific SST 0.20 0.52 1.00 0.46 0.31 0.17 0.21 

 South 
Indian SST 0.58 0.18 0.46 1.00 0.26 0.22 0.62 

 Pacific NW 
GPH 0.24 0.48 0.31 0.26 1.00 0.29 0.19 

 SW Atlantic 
GPH 0.29 0.07 0.17 0.22 0.29 1.00 0.15 

Jan 1st 

NRCS 
Forecast 

0.80 0.27 0.21 0.62 0.19 0.15 1.00 

Our predictive variables were unsuitable to fit our local polynomial regression models because 

there are multiple instances of moderate to moderately strong relationship between variables. For January, 
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the strongest relationship appears between East Atlantic and South Indian SST anomalies, Pacific 

Northwest and Central Pacific SST anomalies, South Indian SST anomalies and Jan 1st NRCS Adjusted 

Forecast, and East Atlantic SST anomalies and Jan 1st NRCS Adjusted Forecast. Of course, the diagonal 

correlation coefficients are equivalent to 1 since each predictive variable is correlated with itself.  

Since the predictors are not independent, we need to manipulate them to so they aren’t related. 

Thus, we perform PCA. PCA forms complex linear combinations of the variables, called principal 

components, that are independent from one another. Some principal components carry greater importance 

than others. In PCA, the component’s importance is tied to the fraction of set variance they explain. The 

fraction of variance is computed from the principal component’s eigenvalues as the quotient of the 

component’s eigenvalue over the set’s cumulative eigenvalue. Then, those quotients are plotted on what is 

called a scree plot. Once again, with January as the example lead time, see Figure 15 for the scree plot of 

those principal components. 

  

Figure 15. Scree Plots for the principal components formed from the (Left) climate-plus-NRCS and 
(Right) climate predictor sets for the January lead time. 

The other months’ scree plots are in the Appendix. 

For January, the first principal component carries much more importance than the rest as it 

explains over 40% of the set’s variance. There is a sharp drop-off from PC 1 to PC 2, which explains 

around 20% of the set’s variance. From there, the variance explained by the subsequent principal 

components drops by about 4-5% per component. 
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The contribution of each predictive variable to each principal component can be analyzed through 

the loadings. Loadings are the weight coefficients of the linear combination of the predictors from which 

the principal components are constructed. The sign of the coefficient denotes the direction of relationship. 

Thus, if negative, as the predictor increases the component decreases. Coefficients range from a 

magnitude of 0 to 1. Thus, the closer the coefficient is to 1, the stronger the relationship between the 

predictor and component and vice versa. Table 14 shows the loading matrices of January’s 

predictor/principal components for both climate-plus-NRCS and climate sets.  

Table 14. Loadings matrix of the predictive variables (Top: climate-plus-NRCS, Bottom: climate-only) 
and principal components used to fit the local polynomial regression model at the January lead time. 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 
East Atlantic 

SST 
0.37 0.48 -0.19 0.27 -0.59 -0.11 0.40 

Pacific NW 
SST 0.38 -0.54 -0.12 -0.03 -0.53 0.24 -0.46 

 Central 
Pacific SST 0.37 -0.26 -0.46 -0.55 0.25 0.00 0.48 

 South Indian 
SST 0.40 0.40 -0.41 0.10 0.39 -0.15 -0.57 

 Pacific NW 
GPH 0.41 -0.29 0.44 0.16 0.11 -0.71 0.06 

 SW Atlantic 
GPH 0.26 0.40 0.54 -0.65 -0.12 0.14 -0.15 

Jan 1st NRCS 
Forecast -0.43 0.05 -0.30 -0.41 -0.35 -0.62 -0.21 

 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 
East Atlantic 

SST 0.42 -0.47 0.19 0.50 0.37 -0.44 

Pacific NW 
SST 0.42 0.56 0.02 0.22 0.49 0.47 

 Central 
Pacific SST 0.44 0.29 0.27 -0.64 0.03 -0.48 

 South Indian 
SST 0.45 -0.38 0.42 -0.10 -0.44 0.53 

 Pacific NW 
GPH 0.41 0.28 -0.46 0.35 -0.60 -0.21 

 SW Atlantic 
GPH 

0.29 -0.40 -0.71 -0.40 0.26 0.16 
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These are shown in separate tables since component values differ when the variable sets that they 

are made from differ. See the Appendix for the other months’ predictor/principal component matrices. 

Based on our loading matrices developed to evaluate the contribution of predictive variables to 

principal components, we see that the predictors had a similar contribution to the first component with 

exception of the geopotential heights in the Southwest Atlantic. The other components are not as evenly 

influenced. Rather, some have no influence such as the Central Pacific SST anomalies to the climate-plus-

NRCS’s PC 6 (0.00 coefficient) or a clear-cut highest contribution such as the Southwest Atlantic GPH’s 

to the climate-only’s PC 3 (-0.71 coefficient). Thus, if either of those components is highly skillful at 

forecasting seasonal volumetric inflow, we can deduce that there was no signal or a very strong signal 

from the mentioned regions, respectively.  

From each set of principal components, we consider those that explain less than 10% of the set’s 

variance to be noise. To prevent overfitting the model on poor relationships between the predictive 

variables and seasonal inflow volume, also known as noise or random error, we perform feature 

reduction. From Figure 15, which is the scree plot for the seasonal inflow forecast at the January lead 

time, we identified the components to remove. The remaining components from each set that the local 

polynomial models are fit on at the January lead time are as follows (see the Appendix for the lead time’s 

fit components): 

Climate-plus-NRCS: PC 1, PC 2, PC 3, and PC 4 

Climate-only: PC 1, PC 2, PC 3, and PC 4 

For each set, these four components explain over 80% of the variance, thus, giving us confidence 

that the strongest relationships are included.  

After the local polynomial models are fit on the subsets of the remaining principal components, 

the GCV scores are computed. The GCV score is the objective criterion used to rank the models; it differs 
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by subsets and determines the “best model.” The lower the GCV score the better the model’s skill. For 

each lead time and component set, the variables that fit the two “best models” and the GCV scores of 

those models are shown in Table 15. We retain two since a model may perform well for one criterion but 

not another.      

Table 15. Best model specifications for the local polynomial regression on the climate-only and climate-
plus-NRCS principal components. 

Month Model Information Independent 
Variables 

GCV Scores 

January 
Climate-only a) PC 1, PC 2, PC 3 19, 678 

b) PC 1, PC 2 26, 329 

Climate+NRCS a) PC 1, PC 3 21,561 
b) PC 1, PC 3, PC 4 21, 997 

February 
Climate-only a) PC 1, PC 2, PC 3 15,822 

b) PC 1, PC 3 22,590 

Climate+NRCS a) PC 1, PC 2 17,203 
b) PC 1, PC 2, PC 4 17,301 

March 
Climate-only a) PC 1, PC 2 18,732 

b) PC 1, PC 2, PC 3 18,895 

Climate+NRCS a) PC 1, PC 2 8,599 
b) PC 1, PC 2, PC 3 10,226 

April 
Climate-only b) PC 1, PC 2, PC 3 13,780 

a) PC 1 15,443 

Climate+NRCS a) PC 1, PC 2, PC 3 8,069 
b) PC 1, PC 2 9,861 

May 
Climate-only a) PC 1, PC 2, PC 3 5,842 

b) PC 1 6,116 

Climate+NRCS a) PC 1, PC 2, PC 3 3,733 
b) PC 1, PC 2 3,982 

June 
Climate-only a) PC 1 1,813 

b) PC 1, PC 2 2020 

Climate+NRCS a) PC 1, PC 2, PC 3 1,451 
b) PC 1 1,661 

For the seasonal inflow volume forecasts, the predictive skill as measured by the GCV score 

improves as the lead time gets later, indicating that the NRCS and climate information is more 

informative the closer it is to the timeframe that inflow volume is forecasted over. Also note that the 

seasonal inflow volume forecasted decreases after March since it is over a shorter period. This likely 

contributes to improving GCV scores at the later lead times since the errors are smaller. At January and 

February lead times, the best climate-only models outperform the climate-plus-NRCS models. The 
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climate-only models are comparatively much less skillful at March and April lead times when the 

climate-plus-NRCS models score better by a margin of 4,500 to 9,000. Then, at May and June lead times, 

the climate-only models are slightly less skillful than the climate-plus-NRCS models. Since the climate 

information appears most skillful at early and late lead times, we expect the climate-plus-NRCS model to 

outperform the NRCS model at those lead times for the next round of model comparison, which is based 

on the LOOCV test results. 

4.2.2. Random Forest Models 

This regression can use the predictive variable formed from SST anomalies, 700 hPa GPH’s, and 

adjusted NRCS forecast, see the Random Forest Regression section of the Methodology chapter. Random 

forest regression does not require independence amongst variables. Also, the importance of each variable 

in the random forest model is determinable. Thus, we exclude no variables from the sets that the model 

fits, i.e., the model fits all the climate-plus-NRCS variables for the lead time for which it is forecasting 

seasonal inflow volume. The importance of each variable is measured in two ways. First, we compute the 

percent increase in mean square error when a variable is excluded from the model. Second, we compute 

the increase in node purity, which is how much the sum of squared errors decreases when a variable is 

selected to split. For each, higher values signal greater importance.  

