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Thesis directed by Professor Harihar Rajaram

This thesis examines the effects of a boundary reaction on the effective one-
dimensional transport parameters for a biofilm coated pipe reactor. Both laminar and
turbulent flow conditions are explored. A particle tracking model is used to compute
the effective transport parameters and is verified with analytical results for the laminar
flow case.

After a sufficient development time elapses, the influence of the initial solute
distribution becomesinsignificant and the effective decay rate, velocity, and dispersion
coefficients become constants. The laminar flow model shows that a reactive boundary
with first order reaction kinetics leads to first order kinetics in the average, cross-sec-
tional bulk flow concentration. The presence of areactive boundary causes an increase
in the effective velocity of the solute plume and a decrease in the effective longitudinal
dispersion. It is shown that for laminar flow, the Reynolds number has no impact on
the effective transport parameters. Previous studies that have inferred a correlation
between the effective decay rate and Reynolds number in the laminar flow regime, are
apparently based on the “pre-asymptotic” decay constant and therefore reflect the
effects of entrance gradient development.

A turbulent flow model with no boundary reaction was devel oped, incorporat-
ing accurate representations of the velocity profile and turbulent diffusivity in the wall
region. The results of thismodel are compared to Taylor’s classical result of Kaux (K =
10.1 = constant) for the effective longitudinal dispersion coefficient. The model shows
that Taylor’s result does not apply over awide range of Reynolds numbers and that the
coefficient K in fact varieswith Reynolds number. The addition of aboundary reaction
to the turbulent flow model shows that Reynolds number does have an impact on the
effective transport parameters under turbulent conditions. This results from changesin

the laminar sublayer thickness.
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Introduction

Solute transport and reactions are becoming increasingly important topicsin
the field of Water Resources and Environmental Engineering. In recent years, more
emphasisis being placed on water quality than water quantity. In both surface water
and groundwater, it is essential to understand the fate and transport of contaminantsin
natural watersin order to effectively manage water quality. Contaminant transport is a
influenced by hydrodynamics as well as the chemistry and biology of the aquatic sys-
tem. Thisresearch will focus on describing the hydrodynamics of transport in the pres-
ence of abiological reaction.

Transport within amoving fluid is aresult of two processes. advection and dif-
fusion. Advection is solute transport that results from the mean motion of afluid while
diffusion is transport that results from the random motion of the solute molecules.
Using a control volume and balancing mass, a partial differential equation can be
derived to describe solute transport in athree dimensional system. This equation isthe
widely known advection-diffusion equation. A reaction term can be added to accom-
modate a chemical or biological reaction.

The advection-diffusion equation can be modified to describe masstransport in
almost any physical system. However for the large-scale, multi-dimensional systems

usually studied in engineering applications, the solution of this equation can become



very complicated or even impossible. Simplifying assumptions are invariably required
to reduce the complexity of the solution. One approach isto reduce the dimensionality
of the equations and describe the system in terms of “ effective” parameters. The effec-
tive parameters serve to capture the effects of multiple dimensions so a system can be
described in asingle dimension. The goal of thisthesisisto quantify the effective
transport parameters for a circular pipe, with and without a reactive biofilm, under
laminar and turbulent flow conditions.

The three dimensional advection-diffusion equation for concentration in acir-
cular pipe with aboundary reaction can be reduced to one dimension (along the axis of
the pipe) in terms of the cross-sectional concentration. The solution of this equation
involves an effective decay constant, an effective velocity, and an effective dispersion
coefficient (termed the effective transport parameters). When describing the system in
multiple dimensions, the decay constant used in the advection-diffusion equation
would be the decay constant in the reactive biofilm. Solute would decay according to
this decay constant only when it islocated in the biofilm region of the pipe. However,
the effective decay rate used to describe the system with one dimension, representsthe
overall reduction of the cross sectiona average concentration due to the presence of a
boundary reaction. It isthus likely to be much smaller than the decay rate within the
biofilm, and should also reflect the influence of diffusive exchange between the bulk
flow and biofilm. The effective velocity represents the longitudinal (axial) velocity of
the center of mass of the solute plume and the effective dispersion coefficient repre-
sents the spread of the solute plume in the longitudinal direction.

Horn and Hempel (1995) attempted to quantify the effective decay coefficient
for ashort tube reactor under laminar flow conditions. The study used a numerical
model, calibrated with experimental data, to quantify the effects of areactive biofilm
on bulk flow mass transfer. The goal of the study was to modify an existing mass trans-

fer equation, for a pipe with no biofilm, to include the effects of a boundary reaction.



While the mass transfer coefficient empirically developed by Horn and Hempel
matched their experimental data quite well, it appears that their interpretation of the
mechanisms controlling mass transfer and reaction is incorrect. In particular, they pro-
pose a Reynolds number dependence of the effective decay rate, even though all their
experiments were carried out in the laminar flow regime. We believe that the empirical
relationships devel oped by Horn and Hempel are reactor-specific, in other words, they
can only model the mass transfer coefficient for their reactor and are not generalizable
to all coated biofilm pipe reactors. Due to the short length of their pipe reactor, it
appearsthat their results reflect the influence of laminar flow that is not yet fully devel-
oped (for the higher flow rate cases) and “ pre-asymptotic transport”, wherein the diffu-
sive interactions between the pipe and biofilm have not reached an equilibrium
condition. Cox (1997) showed that under these conditions, representation of one-
dimensional transport in terms of an effective decay constant or mass transfer coeffi-
cient isnot valid. In fact, for fully developed laminar flow, after diffusive equilibrium
between the biofilm and bulk flow is achieved, Cox (1997) showed that the effective
decay constant is independent of Reynolds number.

Cox (1997) used a method of moments approach to analytically solve the one-
dimensional advection-diffusion equation for acircular pipe with a reactive boundary
under laminar flow conditions. Thisresulted in analytical expressions for the effective
decay, effective velocity, and effective dispersion coefficient. The results were verified
with afinite difference numerical solution of the multi-dimensional advection-diffu-
sion equation. The analytical expressions were successful in demonstrating the effects
of areactive biofilm on the effective transport coefficients. However the models were
limited to laminar flow conditions and were subject to inaccuracies under certain con-
ditions. Also, the numerical model was subject to considerable numerical dispersion.
The research performed in this thesis aims to reproduce Cox’s results with a more

accurate and flexible modeling approach and to extend these models to include turbu-



lent flow conditions.

A particle tracking model was constructed to simulate mass transport in a cir-
cular pipe. The theory behind particle tracking models involves statistics and the ran-
dom walk method of modeling. Basically the model uses alarge number of particles
which move independently of one another. Each particle is subject to random motion
but is restricted so that the average motion of all the particles meets certain statistical
requirements. The ideais that each particle represents a solute molecul e that moves
about due to Brownian motion. Depending on the location of the particle in the sys-
tem, it may also be subject to advection due to a velocity field or large scale random
motion caused by turbulence. The velocity field, degree of random particle motion,
and statistical nature of the model can be adjusted to accommodate various physical
systems.

Since particle tracking models are based on statistics and do not involve a solu-
tion to the advection-diffusion equation, they can be used to describe highly complex
physical systems that could not be modelled otherwise. The application of particle
tracking modelsto the field of groundwater hydrology is highly relevant. They are cur-
rently used to describe contaminant transport in porous media and fractured flow sys-
tems. However, the particle tracking model developed in this research is designed to
specifically describe solute transport in a circular pipe. The laminar flow results
obtained from the particle tracking model coincide with Cox’s research and give valu-
able insight to the relationship between biofilm characteristics and the effective trans-
port parameters. The zeroth, first and second mass moments of the solute plume are
used to determine the transport parameters. In general, as the reactive properties of the
biofilm increase, the effective decay rate increases and the effective dispersion
decreases.

There are two important aspects to the development of the turbulent flow

model. The first deals with the velocity and diffusivity profiles used in the model. (In



turbulent flow radial transport occurs as a result of turbulent eddies as opposed to
molecular diffusion. The term used to describe this form of radial transport is the eddy
diffusivity and it varies with the radial location in the pipe.) A pipe experiencing turbu-
lent flow conditionsis comprised of two distinct regions of flow; the turbulent core and
the laminar boundary layer. The turbulent core makes up the majority of the pipe cross
section and is characterized by large rotational eddies and high flow velocities. The
laminar boundary layer exists very close to the pipe wall. In this region the turbulent
eddies dissipate and viscous forces tend to dominate the flow field much like laminar
flow. The velocity and diffusivity profilesin the turbulent core are well defined and
have been confirmed by experimentation; however in the wall region thisis not the
case. There have been several attempts to develop velocity and diffusivity profiles for
the laminar sublayer that are continuous with the respective profiles in the turbul ent
core. While there is some debate about the exact nature of the wall region, one of the
more well known studies was used to develop the velocity and diffusivity profilesin
this research.

While there has been considerable research in describing the wall region of a
pipe in turbulent flow, no attempt has been made at describing the nature of transport
in the entire system since Taylor’s classical work (Taylor, 1954). Taylor attempted to
guantify the effective dispersion coefficient in acircular pipe under turbulent flow con-
ditions. At that time, the universal velocity profile for the turbulent core had not been
developed and no extensive research had been performed on the velocity and diffusiv-
ity in the wall region. For the turbulent core, avelocity profile which was very near to
the universal profile was used. A linear velocity profile was used in the wall region.
Given these profiles, Taylor showed that the effective dispersion coefficient can be
expressed as 10.1au- where a is the pipe radius and u- is the shear velocity. The mod-
els developed in this research using the more recent expressions for velocity in the

wall region show that the effective dispersion coefficient varies with Reynolds number



and hence the “ constant” 10.1 is not really constant. Thisis an important discovery
since Taylor’s result has been accepted since 1954 and additional research on the topic
has not been performed since then.

The second aspect of the turbulent flow models involves the addition of areac-
tive biofilm. There is no documentation of any research attempting to describe this
system. The model results show that a reactive biofilm has similar effects on the effec-
tive transport coefficientsin aturbulent system as that in alaminar flow system. One
important difference, however, isthat in laminar flow the effective decay constant does
not vary with Reynolds number while in turbulent flow it does.

In summary, the particle tracking models developed in this research success-
fully quantify the effective transport parameters for a circular pipe with a boundary
reaction for both laminar and turbulent flow. The laminar flow models produce results
that match with Cox’s analytical and numerical results. The non-reactive turbulent
flow models show that for the more recent velocity profiles in the turbulent core and
the wall region, the effective dispersion coefficient varies with Reynolds number and is
therefore inconsistent with Taylor’s result. This calls for additional physical experi-

mentation of dispersion in turbulent pipe flow for awide range of Reynolds numbers.



Chapter 1

Background and Thesis Objectives

1.1 Background
M ass Balance Equations

Transport within amoving fluid essentially takes place as aresult of two mech-
anisms; advection and diffusion. Advection is defined as the transport of solute due to
the mean motion of the fluid. Diffusion, on the other hand, is transport due to the ran-
dom motion (brownian motion) of solute molecules. Using a control volume approach
and performing a mass balance, the following equation can be derived to describe the
advection-diffusion system:

aC ocC 0 GCD 0

n— +nu Z)— —
(7. 2)5

p oo _
= =0 Eq11

ox X@xD Gy%l yayD az ZazD
where x is the longitudinal direction, y and z are perpendicular to the longitudinal
direction, tistime, u(y,2) isthe velocity in the x direction asafunction of yand z, nis
the porosity of the medium, and D,, Dy, and D, are the diffusion coefficientsin the
respective directions. Equation 1.1 iscommonly referred to asthe “ advection-diffusion
eguation.”

Dueto radial symmetry, flow within acircular pipe can be described with only

two space variables using aradia coordinate system. In radial coordinates, Equation



1.1 reduces to:

6C+n( oC 10 OC]] G%DGCD Eq. 1.2
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wherer istheradial position. Figure 1.1 illustrates the control volume for the radial

coordinate system.

Figure 1.1: Radial Control Volume
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Equation 1.2 can be solved analytically or numerically to determine the con-
centration as a function of time, the radial position, and longitudinal position. This
solution is not easily obtained and is sometimes unnecessary. A more useful approach

would be to develop an equivalent one-dimensional “ effective transport” equation.

Shear Flow Dispersion

Shear flows involve velocity distributions perpendicular to the flow direction.
Often, these vel ocity distributions do not change along the flow direction. An example
of such flow islaminar flow in a straight, closed conduit with a constant cross section.
Common to all shear flowsisthat solute spreading in the direction of flow is domi-

nated by the velocity profile in the cross section (Fischer, 1979). For example, if apar-



ticle was located near the wall of a pipe and another was located in the center of the
pipe, their rate of spreading (with respect to each other) due to velocity differences
would greatly exceed that of molecular diffusion. However, given enough time, a sol-
ute particle’s random motion, due to molecular diffusion, will cause it to sample the
entire velocity profile. Therefore, eventually, the time-averaged vel ocity of any particle
will equal the cross sectionally averaged velocity in the pipe (Taylor, 1953). However,
the rate of separation of particles will still be much greater than if all particles were
travelling at the same advective velocity. This enhanced spreading due to the interac-
tion between the velocity profile and transverse diffusion is commonly referred to as
dispersion.

Taylor (1953) showed that an effective longitudinal dispersion coefficient can
be used to represent the dispersive effects of both transverse diffusion and the variation
of the velocity profile. This assumption has been shown to be valid only after a“ devel-
opment length” or “development time”, whereby the effective longitudinal coefficient
has reached an asymptotic value (Taylor, 1953). Using this assumption, and averaging
the concentration and velocity of the entire cross section, a one dimensional, effective

advection-dispersion equation can be derived:

IC+u2Cc-D-2C=0 Eq. 1.3

where T is the cross-section average concentration, U isthe average velocity, and D" is
the effective longitudinal dispersion coefficient.

While Equation 1.3 is useful for describing the effective one-dimensional
parameters of a system, it is not always applicable. Initially, the distribution of solute
has a major impact on local concentrations and dispersion. Advective dispersion and
molecular diffusion have yet to reach a balance so an effective dispersion coefficient

cannot be used. In order to model this process, it is necessary to use Equation 1.2.



