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Abstract 

 

Baker, Sarah Ann (Ph.D., Department of Civil, Architectural, and Environmental 

Engineering) 

 

Development of Sub-seasonal to Seasonal Watershed-scale Hydroclimate 

Forecast Techniques to Support Water Management 

 

Thesis directed by Professor Balaji Rajagopalan 

 

Operational sub-seasonal to seasonal (S2S) climate predictions have advanced in skill 

in recent years but are not yet broadly utilized by stakeholders in the water 

management sector. While some of the challenges that relate to fundamental 

predictability are difficult or impossible to surmount, other hurdles related to forecast 

product formulation, translation, and accessibility can be directly addressed. An 

example of S2S climate forecast use in water management is through streamflow 

forecasting.  Streamflow forecasts inform many water management decisions such as 

reservoir operations, water allocation, flood control, and instream supported releases.  

More skillful streamflow forecasts would benefit water managers through improved 

projections of future basin conditions for planning and decision making purposes. 

This dissertation is motivated by the need to reduce hurdles in water manager 

adoption of S2S climate forecasts.  To this end, this dissertation makes four 
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contributions. (1) Two S2S climate forecast products, Climate Forecast System 

version 2 (CFSv2) and North American Multi-model Ensemble (NMME), are 

processed to develop real-time watershed-based climate forecast products. A 

prototype S2S climate data products website was built to disseminate real-time 

forecasts of CFSv2-based bi-weekly climate forecasts (weeks 1-2, 2-3, and 3-4) and 

NMME-based monthly and seasonal prediction products on a watershed scale. (2) Bi-

weekly S2S climate forecast of temperature and precipitation were post-processed to 

enhance the skill and reliability of raw CFSv2 climate forecasts using partial least 

squares regression (PLSR). (3) An experimental streamflow forecasting method was 

developed with a simple stochastic trace weighting technique that ingests watershed-

based climate forecasts in the Colorado River Basin. The experimental forecasting 

technique was compared to the traditional streamflow forecasting method, Ensemble 

Streamflow Prediction (ESP). (4) The experimental and operational streamflow 

forecasts were compared and analyzed through a testbed framework that was 

developed to assess how streamflow forecast performance affects operational 

projections in the Colorado River Basin at a lead time of two years using the Bureau 

of Reclamation’s Mid-term Probabilistic Operations Model (MTOM).    
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1 CHAPTER I: Introduction 
 

1.1 Background 

Water managers make many operational decisions on a sub-seasonal to seasonal 

(S2S) timescale, but do not yet widely use climate forecasts to inform decision making.  

Surveys indicate that water managers are reluctant to use available climate forecasts 

due to perceived poor reliability of forecasts, institutional reasons such as traditional 

reliance on built infrastructure, organization or regulatory restraints, risk aversion, 

and mismatched temporal or spatial scale (Callahan, Miles, & Fluharty, 1999; 

Kirchhoff, Lemos, & Engle, 2013; Raff, Brekke, Werner, Wood, & White, 2013; 

Rayner, Lach, & Ingram, 2005; White et al., 2017).  Furthermore, water managers 

may be unaware of sources of seasonal climate forecasts or lack the skill set and 

resources to ingest forecasts in a usable format, especially managers at smaller 

utilities (Bolson, Martinez, Breuer, Srivastava, & Knox, 2013).  Issues presented 

through these academic surveys can be addressed through a closer relationship 

between the forecast producer and user, increased institutional flexibility, and 

demonstration of effective forecast skill and use (Dilling & Lemos, 2011; Feldman & 

Ingram, 2009; Pagano, Hartmann, & Sorooshian, 2001).  

Climate forecasts produced by global climate models (GCMs) have recently 

shown improved skill at the S2S timescale, which extends from two weeks to months 

in the sub-seasonal timeframe, out multiple seasons in the seasonal timeframe.  One 

such model is the dynamical, fully coupled atmosphere–ocean–land model Climate 

Forecast System version 2 (CFSv2), which demonstrates skill in projecting climate 
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and land surface variables at various leads and seasons over the US and improves 

upon its predecessor CFSv1 (Saha et al., 2014; Tian, Wood, & Yuan, 2017; Yuan, 

Wood, Luo, & Pan, 2011).  Multi-model ensembles have also shown improved S2S 

skill over single models (Becker, den Dool, & Zhang, 2014; Doblas-Reyes, Hagedorn, 

& Palmer, 2005; Hagedorn, Doblas-Reyes, & Palmer, 2005).  The North American 

Multi-model Ensemble (NMME) is an operational seasonal climate forecast system 

that includes ensemble forecasts (for climate and land surface variables) from seven 

GCMs, leading to more skillful seasonal climate forecasts than from any individual 

GCM (Becker & van den Dool, 2016; Kirtman et al., 2014; Slater, Villarini, & Bradley, 

2016).  This work focuses on making CFSv2 and NMME forecasts more useable to 

water managers by applying them to a watershed scale in real-time and displaying 

useful verification metrics.  

GCMs can also be used to assess the skill of seasonal extreme climate events 

such as heat waves or droughts.  Slater et al. (2016) assessed the skill of extreme 

events using NMME and found that seasonal prediction of drought events are better 

forecasted than floods, and high temperature and low precipitation events are 

predicted equally well.  Tian et al. (2017) found that CFSv2 exhibited skill when 

predicting consecutive rainy and dry days in the US, especially over the west coast.  

Other studies have analyzed the skill of extremes prediction in other GCMs (Barnston 

& Mason, 2011; Hamilton et al., 2012; Mo & Lyon, 2015).  

Raw GCM forecasts, such as CFSv2, have shown predictable and skillful 

forecasts of temperature and precipitation for the 3-4 week period.  DelSole et al. 
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(2017) found that raw CFSv2 reforecasts demonstrated predictability in 3-4 week 

forecasts of temperature and precipitation over parts of the US during January and 

July by decomposing anomalies in terms of an orthogonal set of patterns for each grid 

point.  The analysis found that predictability of temperature and precipitation was 

related to El Nino-Southern Oscillation (ENSO) and Madden-Julian oscillation 

(MJO) events. Though the study did illustrate predictability over the contiguous US 

(CONUS), the results were no equally promising for all regions and especially weak 

for summer precipitation.  This suggests the need for additional information when 

post-processing precipitation and temperature forecasts from GCMs through the use 

of large-scale climate features (e.g. ENSO or MJO), or through climate fields such as 

geopotential height or precipitable water.  

In addition to assessing the raw skill of CFSv2 and NMME, researchers have 

used various methods to improve the process of translating the raw, large scale 

outputs to the regional scale that are useful to water managers.  Downscaling and 

bias-correction are methods of improving temperature and precipitation forecasts and 

allow users to move forecasts to a finer grid.  Tian et al. (2014) compared downscaling 

techniques for NMME precipitation and temperature forecasts for Alabama, Georgia, 

and Florida.  They found that the locally weighted polynomial regression downscaling 

method showed higher skill than direct spatial disaggregation and bias-correction for 

this region.  Many other studies of downscaling techniques have shown improvements 

to GCM outputs for other regions including the CONUS-wide domain and the 

Colorado River basin (Gutmann et al., 2014; Pablo A. Mendoza, Rajagopalan, Clark, 
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Cortés, & McPhee, 2014; Andrew W. Wood, Leung, Sridhar, & Lettenmaier, 2004).  

Downscaling and bias-correction techniques could be applied to raw CFSv2 

temperature and precipitation forecasts for the CONUS domain to improve forecast 

skill.  

Model skill can also be improved through ensemble weighting methods.  Slater 

et al. (2017) explored five different multi-model weighting approaches for NMME 

temperature and precipitation forecasts to enhance skill of four climatic regions in 

Europe.  The weighting approaches tested were equal weighting, Bayesian updating 

(BU), and Bayesian updating of principal components (BU-PCA) of both the eight 

single model means and all NMME ensemble members. The study found that BU and 

BU-PCA reduced unconditional bias and negative skill, but sometimes diminished 

positive skill in the raw forecasts.  Other work has concluded that multi-model 

weighting methods can improve ensemble prediction (Krakauer, 2017; Wanders & 

Wood, 2016).  Despite the improvements to raw temperature and precipitation 

forecasts through post-processing, the water management sector has not widely 

incorporated S2S climate forecasts into their decision making framework.  

Water management decisions made at the S2S timescale, such as reservoir 

operations, water allocation, flood control, and instream supported releases, depend 

largely on streamflow forecasts. Many of the streamflow forecasts in the US are 

provided by the National Weather Service River Forecasting Centers (RFCs) and 

National Resource Conservation Service (NRCS) (Pagano, Robertson, Werner, & 

Tama-Sweet, 2014). A significant example of the use of these streamflow forecasts is 
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in the Colorado River Basin. In their management of the Colorado River, the Bureau 

of Reclamation uses streamflow forecasts produced by the Colorado Basin RFC as 

inputs to their operations and planning models, which are used for decision making 

and risk assessment of potential Lower Basin shortage or surplus conditions that 

affect many communities and economies (Bureau of Reclamation, 2015).   

Most operational streamflow forecasts are not informed by S2S projections, but 

instead rely on land-surface models initialized with current basin conditions and 

forced with historical temperature and precipitation traces (Raff et al., 2013).  This 

method, Ensemble Streamflow Prediction (ESP), is widely used throughout the water 

management community (Day, 1985; Franz, Hartmann, Sorooshian, & Bales, 2003).  

The skill of ESP streamflow forecasts are initially highly dependent on the initial 

conditions, but at leads longer than one month, the skill is more dependent on climate 

forcings (Li, Luo, Wood, & Schaake, 2009; Shukla & Lettenmaier, 2011).  This leaves 

room for potential improvement to climate forcings through use of GCM outputs.   

Statistical methods are also used to produce seasonal water supply forecasts 

(Garen, 1992; Pagano, Wood, et al., 2014).  These monthly forecasts traditionally use 

principal component regression models trained on historical data such as seasonal 

precipitation and snow water equivalent (SWE).  As with ESP, statistical water 

supply forecasting methods do not utilize the skill of S2S climate forecasts.  

The potential value of S2S climate forecasts for use in streamflow prediction has been 

explored through different academic studies.  Studies have shown that using climate 

forecasts in land-surface models can improve streamflow forecasts.  Wood and 
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Lettenmaier (2006) showed improvement to ESP forecasts in the western US through 

the use of a land-surface model driven with climate forecasts ensembles from NASA’s 

Seasonal-to-Interannual Prediction Project and other seasonal climate forecasts.  Mo 

and Lettenmaier (2014) completed a similar study over the CONUS domain using 

NMME forecasts.  They found that skill is seasonally and regionally dependent and 

that NMME forecasts contributed to skill after month 1 during which initial 

conditions were dominant.  Many other studies illustrated the added streamflow 

forecasts skill through the use of climate forecasts in land-surface models (Li et al., 

2009; Luo & Wood, 2008; Sankarasubramanian, Lall, Devineni, & Espinueva, 2009; 

Werner, Brandon, Clark, & Gangopadhyay, 2005; Yuan & Wood, 2012; Yuan, Wood, 

& Liang, 2014; Yuan, Wood, Roundy, & Pan, 2013).  Despite the improvements to 

streamflow skill shown in these studies, most operational streamflow forecasts do not 

use climate forecasts.  

Statistical water supply methods have also shown improvement when climate 

information is used as a predictor.  Studies have used regression-based methods 

informed by large scale climate predictors such as ENSO to improve streamflow 

projections (Clark, Serreze, & McCabe, 2001; Gobena & Gan, 2010; Grantz, 

Rajagopalan, Clark, & Zagona, 2005; Moradkhani & Meier, 2010; S. K. Regonda, 

Rajagopalan, Clark, & Zagona, 2006; van Dijk, Peña-Arancibia, Wood, Sheffield, & 

Beck, 2013).  Lehner et al. (2017) illustrated reduced error in seasonal streamflow 

forecasts when using monthly temperature forecasts from NMME and System 4 from 

European Center for Medium-Range Weather Forecast (ECMWF) to drive statistical 
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models in the Colorado and Rio Grande River Basins.  Slater et al. (2017) presented 

a statistical-dynamical approach showing skillful seasonal streamflow forecast in 

Iowa using agricultural land cover, antecedent precipitation, and NMME monthly 

precipitation ensemble.  These studies further illustrate the potential improvements 

to both land-surface models and statistical streamflow forecasting methods through 

the use of S2S climate forecasts.  

As described above, many studies have explored the potential for S2S climate 

forecasts to improve the skill of streamflow forecasting.  However, less work has been 

devoted to overcoming the spatial and temporal barriers noted by Rayner et al. (2005) 

that prevent water managers from incorporating the forecasts into their decision 

making processes.  Though Hartmann et al. (2002) displayed digestible skill metrics 

for forecasts at the NOAA’s Climate Prediction Center (CPC) climate division scale 

(as opposed to the typical gridded scale) and Bolinger et al. (2017) created a web-

based tool for monthly water-level forecasts in the Great Lakes region, neither project 

provided the real-time CONUS-wide, watershed-scale forecasts and metrics that 

would be most useful to water managers.  

This dissertation is designed to enhance climate prediction quality, specificity, 

and accessibility by applying S2S climate forecasts to a watershed scale and by 

improving climate forecast skill through stochastic post-processing methods.  Skillful 

streamflow forecasts are important to water managers who plan reservoir operations 

and water allocation (Raff et al., 2013).  S2S climate forecasts can be used to inform 

streamflow forecasts.  Lehner et al. (2017) and Slater et al. (2017) applied statistical 
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methods to S2S climate forecasts to improve seasonal streamflow forecasts.  This 

project will go further by using S2S climate forecasts with improved skill to project 

streamflow, and compare to current methods to analyze the effects of improved 

streamflow forecasting on reservoir operations in the Colorado River Basin.  

1.2 Scope of Work and Thesis Structure 

The dissertation seeks to reduce hurdles to S2S climate forecasts use by water 

managers through translating forecasts to a usable watershed-based spatial scale 

and demonstrating operational use in the Colorado River Basin through applications 

in streamflow forecasting.  The chapters in this dissertation are as follows.  Chapter 

2 describes the formulation of S2S climate forecast products on a watershed scale.  

Bi-weekly CFSv2 and monthly and seasonal NMME watershed scale forecasts are 

evaluated and displayed on a real-time web based product.  In Chapter 3, PLSR is 

explored as a potential post-processing technique for improving the skill of bi-weekly 

CFSv2 temperature and precipitation forecast using concurrent CFSv2 climate and 

land surface fields as predictors.  Chapter 4 describes a stochastic trace weighting 

scheme for streamflow forecasting which ingests S2S climate forecasts. This 

experimental forecast is compared to traditional forecasting method, ESP, in the 

Colorado River Basin.  Chapter 5 presents a testbed framework for assessing the 

performance of streamflow forecasts and operational projections in the Colorado 

River Basin. Chapter 6 provides a brief summary of conclusions presented in the 

previous four chapters and a description of future work.    
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2 CHAPTER II: Developing Sub-seasonal to Seasonal Climate 
Forecast Products for Hydrology and Water Management  

 

2.1 Abstract 

We describe a new effort to enhance climate forecast relevance and usability through 

the development of a system for evaluating and displaying real-time sub-seasonal to 

seasonal (S2S) climate forecasts on a watershed scale. Water managers may not use 

climate forecasts to their full potential due to perceived low skill, mismatched spatial 

and temporal resolutions, or lack of knowledge or tools to ingest data. Most forecasts 

are disseminated as large-domain maps or gridded datasets and may be 

systematically biased relative to watershed climatologies. Forecasts presented on a 

watershed scale allow water managers to view forecasts for their specific basins, 

thereby increasing the usability and relevance of climate forecasts. This paper 

describes the formulation of S2S climate forecast products based on the Climate 

Forecast System version 2 (CFSv2) and the North American Multi-model Ensemble 

(NMME). Forecast products include bi-weekly CFSv2 forecasts, and monthly and 

seasonal NMME forecasts. Precipitation and temperature forecasts are aggregated 

spatially to a USGS HUC-4 watershed scale. Forecast verification reveals appreciable 

skill in the first two bi-weekly periods (weeks 1-2 and 2-3) from CFSv2, and usable 

skill in NMME month 1 forecast with varying skills at longer lead times dependent 

on the season. Application of a bias-correction technique (quantile mapping) 

eliminates forecast bias in the CFSv2 reforecasts, without adding significantly to 
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correlation skill.1  

  

                                            

 

1 A version of this chapter has been published:  
Baker, S.A., A.W. Wood, and B. Rajagopalan. 2019. “Developing Subseasonal to Seasonal Climate Forecast 
Products for Hydrology and Water Management.” Journal of the American Water Resources Association 1–14. 
https://doi.org/10.1111/1752-1688.12746. 
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2.2 Introduction & Background 

Hydrologists and water managers make many operational decisions on a sub-

seasonal to seasonal (S2S) time scale, but under-utilize climate prediction to inform 

decision making from a quantitative standpoint.  Surveys indicate that water 

managers are reluctant to use climate forecast due to perceived poor reliability of 

forecasts, mismatched temporal or spatial scale, institutional reasons such as 

traditional reliance on built infrastructure, organization or regulatory restraints, and 

risk aversion (Callahan et al., 1999; Kirchhoff et al., 2013; Rayner et al., 2005; White 

et al., 2017).  Water managers may be unaware of sources of seasonal climate 

forecasts or lack the skill set and resources to ingest forecasts in a usable format, 

especially managers at smaller utilities (Bolson et al., 2013).  Issues presented in 

these academic surveys can be addressed through a closer relationship between 

forecast producer and user, increased institutional flexibility, and demonstration of 

effective climate forecast skill and use (Dilling & Lemos, 2011; Feldman & Ingram, 

2009; Pagano et al., 2001).  

Numerous water management short-term and mid-term decisions are made on 

the S2S time scale including reservoir operations, water allocation, flood control, 

hydropower generation, water treatment, and in-stream supported releases (Bolson 

et al., 2013).  Decisions depend largely on streamflow forecasts, many of which are 

provided by the National Weather Service River Forecasting Centers (RFCs) and 

National Resource Conservation Service (NRCS) in the United States (US) (T. Pagano 

et al., 2014).  In the Colorado River Basin, a river managed by the Bureau of 
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Reclamation, streamflow forecasts produced by the Colorado Basin RFC (CBRFC) are 

used as inputs to operations and planning models that are used for decision making 

and risk assessment of potential shortage or surplus basin conditions (Bracken, 

2011).  These streamflow forecasts are not informed by climate forecasts, even though 

recent work shows benefits (Lehner et al. 2017).  Raff et al. (2013) identified 

enhancements to climate forecasts to meet the needs of water resource managers in 

the Bureau of Reclamation and US Army Corps of Engineers in a report documenting 

short-term water management decisions.  Water managers interviewed in the report 

emphasized the need for better understanding of the skill and reliability of climate 

forecast products, easily accessible products on different time scales, and products 

presented in a format easily accessible by operators. 

Recently, dynamical climate forecasts generated using initialized global 

climate models (GCMs) have shown skill improvements at the S2S time scale.  One 

of these dynamical models, the fully coupled atmosphere–ocean–land model Climate 

Forecast System version 2 (CFSv2), which is run at the National Centers for 

Environmental Prediction (NCEP), demonstrates skill in projecting climate variables 

at various leads and seasons over the US and improves upon its predecessor CFSv1 

(Saha et al., 2014; Tian et al., 2017; Yuan et al., 2011).  Multi-model climate forecast 

ensembles have also demonstrated improved skill over single models (Becker et al., 

2014; Doblas-Reyes et al., 2005; Hagedorn et al., 2005).  The North American Multi-

model Ensemble (NMME) is an operational seasonal climate forecast system that 

includes ensemble forecasts (for climate and land surface variables) from seven 
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GCMs, leading to more skillful seasonal climate predictions than from any individual 

GCM (Becker & van den Dool, 2016; Kirtman et al., 2014; Slater et al., 2016).   

These climate model forecasts and verifications are normally presented at a 

system grid resolution or on North American-wide maps, or for all forecast 

initializations and lead times, rather than particular seasons that are easily related 

to local watershed scales.  From a water management perspective climate forecast 

utility is highly specific to location, time of year, and predictand (Wood et al., 2016).  

There is a gap between the type of verification, data, and product diagnostics provided 

by forecast production centers and the skill information most readily interpretable 

and usable by the water community (Wood & Werner, 2011). 

A number of the studies referenced above have explored S2S climate forecast 

skill, but more can be done to support water managers in incorporating climate 

forecasts into decision making.  Some studies have attempted to address these issues 

by presenting seasonal climate forecasts on a different spatial scale than the typical 

gridded scale and by displaying skill metrics that are useful to water managers.  

Hartmann et al. (2002) explored a framework for evaluating seasonal temperature 

and precipitation projection performance with metrics more easily digestible by users.  

The metrics were displayed on the 344 Climate Divisions specified by NOAA’s 

Climate Prediction Center (CPC).  Although this spatial scale can be useful, the 

Climate Divisions are not, by design, aligned with hydrologic boundaries that may be 

relevant for areas of water manager responsibility.  More recently, Bolinger et al. 

(2017) explored the use of a web-based tool to provide monthly updated water-level 



 14

projections informed by NMME forecasts in the Great Lakes region.  The tool allows 

users to look at individual NMME model results and probabilities of hydrologic 

variables for specific regions.  It represents an example of a regional water group 

processing climate outlooks onto spatial scales of interest, which underscores the 

need to develop a centralized, nationwide system to achieve similar goals.      

With this motivation in mind, we present work to address some of the hurdles 

confronting the widespread use of S2S climate predictions in water management 

applications, and to bridge the gap for potential stakeholders by enhancing the 

quality, specificity, and accessibility of S2S predictions.  To make S2S prediction more 

usable, this project aligns climate forecasts with users space-time needs, presents 

data in real-time in user friendly formats (such as CSV files by watershed area), 

removes systematic climatology biases in forecast products, and produces verification 

information that is relevant to water sector users. 

This paper describes a new real-time experimental effort to develop and 

demonstrate climate forecasts tailored to water managers by presenting real-time 

forecasts and verification on a watershed scale over the conterminous United States 

(CONUS) domain.  The effort contributes to a sequence of milestones required to 

transition research toward implementation in an agency operational center such as 

CPC.  For prototyping and demonstration purposes, this effort adopts the United 

States Geological Survey (USGS) hydrologic unit code 4 (HUC-4) delineation, which 

includes of 202 watersheds, which is a suitable spatial scale to show meaningful 

variability in climate forecasts, given the de-correlation length scales of common 



 15

climate variables.  In Section 2-3, we describe reforecast and real-time CFSv2 and 

NMME forecasts, and forcing datasets.  Data processing, verification, and basic bias-

correction methodologies for precipitation and temperature reforecasts at bi-weekly, 

monthly, and seasonal time steps are presented in Section 2-4.  Results from 

watershed-scale verification are evaluated in Section 2-5, followed by a discussion of 

water sector responses to the new products and possible improvements to the S2S 

watershed climate forecasting system in Section 2-6.  

2.3 Data Sources & Processing  

2.3.1 CFSv2 Climate Forecasts 

The leading operational S2S climate forecast dataset in the US is generated by 

CFSv2, a fully coupled atmosphere-ocean-land operational model (Saha et al., 2014).  