We present the measures of importance (MSE and Node Purity) for three of six of seasonal 

inflow forecast lead times here. The rest can be found in the Appendix. Figure 16 shows each variable’s 

importance in the random forest model that forecasts the seasonal inflow volume on January 1st.  
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Figure 16. Variable importance scores, percent increase MSE (left) and increased node purity (right), for 
the seasonal inflow forecast on January 1st. 

At this lead time, the climatic information has slightly greater predictive power than the NRCS 

information. Specifically, the SST anomalies in the Central Pacific and GPH’s in the Pacific Northwest 

are the climatic drivers of the forecasts. This is indicated by a 12-13% MSE uptick when they are 

excluded from the model and an over 5*105 decrease in the sum of squared errors when they split a node. 

The other climatic variables are not nearly as important. At most, the MSE increases by 5% per their 

exclusion and the sum of squares decrease by less than 3*105. 

Next, we present the variable importance scores for the random forest model that forecasts 

seasonal inflow volume on March 1st, see Figure 17.  

 

Figure 17. Variable importance scores, percent increase MSE (left) and increased node purity (right), for 
the seasonal inflow forecast on March 1st. 
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At this lead time, the NRCS information has overtaken the SST anomalies in the Central Pacific 

and GPH’s in the Pacific Northwest as the drivers of the forecast. Both climatic variables are still 

powerful predictors as they induce a 10-12% MSE uptick when omitted from the model, but the local 

variable now causes a 17-18% MSE increase. Also, as compared to January, the sum of squares decreases 

8*105 vs 5*105 when the local variable splits the node. The importance of the other climatic variable has 

gone down marginally as well. 

Lastly, we present the variable importance scores for the random forest model that forecasts seasonal 
inflow volume on June 1st, see Figure 18.  

  

Figure 18.Variable importance scores, percent increase MSE (left) and increased node purity (right), for 
the seasonal inflow forecast on June 1st. 

The NRCS information still possesses the greatest predictive power, which shows with a 17-18% 

MSE increase when excluded. Unavailable for the models for earlier lead times, GPH’s in the Northwest 

Atlantic ranks in the top three most important variables for both percent MSE increase and increase in 

node purity. GPH’s in the Pacific Northwest and SST anomalies in the Central Pacific remain among the 

top important climatic predictors with a 7-9% MSE increase when excluded, which is slightly down from 

March. Noticeably, the node purity scores have dropped from values in 105 to 104. This is a product of the 

remaining inflow volume forecast from June through September being much less than the March through 

September volume.  
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Overall, the climatic variables importance scores were highest early in the season and waned as 

the lead time got closer to and into the runoff season. The opposite is the case for the NRCS variables. 

Although, the node purity scores peaked at the middle lead times. SST anomalies in the Central Pacific 

and GPH’s in the Pacific Northwest were consistently the most important climatic variables, with GPH’s 

in the Pacific Northwest and Gulf of Mexico adding solid predictive skill at later lead times. 

4.2.3. Regression Model Rankings 

Now that the local polynomial and random forest models have been developed, we want to 

analyze which have the best predictive skill and if the climate-plus-NRCS models perform better than the 

current NRCS-only model. For ranking, predictive skill is measured by the RMSE and NSE scores from a 

LOOCV test. For the prior, the lower the RMSE the better the skill. For the latter, the higher. These 

scores for all our regression models and the adjusted NRCS forecasts are shown in Figure 19.   
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Figure 19. Forecast models’ RMSE (top) and NSE (bottom) skill scores at each lead time. The forecast 
models are the climate-plus-NRCS local polynomial, climate-only local polynomial, random forest, and 
NRCS. 

Of the six lead times that the seasonal inflow volume is forecast, a climate-plus-NRCS model had 

better predictive skill than the NRCS’s model at four. The lead times predictive skill is better for January, 

February, March, and June 1st. At the January through March and June forecast lead times, our climate-

plus-NRCS local polynomial models are the most skillful at forecasting seasonal inflow volumes. 

Compared to the NRCS models, the respective RMSE and NSE score differences are (-30 TAF, +0.2) for 

January, (-15 TAF, +0.1) for February, (-35 TAF, +0.2) for March, and (-12 TAF, +0.23) for June lead 

times. Also, for those aforementioned lead times, the skill scores of the climate-only local polynomial 

models surpass the NRCS models. This indicates that the teleconnections are predictively powerful and 

the regression method is not the only factor making the climate-plus-NRCS local polynomial model 

skillful.  

The random forest model exceeds the NRCS model’s skill at both January and June lead times -

20 TAF, +0.13 and -7 TAF, +0.17, respectively. However, they do not capture the relationships between 

our predictive information and seasonal inflow volumes as well as the local polynomial regression 
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method. At April and May lead times, the random forest outperforms the local polynomial models but is 

worse than or nearly identical to the NRCS models. April and May are the lead times for which the NRCS 

models have their best NSE score, 0.85 and 0.78 respectively. Their RMSE scores are also low then, but 

that is partially due to the inflow volume being forecast in April and May being over a shorter period, 

therefore, lower in overall volume and magnitude of error.  

Table 16 shows the best climate-plus-NRCS model for each lead time and specifies if their 

predictive skill exceeds the NRCS model.  

Table 16. Best climate-plus-NRCS model for each lead time. 

Lead Time Regression 
Method 

Better than NRCS 
(Y/N) 

January Local Polynomial Y 

February Local Polynomial Y 

March Local Polynomial Y 

April Random Forest N 

May Random Forest N 

June Local Polynomial Y 

4.3. Performance Metric Scores 

We ran the KROM as described in the Model Setup, Runs, and Results section in the 

Methodology chapter. We compared the operational performance of the climate-plus-NRCS and NRCS-

only forecasts for lead times for which the prior exceeded the latter’s skill. Thus, we ran operations from 

the January, February, and March lead times. As an exception, we did not run operations at the June lead 

time even though predictive skill was better. At June, it is too late to make any significant planning 

decisions so it is much less relevant than the other lead times.  
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Operational performance is analyzed based on the major operational objectives. Thus, 

environmental, agricultural and flood control performances were computed from the runs based on the 

climate-plus-NRCS and NRCS-only forecasts as error from a perfect forecast run. We present boxplots of 

these performance metrics below and discuss how to interpret the errors, for example, does the direction 

of the error matter, how may the operator change operations based on a better projection in a given year, 

and in what conditions are projection errors most detrimental to operations? The distribution, range, 

outliers, and abnormal tendencies of the box plotted errors are related to these questions. Boxplots are 

structured so the middle-shaded region, also called the intra-quartile range, contains the errors between 

the 25th and 75th percentile. The middle bar of the boxplot is the median of the errors. The lines extending 

from the intra-quartile range represent the distribution to the minimum and maximum, which are 

equivalent to the 25th percentile + 1.5 times the intra-quartile range and the 75th percentile – 1.5 times the 

intra-quartile range respectively. Lastly, the points outside the minimum and maximum limits represent 

the outliers.  

The first performance metric we discuss represents the projected volume of environmental 

releases from Upper Klamath Lake by July 1st and October 1st. See Figure 20 for the error boxplots.  
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Figure 20. Error of projected EWA spent by June 1 (top) and October 1 (bottom) for lead times January 
thru March with respect to the perfect forecast results. 

For the climate-plus-NRCS runs, the error range of EWA spent is lower for both analysis dates at 

each lead time, January through March. Interestingly, the range of errors is nearly identical on both 

analysis dates even though the spent EWA volume on July 1st is 20-40% less than on October 1st. 

At the analyzed lead times, the forecasts determine the early season distribution of environmental 

releases. Errors of projected EWA spent, therefore, cause over or under misappropriation of early season 

supply. Excessive use early can deplete supply necessary for the summer. As a result, the later 

environmental releases are lower and the stream’s water temperature rises more quickly in the hotter 

conditions. High water temperatures initiate algae and parasitic blooms, which have caused fish die off 

such as in 2002. Under-use early in the season is harmful to the spring spawning fish that need a higher 

river stage to migrate up the river. 

Of note, excessive under-use early in the season is unlikely since the policy sets a minimum 

environmental allocation that drives base requirement releases. Thus, forecast overestimates are more 
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problematic in dry years since there are no protections for late base releases if the minimum allocation has 

been depleted.  

From the boxplots, the smaller range of projected EWA spent errors using the climate-plus-NRCS 

forecast gives confidence that the environmental releases are closer to the optimal amount before and into 

the spring. Notably, there are more outliers from the climate-plus-NRCS based runs. Upon inspection, 

these occur in wetter years when the forecast’s error variability is greater. Projected EWA spent errors in 

wet years (1984, 1986, and 2011) are less consequential since water scarcity is not an issue.  

The next performance metrics we discuss represent the projected agricultural delivery volume in 

March-May, June-July, and August-September from Upper Klamath Lake. See Figure 21 for the error 

boxplots.  
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Figure 21. Error of projected agricultural deliveries from March-May (top), June-July (middle), and 
August-September (bottom) for lead times January thru March. 