After along enough development time however, each solute particle has sam-
pled the entire velocity field several timesand theinitial distribution of solute ceasesto
have an impact on dispersion. The velocity of each solute particle isindependent of its
initial velocity. Advective and diffusive transport have reach an equilibrium and the
effective dispersion coefficient has reached an asymptotic value. Also, the solute con-
centration is uniformly distributed across any given cross section. At this point, a
pseudo-steady state condition has been established in a coordinate system moving at u

and Equation 1.3 can be used to model the process.

Taylor Dispersion in Laminar Flow

At low Reynolds numbers, when viscous forces dominate inertial forces, flow
islaminar. The velocity at any given radial location is constant and the instantaneous
velocity profile is smooth because there are no temporal velocity fluctuations due to
turbulence. Therefore, lateral transport of solute occurs by molecular diffusion only.
As the solute moves through various vel ocity streamlines, it is transported in the longi-
tudinal direction by advection. Since, at any given time, solute exists throughout the
velocity field, solute separation will occur due to velocity differences (as discussed
above). Molecular diffusion also occursin the longitudinal direction; however, it is
almost negligible when compared to solute separation and transport by advection. In a
circular pipe, the velocity profile for laminar flow can be described by the familiar par-
abolic profile:

u(r) = u [Eﬂ _,,_2% Eqg. 14
max 5 T
where u(r) isthe velocity at radial position, I, Uy iS the maximum velocity (at the
center of the pipe), and aisthe radius of the pipe. If Equation 1.4 isintegrated over the

radius of the pipe and divided by the cross sectional area of the pipe, the mean velocity

10



is calculate as one half of the centerline velocity. Taylor (1953) derived an analytical
expression for the asymptotic value of the effective longitudinal dispersion coefficient

in laminar flow:

6121/12
* max
= Eq. 15
or
N 6121712

where D" is the effective longitudinal dispersion coefficient and U is the average cross
sectional velocity. The previous two equations have been verified through laboratory

experimentation and will be used to confirm the models developed in this thesis.

Taylor Dispersion in Turbulent Flow

In turbulent flow, inertial forces dominate viscous forces. The instantaneous
velocity profile is not a smooth curve and the velocity at a given radial position fluctu-
ates with time. Statistical analysis can be used to determined a time-averaged vel ocity
profile. Thisisthe mean value of the velocity over atime scale which is much greater
than the time scale of the individual fluctuations. In the equations and discussion that
follow, the velocities referred to are always the time-averaged velocities.

Extensive experimentation has shown that the turbulent velocity profileisloga
rithmic in the radial direction except near the walls of the pipe. A velocity profile that
matches the experimental results can be derive using the Prandit mixing length theory
(Wilkes, 1999). Assume now that the variable y is the distance from the pipe wall (y =
a- r). Prandit’s hypothesis assumes that there is a direct proportionality between the

mixing length, |, and the distance from the wall, y. Also assume a constant shear stress,

11



T, whichisequal toitsvalue, 1, at thewall. Thisistrue only for asmall interval near

the pipe wall.
[ = ky Eqg. 1.7
T=T1 Eqg. 1.8

wherek isaconstant. In actuality, Equation 1.7 and Equation 1.8 are overestimates for
both | and 1. However, both overestimates tend to cancel each other out and give an
excellent result for the turbulent velocity profile (Wilkes, 1999). Mixing length theory

gives the following relationship:

2
T =pl E"{;—E Eqg. 1.9

where u isthe time-averaged vel ocity asafunction of y. du/dy is recognized as positive

since the time-averaged velocity increases as the distance from the wall increases.

Using Equation 1.7 and Equation 1.8, Equation 1.9 can be rewritten as:

2
T, = pkzyz%—yug Eq. 1.10
Equation 1.10 integrates to:
=1 ﬁl " Eq. 1.11
u = % —b— ny+c g 1l

where c is a constant of integration.
Equation 1.11 is used to devel op what is known as the universal velocity profile

for turbulent flow in a smooth pipe. It isfirst useful to define some non-dimensional

12



parameters. Theterm ,/t, /p iscommonly known as the friction velocity or shear
velocity, u«. Using this definition, a dimensionless variables for y and u can be defined

as:

U

= Eq. 1.12
V)

u =L Eq. 1.13
U

where v isthe kinematic viscosity. Equation 1.11 can now be rewritten as:

u' = A+Blny Eq. 1.14

where A is the constant of integration and B is 1/k. Experimentation has shown the
constants to be 5.5 and 2.5, respectively. The final form of the universal velocity pro-

fileis shown below:

u = 55+25Iny Eq. 1.15

The universal velocity profile matches experimental results in the turbulent core, how-
ever, it does not hold in the wall region because it gives an ever-increasing negative
velocity and an ever-increasing velocity gradient as y approaches zero. The no-dlip
condition for fluids in as pipe requires that velocity is zero wheny is zero. Thereis
more than one way to describe the velocity variations in the wall region. Thiswill be
discussed further during the devel opment of the models used to describe this system.
In turbulent flow in a pipe, relatively large rotational eddies are formed in the
region of high shear near the wall which degenerate into progressively smaller eddies,

dissipating energy into heat by the action of viscosity (Wilkes, 1999). The motion of

13



these eddies is responsible for the transfer of solute in the radial direction. The coeffi-
cient of lateral transport must therefore include the effects of eddy diffusivity as well
molecular diffusion in order to accurately describe lateral transport. This coefficient,
termed the eddy molecular diffusivity, simply replaces the molecular diffusion coeffi-
cient in the equations used to describe dispersion in laminar flow. Using Reynold’'s
analogy, which assumes that the mixing coefficients for momentum and mass are the

same, the eddy molecular diffusivity can be expressed as:

_ m _ T _ TW(I"/CZ)
Y a_u—U—— o0 - Eq. 1.16
or par

where misthe rate of radial transfer of matter of concentration C.

The extension of the laminar flow analysisto turbulent flow involves using the
universal velocity profile (instead of the laminar flow profile) and the eddy molecular
diffusivity (instead of the molecular diffusion coefficient). The conclusions reached
about the use of the one dimensional advection-dispersion equation (described previ-
ously) remain unchanged (Fischer, 1979). The only significant differenceisthat the
eddy molecular diffusivity varies as afunction radial position. Therefore, Taylor was
able to derive an expression for the asymptotic value of the effective longitudinal dis-

persion coefficient in turbulent flow:

D = 10.1au, Eq. 1.17

Properties of the Concentration Distribution

In 1956, Aris developed an alternative method for characterizing effective
transport parameters (Aris, 1956). Commonly referred to as the method of moments,
Aris used various moments of the concentration distribution to determine properties of

the advection-dispersion system. The pth concentration moment is defined by the fol-
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lowing equation:

+0o0

C, = f xPC(x, r, t)dx Eq. 1.18

where x is the longitudinal position and C(x,r,t) is the concentration with respect to
longitudinal position, radial position and time.

Equation 1.18 is used to compute the concentration moment at a given radial
position, r. Thisis not very useful for determining overal effective parameters. The
concentration moment must be integrated over the entire cross section to include all

radial positions. Equation 1.18 then becomes:

a +oo
Mp(t) = J'ZTIVI xPC(x, r, t)dxdr Eqg. 1.19
0 -0

where M, is the cross sectional average of C, asafunction of time, and aisthe radius
of the pipe. It is apparent that the zeroth moment, M(t), represents the total massin

the system at any timet:

a +oo
My(t) = IZT[rI C(x, r, t)dxdr Eqg. 1.20
0 -0

Therefore, the one dimensional effective decay coefficient, k', can be expressed as;

kK =
M,

Eq. 1.21

This comes from the definition of first order kinetics: dM/dt = k' M o+ For non-reac-
tive transport as described by Equation 1.1 and Equation 1.2, K = 0 and Mg isacon-
stant equal to the initial mass introduced to the system.

The first moment, M, is defined as:
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a +o00

M (t) = I2T[r J' xC(x, r, t)dxdr Eqg. 1.22
0 -00

The first moment represents a weighted summation of longitudinal positions over the
entire system volume. If thisweighted sum is divided by the entire mass in the system,
the result is aweighted average of longitudinal positions. Thisis equivalent to the cen-
ter of massin the system, defined as:

X(t) = Eq. 1.23

SR

where X(t) is the mass centroid as a function of time. The change in centroid position
with respect to time represents the effective velocity of the center of mass of the solute

plume:

_ d(M,/M,) _ dxX

eff ———dt— zt— Eq 1.24
In a pipe with no reaction, U is equal to the mean velocity of the fluid.
The second moment of massis defined as:
a +oo
My(t) = J'ZTIVI xZC(x, r,t)dxdr Eqg. 1.25
0 -0

It can be shown that the longitudinal variance of the solute plume is expressed as:

» M

o’ = —2_X(1) Eq. 1.26

M,

The rate of change of the variance represents the rate of change of the solute spread in
the longitudinal direction. This has been shown to be proportional to the effective one

dimensional dispersion coefficient (Fischer, 1979).
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© -p Eq. 1.27

In general, a non-reactive solute plume will have a gaussian distribution once
the initial development time has elapsed. If a coordinate system that moves with the
mean velocity of the flow is adopted, the mean of the solute distribution is zero and the
varianceis. ° = 2D't. However, as discussed in the following section, thisis not

necessarily the case if aboundary reaction exists.

Effects of a Boundary Reaction

In context of biological treatment of wastewater, biofilm reactors with simpli-
fied geometries have been studied. The objective of these studies are to quantify effec-
tive reaction rates and other effective transport parameters. Among the systems
studied, are biofilm coated pipe reactors (Horn and Hempel, 1995) and (Cox, 1997).
Dissolved oxygen and substrates that are biodegradable can be consumed within the
biofilm. This can be modeled by including a reaction term in the two dimensional

equation (Equation 1.2) that is active only for the boundary region.

aC; aC; 19 GCE a%l oC ’D+rxn

4 -~2hp, =4 D51 =0,i=12 Eg128

wherei = 1 refersto the bulk flow and i = 2 refers to the biofilm region. In the bulk
flow region, the reaction term, rxn, is equal to zero ant the porosity is one. Two bound-
ary conditions are used to define the system at the bulk flow - biofilm interface: equal
concentration at the interface

C, = C,,at r = interface Eqg. 1.29

and equal flux at the interface
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oC oC
”6_r1 = nDrZa—rz, at r = interface Eq. 1.30

D

The reaction term, rxn, may be zero order, first order, or non-linear. In this the-
sis, non-linear reactions are not considered. A zero order reaction term has the form
+nk, where n isthe porosity and k is the decay constant. A reaction of thistype occurs
at aconstant rate regardless of the concentration. A first order reaction is represented
by the term +nkC, where C, is the solute concentration in the biofilm. This takes the
form of an exponential decay of solute in the reactive region.

In alaminar flow system, transport of solute to the reactive boundary takes
place by diffusion only. Therefore, transport into the biofilm is governed by the molec-
ular diffusion coefficient and the concentration gradient that exists across the biofilm-
bulk flow interface (according to Fick’s Law) (Cox, 1997). Once the solute reaches the
boundary and enters the biofilm, it then decays according to the appropriate reaction
type. Diffusive transport may take place within the biofilm allowing the solute to re-
enter the bulk flow. Advection of solute usually does not occur within the biofilm coat-
ing on the pipe walls and will not be considered in thisthesis.

In aturbulent flow system, there are two regions involved with transport in the
radial or transverse directions. Boundary layer theory dictates that alaminar sublayer
exists very close to the pipe wall where viscous forces dominate inertial forces. Turbu-
lent eddies do not exist in the laminar sublayer so diffusion to the biofilm region is
Fickian in nature and therefore controlled by the molecular diffusion coefficient and
the concentration gradient across the sublayer. In the turbulent core, radial transport is
dominated by the turbulent eddies. The eddy diffusivity control transport to the lami-
nar sublayer.

In order to incorporate a reactive biofilm boundary in the one-dimensional

transport equation, an effective decay term can be added.
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g Y C+kC=0 Eq. 1.31
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where Ug; is the effective velocity, D" isthe effective dispersion coefficient, and K~ is
the effective decay coefficient. The decay term represents the decay of the cross sec-
tional average concentration. The effective decay rate will be smaller than the decay
ratein the biofilm because decay is confined only to the boundary region. The effective
decay term will reflect the balance that is achieved between the diffusive transport
from the bulk flow into the active boundary regions and the concentration decay within
these regions (Cox, 1997). Initially, diffusive processes will dominate as the soluteis
transported to the boundary region. However, once the initial boundary gradients have
been established and the conditions for one-dimensional representation have been
achieved, a constant term can be used in the mass balance for the bulk flow. Cox, in
1997, showed that for laminar flow the effective decay term can be limited by either
diffusion or kinetics, depending upon the magnitude of the decay coefficient in the
biofilm in comparison to the molecular diffusion coefficient. In thisthesis, the investi-
gation into the nature of the effective decay term will be continued for laminar flow
systems and extended to turbulent flow.

The one dimensional effective velocity, U, and dispersion, D", coefficients
will be affected by the existence of aboundary reaction. The effective velocity of the
centroid of the solute plume may or may not travel at the mean speed of flow. Also, the
concentration distribution may not be a normal, symmetrical Gaussian curve. The dis-
tribution will still be Gaussian in nature, however, there may be a degree of skewness
and the variance will be different from that of a solute plume with no boundary reac-
tion. The existence of areactive boundary will cause the cross sectional concentration
distribution to be non-uniform. More solute will exist in the center of the pipe because
solute near the pipe wall is subject to decay. Thiswill cause the effective velocity of

the solute plume to increase because more mass exists in regions of higher velocity.
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For the same reason, the effective dispersion coefficient will decrease because less sol-
ute will exist in the regions of highest shear (near the wall). In other words, more sol-
ute will exist in the center of the pipe where the velocity variations are less severe.
Therefore, there will be decreased longitudinal separation among the solute particles.
When using the one-dimensional transport equation with a boundary reaction these
parameters need to be adjusted accordingly. Methods of characterizing the effective

one-dimensional parameters will be discussed later in thisthesis.