CFSv2 forecasts of temperature and precipitation rate are supported by a separate 

S2S-scale reforecast dataset, which has a 100 km (0.93 degree) grid resolution at a 6-

hour time step from 1999 through 2010. The reforecasts were initialized each day at 

four synoptic times: 0000 UTC, 0006 UTC, 0012 UTC, and 0018 UTC. The 0000 UTC 

forecast extends to the end of a full season (end of the fourth month), while the 0006, 

0012, and 0018 UTC forecasts extend for 45 days. Less frequent CFSv2 reforecasts, 

not used in this work, extend to 9 months lead time.  

For this work, the raw CFSv2 temperature and precipitation reforecasts were 

re-projected from a native Gaussian grid to a 1/2-degree grid, temporally averaged to 

a daily time step, and areally averaged to USGS HUC-4 spatial units through 

spatially conservative remapping.   
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Figure 2-1 displays the 202 HUC-4 watersheds in the CONUS domain.  Daily 

ensemble means were calculated for CFSv2 reforecasts and were temporally averaged 

to bi-weekly time periods (e.g. 1-2 week, 2-3 week, 3-4 week) to support a skill analysis 

on the sub-seasonal scale.  Climatologies for each watershed, lead, and day of year 

(DOY) are based on a 15-day window (+/- 7 days from forecasted date).  CFSv2 data 

were obtained online from the NOAA National Center for Environmental 

Information. 

 
Figure 2-1: USGS HUC-4 watersheds. USGS hydrologic unit code 4 (HUC-4) watersheds over the 
conterminous United States (CONUS) domain overlaid by state outlines.  

Real-time CFSv2 forecast are initialized each day at the four synoptic times, but 

in contrast to the retrospective runs, each initialization produces four ensemble 

members for a total of 16 forecasts each day of various lengths: four extend out to 9 

months, three to 1 season, and nine to 45 days. The CFSv2 operational 16 member 

ensemble is downloaded each day and processed similarly to the reforecasts. 
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2.3.2 NMME Climate Forecasts 

The NMME Phase 2 is a combination of seven global climate models that predict 

precipitation and temperature (among other variables) at a monthly time step for 

leads up to 7 months (Kirtman et al., 2014).  Reforecasts are available for 1982 to 

2010 and real-time model forecasts are available for 2011 to present. The models 

included in NMME are summarized in Table 2-1.  For more information about each 

model in NMME, see Kirtman et al. (2014) or Slater et al. (2016), but note that the 

models included in the NMME have changed over time.  

Table 2-1: NMME models  

Model Acronym Model Name Reference 

CFSv2 NOAA NCEP Climate Forecast 
System version 2 

Saha et al., 2014 

NASA_GEOS5 Goddard Earth Observing System 
version 5 

Vernieres et al., 2012; 
Molod et al., 2012 

CCSM4 NCAR/University of Miami 
Community Climate System Model 
version 4 

Lawrence et al., 2012 

GFDL-CM2.1 Geophysical Fluid Dynamics 
Laboratory’s (GFDL’s) Climate Model 
version 2.1 

Zhang et al., 2007 

GFDL_FLOR-CM2.5 GFDL’s Climate Model version 2.5 
[FLORa06 and FLORb01] 

Vecchi et al., 2014 

CanCM3 Third Generation Canadian Coupled 
Global Climate Model 

Merryfield et al., 2013 

CanCM4 Fourth Generation Canadian 
Coupled Global Climate Model 

Merryfield et al., 2013 

*(Lawrence et al., 2012; Merryfield et al., 2013; Molod, 2012; Saha et al., 2014; Vecchi et al., 2014; 
Vernieres, Rienecker, Kovach, & Keppenne, 2012; Zhang, Harrison, Rosati, & Wittenberg, 2007) 

Raw temperature and precipitation reforecasts are re-projected from a 1-

degree grid onto a 1/2-degree grid and spatially averaged to HUC-4 spatial units 

using the same method as CFSv2.  The NMME forecast ensemble mean, which is 
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used in calculating several of the evaluation metrics, is calculated by equally 

weighting each model’s ensemble average.  A seasonal forecast is calculated by 

temporally averaging the first three months for the forecast for each model.  

Climatologies are then established for each NMME model, watershed, and forecasted 

month or season.  Real-time NMME forecasts are updated monthly by the 8th day of 

each month. The ensembles for each of the 7 models are downloaded and processed 

to watershed scale monthly.  Reforecasts were downloaded from the Climate 

Prediction Center’s website and real-time forecasts are downloaded from the IRI Data 

Library. 

2.3.3 NLDAS Climate Observations 

The observational data for this study are derived from Phase 2 of the North American 

Land Data Assimilation System (NLDAS; Xia et al., 2012).  NLDAS data are 

available at 1/8th-degree grid spacing from 1979 to the present at an hourly temporal 

resolution.  Similar to the CFSv2 reforecasts, NLDAS precipitation and temperature 

data were spatially and temporally aggregated to a daily time step on a 1/2-degree 

grid (common to both datasets) before further aggregation to the sub-seasonal HUC-

4 space-time resolution to match CFSv2 and NMME time scales.  The choice to move 

to common grid spacing was for ease of analysis and to reduce disk space used during 

data processing.  NLDAS data were obtained from NASA’s Earth Science Data 

Systems Program websites. 
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2.4 Methods 

2.4.1  Post-processing of Climate Forecasts to Reduce Systematic Biases 

Raw GCM forecasts require post-processing due to systematic biases, unreliable 

ensemble spread, and forecasts not being skillful.  Post-processing can take the form 

of statistical or downscaling to improve the raw output of GCMs.  In this project, raw 

CFSv2 forecasts were bias-corrected using the Quantile Mapping (QM) method.  QM 

removes systematic bias between the forecasted and observed climatologies, but does 

not further calibrate the forecasts to improve their skill.  QM is a general method 

that has long been applied to weather forecasts (Panofsky & Brier, 1968) and later to 

climate forecasts (Wood et al., 2002).  QM is an effective approach to removing bias, 

but does not address forecast deficiencies in attributes such as reliability and 

correlation skill (in some cases QM reduces the skill of the forecast). The distinction 

between bias-correction and probabilistic forecast calibration is further described in 

Wood and Schaake (2008) and Zhao et al. (2017), and the effectiveness of QM for post-

processing climate model outputs for various applications, including extremes 

projection, is discussed in Ning et al. (2015), Cannon et al. (2015) and Maraun (2013). 

When applied to CFSv2, QM replaces the forecast value with a value from the 

observed climatology (NLDAS) that has the same quantile.  This is done by 

estimating a pair of cumulative distribution functions (CDFs) for the CFSv2 

reforecasts and NLDAS data for each variable, lead, watershed, and time scale 

(climatologies based on 15-day window of +/- 7 days from forecast date).  When 

forecasted values lie outside the quantile range, the two closest quantiles are used to 
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linearly extrapolate the new value.  While QM corrects systematic biases in the first 

and second moments of the climate forecast distribution, concerns have been raised 

in various studies about its ability to preserve the extreme indices in the observed 

distribution and to preserve future trends, and it also does not guarantee that biases 

will be eliminated for durations not explicitly addressed in the CDF mapping.  

Nonetheless, it serves well as a first step to addressing major bias-related deficiencies 

in climate model forecast outputs.    

2.4.2 Production of Real-time Web-based S2S Climate Outlooks 

After spatial remapping and bias correction, prototype S2S climate data products – 

forecasts and associated skill analyses – are operationally disseminated by the 

National Center for Atmospheric Research (NCAR) on a public website to facilitate 

further product development through interactions with water managers.  The website 

(http://hydro.rap.ucar.edu/s2s/) was built in R using the R package Shiny, which 

supports the staging of websites that link data and geospatial mapping.  Climate 

products on the website include CFSv2-based bi-weekly climate forecasts for HUC-4 

watersheds, and NMME-based monthly and seasonal prediction products.  The 

workflow for product generation is summarized in Error! Reference source not 

found. and described in the previous sections.  Raw and bias-corrected CFSv2 

products are updated daily on the site and NMME products are updated once per 

month, when NMME forecast outputs are updated.   
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Figure 2-2: Methods of processing S2S forecasts. Summary of methods for processing of Climate 
Forecast version 2 (CFSv2) and North American Multi-model Ensemble (NMME) data, and 
delivering them to an online dissemination platform.  

2.4.3 Forecast Verification 

The anomaly correlation coefficient (ACC) metric is widely used in the climate 

prediction community to measure the degree of association between the forecast 

mean and the observations.  The square of the ACC represents the fraction of 

climatological variance (uncertainty) explained by the forecast, where a score of 1 
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indicates that it provides perfect information and a score of zero means the forecast 

contains no information.  For the purposes of prototyping, the ACC was used here to 

quantify the skill of the forecasts by calculating the correlation between the 

reforecasts and observations (or forcing data), as follows (Murphy & Epstein, 1989): 

ܥܥܣ ൌ ∑௫௬ି∑௫∑௬

ඥ∑௫మିሺ∑௫ሻమିඥ∑௬మିሺ∑௬ሻమ
  Eq. 2-1 

where x is CFSv2 or NMME reforecast anomalies for each watershed and lead of 

temperature or precipitation and y is NLDAS anomalies for the same variable, 

watershed and lead, n is the number of forecasts, and ACC  is the anomaly correlation 

coefficient for the reforecasts and forcing data.  Anomalies for CFSv2, NMME, and 

NLDAS for S2S time scales were calculated using the climatologies described in the 

previous section.   

We also calculate other standard deterministic forecast quality metrics that 

are familiar to water managers, including forecast bias (i.e. the mean error as a 

percent of observations for precipitation and as a difference from observations for 

temperature), and mean absolute error, and we plan to assess probabilistic metrics 

in the future.  Forecast ‘skill’ is a multi-faceted concept, generally reflecting the 

quality of the forecast as described by various dimensions of forecast performance, 

such as reliability, discrimination, resolution, error, accuracy, correlation and bias.  

For the demonstration purposes of this paper, we discuss only the ACC and bias.    

2.5 Results 

The raw and bias-corrected real-time climate forecast products being staged on the 

website are complemented by maps showing skill metrics for different products, 
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seasons and lead times, which we summarize here.  The anomaly correlation 

coefficient for CFSv2 bi-weekly forecasts (Error! Reference source not found.), 

shows that temperature has high skill for the first two bi-weekly periods, especially 

for weeks 1-2. The skill tends to be lower in the mid to south western half of the 

CONUS domain.  By weeks 3-4, there are areas with skill exceeding a ‘usability’ 

threshold used by the CPC of ACC = 0.3 along the Atlantic and Gulf coasts but the 

rest of the domain has very low to no skill (O’Lenic et al., 2008).  Precipitation 

forecasts have high skill (reaching values of 0.72) in the first bi-weekly period, 

especially on the west coast.  Skill drops off significantly for weeks 2-3, especially in 

the central and eastern CONUS domain, and by weeks 3-4, the forecast has negligible 

skill. 

The climate forecast skill varies considerably depending on the season.  Error! 

Reference source not found. depicts CFSv2 weeks 2-3 anomaly correlation of 

precipitation forecast for four seasons.  The west coast, especially watersheds in 

southern Arizona, and the Midwestern US have the highest skill in the December-

February (DJF) season.  In March-May (MAM) season, the skill is not as high, but 

the spatial pattern doesn’t vary significantly compared to DJF.  During the June-

August (JJA) period, the pattern shifts and the watersheds in Nevada and Idaho have 

the highest skill while the remainder of the CONUS domain has low skill.  In the 

September-November (SON) period, the region of highest skill shifts to the 

southeastern US.  The maps in Error! Reference source not found. display 

different patterns of forecast skill compared to the corresponding map in Error! 
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Reference source not found..  This seasonal dependence on skill over the CONUS 

domain is apparent for all other leads and variables (not shown here).  

 

Figure 2-3: CFSv2 bi-weekly anomaly correlation. CFSv2 anomaly correlation at bi-weekly 
time step for temperature and precipitation at a hydrologic unit code 4 (HUC-4) watershed scale.  

 

Figure 2-4: Seasonal CFSv2 anomaly correlation. Anomaly correlation of CFSv2 2-3 week 
precipitation reforecast for four seasons.  Season acronyms contain the first letter of each month 
included in the season. 

NMME monthly anomaly correlation for mean temperature and precipitation 

are shown in Error! Reference source not found..  There are three leads shown 

in the figure, which are labeled as months. Month 1 refers to the forecast initialization 
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month, or a lead 0, e.g. for a January NMME forecast, Month 1 would refer to 

January, Month 2 would be February, and Month 3 would be March.  As has been 

found by other authors (Becker & van den Dool, 2016; Slater et al., 2016), 

temperature forecasts exhibit skill in month 1, especially in the north central US, but 

this skill drops off significantly in months 2 and 3. Precipitation has some skill in 

watersheds within California and the south east, but other areas of CONUS display 

low skill.  The anomaly correlation of precipitation forecasts in months 2 and 3 are 

much lower.  These trends in skill are highly seasonally dependent; therefore, there 

may be skill in months 2 and 3 for specific seasons not observed in the annual figures.  

 

Figure 2-5: Monthly NMME anomaly correlation. NMME anomaly correlation of monthly time 
periods for temperature and precipitation at a HUC-4 watershed scale.  

A basic skill assessment is presented, but additional analysis into the sources 

of predictability were not a component of this work. Many other studies have focused 

of predictability with CFSv2 and NMME.  Sources of predictability in the S2S 

timescale is dependent on the season and lead. Infanti and Kirkman (2016) explored 

the relationship between ENSO and NMME forecasts of North American 

precipitation and temperature forecasts. Dirmeyer and Halder (2016) evaluated the 
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sensitivity, variability, and memory of land surface states in CFSv2 and found that 

soil moisture memory was important in improving forecast skill during spring and 

summer.  

Quantile mapping was used to remove bias from CFSv2 forecasts.  The bias 

prior to quantile mapping is shown in Error! Reference source not found..  

Temperature bias is positive, meaning CFSv2 is over-forecasting temperature 

compared to NLDAS.  The warm bias in temperature appears to grow with lead time. 

Climate model forecasts are known to drift (i.e. climatologies changing with lead 

time). To address any drift in bias, the quantile mapping adjustment is performed as 

a function of lead time.  Precipitation exhibits the opposite trend and is mainly under-

forecasted, except in a couple watersheds on the west coast and Texas. The spatial 

patterns in bias do not vary greatly between time periods.  Figure 2-7 illustrates the 

result of bias-correction and shows that quantile mapping successfully removed bias 

from the CFSv2 reforecasts.   

 

Figure 2-6: CFSv2 bi-weekly bias. Bias of raw CFSv2 temperature (degrees Centigrade) and 
precipitation rate (mm/d) for each bi-weekly period. 
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Figure 2-7: Quantile mapped CFSv2 bi-weekly bias. Bias of quantile mapped (QM) CFSv2 bi-
weekly forecasts of temperature (degrees Centigrade) and precipitation rate (mm/d) over the 14-day 
period. 

Bias-correction removes the average bias but does not necessarily improve the 

forecast skill.  While some studies have shown that bias-correction can slightly 

degrade correlation skill (e.g. Mendoza et al., 2017), here the sample of forecasts used 

in training the bias-correction does not have this impact.  The CFSv2 anomaly 

correlation skill shown in Figure 2-8 shows a similar skill when compared to the raw 

anomaly correlation shown in Figure 2-3. A watershed specific example of the QM 

results is shown in Figure 2-9 for the week 2-3 temperature forecast from raw CFSv2 

and the QM approach for the Rio Grande-Amistad watershed in southern Texas.  The 

top pair of 1:1 plots show the modeled versus observed forecasts for the raw and QM 

methods. The raw CFSv2 forecast shows systematic bias as it slightly under-forecasts 

temperature.  The QM approach illustrates the removal of bias as the forecast shift 

higher and overlaps the 1:1 line.  This can also be seen in the time series plot of 

temperature forecasts and observations for 2000.  The QM forecast shifts the forecast 

up towards the observed temperature throughout the entire year.  Other watersheds 

show similar results of removal of systematic bias where present.   
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Figure 2-8: Quantile mappedCFSv2 bi-weekly anomaly correlation. CFSv2 anomaly 
correlation at bi-weekly time step for temperature and precipitation at a HUC-4 watershed scale. 

 
 

Figure 2-9: Example of raw and quantile mapped CFSv2 forecasts. Comparison of Rio 
Grande-Amistad watershed 2-3 week temperature forecast from CFSv2 and QM. The pair of figures 
top display the modeled vs. observed forecast for the full time period (1999-2010).  The time series 
plot at the bottom displays the forecast for CFSv2 and QM in comparison to North American Land 
Data Assimilation System (NLDAS) for 2000.  
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In addition to the issues with capturing extreme events, QM can alter the 

modeled covariance of temperature and precipitation by QM treating them 

independently.  In downscaling of daily weather data, it is common (and important) 

to preserve interrelationships between precipitation, temperature, and other fields 

because there are strong observable relationships linked by synoptic atmospheric 

dynamics.  For instance, wet/precipitating days typically have a compressed 

temperature range versus clear days.  At the sub-seasonal timescale, this covariance 

is typically weaker.  The impact of QM on cross-correlations between precipitation 

and temperature for sub-seasonal bi-weekly CFSv2 predictands is discussed further 

in Appendix 8.1.  

All results shown above are displayed on the S2S Climate Outlooks for 

Watersheds web-based tool.  The results from the verification assessment on an 

annual and seasonal basis are displayed in tabs for each climate model. Real-time 

climate forecasts are available as shown in Figure 2-10.  The tool allows the user to 

choose the lead, variable, and forecast displayed.  They can hover over watersheds to 

view the forecasted anomaly and choose to view the raw or the bias-corrected output. 

This allows users to view their specific watersheds forecast as well as verification. 
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Figure 2-10: S2S Climate Outlooks for Watersheds web-based tool. Sub-seasonal to seasonal 
(S2S) Climate Outlooks for Watersheds web-based tool allows users to look at specific watersheds 
forecasts and verification metrics. 

2.6 Discussion & Conclusion 

The new watershed-scale S2S Climate Outlooks for Watersheds web-based tool offers 

a new medium for water managers to use climate products.  Many academic studies 

and reports from within the industry indicate that S2S forecasts are obtained and 

assessed qualitatively by water managers, adding to situational awareness, but are 

less widely used quantitatively, as data streams input into water management 

decision support tools and models.  Water managers cite perceived poor forecast 

reliability and skill, mismatched temporal or spatial scales, and lack of resources to 

ingest forecasts  (Bolson et al., 2013; Rayner et al., 2005).  

Through this new watershed-scale climate product, we aim to overcome several 

of these hurdles.  The skill and accuracy of climate model forecasts for individual 
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watersheds has been explored using an initial, small set of forecast metrics, and these 

results are presented in an accessible format.  Water managers can use the web-based 

tool to view real-time forecasts of precipitation and temperature at a bi-weekly, 

monthly, or seasonal outlook, and work is underway to provide data access to the 

watershed forecasts (and hindcasts) in accessible formats (both text and NetCDF).  

These products aim to bridge the gap of accessibility, spatial and temporal scale, and 

perception of unusable skill by allowing water managers to look at the climate 

forecast for their region as well as the skill of the forecast itself based on an analysis 

of the model reforecast. 

We presented the new S2S Climate Outlooks web-tool to water managers at 

agencies across the US.  The site was presented to Southern Nevada Water Authority 

(SNWA) in early 2017.  SNWA is a wholesale water provider in the Las Vegas region 

who use reservoir levels at Lake Powell and Lake Mead to plan for their future water 

management needs.  They were interested in how this product could be used to better 

inform streamflow forecasts in the Colorado River Basin.   

Reservoir operators in Reclamation found this tool informative and useful.  

Operators use forecasts of streamflow quantity and timing to project operations of 

their reservoirs, and operators in the western US stated that this tool could be useful 

for timing reservoir releases based on projected temperatures during the snowmelt 

runoff season.  Examples of this operation include the Upper Colorado River basin, 

where releases from Flaming Gorge Reservoir are timed to meet the natural peak in 

runoff from the Yampa River.  Temperature and precipitation S2S forecasts could 



 32

also be useful for determining reservoir releases when attempting to meet storage 

targets in early summer when reservoirs are being filled.  Reservoir system operators, 

however, expressed an interest in a wider variety of forecast products, including time 

series of past forecasts showing their evolution and agreement with observations, and 

forecasts of full precipitation and temperature fields rather than forecast anomalies. 

A California-based watershed manager requested the addition of finer scale 

watershed breakdowns for the climate forecasts.  This work would benefit from a 

structured analysis of user utility but that focus was not part of this work, which was 

to demonstrate the concept of watershed-based climate forecast products. Formal 

surveys could be conducted with a diverse audience of public and private stakeholders 

to provide feedback and inform future tool development.   

The S2S Climate Outlooks web-tool presents a skill assessment of raw CFSv2 

forecasts.  We show that CFSv2 temperature reforecasts exhibit significant 

correlation skill in the first two bi-weekly periods, especially in weeks 1-2, while 

moderate in weeks 2-3, followed by limited skill in weeks 3-4.  CFSv2 precipitation 

forecast show skill over the CONUS domain in weeks 1-2 and regionally in weeks 2-

3.  In addition to being lead dependent, skill varies seasonally as exemplified in the 

analysis of CFSv2 precipitation reforecast of weeks 2-3.  NMME reforecasts displays 

skill in Month 1, especially when predicting temperature.  Months 2 and 3 show lower 

skill, especially for precipitation.   

In general, one expects that as skill in a forecast improves, the forecast has 

greater utility, but the actual utility for decision making varies greatly among users 
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due to a range of factors.  These include the resilience of their system to forecast 

busts, the characteristics of their penalty functions for forecast errors, their 

sensitivity to forecast accuracy in different parts of the forecast distribution (e.g. high 

or low flows), among others. Thus, we can only suggest utility based on climate 

forecast skill.  For example, a water manager on the west coast can have reasonable 

confidence in the spring (MAM) 2-3 week CFSv2 precipitation forecast, but a water 

manager in Upper Colorado should not have high confidence in the spring 2-3 week 

precipitation forecast. Similarly, winter (DJF) NMME forecasts of Month 2 

temperature for the Pacific Northwest are skillful but show limited skill during the 

summer. 

The raw model forecasts also contain substantial biases, and we find that the 

application of quantile mapping to post-process the CFSv2 successfully removed bias 

from CFSv2 bi-weekly reforecasts for precipitation and temperature.  Quantile 

mapping removes systematic bias between the forecasts and observations but does 

not improve skill or alter forecast reliability directly as a forecast calibration method 

might.  To improve the skill of the climate forecasts, further work is underway to 

develop statistical post-processing procedures on a watershed by watershed scale that 

harness larger scale circulation patterns, variability and potential predictability.    