For each lead time, runs based on the climate-plus-NRCS forecasts have a smaller error range 

than runs based on the NRCS forecasts. The ranges are greatest from June-July since the largest 

agricultural deliveries occur then, therefore, causing greater error variability. Of note for each period is 
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the similar error range of the runs based on the climate-plus-NRCS forecasts at the January and March 

lead times. This is surprising since the skill of the climate-plus-NRCS model at the March lead time is 

much better than at the January lead time. Unlike the environmental release metrics, the distribution of 

agricultural delivery errors for both runs, climate-plus-NRCS and NRCS based, skews towards 

overestimating the delivery volume. There is an exception for runs based on the NRCS forecast at the 

March lead time whose error distribution skews towards slightly underestimating deliveries. Once again, 

runs based on the climate-plus-NRCS forecasts have more outlier errors than runs based on the NRCS 

forecasts. These outlier errors are predominantly delivery overestimates. 

Agricultural delivery projections are especially important since the relevant stakeholders, the 

irrigators, typically adjust their decisions to the forecasts by altering seeding rates or even crop selection 

based on the forecasted supply. Once these decisions are made, the irrigators rely on the forecasted supply 

to support what is planted. A similar dry year overuse and underuse dynamic that affects the EWA spent 

projections exists for the agricultural delivery projections. If the forecast is an overestimate, later 

distribution will have to be cut back, leading to shortages later that can decrease crop growth or cause 

crop kill. If the forecast is an underestimate, the lack of distribution early stunts crop growth at a critical 

growing stage and affects end of season yields. Forecast errors can also be harmful in moderate to 

moderately wet years. In these years, farmers aim to maximize profit by planting at higher seeding rates, 

which should boost yield. Thus, it is critical that crops are adequately irrigated or else the farmer will 

have committed a higher input cost for a standard yield, i.e. lower net gain.   

From the boxplots, the error range of the climate-plus-NRCS based runs is smaller and skews 

towards an overestimate the later the lead time. The smaller range should give irrigators more confidence 

in their cropping choices, but they should be wary that there may be less water available than the 

forecasted supply. Some overestimate errors are a product of the policy cutting off agricultural deliveries 

entirely to satisfy the minimum environmental allocation volume. In reality this would not happen. 
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Rather, Reclamation and the irrigation districts would come to an agreement on an agricultural allocation 

volume. Then, the UKL pool elevation would be drawn down more and water would be borrowed from 

the Pacificorp reservoirs. Since the outlier errors occur in these no delivery years (1991, 1992, and 1994) 

the error range and skew of the climate-plus-NRCS based runs is better than the boxplots represent.   

The following performance metric represents the projected Upper Klamath Lake flood release 

volume from January, February, and March through September. See Figure 22 for the error boxplots.  

 

Figure 22. Error of projected flood release for lead times January through March. 

The error distributions from runs based on the NRCS forecasts skew towards underestimating the 

flood release. At the January and February lead times, the error distributions from runs based on the 

climate-plus-NRCS forecasts skew towards underestimating and overestimating, respectively. At the 

March lead time, those runs’ errors are normally distributed. As expected, the error range tends to 

decrease with later lead times since only projected flood releases are tracked. For example, the cumulative 

flood release at the February lead time does not include flood releases in January and the cumulative at 

the March lead time does not include flood releases in January or February. There is a considerable 
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amount of outlier errors for the cumulative flood release projected at the February and March lead times. 

Thus, the intra-quartile range is affected by years with no flood releases. These years are not uncommon 

since the Klamath River Basin is in a semi-arid region that relies on snow-melt. It is also why the median 

for each month is at 0. 

The consequence of the direction of projected flood release errors is quite different depending on 

the year. In wet years, it is more favorable to overestimate the forecast. The operator will initiate flood 

releases earlier in this scenario. While unnecessary, there is little water stress and that released supply will 

not adversely affect other objectives. Whereas, if the forecast is an underestimate, the pool elevation will 

rise quicker than expected. As a result, the operator will initiate larger flood releases to reduce 

overtopping risk. Releases of these magnitudes will partially inundate downstream lands and cause 

damages. In dry years, it is more favorable to underestimate the forecast. No flood releases are made 

either way in this scenario. If the forecast overestimates in a dry year, any resultant flood release is 

wasting critical supply that could have been used for some other objective.  

From the boxplots, the most notable aspect of the errors is the outliers compared to the intra-

quartile range in February and March. This is due to 22 of 38 years in the analysis period having no flood 

releases. Thus, by erroring on only 2-6 of these years, most errors are zero and the intra-quartile range is 

very small. As a result, any marginal error greater than 15,000 acre-ft is an outlier. Even with the outlier 

errors, the range is meaningfully smaller for the climate-plus-NRCS based runs at each lead time. This is 

especially useful since flood control decisions are made late-January thru March. Take 2013 for example, 

the NRCS based run at the January lead time projected 47,000 acre-ft in flood releases when none were 

required. Comparatively, the climate-plus-NRCS based run at the same lead time projected 5,000 acre-ft 

in flood releases. While each corrected to no flood releases by the March lead time, a considerable 

amount of supply for other objectives would have been wasted if informed by the NRCS forecast.  
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The last performance metric we discuss represents the forecast of Upper Klamath Lake storage on 

June 1st and October 1st. See Figure 23 for the error boxplots.  

 

 

Figure 23. Error of projected Storage on June 1 (top) and October 1 (bottom) for lead times January 
through March. 
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The error distribution skews towards an overestimate of the July 1 storage for either forecast run, 

whereas, the error distribution is relatively normal for either run for the October 1 storage. For both 

storage dates, the range of errors is smaller for runs based on the climate-plus-NRCS forecasts with one 

exception. For the July 1 storage, the range of errors for runs based on the NRCS forecasts is smaller at 

the March lead time. Ranges for both analysis dates are similar since the operating logic tends to correct 

the storage towards a central tendency. More error outliers occur for the July 1 storage projections, with 

the climate-plus-NRCS forecast based runs having slightly more than the NRCS forecast based runs. 

The projected UKL storage serves two purposes. First, it ensures the storage is at a level that 

sufficiently supports endangered fish. Second, it shows the storage deficit that will need to be recharged 

for the next water year. If either is unsatisfactory, the operator will alter their management decisions. The 

direction of the projected storage error has different effects on these decisions. If the storage is an 

overestimate, the operator is influenced to increase releases for agricultural or environmental demands. In 

the process, the storage is either depleted to a critical level or releases are limited in the summer. If the 

storage is an underestimate, the operator is influenced to be conservative with the supply. Thus, early 

season demands are shorted. 

From the boxplots, the error range of the climate-plus-NRCS based runs are significantly smaller. 

Thus, decisions affecting storage and its distribution are likely to be better suited to the true seasonal 

supply. There is an exception, the error range of the July 1st storage is smaller for the NRCS based runs. 

This is not a concern since all major releases that deplete storage in the climate-plus-NRCS runs had 

smaller errors. 

In this paragraph we present an error characteristic summary of the runs based on the climate-

plus-NRCS forecasts compared with the NRCS forecasts for every metric at each lead time. First, the 

range of errors is noticeably smaller for forecasts that add climate. The smaller the range of errors, the 

more optimal the supply distribution for the year’s actual conditions. Therefore, early releases are less 
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likely to deplete late season storage or curb early season demands. Second, the distribution of errors is 

balanced between overestimating and underestimating for most metrics. The one metric that is more 

likely to overestimate is the agricultural deliveries. This gives pause to irrigators when tailoring cropping 

decisions to the full forecasted supply. Third, adding climate to the forecast results in more outlier errors. 

Outlier errors are the most prevalent for the flood control metric, but this is misleading since there are so 

many years without flood releases that result in errors of 0 acre-ft. Overall, based on having a 

meaningfully smaller range of errors than runs based on the NRCS forecasts, the climate-plus-NRCS 

forecasts are effective at improving the operational projections. Thus, managers and stakeholders in the 

basin can have greater confidence in their planning decisions. But the particular characteristics of the 

errors for each metric should be considered in understanding how the errors could affect decisions.  

Chapter 5: Conclusions and Future Work 

This chapter summarizes and provides commentary on our study’s findings and lays the 

framework for future work. From the results chapter, the skill of seasonal inflow volume forecasts is 

improved at January, February, March, and June first lead times. In the next section we discuss the value 

of more skillful/accurate forecasts for operations and studies in the Klamath River Basin. Following that, 

lack of improved skill for forecast at April and May first lead times is addressed; this explains why local 

and climatic variables are more predictively powerful at certain times of the year. We end the conclusion 

portion by summarizing what has been accomplished in this study. Then, the final section finishes with 

proposing further ways the results can be analyzed, how follow up forecasting work can build on our 

findings, and the next steps for moving towards RiverWare as the Klamath River Basin operations 

management tool.  