1.2 Summary of Previous Work on Two-Region Systemswith a Boundary Reac-
tion

Following isasummary of the previous work involving the characterization of
bulk flow - biofilm systems. Also, included is some work dealing with open channel
flow with areactive bed. The problem of describing mass transport in a system with a
reactive boundary has not been extensively studied in the field of water resources engi-
neering. Most of the background theory is taken from mass transport studiesin the
field of chemical engineering or analogous theoriesin heat transport. Therefore, awell
established background to this research does not exist. The following studies are dis-
cussed to provide aframe of reference and to demonstrate how similar research prob-

lems have been approached in the past.

Experiments by Horn and Hempel

Horn and Hempel (1995) performed a series of experiments aimed at eval uat-
ing the mass transfer coefficients at a bulk flow - biofilm interface. This was done by
modifying an existing expression for radial mass transfer in acircular pipe with no
biofilm to reflect the effects of a biofilm coating. A numerical model was used to cal-
culate concentration profiles and was calibrated by adjusting the mass transfer coeffi-
cient to match the measured profiles. In this way, mass transfer coefficients were

estimated for various flow rates within the laminar flow regime.
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The Sherwood number, $h, is a dimensionless number used to describe mass
transfer for laminar flow in tube reactors without biofilms:

Sh = 2Re'*sc¢" *(d/L)"? Eq. 1.32

where Re is the Reynold’'s number, Scisthe Schmidt number (momentum transfer /
mass transfer), d is the tube diameter, and L is the tube length. The length of the tube
reactor used in the experiments and in the models was constant at 163 cm. The diame-
ter of the tube was 1.6 cm and the biofilm thickness was 0.035 cm on average. The
numerical model used to estimate mass transfer was based on the following equation:

D%—S = B(Cy—Cp) Eq. 1.33
where Cg and C are the concentrations in the bulk flow and at the biofilm surface,
respectively, and 3 is the mass transfer coefficient. Mass transfer coefficients were esti-
mated for various flow rates within arange of Reynold's numbers from 532 - 1894.
The numerical/experimental mass transfer coefficients were about one order of magni-
tude less than those given by Equation 1.32. It was surmised by Horn and Hempel that
this discrepancy was due to the fact that Equation 1.32 did not account for a boundary
reaction and the boundary layer close to the wall. Therefore it was modified in the fol-
lowing manner to better fit the experimental data:

1/2 1/2

Sh = 2Re"*Sc"2(d/ L) (1 +0.0021 Re) Eqg. 1.34

Figure 1.2 shows the experimental resultsin relation to Equation 1.32 and Equation
1.34.

21



Figure 1.2: Horn and Hempel Results
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In Figure 1.2, “equation 1" represents Equation 1.32 and “equation 4” repre-
sents Equation 1.34. It is obvious that Equation 1.34 fits the data much better that
Equation 1.32. However, it also obvious that the mass transfer coefficient varies with
Reynold’s number. According to the theory of Taylor dispersion in laminar flow (dis-
cussed previoudly), the effective mass transfer coefficient does not depend on Re.
(Incidentally, in turbulent flow, the effective one-dimensional mass transfer coefficient
is dependent on Reynold’'s number. As Reynold’'s number increases turbulence
increases and the thickness of the laminar sublayer decreases, thereby increasing mass
transfer to the biofilm region. Thisis discussed in greater detail in later chapters.) The
tube reactor used in the Horn and Hempel experiments was relatively short (163 cm).
At the lowest Reynold’'s number used in the experiments (534), the travel timein the
pipe would be about 50 seconds. According to the theory of shear flow dispersion, an
initial development time is required before the effective mass transfer coefficient
reaches a constant, asymptotic value. The following equation can be used for estimat-

ing theinitial development length for laminar flow (Cox, 1997):
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0.05ReSc Eq. 1.35

QIS

where L isthe development length, Reis the Reynold’s number, and Sc is the Schmidt
number. For a Reynold’s number of 534, this results in a devel opment length of 20000
cm and a development time of about 6000 s. Therefore, the development time is never
reached in the Horn and Hempel experiments. The mass transfer coefficient has not
reached an asymptotic value and the assumption of a constant value for the mass trans-
fer coefficient isnot valid. Horn and Hempel’sinterpretation of their data using a mass
transfer coefficient dependent on Reynolds number is therefore inappropriate. They
are actually fitting the pre-asymptotic behavior of the effective reaction rate using a
Reynolds number dependence.

In addition to the initial development time required to achieve effective one-
dimensional transport, an entrance devel opment length is required before fully laminar
flow conditions can be established.

Figure 1.3: Entrance Length Region
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As shown in Figure 1.3 alaminar boundary layer grows in thickness from the pipe
walls to the center of the pipe. A turbulent core penetrates the laminar boundary layer
until fully laminar conditions are reached. The length of this turbulent coreisthe
entrance development length. Within the turbulent core, radial velocities and turbulent
eddies contribute to mass transport. Therefore, the molecular diffusion coefficient can-
not be used to describe radial transport in this region. The following expression can be

used to estimate the entrance length (Cox, 1997):

L, = 0.0575Re [ Eqg. 1.36
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For the range of Reynold’'s numbers used in the Horn and Hempel experiment,
entrance lengths vary from 50 - 100 cm. Therefore, for higher Reynold’'s numbers,
fully laminar conditions are not even established within the tube reactor.

It is obvious that the assumption of a constant mass transport coefficient in the
Horn and Hempel tube reactor isinvalid. Effective one-dimensional conditions are
never established and in some cases fully laminar conditions are not even established.
Therefore, it isassumed that the mass transfer coefficients cal culated by Equation 1.32
and Equation 1.34 represent average transfer coefficients for the length of the reactor.
The values of the coefficients would be dependent upon both the degree of penetration
of the turbulent core and the travel time through the pipe. Thus a direct relationship
between the Reynold’'s number and average transfer coefficient would exist. It is
assumed that Equation 1.32 and Equation 1.34 were developed for short tube reactors
with laminar flow, where the reactor lengths are of the same scale as the entrance

lengths. Therefore, their findings are applicable on areactor specific basis only.

Modeling Oxygen Consumption by Biofilmsin Open Channel Flow

In 1994, S. Li and G.H. Chen developed a mathematical model to predict the
removal of dissolved organic substances and the consumption of dissolved oxygen by
attached, benthic biofilmsin an open channel flow (Li and Chen, 1994). The conven-
tional Streeter-Phel ps equation was combined with the biofilm equations resulting in a
system of equations that could be solved numerically.

The model assumed that transfer of matter occurred from a bulk flow region,
through a diffusion layer (laminar sublayer), and into the biofilm where reaction took
place. Two dimensional mass balance equations were coupled for each of the regions
and included the effects of molecular diffusion through the diffusion layer, mean
velocity inthe bulk flow, reaeration in the bulk flow, and Dual Monod reaction kinetics

in the biofilm. The resulting non-linear system was solved by atrial and error approach
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to afinite difference numerical model.

The results of the model show that the effects of a biofilm have a significant
influence on organic removal and oxygen consumption. Thetraditional Streeter-Phelps
equation is based on the removal rates of the suspended biomass which are usually
determined from BOD bottle tests. However the modified Streeter-Phel ps model
shows that the removal rates caused by the biofilm are greater than those resulting
from suspended biomass. Some studies have shown that streambed biomass accounts
for 90% of the oxygen consumption (Li and Chen, 1994). Li and Chen also studied the
effects of bulk flow velocity on the diffusive layer thickness and benthic uptake. In
general an increase in velocity leads to a decrease in thickness of the diffusive layer.
As diffusive layer thickness decreases, benthic uptake becomes less diffusion limited
so uptake should increase. However, as the bulk flow velocity increases, contact time
with the biofilm decreases and so uptake should decrease. The overal result of the
experiments suggests that contact time is more significant than the diffusive layer
thickness. Another finding made by Li and Chen is that uptake increases as biofilm
thickness increases up to a certain point. Beyond a certain thickness, diffusion limita-
tions dominate and the uptake reaches a constant value. Both the net effects of bulk

flow velocity and biofilm thickness will be explored in thisthesis.

Method of Moments Analysis of Transport with Boundary Reactions

Tim Cox (1997) quantified the effects of boundary reactions on bulk flow sol-
ute transport parameters in a biofilm-coated pipe under laminar flow conditions. The
emphasis of the research was to use both numerical and analytical approachesto estab-
lish relationships between effective bulk flow transport parameters and biofilm proper-
ties. Also explored was the time scal e associated with the development region of
transport.

Using Aris' method of moments approach, analytical expressions were devel-
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oped for the effective one dimensional decay coefficient, the effective velocity, and the
effective dispersion coefficient. These expression will be described in detail in alater
chapter and will be used to verify models developed in this research. The numerical
models were based on a finite-difference approach for solving the advection-disper-
sion equation. These results were used to verify the analytical results. The numerical
model was very successful in verifying the analytical expressions for effective decay
and effective velocity. However there was some discrepancy in the effective dispersion
coefficients. It is believed that thisis aresult of numerical dispersion commonly

encountered in finite-difference models.

Limitations of Previous Work

Of the previous work just described, only Tim Cox attempted to quantify the
effects of aboundary reaction on the bulk flow transport parameters. However, his
work was limited to laminar flow conditions. Also, the numerical model used in his
research had inaccuracies due to numerical dispersion.

As discussed previously, Horn and Hempel’s experiments were unable to
describe the asymptotic, effective transport parameters. Their work was limited to a
tube reactor that was not long enough to establish conditions that could be described
with one dimensional parameters. Their findings seem to be applicable on a reactor
specific basis only. While Li and Chen were successful in describing a two-region sys-
tem with boundary reactions. Their work was applied to open channel flow and there-

fore, is not directly related to the research in this thesis.

1.3 Thesis Objectives

The background material just described will be used as a basis to characterize
the one-dimensional transport parameters for alaminar and turbulent flow system.
Thiswill first be done for acircular pipe with no biofilm to reproduce the results dis-

cussed previoudly. Tim Cox, in 1997, extended this theory to a circular pipe with a
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reactive biofilm under laminar flow conditions. A particle tracking model will be used
to reproduce his results and then extend the analysis further to describe a turbulent
flow system with a reactive biofilm. In this way the problem of humerical dispersion,
as seenin Tim Cox’swork, will be avoided.

The main objective of thiswork is to show the relationship between various
biofilm characteristics and the effective bulk flow and transport parameters in laminar
and turbulent pipe flow. A particle tracking model is used to simulate 3-dimensional
transport and cal cul ate the resulting effective parameters. These are verified with ana-
lytical results. The particle tracking model is also used to characterize the transport
system in the devel opment stages, before the effective parameters reach an asymptotic

value. The following specific tasks are undertaken to accomplish the stated objectives.

Analytical Expressionsfor One-Dimensional Effective Parameters

Aris’ method of moments procedure will be applied to acircular pipe with a
reactive biofilm. Only afirst order reaction rate will be considered in the derivation of
the analytical expressions. Analytical expressions will be developed for the effective
one-dimensional decay rate, velocity, and dispersion coefficient. These will be used to
verify the particle tracking results and provide insight into the devel opment time of the

system.

Development of Particle Tracking M odel

A particle tracking model will be used to simulate 3-dimensional transport in a
circular pipe. Models will be constructed for both laminar and turbulent flow condi-
tions with and without a reactive biofilm. The method of moments will be used to
determine the effective one-dimensional transport parameters. For the case of no
boundary reaction, the model resultswill be compared to the expressions devel oped by
Taylor for the effective dispersion coefficient. For the case of aboundary reaction in

laminar flow, the model results will be compared to the analytical expressions derived
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for afirst order boundary reaction. The development of the turbulent flow model will
involve research into the nature of mass transport in the laminar sublayer of the flow
field. Using avelocity profile developed by Wasan and Wilke (1963) and the universal
velocity profile for the turbulent core, the nature of the effective dispersion coefficient
is examined (without the effects of a biofilm) and compared to Taylor’s result of
10.1au«. Finally, the model will be used to characterize the effective transport parame-
tersfor aturbulent flow system with aboundary reaction. No previous work was found

on this topic so the model results cannot be verified with accepted results.

Analysisof Biofilm Characteristics and Diffusive Transport Parameters

The models discussed previously will be used to analyze the relationships
between various biofilm characteristics and the effective transport parameters. Specifi-
cally the relationship between diffusion and reaction kinetics. A diffusion limited sys-
tem is one in which the overall effective reaction term is dictated by the rate of
transport into the biofilm. A non-diffusion or reaction rate limited system isonein
which the effective reaction term is governed by the rate of decay within the biofilm.
The nature of the effective transport parameters for both diffusion and reaction limited
systemswill beinvestigated. Also of interest isthe nature of solute transport before the
initial development time has elapsed. The effect of biofilm and pipe flow characteris-
tics on the development time and the transport parameters at pre-devel opment times

will be investigated.
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Chapter 2

Development of Particle Tracking Models

2.1 General Particle Tracking Theory: Random Walk M ethod

The particle tracking models used in this research are based on the Random
Walk method of diffusion modeling. Thisis a statistical approach to describing the
transport of solute at amolecular level. Molecular diffusion in astagnant fluid isacon-
stant process of random movements and collisions of particles. The extent of motion
and collision is dependent on the nature of the fluid and the particles and can be char-
acterized by the molecular diffusion coefficient. The Random Walk method aims to
describe the random motion of single molecules and, through generalization, allows
for the characterization of alarge number of moleculesin a system.

Suppose the motion of a single particle consists of random steps in one dimen-
sion to the left or right. The probability of the particle moving to the left is equal to
probability of it moving to theright. Inagiventimeinterval, At, the particle may move
adistance of Ax. On average, the motion of the particle will be such that it stumbles
about the vicinity of the origin. However, after agiven period of time, the particle will
have moved sometimes to the left and sometimes right. The Central Limit Theorem
shows that after m number of timesteps, the probability of the particle being located
between mAx and (n+ 1)Ax approaches the normal distribution with a mean of zero

and avariance o° = t(Ax)z/ At (Fischer, 1979). Therefore, it can be shown mathe-



matically that the probability of the particle being located at position x after an elapsed

timet can be expressed as.