At present, this paper describes the first steps toward addressing hurdles to 

widespread use of S2S prediction in water management applications.  The S2S 

Climate Outlooks for Watersheds tool presented here enhances the quality, 
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specificity, and accessibility of S2S climate prediction. With wider use of the web-

based tool, we intend to improve the product based on user feedback.   
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3 CHAPTER III: Enhancing Sub-seasonal Climate Forecast 
Skill through Post-processing at the Scales of Water 

Management 
 

3.1 Abstract 

Sub-seasonal to seasonal (S2S) climate forecasting has become a central component 

of climate services aimed at improving water management.  In some cases, 

operational S2S climate predictions are translated into inputs for follow-on analyses 

or models, whereas the S2S predictions on their own may provide for qualitative 

situational awareness.  At the scales of water management, however, S2S climate 

forecasts often suffer from systematic biases, and low skill and reliability.  We 

assess the potential to improve S2S forecast skill and salience for watershed 

applications through the use of post-processing to harness additional information 

from the climate model forecast outputs.  To this end, we use a components-based 

technique – Partial Least Squares Regression (PLSR) – to improve the skill of bi-

weekly temperature and precipitation forecasts from the Climate Forecast System 

version 2 (CFSv2). The PLSR method forms predictor components based on a cross-

validated analysis of hindcasts from CFSv2 climate and land surface fields, and the 

results are benchmarked against raw CFSv2 forecasts, remapped to intermediate-

scale watershed areas.  We find that post-processing affords marginal to moderate 

gains in skill in many watersheds, raising climate forecast skill above a usability 

threshold over the four seasons analyzed.  In other locations, however, post-

processing fails to improve skill, particularly for extreme events, and can lead to 

unreliably narrow forecast ranges. This work presents evidence that statistical post-



 36

processing climate forecast system outputs has potential to improve forecast skill, 

suggesting that a more comprehensive study of approaches for post-processing 

climate forecasts may be fruitful. 

3.2 Introduction & Background 

Sub-seasonal to seasonal (S2S) climate forecast skill has received greater attention 

in recent years due to the potential applications of climate forecasts. Many sectors 

including public health, disaster preparedness, energy, agriculture, and water 

management would benefit by applying S2S climate forecasts to their specific needs 

(White et al., 2017). In the public health sector, S2S forecasts could help predict the 

probability of floods and droughts at longer leads, which in turn could inform 

disaster responses and warnings for extreme events.  Skillful forecasts would help 

the energy sector anticipate energy demands and could inform the production of 

renewable energy sources, such as wind or solar power. Seasonal outlooks are 

already being used in the agricultural sector to make operational decisions on crop 

management, planting, irrigation scheduling, fertilizer application, and commodity 

pricing.  

In the water management sector, more skillful forecasts of precipitation and 

temperature could improve streamflow forecasts informing projections of runoff 

volume, water levels in rivers and reservoirs, and water supply availability (Raff et 

al., 2013). Academic studies have indicated that water managers are reluctant to 

use climate forecasts due to perceived poor forecast skill, inadequate or misaligned 

temporal or spatial scale, institutional hurdles such as mandated decision 
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workflows, organizational restraints, and risk aversion (Callahan et al., 1999; 

Kirchhoff et al., 2013; Rayner et al., 2005; White et al., 2017). Baker et al. (2019) 

sought to address some of these hurdles by translating and bias-correcting S2S 

climate forecasts to a watershed spatial unit -- United States Geological Survey 

(USGS) hydrologic unit code 4 (HUC-4) watersheds -- for bi-weekly, monthly, and 

seasonal prediction periods. This aggregated forecast product was made available in 

real-time on the S2S Climate Outlooks for Watersheds web-based tool 

(http://hydro.rap.ucar.edu/s2s/). Baker et al. (2019) bias-correction to watershed 

climatologies improved forecast relevance through tailoring forecast outputs, and 

reduced bias, but did not improve S2S forecast performance for skill metrics other 

than bias (e.g., correlation).   

The increased demand from applications sectors for S2S climate forecast 

information motivates an exploration of the potential for multi-variate post-

processing methods to increase the skill of forecasts. The S2S timescale (2 weeks to 

2 months) is a challenging period for climate forecast skill because it falls between 

shorter and longer, more aggregated timescales when weather forecasts and 

seasonal climate projections, respectively, exhibit skill (F. Vitart et al., 2016).  In 

weather forecasting, skill comes from initial atmospheric and land surface 

conditions that tend to have less influence with increasing lead time. Seasonal 

prediction is influenced by land and ocean conditions such as sea surface 

temperature (SST) and to a lesser extent soil moisture, and their influence via large 

scale ocean-climate teleconnection patterns such as El Nino Southern Oscillation 
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(ENSO) and North Atlantic Oscillation (NAO). The S2S timescale falls in the gap 

between when initial conditions dominate forecast skill and when coupled climate 

system dynamics provide sources of atmospheric predictability.  

Many studies have investigated the predictability of this time frame, with an 

increasing recent emphasis on the 3-4 week period.  DelSole et al. (2017) explored 

the predictability of raw CFSv2 precipitation and temperature forecasts during 

January and July, and found that winter exhibited more predictability than 

summer and that predictability was linked to large scale climate features such as 

ENSO and the Madden Julian Oscillation (MJO).  This analysis suggests that 

precipitation and temperature alone exhibit some predictability, but other climate 

and land surface fields (e.g. SST) could be used to improve week 3-4 forecasts.   

There are several strategies to improve S2S climate prediction skill. One 

approach to improving climate forecast skill is through enhancements to the 

coupled dynamical climate or earth system models used to make the climate 

forecasts.  This effort is strongly and steadily pursued by the centers that maintain 

and develop these large-scale dynamical models. For instance, NOAA’s operational 

dynamical model, Climate Forecast System version 2 (CFSv2) improved upon its 

predecessor, CFSv1, through upgrades to nearly all aspects of the prediction 

system, including to data assimilation systems, the models’ physics and 

parameterizations, dynamical core, resolution and coupling strategies, which 

resulted in major improvements to forecast skill (Saha et al., 2014).  
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A second strategy is to improve climate forecast skill through statistical post-

processing of dynamical forecast model outputs. Post-processing is applied through 

statistically translating raw, large scale dynamical model outputs to a regional scale 

that is useful for local water management applications (D. Maraun et al., 2010). 

Raw dynamical model output typically requires post-processing or downscaling (a 

form of post-processing) to be used in follow-on applications due to systematic 

biases, unreliable ensemble spread, and/or forecasts’ lack of skill. Common 

statistical post-processing methods include bias-correction, different forms of 

regression, and circulation pattern based approaches that harness information from 

large-scale climate predictors.  In weather prediction, techniques such as model 

output statistics (Glahn & Lowry, 1972)that regress atmospheric predictors from 

numerical weather prediction (NWP) onto surface meteorological variables have 

been common for decades.  More recently, Hamill and Whitaker (2006) popularized 

hindcast or reforecast datasets by showing analog techniques applied to 

precipitation could significantly raise the skill of NWP predictions.   

Downscaling methods are a class of dynamical or statistical post-processing 

techniques that translate model-based forecasts to a finer spatial resolution and 

reduce bias, and are often applied in the context of climate change projection or 

seasonal forecasting.  Tian et al. (2014) compared downscaling techniques for North 

American Multi-Model Ensemble (NMME) precipitation and temperature forecasts 

for Alabama, Georgia, and Florida.  They found that the locally weighted 

polynomial regression downscaling method showed higher skill than direct spatial 
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disaggregation and bias-correction for this region.  Many other studies of 

downscaling techniques have shown improvements to dynamical model outputs for 

other regions including the entire conterminous United States (CONUS) domain 

(Gutmann et al., 2014; Pablo A. Mendoza et al., 2014; Andrew W. Wood et al., 2004; 

Yoon, Mo, & Wood, 2011).  Zhao et al. (2017) clarifies the distinction between bias 

correction methods such as quantile-mapping (Andrew W. Wood et al., 2004), which 

does not consider forecast skill and merely applies a climatological  correction, and 

forecast calibration, which accounts for forecast skill by adjusting not only forecast 

mean but also forecast spread, in the case of an ensemble (Zhao et al., 2017). This 

study will go beyond the removal of bias and attempt to improve the skill of S2S 

forecasts, which is one of the main hurdles to widespread use by the water 

management community.  

Other statistical post-processing techniques employ additional information 

from large-scale climate fields to improve dynamical model forecasts.  Many studies 

have focused on improving seasonal precipitation and temperature forecasts 

(DelSole & Banerjee, 2016; Madadgar et al., 2016; Schepen, Wang, & Robertson, 

2014; Ward & Folland, 1991; Xing, Wang, & Yim, 2016).  Methods include analog-

year models, regression methods, and empirical orthogonal function (EOF) mode 

techniques. Madadgar et al. (2016) explored forecasting seasonal precipitation over 

the southwestern United States (US) using a hybrid statistical-dynamical approach. 

The statistical approach used an analog-year technique based on copula functions 

informed by teleconnections such as Pacific Decadal Oscillation (PDO), Multivariate 
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ENSO Index, and Atlantic Multi-decadal Oscillation, and generated weighted 

NMME model combinations that showed improvements over the raw NMME 

ensemble mean seasonal precipitation.   

Other studies have found value in using model-predicted SSTs instead of 

empirical climate indices or atmospheric fields.  Xing et al. (2016) used Partial 

Least- Squares Regression (PLSR; Wold, 1966) to predict the principal component 

(PC) of EOF modes to forecast China summer rainfall using winter SSTs and 

temperature over land. They found that the summer rainfall prediction skill of the 

PLSR-EOF method at 4-month lead was significantly higher compared to 1-month 

lead dynamical model prediction.  Another study by McIntosh et al. (2005), explored 

using PLSR to predict plant growth days using global SSTs. Plant growth days were 

predicted because they produced higher skill than rainfall predictions.   

In this study, we use PLSR to assess the potential to enhance model-based 

sub-seasonal forecasts of week 2-3 and week 3-4 precipitation and temperature at 

watershed scales.  PLSR has been used in a wide variety of fields, from the first 

applications in economics (Wold, 1966), to more recently being applied in the 

physical sciences to predict streamflow (Abudu, King J. Phillip, & Pagano Thomas 

C., 2010; P. A. Mendoza et al., 2017; Tootle, Singh, Piechota, & Farnham, 2007), 

teleconnections (Black et al., 2017), precipitation (Xing et al., 2016), and climate 

variability (Smoliak, Wallace, Lin, & Fu, 2015).  Many of these studies have used 

climate fields to develop empirical forecasts of a predictand of interest. Black et al. 

(2017) employed PLSR with predictor fields of outgoing longwave radiation (OLR), 
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300 hPa geopotential height, and 50 hPa geopotential height to predict Northern 

Hemisphere teleconnection patterns at leads of 3-4 weeks.  Tootle et al. (2007) 

showed improvements to long lead streamflow forecasts at gauges in the US using 

PLSR with previous spring and summer’s SSTs.  We apply PLSR with climate 

forecast model output fields from CFSv2 to predict surface precipitation and 

temperature.  

This paper is organized as follows.  We first outline the data and preliminary 

data processing, summarizing the precipitation and temperature watershed scale 

processing and CFSv2 predictor field processing.  We then describe the PLSR 

method, verification metrics, and predictor selection.  The Results section 

summarizes results on a seasonal scale and explore individual watershed results, 

followed by a discussion of the potential use and hurdles associated with the PLSR 

post-processing method.  

3.3 Data  

3.3.1 Precipitation and Temperature Analysis at Watershed Scales 

 The observational dataset used in this study is Phase 2 of the near real-time North 

American Land Data Assimilation System (NLDAS-2; Xia et al, 2012).  NLDAS-2 

data are available from 1979 to present at an hour temporal resolution at a 1/8th 

degree grid spacing. Precipitation and temperature fields from NLDAS-2 are 

spatially and temporally aggregated bi-weekly forecasts at a USGS HUC-4 

watershed scale over the CONUS domain. The process presented in Baker et al. 

(2019) is summarized here. NLDAS-2 fields are translated to a 1/2-degree grid and 
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temporally averaged to a daily time step. The fields are then areally aggregated to 

202 USGS HUC-4 watersheds through spatially conservative remapping, and then 

temporally averaged to bi-weekly periods (1-2 week, 2-3 week, and 3-4 week).  

3.3.2 CFSv2 Climate and Surface Variable Forecasts 

The dynamical climate forecasts used in this study are from the operational fully 

coupled atmosphere-ocean-land model CFSv2 (Saha et al., 2014). CFSv2 forecasts a 

variety of climate and land surface variables, including temperature and 

precipitation rate (here after referred to as precipitation), on a 6-hour time step 

with a ~100 km grid resolution.  Reforecasts are available from 1999 – 2010 with 4 

initializations each day at synoptic times 0000 UTC, 0006 UTC, 0012 UTC, and 

0018 UTC. Reforecasts lead times extend from 45 days to 9 months depending on 

the forecast initialization time.  The CFSv2 reforecasts are processed in the same 

fashion as the NLDAS-2 fields, yielding a CFSv2-based HUC-4 forecast dataset that 

can be directly compared to the NLDAS-2 analysis.  We pooled forecasts over a 2-

day period (creating 8-member ensembles) to smooth variability in forecast 

ensemble means from one day to the next. 

The CFSv2 climate fields identified as potential predictors are listed in Table 

3-1, which also outlines their spatial extent. These candidate predictors were chosen 

because they linked to North American atmospheric circulation and surface climate 

and many have been used in prior post-processing studies (e.g., Koster et al., 2017). 

The spatial extent for each predictor was prescribed based on each field’s 

region of influence on the CONUS domain, as informed by prior literature (Doblas-
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Reyes, García-Serrano, Lienert, Biescas, & Rodrigues, 2013).  For instance, Quan et 

al. (2006) identified tropical and subtropical west SSTs as a source of seasonal 

temperature and precipitation forecast skill for the CONUS domain.  Scaife et al. 

(2014) found sources of predictability for North American winters in large scale 

climate circulation patterns such as NAO, jet stream winds, and sea level pressures.   

The chosen fields in Table 3-1 were spatially aggregated to a 2-degree grid 

resolution to reduce computational processing time. The climate and land surface 

fields were then aggregated to bi-weekly periods and pooled into 8-member lagged 

ensembles as in the processing of precipitation and temperature forecasts on a 

watershed scale.  

Table 3-1. CFSv2 climate and surface predictor fields 

Predictor Name Variable Name Spatial Extent 

500 mb Geopotential Height hgt 25 N – 80 N x 100 E – 340 E 

Specific Humidity (2m) q2m 20 S – 70 N x 100 E – 340 E 

Surface Pressure prs 20 S – 30 N x 100 E – 340 E 

Sea Level Pressure slp 20 S – 30 N x 100 E – 340 E 

Precipitable Water pwt 20 S – 70 N x 100 E – 340 E 

Zonal Winds (850 mb) uwnd 0 N – 80 N x 100 E – 340 E 

Meridional Winds (850 mb) vwnd 0 N – 80 N x 100 E – 340 E 

Sea Surface Temperature sst 20 S – 80 N x 100 E – 360 E 

Outgoing Longwave Radiation olr 20 S – 20 N x 100 E – 340 E 

Surface Temperature tmp 5 N – 75 N x     5 E – 125 E 

Surface Precipitation Rate prt 5 N – 75 N x     5 E – 125 E 
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3.4 Methods 

3.4.1 Partial Least Squares Regression (PLSR) 

PLSR is a components-based regression method similar to principal component 

regression (PCR) and canonical correlation analysis (CCA) that combines features of 

principal component analysis (PCA) and multiple linear regression (Abdi, 2010). 

PLSR differs from PCR since it forms predictor components that are ordered to 

explain the maximum covariance of the predictors with a single-valued predictand, 

while PCR first uses principal component analysis (PCA) to form components that 

are ordered to maximize only the explained variance of the predictors, and then 

regresses the components against the predictand.  CCA is similar to PLSR in 

maximizing covariance between predictors and predictand, but allows for multi-

variate predictands.  PLSR provides for dimension reduction and avoids multi-

collinearity in analyses with large sets of predictors, such as gridded model fields.  

The PLSR method is detailed in papers such as Abdi et al. (2010) and 

Smoliak et al. (2010), and is summarized here. The predictors X (independent 

variables) can be decomposed through the following relationship:  

	ࢄ ൌ 	ࢆ்ࢆ				݄ݐ݅ݓ				்ࡼࢆ	 ൌ  Eq. 3-1 	ࡵ	

where Z is the latent vectors or scores (sometimes referred to as PLS (partial least 

squares) predictors), P is the loadings, and I is the identity vector. This equation is 

also used in PCA to decompose X. Similarly, the predictand Y (dependent variable) 

can be estimated through the relationship: 

ࢅ  	ൌ  Eq. 3-2 ்ࢆ	
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where ࢅ is the estimate of Y, B is the regression weights, and C is the weights of 

the predictand. This system of equations does not alone have enough information to 

be solved; additional conditions are required to solve for the latent vectors Z. To find 

the latent vectors, two sets of weights, w and c, are found that form linear 

combinations of X and Y that maximize the covariance: 

	ࢠ  ൌ 	࢛					݀݊ܽ					࢝ࢄ	 ൌ  Eq. 3-3 ࢉࢅ	

with the following constraints 

	ࢃ்࢝  ൌ 	ࢠ்ࢠ						,1	 ൌ 	்࢛ࢠ						݀݊ܽ						,1	 ൌ  Eq. 3-4 ݈ܽ݉݅ݔܽ݉	

This process is done iteratively. Once the first latent vector Z is solved such 

that zTu is maximized, it is subtracted from X and Y through an ordinary least 

squares regression to form residual matrices. The processes are then re-iterated to 

solve for the predictor from these partially deflated residual matrices. This process 

can be done using algorithms such as the SIMPLS (de Jong, 1993) and ensures that 

the latent vectors are mutually orthogonal components with respect to the 

predictors and predictand. 

Smoliak et al. (2015) investigated PLSR performance related to Northern 

Hemisphere air temperature variability. The predictand types tested were: (1) 

point-wise where the predictand is a single grid point or an area average, (2) PC-

wise where the target is a PC, and (3) field-wise where the predictand is an entire 

field. They found that point-wise and PC-wise PLSR methods explained more 

variance in the predictand with a lower number of field predictors and that all 

performed slightly better than PCR. In this analysis, we focus on the point-wise 
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predictand approach where we predict watershed aggregate NLDAS-2 precipitation 

and temperature at bi-weekly periods of 2-3 and 3-4 weeks. Both the predictors and 

predictands are normalized with a mean of 0 and a standard deviation of 1 to 

remove emphasis on predictor regions with relatively large amplitudes of variation.  

A separate PLSR analysis is performed for each watershed with one model 

variable for each month. PLSR models are trained using data from the adjacent 

months meaning each year of data has 3 months of data available to train the 

model. For example, the PLSR model for a forecast of January 1st for the week 2-3 

predictand would be trained using CFSv2 predictors and NLDAS-2 analyses from 

all forecast-analysis pairs in December, January, and February. The PLSR models 

are cross-validated by separating the 12-year reforecast period into training and 

verification periods – in this case, by dropping the year in which forecasts are 

verified from the training period.  The nominal training and test sample sizes are 

approximately 1001 (11*91) and 91, respectively, although the use of lagged 

ensembles reduces the effective sample sizes due to a lack of serial independence.  

The analysis utilizes the R statistical software package pls to perform PLSR, and 

separates the training and test periods outside the pls function so that test period 

data cannot influence the component training.  

3.4.2 Verification Metrics 

Verification metrics are applied to compare the performance of ensemble-mean 

precipitation and temperature forecasts from PLSR-based post-processing with raw 

watershed-scale forecasts from CFSv2. The main verification metric presented in 
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this paper is the anomaly correlation (ACC), which is commonly used in the climate 

prediction community to measure the association of forecasts and observations. A 

score of 1 indicates a perfect forecast and a score of 0 or below represents a forecast 

that is not skillful. Other deterministic forecast verification metrics calculated for 

this study include mean absolute error (MAE) and bias (not shown), metrics that 

are familiar to water managers. The metrics are calculated separately for all 

forecasts in each 3-month seasonal basis to show seasonal variability in forecast 

performance.  To translate forecasts and observations into anomalies, climatologies 

for each watershed, lead, and day of year were estimated based on averaging across 

a 15-day window (+/- 7 days from forecast date). 

3.4.3 CFSv2 Predictor Selection 

In operational S2S empirical prediction, there is discomfort with models that are 

entirely data-driven – i.e., in which predictors are free to vary in space and time – 

due to the risk that predictor selection is spuriously driven by training sample 

noise.  There is also the practical difficulty of linking changes over time or across 

space in prediction outcomes based on changes in predictors, if predictors change 

from initialization date to initialization date, or from location to location.  On the 

other hand, it is likely that dynamics do vary in space and by season, such that an 

optimal predictor set will also vary, and that data driven predictor selection can 

exploit varying sources of predictability if allowed to vary within a prediction 

approach.  Another choice that must be made along the purely prescriptive to data-

driven spectrum is the number of components or predictors to include.  Though 
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there exist quantitative metrics for predictor adoption(e.g., the Bayesian 

Information Criterion, BIC; Schwarz, 1978) or regularization approaches to reduce 

the risk of overfitting (e.g., least absolute shrinkage and selection operator, LASSO; 

Santosa and Symes, 1986), they are also vulnerable to sampling uncertainty.  In 

this study, we explore the variation in optimal predictor selection and the optimal 

number of predictor variables and components (based on cross-validated results), 

but we present conservative findings based on PLSR models that use only a limited 

number of generally strong predictors that are limited to two components.  The goal 

of the study is not to exhaustively optimize empirical post-processing models but to 

present a more general outlook for the potential enhancement of raw climate model 

forecast outputs at watershed scales through the addition of circulation-scale 

predictors in a post-processing framework.   

To investigate the relative importance of the eleven potential CFSv2 

predictors (see Table 3-1) for predicting precipitation and temperature, we test each 

predictor individually, performing cross-validated PLSR for each predictand, 

watershed, lead time, and forecast month. An example of predicting July weeks 2-3 

precipitation illustrates this predictor evaluation in Figure 3-1.  We calculate the 

ACC of the PLSR forecast and the raw CFSv2 forecast for each watershed, and 

identify forecasts for which a predictor could improve skill relative to the raw 

CFSv2. The raw CFSv2 ACC is shown if Figure 3-1a, and the increase in ACC using 

the best performing PLSR variable is shown by colored watersheds in Figure 1b. 

The maximum ACC (either raw CFSv2 or PLSR) is displayed in Figure 3-1c with 
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the predictor that resulted in the highest ACC in Figure 3-1d. If the raw watershed 

scale CFSv2 forecast was not outperformed by a PLSR model, the watershed was 

not colored in Figure 3-1b and Figure 3-1d.  

 
Figure 3-1. Visual analysis of predictor performance for forecasts of July weeks 2-3 
precipitation. The figure panels are (a) raw CFSv2 ACC, (b) increase in ACC from raw CFSv2 to 
PLSR with best predictor, (c) maximum ACC from either the raw CFSv2 forecast or PLSR, and (d) 
CFSv2 predictor corresponding to the highest ACC from PLSR; the predictor variables are 
summarized in Table 3-1. The gray watersheds did not show improvement for PLSR models for any 
predictors. 