5.1. Value of Improved Early Seasonal Forecasts 

At January, February, March, and June first lead times, we were able to improve the skill of 

forecasts based on the RMSE and NSE objective criteria. Comparing the climate-plus-NRCS forecasts to 
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the NRCS’s, the respective RMSE and NSE score differences are (-30 TAF, +0.2) for January, (-15 TAF, 

+0.1) for February, (-35 TAF, +0.2) for March, and (-12 TAF, +0.23) for June lead times. We see these 

improvements translate to operational projections by reducing the range of uncertainty relative to having 

perfect foresight for each objective. With less uncertainty, the operators and stakeholders can feel more 

confident about their plans for the upcoming seasons (spring/summer). Examples of planning decisions 

affected by early lead time forecasts are as follows: 

Agriculture: Based on water availability, farmers must decide how to manage resources for the 

upcoming season. For farmers with livestock sustained by grazing, they face constraints such as how 

many acres of pasture can be supplied with the available water and how many cattle can be supported 

from those acres? In dry years, this may mean planting a dryland mix since it does better with less water. 

Therefore, it can support more head of cattle than a water intensive forage that dies midseason from 

drought conditions. For grain farmers, they may have to go with a lower seeding rate or even leave fields 

to farrow if there is limited water for irrigation. This decision benefits the next crop rotation as less 

nutrients are depleted from the land. Having the confidence to make these time sensitive, tough decisions 

based on early seasonal forecasts can be a massive benefit to farmers looking to meet their bottom line in 

drought years and maximize yield in water surplus years.  

Flood Control: Due to the majority of supply coming from snowmelt, operators are challenged early with 

conserving enough storage to last through the season while not putting UKL in danger of overtopping. 

Making flood releases in the lead up to a dry season cause diminished releases that persist through mid to 

late summer due to a lack of supply. Whereas, withholding storage in the lead up to a wet season causes 

prolonged flood releases that inundate downstream regions due to mitigating overtopping risk at UKL. 

With a more certain, early outlook of the seasonal supply, the operator can preemptively act to conserve 

critical storage or reduce flood risk.  
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Allocation Agreements: Much of the contention and subsequent litigation from stakeholders is caused by 

supply allocation in years of water stress/drought. Uncertainty plays a role in their frustration as 

allocations can change drastically as more or less water than expected is available as the season 

progresses. Stakeholders are realistic, they know the season cannot be perfectly projected and planned for. 

But, having a tighter range of likely seasonal conditions/scenarios would help bring everyone to the table 

to prepare contingency plans for either side of forecasted water availability spectrum. Thus, alleviating 

disagreements later on when the actual supply scenario plays out.  

Seasonal Carryover: Because the Klamath River Basin is semi-arid, a full recharge of UKL is not 

guaranteed over the fall and winter. Therefore, the operator needs to consider how allocations for the 

current season will adversely affect the supply for the next year. Maybe all the objectives can be met, but 

if a drought year follows, there will be serious shortages that cause devastating economic and species 

losses. See the 2001 and 2002 operational challenges and outcomes referenced in the Introduction 

chapter. A more certain range of end of season storage outcomes will help the operator weight the 

consequences of early season decisions. Thus, not jeopardizing operations in the year to follow.  

To summarize, a more certain range of forecasted seasonal supply maximizes agricultural 

economic gains, saves extra water or reduces flood risk, lessens litigation, and best prepares for the next 

year’s operations. Both operators and stakeholder stand to benefit greatly from improved early seasonal 

forecasts that allow for more concentrated planning.  

5.2. Explanation for Lack of Improvement in Late Seasonal Forecasts 

At April and May first lead times, we were unable to improve the skill of forecasts based on the 

RMSE and NSE objective criteria. This suggests that the signals the climatic variables represent carries 

enough noise that the climate-plus-NRCS forecasts are less skillful than the NRCS forecasts. Why is this 

the case at these lead times and not the others?  
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To explain, we first reference the source of surface water in the spring/summer period. In the 

West, approximately 75-85% of surface water originates as snowmelt and the remaining percent as 

precipitation. This makes established, on-site snowpack measurements an excellent indicator of seasonal 

volumetric supply [Pagano, 2005]. For a better part of the last century, agencies that forecast water supply 

have used SWE as their on-site snowpack measurement. Therefore, at the snowpack peak, there is little 

variability in the supply that the SWE does not indicate. Western snowpack usually starts to accumulate 

late November, reaches its peak mid-March, and disappears late June [Siegel, 2009]. It is, therefore, 

expected that the skill of the NRCS forecast, which uses SWE from multiple stations as predictors, 

follows the same pattern. Thus, the forecast skill is lowest when the snowpack is forming, grows and 

peaks as the snowpack reaches its maximum, and decreases as the snowpack dissipates. See Figure 19.  

Second, we consider the physical processes that connect the predictors with seasonal volumetric 

inflow. The NRCS forecasts are based on antecedent SWE, precipitation, streamflow, and groundwater 

well levels [Risley, 2005]. One or two processes connect these ground measures to UKL inflow. For 

example, precipitation becomes runoff that enters surface water and is transported downstream to UKL. 

Therefore, the connection is strong for the ground measures that directly precede the response, e.g., 

precipitation correlates strongly to seasonal volumetric inflow. Our climatic variables represent 700 hPa 

GPH’s and SST’s. These measures have been shown to affect airflow dynamics (SST’s: circulatory 

patterns, GPH’s: jet stream) that move, induce, or regulate precipitation events in the West [Soumya, 

2015]. Compared with the ground measures that the NRCS forecasts are based on, many more processes 

connect the climate measures to seasonal volumetric inflow. Thus, there are more opportunities for 

uncertainty to compound and the lag between the signal and response is longer. Our results showed strong 

connections between GPH’s/SST’s and seasonal inflow volume up to 6 months prior to the start of the 

season, see the Best Predictive Variables section.  

While there is more uncertainty in the climate connection, their longer lag allows these measures 

to inform the model of snowpack forming and/or mid to late season precipitation events depending on the 
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forecast lead time. The climate-only forecasts’ skill scores support this claim, see Figure 19. The highest 

scores occur at February and March lead times when variables are connected to both precipitation events. 

Lower scores occur at other lead times when variables are connected to one precipitation event (January: 

snowpack forming, April-June: mid to late season rainfall). Unlike the climate measures, the ground 

measures only inform the model of water that currently exists in the basin. Historical ground 

measurement patterns/trends are used to inform the model of future supply events, but the relationships 

are not physically supported.  

Based on 1) SWE being a highly skilled predictor when snowpack has recently peaked and 2) 

climatic predictors representing more uncertainty than the ground measures, but carrying greater insight 

to snowpack forming and mid to late season precipitation events; we observe the following: 

• The climate-plus-NRCS forecasts are the most skilled in January through March lead times when 

a high to moderate amount of the snowpack has yet to form, and the majority of the supply is yet 

to come from snowpack forming and mid- to late-season precipitation events. 

• The NRCS forecasts are the most skilled in April and May when the snowpack maximum was 

recently achieved and future precipitation makes up a relatively small portion of the seasonal 

inflow volume.  

• The climate-plus-NRCS forecasts are the most skilled in June when snowpack is nearly dissipated 

and a moderate to large portion of supply is yet to come from late-season precipitation events. 

5.3. Study Accomplishments 

Faced with the water management challenges of the West (i.e., more frequent droughts, 

competing operational objectives, and water rights litigation), our study aims to improve the decision 

support systems used for operations in the Klamath River Basin. To achieve this improvement, we 

address four key questions: 1) Can an operational model be developed in RiverWare that replicates the 

PA Calc’s results, but is more robust and capable? 2) Can strong climate teleconnections to seasonal 
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volumetric inflow in the Klamath River Basin be identified? 3) Using the climatic information and 

alternative regression methods, can the skill of the seasonal volumetric inflow forecast produced by the 

NRCS be improved upon? 4) Can higher skilled seasonal inflow forecasts improve operational 

projections to the extent that they are useful to stakeholders and managers? 

The name of management tool we developed is the Klamath RiverWare Operations Model. Not 

only does it fulfill the base operational criteria (i.e., reproduce PA Calc’s results and satisfy extent and 

features, data, policy, and workflow requirements), but it is also a noticeable improvement over the 

existing management tool, the PA Calc.  

The inefficiencies of the PA Calc stem from the setup, runs (operational and scenario), and output 

products. Starting with setup, the operator begins their daily interaction with the PA Calc by manually 

transferring observed data from the database. Then, they adjust per run settings by shuffling through 

multiple worksheets. Configuring per run settings is an involved process. They change daily and are 

chosen by 1) running the model, 2) checking the results, 3) adjusting per run settings accordingly, and 4) 

repeating that process until official operational releases and projections are satisfactory. After the 

operational runs, the operator performs three types of scenario runs that use either A) historical UKL 

Inflow, B) historical accretions, or C) no agricultural demands. For both operational and scenario runs, 

the results are automatically post processed into plots and metrics, but they are only viewable for 

individual runs. Thus, if the operator wants to compare or distribute outputs, they must manually save 

them after each run. 