(60) = —exp il Eq 2.1
p(x,t) = exp g. 2.
OJE[ EQGZD

If the diffusion coefficient, D, isdefinedas D = sz/(ZAt) , then the variance can be

expressed as o’ = 2Dt and Equation 2.1 can be rewritten as:

p(x,t) = OA/éllﬁwexp %E Eqg. 2.2
Now suppose that a group of particles, with initial locations at the origin, is
confined to motion in one dimension. The motion of each individual particleisthe
same as that described above. After one time interval, approximately one half of the
particles will have moved a distance Ax to the left and the other half a distance Ax to
the right. After another timestep about one half of the group will have stepped back to
the origin, one fourth would be located at 2Ax, and one fourth at -2Ax. Given enough
time, the group of particles would spread out with a higher density of particles at the
origin and diminishing density as the distance from the origin increases. It is apparent
that if the group of particles was located at the origin at time zero, the number of parti-
cles at any position x after timet would be proportional to the probability of any one
particle being at position x. Therefore, Equation 2.2 can be expressed in terms of mass

and concentration:

2
C(x,t) = exp %E Eqg. 2.3

M
o.J4TD¢

where M isthetotal mass of the particles normalized to the cross-sectional area. So the

net outcome of the random walk method for a group of particlesisanormal distribu-
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tion of particles with amean of zero and astandard deviation of ./2Dz¢. It isimportant
to note that the spreading of particles amounts to a net motion of particles from a
higher concentration to alower concentration. Furthermore, Equation 2.3 is the same

result as that obtained by the solution of the one-dimensional diffusion equation.

2.2 Laminar Flow Models

The laminar flow models were constructed by extending the random walk
method described previoudly to three dimensions, and then adding advection and a
boundary reaction. Typically atwo-dimensional, radial coordinate system is used to
describe a circular pipe. Thisis possible due to the symmetry of the pipe's cross-sec-
tion and it usually resultsin simpler transport equations. However, the theory behind
the random walk method is more readily applied to athree-dimensional cartesian coor-
dinate system than aradial coordinate system. While this leads to more complicated
geometry, the complications involved with diffusion in the radia direction using the

random walk approach are avoided.

Transport Within the Bulk Flow

Transport within the bulk flow is aresult of two processes; advection and diffu-
sion. Because the flow regime is laminar, transport in the lateral (cross-sectional)
directions occurs as aresult of molecular diffusion only. The reason being that, in lam-
inar flow, streamlines are smooth and continuous. There are no turbulent eddies that
may contribute to transport in any way. Advection isonly in the longitudinal direction,
therefore the only way a particle may move laterally is through molecular diffusion.
Transport in the longitudinal (along the length of the pipe) direction occurs by both
advection and diffusion. Incidentally, molecular diffusion in the longitudinal direction
is practically negligible in comparison to advection. The following equation is used to

describe the velocity profile for laminar flow conditionsin acircular pipe:
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2
u(r) = uc—uc% Eqg. 24

where u, is the centerline (maximum) velocity of the pipe, aisthe piperadiusandr is
the radial location of the particle.

Theruntime of the model is broken up into a number of timesteps of length At.
For each timestep, every particle is subject to random motion in each of the three
dimensions according to the random walk theory. This random motion simulates trans-
port due to molecular diffusion. At every timestep, and for every particle, arandom
number is generated for each of the three dimensions. In theory, the random numbers
would have a standard normal distribution (mean of zero and standard deviation of
one). Since the particle distribution was shown to have a mean of zero and a standard
deviation of ,/2D¢ according to Equation 2.3, each random number is multiplied by
the quantity »/2DA¢, where D isthe molecular diffusion coefficient.

Most random number generators produce uniform random numbers between -1
and 1. Therefore, an extraroutine is required to convert them to standard normal vari-
ables. During an average simulation, the number of random numbers required is on the
order of 1010, The time spent converting each number to a standard normal variableis
therefore quite considerable. The Central Limit Theorem, however, shows that if
enough uniform random numbers are generated they will assume a normal distribu-
tion. The random number would then only have to be converted so that the standard
deviation is one. Thisis achieved by multiplying each random number by /3 , afairly
non-time consuming procedure. The end result, according to the Central Limit Theo-
rem, is: if alarge number of uniform random variables between —/3 and ./3 are gen-
erated, they will assume a normal distribution with a mean of zero and a standard
deviation of one. Each random variable would then have to be multiplied by /2 DAt
so that transport occurs in accordance with the random walk theory.

As mentioned previously, advection occurs only in the longitudinal direction.
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Theradia position of each particle at the beginning of the timestep is used to calculate
the respective velocity according to Equation 2.4. The longitudinal location of the par-
ticle at the end of the timestep would be its beginning of timestep location, plus the
product of the velocity and At, plus or minus any random motion due to diffusion
(which would most likely be negligible). In summary, transport in the bulk flow can be

expressed by the following set of equations:

y(t+Ar) = y(t)+ &, OJV2DAt Eqg. 2.5
z(t+At) = z(t) + &, OV2DAt Eqg. 2.6
x(t+At) = x(¢) +u(r, t) A + &5 TV2DAL Eq. 2.7

wherey and z are the |ateral directions, x is the longitudinal direction, and &,, &,, and
&3, are uniform random numbers between —./3 and /3 . This set of equationsis
applied to each particle in the bulk flow at every timestep. If a particle encounters the
pipewall, it is reflected so that the angle of incidence equals the angle of reflection.
The distance the particle travels from the reflection point is the same distance that it

would have travelled beyond the pipe wall had it not been reflected.

Transport and Decay Within the Biofilm

Transport within the biofilm occurs by the process of molecular diffusion only.
The models used in this research assume that there is no advection within the pore
space of the biofilm. The application of the random walk method to transport within
the biofilm is the same for that for the bulk flow. The only difference is that the bulk
flow molecular diffusion coefficient, D, is different than the biofilm molecular diffu-

sion coefficient Dy, The relationship between D and Dy, is not exactly understood and

33



has been the subject of considerable research in the past. Zhang and Bishop in 1994
performed an intensive study that showed the relationships between the ratio D/D,
biofilm porosity and tortuosity. Porosity is defined as the ratio of the pore volume to
the total biofilm volume and tortuosity is defined as the ratio of the effective (actual)
pore/capillary length to the biofilm thickness. The results of the study show that a gen-

eral definition for the biofilm diffusion coefficient, Dy, is:

Dy = 5D Eq. 2.8

where n isthe porosity and 1 is the tortuosity. The following equations describe trans-

port within the biofilm region:

y(t+Ar) = y(r)+&, 0/2D,At Eqg. 2.9
z(t+At) = z(1) + &, 0/2D, At Eqg. 2.10
x(t+At) = x(t) +&; 0/2D At Eqg. 2.11

This set of equationsis applied to each particle in the biofilm at every timestep.
In order to simulate the effects of a boundary reaction, any particle located
within the biofilm loses mass by either afirst order or zero order reaction. The mass of

each particle decays according to the following equation for a zero order reaction:

Mass(t+At) = Mass(t) —k,Dty,;, Eqg. 2.12

where kj is the zero order reaction rate and Aty is the length of time the particleisin

the biofilm. The particle may remain in the biofilm for the entire timestep, may leave
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the biofilm at some time during the timestep, or may enter the biofilm at some point
during the timestep. If the reaction isfirst order, the following backward difference
equation is used to compute the decay of each particle in the biofilm (because the

timestep length is so short alinear approach to anon linear equation is acceptable):

Mass(t+At) = Mass(t)—k, Mass(t)At,,, Eqg. 2.13

where k; isthefirst order decay constant (a positive decay constant represents a

decay).

Bulk Flow - Biofilm Interface Condition

At any point within a given timestep, a particle may come in contact with the
bulk flow - biofilm interface. When this occurs, it has to be decided whether the parti-
clewill enter the biofilm or reflect off it and remain in the bulk flow. At the interface
there is no advection because the velocity of afluid at a solid boundary must be zero
(in compliance with the no-dlip condition). Therefore, molecular diffusion isthe only
factor controlling the motion of the particle at the boundary. Since the molecular diffu-
sion coefficient is usualy different for the two regions, the probability of the particle
diffusing to one side of the interface will be different than the probability of diffusion
to the other side. A probability rule was devel oped to make this determination.

Suppose a slug of tracer isinjected at the boundary between two regions with
different molecular diffusion coefficients. After a given amount of time, the concentra-
tion profile will approach a distribution that is skewed to the side with the greater dif-
fusion coefficient. The percentage of the total mass residing in one of the two regions
represents the probability of any particular particle diffusing to that region. In other
words, if an equal percentage of massislocated in the two regions after a given

amount of time, then a particle located at the interface has the same probability of dif-
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fusing to one side of theinterface asthe other side. If 75% of the massis|ocated to the
left of the interface, then a particle located at the interface has a 75% chance of diffus-
ing to left and a 25% chance of diffusion to the right. This probability must be
expressed in terms of the biofilm and bulk flow characteristicsif it isto be used for
modeling purposed. Thisis accomplished through the solution of the diffusion equa-
tion in an infinite 2-region medium with the interface at x=0. Since the timestep used
in the particle tacking model is very small, the new position of a particle originating at
the interface will be close to the interface itself. The influence of other boundariesis
not felt during asmall timestep. Thus, it is reasonable to develop a probability rule for
determining the particle position assuming an infinite medium on either side of the
interface.

The one-dimensional diffusion equation for atwo region system with the inter-

face at the origin (x = 0) iswritten as.
2

%% = nDla—g, Region 1 -x>0

d

x Eq. 2.14
%—f = nDza—S, Region 2 - x <0

0x
The two boundary conditions for this set of equations are: equal concentrations at the

interface and equal flux at the interface. If region 1 isthe bulk flow and region 2 isthe
biofilm, then nisequal to 1.0 when x > 0 and D, and D, can bereferred to as D and
Dy, respectively. Solving Equation 2.14 using the new notation for the percent massin
the bulk flow, results in the following expression for p (the probability that a particle
located at the bulk flow - biofilm interface will diffuse into the bulk):

p= — L Eq. 2.15

" 1+n,/D,/D

where n isthe porosity of the biofilm. For use in the model, p must be rescaled so that

aprobability of zero is represented by -1 and a probability of oneis represented by 1
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because the random number generator generates random numbers with a uniform dis-
tribution between -1 and 1. The rescaled probability will be denoted, py,

During amodel simulation, if a particle reaches the interface (whether coming
from the biofilm or the bulk flow), arandom number between -1 and 1 is generated. If
the random number is greater than py, the particle will diffuse into the biofilm. If the
random number islessthan py, the particle will diffuse into the bulk flow. Therefore, if
the probability of aparticle diffusing to the bulk flow is 1.0, then no particle will enter
the biofilm because arandom number greater than 1.0 will never be generated. If the
probability of a particle diffusing to the bulk flow is 0.5 (represented as 0.0 when
rescaled to p,)), then the particle has an equal chance of entering the biofilm as the bulk
flow (because half the time the random number will be greater than 0.0 and half the
time less than 0.0). As shown in Equation 2.15, the probability rule is afunction of
porosity and the ratio D/Dy,. To give an example of the effects of porosity on the parti-
cle behavior at theinterface, assume that the biofilm porosity is zero. If thisisthe case,
a particle should never enter the biofilm because there is no available pore space in
which to go. Equation 2.15 computes a probability of 1, so the particle will never enter
the biofilm. Now assume that the porosity of the biofilm is 1 (thisis the same porosity
as the bulk flow) and the diffusion coefficients for both regions are equal (D/Dy, =1).
We would expect that a particle located at the interface would diffuse to either region
with equal probability because the characteristics of both regions are the same. For this
case the probability, p, is 0.5 (rescaled to p, = 0.0), so the particle will behave as
expected. This probability rule ensures that particles will behave accordingly at the

interface.

Timestep Restrictions

The random walk method of particle tracking is only accurate when certain

restrictions are placed on the timestep (At) and the size of the typical displacement by
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diffusion (Ax) during At. Both At and Ax must be several orders of magnitude smaller
than the total time and space scal e of the simulation. The time and space intervals must
also be much smaller than those of any physical phenomenon occurring within the sys-
tem. For example, the time and space intervals would have to be much smaller than
those of any turbulent eddies that may exist in the system in order to fully capture their
effects on transport.

Since, the distance travelled by any particle in a given timestep is directly
related to the timestep length, it is only necessary to restrict the timestep length used in
simulation. As stated above, the time interval, At, must be much smaller than the
observation time and must be small enough so that the diffusion step is much smaller
than observation space. Therefore, the timestep should be limited so that the largest
diffusion step (space interval) is smaller than 1% of the pipe radius. The largest possi-
ble diffusion step is +/3./2DAt where ./3 isthe largest random number generated.

This restriction takes the following form:

(0.01a)*

<
At <D

Eq. 2.16
Also, aparticle should not be able to diffuse through the entire depth of the biofilm in
any timestep. To be conservative, this restriction limits the space interval to half the

biofilm thickness and takes the following form:

(0.55,)
6D,

At < Eq. 2.17

where by is the biofilm thickness. Finally, the timestep must be much smaller than the

timescal e associated with decay in the biofilm. Therefore At << 1/k; wherek; isthe

first order decay constant.
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2.3 Turbulent Flow Models
The extension of the random walk method to turbulent flow in apipeisdlightly

more complicated. Transport and reaction within the biofilm remains the same and the
interface condition still holds true, but some changes are required in the description of
the bulk flow mass transport. Since rotational eddies exist in aturbulent flow field,
transport in the lateral directionsisno longer only aresult of molecular diffusion. A
cross-sectional mixing coefficient, termed the eddy diffusivity, has to be developed to
replace the diffusion coefficient in the transport equations. Unlike the diffusion coeffi-
cient, the eddy diffusivity is afunction of the particle’sradial location. Also, adiffer-
ent velocity profile will have to be developed that applies to turbulent flow within a
circular pipe. The universal velocity profile, otherwise known as the logarithmic veloc-
ity profile (discussed in Chapter 1), accurately describes the velocity field in the turbu-
lent core. Finally, boundary layer theory and experimentation show that alaminar
sublayer exists between the pipe wall and the turbulent core. In the laminar subregion,
which isusually extremely thin, transport occurs as aresult of molecular diffusion.
Therefore, the diffusivity will have to be adjusted for this region. Furthermore, a dif-
ferent velocity profile is required for the laminar sublayer. A description of the back-
ground theory to turbulent flow asit applies to Taylor dispersion can be found in

Chapter 1.