In the July weeks 2-3 precipitation forecast example, the raw CFSv2 forecast 

performed poorly over most of the CONUS domain except in the four corners region 

and areas to the south. Since the raw skill is low, there is a potential for large 

increases in ACC for many watersheds. The highest increases in skill are found over 

regions with the lowest raw CFSv2 skill, for example in the Great Plains. The 

predictors resulting in the highest skill improvements were SST, precipitation, 

temperature, and meridional and zonal winds (Figure 3-1d). The best predictor varies 

from watershed to watershed, with limited regional consistency.  
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Hypothesizing that multiple predictors may perform better than the raw 

forecast and the ACC differences between predictors are driven to some extent by 

sample noise (despite the cross-validation), we assessed whether individual 

predictors may show more regional consistency. To do this, we calculate if the 

predictors are among the top three predictors (and have skill above the raw 

forecasts). If so, this would provide a rationale for more general, rather than 

watershed-specific predictors.  The top 3 predictors for the July weeks 2-3 

precipitation forecasts at each watershed are shown in Figure 3-2. Watersheds are 

displayed in color if the predictor ranks in the top 3 predictors for a watershed. The 

color is solid if it provides higher ACC than the raw CFSv2 forecast, and 

transparent if not. For this example, the best predictors measured by ACC are SST, 

followed by wind speeds (both meridional and zonal), outgoing longwave radiation 

(OLR), and temperature.  

Exploratory data analysis of the type described above was repeated for 

precipitation and temperature for all leads in January and July, confirming the lack 

of regional consistency for best-performing predictors. The results suggest that for 

almost any watershed of interest, there may be an optimal set of atmospheric 

predictors that can be harnessed to augment the skill of CFSv2 model output.  We 

opt here to assess whether a conservative baseline of using only the most frequently 

strong predictors (SST) in combination with the forecasted variable of interest 

(temperature or precipitation), is sufficient to enhance forecast skill in all study 

watersheds.  SST, temperature, and precipitation were among the best predictors in 
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all instances.  The focus on these three predictors also facilitates interpreting the 

validity of PLSR components in representing circulation dynamics that are 

consistent with variability in precipitation and temperature. 

 
Figure 3-2. Top 3 PLSR predictors for July week 2-3 precipitation. The watershed is colored 
if the mapped variable has the top 3 ACC the watershed. If the raw CFSv2 forecast has a higher 
ACC than the PLSR model, the color is not solid. 

3.5 Results 

3.5.1 Individual watershed example 

The results of post-processing with PLSR varied across watersheds, with some 

watersheds performing well using PLSR with predictors of SST and precipitation or 

temperature, while other watersheds performed poorly. Before turning to CONUS-
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wide results, we illustrate the performance of PLSR for a single watershed using 

scatterplots observations versus raw CFSv2 and PLSR forecasted values, and maps 

of PLSR loadings for each predictor and component. PLSR loadings provide insight 

into the regions of the predictor fields that explain the highest covariance between 

the predictors and the predictand, which in turn is indicative of the climate 

dynamics informing the PLSR forecast.  

We focus here on a watershed where PLSR performed well with the baseline 

predictors of SST and temperature. Figure 3-3 shows the raw CFSv2 (a) and PLSR 

(b) forecasts for June 3-4 week temperature in the Neosho & Verdigris watershed in 

southeastern Kansas. The raw CFSv2 forecast does not differentiate between hot 

and cold temperature event with an ACC of 0.03 and MAE of 1.4 degrees C over the 

bi-weekly period. The PLSR forecast reduces the forecast spread considerably and 

captures the extreme events much better. The ACC of the baseline PLSR model is 

0.54 and the MAE is 0.95 degrees C.  
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Figure 3-3. June 3-4 week temperature forecasts are plotted versus NLDAS-2 observations 
for the Neosho & Verdigris watershed in southeastern Kansas.  The raw CFSv2 forecast is 
shown in panel (a) and the PLSR forecast is shown in panel (b). 

The loadings for the PLSR model are shown in Figure 3-4 for SST and 

temperature. The first component loading patterns in the SST field has high 

magnitude loadings in the northern regions of the Pacific and Atlantic oceans. The 

first component of temperature has high loadings over most of the domain except in 

southwestern Texas and northeastern Mexico where there is an area of lower 

loadings. The second components for both predictors have lower magnitudes of 

loadings. For component 2, SST has highest loadings in equatorial regions and 

temperature has high loadings in the regions with lower loadings in component 1.  
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Figure 3-4. Mean cross-validated loadings for PLSR model of June week 3-4 temperature 
forecast for the Neosho & Verdigris watershed. The predictors used in the PSLR model are SST 
and temperature, which are represented as rows. The two components are shown as columns. The 
star represents the location of the watershed in the domain. 

For a second example, we look at a watershed where PLSR did not perform 

well with the baseline predictors of SST and precipitation. Figure 3-5 shows the raw 

CFSv2 (a) and PLSR (b) forecasts for July 3-4 week precipitation in the Upper Pecos 

watershed in New Mexico. Similar to the first example, the raw CFSv2 forecast has 

difficulties differentiating between large and small precipitation event with an ACC 

of -0.01 and MAE of 1.15 mm/d over the bi-weekly period. The baseline PLSR 

forecast does not perform much better than the raw CFSv2 forecast. PLSR reduces 

the forecast spread considerably, but still does not differentiate well between large 

and small precipitation events. The ACC of the baseline PLSR model is 0.11 and the 

MAE is 0.98 mm/d.  

We explored other PLSR predictors to determine if other predictors would 

perform better for forecasting July precipitation in the Upper Pecos watershed or if 

there was a lack predictability in this time period and watershed. We found that 
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PLSR with zonal and meridional winds and precipitation as predictors performed 

much better than the baseline PLSR predictors. The alternative PLSR model 

forecast is plotted against NLDAS observations in Figure 3-5(c). The alternative 

PLSR forecast performs much better than the raw CFSv2 and the baseline PLSR 

forecasts. The ACC was increased to 0.36 and the MAE decreased to 0.90 mm/d.  

The alternative PLSR forecast has a larger spread than the baseline forecast but 

still does not capture the extremely large events well.  

 

Figure 3-5: July 3-4 week temperature forecasts are plotted versus NLDAS-2 observations 
for the Upper Pecos watershed.  The raw CFSv2 forecast is shown in panel (a), the PLSR forecast 
with baseline predictors is shown in panel (b), and the PLSR forecast with alternative predictors is in 
panel (c).  

The loadings for the alternative PLSR model are shown in Figure 3-6 for 

zonal winds, meridional winds and precipitation. The first component loading 

patterns in the wind fields have many distinct areas of high magnitude loadings, 

more than any other predictor analyzed. Regions of the wind fields in the Pacific 

Ocean show dipole patterns where very low and high loadings right next to each 

other. For zonal winds, the high loading is over the Aleutian Islands directly north 
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of a low loading in the central Pacific. For the meridional winds, the high 

magnitude loadings are east and west of each other in the central Pacific. There are 

also regions of high magnitude loadings over North America. The wind circulation 

patterns in the tropical Pacific could be affected by MJO which is known to affect 

summer precipitation in the southwestern US during the North American Monsoon 

(Lorenz & Hartmann, 2006).  The wind loadings for component 2 are less distinct 

and don’t have as large of magnitude loadings compared to the first component. The 

precipitation loadings show a region of high loadings over the watershed and over 

the northwestern CONUS domain. The second precipitation component does not 

have as high of loadings as the first component.  

 
Figure 3-6: Mean cross-validated loadings for PLSR model of July week 3-4 precipitation 
forecast for the Upper Pecos watershed. The predictors used in the alternative PSLR model are 
zonal winds, meridional winds and precipitation which are represented as rows and the two 
components are shown as columns.  

These watershed examples show two different examples of PLSR 

performance. The Neosho & Verdigris watershed performed well with baseline 
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PLSR predictors when forecasting week 3-4 January temperature. The second 

watershed explored, the Upper Pecos, did not perform well with baseline predictors 

when forecasting week 3-4 July precipitation. Through further analysis we showed 

that better forecasts could be made with alternative predictors. The improvements 

in ACC in both examples were modest, but enough to find some usability in the 

forecast. There could still be improvements in forecasting extreme events. 

3.5.2 Seasonal CONUS domain analysis 

The PLSR post-processing approach was applied to all CONUS HUC-4 watersheds 

for bi-weekly periods of weeks 2-3 and 3-4. The PLSR model predictors are 

concurrent gridded SST and either precipitation or temperature, depending which is 

the predictand. Verification metrics were calculated for raw CFSv2 and PLSR 

forecast on a seasonal basis for DJF, MAM, JJA, and SON, respectively Dec-Jan-

Feb, Mar-Apr-May, Jun-Jul-Aug, and Sept-Oct-Nov.  

Figure 3-7 shows the ACC for weeks 3-4 temperature forecasts. The raw 

CFSv2 ACC shown in the left column varies seasonally and spatially over the 

CONUS domain. The highest raw CFSv2 skill occurs during DJF in the eastern half 

of the US, while the western US doesn’t exhibit skill. The lowest raw CFSv2 skill 

for 3-4 week temperature forecast is during MAM in the southwest and Rocky 

Mountains regions. JJA and SON show mostly lower forecast skill over the entire 

domain, except for in JJA where there is skill present in eastern Texas and 

Louisiana.  
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The far right column in Figure 3-7 shows the improvements in ACC through 

post-processing. The largest increases in ACC occur during MAM in watersheds in 

Utah and Colorado and during SON in Florida. The center column in Figure 3-7 

shows the new ACC with the best model, either raw CFSv2 or PLSR, whichever 

exhibit the maximum ACC. This column shows that PLSR increases the ACC to 

above 0.3 in some cases, which is a potential usability threshold used by the 

Climate Prediction Center (O’Lenic et al., 2008). This illustrates that post-

processing can increase skill enough to allow watersheds to exhibit usable skill 

where there was not any skill with the raw CFSv2 forecast.  In general, however, it 

must be acknowledged that weeks 3-4 precipitation forecast skill from CFSv2 is not 

encouraging.  

The MAE for the weeks 3-4 temperature forecasts is shown in Figure 3-8. The 

best models for each watersheds are based on the maximum ACC and are the same 

for the MAE and ACC analyses. The raw CFSv2 MAE is highest in DJF in the 

northern US where MAE can be upwards of 4 degrees C for the 2-week mean 

temperature. The lowest MAE is during JJA in watersheds along the east coast. We 

note that the seasonal and spatial patterns of the best and worst performing 

watersheds according to MAE do not correspond to the performance of these 

watersheds with respect to ACC. For example, the lowest skill in the raw CFSv2 

forecast (Figure 3-7) during MAM does not correspond to the highest regions of 

MAE during MAM. Biases in the precipitation a region receives during the season 
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could affect the relative magnitudes of MAE without similarly impacting 

correlation.  

The reduction in MAE through post-processing can be seen in the right 

column of Figure 3-8. The largest improvements in MAE occur along the west coast, 

especially in the Sierra Nevada mountain range in California during JJA 

illustrating that CFSv2 may not be accurately accounting for mountains in this 

region. This also corresponds to an increase in ACC (Figure 3-7), though it was not 

as drastic as the decrease in MAE. Most watersheds only show decreases in MAE of 

0 to 1 degrees C for the 2-week mean temperature.  When comparing the reduction 

in bias with PLSR to that of quantile mapping in Baker et al. (2019), we see less 

reduction in bias with PSLR.  

For the ACC and MAE analysis for the 2-3 week temperature forecasts (not 

shown), the raw CFSv2 forecasts perform equal to or better than post-processed 

PLSR results in most watersheds. This is because the 2-3 week raw CFSv2 

temperature skill is fairly high over the CONUS domain for all seasons.   
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Figure 3-7. ACC results for 3-4 week temperature forecasts on a seasonal basis. The raw 
CFSv2 ACC is presented in the left column, the best model (either PLSR or raw CFSv2) ACC is 
shown in the center column, and the increase in ACC from PLSR is shown in the right column. The 
watersheds that are not colored (visible as gray) in the right column are where the raw CFSv2 
forecast performed better than the PLSR forecast.   
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Figure 3-8. MAE results for 3-4 week temperature forecasts on a seasonal basis. The raw 
CFSv2 MAE is presented in the left column, the best model (either PLSR or raw CFSv2) MAE is 
shown in the center column, and the increase in MAE from PLSR is shown in the right column. The 
watersheds that are not colored (visible as gray) in the right column are where the raw CFSv2 
forecast performed better than the PLSR forecast.   
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The seasonal ACC results for the 2-3 week precipitation forecasts (Figure 3-9) 

show that the raw CFSv2 forecasts have usable skill in watersheds in the western 

US and in the Great Lakes region during DJF. Lower skill values are shown in 

Texas, Louisiana, Alabama, and Kansas during MAM. During JJA, many 

watersheds show lower skill except a few watersheds in southern Idaho, northern 

Utah, and Nevada, which show areas with skill above 0.35. The increase in ACC 

with PLSR as shown by the right column of Figure 3-9 varies with season and 

watershed location. All seasons have watersheds that exhibit skill increases 

through post-processing. There is a consistent increase in ACC in the northeastern 

US over most seasons, with the largest increase during JJA. Watersheds in the 

north central US also show increases in skill over most seasons. In some of these 

watersheds in the north central US, the ACC increase is high enough to have usable 

skill with the post-processed PLSR models.  

The spatial pattern of watersheds that show an increase in skill with PLSR 

for precipitation are quite different than that of the temperature results. The 

watersheds highlighted in the right column in Figure 3-9 are more spread out with 

more watersheds highlighted alone. For the temperature results in the right column 

of Figure 3-7, there was more regional consistency to where PLSR performed well. 

This could indicate that the predictors in component form, such as precipitation, 

may be poor predictors for modeling precipitation, which is consistent with the fact 

that the raw watershed precipitation forecast performs poorly.  
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The MAE for the 2-3 week precipitation forecasts are shown in Figure 3-10. 

The raw CFSv2 forecasts has the largest MAE along the west coast during SON and 

DJF, probably due to the prediction errors of large rain events. The lowest MAE is 

in the western half of the US for most seasons. The decrease in MAE, as shown in 

the right column, is relatively uniform over most watersheds. The post-processed 

PLSR models show some watersheds where the MAE increases slightly. This occurs 

in a few watersheds during JJA and SON. Overall, this increase in MAE is small (< 

0.25 mm/d) and occurs in watersheds where the ACC increase is relatively large 

(around 0.1). 

 

Figure 3-9. ACC results for 2-3 week precipitation forecasts on a seasonal basis. The format 
is the same as Figure 3-7.  
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Figure 3-10. MAE results for 2-3 week precipitation forecasts on a seasonal basis. The 
format is the same as Figure 3-8. 
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The ACC for the 3-4 week precipitation forecasts are shown in Figure 3-11. 

The raw CFSv2 ACC is very low with little to no skill for the 3-4 week precipitation 

forecasts for most watersheds and seasons. The raw CFSv2 forecasts are lowest 

during MAM and JJA over the CONUS domain. The post-processed PLSR ACC is 

higher than the raw CFSv2 forecast for many watersheds and seasons, especially 

during JJA. The post-processed results do show increases in skill exceeding 0.3 in 

some watersheds. Specifically, a few watersheds in Texas, New Mexico, and North 

Dakota during DJF show large increases in ACC where watershed PLSR forecasts 

become usable. Other watersheds show large increases in skill, but very few have 

an ACC increase to a usable level.  

The MAE for the 3-4 week precipitation forecasts is shown in Figure 3-12. 

The raw CFSv2 MAE for the 3-4 precipitation forecast is similar to the 2-3 week 

precipitation forecast. The magnitudes and spatial patterns of the error are 

comparable with some watersheds showing lower MAE in the 3-4 week time period. 

The decrease in MAE is relatively small for most watersheds that used the post-

processed PLSR model for their forecast. The largest decrease in MAE are during 

DJF and MAM since these are the seasons that receive higher precipitation for most 

of the CONUS domain. There are a couple of watersheds, similar to those in the 2-3 

week forecasts, which show a small increase in MAE.  
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Figure 3-11. ACC results for 3-4 week precipitation forecasts on a seasonal basis. The 
format is the same as Figure 3-7. 
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Figure 3-12. MAE results for 3-4 week precipitation forecasts on a seasonal basis. The 
format is the same as Figure 3-8. 

3.6 Discussion and Conclusions 

The post-processing of watershed scale sub-seasonal climate forecasts via PLSR 

demonstrates that there are opportunities to improve sub-seasonal forecast skill. 

The sub-seasonal forecast time period has received increasing attention in both the 

climate forecast and applications communities (U.S. Bureau of Reclamation, 2019).  

Both national project such as the NOAA S2S Task Force (Mariotti et al., 2018) and 

international efforts such as the S2S prediction project (Vitart et al., 2016; Vitart & 

Robertson, 2018) are working to improve forecast skill through enhancements of 

dynamical models and though techniques such as improved data assimilation, as 

well as through statistical post-processing of dynamical model output. Some of these 
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studies have used component based empirical regression methods to predict 

seasonal rainfall, but none have detailed an effort to enhance sub-seasonal bi-

weekly climate forecasts from dynamical model forecasts by post-processing to 

watershed scales.  

This study’s objective was to assess the potential of post-processing in this 

sectoral context.  Improvements to climate forecast skill would allow for more 

confidence and potential use by stakeholders. The water management sector has 

long demonstrated interest in climate forecasts, but in key applications of economic 

value such as operational streamflow prediction, the use of climate forecast 

information remains relatively limited, relying for instance on ENSO-based 

empirical conditioning of streamflow expectations.  Our focus on the skill of current 

operational sub-seasonal climate forecasts on a watershed scale is intended to 

familiarize potential stakeholders with their raw performance as well as provided 

an indication of the potential for post-processing to enhance this performance.  

Baker et al. (2019) earlier presented a real-time demonstration of climate forecasts 

on watershed scales through an operational S2S Climate Outlooks for Watersheds 

web-based platform. Improvements to climate forecasts on such scales would help 

water managers improve decisions regarding reservoir operations, water allocation, 

flood control, hydropower generation, water treatment, and in-stream supported 

releases (Bolson et al., 2013). 

Post-processing of watershed scale bi-weekly climate forecasts showed that 

even with a conservative incorporation of additional climate predictors, forecast 
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skill improvements are possible in many watersheds. The baseline predictors of 

forecasted CFSv2 SST and precipitation or temperature fields performed well in 

many, but not the majority, of watershed in the CONUS domain. We showed that 

using these predictors improved the ACC and MAE in some watersheds and 

seasons. PLSR contributed to large enough skill increases to produce usable 

forecasts in some cases where the raw forecasts fell below this threshold. It is 

important to note that post-processing did not performed well in many watersheds 

in this analysis.  It is unclear whether different methods or input climate datasets 

other than those used in this analysis would improve performance, or whether 

precipitation and temperature variability in such locations is not systematically 

forced by identifiable or predictable circulation patterns.  

Through this study of post-processing of climate forecasts at watershed scales, 

we offer a proof of concept rather than an exhaustive study. Further research could 

hone in on specific predictors for sub-seasonal climate forecasts, test different 

predictor domains for specific watersheds, use different lagged or pooled ensembles 

to reduce noise in raw forecast, or regionalizing predictors within the CONUS 

domain. The method we selected, PLSR, may be inferior to newer machine learning 

methods that can represent nonlinear and thresholded relationships between 

variables (Jones, 2017).  After finding that post-processing did not capture extreme 

precipitation events well and often generated overly narrow ranges of forecasted 

values, we explored whether training PLSR models on only the extreme quantiles of 

precipitation events within a training sample would increase forecast skill.  We 
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found slight improvements in forecasted value range and skill, which suggests that 

conditional training may a fruitful avenue of further study.  Overall, however, we 

recommend the addition of post-processing techniques as part of climate services 

based on operational climate forecasts because, notwithstanding the limitations of 

this study, it provided evidence of benefit from the perspective of watershed scale 

sub-seasonal climate predictions.   
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4 CHAPTER IV: Enhancing ensemble seasonal streamflow 
forecasting in the Upper Colorado River Basin using multi-

model climate forecasts  
 

4.1 Abstract 

Operational streamflow forecasts in the United States are predominately driven by 

the Ensemble Streamflow Prediction (ESP) method.  ESP forecasts are produced by 

a hydrologic model initialized with current basin conditions and driven with 

historical temperature and precipitation traces to create probabilistic streamflow 

forecasts.  In the Colorado River Basin (CRB), ESP forecasts drive operational 

planning models that project basin conditions out-multiple years.  Any improvements 

to streamflow forecasts would help CRB stakeholders who depend of these 

operational projections for decision-making.  With recent improvements in seasonal 

climate forecasts, we explore incorporating climate forecast information into the 

streamflow forecast through an ESP trace weighting scheme. The k-nearest 

neighbors (kNN) technique is employed to weight ESP traces based on North 

American Multi-model Ensemble (NMME) 1-month and 3-month temperature and 

precipitation forecasts, and preceding 3-month average observed streamflow. Two 

kNN weighting techniques are explored: (1) Basin-wide kNN uses the same ESP 

weights over the entire basin and (2) 4-Basin kNN separates the basin into four sub-

basins, calculating ESP weighting in each, then recombining traces to calculate a new 

Lake Powell unregulated inflow forecast. Through analysis of the runoff season Lake 

Powell unregulated inflow, we find that kNN based forecasts have higher skill in the 

fall and winter and are more accurate at all leads compared to ESP. The 4-Basin kNN 
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method is more accurate than Basin-wide kNN through all leads, and more skillful 

at most leads.  

4.2 Introduction  

Many operational streamflow forecasts in the United States are provided by the 

National Weather Service River Forecasting Centers and National Resource 

Conservation Service (NRCS) (Pagano, Robertson, et al., 2014). In the Colorado River 

Basin (CRB), the Colorado River Basin River Forecasting Center (CBRFC) produces 

streamflow forecasts using the Ensemble Streamflow Prediction (ESP) method. ESP 

is a widely used operational forecasting method with streamflow forecasts produced 

using a land-surface model initialized with current basin conditions and forced with 

historical temperature and precipitation traces (Day, 1985; Franz et al., 2003).  

The Bureau of Reclamation (Reclamation) uses ESP forecasts provided by the 

CBRFC in operational planning models to provide stakeholders with risk-based 

information regarding future basin conditions. The Mid-term Operations Model 

(MTOM) is one of these operational planning models that uses ESP to  project 

monthly reservoir operations and basin conditions out 5 years (Daugherty, 2013). The 

results from MTOM can be used for decision making and risk assessment of potential 

shortage or surplus basin conditions that affect many communities and economies 

throughout the CRB (Bureau of Reclamation, 2015).  Improving the skill of 

streamflow forecasts used in MTOM would benefit stakeholder who use projections 

of future basin conditions in decision making and planning.  
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Numerous techniques have been proposed to improve ESP. Methods include 

improvements to initial conditions or other inputs to the hydrology models that 

produce ESP; these methods are commonly referred to as pre-ESP techniques. The 

skill of ESP streamflow forecasts are at first highly dependent on the initial 

conditions, but at leads longer than one month, the skill is more dependent on climate 

forcings (Li et al., 2009; Shukla & Lettenmaier, 2011).  Many studies have explored 

using climate forecasts to improve streamflow forecasts at sub-seasonal to seasonal 

(S2S) leads through pre-ESP methods. Wood and Lettenmaier (2006) showed 

improvement to ESP forecasts in the western US through the use of a land-surface 

model driven with climate forecasts ensembles from NASA’s Seasonal-to-Interannual 

Prediction Project and other seasonal climate forecast.  Mo and Lettenmaier (2014) 

completed a similar study over the contiguous US using the North American Multi-

model Ensemble (NMME) climate forecasts.  They compared runoff at a 1- to 3-month 

lead simulated from a hydrology model forced with NMME and historical 

temperature and precipitation traces. Their results showed skill improvements with 

NMME to be seasonally and regionally dependent, with NMME forecasts 

contributing to runoff skill after a 1-month lead, before which initial conditions 

dominated the forecast skill. NMME was found to improve runoff skill over ESP in 

the Upper CRB in April at a 2- and 3-month lead time. These studies illustrate the 

potential improvements to streamflow forecasts through the use of S2S climate 

forecasts such as NMME with pre-ESP methods.  
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Other studies have explored improving streamflow forecasts through post-

processing of ESP. This is frequently referred to as post-ESP. Common post-ESP 

techniques include weighting ESP traces based on teleconnections or large scale 

climate information. Werner et al. (2004) showed that ESP weighting has potential 

in the CRB.  Methods for weighting CBRFC ESP forecasts in three sub-basins in the 

CRB used climate indices (e.g., Nino-3.4) and CFSv2 reanalysis predictor components 

either through a pre-ESP method of adjusting the precipitation and temperature 

ensembles input to a hydrology model or a post-ESP method by weighting ensemble 

members.  Post-ESP methods were found to outperform pre-adjustment methods.  