By addressing those same inefficiencies, the KROM has proved itself a more powerful and 

intuitive operational model. Starting with setup once again, the operator executes a script that pulls the 

observed data from the database. Among other actions, it also opens the SCT that serves as the dashboard 

containing the per run settings. By automating the data import and centralizing the per run settings, it is 

much simpler to prepare and later alter. After the script executes, the operator generates the operational 
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releases and projection. While setting configuration is still done iteratively, it is now much more 

streamlined using multiple runs. Using the SCT, the operator defines sets of per run settings. Then, they 

activate the trials version of the multiple run configuration, which performs as many runs as there are 

defined per run settings’ sets. Not doing this setting configuration task with single runs is an immense 

time saver. Scenario runs are also prepared and performed with their own multiple run configurations, 

which allows the operator to run multiple of each scenario type per activation. Since runs are most 

commonly performed in a multiple format, the output products were designed accordingly. This means 

the results from each run of the multiple are comparable in plot or tabular data formats. Thus, the operator 

can either simultaneously evaluate many operational decisions or view a distribution of scenario 

outcomes. Additionally, each output can be generated into a html that is distributable to stakeholders.  

Based on feedback from the workshop where we presented the KROM, the stakeholders were 

impressed. Specifically, they liked the KROM’s added functionality and the proven applications of 

RiverWare as an operations management tool in other basins. While the switch is not going to be 

immediate, members of KBAO are committed to developing an updated policy set for the 2021 operating 

policy. Then, using the KROM in tandem with the new Excel management tool they will validate results 

and get familiar with the model switch. Eventually, they may wish to develop a planning version of the 

KROM.  

Stepping back from the day to day operations, a glaring issue is the quality of seasonal volumetric 

inflow forecasts that on which KBAO bases their operational projections. The forecasts carry too much 

uncertainty, especially before the season begins. Thus, it is difficult for the stakeholders to plan for the 

season or the operator to evaluate the lasting effects of management decisions since the distribution of 

possible futures was so wide. The current producer of seasonal volumetric inflow forecasts is the NRCS. 

They generate forecasts on the first of each month from January through June. Their models exclusively 

use ground measurements inside the Klamath Basin as predictors. 
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To address a lack of outside the basin predictors, we analyzed climate measures (SST anomalies 

and 700 hPa GPH’s) that have shown predictive skill in other Western basins. At multiple lead times and 

in regions, respectively, we found moderate to moderately strong teleconnections with season inflow 

volume to UKL. Lead times vary from 1 to 6 months ahead of the season. SST anomaly teleconnections 

are located in the East Atlantic, Pacific Northwest, Central Pacific, and Indian Ocean regions. The 700 

hPa GPH’s teleconnections are located Pacific Northwest, Southwest Atlantic, Gulf of Mexico and 

Northwest Atlantic. Serving as the foundation for our statistical modeling work in this study, we 

incorporated the variable representations of these climate measures with the NRCS forecasts in two types 

of regression models. The climate teleconnections’ findings provide the groundwork for others to utilize 

this data to create their own forecast models. Additionally, it advocates for the usefulness of climate 

teleconnections to inform forecasts in other snowmelt driven basins.  

The two types of regression models we developed were local polynomial and random forest. Both 

used a custom set of climate-plus-NRCS predictors for each lead time to generate seasonal volumetric 

inflow forecasts. To determine if the climatic information was predictively powerful, we compared the 

skill of the regression models’ forecasts against the NRCS’s based on LOOCV NSE and RMSE scores. 

At January, February, March, and June first lead times the climate-plus-NRCS local polynomial model 

had the best forecasting skill. This validated climatic teleconnections usefulness in early lead time 

seasonal volumetric inflow forecast, which suggests they have meaningful foresight of snowpack forming 

and mid- to late-season precipitation events. Additionally, the results advocate for alternative regression 

methods to be considered for future forecasting efforts.  

Improving the forecast skill was encouraging, but the true value of the seasonal volumetric inflow 

forecasts needed to be judged in an operational context since that is their purpose. Thus, we compared the 

operational projections of runs based on either the climate-plus-NRCS or NRCS forecast, each relative to 

perfect foresight. This was done at each of the early season lead times that forecasting skill was improved, 

i.e., January thru March. From the comparison, the climate-plus-NRCS forecasts effectively reduced the 
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range of errors for the operational objectives that KBAO projects regardless of the lead time. With greater 

confidence in the potential seasonal conditions, we expect the stakeholders and operators to benefit from 

better planning and assessment of their management decisions. For example, stakeholders have better 

information to make difficult cropping decisions, i.e. seeding rate and field mix, to maximize profits and 

operators have a tighter range of probable outcomes to assess the risk of flood control decisions. 

Additionally, this effort utilized the operation management tool we developed, i.e. the KROM. This 

allowed us to showcase its operational potential, but it also stress tested the model to various hydrological 

conditions to which it performed without issues. Thus, furthering confidence in the KROM’s abilities.  

To finish the recap of our study, we present the answer to our four key questions. 1) The KROM 

proves to be a more than suitable alternative to the current operational management tool based on the 

KBAO’s criteria. It is more intuitive to operate, performs daily operational tasks quicker, and has positive 

feedback from stakeholders. 2) Both SST’s and 700 hPa GPH’s from multiple regions and lead times 

have moderate to moderately strong connections to UKL seasonal volumetric inflow that may be useful 

for forecasting. 3) The climate-plus-NRCS local polynomial forecasts were more skillful than the NRCS’s 

at January, February, March, and June first lead times. 4) The range of operational projection error, 

relative to perfect foresight, was meaningfully reduced by basing runs on the climate-plus-NRCS 

forecasts. From the increased confidence in the seasonal conditions, stakeholders and operators stand to 

be benefit from better planning and decision assessment.  

5.4. Future Work 

Efforts or analysis outside of this study’s scope involve both operations model development and 

statistical forecasting. Starting with the prior, a scope of work is being drafted for the development of an 

operations/planning model for the 2021 operational policy. This effort will build on the KROM’s 

framework, e.g., update the layout, data management, and output products for either operations/planning 

run configurations and create new policy sets for the 2021 policy. Additionally, a testing phase will be 

included in the scope. It will involve two parts - first, testing the model with various observed hydrology 
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and per run settings scenarios and validating the results, and second, supporting KBAO while they 

manage daily operations with both the Excel tool and KROM. The second part is to back the transition 

between management software.  

Since recent years have experienced a larger frequency of drought years, we suggest that future 

studies of improved forecasting may consider non-stationarity. We evaluate our assumption of stationarity 

for the seasonal volumetric inflow that was used in this study by plotting the seasonal volumetric inflow 

over the period of record and adding an 8-year moving average to check if there is significant increase or 

decrease over time. The 8-year moving average is plotted with each year’s seasonal value in figure 24. 

 

 Figure 24. Seasonal volumetric inflow at UKL from 1981 to 2019. 

Based on the 8-year moving average, the results suggest that the seasonal volumetric inflow 

decreases slightly with time. This apparent trend may be misleading since the first available years in the 

period of record are during a wet period. Another wet period occurs in the late 1990’s, which also raises 

the average near the record’s midpoint. A more rigorous trend analysis could be undertaken in future 

efforts that may benefit from considering a decreasing inflow trend.  
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As another adjustment to the regression effort, the South Indian Ocean SST anomalies could be 

excluded from the set of predictors. While there exists a moderately strong relationship between that 

region and the seasonal volumetric inflow, the physical connection is lacking. The lack of physical 

connection is due to the distance. The circulation response that the South Indian Ocean’s SST’s induce 

does not reach the Klamath River Basin.  

To expand the scope of the statistical forecasting research, a deeper analysis into the skill of 

climate-plus-NRCS forecasts could be performed. Specifically, this could include evaluating and 

comparing their performance for subsets of years, e.g., dry vs wet or El Nino vs La Nina. Thus, further 

insight to when climatic teleconnections are most predictively useful may be gained. Additionally, there 

are other climatic measures not evaluated in our study that may possess meaningful connections to 

seasonal volumetric inflow in the Klamath River Basin, e.g., longwave radiation or wind vectors [NCEI, 

2020]. Such measures could be evaluated with our predictive variable identification methodology.  