Mass Transport in the Vicinity of the Pipe Wall

Typically when describing fully turbulent flow within a pipe, the flow regimeis
divided into three distinct zones; the laminar sublayer, a buffer zone, and the turbulent
core. In the turbulent core, which encompasses the vast majority of the flow regime,
inertial forces dominate and viscous forces can be neglected. Thisis the standard defi-
nition of turbulent flow. As discussed previously, laminar boundary layer theory dic-

tates that near a solid boundary the viscous forces must become significant at least
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within some small region near the boundary. In turbulent flow, the region where vis-
cous forces cannot be neglected consists of both the laminar sublayer and the buffer
zone. In the laminar sublayer, viscous forces dominate and inertial forces can be
neglected. In the buffer zone, both viscous and inertial forces must be retained. The
logarithmic law can be used to specify the velocity profile in each of the zones thus
resulting in a continuous vel ocity profile across the pipe cross section.

While the analysis just described is useful for determining turbulent flow
velocities, it isnot valid for describing turbulent transport in the vicinity of the pipe
wall. The concept of three different fluid layers leads to an unrealistic discontinuity in
the eddy diffusivity function. While the three separate functions to describe the vel oci-
tiesin each layer are continuous, their first derivatives, which are used to calculate the
eddy diffusivity, are not continuous. Furthermore, the Reynold’s analogy, which is
used to derive expressions for the eddy diffusivity, breaks down near the wall. The
Reynold’s analogy for turbulent flow assumes that transport of massis equal to trans-
port of momentum. This relationship is expressed by the Schmidt number, defined as
follows for the laminar region:

momentum transport

— _ U
Sc = = =
mass transport D

Eq. 2.18

where D isthe molecular diffusion coefficient and v isthe kinematic viscosity. For the
Reynold’s analogy to be valid, the Schmidt number has to equal one, which obviously
would not be the case in the laminar sublayer. Therefore, in order to effectively
describe mass transfer near the pipe wall, the Reynold’s analogy must be abandoned
near the wall region (it still isvalid in the turbulent core) and expressions for the veloc-
ity and eddy diffusivity that are continuous with the turbulent core must be devel oped.
In 1963, Wasan, Tien, and Wilke pointed out that most of the proposed eddy

viscosity distributions do not satisfy the theoretical criterion which stated that the tur-
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bulent contribution to the Reynold’s stress u;v; near the wall is proportional to y",
where nis not less than three (Wasan and Tien, 1963) (u; is the fluctuating velocity in
the axial direction, v; isthe fluctuating velocity in the radial direction and y isthe dis-
tance from the pipe wall). They also showed that from velocity variation data and tur-
bulent shear stress data, the degree of turbulence in the moving fluid varies
continuously from the wall to the pipe axis. Therefore, the concept of three distinct
layers would be incorrect (Wasan and Wilke, 1964). By using the equations of mean
motion and the universal velocity profile for the turbulent core, Wasan, Tien, and
Wilke developed theoretical expressions for the continuous variation of velocity and
eddy diffusivity for the wall region of pipe flow.

Since the wall region is very thin, a Taylor series expansion was used to
describe the velocities. Likewise, the time averaged turbulent shear stress was also
expressed as a Taylor series. Using boundary conditions and neglecting the insignifi-
cant terms, the dimensionless forms of the velocity and turbulent shear stress are given

as.
+ o+ +, +.4 +,
u =y +U; (y) +Us (v) Eqg. 2.19

v = 4U, () —5uS N, Eq. 2.20
where u™ isthe dimensionless, time averaged velocity at any point (u/us, where us is
the shear velocity), U;v;* isthe dimensionless turbulent shear stress (Uivi/u<2), and y” is
the dimensionless distance from the pipe wall (yu«/v). In the wall region the shear
stress can be considered constant and the flow is determined by the wall shear stress,
the fluid viscosity and the distance from the wall. Therefore, the coefficients U™ and
Us" are universal constants (Wasan and Tien, 1963). In order to calculate U," and

Us", the values of u* and its first and second derivatives are matched with the univer-
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sal velocity profile in the turbulent core. Thisresultsin asmooth transition at y* equal
to 19.7138. Using the calculated values for the coefficients, Equation 2.19 can be

rewritten to describe the velocity distribution for y* < 19.7138:
4 _ 5
u =y —1.09833 007 (»7) +3.30083 C10~°(»") Eq. 2.21

Likewise, Equation 2.20 can be rewritten to describe the time averaged turbulent shear

stressfor y*© < 19.7138:

JE— 3 . 4
Wy, = 439332007 =16.5041 107°(»") Eq.2.22

11

Using Equation 2.21 and Equation 2.22, the following expression for the ratio of eddy

diffusivity (or eddy viscosity) to kinematic viscosity is given as:

+

-4, +3 6, +\4
_ wyvio 439332010 (y ) —16.5041 10 “(y )
= = 2 Eq. 2.23

3
du' /dy" 1-439332 0007 (") +16.5041 1075(y")

Cim

Equation 2.23 gives the distribution of the eddy diffusivity for the wall region (y* <
19.7138). It results in a smooth transition to the eddy diffusivity in the turbulent core.
Expressions for the velocity and eddy diffusivity in the turbulent core are developed in

the following section.

Mass Transport in the Turbulent Core

As discussed previoudly, the universal velocity profile accurately describes the

velocity in the turbulent core. From Equation 1.15, the velocity is expressed as.

u = 55+25Iny Eq. 2.24

42



From the Reynold’s analogy, the eddy diffusivity in the turbulent core is defined as

(from Equation 1.16):
_ m _ T _ Tw(r/a)
Y a_u—U—— o0 - Eq. 2.25
par par

where € isthe eddy diffusivity, mistherate of radial transfer of matter of concentra-
tion C, T isthe shear stress, 1, isthe wall shear stress, r istheradial coordinate, aisthe
pipe radius, and p isthe fluid density.

To be consistent with Equation 2.24 and the expressions for velocity and diffu-
sivity in the wall region, the diffusivity in the turbulent core should be expressed in
terms of y*. Using Equation 2.24, Equation 2.25 and the following definitions:

T, = u*zp and y+ = (a—r)u«/ V0, theratio of eddy diffusivity to kinematic viscos-

ity can be expressed as:

- 04y*H -2
= 04y'0 -2—0-1 Eq. 2.26
aus]

Cim

Equation 2.26 gives the eddy diffusivity distribution fromy* > 19.7138 to the center of

the pipe.

Velocity and Diffusivity Profiles

Figure 2.1 shows the velocity distribution from the wall to the pipe axis using
Equation 2.21 and Equation 2.24.
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Figure 2.1: Dimensionless Velocity Distribution (Wall to Pipe Axis)
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Figure 2.2 shows the velocity distribution in the vicinity of the pipe wall.
Notice that the transition from the wall region to the turbulent core is smooth and con-
tinuous.

Figure 2.2: Dimensionless Velocity Distribution (Wall Region - Turbulent Core)
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Equation 2.23 and Equation 2.26 are used to define the ratio of eddy diffusivity
to kinematic viscosity for the entire pipe region. Figure 2.3 shows this distribution
from the pipe wall to the pipe axis. Notice that the diffusivity approaches zero (it actu-
ally approaches the molecular diffusion coefficient) at both the wall and the center of
the pipe. Near the wall the slope of the velocity curve is very large thus producing a
small diffusivity. Near the center of the pipe the shear stress approaches zero. The
result isthat transport at the wall and the center of the pipe occurs by molecular diffu-
sion. The greatest diffusivity values occur halfway between the pipe wall and the pipe

axis where the most turbulence exists.



Figure 2.3: Diffusivity/Viscosity Distribution (Wall to Pipe Axis)
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Equation 2.23 predicts that the diffusivity will go to zero at the pipe wall. This
isnot entirely accurate. At the pipe wall, laminar flow conditions exist and transport
will occur by molecular diffusion. Therefore when solving for diffusivity, the molecu-
lar diffusion coefficient, D, must be added to both Equation 2.23 and Equation 2.26.
Once this modification has been made, the diffusivity approaches D as expected (see
Figure 2.4 where D = 1x10°° cm?/s).

Figure 2.4: Eddy Diffusivity in Wall Region
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Figure 2.5 shows the distribution of the eddy diffusivity - kinematic viscosity
ratio for the wall region and part of the turbulent core. Notice that the profiles are con-

tinuous across the boundary between the two regions.
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Figure 2.5: Diffusivity/Viscosity Distribution (Wall Region - Turbulent Core)
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Bulk Flow Transport Step Equations

Sincetransport in the biofilm and the interface conditions are identical for both
laminar and turbulent flow, only the bulk flow transport equations need to be modified
for the turbulent flow model. Aswith the laminar flow model, advection only occursin
thelongitudinal direction and isafunction of the particles velocity at agiven location.
The random step isthe same asin the laminar model except the diffusion coefficient is
replaced by the eddy diffusivity, which is now radially dependent.

In particle tracking models, when the dispersive term is spatially dependent, as
itisinturbulent flow, an additional term must be added to the step equation (Tompson,
1988). It is based on the gradient of the diffusivity and acts as a correction term to keep
particles away from areas of low velocity. The bulk flow transport step equations can

now be written as:

V(i +A0) = y(1)+E, 26y, z)Az+a"_y(s(y*, £))At Eq. 2.27
(e + A1) = 2(1) + &, D 2e(r", 1A +%(e(y*, ))Ar Eq. 2.28
x(t+08) = x(6) +u(y', 1)At + &3 N2e(y ', 1) At Eqg. 2.29
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For the step term in the axial direction, the value for the lateral diffusivity isused. Itis
assumed that the lateral diffusivity isequal to thelongitudinal diffusivity. Also, the dif-

fusivity gradient correction term is not necessary in the axial direction.

Timestep Restrictions

For turbulent flow, the time-space restrictions are similar to those of the lami-
nar flow model. However, since turbulent flow contains eddies, and transport in the lat-
eral direction isaresult of these eddies and internal turbulence, the timestep much be
much smaller than for laminar flow in order to capture this physical phenomenon.

Asin laminar flow, the timestep must be much smaller that 1/k; in order to rep-
resent exponential decay with alinear approximation. Also, a particle should not be
ableto travel across the entire biofilm in asingle timestep. Therefore, to be conserva

tive:

2
_(0.50)

A<=D,

Eq. 2.30
Finally, a particle should not be able to travel laterally more than a distance of 1% of
the radiusin asingle timestep. Lateral transport is aresult of the eddy diffusivity and

the diffusivity gradient correction term. Therefore, At must be chosen such that

[P€]
0.0la>./3,/2¢,  At+ EB—meaxAt Eq. 2.31
where /3 is the maximum value of the random term, &, is the maximum possible

value for the eddy diffusivity and (de/dy),, . isthe maximum possible value for the
diffusivity gradient correction term. The timestep dictated by Equation 2.31 is almost
invariably the controlling factor in choosing the proper timestep length. Since the wall

region of the flow field is very thin, it isimportant that the timestep is small enough to
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capture the detail of the velocity and diffusivity profilesin this region. However, the
dispersion coefficient in the wall region is very small (approaches the molecular diffu-
sion coefficient) so the timestep specified by Equation 2.31 is more than adequate to

ensure proper behavior in the wall region.

2.4 System Char acterization
Various physical parameters are required to describe both the bulk flow and the

biofilm regions. The main parameters required to describe the bulk flow are the radius
of the pipe, the Reynold’s number, the molecular diffusion coefficient and the velocity
profile. The velocity profiles are dependant upon whether the flow is laminar or turbu-
lent and are described in detail previously. The radius of the pipeisbasically chosen as
amatter of convenience depending upon a particular ssmulation. For the laminar flow
simulations, the pipe radius was chosen to be 0.8 cm unless otherwise specified. This
is the same value used for Tim Cox’s research and in the Horn and Hempel experi-
ments. The range of molecular diffusion coefficients given in literature is 10 to 10°°
cm/s (Chapra, 1997). Unless otherwise stated, the molecular diffusion coefficient was
chosen to be the average value of 10™ cmi/s. The Reynold’s number was varied over
severa orders of magnitude for different simulations to show the dependence (or lack
thereof) of the transport parameters on Reynold’s number.

The physical parameters required to describe the biofilm coating are its thick-
ness, porosity, diffusion coefficient, and decay constant. Values given in literature for
typical biofilm thicknesses are in the range of 0.004 - 0.05 cm (Cox, 1997). For most
of the simulations, abiofilm thickness of 0.035 cmisused. Thisisthe value used in the
Horn and Hempel experiments as well as Tim Cox’s research. However, a sensitivity
analysisis performed to show the effects of biofilm thickness on the bulk transport
parameters. Biofilm porosities are given in the range of 0.58 - 0.93 with an average of
0.7 - 0.75 (Zhang and Bishop 1, 1994). Unless otherwise stated, aporosity of 0.73 is

used in the simulations. Molecular diffusion in biofilmsis usually described with a
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ratio of the biofilm diffusion to bulk flow diffusion. Thisratio is shown to be depen-
dant upon the biofilm porosity and tortuosity (Zhang and Bishop 2, 1994). Considering
the range of values given for porosity and tortuosity in biofilms, Equation 2.8 can be
used to calculate the possible values for the ratio of biofilm diffusion to bulk flow dif-
fusion. The calculated range is 0.36-0.81 with an average of 0.55-0.6. In the simula-
tions, the biofilm diffusion coefficient is chosen to be 60% of the bulk flow diffusion.
A sensitivity analysisis performed to show the model sensitivity to both porosity and
biofilm diffusion.