Many other studies have compared post-ESP methods in watersheds in North 

America (Bazile, Boucher, Perreault, & Leconte, 2017; Beckers, Weerts, Tijdeman, & 

Welles, 2016; Gobena & Gan, 2010; Grantz et al., 2005; Pablo A. Mendoza et al., 2014; 

Najafi, Moradkhani, & Piechota, 2012; Andrew W. Wood & Schaake, 2008).  Mendoza 

et al. (2017) assessed alternatives to traditional ESP methods in basins in the Pacific 

Northwest. They compared ESP to statistical and hybrid approaches including trace 

weighting schemes that were informed by climate and watershed initial condition 

information. Results showed that climate predictors added seasonal forecast skill, 

with the best results in watersheds with stronger teleconnections. These studies show 

that climate information has the potential to benefit seasonal streamflow forecasts 

through post-ESP methods.  

Advancements in S2S climate forecast skill in recent decades can help improve 

streamflow forecast skill which could improve projections from operational planning 
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models such as MTOM (Raff et al., 2013). Better projections from MTOM would 

benefit stakeholders in the CRB who depend on predictions of shortage or surplus in 

the basin to drive operational decisions. We propose using a simple post-ESP k-

nearest neighbors (kNN) trace weighting technique to improve streamflow 

forecasting in the Upper CRB using S2S temperature and precipitation forecasts from 

NMME.  

This study is organized as follows. We first discuss MTOM ESP and the 

watershed scale S2S climate forecasts in the Background & Data section. The 

Methods section discusses the different predictors, kNN weighting methods, and 

verification metrics. The Results & Discussions section compares kNN weighting 

methods on the runoff season scale for different sub-basins, followed by a summary 

of the conclusions from this study.  

4.3 Background & Data 

4.3.1 MTOM & ESP 

MTOM is a Reclamation CRB mid-term operational projection model built in 

RiverWare, a generalized river basin modeling software platform (Zagona et al., 

2001).  MTOM runs inflow traces through a decision making framework using rule 

logic that models system and reservoir operations. The model produces probabilistic 

monthly 5-year operational projections of 12 major reservoirs (9 Upper Basin and 3 

Lower Basin) in the CRB. There are 12 Upper Basin forecast locations where ESP 

forecasts are input to MTOM. A schematic of the CRB with the important reservoirs 

and forecast locations is shown in Figure 4-1.   
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The ESP forecasts used in MTOM are unregulated inflow forecast. 

Unregulated flows are the streamflow that would have flowed through a location if 

there had not been dams located upstream of the forecast point.  The CBRFC 

produced ESP forecasts with a Sacramento Soil Moisture Accounting (Sac-SMA) 

model calibrated with historical conditions and climate traces from 1981-2010.  The 

ESP forecasts have 30 traces driven by 30 years of historical precipitation and 

temperature traces from the climatological record (1981-2010).  The ESP forecast 

used in this work are a combination of reforecasts and operational forecasts. The 

reforecasts were provided by the CBRFC for 1981-2011 and operational forecasts 

were available from 2012-2016. For the 1981-2010 ESP reforecasts, the trace from 

the forecasted year’s climate forcings was removed from the ensemble to avoid 

including a trace with perfect knowledge of the temperature and precipitation.  

Therefore, the ESP forecasts from 1981-2010 have 29 traces, while the forecasts form 

2011-2016 have 30 traces.  
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Figure 4-1: Schematic of the Colorado River Basin as setup in MTOM. The forecast locations 
are numbered from 1-12 and detailed in the top left table in the figure. The eight Upper Basin HUC-
4 watersheds are symbolized by different colors of shading. The names of the HUC-4s can be found in 
Table 4-2. The reservoirs are represented by blue triangles with the Aspinall Unit, which includes 
Blue Mesa, Morrow Point, and Crystal Reservoirs.   
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4.3.2 S2S Climate Forecasts 

NMME Phase 2 climate forecasts are used to inform the ESP trace weighting method 

for this study. NMME is a multi-model ensemble that combines seven global climate 

model forecasts at a monthly time step for leads up to 7 months (Kirtman et al., 2014). 

Reforecasts and operational forecast are available from 1982-2017.  Baker et al. 

(2019) transitioned raw gridded NMME temperature and precipitation forecast to a 

United States Geological Survey (USGS) hydrologic unit code 4 (HUC-4) watershed 

scale.  NMME forecasts were verified at monthly and seasonal leads to calculate the 

forecast skill compared to North American Land Data Assimilation System (NLDAS; 

Xia et al. 2012).  Real-time watershed scale forecasts and benchmark assessments of 

hindcasts were made available online (http://hydro.rap.ucar.edu/s2s/).  For a detailed 

description of raw NMME forecast processing to a watershed scale and a detailed 

skill assessment, see Baker et al. (2019).  

4.4 Methods 

The kNN method is described below with the proposed feature vector components. 

The method is applied to two different spatial scale, which are compared.   

4.4.1 Feature Vectors 

The feature vectors (also referred to as predictors) used in the kNN trace weighting 

scheme are the mean NMME temperature and precipitation watershed scale 

forecasts with associated NLDAS observations, and observed flow for different 

numbers of lagged months. The feature vectors were weighted based on prescribed 

weights (W) that were held constant for the entire simulation period.  
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Four feature vectors were derived from the mean NMME watershed scale 

forecasts: 1-month temperature forecast, 1-month precipitation forecast, 3-month 

temperature forecast, and 3-month precipitation forecast. The NLDAS observed 

temperature and precipitation for the same time periods were used to find the NMME 

forecasts’ nearest neighbors. NMME watershed scale forecasts can provide 

information about future S2S climate conditions in the basin, allowing the forecast to 

be nudged one way or another through weighting. 

Three feature vectors were tested using observed flow from the previous 

months: 3-month, 6-month, and 9-month average flows. The observed flow 

throughout the basin could help provide information about antecedent conditions in 

the basin, such as the amount of baseflow that relates to soil moisture and is 

important for projections in the fall prior to the runoff season. The feature vector 

weights are summarized as follows:  

ࢃ ൌ ൫்ݓ,ଵି, ,,ଵିݓ ,ଷି,்ݓ ,,ଷିݓ ,ொ,ଷିݓ ,ொ,ିݓ  ொ,ଽି൯, Eq. 4-1ݓ

where     ∑ࢃ ൌ 1 

The skill of NMME forecasts differ depending on the variable and lead. To 

include information about the skill of NMME forecasts, we distributed the weights 

for each climate forecast lead time between temperature and precipitation based on 

their anomaly correlation. For example, say the anomaly correlation of the 1-month 

lead temperature and precipitation forecasts were 0.4 and 0.2, respectively. The 1-

month temperature forecast would receive 2/3 of the total prescribed weight for the 

combined 1-month NMME forecast, and the 1-month precipitation forecast would 
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receive 1/3 of the total weight. Therefore, we attempt to capture the differences in 

skill of the NMME forecast in a useful manner. 

We tested other antecedent conditions such as observed temperature and 

precipitation but found they did not add skill to the forecasts. These observed values 

should be accounted for through the initial conditions in the hydrologic model 

producing ESP.  

4.4.2 kNN Trace Weighting Scheme 

We have adapted the post-ESP trace weighting scheme from Werner et al. (2004) for 

ESP forecasts in the Upper CRB.  The kNN method is executed for each month with 

feature vectors of NMME forecasts and observed flow to weight the monthly ESP 

forecasts for January 1982 – September 2016. The technique is described as follows: 

1. The feature vectors are organized and standardizes for the given start month. 

Since ESP traces are informed by historical years (j) of 1981-2010, the feature 

vectors only need to include these years. The forecasted year is removed from 

these vectors, excluding any ESP traces with perfect knowledge of the future 

climate.  

2. A distance vector, D, is computed that calculates the weighted Euclidean 

distance from the n feature vectors in the training period (xi) to the vector for 

the forecast date (xt). The feature vector weights, W, calculated from the 

weighted Euclidean distance are prescribed for the entire extent of that 

forecast date’s ESP forecast. 

ࡰ  ൌ ൫݀ଵ, ݀ଶ, … , ݀൯	 ,    where Eq. 4-2 
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 ݀ ൌ ටݓଵ൫ݔ௧ െ ଵ,൯ݔ
ଶ
 ௧ݔଶ൫ݓ െ ଶ,൯ݔ

ଶ
 ⋯	ݓ൫ݔ௧ െ ,൯ݔ

ଶ
  Eq. 4-3 

3. Sort the distance vector from lowest to highest values. 

ࡰ  ൌ ൫݀ଵ, ݀ଶ, … , ఫ̂݀൯,					݀ଵ  ݀ଶ  ⋯  ఫ̂݀    Eq. 4-4 

4. The weights for each ensemble member are calculated using the following 

equations: 

ݓ  ൌ 	 1 െ
ௗഢ̂
ௗೖ
൨
ఒ

ప̂݀			݁ݎ݄݁ݓ			,	  ݀    Eq. 4-5 

ݓ  ൌ 0,			݀ప̂  ݀       Eq. 4-6 

 ݇ ൌ ܶܰܫܰ ቀ
ఈ
ቁ Eq. 4-7 

where λ is the distance sensitive weighting parameter and α defines the k 

nearest neighbor traces used from ESP. The NINT is the nearest neighbor 

operator. In this study, we set λ = 2.5 and α = 1 based on experiments not 

shown. This means that all ESP traces are included in the kNN forecast. 

5. The weights are then normalized so that the sum of the weights is equal to 1.  

6. ESP traces are resampled based on the normalized ensemble weights to obtain 

a 100-member ensemble. 

4.4.3 Spatial Evaluation Scenarios 

The kNN trace weighting method is applied for two different spatial scales described 

in the following sections: (1) the Basin-wide method and (2) the 4-Basin method.  

4.4.3.1 Case 1. Basin-wide method 

The basin-wide method weights ESP forecasts members based on NMME forecasted 

temperature and precipitation aggregated over the entire Upper CRB. The Upper 



 83

Basin aggregated NMME forecasts were calculated from a flow weighted average of 

individual HUC-4 NMME forecasts. The weights from each HUC-4 were based on the 

contributing inflows to Lake Powell on an annual scale from each HUC-4 basin. 

Individual HUC-4 annual flows were calculated based on USGS stream gages, where 

available. The ESP trace weights based on the basin-wide method were applied 

uniformly to all forecast locations. 

4.4.3.2 Case 2. 4-Basin method 

The 4-Basin method splits the Upper Basin into 4 different sub-basins based on the 

major tributaries in the Upper CRB and MTOM forecast locations. The kNN 

weighting scheme is performed at each of the 4 basins separately, producing different 

ESP trace weights for each sub-basin. This results in new ESP ensembles that may 

span different ranges of forecasted inflows to Lake Powell since different ESP traces 

in the 4 separate basins may be combined to form new Lake Powell inflow.  

The four sub-basins are the (1) Main Stem, (2) Green, (3) Gunnison, and (4) San 
Juan. The eight HUC-4 are categorized into the 4-basins as shown in   
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Table 4-1. The decision of where to categorize each HUC-4 is based on the 

forecast locations used in MTOM. For instance, the Lower Green HUC-4 is along the 

Green River, but the contributing flows from this HUC-4 are included in the Lake 

Powell unregulated inflow forecast since the downstream most MTOM forecast 

location on the Green River is above the Lower Green HUC-4. 
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Table 4-1: Table of HUC4 assignment in 4-Basin method. 

HUC-4 ID Label 4-Basin Assignment 

1401 Colorado Headwaters Main Stem 

1402 Gunnison Gunnison 

1403 Upper Colorado-Delores Main Stem 

1404 Great Divide-Upper Green Green 

1405 White-Yampa Green 

1406 Lower Green Main Stem 

1407 Upper Colorado-Dirty Devil Main Stem 

1408 San Juan San Juan 

 

The NMME temperature and precipitation forecasts for the 4-basins are 

weighted based on contributing flow, if the sub-basin has multiple HUC-4 

watersheds.  The twelve MTOM forecast locations are also split into the 4 sub-basins 

as shown in Table 4-2. The observed preceding 3-month, 6-month and 9-month 

averaged flows used in the feature vector are the total intervening flow for each of 

the 4-basins.  
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Table 4-2: Table of forecast location assignment in 4-Basin method. 

Forecast Locations 4-Basin 
Assignment 

1 Fontenelle Inflow – QFont  Green 

2 Flaming Gorge Unregulated Inflow – QFG Green 

3 Yampa at Deerlodge Park – QYampa Green 

4 Gunnison - Gains Crystal to Grand Junction – QCryGJ Gunnison 

5 Crystal Unregulated Inflow – QCry Gunnison 

6 Morrow Point Unregulated Inflow – QMP Gunnison 

7 Blue Mesa Unregulated Inflow – QBM Gunnison 

8 Taylor Park Inflow – QTP Gunnison 

9 Animas at Durango – QAnimas San Juan 

10 Vallecito Inflow – QVal San Juan 

11 Navajo Unregulated Inflow – QNav San Juan 

12 Lake Powell Unregulated Inflow– QPowell Main Stem 

 

This requires calculating new total unregulated flow volumes for each sub-

basin. Since forecast locations are for total flow, this involves adding tributaries to 

the downstream most forecast location on each tributary. The Main Stem flow is 

calculated slightly different since the Green, Gunnison, and San Juan River’s flows 

must be subtracted from the Lake Powell unregulated inflow forecast location. The 

flows for each sub-basin are described in the following equations: 

 ܳீ ൌ ܳிீ  ܳ  Eq. 4-8 

 ܳீ௨௦ ൌ ܳ௬  ܳ௬ீ Eq. 4-9 

 ܳௌ௨ ൌ ܳே௩  ܳ௦ Eq. 4-10 
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 ܳெௌ௧ ൌ ܳ௪ െ ൫ܳீ  ܳீ௨௦  ܳௌ௨൯ Eq. 4-11 

with variables defined in Table 4-2.  

Once kNN is performed on each of the four sub-basins separately, the forecasts 

are recombined to calculate a new MTOM ensemble for the 12 forecast locations. For 

all forecast locations except the Lake Powell unregulated inflow location, the 

resampled 100-member ensembles are combined. For the Lake Powell unregulated 

inflow forecast location, a new forecast is calculated based on the 100-member 

ensembles from all four sub-basins as follows:  

 ܳ௪ ൌ ܳெௌ௧  ܳீ  ܳீ௨௦  ܳௌ௨ Eq. 4-11 

The 4-basin method results in a new ensemble with a different spread and 

distribution than the original ESP forecast and the Basin-wide method.   

4.4.4 Verification Metrics 

Streamflow forecasts from ESP and kNN methods are compared to observed flows at 

the inflow to Lake Powell and the four sub-basins used in the 4-basin method. 

Verification metrics are calculated for the runoff season volume, April-July, for leads 

up to 12-months prior to the last forecast in July. The forecasts in May, June, and 

July have observed flows for the months already observed in the runoff season. These 

forecast leads should have higher skill and lower errors compared to other forecasts 

since there are fewer months in the runoff season to forecast.  

The continuous ranked probability skill score (CRPSS) is used to calculate the 

skill probabilistic forecasts. CRPSS is a measure of the accuracy of a forecast relative 

to that of a reference forecast. The reference forecast used here is climatology from 
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1981-2010. CRPSS ranges from 1 to -∞, with a perfect skill score equal to 1.  A skill 

score of 0 means the skill of the forecast is equal to that of climatology, and a negative 

skill score means the forecast is less skillful than climatology.  

Error relative to observations is measured as the root mean squared error 

(RMSE) which is the square root of the average of the squared differences between 

projections and observations.  Since the errors are squared, larger errors have a 

greater influence on RMSE than smaller errors. 

4.5 Results  

The first step taken in the kNN analysis was to determine the feature vector weights. 

We performed a heuristic optimization in which we manually varied the weighting 

scheme to find the best combination of weights. We found that all NMME forecasts, 

which includes the 1-month and 3-month temperature and precipitation forecasts, 

and the 3-month lagged flow contributed positively to predicting seasonal runoff. The 

best weights found through our experiments are listed in Table 4-3.   

Table 4-3: Weights of feature vectors. 

wT,1-mon & wP,1-mon * wT,3-mon & wP,3-mon* wQ,3-mon wQ,6-mon wQ,9-mon 

0.275 0.275 0.45 - - 

*Weights for individual precipitation and temperature forecasts for each NMME lead are split based 
on forecast skill. See the Methods section ‘Feature Vectors’ for details. 

The ESP, Basin-wide kNN, and 4-Basin kNN streamflow forecasts were 

analyzed for their skill and accuracy when forecasting runoff season inflow to Lake 

Powell. The CRPSS at leads of 12-months to 1-month for the three forecasts are 

shown in left panel of Figure 4-2. Since we are computing a seasonal flow, the forecast 

includes observed flows once the lead is less than 4-months since the April flow would 
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have been observed.  At longer leads of 12- and 11-months, the forecasts all perform 

relatively poorly with the median skill of the Basin-wide kNN forecast slightly 

outperforming other forecasts. At these leads, the 4-Basin kNN forecast has a wider 

range of skills than the other two forecasts with some forecasts exhibiting high 

CRPSS, but overall the median CRPSS is lower than the other forecasting methods 

at earlier leads. This is likely due to the narrowing of the ensemble. 

 

Figure 4-2:  CRPSS and RMSE for runoff season streamflow forecasts of Lake Powell 
unregulated inflow. The streamflow forecasts ESP, Basin-wide kNN, and 4-Basin kNN are 
compared at leads of 12- to 1-month.  

As leads decrease, the skill of all the forecasts increase. The forecast with the 

highest median skill changes with lead. In November through January, 4-Basin kNN 

has a higher median skill with a larger range of skills compared to the other two 

forecasting methods. By March, the median skill of all forecasts are relatively the 

same, with only small differences in the range of CRPSS as shown by the boxes of 

each boxplot. 
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The RMSE for ESP, Basin-wide kNN, and 4-Basin kNN is shown in the right 

panel of Figure 4-2. The RMSE is large at longer leads and decreases with lead. The 

4-Basin kNN forecast has a lower RMSE compared to the other forecasts in all 

instances. The median RMSE for 4-Basin kNN is about 1 MAF (million acre-ft) lower 

than the other forecasts at longer leads and decrease as all forecasts start to perform 

better. The Basin-wide kNN forecast has lower errors than ESP at most leads, 

especially at shorter leads when the NMME forecasts have greater impact on the 

analyzed flow.  

The performance of ESP and the 4-Basin kNN method for each of the four sub-

basins are compared in Figure 4-3.  For CRPSS in the top row of Figure 4-3, the skill 

of 4-basin kNN performs better than ESP in the Main Stem and Green with more 

lead dependent results in the Gunnison and San Juan sub-basins.  Overall, the 4-

bains kNN method reduces error when compared to ESP for most leads in most 

reaches, though not by a significant amount. These results aligns well with the 

CRPSS results in Figure 4-2.  

Each sub-basin contributes different proportions of the seasonal inflow volume 

to Lake Powell.  This is apparent in the RMSE plots in the bottom row of Figure 4-3, 

which have varying magnitudes of error.  The highest error is in the Main Stem and 

Green since most of the total inflow to Lake Powell originates in these sub-basins.  

The reduction in RMSE from ESP to 4-Basin kNN is not as apparent in the individual 

reaches compared to the inflow to Lake Powell (Figure 4-2). This is due to the 

different forecast magnitudes. Overall, most leads in each reach exhibit a decrease in 
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RMSE for the 4-Basin kNN method compared to ESP, though this is less obvious at 

earlier leads.  

 

Figure 4-3: CRPSS and RMSE from the 4-Basin kNN and ESP methods for the four sub-
basins. The top row is CRPSS and the bottom row is RMSE at a lead of 12-months to 1-month for 
the runoff season forecast.  

Another way to compare forecasts is by looking at the streamflow forecasts for 

each year compared to observations. Figure 4-4 illustrates the ESP and 4-Basin kNN 

forecasts at a 7-month lead in January ranked from lowest to highest observed flow 

for 1982-2016.  The 4-Basin kNN forecasts have a narrower range of flows compared 

to ESP.  The higher years of observed flow are captured well by both forecasts since 
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these forecasts are likely driven by early snow accumulation which is represented by 

initial conditions in Sac-SMA. The 4-Basin kNN forecasts tend to have median flows 

that are slightly higher than ESP forecasts, illustrating that NMME forecasts are 

likely nudging the forecast towards wetter conditions based on the 1-month and/or 3-

month forecasts. This topic is explored further in Appendix 8.2.  

For lower observed flows, both the ESP and the 4-Basin kNN forecasts do not 

capture the observed flow well. There is a slight bump down in the forecast median 

of the 4-Basin kNN forecast compared to ESP in many of the lower years, though not 

all.  In some years, both forecasts perform very poorly (e.g. Rank 30).  Since the 4-

Basin kNN forecast is based on the ESP forecast, it cannot correct for large errors in 

the ESP forecast. Thus, if ESP performs very poorly, the 4-Basin kNN forecast will 

also perform poorly.  

 
Figure 4-4: Runoff season ensemble forecasts for 1982-2016 compared to observations 
arranged by ranked observations. ESP and 4-bains kNN forecasts of Lake Powell April-July 
unregulated inflow are compared for each year at a 7-month lead in January. Observed inflow is 
represented by a red horizontal line. 
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4.6 Discussion & Conclusion 

The post-ESP method explored in this work illustrates the opportunity for climate 

forecasts use to inform streamflow forecasts through a post-processing framework in 

the Upper CRB.  NMME 1-month and 3-month temperature and precipitation 

forecasts, along with 3-month preceding averaged flow, were shown to be useful 

predictors for weighting ESP traces. We found that a skillful NMME forecast 

translated into improved streamflow forecasts, showing that this method was able to 

exploit the skill available from NMME (Appendix 8.2).  

Two kNN weighting methods were explored, Basin-wide kNN and 4-Basin 

kNN. Basin-wide kNN weighted ESP traces through an aggregated method over the 

entire Upper CRB, while 4-Basin performed the weighting method over four sub-

basins. Both kNN methods showed smaller errors compared to ESP for all leads. The 

4-Basin kNN has lower errors than the other forecasts at all leads through May at a 

3-month lead.  The results from the analysis of skill differ, showing better 

performance by 4-Basin kNN in the fall through winter, but not at all leads. The 

CRPSS results are worse than RMSE likely because the spread of the 4-Basin kNN 

forecasts can be too narrow compared to the climatology forecast.  