 

 

 

 

 

 

 

 

 



 
95 

 

References 

Bracken, C., Rajagopalan, B., and Prairie, J. (2010). A multisite seasonal ensemble streamflow 
forecasting technique. Water Resour. Res., 46(3), W03532. doi:10.1029/2009WR007965 

Brems, M. (2017, April). A One-Stop Shop for Principal Component Analysis. Medium. Retrieved from 
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c 

Boehlert, B.B. and Jaeger, W.K., (2010). Past and future water conflicts in the Upper Klamath Basin: An 
economic appraisal. Water Resour. Res., 46, W10518. doi:10.1029/2009WR007925 

Burns, J. (2018, March). Another Drought Year Promises to Test Klamath Basin. Oregon Public 
Broadcasting. Retrieved from https://www.opb.org/news/article/another-drought-year-promises-to-test-
klamath-basin/ 

Craven, P. and Wahba, G. (1978). Smoothing noisy data with spline functions: Estimating the correct 
degree of smoothing by the method of generalized cross validation. Numer. Math., 31, 377-403. 
doi:10.1007/BF01404567 

Frost, J. (2017). Overfitting Regression Models: Problems, Detection, and Avoidance. Statistics by Jim. 
Retrieved from https://statisticsbyjim.com/regression/overfitting-regression-models/#comments 

Haque, M., Rahman, A., Hagare, D. and Kibria, G. (2013). Principal Component Regression Analysis in 
Water Demand Forecasting: An Application to the Blue Mountains, NSW, Australia. Journal of 
Hydrology and Environment Research, 1, 49-59. Retrieved from 
https://www.researchgate.net/publication/268209977_Principal_Component_Regression_Analysis_in_W
ater_Demand_Forecasting_An_Application_to_the_Blue_Mountains_NSW_Australia  

Hay, L.E., McCabe, G.J., Clark, M.P. and Risley, J.C. (2009). Reducing Streamflow Forecast 
Uncertainty: Application and Qualitative Assessment of the Upper Klamath River Basin, Oregon. Journal 
of the American Water Resources Association (JAWRA), 45(3), 580-596. doi:10.1111/j.1752-
1688.2009.00307.x 

Kaplan, Alexy & National Center for Atmospheric Research Staff (Eds). (2020). The Climate Data 
Guide: Kaplan Sea Surface Temperature Anomalies, [1980-2019]. Retrieved from 
https://climatedataguide.ucar.edu/climate-data/kaplan-sea-surface-temperature-anomalies 

Loader, C. (1999). Local regression and likelihood. Springer, New York. 

Nash, J. E. and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A 
discussion of principles. Journal of Hydrology. 10(3): 282–290. doi:10.1016/0022-1694(70)90255-6 

National Center for Atmospheric Research (NCAR). (2020). 700 hPa Geopotential Heights, [1980-2019]. 
Retrieved from https://climatedataguide.ucar.edu/climate-data/ncep-reanalysis-r2  

National Center for Environmental Information (NCEI), (2020). Teleconnections. National Oceanic and 
Atmospheric Administration. Retrieved from https://www.ncdc.noaa.gov/teleconnections/  

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://www.opb.org/news/article/another-drought-year-promises-to-test-klamath-basin/
https://www.opb.org/news/article/another-drought-year-promises-to-test-klamath-basin/
https://www.opb.org/news/article/another-drought-year-promises-to-test-klamath-basin/
https://statisticsbyjim.com/regression/overfitting-regression-models/%23comments
https://www.researchgate.net/publication/268209977_Principal_Component_Regression_Analysis_in_Water_Demand_Forecasting_An_Application_to_the_Blue_Mountains_NSW_Australia
https://www.researchgate.net/publication/268209977_Principal_Component_Regression_Analysis_in_Water_Demand_Forecasting_An_Application_to_the_Blue_Mountains_NSW_Australia
https://climatedataguide.ucar.edu/climate-data/kaplan-sea-surface-temperature-anomalies
https://climatedataguide.ucar.edu/climate-data/kaplan-sea-surface-temperature-anomalies
https://climatedataguide.ucar.edu/climate-data/kaplan-sea-surface-temperature-anomalies
https://climatedataguide.ucar.edu/climate-data/ncep-reanalysis-r2
https://www.ncdc.noaa.gov/teleconnections/


 
96 

 

Oregon Water Resources Department (ORWD), (2018). Drought annex state of Oregon emergency 
operations plan: Oregon Water Resources Department. Retrieved from 
https://www.oregon.gov/owrd/WRDPublications1/2016ORDroughtAnnex.pdf 

Pagano, T. C., and Garen, D. C. (2006). Integration of climate information and forecasts into western US 
water supply forecasts. In: Climate Variations, Climate Change, and Water Resources Engineering, J. D. 
Garbrecht and T. C. Piechota (eds.), American Society of Civil Engineers, Reston, VA, pp. 86-103 

Pasteris, P.A., Vigil, R., and Lea, J. (2002). Water Supply Forecasting in the Upper Klamath Lake Basin 
During the 2001 Drought. 15th Conf. on Biometeorology/Aerobiology and 16th international Congress of 
Biometeorology, Kansas City, KS, Amer. Meteor. Soc. 

Reclamation, (2019). Biological Opinion on the Effects of Proposed Klamath Project Operations from 
April 1, 2019, through March 31, 2024, on the Lost River Sucker and the Shortnose Sucker. U.S. 
Department of the Interior, Bureau of Reclamation 

Regonda, S. K., Rajagopalan, B., Clark, M., and Zagona, E. (2006). A multimodel ensemble forecast 
framework: Application to spring seasonal flows in the Gunnison River Basin. Water Resour. Res., 42, 
W09404, doi:10.1029/2005WR004653. 

Rieker, J.D., Coors, S., Mann, M. and Scott, T. (2005). Modeling in Support of Water Operations in the 
Truckee River Basin. Proceedings of Watershed Management 2005, EWRI and ASCE. Williamsburg, 
VA. 

Risley, J.C. (2019). Using the precipitation-runoff modeling system to predict seasonal water availability 
in the upper Klamath River basin, Oregon and California: U.S. Geological Survey Scientific 
Investigations Report 2019-5044. USGS, https://doi.org/10.3133/sir20195044 

Risley, J.C., Gannett, M.W., Lea, J.K., and Roehl, E.A., Jr. (2005). An analysis of statistical methods for 
seasonal flow forecasting in the Upper Klamath River Basin of Oregon and California: U.S. Geological 
Survey Scientific Investigations Report 2005-5177. USGS, Retrieved from 
http://pubs.usgs.gov/sir/2005/5177/ 

Schenk, L.N., Anderson, C.W., Diaz, P. and Stewart, M.A. (2016). Evaluating external nutrient and 
suspended-sediment loads to Upper Klamath Lake, Oregon, using surrogate regressions with real-time 
turbidity and acoustic backscatter data: U.S. Geological Survey Scientific Investigations Report 2016-
5167. USGS, https://doi.org/10.3133/sir20165167 

Siegel, J., (2009). Examining Monthly Relationships Between Temperature, Precipitation, Snowpack, and 
Streamflow in the Upper Klamath Basin Over a 26 Year SNOTEL Record. Department of Earth Science 
and Geography Master’s Thesis, Vassar College, Poughkeepsie, NY 

Sagarika, S., Kalra, A., and Ahmad, S. (2015). Pacific Ocean SST and Z500 climate variability and western 
U.S. seasonal streamflow: International Journal of Climatology, 36(3), 1515-1533, 
https://doi.org/10.1002/joc.4442  

U.S. Department of Agriculture (USDA), (2011). Snow Survey and Water Supply Forecasting. National 
Engineering Handbook Part 622. Water and Climate Center, Natural Resources Conservation Service 

https://www.oregon.gov/owrd/WRDPublications1/2016ORDroughtAnnex.pdf
https://doi.org/10.3133/sir20195044
https://doi.org/10.3133/sir20195044
http://pubs.usgs.gov/sir/2005/5177/
https://doi.org/10.3133/sir20165167
https://doi.org/10.1002/joc.4442


 
97 

 

U.S. Department of Agriculture (USDA), (2020). Water Supply Forecast Chart [1981-2019]. Retrieved 
from https://www.nrcs.usda.gov/wps/portal/wcc/home/quicklinks/forecastCharts  

Wang H. and Ting M. (2000). Covariabilities of Winter U.S. Precipitation and Pacific Sea Surface 
Temperatures. Journal of Climate, 13, 3711-3719, 
doi:10.1175/15200442(2000)013<3711:CO@USP>2.0.CO;2 

Wagner, B.J. and Gannett, M.W. (2014). Evaluation of alternative groundwater-management strategies 
for the Bureau of Reclamation Klamath Project, Oregon and California: U.S. Geological Survey 
Scientific Investigations Report 2014-5054, USGS, http://dx.doi.org/10.3133/sir20145054 

Zagona, E.A., Fulp, T.J., Shane, R., Magee, T.M. and Goranflo, H.M. (2001). RiverWare: A Generalized 
Tool for Complex Reservoir System Modeling. Journal of the American Water Resources Association, 
37(4), 913-929, doi:10.1111/j.1752-1688.2001.tb05522.x 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.nrcs.usda.gov/wps/portal/wcc/home/quicklinks/forecastCharts


 
98 

 

Appendix 

A. Predictive Variable Correlation Matrices 

Table 17. Correlation matrix of the climate (SST’s and GPH’s) and NRCS predictors for the February 
lead time. 

 East 
Atlantic 
SST 

Pacific 
NW     
SST 

Central 
Pacific   
SST 

South 
Indian 
SST 

Pacific 
NW 
GPH 

SW 
Atlantic 
GPH 

Feb 1st 
NRCS 
Forecast 

East 
Atlantic SST 1.00 0.27 0.20 0.58 0.29 0.29 -0.34 

Pacific NW 
SST 0.27 1.00 0.52 0.18 0.41 0.07 -0.45 

 Central 
Pacific SST 0.20 0.52 1.00 0.46 0.09 0.17 -0.36 

 South 
Indian SST 0.58 0.18 0.46 1.00 0.26 0.22 -0.49 

 Pacific NW 
GPH 0.28 0.41 0.09 0.26 1.00 0.29 -0.75 

 SW Atlantic 
GPH 0.29 0.07 0.17 0.22 0.29 1.00 -0.39 

Feb 1st 

NRCS 
Forecast 

-0.34 -0.45 -0.36 -0.49 -0.75 -0.39 1.00 

 

Table 18. Correlation matrix of the climate (SST’s and GPH’s) and NRCS predictors for the March lead 
time. 