The rate constants used to describe the reactions occurring in the biofilm are
dependent upon both the makeup of the biofilm and the reactive constituent. Since
thereisno particular type of solute or biofilm being studied in thisresearch, thereisno
specific range of values for the decay constant. In general, first order rate constants are
on the order of -1.0/s (Cox, 1997). The value used in simulation varies and will be

specified with the simulation results.
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Chapter 3

Analytical Solution to Transport in Laminar and Turbulent Flow

3.1 Laminar Flow Solutions
Aris’ Method of Moments can be applied to the advection-diffusion equation

to analytically determine the one-dimensional effective parameters. The following
analysis assumes that the flow field in the pipe islaminar, and that the boundary reac-
tionisafirst order process. The zeroth, first and second concentration moments can be
used, as described previously, to determine the effective decay coefficient, the effective
velocity, and the effective longitudinal dispersion.

Equation 1.2, when rewritten with a reaction term, takes the following form:

oC

n o+ nu(r ) Eqg. 3.1

3D, G 3e D g ke = 0
where k isthefirst order decay constant. In this equation, a positive value for k repre-
sentsadecay. In order to compute the pth concentration moment, Equation 3.1 must be
multiplied by xPdx and then integrated from x = +o0 to x = -c0. The resulting equation
is:

+o00 +oo

J' X na—grdx + J' X nru(r)—dx J' %rDr a%dx Eq. 3.2

+0o0

- J'x %ng(;%d - J’xkadx =0



Using integration by parts on each of the termsin Equation 3.2, and applying the
boundary condition that at x = oo, the concentration is zero, the following equation is
derived in terms of Cyy:

aC, 19 0C

n—=—upnC,_ rD—+=—Dpn(p—1)C

- e i -nkC, =0 EQ.33

p-2
If longitudinal diffusion is considered negligible, the fourth term in Equation 3.3 can

be set to zero.

Solution for the Effective Decay Constant

In order to develop an expression for the effective decay constant, the zeroth
concentration moment must first be determined. Equation 3.3, when written in terms
of Cy, takes the following form:

aCOi 10 aCOl‘] — we —
VZW_;E rDiWD_nkCOi =0"i=1,2 Eq34
Equation 3.4 applies to the bulk flow and biofilm regions of the pipe (i = 1 for bulk
flow and i = 2 for the biofilm region), where k = 0 and n = 1 in the bulk flow region.
Three boundary conditions are required to solve the two equations; ano flux condition
at the pipewall, equal concentrations at the bulk flow / biofilm interface and equal flux

at the interface. These boundary conditions are written, respectively, as.

e’ or

= 0,atr=> Eq. 3.5

where b isthe radial distance to the pipe wall,
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Cyp = Cyppatr=a Eq. 3.6

where a is the distance to the bulk flow / biofilm interface, and

vl —n 2#,atr=a Eq. 3.7
Using the discontinuous weighing function theory from boundary value problemsin
heat conduction (which is analogous to mass transport in a fluid) the solution to Equa-
tion 3.4 can be written:

Coi(r, 1) = z AX, (A ()0i=1,2 Eq. 3.8

n=1

where nisthe eigenvalue index, X,(r) are theradial eigenfunctions, I";(t) describes
the temporal behavior associated with the nth eigenvalue, and A, is a constant coeffi-
cient (Cox, 1997). Combining Equation 3.8 and Equation 3.4, the following expres-

sions are obtained:

() = exp(A] 1)

) Eqg. 3.9
r,,(t) = exp((Ay,—k)t)

X,(r) = Jo(By,r)

Eq. 3.10
X,,(r) = Cy1y(By,r) + By, Ko(By,1)

where A, isthe nth eigenvalue for either region 1 (bulk flow) or region 2 (biofilm). The

eigenvalues for the two regions are related as follows:

= Ay, —k Eq. 3.11



where A 1,2 must be less than zero and therefore A,,2 must be less than k. In Equation
3.10, Jg isthe zero order Bessel Function of thefirst and second kind and |5 and K are
the zero order, Modified Bessel Functions of the first and second kind, respectively.
1, @nd B, used for simplicity, are defined as:

B = ’\/_)\?n/Dl

2
Boy = AN/ Dy

Eq. 3.12

C,p, and B,,, are constants that can be solved for by using the boundary conditions
defined by Equation 3.5 and Equation 3.6. The resulting expressions are given below

and can be solved simultaneously through substitution:

BZnKl(Ban)
= 22n 21\ Pan Eq. 3.13
2= T (Bonb) A
Jo(By,a) = Cy,1o(By,a)
B, = Eq. 3.14
2 Ko(Band) A

where |, and K, arefirst order Modified Bessel Functions of the first and second kind,
respectively.

The eigenvalues for the system can be determined by applying the equal flux
boundary condition, defined by Equation 3.7, to the expressions for Cy; and Cq,

(Equation 3.4). The resulting transcendental equation iswritten as:

DBy, J 1 (By,a) = —nyD,B,,(Cy,14(By,a) — By, K (By,a)) Eq. 3.15

where 31, and 3,, are related by Equation 3.11. The roots of the transcendental equa-
tion are the eigenvalues for the system.
The remaining unknown coefficient from Equation 3.8, A,,, is solved for using

the Orthogonal -Expansion Technique from heat transport. The reader is referred to
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Cox, 1997 for the details of this solution, which will not be discussed here. The solu-

tion for A, is of the following form:

a b
Ifljo(Bln’”)”d” + ”2If2(czn10(32nr) +B,,Ko(By,r))rdr
4, = = : Eq. 3.16

[70(B1ar) rdr + ny[(Cy,do(By,r) + By, Ko(By,r)) rdr
0 a

wheref, and f, aretheinitial conditionsfor Cg for the bulk flow and the biofilm region,
respectively.

The above expressions can be used to reach a solution for Cy. A computer code
is used to determine the eigenvalues that solve the equations. Since Cg gives the con-
centration moment at asingle position r, it must be integrated over the pipe cross sec-

tion to determine the mass moment, M

2 a
M, = 214, exp(A7,) J(B;,a) Eqg. 3.17
0 n; ) g =1 (By
Then using Equation 1.21 the following expression can be derived for the

effective one-dimensional decay constant:

214 exp(A\2) X T (B, a)M\?
Z n p( ln) % 1([3111 ) 1n
= 2=l Eq. 3.18

> 214, exp(\S,) %Jl(Blna)

n=1

dM / dt
MO

k(1) =

After alarge enough development time, the effective decay coefficient reaches an
asymptotic value. When this occurs, it can be seen that kK convergeson A 12 whereA, is

the region 1 eigenvalue closest to 0.0.



Solution for Effective Velocity

To solve for the first moment of concentration, Equation 3.3 takes the form:

oC,.
n—ll —unCOi—%%

aC
> irD—=g-nkCy; = 00 i = 1,2 Eq. 3.19

The same boundary conditions apply as described by Equation 3.5, Equation 3.6, and
Equation 3.7. The solution, again from heat conduction theory, iswritten as:
Ci(rt) = z X, (obi=12 Eq. 3.20
n=1
Because the same boundary conditions exist for this problem, the spatial solu-
tion isthe same as that derived for Cg. Plus, the application of the boundary condition
described by Equation 3.7 (equal flux at the interface between regions), assures that

the eigenvalues will be the same (Cox, 1997). Therefore, the spatial solution iswritten

0-AT O
X, () = J,0 D_ll’H Eq. 3.21

where A4 is the eigenvalue closest to 0.0.

as!

The temporal solution to the problem iswritten as:
M (1) = exp(\ 1)Lt Eq. 3.22

where L is expressed as:
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a

An‘[u1 (r)J(z)(Blr)rdr
L= Eq. 3.23

J’Jg(Blr)rdr
0

I ntegrating the equation for C, over the cross sectional area of the pipe, the fol-

lowing expression is obtained for the first moment of mass:
_ 2 Ma
M, = 2mexp(Ajt)Lt==J(Ba Eqg. 3.24
1 1 B, 1471 )E

From Equation 1.23 and Equation 3.17 the position of the centroid is:

v - Lt
X = 1 Eg. 3.25
and applying Equation 1.24, the effective velocity is:
_dXx _ L
Ueﬁr = —'t— = :4: Eq. 3.26

Solution for the Effective Dispersion Coefficient

Equation 3.3, when used to solve for the second concentration moment, can be
written as:
0Cy; 10 0C,
n—F=2unC\; == chrD;—=g=2D;nCo;=nkCy; = 0 Eq. 3.27
To develop expressions for the effective dispersion coefficient isit necessary to use the
full expressionsfor Cy, C; and C,. Applying integral transforms to these equations

resultsin a system of analytical expressions that can be used to determine D*. The
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eigenvalues are the same as those used in the Cg solution.

3.2 Turbulent Flow Solution

A set of analytical solutions for the effective, one-dimensional transport
parameters in aturbulent flow setting with a boundary reaction is too complicated to
derive. Therefore, the turbulent flow model with the reactive biofilm cannot be verified
analyticaly. However, an analytical expression can be developed for the effective dis-
persion coefficient in turbulent flow when there is no biofilm. Hence, the particle
tracking model will be verified for the non-reactive case only. The extension to include
aboundary reaction will be presumed to be correct.

The following solution for the effective dispersion coefficient was devel oped
by Taylor in 1954 and was summarized by Fischer in 1979. A solvable form of the
advection-dispersion equation for turbulent flow, when written with a coordinate sys-

tem whose origin moves at the mean flow velocity, is given below (Fischer, 1979):

0C _ 10, oC

u ﬁ = ;ar(l”ﬁg Eqg. 3.28

where C is the cross-sectionally averaged concentration, C' isthe deviation from the
mean concentration (C - C), U’ isthe deviation from the mean velocity (u - u), & = x -
ut (where x is the longitudinal direction), and € is the eddy diffusivity as afunction of

radial position. Solving Equation 3.28 for C’ results in the following expression:

T ox|)re

. _acl1d O .
c J'—%u raiir |+ C'(0) Eq. 3.29
0

The rate of mass transport in the streamwise direction, relative to the moving

coordinate system, is expressed as:

a

M = [uC2mvdr Eq. 3.30
0
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Combining Equation 3.29 and Equation 3.30 results in the following:

a r r
[ =21 —|:Iu rJ"%gJ'u'rdrdrdr:| Eq. 3.31
0 0 0

the term J'Zu'rC'(O)dr = 0 because J’Zu'rdr = 0. The mass transport rate can also be
defined in terms of a bulk mass transport coefficient, which would be analogous to the
effective dispersion coefficient, by the following equation:
- +dC
S ) P Eq. 3.32
Combining Equation 3.31 and Equation 3.32 and solving for D* gives the following

expression for the effective dispersion coefficient:

a

D = —gfu rI Iu rdrdrdr Eq. 3.33

Using the velocity and diffusivity profiles described in Section 2.3, and solving
Equation 3.33 through numerical integration, gives results that vary with the Reynolds
number, D* = f(Re)aux. Taylor's 1954 analysis resultsin avalue of 10.1aux for the
effective dispersion coefficient. This discrepancy isaresult of the velocity profiles
used in the analysis. Taylor used a velocity profile that did not vary with Reynolds
number. Furthermore, the fact that the thickness of the laminar sublayer (wall region)
varies with Reynolds number was not accounted for. The velocity profile used in Equa-
tion 3.33 isthe widely accepted, universal velocity profile which depends on the Rey-
nolds number. Also, the description of the wall region includes variations in thickness
dependent on the Reynolds number. Therefore, it is expected that Taylor’s result for

the effective dispersion coefficient isinconsistent with the solution to Equation 3.33.
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Chapter 4

Particle Tracking Results and Verification

For all particle tracking simulations the zeroth, first, and second mass moments
are calculated. These are used to compute the asymptotic values for the effective
decay, effective velocity, and the effective dispersion coefficients. Three plots are gen-
erated to determine the coefficients. Thefirst isaplot of the zeroth moment versus
simulation time. In other words, it shows the total mass of the system as a function of
time. Since thisisafirst order decay process, an exponential curve can be fit to the
data to determine the rate constant. The first order rate constant is the bulk flow decay
coefficient.

The second plot shows the center of mass of the system as a function of time.
The center of mass is computed as the first moment of mass divided by the second
moment of mass. Once the pseudo steady state conditions have been established (the
initial development time has elapsed) the center of mass moves at a constant rate. This
is shown as alinear relationship between centroid position and time. The slope of this
line is the effective velocity.

The third plot shows the variance of the particle distribution as a function of
time. The variance is computed as:

, M

o’ = —2_X°() Eq. 4.1
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After the initial development period, the variance changes at a constant rate. Once
again thisis shown by a straight line on the graph. The slope of thislineis equal to

twice the effective dispersion coefficient (see Equation 1.27).

4.1 Laminar Flow Results
Three simulations were run to give examples of the spatial moment curves and

to verify the particle tracking model with analytical results. Simulation 1 used the
average values for the biofilm parameters, afirst order decay constant of -1.0, amolec-
ular diffusion coefficient of 1.0x10° cm?'s, and a mean bulk flow velocity of 6.44 crm/
s. Simulation 2 used all the same parameters, except amolecular diffusion coefficient
of 5.0x10™ cm2/s. A simulation was also run with no decay occurring in the biofilm
(al other parameters are the same as simulations 1). Table 4.1 gives a summary of the

simulation results and the corresponding analytical solutions.