 This work was not meant to be an exhaustive study of all post-ESP methods, 

instead we intended to explore potential uses of climate forecasts through post-ESP 

methods. Further research could explore other possible weighting schemes, distance 

calculations, predictors, or post-processing calibration techniques such as those 

discussed in Wood et al. (2008). Overall, this work recommends the use of climate 
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forecasts to inform streamflow forecasting at certain leads, such as the fall and winter 

when ESP forecasts are less skillful and NMME forecasts can project wetter or drier 

winters.  As S2S climate forecasts become more skillful, kNN post-ESP weighting 

techniques would likely show improvements to streamflow forecasts.  

The proposed methodology could be applied to other basins throughout the US 

that depend on ESP streamflow forecasts.  The process is general enough to be applied 

to other watersheds since the S2S watershed scale climate forecasts are available.  

This method could be very useful in watersheds where NMME climate forecast skill 

is high, such as the southern California in winter and spring or the southeastern US 

during fall and winter.  Watersheds that are not snowmelt dominated could have 

improved streamflow forecasts using this method, though the feature vectors and 

weights would need to be altered.   

 The streamflow forecasts analyzed in this work are on the scale used in 

Reclamation’s mid-term operations and planning model, MTOM. The improved 

streamflow forecasts with the kNN weighting schemes could be applied to MTOM to 

assess how improved streamflow forecasts translate into operational projections. 

Improvements to streamflow forecasts, even if relatively small, could improve 

projections of future basin conditions in the CRB that would benefit stakeholders who 

depend of operational projections of future basin conditions for their decision-making. 

This topic will be explored in the next chapter for streamflow forecasts from ESP and 

4-Basin kNN.   
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5 CHAPTER V: A Testbed for Assessing streamflow forecasts 
and operational projections in the Colorado River Basin  

 

5.1 Abstract 

Water managers depend on streamflow forecasts to make many operational decisions, 

including decisions regarding reservoir operations, water allocation, flood control, 

and in-stream supported releases.  In the Colorado River Basin, management 

decisions would benefit from streamflow forecasts with improved skill that extends 

beyond short-term (1-year) leads to provide assessments of future basin risk, such as 

the probability of water shortage or flood control. The Colorado Basin Streamflow 

Forecast Testbed creates a framework for assessing the performance of streamflow 

forecasts and operational projections in the Colorado River Basin using the Bureau 

of Reclamation’s Mid-Term Operations Model (MTOM) for a 2-year outlook.  The 

current operational streamflow forecasting technique used in MTOM, Ensemble 

Streamflow Prediction (ESP), is compared to experimental forecasting method, 4-

Basin k-nearest neighbor (kNN), which weights ESP traces using climate forecast 

information and observed streamflow. The streamflow projections are evaluated on 

an annual water year scale for the unregulated inflow to Lake Powell. MTOM 

operational projections from these forecasts are compared at Lake Powell and Lake 

Mead for the performance of projecting pool elevation, operating tier, and releases. 

The 4-Basin kNN method outperformed ESP for most leads in the winter and spring 

of the forecasted water year when comparing streamflow forecast skill and accuracy, 

see Section 4.5. The 4-Basin kNN method produced more accurate projections of pool 
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elevation and categorical scores for operating tiers and releases compared to ESP, 

though the differences in projected operating tiers were smaller.   

5.2 Introduction 

Streamflow forecasts provide valuable information regarding the quantity and timing 

of streamflow through a river system.  Many water management decisions are made 

using streamflow forecasts including reservoir operations, water allocation, flood 

control, and in-stream releases.  For large water resource agencies such as the 

Bureau of Reclamation (Reclamation), most operational streamflow forecasts are 

produced by the National Weather Service River Forecasting Centers (RFCs) and 

National Resource Conservation Service (NRCS) (Pagano et al., 2014).  Streamflow 

forecasts produced by the RFCs rely on land-surface models initialized with current 

hydrologic conditions and forced with historical climate information (Raff et al., 

2013).  This method, Ensemble Streamflow Prediction (ESP), is widely used 

throughout the water management community (Day, 1985; Franz et al., 2003).  The 

skill of short-term ESP forecasts are highly dependent on the initial conditions, but 

at leads longer than one month, the skill is more dependent on climate forcings (Li et 

al., 2009; Shukla & Lettenmaier, 2011).  This leaves room for improvements to 

forecasts through the use of climate forcing.  Statistical methods are also used to 

produce seasonal water supply forecasts (Garen, 1992; Pagano et al., 2014).  These 

forecasts traditionally use principal component regression models trained on 

historical data such as precipitation and snow water equivalent (SWE).  Both ESP 

and statistical water supply forecasting methods provide skill when initial conditions, 
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such as observed SWE or soil moisture, drive forecasted streamflow, but lack skill 

when climate forcings drive forecast skill (Andrew W. Wood et al., 2016).  

In the Colorado River Basin (CRB), streamflow forecasts produced by the 

Colorado Basin RFC (CBRFC) are used by Reclamation to drive operations and 

planning models that are inform decision making and risk assessment (Bureau of 

Reclamation, 2015).  Reclamation’s Mid-term Operations Model (MTOM) is one of 

these operational planning models, which projects 5 years of monthly mid-term 

operations. ESP forecasts produced by the CBRFC are input to MTOM which uses 

operating rules to drive reservoir operations in the model. A skillful streamflow 

forecast, which extends beyond the current year, would be valuable to CRB 

stakeholders who rely on projections of reservoir operations to provide an outlook of 

potential shortage or surplus basin conditions.   

Many studies have explored improvements to streamflow forecasting methods, 

but few have analyzed how these improvements translate into enhanced water 

resources decision making.  Regonda et al. (2011) evaluated how increased 

streamflow forecast skill translates to improvements in operations and decision 

variables in the Gunnison River Basin.  A nonlinear regression with different 

predictor combinations was used to create a multi-model ensemble streamflow 

forecast informed by large-scale climate information.  Streamflow forecasts were then 

run through an operations model that projected outflow, storage, and power 

production at Blue Mesa Reservoir. The study found that streamflow forecast skill 

transferred to operational variable skill at long lead times, though nonlinearly.  
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Another study by Sankarasubramanian et al. (2009) investigated streamflow 

forecasts produced by principle component regression and informed by monthly 

updated precipitation forecasts and their performance in a reservoir simulation 

model in the Philippines. They found that using streamflow forecasts reduced spill, 

increased allocation for hydropower during above-normal years, and helped meet end 

of season storage targets for below-normal years. These studies show that streamflow 

forecasts do not translate linearly into improved reservoir operations and should be 

investigated based on the specific needs of the studied basin.  

This study seeks to create a testbed to provide an organized, objective approach 

to compare current and experiment streamflow forecasting methods in the CRB.  The 

testbed will establish a protocol for evaluating hydrologic forecast skill, as well as 

how the performance of streamflow forecasts translates into improved operational 

projections. We use the Colorado Basin Streamflow Forecast Testbed (now referred 

to as ‘testbed’) to create a framework for assessing the performance of streamflow 

forecasts and operational projections in the CRB using Reclamation’s Mid-Term 

Operations Model (MTOM).   

This paper is organized as follows.  Section 5.2 will provide an overview of the 

models used for mid-term operations and reservoir operating policies in the CRB.  

Section 5.3 will describe the RiverWare model, streamflow forecasting methods 

assessed in the testbed, and the protocol for analyzing the forecasts through a set of 

defined metrics. Section 5.4 will present the results of different streamflow 
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forecasting methods through the defined metrics, and Section 5.5 will discuss results 

and conclusions. 

5.3 Background 

5.3.1 Operational MTOM 

MTOM is the primary model used for evaluating mid-term probabilistic operations in 

the CRB.  MTOM is built in RiverWare, a generalized river basin modeling software 

platform (Zagona et al., 2001).  The model produces monthly, 5-year probabilistic 

operational projections for twelve major reservoirs in the CRB.  The CRB is split into 

two basins, the Upper Basin and Lower Basin at Lee Ferry, a point located below 

Lake Powell. Nine of the twelve MTOM reservoirs are located in the Upper Basin and 

three are in the Lower Basin.  

Streamflow forecasts are ingested by MTOM at twelve forecast locations in the 

Upper Basin. The streamflow forecasts for the forecast locations are unregulated, 

meaning the forecasted flows are the streamflows that would have occurred provided 

there was no regulation due to dams upstream of the forecast point.  These forecasted 

unregulated flows include Upper Basin demands, which are projected by the CBRFC, 

except for three tunnel diversions.  Figure 5-1 shows a map of the CRB that includes 

forecast locations, major reservoirs, and Upper Basin diversions. 
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Figure 5-1. Map of the Colorado River Basin with important locations defined in MTOM. 
The map includes MTOM reservoirs, forecast points, and Upper Basin diversions. A table in the 
bottom right describes the names of each numbered forecast location; forecast points 1-12 are in the 
Upper Basin and 13-19 are in the Lower Basin. The Aspinall Unit is a series of three reservoirs: Blue 
Mesa, Morrow Point, and Crystal.  
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Lower Basin depletions are input to MTOM from official schedules of future 

water use.  The Lower Basin has 7 intervening flow locations (13-19 in Figure 5-1).  

Intervening flows are determined by computing unaccounted for flows in each river 

reach based on a water balance of historical stream gages, water use, and reservoir 

operations in the Lower Basin.  Lower Basin MTOM forecast points use the historical 

intervening flows since there are presently no skillful forecasts for these locations at 

the MTOM timescales.   

5.3.2 Reservoir Operations in the CRB 

The decision making framework that determines reservoir releases in MTOM is 

based on rule-based “if-the” logic scripted using the RiverWare software. The 

reservoir operations are in accordance with the “Law of the River”, which includes 

the 2007 Colorado River Interim Guidelines for Lower Basin Shortages and 

Coordinated Operations of Lake Powell and Lake Mead (2007 Interim Guidelines).  

The 2007 Interim Guidelines specify coordinated annual operations between Lakes 

Powell and Mead to avoid curtailment of water use in the Upper Basin and to 

minimize shortages in the Lower Basin (U.S. Department of Interior, 2007).  This is 

done through prescribed operating tiers as seen in Figure 5-2.  Lake Powell has four 

operating tiers that are determined based on projected end of year reservoir 

elevations.  Lake Mead has three main operating tiers, shortage, surplus, and normal 

conditions, which are also based on projected end of year reservoir elevations.   

The projected reservoir elevations for determining the operating tier are 

produced by the 24-Month Study (24MS), a deterministic Reclamation model that 
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simulates reservoir operations for a 2-year period. A single deterministic streamflow 

forecast, the Most Probable forecast, is used in the 24MS. For the current year, the 

Most Probable forecast is a combination of the 50% exceedance ESP trace and 

forecaster judgement. The out-year of the forecast is climatology, the average flows 

from 1981-2010.   

Instead of solving reservoir operations using rule logic as is done in MTOM, 

reservoir operators manually input reservoir outflows and operations in the 24MS. 

The 24MS is used for official CRB operational projections and to support decisions for 

the CRB Annual Operating Plan (AOP). The AOP provides a plan for CRB reservoir 

operations for the upcoming year using reservoir end of calendar year (EOCY) pool 

elevations projected by the August 24MS. Once reservoir operations for Lakes Powell 

and Mead are set by the AOP for the next year, they can only change if there is an 

April Adjustment or if flood control is implemented. An April Adjustment for Lake 

Powell can occur if the April 24MS projections of end of water year (EOWY) Lake 

Powell pool elevations are projected to be at or higher than 3,575 feet and Lake Mead 

pool elevation is less than 1,075 feet. An April Adjustment can also occur if Lake 

Powell is in the Upper Elevation Balancing Tier and the April 24MS projected Lake 

Powell EOWY pool elevation above the Equalization line as defined in the 2007 

Interim Guidelines. The April Adjustment allows for operational changes when there 

are large increases in Most Probable streamflow forecast throughout the winter and 

spring. For more information regarding the coordinated operation of Lake Powell and 

Lake Mead, see the 2007 Interim Guidelines. 
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Figure 5-2. 2007 Interim Guidelines operating tiers. Schematic of the 2007 Interim Guidelines 
for the operating tiers of Lake Powell and Lake Mead with reservoir elevations, storage, and 
description of releases. The elevation between the Equalization and Upper Elevation Balancing Tiers 
in Lake Powell increases each year between 2007 and 2026.  

5.4 Data & Methods 

5.4.1 Testbed Framework 

The framework for the Colorado Basin Streamflow Forecast Testbed is summarized 

in Figure 5-3. The testbed ingests the available streamflow forecasts that are run 

through MTOM to output operational projections for the CRB reservoirs.  MTOM 

simulates on a monthly time step for 2-3 years, to the end of the second water year 

(WY; October - September). The full 5-year MTOM simulations were not analyzed in 

this project since the focus here was to analyze streamflow forecasts and possible 
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forecast improvements that are more feasible for the 1 to 2-year range.  MTOM 

simulates operational projections such as reservoir releases and operating tiers.  The 

testbed processes streamflow forecasts and operational projections separately 

according to a protocol of designated performance metrics. The hydrology metrics and 

operational projection metrics are discussed in detail in the following section.  

 
Figure 5-3. Colorado Basin Streamflow Forecast Testbed framework. Streamflow forecasts 
are analyzed and run through MTOM to output operational projections. The streamflow forecasts 
and operational projections are analyzed separately.  

Part of the testbed framework depicted in Figure 5-3 is processed using the 

RiverWare Study Manager and Research Tool (RiverSMART).  RiverSMART 

facilitates in the execution of RiverWare studies and can simulate several hydrology 

scenarios, demand scenarios, and operating policies. The testbed uses the capabilities 

of RiverSMART to simulate several streamflow forecast ensembles with varying 

numbers of traces to produce operational projections for the major reservoirs in 

MTOM.   
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The setup of the testbed in RiverSMART is illustrated in Figure 5-4.  A 

combination of Run Range, DMI (Data Management Interface), and MRM (Multiple 

Run Management) events allow RiverSMART to simulate forecasts with different run 

lengths, number of traces, and input format.  The scenarios use one model, MTOM, 

and one ruleset to simulate reservoir operation according to the 2007 Interim 

Guidelines.  The basin-wide conditions and reservoir operations from each simulation 

are output to CSV files that are read into R scripts to analyze the streamflow forecasts 

and operational projections for hydrologic and operational skill.  

 

Figure 5-4. Setup of the testbed in RiverSMART. The forecasts are input to MTOM using the 
Run Range, DMI, and MRM events. Arrows depict the direction of data flow and process.  

5.4.2 MTOM Research Model 

The version of MTOM used in this study was adapted from the operational version of 

MTOM.  Rule logic, which simulates CRB operations based on the 2007 Interim 
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Guideline, was extended back to 1981.  Since the MTOM research model simulates 

prior to the implementation of the 2007 Interim Guidelines, Lake Powell and Lake 

Mead reservoir operations cannot be compared to observations until 2008 when the 

2007 Interim Guidelines were implemented.  A pseudo-historical projection of 

reservoir operations was created by running historical streamflow through MTOM. 

This simulation will be referred to as ‘Historical Streamflow Projections’ allows for 

comparison of the streamflow forecast’s operational projections prior to 2008 and will 

be discussed further in the following section.   

To run hindcasts through MTOM, historical reservoir conditions and inflows 

were added to the modeling framework to provide initial conditions for each 

simulation.  Minor changes were also necessary in the rule logic. This included 

constraints on water use to match historical events.  For example, the Central 

Arizona Project cannot divert water before it historically started diverting water.  To 

isolate the effects of streamflow forecasts on reservoir operations, the model assumes 

perfect knowledge of Upper and Lower Basin depletions and Lower Basin intervening 

flows.  

5.4.3 Streamflow Forecasts 

The testbed was used to analyze current and experimental streamflow forecasting 

methods for 1981-2016 water years.  The streamflow forecasts assessed in the testbed 

are as follows: 
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 Historical Streamflow (1981-2016):  The historical streamflow is the 

observed or calculated historical flow at the 12 MTOM streamflow forecast 

location.  The historical streamflow will be used for three purposes in this work:   

o Historical streamflow is used as the reference flows for other streamflow 

forecasts when calculating the hydrologic performance of each forecast.  

o Historical streamflow is used to create a baseline of pseudo-historical 

reservoir operations for the full simulation period.  Prior to the 2007 

Interim Guidelines, the CRB was operated under different reservoir 

operating rules.  To analyze reservoir operations prior to 2007, historical 

streamflow was run through MTOM to produce reservoir operations as 

if the Interim Guidelines were implemented.  These ‘historical 

streamflow projected’ operations are used in place of historical 

operations.  The historical streamflow projected operations allows for 

analysis of the effects of streamflow forecasts on operational projections, 

but does not allow for analysis of the error associated with the model. 

o Historical streamflow is used to assess potential model logic and 

parameterization errors from 2008-2016 after the 2007 Interim 

Guidelines were implemented.  The observed reservoir operations 

should match the historical streamflow projected operations closely.  

 Climatology (1981-2016): Climatology is the observed streamflow at each 

forecast location from 1981-2010. Using the historical flows from the 

climatology period, an ensemble of 30 members is created through an index 
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sequential method (ISM). ISM traces sample the historical flow, with a trace 

starting each year and extending to the end of the 2-3 year run period. For 

simulations at the end of the record, the forecast wraps back to the beginning 

of the record (e.g. 2010 to 1981). ISM is a common method used in 

Reclamation’s long-term planning model, the Colorado River Simulation 

System (Prairie, Rajagopalan Balaji, Fulp Terry J., & Zagona Edith A., 2006). 

 ESP (1981-2016): ESP reforecasts were provided by the CBRFC. ESP forecasts 

are produced with the Sacramento Soil Moisture Accounting (Sac-SMA) model 

calibrated with historical conditions and climate traces from the period of 

record, 1981-2010 (Burnash, Ferral, & McGuire, 1973; Miller et al., 2012).  This 

period of record rolls forward every 5 years to include more years of climate 

variability.  ESP ensembles have 30 traces corresponding to the 30 years of 

historical precipitation and temperature traces.  For the 1981-2010 ESP 

forecasts, the trace from the forecasted year’s climate forcings was removed 

from the ensemble to avoid a trace with perfect knowledge of the temperature 

and precipitation that drive the Sac-SMA model; therefore, the ESP forecasts 

from 1981-2010 have 29 traces.  ESP forecasts for 2011-2016 have 30 traces. 

 4-Basin k-NN Forecast: The 4-Basin k-nearest neighbors (kNN) method was 

created and evaluated in the previous chapter of this dissertation. This 

experimental forecast will be evaluated further in the testbed. The 4-Basin 

kNN trace weighting method weights ESP traces using North American Multi-

model Ensemble (NMME) 1-month and 3-month watershed scale temperature 
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and precipitation forecasts, along with the preceding 3-month average 

observed streamflow. The method is evaluated on four separate basins in the 

CRB (Main Stem, Green, Gunnison, and San Juan) and is then recombined to 

create a full ensemble that includes the Lake Powell unregulated inflow 

forecast location. NMME is only available from 1982-2016, so the forecast 

record has one less year than ESP. For more details, see the previous chapter, 

Section 4.4. 

5.4.4 Performance Metrics 

The testbed uses a specified set of performance metrics to analyze each streamflow 

forecast. The metrics are split into two categories: hydrology metrics and operational 

projection metrics.  Metrics are normally evaluated for a 24-month (2-year) to 1-

month lead time from a projected date that is normally the EOWY (end of September).  

5.4.4.1 Hydrology Metrics 

Forecast performance can be measured through different attributes.  Here we provide 

a brief summary of forecast attributes from Wilks (1995).  Many of these forecast 

performance attributes can be described by more than one hydrology metric.  

 Accuracy is a measure of overall correspondence between the forecasts and 

observations and can be interpreted as the overall quality of a set of forecasts.  

Many of the below attributes can be interpreted as components of accuracy 

 Bias, or unconditional bias, is a measure of the average error of the forecasts 

as calculated by the difference between the mean forecast and mean 

observations.  Bias differs from accuracy in that it measures the 
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correspondence between individual forecast pairs opposed to the average 

correspondence. 

 Reliability, or conditional bias, is a measure of the agreement between the 

forecast probabilities and observed frequency of an event.  Reliability 

characterizes the conditional distribution of the observations given a set of 

forecasts.  

 Resolution is a measure of the ability of forecasts to resolve the set of sample 

events into a subset of different outcomes. It is also referred to as the degree 

the forecasts sort the observed events into a subset of different groups.  

Forecasts that are nearly the same but have two different outcomes are said to 

have poor resolution, while forecasts that are different and exhibit different 

observed outcomes have good resolution.  Discrimination is another measure 

that relates to resolution.  In probability forecasts, forecasts with no resolution 

have no discrimination and vice versa (Bröcker, 2015).  

 Sharpness is a measure of the degree of spread of a forecast and is a measure 

of the forecast alone. Forecasts that do not deviate from climatology are said 

to have low sharpness and are therefore under-confident.  Forecasts that that 

are frequently different than climatology are sharp. Forecasts that are too 

sharp, meaning they are sharp, but at the expense of missing the observed 

event are over-confident and under-dispersed.  

The hydrology metrics listed below measure the attributes of forecast performance 

based on Lake Powell’s annual unregulated inflow.  This study focuses on the Lake 
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Powell forecast location since it is an aggregate of all Upper Basin streamflow 

forecasts.  The hydrology performance metrics are described as follows:  

 Root Mean Square Error (RMSE):  RMSE is the square root of the average 

of the squared differences between projections and observations.  Since the 

errors are squared, larger errors have a greater influence on RMSE than 

smaller errors.  

 Continuous Ranked Probability Skill Score (CRPSS): CRPSS is the 

accuracy of a forecast relative to the accuracy of a reference forecast such as 

climatology (Hersbach, 2000).  Continuous ranked probability score represents 

the integrated squared difference between the cumulative distribution 

function of the forecasts and the corresponding distribution of the 

observations.  CRPSS is similar to the ranked probability skill score (RPSS) 

except it uses a continuous distribution instead of categories.  CRPSS ranges 

from 1 to -∞.  A perfect CRPSS is equal to 1, a score of 0 means the skill of the 

forecast is equal to that of climatology, and a negative score means the forecast 

is less skillful than climatology.  

 Forecast Spread vs. Observations: For this research, the spread of the 

forecast is viewed as a plot of forecast ensemble versus observations, where the 

forecast ensemble is represented as boxplots.  Each boxplot denotes one 

probabilistic forecast.  The closer the boxplots fall to the 1:1 line, the closer the 

forecast is to the observed streamflow.   
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The boxplots allows for visualization of forecast spread or sharpness at 

multiple lead times.  The confidence of a forecast describes if the forecast is 

under-dispersed meaning the forecast range is too narrow (over-confident) or 

if the forecast range is too large and there is no differentiation of where the 

observations might fall in the forecasted values (under-confident).   A good 

forecast should span the observed streamflow and be able to discriminate 

between a high or low flow events.  