 East 
Atlantic 
SST 

Pacific 
NW     
SST 

Central 
Pacific   
SST 

South 
Indian 
SST 

Pacific 
NW 
GPH 

SW 
Atlantic 
GPH 

Mar 1st 
NRCS 
Forecast 

East 
Atlantic SST 1.00 0.27 0.20 0.58 0.27 0.29 -0.25 

Pacific NW 
SST 0.27 1.00 0.52 0.18 0.30 0.07 -0.47 

 Central 
Pacific SST 0.20 0.52 1.00 0.46 0.11 0.17 -0.38 

 South 
Indian SST 0.58 0.18 0.46 1.00 0.21 0.22 -0.42 

 Pacific NW 
GPH 0.27 0.30 0.11 0.21 1.00 0.53 -0.73 

 SW Atlantic 
GPH 0.29 0.07 0.17 0.22 0.53 1.00 -0.44 

Mar 1st 

NRCS 
Forecast 

-0.25 -0.47 -0.38 -0.42 -0.73 -0.44 1.00 
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Table 19. Correlation matrix of the climate (SST’s and GPH’s) and NRCS predictors for the April lead 
time. 

 East 
Atlantic 
SST 

Pacific 
NW     
SST 

Central 
Pacific   
SST 

South 
Indian 
SST 

Pacific 
NW 
GPH 

SW 
Atlantic 
GPH 

Gulf of 
Mexico 
GPH 

NW 
Atlantic 
GPH 

Apr 1st 
NRCS 
Forecast 

East Atlantic 
SST 1.00 0.27 0.20 0.58 0.30 0.29 0.53 -0.01 -0.24 

Pacific NW 
SST 0.27 1.00 0.52 0.18 0.31 0.07 0.39 -0.42 -0.47 

 Central 
Pacific SST 0.20 0.52 1.00 0.46 0.34 0.17 0.71 -0.30 -0.45 

 South 
Indian SST 0.58 0.18 0.46 1.00 0.24 0.22 0.56 -0.02 -0.33 

 Pacific NW 
GPH 0.30 0.31 0.34 0.24 1.00 0.61 0.37 -0.50 -0.69 

 SW Atlantic 
GPH 0.29 0.07 0.17 0.22 0.61 1.00 0.21 -0.27 -0.49 

Gulf of 
Mexico 

GPH 
0.53 0.39 0.71 0.56 0.37 0.21 1.00 -0.36 -0.42 

NW Atlantic 
GPH -0.01 -0.43 -0.30 -0.02 -0.50 -0.27 -0.36 1.00 0.34 

Apr 1st 

NRCS 
Forecast 

-0.24 -0.47 -0.45 -0.33 -0.69 -0.49 -0.42 0.34 1.00 

 

Table 20. Correlation matrix of the climate (SST’s and GPH’s) and NRCS predictors for the May lead 
time. 

 East 
Atlantic 
SST 

Pacific 
NW     
SST 

Central 
Pacific   
SST 

South 
Indian 
SST 

Pacific 
NW 
GPH 

SW 
Atlantic 
GPH 

Gulf of 
Mexico 
GPH 

NW 
Atlantic 
GPH 

May 1st 
NRCS 
Forecast 

East 
Atlantic 

SST 
1.00 0.27 0.20 0.58 0.34 0.29 0.66 -0.01 -0.24 

Pacific NW 
SST 0.27 1.00 0.52 0.18 0.29 0.07 0.35 -0.42 -0.44 

 Central 
Pacific SST 0.20 0.52 1.00 0.46 0.33 0.17 0.42 -0.30 -0.45 

 South 
Indian SST 0.58 0.18 0.46 1.00 0.22 0.22 0.54 -0.02 -0.38 

 Pacific 
NW 

GPH 
0.34 0.30 0.33 0.22 1.00 0.57 0.50 -0.36 -0.65 

 SW 
Atlantic 

GPH 
0.29 0.07 0.17 0.22 0.57 1.00 0.33 -0.27 -0.45 

Gulf of 
Mexico 

GPH 
0.66 0.35 0.42 0.54 0.50 0.33 1.00 -0.40 -0.44 
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NW 
Atlantic 

GPH 
-0.01 -0.43 -0.30 -0.02 -0.36 -0.27 -0.40 1.00 0.35 

May 1st    

NRCS 
Forecast 

-0.24 -0.44 -0.45 -0.38 -0.65 -0.45 -0.44 0.35 1.00 

 

Table 21. Correlation matrix of the climate (SST’s and GPH’s) and NRCS predictors for the June lead 
time. 

 East 
Atlantic 
SST 

Pacific 
NW     
SST 

Central 
Pacific   
SST 

South 
Indian 
SST 

Pacific 
NW 
GPH 

SW 
Atlantic 
GPH 

Gulf of 
Mexico 
GPH 

NW 
Atlantic 
GPH 

Jun 1st 
NRCS 
Forecast 

East 
Atlantic 

SST 
1.00 0.27 0.20 0.58 0.34 0.29 0.66 -0.01 -0.18 

Pacific NW 
SST 0.27 1.00 0.52 0.18 0.29 0.07 0.35 -0.42 -0.37 

 Central 
Pacific SST 0.20 0.52 1.00 0.46 0.33 0.17 0.42 -0.30 -0.49 

 South 
Indian SST 0.58 0.18 0.46 1.00 0.22 0.22 0.54 -0.02 -0.35 

 Pacific 
NW 

GPH 
0.34 0.30 0.33 0.22 1.00 0.57 0.50 -0.36 -0.59 

 SW 
Atlantic 

GPH 
0.29 0.07 0.17 0.22 0.57 1.00 0.33 -0.27 -0.50 

Gulf of 
Mexico 

GPH 
0.66 0.35 0.42 0.54 0.50 0.33 1.00 -0.40 -0.40 

NW 
Atlantic 

GPH 
-0.01 -0.43 -0.30 -0.02 -0.36 -0.27 -0.40 1.00 0.41 

Jun 1st    

NRCS 
Forecast 

-0.18 -0.37 -0.49 -0.35 -0.59 -0.50 -0.40 0.41 1.00 
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B. Scree Plots 

 

Figure 25. Scree Plots for the principal components formed from the (Left) climate-plus-NRCS and 
(Right) climate-only predictor sets for the February lead time. 

 

Figure 26. Scree Plots for the principal components formed from the (Left) climate-plus-NRCS and 
(Right) climate-only predictor sets for the March lead time. 

 

Figure 27. Scree Plots for the principal components formed from the (Left) climate-plus-NRCS and 
(Right) climate-only predictor sets for the April lead time. 
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Figure 28. Scree Plots for the principal components formed from the (Left) climate-plus-NRCS and 
(Right) climate-only predictor sets for the May lead time. 

  

Figure 29. Scree Plots for the principal components formed from the (Left) climate-plus-NRCS and 
(Right) climate-only predictor sets for the June lead time. 

C. Predictor/Principal Component Correlation Matrices 

Table 22. Loadings matrix of the predictive variables (Top: climate-plus-NRCS, Bottom: climate-only) 
and principal components used to fit the local polynomial regression model at the February lead time. 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 
East Atlantic 

SST 0.36 -0.04 -0.51 -0.38 0.56 0.35 0.16 

Pacific NW 
SST 0.35 -0.32 0.53 -0.07 0.50 -0.49 -0.03 

 Central 
Pacific SST 0.33 -0.61 0.09 0.45 -0.17 0.52 -0.10 

 South Indian 
SST 0.40 -0.24 -0.49 -0.17 -0.44 -0.49 -0.29 

 Pacific NW 
GPH 0.40 0.47 0.33 -0.25 -0.12 0.30 -0.59 

 SW Atlantic 
GPH 0.29 0.44 -0.25 0.74 0.27 -0.20 -0.06 
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Feb 1st NRCS 
Forecast -0.48 -0.23 -0.20 0.07 0.37 -0.01 -0.73 

 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 
East Atlantic 

SST 0.45 -0.26 -0.33 0.42 -0.56 0.35 

Pacific NW 
SST 0.41 0.49 0.45 0.14 -0.37 -0.48 

 Central 
Pacific SST 0.41 0.54 -0.15 -0.47 0.14 0.52 

 South Indian 
SST 0.47 -0.05 -0.53 0.12 0.49 -0.49 

 Pacific NW 
GPH 0.38 -0.28 0.61 0.30 0.48 0.30 

 SW Atlantic 
GPH 0.31 -0.56 0.15 -0.69 -0.21 -0.20 

 