Table 4.1: Comparison of Simulationsto Analytical Results

Sm1 Analytical 1 Sim 2 Analytical 2 | No Decay

Ket (19) | -9.79x10° | -9.75x10° | -4.85x 10%| -4.80x 10 0.0
Ut (cm/s) 9.93 10.03 9.82 9.90 6.10
Dy (cm?/s) 12533 12987 2802 2680 59519

The particle tracking results match closely with the analytical solutions. While
there are some dlight discrepancies, these simulations along with several others (some
if which are discussed later) suggest that the particle tracking model accurately
describes mass transport in alaminar flow field. There are several reasons why dis-
crepancies may occur. Since the effective transport coefficients are determined by
regression analyses of the moment curves, their values are subject to the degree of “fit”
of the regression curves. The regression analysis must be performed on the portion of

the moment curve that lies after the initial development period. If some of thisregion
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isincluded in the regression analysis, the accuracy of the result may suffer, albeit very
dightly. Basically, the results of the regression analysis depend on the care taken by
the person performing them. An increase in the number of particles and a smaller
timestep would also lead to more accurate results. However, an effort was made to
used as few particles as possible and the largest timestep possible (that will still give
accurate results) in order to cut down on simulation run time. Finally, it isentirely pos-
sible that the analytical solutions are not exact. Due to the complex nature of the solu-
tion, which involves iteration, numerical solutions to find roots of equations, and the
summation of results from atheoretically infinite number of eigenvalues, the analytical
results themselves are only approximations.

For the same system as simulation 1 with no biofilm the effective decay coeffi-
cient is zero, the effective velocity is the mean flow velocity (6.44 cm/s), and the effec-
tive diffusion coefficient is 50565 cm?/s (from Equation 1.6). A reactive biofilm results
in anon-uniform concentration distribution across the pipe cross section because parti-
cles near the biofilm are subject to decay. Because this is also the region of lowest
velocity, the center of mass will travel faster than the mean velocity. Likewise the par-
ticles are subject to less separation because most of the mass existsin areas of lower
shear. As expected, Table 4.1 shows that the presence of areactive biofilm causes the
effective velocity to increase and the effective dispersion coefficient to decrease. It is
interesting to note that the simulation with no decay resultsin alower effective veloc-
ity than the mean flow and a higher effective dispersion than a pipe with no biofilm.
Thisis because particles may enter the biofilm without losing any mass. In the biofilm
the velocity is zero, so particles may lag behind the particlesin the bulk flow. This
leads to a decreased effective velocity and an increase in particle separation.

It isimportant to notice that the effective decay coefficient is several orders of
magnitude smaller than the biofilm decay coefficient. Since the effective decay repre-

sents an overall decay of the massin the bulk flow, it is expected to be much smaller
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than the regional decay rate at the boundary.

Thefollowing figures are the spatial, mass moments resulting from simulations
1 and 2. The values reported in Table 4.1 are determined by aregression analysis of
these graphs. Figure 4.1 shows the change in mass as a function of time (M = massand
M; = total mass at the beginning of the simulation) for the two simulations. The effec-
tive decay coefficient is determined by fitting and exponential curve to the portion of
the curve that resides after the initial development time. The portion of the curve that
resides previous to the development timeis not afirst order function and therefore an
exponential curve could not be fit to it.

Figure4.1: Zeroth Moment Curve
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Figure 4.2 and Figure 4.3 can be used to investigate the devel opment times for
the respective systems. The development region is alittle more obviousin Figure 4.3
than Figure 4.2. It represented by the curved region of the graph before it developsinto
astraight line. The development time for simulation 1 is approximately 5000 seconds.
It is difficult to determine the development time for simulation 2 but it is probably
about 1000 seconds. Because the molecular diffusion coefficient is greater for ssmula-

tion 2, mixing in the radial direction occurs faster. The initial distribution of particles
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istherefore “forgotten” in a shorter amount of time and effective one dimensional
transport is established more quickly.

It is evident from the two simulations that an increase in the molecular diffu-
sion coefficient leads to a decrease in both the effective dispersion coefficient and the
effective velocity. The effective dispersion coefficient decreases because mixing in the
radial direction increases. Therefore, particle separation in the longitudinal direction
due to the velocity gradient is decreased. For the same reason, the effective velocity
decreases. Even though more mass is being transported to the biofilm (which leads to
the increase in the effective decay coefficient [see Table 4.1]), the high degree of mix-
ing in the radial direction leadsto amore uniform distribution of mass across the cross
section. Theoretically, as the molecular diffusion coefficient continues to increase, the
effective velocity will approach the mean flow velocity.

Figure4.2: First Moment Curve
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Figure 4.3: Second Moment Curve
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There are two model parameters that affect the numerical accuracy of the
model results; the timestep length and the number of particles used. The restrictions on
timestep length are discussed in detail in Chapter 2. There are no definitive restrictions
on the number of particles. However, Tompson suggests that the number of particles
necessary for accurate results is on the order of 10% (Tompson, 1988). The following
two examples demonstrate the numerical inaccuracies that could result if an improper
timestep was chosen or too few particles were used. All other parameters are the same

asthose used in simulation 1, discussed above.



Figure 4.4: Zeroth Moment - Too Few Particles
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Figure4.5: Second Moment - Too Few Particles
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Figure 4.4 and Figure 4.5 show the zeroth and first moments for a ssimulation
using 1500 particles. The number of particles used to obtain the results given for simu-
lation 1 is24000. It is obvious that the model output does not result in smooth curves
for the spatial moments. Performing aregression analysis on the curves to determine

the effective bulk transport parameters gives incorrect results (see Table 4.2). Because
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the particles are behaving properly (i.e. a proper timestep was used), the discrepancy
between the model results and the correct results (those of simulation 1) is not consid-
erable. There are simply not enough particles for the mean motion to represent reality.
This explains why the spatial moments do not result in smooth curves. 1t would be

obvious to the model user that the results are not correct.

Table 4.2: Discrepancies from Incorrect
Numerical Parameters

K et Vett Dett
(x 10°%/s) (cm/s) (cm?/s)
Simulation 1 -9.79 9.80 12533
Too Few Particles -10.7 9.86 13197
Too Large At -9.07 9.59 15831

The simulation used to produce Figure 4.6 and Figure 4.7 used a timestep
length of 10 seconds when the appropriate timestep length (that used for simulation 1)
is approximately 0.1 seconds (as dictated by the time-space restrictions discussed in
Section 2.2). Unlike the results produced by a model with too few particles, a model
using an incorrect timestep will result in smooth curves for the spatial moments. As
long as there are a sufficient number of particles to get consistent and smooth average
particle transport, the moment curves will also be smooth. The behavior of the individ-
ual particle however, will be inconsistent with reality. For example, a particle could
move from the center of the pipe to the pipe wall in asingle diffusion step. Therefore,
even though the spatial moment curves may look correct, aregression analysis of these
curveswould give highly inaccurate valuesfor the effective bulk transport coefficients.
Theresultsin Table 4.2 show that thisis indeed the case. A model user would have no
way of knowing that the results are inaccurate unless they were compared with an ana-

lytical model. Therefore, it isimperative that the timestep restrictions discussed in
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Table 2.2 are strictly adhered to. Another way to determine a proper timestep isto per-
form several simulations, decreasing the timestep length in each one. When a decrease
in timestep fails to change the results, a valid timestep length has been determined
(Once an appropriate timestep has been determined, a decrease in timestep length of
any amount will not change the model results significantly. There will always be slight
variations due to the random nature of particle tracking models). Thisisavery time
consuming and impractical way to choose the timestep length however.

Figure 4.6: Zeroth Moment - Large At
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Figure4.7: Second Moment - Large At
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Dependence of Transport Parameterson Reynolds Number

In order to simulate the Horn and Hempel experiments, a system was con-
structed using the average values for porosity, Dy, /D, biofilm thickness and molecular
diffusion given in Chapter 2. A first order decay constant of -1.0/s was used and a pipe
radius of 0.8 cm. Simulations were then performed for Reynolds numbersin the range
of 536 - 2000.

Table 4.3: Mass Transport Parametersfor a
Range of Reynolds Numbers

Reynolds | Mean Velocity K eff Uegst Dt
Number (cm/s) (x 10™/s) (cm/s) (cm?/s)
536 3.3 -9.70 511 3358
650 4.0 -9.60 6.2 4976
800 4.93 -9.60 1.7 7544
900 58 -9.64 9.04 10475
1300 8.37 -9.60 13.1 21790
1700 10.9 -9.64 17.1 37365
2000 12.9 -9.58 20.1 51389
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Contrary to the results of the Horn and Hempel experiments, the effective
decay constant does not vary with Reynolds number. As discussed in Chapter 1, the
effective decay constants measured and computed for the Horn and Hempel experi-
ments are not the asymptotic values. Therefore, they are expected to vary with Rey-
nolds number because they are dependant on the entrance development and the reactor
travel time. Since the values computed by the particle tracking model are the asymp-
totic transport parameters, the effective decay will not vary with Reynolds number.

Both the effective velocity and the effective dispersion coefficient increase
with increasing Reynolds number. Since the mean velocity of flow in the pipe increase
with Reynolds number (by definition), the effective velocity is aso expected to
increase. The effective velocity is aways greater than the mean vel ocity because the
particles near the wall of the pipe (where the velocity is lowest) are subject to decay.
Therefore, the most mass will exist in the center of the pipe where the velocity is
higher than the mean velocity. The effective dispersion coefficient increases with
increasing Reynolds numbers because the velocity profile is more spread out in the
axial direction for high Reynolds numbers. In other words, the centerline velocity
increases with increasing Reynolds number but the velocity at the wall is always zero.
Therefore two particles, one at the center of the pipe and one at the wall, will spread
apart faster when the centerline velocity is high, than the same two particles when the

centerline velocity is low.

Sensitivity to Porosity and Dy;o/D

Sinceit is difficult to precisely define the physical structure of a biofilm,
parameters such as the porosity and biofilm diffusion coefficient (which are usually
the most difficult to determine) have to be estimated with some degree of uncertainty.
The average value from literature may be used or the parameter could be set as aresult

of calibration. Either way, it is useful to know how sensitive amodel is to the most
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uncertain parameters. If it turns out that a model is very sensitive to these parameters,
then there would be justification in performing various experiments to measure them
in amore accurate manner. However, if it turns out that the model is not really affected
by these parameters, then it is probably safe to use an average value. Table 4.4 and
Table 4.5 show the sensitivity of the bulk transport parameters to porosity. All other
parameters are held constant at the average value discussed at the end of Chapter 2.
Theradius of the pipeis 0.8 cm, the Reynolds number is 1000 and the first order decay
constant in the biofilm is-1.0.

Table 4.4: Porosity Sensitivity Analysis - Particle Tracking Model

Porosty | l1<oefg/s) (:nj;) (c?negs)
042 9.92 14220
5 9.65 9.92 13800
65 9.65 9.97 13300
B 9.7 10.05 12584
% 967 9.96 13115
10 29.56 10.05 12307

Table 4.5: Porosity Sensitivity Analysis- Analytical M odel

Porosty |, P1<(§'f~£>/s) (cun?f/;) (c%gs)
062 9.9 13042
5 9,67 10,01 12593
65 972 10.02 13106
B 9.75 10.03 12850
% 9.7 10,04 12677
10 978 10.04 12656
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on the bulk transport parameters. A change in porosity of £43% (from the mean)
resultsin the following percent changesin the bulk transport parameters: £0.8% in K
for the analytical model, £2.2% in K for the particle tracking model, +0.25% in U
for the analytical model, +0.65% change in U for the particle tracking model, +1.5%
in Dt for the analytical model, and +7.5% in D for the particle tracking model.

While the bulk flow transport parameters appear to be relatively insensitive to
changesin porosity, there are some noticeabl e trends. An increase in porosity resultsin
anincrease in Ky and U, but adecrease in Dg. At higher porosities, particles are
able to enter the biofilm more readily. Thisis also reflected in the probability rule
expressed by Equation 2.15, and is consistent with the behavior expected due to
increased porosity of the biofilm. If more particles are allowed to enter the biofilm, the
effective decay coefficient would naturally increase. This results in less solute mass
near the biofilm (where the velocity islowest and the shear isthe greatest). Therefore,
the effective velocity increases and the effective dispersion decreases.

It isimportant to note that the particle tracking model is not accurate enough to
correctly predict the sensitivity to porosity. Whileit is still evident that the system is
relatively insensitive to changes in porosity, the trends shown in the analytical results
are not as obviousin the particle tracking results. In fact one could say that the particle
tracking model is unable to accurately portray these trends. The reason for this inaccu-
racy is the random nature of the model. Even with the same input parameters, the par-
ticle tracking model could return slightly different results (each simulation different
random numbers are generated). In this case, the differences caused by the random
nature of the model overshadow the differences caused by porosity variations. This
problem would be resolved by increasing the number of particles used in the simula-
tion.

Table 4.6 and Table 4.7 show the sensitivity of the bulk transport parametersto

the ratio of the biofilm diffusion coefficient to bulk flow diffusion coefficient (Dy,;o/D).
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All other parameters are kept constant and are the same as those used in the porosity

sengitivity analysis.

Table 4.6: Sensitivity to Dy,/D - Particle Tracking M odel

Dpio/D (X l1<oefg/s) (:nj;) (c?negs)
35 -9.94 9.97 12462
5 -9.85 9.97 13105
65 -9.69 9.97 13000
-9.46 10.04 12812
-9.69 9.99 13144

Table 4.7: Sensitivity to Dy;o/D - Analytical Model

PoidD | l1<<§it>/s) (:rrifs) (c:wegs)
B ] ]
5 -9.73 9.8 13100
65 -9.75 10.06 12954
-9.76 10.05 12834
-9.77 10.03 12757

The results of the sensitivity analysisto Dy,;,/D are similar to the porosity sen-
sitivity analysis. The system is not very sensitive to changesin the ratio Dy, /D, even
less so than porosity. The role of the biofilm diffusion coefficient istwofold. First, and
most obvious is dictates the extent of diffusion occurring in the biofilm. Second, like
porosity, it affects the interface condition. If the ratio Dy,;/D is close to one, aparticle
may diffuse readily into either the bulk flow or the biofilm from the interface. The
lower thisratio gets however, the less likely the chance that a particle will diffuseto

the biofilm. For this reason, the same trends are apparent here asin the porosity sensi-
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tivity analysis. Once again, the particle tracking model is not sensitive enough to dis-
play these trends.