 Reliability Diagrams: Reliability diagrams provide a measure of how closely 

the forecast probability is to the actual frequency of an observed event. 

Reliability diagrams describe the full joint distribution of forecast and 

observation probabilities (Wilks, 1995).  A reliability diagram groups forecast 

probabilities into bins (x-axis), where the bin width is determined based on the 

number of observations (similar to determining the bin width of a histogram). 

Here, we use 5 bins of 0.2 width. The frequency of an observed event’s 

occurrence within the climatological record is determined for each forecast and 

plotted in the respective forecast probability bin (y-axis).  A forecast with 

perfect reliability would result in forecasts with an X% probability occurring 

X% of the time on average over all forecasts, resulting with points plotted on a 

diagonal 1:1 line.  A sharpness histogram is plotted within each reliability 

diagram to show the number of forecast probabilities in each bin.  

Reliability Diagrams provide information about the reliability, resolution, and 

sharpness (confidence) of a forecast.  Figure 5-5, a figure from Hamill (1997), 
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illustrates different forecast attributes in reliability diagrams. Diagram a 

shows a forecasts that is climatology, falling on the 1:1 line. Diagram b has 

minimal resolution and therefore cannot differentiate between different 

observed events. Diagram c is a forecast showing a conditional bias of the 

forecast probability being lower than the observed event’s relative frequency 

within the climatological record. This is sometimes referred to as conditional 

‘under-forecasting’, which is confusing when we normally refer to under-

forecasting as it relates to unconditional bias (error).  Therefore, we will refer 

to diagram c as having conditional bias of the forecast probability being lower 

than the observed relative frequency of the event.  Diagram d is a forecast that 

has good resolution but at the expense of reliability.  Diagram e shows a 

reliable rare event.  Diagram f is a forecast where the sample size is too small 

or the forecast is too sharp.  
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Figure 5-5. Examples of different reliability diagrams and their associated forecast 
performance. This figure was taken from Hamill (1997). The analysis of each reliability diagram 
are described in the paragraph above 

5.4.4.2 Operational Projection Metrics 

The operational projection metrics are used for two purposes: (1) to measure how well 

MOTM performs when simulating reservoir operations according to the 2007 Interim 

Guidelines and (2) assessing how streamflow forecast skill effects the performance of 

operational projections. The MTOM outputs, which are evaluated by operational 

projection metrics, include annual outflow, EOWY storage, EOWY pool elevation, and 

operating tiers for Lake Powell and Lake Mead.  The specific metrics are described 

below: 

 Evolution of Pool Elevation: The evolution of pool elevation projections for 

each model run allows for comparison of the projections to observed pool 

elevation. This visualization technique allows for trends in pool elevation to be 
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observed throughout the year as opposed to only analyzing the end of year 

value.  

 RMSE of Pool Elevation: See RMSE description in the Hydrology Metrics 

section. Since operating tier determination is based on pool elevations, it is 

important to analyze the errors in pool elevation at various lead times. 

 Model Error: Model error is calculated using a mass balance of known 

quantities to calculate any unaccounted for water present within Lake Powell 

or Lake Mead.  The water mass balance for each reservoir is: 

௧݁݃ܽݎݐܵ ൌ ௧ିଵ݁݃ܽݎݐܵ	 െ	ܱݓ݈݂ݐݑ௧  ௧ݓ݈݂݊ܫ െ ௧݊݅ݐܽݎܽݒܧ 

௧	݁݃ܽݎݐܵ݇݊ܽܤ   Eq. 5-1 ݎݎݎߝ	

For this calculation, the historical streamflow is run through MTOM.  The 

difference between the observed and MTOM calculated values are evaluated 

for each term in the mass balance.  Since there are no observed values for 

evaporation or bank storage, the potential errors assocaiated with these terms 

are lumped into a total error term.  The resulting equation is: 

൫ܵ௧
ெ்ைெ െ ܵ௧

௦൯ ൌ 	 ൫ܵ௧ିଵ
ெ்ைெ െ ܵ௧ିଵ

௦൯ െ	൫ܱ௧
ெ்ைெ െ ܱ௧

௦൯  

൫ܫ௧
ெ்ைெ െ ௧ܫ

௦൯   Eq. 5-2 ߝ	

where S is the storage, O is the annual outflow, I is the annual inflow, and ߝ is 

the annual total unaccounted for error in the mass balance.  The subscript t is 

the end of the projected year and t-1 is the beginning of the simulation or the 

beginning of the year analyzed (i.e. April 2013 projection of WY 2014 years 

error would use t-1 of October 2013).  The superscripts MTOM and obs 
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represent the MTOM projected and observation values, respectively.  This 

analysis assumes that there are no errors in the inflow, since historical inflow 

was input to the model.  Rearranging produces the following equation:  

ߝ ൌ 	 ൫ܵ௧
௧ െ ܵ௧

௦൯ െ ൫ܵ௧ିଵ
ெ்ைெ െ ܵ௧ିଵ

௦൯ 	൫ܱ௧
௧ െ ܱ௧

௦൯ Eq. 5-3 

This equation is used to calculate the error in Lake Powell’s mass balance.  The 

Lake Mead mass balance has one extra term that accounts for error in the 

inflow to Lake Mead as a result of errors in Lake Powell’s outflow.  

 Percent Correct: Percent Correct is a categorical score that measures the 

percent of forecasts in each category that are correct. Percent Correct ranges 

from 0% to 100%, representing the percentage of time the correct operating tier 

is projected by the model.  

 Heidke Skill Score: The Heidke Skill Score is a categorical score that 

assesses the accuracy of the forecast in predicting the correct operating tier 

relative to that of random chance.  The Heidke Skill Score is a measure of skill 

for categorical events.  The score ranges from 1 to -∞, where 1 is a perfect skill 

score, 0 indicates skill equal to random chance, and negatives values have no 

skill.  

5.5 Results  

5.5.1 Hydrology Metrics 

5.5.1.1 CRPSS and RMSE of Ensemble Streamflow Forecasts 

Streamflow forecasts are compared by analyzing the annual WY unregulated inflow 

to Lake Powell. The first set of hydrology metrics, CRPSS and RMSE, are measures 
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of the skill and accuracy of a probabilistic forecast relative to climatology (1980-2010).  

Figure 5-6 displays the CRPSS for ESP, 4-Basin kNN, and Climatology at a 24- to 1-

month lead.  The ‘month/number’ descriptor on the x-axis represents the month the 

forecast was created and the number of lead months to the end of the WY.  Since we 

are computing an annual flow, the forecast includes observed flows once the lead is 

less than 12-months. For example, at an 11-month lead in November, October flows 

have been observed and no longer need to be forecasted.  Therefore, as the lead 

decreases beyond a 12-months, more months of observed flows are included in the 

forecast and the skill increases towards 1.   

At long leads, from 24- to 13-months, the CRPSS of most forecasts are close to 

climatology (zero line), showing that ESP converges towards climatology at longer 

leads. The 4-Basin kNN forecast has a larger range of skills at longer leads with 

median close to zero. This illustrates that there is no benefit to using the ESP or 4-

Basin kNN forecast over climatology during this period.   

The skill increases above climatology in the fall of the out-year, starting in 

October at a 12-month lead. The increase in skill is likely due to the knowledge of 

antecedent basin conditions such as soil moisture.  Early season soil moisture often 

contributes significantly to streamflow forecast skill, especially in the early season, 

even though streamflow forecast skill is highly dependent on knowledge of snow in 

the high mountain regions in the late season (Randal D. Koster, Mahanama, Livneh, 

Lettenmaier, & Reichle, 2010). This forecast skill relationship is apparent for ESP 

and 4-Basin kNN forecasts in the CRB.  
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As the season progresses through winter and spring, the CRPSS increases as 

more information about snow storage in the basin is observed. The median skill of 

the 4-Basin kNN method is slightly higher during this period than the ESP forecast. 

The range of skill with the 4-Basin kNN method is larger in some months than ESP. 

The skill of climatology performs poorly since it has no knowledge of initial conditions 

in the basin or what the future climate may look like.  

By April at a 6-month lead and at the beginning of the runoff season (April – 

July), the skill has increased much above the climatology. The skill continues to 

increase through the runoff season as more months in the annual inflow are observed.  

During the late summer months, ESP and 4-Basin kNN forecasts can be too tightly 

constrained, while Climatology has a larger range of forecasted inflows. This causes 

Climatology to perform slightly better the other two forecasts. 

The RMSE of WY Lake Powell unregulated inflow is shown in Figure 5-7. The 

4-Basin kNN forecast outperforms the other forecasts at all leads. This is a different 

result compared to CRPSS in Figure 5-6. The RMSE stays relatively constant in the 

out-year and decreases starting in November at an 11-month lead as more 

information is known about initial conditions in the basin. The RMSE continues to 

decrease into the spring and to the end of the water year.  It is important to take both 

metrics, CRPSS and RMSE, into account when assessing the streamflow forecasts. 
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Figure 5-6. CRPSS of annual WY Lake Powell unregulated inflow. CRPSS at a 24- to 1-
month lead is compared for Climatology, ESP, and 4-Basin kNN. The forecasts are available 
from 1982-2016. Each boxplot includes one data point for each year with 35 data points in each 
boxplot. The x-axis shows the ‘month/number of lead months’ to the end of the WY.  
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Figure 5-7: RMSE of annual WY Lake Powell unregulated inflow. The RMSE at a 24- to 1-
month lead is compared for Climatology, ESP, and 4-Basin kNN. The forecasts are available 
from 1982-2016. Each boxplot includes one data point for each year with 35 data points in each 
boxplot. The x-axis shows the ‘month/number of lead months’ to the end of the WY.  

5.5.1.2 Visualization of Spread: Scatter Plot of Forecast vs. Observations 

The second hydrology metric is a visualization of spread of the streamflow forecasts. 

The spread of an ensemble forecast indicates information about bias, confidence, and 

discrimination of the forecast.  A visualization of annual WY Lake Powell unregulated 

inflow spread for ESP and 4-Basin kNN are shown in Figure 5-8 and Figure 5-9, 

respectively.  The Climatology figure was omitted because it does not portray useful 

information since it forecasts the same values though the out-year and is only 

informed by observed flow in the current forecasted year. Separate plots depict one 

lead time and contain 35 boxplots, each representing a single ensemble forecast of 

annual inflows.  The location of the boxplot on the x-axis represents the observed 
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annual flow value versus the ensemble spread forecast on the y-axis. The boxplot’s 

whiskers represent the full range of the forecast, the box is the 25th and 75th 

percentile, and the mid-line representing the forecast mean.  The boxplot should span 

the 1:1 line indicating the forecasts range contains the observed flow.  

At longer leads, the ESP forecasts have converged to climatology and lacks 

discrimination since all forecasts project relatively the same flows. The 4-Basin kNN 

forecasts have a smaller spread with some of the higher observed years forecasted at 

slightly higher flows than average. The spread of the 4-Basin kNN forecasts are also 

smaller, showing that the forecast may be exhibiting too much sharpness at such a 

long lead. The ESP forecasts start to shift from climatology in the summer of the out-

year, while the 4-Basin kNN forecasts don’t show as much change.  In the fall of the 

out-year (October and November, 12- and 11-month leads), the ESP and 4-Basin kNN 

forecasts start to tighten, with most forecasts spanning the 1:1 line. The highest 

observed years start to discriminate from lower and average flow years.  
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Figure 5-8. Spread visualization of annual Lake Powell unregulated inflow for ESP. 
Boxplots of ESP forecast versus the historical Lake Powell annual unregulated inflow (1981-2016) 
for leads of 24- to 1-month. Boxplots represent the 25th-75th quantile and whiskers show the full 
range of the forecast.  
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Figure 5-9. Spread visualization of annual Lake Powell unregulated inflow for 4-Basin 
kNN. Boxplots of 4-Basin kNN forecast versus the historical Lake Powell annual unregulated inflow 
(1981-2016) for leads of 24- to 1-month. Boxplots represent the 25th-75th quantile and whiskers show 
the full range of the forecast.  
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The extreme years in this hindcast period are hard to capture at extended lead 

times since the trace containing the historical weather that produced the extreme 

streamflow was removed from the ESP forecast.  This is done so the forecast doesn’t 

have perfect knowledge for 1 of the 30 traces.  For instance, 2002 has the lowest 

streamflow in the analyzed period.  The ESP ensemble (farthest left in boxplot) does 

not capture the observed streamflow (1:1 line) because no weather traces from ESP 

climatology (1981-2010) were as dry or close to as dry as the 2002 trace.  Therefore, 

the forecast won’t produce as low of streamflow until the initial basin conditions drive 

the forecast, as opposed to precipitation and temperature.  

By January (9-month lead), the forecast spread narrows, especially the 25th to 

75th quartiles of the ensembles.  The 4-Basin kNN forecast remains narrower than 

the ESP forecast through the end of the WY. Both forecasts capture the wet years 

well.  In April at a 6-month lead, both forecasts’ spread have narrowed significantly, 

in some instances to exclude the observed streamflow.  The 4-Basin kNN forecasts 

have a narrower spread, with more forecasted flows closer to the 1:1 line. By June (4-

month lead), forecasts show over-confidence; many ensembles are too narrow and do 

not capture the observed streamflow.  At shorter lead than June, it is hard to discern 

the spread of the forecasts since they have converged on the 1:1 line.  

Reliability Diagram 

The third hydrology metric is reliability diagrams, which measure the relationship 

between the observed relative frequency of an event and the forecasted probability.  

Reliability diagrams describe the reliability, confidence, and resolution of the 
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forecast.  The reliability diagrams for ESP and 4-Basin kNN are shown in Figure 5-10 

and Figure 5-11, respectively, for annual Lake Powell unregulated inflow forecasts at 

leads from 24- to 1- month.  The reliability diagram for Climatology was omitted; the 

forecast is reliable through most of the record, which is expected since the forecast 

covers a wide range of possible inflows.  

At longer leads, the ESP and 4-Basin kNN forecasts have good reliability, as 

the line falls close to the 1:1 line.  The 4-Basin kNN forecast is slightly less reliable 

and over-confident shown by the reliability line being above the 1:1 line for the lower 

forecast probability. The histogram within each plot shows where the observations 

fall within the forecasts.  ESP has good sharpness and resolution at longer leads as 

shown by a histogram in each plot, which are fairly evenly distribution in each bin.  

The histograms for 4-Basin kNN shows that the forecasts have a conditional bias 

where the forecast probabilities are lower than the observed probabilities.  

As leads decrease to the winter of the forecasted year, both ESP and 4-Basin 

kNN show worse reliability with the reliability line higher than the 1:1 line at lower 

forecast probabilities. This is because the observed flows are falling in the lower range 

of the forecast ensembles more often. As lead decreases into the spring and summer, 

both forecasts become much too sharp and over-confident.   Forecasts are consistently 

too high relative to the event’s relative frequency, meaning the average forecast 

probability is larger than the average observed frequency.  As seen in the histogram, 

most observed frequencies fall in the lowest bin of the forecast probabilities, many of 

these falling outside the forecast ensemble.  
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The limited number of forecasts in specific bins give a reliability diagram a 

jagged look.  This can be clearly seen in August at a 2-month lead in the ESP figure 

where one bin has no forecasts.  The forecasts at shorter leads have poor reliability 

and are forecasting streamflows higher than observations in many cases.  This 

matches the findings from visualization of spread in Figure 5-8 and Figure 5-9. 
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Figure 5-10. Reliability diagram of Lake Powell WY unregulated inflow for ESP. Diagrams 
are shown for a 24- to 1- month lead for Lake Powell annul unregulated inflow from 1982-2016.  
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Figure 5-11. Reliability diagram of Lake Powell WY unregulated inflow for 4-Basin kNN. 
Diagrams are shown for a 24- to 1- month lead for Lake Powell annul unregulated inflow from 1982-
2016.  
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5.5.2 Operational Projection Metrics 

The operational projections are assessed in two separate sections that evaluate the 

performance of the MTOM through (1) historical streamflow simulations and (2) 

streamflow forecast simulations. In the first section, metrics enable better 

understanding of potential MTOM modeling errors through evaluation of model 

simulations with historical streamflows. In the second section, metrics allow for 

evaluation of how different streamflow forecasts affect operation projections made by 

MOTM.  The streamflow forecasts compared are Climatology, ESP, and 4-Basin kNN. 

Operational projections assess errors in annual outflow, EOWY storage, and EOWY 

pool elevation, as well as categorical skill scores of operational tiers and releases. 

5.5.2.1 Historical Streamflow Operational Projections  

Errors in Pool Elevation & Outflow for Lake Powell and Lake Mead  

Historical streamflow was used to analyze differences in historical and projected 

operations of Lakes Powell and Mead, as well as errors caused by MTOM assumptions 

or parameterization.  Figure 5-12 illustrates differences between the historical and 

MTOM projected annual outflow and EOWY storage of Lakes Powell and Mead for 

each year from 2008-2016 (post-Interim Guidelines). Errors in the outflow of Lake 

Powell are due to incorrectly projected operating tier or special case operations.  The 

Lake Mead outflow errors are very small and not discernable at the scale of Figure 

5-12.   

The historical operating tier and release for each year are compared to the MTOM 

projections. The historical operating tier and release are listed at the beginning of 
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each year’s description (see Figure 5-2 for details about the operating tiers). The 

operating tier and outflow errors cause the larger errors in Lake Powell and Lake 

Mead EOWY storage.  Since outflow from Lake Powell flows into Lake Mead, there 

is an inverse relationship between their storage errors.  There are also smaller errors 

visible in EOWY storage for both reservoirs. These errors are due to model 

assumptions and parameterization, and will be discussed in the ‘MTOM Errors’ 

section below.  

 2008 – Upper Elevation Balancing  – April Adjustment to Equalization at 8.98 

MAF 

At longer leads from 24- to 7-month, MTOM simulates Upper Elevation 

Balancing with no April Adjustment and a Lake Powell release of 8.23 MAF.  

The historical inflow to Lake Powell was lower than the Most Probable 

forecasted inflow, which is used to determine the annual release and potential 

April Adjustment.  Due to the over-forecasting of the Most Probable forecast, 

the operating tier was changed to Equalization with an April Adjustment in 

the April 24MS.  If the actual inflow was known, like in this simulation, there 

would have been no April Adjustment.  MTOM was forced into an April 

Adjustment in April 2008 (6-month lead), since the decision to adjust had been 

made by Reclamation.  Shorter leads also have error in the outflow and storage 

as MTOM balances the contents of Lake Powell and Lake Mead slightly 

differently than historically observed.  

  



 131 

 2009 – Upper Elevation Balancing at 8.23 MAF 

The 24- to 19-month leads simulate Equalization above 8.23 MAF (~9.55 MAF) 

in 2009 due to projections of no 2008 April Adjustment, leading to a lower Lake 

Powell release (see above description of 2008).  The storage in Lake Powell is 

under-projected and the storage in Lake Mead is over-projected due to the 

higher release from Lake Powell.  

 2010 – Upper Elevation Balancing at 8.23 MAF 

There are no errors in 2010 annual outflow from Lake Powell and Lake Mead.   

 2011 – Upper Elevation Balancing – April Adjustment to Equalization at 13.74 

MAF with a carryover release of 1.24 MAF in WY 2012 

The historical reservoir operations in WY 2011 were more complex due to a 

large increase in inflow to Lake Powell in late winter and early spring. The 

increase in inflow moved the projected Lake Powell pool elevation above the 

Equalization line, resulting in an April Adjustment to Equalization.  The full 

target release volume for 2011 could not be released by the end of the WY due 

to power plant capacity constraints at Glen Canyon Dam.  Therefore, a portion 

of the 2011 release (1.24 MAF) was carried over and released in 2012.  This 

special operation caused errors in projecting annual outflow and storage at 

longer leads 

The annual outflow from Lake Powell was over-projected for all leads since 

MTOM projects that all or most of the target annual release volume for WY 

2011 can be released with no carryover. MTOM projects Equalization from the 
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beginning of the WY since the model has perfect knowledge of the historical 

inflow to Lake Powell and did not have to make the operating tier change in 

April.  At shorter leads in WY 2011, MTOM starts to constrain the releases 

from Lake Powell due to the power plant capacity constraint. As fewer months 

are left to release in the WY, the outflow error decreases and outflow is carried 

over to WY 2012.  

 2012 – Equalization at 8.23 MAF with carryover release of 1.24 MAF 

Lake Powell outflow errors at 24- to 15-month leads were caused by carryover 

errors in 2011 (see notes above).  

 2013 – Upper Elevation Balancing at 8.23 MAF 

There are no errors in 2013 annual outflow from Lake Powell and Lake Mead.     

 2014 – Mid-Elevation Release at 7.48 MAF 

For the leads of 24- to 15-months, MTOM projected Upper Elevation Balancing 

at 8.23 MAF for WY 2014.  This is because MTOM had knowledge of the 

observed inflow to Lake Powell from August to December 2013, which was well 

above average (~2.4 MAF). The August 2013 24MS, which is used to determine 

the 2014 Lake Powell operating tier, used average inflow to Lake Powell (~1.2 

MAF) that resulted in different EOCY pool elevations.  Since MTOM had the 

observed inflow, Upper Elevation Balancing was projected for 2014 until 

August 2013 when the 24MS projected EOCY Lake Powell pool elevation was 

input to MTOM.  
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 2015 – Upper Elevation Balancing at 9.0 MAF 

There are no errors in 2015 annual outflow from Lake Powell and Lake Mead.     

 2016 – Upper Elevation Balancing at 9.0 MAF 

There are no errors in 2016 annual outflow from Lake Powell and Lake Mead.     

 

 

Figure 5-12. Lake Powell and Lake Mead errors in annual outflow and EOWY storage for 
2008-2016. Columns represent Lake Powell (right) and Lake Mead (left). The top row is the annual 
outflow error and the bottom row is the EOWY storage error.  Lines represent the error in a specific 
year from a 24- to 1- month lead with the two-digit number denote the year.   
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From the above year-by-year analysis we found that most of the large errors in 

annual outflow and EOWY storage were due to the errors in the deterministic Most 

Probable forecast used to make tier determinations in the 24MS.  These errors in 

operating tiers were exemplified in 2008 when there was an April Adjustment to 

Equalization that wouldn’t have been made if there was knowledge of the actual 

streamflow; these errors extended into the 2009 forecast.  The errors due to carryover 

were also a result of streamflow forecasting as well as release constraints at Glen 

Canyon Dam. Similar to 2008, errors in 2014 were a result of MTOM having 

knowledge of the actual streamflow into Lake Powell that caused MTOM to project a 

different operating tier than the 24MS.  Overall, this analysis illustrates how errors 

in streamflow forecasts can cause incorrect annual operating tier determinations and 

releases; with better streamflow forecasting, Reclamation could make better 

projections of operational projections at longer leads.  

Pool Elevation Evolution 

The evolution of pool elevations for MTOM simulations with input historical 

streamflow are shown in Figure 5-13.  The simulations start in January, April, and 

August of 2008-2016.  The solid black line represents observed pool elevation in Lake 

Powell and Lake Mead.  
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Figure 5-13. Pool elevation evolution for simulations starting in January, April, and 
August of 2008-2016 for Lake Powell and Lake Mead. The start month’s pool elevation is 
represented by colored dots, followed by a line of the same color which is the pool elevations during 
the simulation. The solid black line shows observed pool elevation. The elevation of operating tiers 
are shown by annotated dashed lines.  