Table 23. Loadings matrix of the predictive variables (Top: climate-plus-NRCS, Bottom: climate-only) 
and principal components used to fit the local polynomial regression model at the March lead time. 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 
East Atlantic 

SST 0.34 0.19 -0.57 0.50 -0.32 0.25 0.34 

Pacific NW 
SST 0.34 0.31 0.53 0.42 -0.33 -0.36 -0.29 

 Central 
Pacific SST 0.34 0.49 0.25 -0.55 -0.14 0.49 0.12 

 South Indian 
SST 0.38 0.33 -0.47 -0.17 0.46 -0.31 -0.44 

 Pacific NW 
GPH 0.41 -0.50 0.13 0.20 0.21 0.54 -0.43 

 SW Atlantic 
GPH 0.34 -0.47 -0.20 -0.45 -0.58 -0.31 -0.07 

Mar 1st NRCS 
Forecast -0.47 0.21 -0.24 -0.01 -0.43 0.28 -0.64 

 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 
East Atlantic 

SST -0.45 0.02 -0.49 -0.50 0.40 0.39 

Pacific NW 
SST -0.38 -0.37 0.56 -0.43 0.18 -0.45 

 Central 
Pacific SST -0.41 -0.48 0.22 0.55 0.04 0.50 

 South Indian 
SST -0.46 -0.18 -0.53 0.18 -0.47 -0.48 



 
104 

 

 Pacific NW 
GPH -0.38 0.51 0.34 -0.21 -0.58 0.30 

 SW Atlantic 
GPH -0.36 0.58 0.09 0.44 0.50 -0.29 

 

Table 24. Loading matrix of the predictive variables (Top: climate-plus-NRCS, Bottom: climate-only) 
and principal components used to fit the local polynomial regression model at the April lead time. 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 
East Atlantic 

SST 0.28 0.42 -0.33 0.61 -0.04 -0.14 0.20 0.04 -0.44 

Pacific NW 
SST 0.31 -0.05 0.48 0.41 -0.51 -0.17 -0.31 0.06 0.33 

 Central 
Pacific SST 0.37 0.17 0.37 -0.51 0.03 -0.34 -0.03 0.35 -0.45 

 South Indian 
SST 0.31 0.49 -0.19 -0.16 0.07 0.53 -0.53 0.08 0.16 

 Pacific NW 
GPH 0.38 -0.37 -0.25 0.02 0.00 0.22 0.36 0.65 0.25 

 SW Atlantic 
GPH 0.28 -0.30 -0.55 -0.11 0.09 -0.55 -0.42 -0.16 0.11 

Gulf of Mexico 
GPH 0.40 0.30 0.16 -0.08 0.37 -0.17 0.43 -0.37 0.49 

NW Atlantic 
GPH -0.27 0.42 -0.31 -0.31 -0.59 -0.25 0.22 0.14 0.28 

Apr 1st NRCS 
Forecast -0.39 0.24 0.09 0.25 0.49 -0.33 -0.21 0.51 0.27 

 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 
East Atlantic 

SST 0.33 0.40 -0.30 0.58 -0.16 0.28 -0.01 0.44 

Pacific NW 
SST 0.33 -0.14 0.46 0.57 0.46 -0.17 0.14 -0.28 

 Central 
Pacific SST 0.40 0.08 0.37 -0.48 0.36 0.13 -0.04 0.56 

 South Indian 
SST 0.35 0.48 -0.14 -0.18 -0.12 -0.75 0.07 -0.13 

 Pacific NW 
GPH 0.37 -0.39 -0.31 0.01 0.08 -0.09 -0.77 -0.08 

 SW Atlantic 
GPH 0.27 -0.29 -0.61 -0.15 0.33 0.11 0.56 -0.09 

Gulf of Mexico 
GPH 0.45 0.21 0.16 -0.22 -0.32 0.51 0.01 -0.57 

NW Atlantic 
GPH -0.28 0.55 -0.21 -0.05 0.63 0.19 -0.26 -0.25 

 



 
105 

 

Table 25. Loading matrix of the predictive variables (Top: climate-plus-NRCS, Bottom: climate-only) 
and principal components used to fit the local polynomial regression model at the May lead time. 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 
East Atlantic 

SST 0.31 0.53 -0.04 0.36 -0.32 0.18 -0.01 0.11 -0.58 

Pacific NW 
SST 0.30 -0.26 0.49 0.10 -0.54 0.35 0.22 0.04 0.36 

 Central 
Pacific SST 0.33 -0.08 0.43 -0.43 0.29 0.24 -0.54 -0.07 -0.27 

 South Indian 
SST 0.31 0.50 0.15 -0.26 0.36 -0.09 0.40 0.41 0.30 

 Pacific NW 
GPH 0.37 -0.19 -0.38 -0.07 -0.28 -0.31 -0.45 0.52 0.18 

 SW Atlantic 
GPH 0.29 -0.08 -0.62 -0.10 0.17 0.66 0.12 -0.17 0.14 

Gulf of Mexico 
GPH 0.41 0.21 0.03 0.41 0.16 -0.28 -0.24 -0.56 0.38 

NW Atlantic 
GPH -0.26 0.52 -0.09 -0.51 -0.47 0.05 -0.22 -0.26 0.26 

May 1st NRCS 
Forecast -0.39 0.20 0.11 0.41 0.20 0.42 -0.43 0.36 0.32 

 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 
East Atlantic 

SST 0.37 -0.48 0.01 -0.41 0.25 0.15 -0.16 -0.59 

Pacific NW 
SST 0.32 0.35 -0.44 -0.16 0.56 0.35 0.17 0.30 

 Central 
Pacific SST 0.36 0.15 -0.41 0.62 -0.05 -0.17 -0.43 -0.29 

 South Indian 
SST 0.35 -0.47 -0.21 0.27 -0.35 0.17 0.61 0.13 

 Pacific NW 
GPH 0.38 0.17 0.42 0.11 0.34 -0.60 0.39 -0.08 

 SW Atlantic 
GPH 0.29 0.04 0.65 0.32 0.04 0.56 -0.22 0.15 

Gulf of Mexico 
GPH 0.46 -0.14 -0.01 -0.36 -0.27 -0.31 -0.40 0.56 

NW Atlantic 
GPH -0.27 -0.59 -0.03 0.31 0.56 -0.15 -0.17 0.34 

 

Table 26. Loading matrix of the predictive variables (Top: climate-plus-NRCS, Bottom: climate-only) 
and principal components used to fit the local polynomial regression model at the June lead time. 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 
East Atlantic 

SST 0.31 0.54 -0.06 0.35 -0.25 0.14 -0.06 -0.13 -0.62 
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Pacific NW 
SST 0.30 -0.21 0.52 0.19 -0.56 0.35 -0.13 0.11 0.32 

 Central 
Pacific SST 0.34 -0.06 0.42 -0.48 0.03 -0.14 0.60 -0.16 -0.27 

 South Indian 
SST 0.31 0.49 0.11 -0.33 0.34 0.16 -0.22 0.55 0.20 

 Pacific NW 
GPH 0.37 -0.18 -0.35 0.06 -0.35 -0.59 0.07 0.48 -0.01 

 SW Atlantic 
GPH 0.29 -0.12 -0.61 -0.10 -0.04 0.58 0.37 -0.07 0.18 

Gulf of Mexico 
GPH 0.41 0.23 0.03 0.37 0.27 -0.31 0.09 -0.45 0.51 

NW Atlantic 
GPH -0.27 0.50 -0.13 -0.43 -0.56 -0.15 0.02 -0.24 0.30 

Jun 1st NRCS 
Forecast -0.38 0.27 0.13 0.41 -0.01 0.04 0.65 0.40 0.13 

 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 
East Atlantic 

SST 0.37 -0.48 0.01 -0.41 0.25 0.15 -0.16 -0.59 

Pacific NW 
SST 0.32 0.35 -0.44 -0.16 0.56 0.35 0.17 0.30 

 Central 
Pacific SST 0.36 0.15 -0.41 0.62 -0.05 -0.17 -0.43 -0.29 

 South Indian 
SST 0.35 -0.47 -0.21 0.27 -0.35 0.17 0.61 0.13 

 Pacific NW 
GPH 0.38 0.17 0.42 0.11 0.34 -0.60 0.39 -0.08 

 SW Atlantic 
GPH 0.29 0.04 0.65 0.32 0.04 0.56 -0.22 0.15 

Gulf of Mexico 
GPH 0.46 -0.14 -0.01 -0.36 -0.27 -0.31 -0.40 0.56 

NW Atlantic 
GPH -0.27 -0.59 -0.03 0.31 0.56 -0.15 -0.17 0.34 
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D. Variable Importance Scores 

  

Figure 30. Variable importance scores, percent increase MSE (left) and increased node purity (right), for 
the seasonal inflow forecast on February 1st. 

  

Figure 31. Variable importance scores, percent increase MSE (left) and increased node purity (right), for 
the seasonal inflow forecast on April 1st. 

  

Figure 32. Variable importance scores, percent increase MSE (left) and increased node purity (right), for 
the seasonal inflow forecast on May 1st. 
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