The observed streamflow projected pool elevations follow observed pool 

elevations well.  The analysis of Figure 5-12 describes many of the errors in the Figure 

5-13 that are due to incorrectly projected operating tiers.  For instance, in the January 

2008 simulation, Lake Powell released 8.23 MAF instead of 8.98 MAF due to an April 
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Adjustment to Equalization that would not have occurred if the actual inflow to Lake 

Powell was known at the time of the adjustment in April.  The Lake Powell pool 

elevation is over-projected starting at the end of 2008 through the remainder of the 

simulation.  Lake Mead’s pool elevation is under-projected then over-projected for 

this simulation due to the lasting effects of incorrect releases in the following year’s 

operating tier.   

Simulations in 2011 through 2012 show a different pool elevation evolution in 

Lake Mead and Lake Powell due to the incorrect carryover release timing.  

Simulations starting at the end of 2012 and 2013 have incorrect projected pool 

elevations at long leads due to MTOM projecting an Upper Elevation Balancing tier 

(8.23 MAF release) for 2014 instead of the observed Mid-Elevation Release tier (7.48 

MAF). This caused over-projected pool elevations in Lake Mead and under-projected 

pool elevations in Lake Powell.  Errors due to Lake Powell’s operating tier projection 

were discussed in the section above labeled ‘Reservoir Operations in the CRB’.  

MTOM Error (2008-2016)  

Besides errors in operational projections between historical and MTOM simulated 

reservoir operations, there are also errors in the physical process modeling 

(parameterization) and assumptions in MTOM.  To quantify these errors, a basic 

mass balance was performed on Lake Powell and Lake Mead.  The errors in storage 

and outflow were removed.  The annual mass balance calculation was described in 

Section ‘Operational Projection Metrics’. 
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Reservoir mass balance errors could be due to incorrect assumptions about 

evaporation, precipitation, bank storage, unaccounted side inflows into either 

reservoir, or adaptive management in Upper Basin reservoirs.  In MTOM, 

evaporation and precipitation are assumed monthly volumes based on the area of the 

reservoir surface.  Bank storage is determined by calculation from the change in pool 

elevation every month. These model parameters can cause errors in the mass balance 

of the reservoirs since these values are more dynamic than MTOM assumes.  

There could also be errors in Lake Powell inflow since the inflow forecast 

location is for unregulated inflow where  Upper Basin reservoir operations are 

removed. This allows the releases from Upper Basin reservoirs to affect the inflow to 

Lake Powell, and therefore the mass balance; further investigation would be needed 

to quantify these errors in Upper Basin reservoir operations.  Errors in the 

intervening flows between Lake Powell and Lake Mead could also exist, though these 

intervening flows should be correct since they are calculated using a mass balance for 

the Lower Basin.  Historical unregulated inflow input to MTOM could also have 

errors, since the unregulated inflow to Lake Powell is a calculated value, not a 

measured value.   

Figure 5-14 shows the errors in the mass balance for Lake Powell and Lake 

Mead.  For Lake Powell, errors in the water balance were at maximum 500 kaf at 

longer leads (~5% of annual Lake Powell unregulated inflow).  MTOM is 

predominantly under-projecting storage in Lake Powell, except a couple years such 

as 2014 and 2015; therefore, MTOM is simulating  less water than observed in Lake 
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Powell.  This could be due to overestimating evaporation, unaccounted for side inflows 

to Lake Powell, errors in bank storage calculations, errors in the observed streamflow 

input to MTOM, or lower releases from Upper Basin reservoirs projected by MTOM 

compared to actual releases.  Errors decrease with lead due to fewer months to 

project.  Errors of the Lake Powell water balance at a 24-month lead are 201 kaf on 

average and decrease to about of 42 kaf at a 1-month lead.  These errors are quites 

small, especially when compared to other known mass balance related errors.  For 

example, the error of the Glen Canyon Dam penstock’s measured outflow is 2%, which 

results in an annual error of 160 kaf with a 8.23 MAF release.   

Errors in the Lake Mead water balance have a more linear trend than Lake 

Powell errors.  MTOM over-projects the storage in Lake Mead in all years.  This could 

be due to underestimating evaporation, over-projecting bank storage, or 

overestimating intervening flows between Lake Powell and Lake Mead.  At a 24-

month lead, the errors of the Lake Mead water balance are on average 127 kaf and 

decrease to 14 kaf at a 1-month lead.  More work is needed to provide a more accurate 

assessment of the source of these errors. 
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Figure 5-14. MTOM annual water balance error for Lake Powell and Lake Mead from a 24- 
to 1-month lead (2008-2016). 

5.5.2.2 Ensemble Streamflow Forecast Operational Projections 

RMSE of Pool Elevations 

The RMSE of projected Lakes Powell and Mead EOWY pool elevations for 

Climatology, ESP, and 4-Basin kNN forecasts are compared in Figure 5-15 for 1982-

2016.  The streamflow forecasts are compared to the ‘historical streamflow projected’ 

pool elevations.  

The streamflow forecasts have a wide range of possible flows, especially when 

forecasting from longer leads.  Lake Powell has a larger RMSE at all leads compared 

to Lake Mead because the inflows to Lake Mead are controlled by Lake Powell, which 

releases a smaller range of flows compared to the potential variability in Lake Powell 

inflow. At all leads, 4-Basin kNN outperforms ESP, while Climatology performs 

worse than both other forecasts. For Lake Powell, the RMSE for the forecasts are 

quite large with a median RMSE of 45 ft, 36.8 ft, and 26.6 ft for Climatology, ESP, 
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and 4-Basin kNN, respectively. The RMSE slowly decreases with lead, especially in 

January at a 9-month lead when the forecasts gain more skill and sharpness. The 

RMSE for ESP and 4-Basin kNN is much smaller than Climatology from January 

through July, to the end of the runoff season. By April at a 6-month lead, the median 

RMSE for forecasts have decreased to 25.4 ft, 11.9 ft, and 9.4 ft for Climatology, ESP, 

and 4-Basin kNN, respectively. The RMSE continues to decrease through the end of 

the WY. 

For Lake Mead, RMSE decreases relatively linearly with median RMSE values 

at a 24-month lead of 30.7 ft, 24.2 ft, and 19.1 ft to a 6-month lead of 13.1 ft, 5.5ft, 

and 2.9 ft for Climatology, ESP, and 4-Basin kNN, respectively.  Climatology has a 

slightly different trend in reduction in RMSE with not much change in RMSE until 

the runoff seasons for the two years. This is because Climatology doesn’t have skill 

until the runoff has been observed. By the runoff season of the forecasted year, ESP 

and 4-Basin kNN have very small errors, since the release from Lake Powell has been 

set by the operating tier.  



 141 

 

Figure 5-15. RMSE of EOWY pool elevation of Lake Powell and Lake Mead. Climatology, 
ESP, and 4-Basin kNN are compared to historical streamflow projected pool elevations (1982-2016). 
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Categorical Scores of Operational Projections  

Categorical Scores are used to analyze the projected operating tiers of Lakes Powell 

and Mead.  The categories for this analysis are the operating tiers and releases based 

on the 2007 Interim Guidelines which are summarized in Table 5-1.  Categorical 

scores are evaluated based on the tier alone, or the combined tier and release.  

Table 5-1. Operating tiers and releases used in categorical scores based on the 
2007 Interim Guidelines.  

 

Percent Correct and Heidke Skill Score are categorical verification metrics 

used here to analyze probabilistic operating tier and release projections for Lake 

Powell and Lake Mead in Table 5-2 and Table 5-3.  The Percent Correct is the percent 

of forecast traces that projected the correct category for operating tier and/or release. 

The Heidke Skill Score is accuracy of the forecast in predicting the correct tier relative 

to that of random chance.  The metrics are evaluated on two different scales. The 

Reservoir Tier Release

Annual release > 8.23 maf

Annual release = 8.23 maf

Annual release > 8.23 maf

Annual release = 8.23 maf

Annual release < 8.23 maf

Annual release = 8.23 maf

Annual release = 7.48 maf

Lower Elevation Balancing Lower Elevation Balancing Tier

1
st

 level (Mead ≤ 1,075 and ≥ 1,050 ft)

2
nd

 level (Mead < 1,050 and ≥ 1,025 ft)

3
rd

 level (Mead < 1,025 ft)

Any except Flood Control

Flood Control

Normal Normal or ICS Surplus Condition

Lake 
Powell

Equalization

Upper Elevevation Balancing

Mid-Elevation Release

Lake 
Mead

Shortage

Surplus
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‘Tier’ results are broader categories and therefore have higher scores than the ‘Tier 

& Release’ categories, which require the simulation to correctly determine the release 

as well as the operating tier.  The categorical scores for Climatology, ESP, and 4-

Basin kNN streamflow forecasts are compared to historical streamflow projected 

operations for leads in January, April, and August of the out-year for 1982-2016.  See 

Figure 5-2 for a detailed description of operating tier determination.  

The Percent Correct in Table 5-2 shows that Lake Mead performs better than 

Lake Powell when forecasting the tier and release. This is expected since Lake Mead 

has fewer tiers and potential releases, and since the pool elevation has smaller errors 

at longer leads compared to Lake Powell (see Figure 5-15). All forecast projections of 

Lake Mead perform well. Even climatology performs well at the longest lead in 

January. For Lake Powell, the tier only determinations perform relatively well, 

especially by August. The ‘Tier & Release’ projections are lower.  This is expected 

since it is harder to get these categories both correct when there are a wide variety of 

different forecasts at longer leads.  The Heidke Skill Score in Table 5-3 shows similar 

results to the Percent Correct, except with lower values since we are comparing the 

forecasts to random chance. 

When comparing the forecasts, 4-Basin kNN does equal to or better than the 

other forecasts. Climatology performs the worst since it is not an informed forecast. 

There is less difference between ESP and 4-Basin kNN.  The differences between ESP 

and 4-Basin kNN operational projection performance occurs when projecting the 

operating tier of Lake Powell, especially when including the release. Specifically, 4-
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Basin kNN performs better at Lake Powell when projecting Equalization and Upper 

Elevation Balancing, especially when the observed tier is an Equalization release 

equal to 8.23 MAF and an Upper Elevation Balancing release above 8.23 MAF.  

Table 5-2. Percent Correct for Climatology, ESP, 4-Basin kNN versus historical streamflow 
projected operating tiers from the out-year at various months. 

 

 
Table 5-3. Heidke Skill Score for Climatology, ESP, 4-Basin kNN versus historical 
streamflow projected operating tiers from the out-year at various months. 

 

5.6 Discussion & Conclusion 

The Colorado Basin Streamflow Testbed provides a protocol for evaluating 

streamflow forecasts for the hydrologic and operational projection skill for a 2-year 

period.  The testbed provides a framework for analyzing streamflow forecasts through 

metrics assessing the error, skill, spread, and reliability of the Lake Powell annual 

Jan Apr Aug Jan Apr Aug

Climatology 68% 69% 83% 54% 55% 67%

ESP 71% 75% 83% 57% 61% 69%

4-Basin kNN 71% 77% 86% 60% 63% 71%

Climatology 94% 95% 100% 94% 95% 100%

ESP 99% 99% 100% 99% 99% 100%

4-Basin kNN 100% 100% 100% 100% 100% 100%

Lake Powell

Lake Mead

Reservoir
Streamflow 

Forecast

Tier Tier & Release

Jan Apr Aug Jan Apr Aug

Climatology 0.37 0.41 0.67 0.31 0.35 0.52

ESP 0.39 0.50 0.68 0.34 0.41 0.55

4-Basin kNN 0.39 0.54 0.73 0.38 0.45 0.58

Climatology 0.87 0.90 1.00 0.87 0.90 1.00

ESP 0.97 0.98 1.00 0.97 0.98 1.00

4-Basin kNN 0.99 1.00 1.00 0.99 1.00 1.00

Lake Mead

Tier Tier & Release
Reservoir

Streamflow 
Forecast

Lake Powell
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unregulated inflow.  Streamflow forecasts are run through MTOM to simulate 

operational projections with metrics including MTOM projected pool elevation, 

storage, and operating tiers.  The testbed is built to process various streamflow 

forecasts with a specific protocol that allows for an objective comparison of current 

operation streamflow forecasting method, ESP, and experimental streamflow 

forecasting method, 4-Basin kNN.  

Three ensemble streamflow forecasts were compared from 1982-2016. At long 

leads, all forecasts have good resolution, sharpness, and reliability, but lacks 

discrimination and skill.  4-Basin kNN forecasts are narrower than ESP and 

Climatology, and may be exhibiting too much sharpness at such a long lead.  ESP and 

4-Basin kNN outperformed Climatology starting in the fall of the out-year, with skills 

much better than climatology by April of the forecasted year when there is better 

information about basin initial conditions such as snowpack. 4-Basin kNN performs 

slightly better than ESP at most leads through the fall, winter, and spring of the 

forecasted year.  At shorter leads, ESP and 4-Basin kNN are over-confident, too 

sharp, and has poor resolution and reliability.  The forecasts can be too narrow, which 

sometimes excludes the observed annual streamflows.  Overall, 4-Basin kNN seems 

to slightly outperform ESP in the winter and spring of the forecasted year, though it 

may not perform as well at longer leads. 4-Basin kNN has information about future 

climate forecasts that increases the forecast skill.  

The historical streamflow projected operations were compared to observed 

operating tiers for 2008-2016.  This comparison illustrates how errors in streamflow 
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forecasts cause errors in the annual operating tier determination and releases. If 

better streamflow forecasts were available for the 24MS Most Probable simulations, 

Reclamation could make better projections of operational projections at longer leads. 

This may be a difficult task to surmount since deterministic forecasts can only provide 

so much information about the potential future operations and how certain the 

forecast may be.  

Errors in the MTOM model were analyzed with a mass balance on Lake Powell 

and Lake Mead.  Lake Powell predominantly under-projected storage and Lake Mead 

over-projected storage.  Errors are likely due to incorrect modeling assumptions or 

parameterization that include evaporation, precipitation, bank storage, unaccounted 

side inflows into either reservoir, or adaptive management in Upper Basin reservoirs. 

More work should be done to assess the sources of these modeling errors. 

Operational projection metrics were used to evaluate how streamflow forecasts 

affect operating tier projections. Pool elevations showed larger errors at longer leads 

that decreased, especially by April for both Lakes Powell and Mead.  4-Basin kNN 

outperformed ESP for all leads, illustrating the even slightly better performing 

streamflow forecasts can translate into reduced error in operational projections. The 

categorical scores showed that 4-Basin kNN performed better than ESP, though in 

some leads the performance was only slightly better.   

The testbed results for streamflow forecasts and operational projections in the 

CRB illustrates that improved streamflow forecasts can enhance operational 

projections. The experimental forecast, 4-Basin kNN, exemplifies the use of climate 
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informed streamflow forecasts in an operational projection model. This experiment 

shows that climate forecasts can be useful by nudging streamflow forecasts in the 

correct direction. The resulting operational projections were also shown to be more 

accurate. In the future, other experimental streamflow forecasts can be run through 

the testbed to assess the hydrologic skill and how the skill translates into operational 

projections in MTOM.  
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6 CHAPTER VI: Conclusions 
 

6.1 Summary & Discussion 

This dissertation presented S2S climate forecast products on a watershed scale and 

explored applications of climate forecasts use for water management in the Colorado 

River Basin.   In many water sectors, climate forecast products are underutilized due 

to a perceived poor skill, difficulties injecting the data, mismatched spatial or 

temporal resolution, and institutional reasons. To overcome some of these hurdles, 

this work transitioned and post-processed climate forecasts on a watershed scale.  In 

Chapter 2, raw CFSv2 and NMME forecasts were aggregated to a USGS HUC-4 

watershed scale over the CONUS domain and bias corrected through quantile 

mapping.  These S2S climate forecasts were made available in real-time on the S2S 

Climate Outlooks for Watersheds web-based tool that displays forecasts and baseline 

skill assessments of bi-weekly CFSv2 and monthly NMME temperature and 

precipitation forecasts.  In Chapter 3, we explored the potential of the post-processing 

method PLSR for improving the raw CFSv2 bi-weekly forecasts.  The PLSR method 

utilizes climate and land surface information from concurrent CFSv2 field 

components.  We found PLSR resulted in marginal to moderate increases in skill for 

2-3 and 3-4 week precipitation forecasts and 3-4 week temperature forecasts for some 

watersheds. 

In Chapters 4 and 5, we explored watershed scale S2S climate forecast 

applications through streamflow forecasting in the Upper Colorado River Basin.  In 

the Colorado River Basin, management decisions would benefit from streamflow 
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forecasts with improved skill to provide assessments of future basin risk, such as the 

probability of water shortage or flood control.  An experimental streamflow 

forecasting technique, 4-Basin kNN, was compared to the operational forecasting 

method, ESP, to determine how improved streamflow forecasts would affect 

operational projections of future basin conditions. The 4-Basin kNN trace weighting 

scheme was found to increase streamflow forecast accuracy and skill at most leads 

through weighting ESP traces in four sub-basins in the Upper Basin using 1-month 

and 3-month NMME climate forecasts, and the proceeding 3-month average observed 

flow. These streamflow forecasts were then run through the Colorado Basin 

Streamflow forecast testbed that uses Reclamation’s Mid-term Operations Model, 

MTOM, to evaluate streamflow forecasting on a water year scale, along with 

operational projections at Lakes Powell and Mead.  The 4-Basin kNN method was 

found to outperform ESP at leads in the winter and spring when comparing the 

accuracy of projecting pool elevation, operating tiers, and releases. The increases in 

streamflow forecasting skill translated to improved accuracy of operational 

projections, though nonlinearly.  

The climate forecast applications in the management of the Colorado River 

Basin illustrated the potential of climate forecast use to inform operational 

projections such as reservoir operations and projections of future basin conditions. 

The climate forecasts used in the 4-Basin kNN method are available in real-time, 

allowing for this experimental method to be operationalized.  Since NMME and 

CFSv2 climate forecasts are already translated to a watershed scale at a useful 
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temporal time frame, they can be more easily used by water managers who lack the 

time or tools to process gridded climate forecasts for their specific watershed needs. 

The post-processed CFSv2 or NMME climate forecasts could be used in other basins 

for water management applications such as to inform timing of reservoir releases 

during runoff season based on temperature forecast or to provide projections of 

precipitation anomalies to inform the possibility of flood control operations at longer 

leads. 

6.2 Future Directions 

There are several extensions of possible work based on the techniques and findings 

presented here. In the future, we could add additional utility to the S2S Climate 

Outlooks for Watersheds web-based tool presented in Chapter 2. Users have shown 

interest in time series plots of forecasts and a comparison to observations for 

individual watersheds.  We could also solicit additional feedback from water 

managers through formal surveys.  

In Chapter 3, we assessed the PLSR post-processing technique with baseline 

predictors over the CONUS domain. Our selected technique showed the potential of 

post-processing climate forecasts to improve forecast skill on the S2S timescale.  

Since this study took a conservative stance to predictor selection with a single set of 

predictors applied over the entire CONUS domain, other studies could select other 

predictors or predictor domains tailored to a specific watershed of interest.  

Different post-processing techniques could be explored such as recently popularized 
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techniques in machine learning that have the potential to capture nonlinear 

relationships between variables.    

The post-ESP method in Chapter 4 showed the opportunity for weighting ESP 

forecast members with climate forecast information. Other trace weighting 

techniques have been explored and compared in other studies of basins in the US 

and could be applied to ESP in the Upper Colorado River Basin.  Since ESP 

produced unreliable forecasts at shorter leads, calibration methods could be 

explored to improve forecast reliability and skill.  The Colorado Basin Streamflow 

Forecast Testbed presented in Chapter 5 is intended for future use and 

developments beyond this study. When other streamflow forecasts become 

available, especially if they can show skill improvements into the out-year, they 

could be run through the testbed.  
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8 Appendices 
 

8.1 Appendix 1: Chapter 2 Quantile Mapping Supplemental Discussion 

In addition to the issues with capturing extreme events, QM can alter the modeled 

covariance of temperature and precipitation by QM treating them independently.  In 

downscaling of daily weather data, it is common (and important) to preserve 

interrelationships between precipitation, temperature, and other fields because there 

are strong observable relationships linked by synoptic atmospheric dynamics.  For 

instance, wet/precipitating days typically have a compressed temperature range 

versus clear days.  At the sub-seasonal timescale, this covariance is typically weaker.  

We nonetheless assess the impact of QM on cross-correlations between precipitation 

and temperature for sub-seasonal bi-weekly CFSv2 predictands for all of the US 

HUC4s, in comparison to observations from NLDAS.  We find that for QM the impact 

varies by season and lead time.  Figure 8-1 shows these cross-correlations for NLDAS, 

and CFSv2 forecasts before and after QM, with the HUCs in each subplot sorted from 

low to high values for observed correlation (with samples sizes for each statistic 

between X and Y of ~360).   QM does not significantly affect cross-correlation for 

January or July forecasts, but has a larger impact, and one that brings cross-

correlations of the CFSv2 forecasts into closer agreement with observations for the 

April and October forecasts.  The disagreement between raw CFSv2 and NLDAS 

grows slightly with lead time.  These results suggest that treating temperature and 

precipitation independently may be acceptable when using QM at the sub-seasonal 
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timescale, and may even improve cross-correlations where the model is biased 

relative to the observations. 

 

Figure 8-1. Cross-correlation of NLDAS, raw CFSv2, and quantile mapped CFSv2. The bi-
weekly cross-correlation of temperature and precipitation for NLDAS, raw CFSv2, and QM CFSv2 
for the forecast months January, April, July, and October. The x-axis is the index of the HUC4s in 
ascending order of NLDAS cross-correlation. 
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8.2 Appendix 2: Comparison of NMME Forecasts and 4-Basin kNN 

Performance 

We analyze how NMME climate forecast skill translated into streamflow forecast 

skill.  To do this, we looked at a specific example of the December 1983 streamflow 

forecast of the 1984 April-July runoff volume.  Table 8-1 shows the NMME 3-month 

and 1-month forecast anomalies for temperature (Temp.) and precipitation (Precip.) 

compared to observations for the four sub-basins. The colors indicate the direction 

and magnitude of the forecast anomalies and observations, with red showing 

illustration higher values and green lower values.  

Table 8-1: Sub-basin precipitation and temperature NMME forecast versus 
observations. 

 

In Table 8-1, the NMME forecasts for both precipitation and temperature 

perform relatively well for all sub-basins except the San Juan. The climate forecasts 

are for above average precipitation and below average temperatures for the month 

and season. This translates into a higher 4-Basin kNN ensemble median compared 

to ESP as shown in Figure 8-2. This shows that the 4-Basin kNN method is able to 

extract additional information from the NMME climate forecasts. There remains 
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issues with the narrowing of the 4-Basin kNN ensemble spread, since in some 

instances, especially those shown here, the streamflow forecast becomes too narrow. 

Future work will investigate calibration of the forecast to improve issues with 

ensemble spread that are exemplified here.  

 

 

Figure 8-2: Runoff season ensemble forecasts for 1982-2016 compared to observations 
arranged by ranked observations. ESP and 4-bains kNN forecasts of Lake Powell April-July 
unregulated inflow are compared at an 8-month lead in December 1983. Observed inflow is 
represented by a red horizontal line.   

 

 