An important point to consider in this analysis is that the sensitivity results
apply to the specified system only. If the set of system parameters were to change, the
sensitivity analysiswould also likely change. For example, the system just described is
mostly diffusion limited. This means that the bulk flow transport parameters are
largely affected by the rate at which solute can reach the biofilm. If the sensitivity anal-
ysis was performed on arate limited system (the bulk flow transport parameters are
largely affected by the reaction rate in the biofilm), the results would show a greater
sensitivity to both porosity and Dy,;o/D. Likewise, a system with athicker biofilm
would probably show greater sensitivity to Dy,;,/D than a system with a thin biofilm.

This hypothesis will be tested further in the next section.

Diffusion Limited Versus Rate Limited Systems

A diffusion limited system is onein which theratio of the biofilm decay rate to
diffusive flux is high. In other words, the effective decay is governed by how fast mass
can be transported from the bulk flow into the biofilm where it would decay almost
instantly. When a system is limited by diffusion, an increase in the biofilm decay rate
does not have a significant effect on the bulk transport parameters. Conversely, in a
rate limited system, depleted mass s quickly replenished by diffusion from the bulk
flow. The ratio of the biofilm decay rate to diffusive flux is low. Therefore the bulk
flow effective decay is dictated by the decay rate in the biofilm.

It is believed that the system used to perform the previous sensitivity analysis
on porosity (shown in Table 4.4 and Table 4.5) was limited by diffusion. For compari-
son, the same analysis was performed for arate limited system. The results are shown

in Table 4.8 and Table 4.9.

73



Table 4.8: Porosity Sensitivity - Rate Limited
Particle Tracking Model

Porosty | I1<(;}'r£/s) (:Jrr?f/;) (cﬁeﬁﬁs)
25 967 6439
5 262 972 5432
65 27 978 5364
8 2.75 9.84 2948
% 2.76 9.87 4722

Table 4.9: Porosity Sensitivity - Rate Limited
Analytical Solution

Porosty | l;Ee)f'f“/s (cUn?;fs,) (c?nezf;s)
7256 9.64 6134
5 264 9.73 5694
65 271 9.81 5277
8 276 9.86 5023
95 279 9.89 4857

It is obvious that the particle tracking model is much more accurate for this set
of simulations. The results match the analytical solutions very closely (except for the
effective dispersion which is believed to be dlightly inaccurate in the analytical
model). It is believed that the reason for the lack of accuracy in the diffusion limited
analysis has to do with the number of particles used. In arate limited system the diffu-
siveflux intheradia directionis high. Therefore, thereisavery large number of parti-
cle collisions with the bulk flow - biofilm interface. Because the number of collisions
is so high, the simulated particle behavior at the interface, as dictated by the probabil-

ity rule, will more accurately depict the expected average behavior at the interface. For
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the diffusion limited system, the same number of particles was used in the simulation,
however, there were far fewer collisions with the interface. Therefore, there were not

enough collisions to result in the proper average behavior.

It is also apparent that the rate limited system is more sensitive to porosity.

Table 4.10 gives a summary of the sensitivity analyses for the two systems.

Table 4.10: Summary of Sensitivity Analysis

Changein Changein | Changein | Changein
Poros ty Keff Ueff Deff
Diffusion Limited +40.7% +0.82% +0.25% +1.5%
Rate Limited +40.7% +4.2% +1.0% +15.4

As expected, the model is more sensitive to porosity for arate limited system
than adiffusion limited system. As previously discussed, for adiffusion limited sys-
tem the effective bulk flow parameters are largely dictated by the diffusive flux to the
biofilm. Therefore, it is expected that the system will not be very sensitive to biofilm
parameters. However, in arate limited system, there is always ample mass at the bio-
film interface. What happensto that massis largely aresult of the biofilm parameters.

Hence, the system is more sensitive to changes in porosity.

Effects of Diffusion Limitation

The Damkohler number is a dimensionless number defined as ka?/D. It is used
in the following figures to show the relationships between the effective transport
parameters and the ratio of decay to diffusion. Figure 4.8 shows the relationship
between K /K and the Damkohler number for different values of a/b. K, repre-
sents the overall decay in the absence of diffusion limitations. It is calculated as the
cross sectionally averaged decay rate (biofilm decay rate multiplied by the ratio of bio-

film cross sectional areato total cross sectiona area).
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Figure 4.8: Effective Decay vs. Da
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The effects of diffusion limitations on the effective decay are apparent. Asthe
system becomes more diffusion limited (the Damkohler number increases), the effec-
tive decay becomes further from the maximum decay. Conversely, as diffusion limita-
tions decrease, the effective decay approaches the maximum decay.

Figure 4.9 shows the effects of diffusion and decay on the effective velocity.
As the decay rate approaches zero or as the diffusion coefficient becomes very large
the effective velocity approaches the mean velocity as expected. Also, it is apparent
that an increase in decay rate, beyond a certain point, causes no further increase in

effective decay.
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Figure 4.9: Effective Velocity vs. Da
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Figure 4.10 shows the relationship between D*/DT{MOr and the Damkohler
number. Dr,yor i the effective dispersion coefficient for a pipe without a biofilm (cal-
culated by Equation 1.6). Asthe effects of the biofilm become more and more insignif-
icant, the effective dispersion coefficient approaches the Taylor dispersion coefficient
(This behavior is also apparent in Table 4.1). As with the effective velocity, there
seems to be a decay value beyond which the an increase in decay produces no further

decrease in effective dispersion.
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Figure 4.10: Effective Dispersion vs. Da
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4.2 Turbulent Flow Resultsfor a Smooth Pipe
The turbulent flow models generate the same output as the laminar flow mod-

els. Zeroth, first, and second mass moment curves are used to determine the effective
transport parameters through regression analysis. Since there is considerable interest
in turbulent pipe flow systems with no reactive biofilm, simulations were performed to

characterize transport in turbulent flow with and without a boundary reaction.

Turbulent Transport With No Boundary Reaction

A set of smulations were used to compare the particle tracking results with
Taylor’s 1954 turbulent flow results. The analytical solution, discussed in Chapter 3, is
used to verify the particle tracking model. The following simulations, shown in
Table 4.11, were performed with a pipe radius of 4.0 cm and a molecular diffusion
coefficient of 1.0x10°> cm?/s. The Reynolds number was varied to show its effect on

the effective longitudinal dispersion coefficient.
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Table 4.11: Effect of Reynolds Number on Effective Dispersion

RemaldsNumber | ng | (Anaytial Soution
10000 29,34 29.3al

50000 8.1aux 8.0aLk

100000 6.5au- 6.1aU

500000 5.7aUx 5 3aur

1000000 5.3al 5. 1au*

The effect of Reynolds number on the asymptotic longitudinal dispersion coef-
ficient is apparent. At lower Reynolds numbers, the laminar sublayer is considerably
thicker. Therefore, more solute mass can become trapped in the sublayer and separated
from the mass in the turbulent core. As the Reynolds number increases, however, the
laminar sublayer becomes extremely thin and is unable to hold a considerable amount
of mass. Therefore the laminar sublayer, and changes in the Reynolds number itself,
will have very little impact on the effective dispersion coefficient at high Reynolds
numbers.

It is obvious that Taylor'sresult, D = 10.1aus, does not apply for the velocity
and diffusivity distributions used in this research. The velocity profile, and hence the
diffusivity profile, used by Taylor does not vary with Reynolds number. Therefore, his
analysisresultsin a constant, 10.1, multiplied by au«. The velocity profile used in the
particle tracking and analytical models does vary with Reynolds number, hence the
discrepancy with Taylor’s result is expected. In the field of Civil Engineering, no stud-
ies have been performed to verify Taylor’'s result (since Taylor’'s experimentation in
1954). However, there has been considerable research attempting to develop expres-
sions for velocity and diffusivity in the wall region. The velocity and diffusivity pro-
files used in this research (Wasan and Wilke, 1964), are accepted as a more accurate

description of transport in the wall region than Taylor’s. It isthen reasonable to assume
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that the results given by the particle tracking model provide a better representation of
dispersion in turbulent pipe flow than Taylor’s result. However, experimental results
are required to confirm this hypothesis.

Taylor’s experimental results vary from 10.6aux to 12.8aux. These experiments
were run for Reynolds numbers near 20000 without much variation. The particle
tracking model gives avalue of approximately 14aus for a Reynolds number of 20000.
The model results therefore seem to overprotect the dispersion seen in Taylor’s experi-
ments. It is possible that the velocity profile used in Taylor’s analysis was devel oped
from the profile seen in the experiments. This would explain the close correlation
between the theory and experimentation. Since the Reynolds number was not varied
greatly, the relationship between Reynolds number and effective dispersion went
unnoticed. However, before any final conclusions can be reached on thisissue, addi-
tional physical experimentation should be performed for a wide range of Reynolds

numbers.

Turbulent Transport with a Reactive Biofilm

Once the turbulent flow model was verified analytically for the non-reactive
case, it was extended to include a boundary reaction. No analytical solutions are avail-
able for this system so there is currently no way to verify these results. Physical exper-
imentation is necessary in order to ensure that the model is working properly.

Four simulations were run to show the effects of a reactive biofilm and to com-
pare the results to a similar system with no biofilm and a system with a non-reactive
biofilm. The simulations were run with at a Reynolds number of 100,000, a pipe radius
b of 5.0 cm, a biofilm thickness of 0.3 cm (a = 4.7), afirst order decay constant of -
15.0 s, porosity of 0.73, and D/Dy, of 0.6. This resultsin a mean flow velocity of
104.3 cm/s and a shear velocity of 4.94 cm/s. The required timestep for this systemis

0.0001 seconds and 50,000 particles were used in the simulation. Thetotal observation

80



time for the ssimulation is 40 seconds. Since the degree of transverse mixing in aturbu-
lent system is severa orders of magnitude larger that alaminar system, the initializa-
tion timeis much smaller. The asymptotic value of the effective transport parametersis
reached within afew seconds. Since the simulation time is so short, the first order
decay constant must be much larger that the usual value in order to get an appreciable
amount of decay. Table 4.12 shows the results of the four smulations. Simulation 1
uses a molecular diffusion coefficient of 1x10™> cm?/s and simulation 2 uses a diffu-

sion coefficient of 1x10™* cm?/s.

Table 4.12: Turbulent Flow Results with Biofilm

Simulation 1 | Simulation 2 | No Biofilm No Decay
Kgt (V9| -1.05x10%| -416x103 0.0 0.0
Uyt (CM/s) 104.33 104.55 104.13 103.74
D (cmM?/s) 5.78aux 5.48aux 6.6aUx 49.0aux

It is apparent that a reactive biofilm has the same effects on a turbulent flow
system as alaminar flow system, however much less pronounced. The boundary reac-
tion results in anon-uniform cross-sectional solute concentration. Therefore, the effec-
tive velocity is expected to increase and the effective diffusion is expected to decrease.
Thistrend is clearly seen in Table 4.12. While the reactive biofilm does cause the
expected changes in effective velocity and effective dispersion, the changes are very
dight. Thisis because the rate of radial dispersion in aturbulent flow system is very
large. Even though the biofilm is reducing the solute mass at the boundary;, it is quickly
replenished by dispersion from the turbulent core. Therefore, athe cross-sectional sol-
ute concentration remains nearly uniform. The simulation with a non-reactive biofilm
also gives the expected results. Mass that enters the biofilm in this case has zero advec-
tion but does not decay. Therefore particles in the biofilm quickly becomes separated

from those in the bulk flow. This causes a decrease in effective velocity and an increase
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in effective dispersion.

The differences between Simulation 1 and Simulation 2 are due to the differ-
ence in the molecular diffusion coefficient. A change in molecular diffusion of one
order of magnitude only produces slight changes in the effective transport parameters.
It is then obvious that the role of the molecular diffusion coefficient in aturbulent flow
system is much different fromitsrolein alaminar flow system. In alaminar flow field,
trangport in the radial direction occurs as aresult of molecular diffusion only. How-
ever, in aturbulent system, radial transport is governed by the turbulent eddies existing
within the flow field. Recall from Chapter 2 that the radial dispersion is afunction of
the slope of the velocity profile, which is several orders of magnitude larger than the
molecular diffusion coefficient. Only in the laminar sublayer, very closeto the biofilm,
does the molecular diffusion coefficient have an impact. Even so, the effects of molec-
ular diffusion are obvious. The laminar sublayer controls the transport of solute into
the biofilm. As the molecular diffusion increases, more solute will enter the biofilm.
Therefore, the effective decay rate should increase. As decay increases the amount of
mass located in the region of lowest velocity and highest shear (near the boundary)
decreases. This causes an increase in the effective velocity and a decrease in effective

dispersion. These trends are clearly seen in Table 4.12.

Reynolds Number Dependence

Table 4.13 shows the effects of Reynolds number on the effective transport
parameters. The apparent trends are the result of changesin the laminar sublayer thick-
ness. As the Reynolds number increases the laminar sublayer thickness decreases.
Therefore, the rate of diffusion into the biofilm increases. Thisresultsin an increasein
the effective decay coefficient. Asthe laminar sublayer thickness decreases, radial
transport in the wall region of the pipe increases. Therefore, a more uniform concen-

tration distribution is maintained throughout the pipe cross section and the effective

82



vel ocity approaches the mean flow velocity. For the same reason the effective disper-

sion coefficient approaches the value seen in the absence of a biofilm.

Table 4.13: Dependence of Transport Parameters
on Reynolds Number

T\,iyrzggrs (Kl/eg Uett / Uavg | Dett / Dnp
10,000 -1.88x 10 1.008 0.47
50,000 -6.32x 10 1.0007 0.80

100,000 -1.05x 103 1.0001 0.89
500,000 -3.10x 103 1.0 0.96
1,000,000 -3.30x 10 10 0.99

Figure 4.11 and Figure 4.12 graphically depict the results given in Table 4.13.
In both figuresiit is apparent that the Reynolds number ceases to have a significant
impact after a certain value. Thisis because the laminar sublayer becomes extremely
thin to the point whereit is virtually un-noticeable. For the effective decay coefficient,
this means that solute can easily enter the biofilm and arate limited situation is estab-
lished. For the effective decay coefficient, a high degree of radial mixing exists
throughout the entire cross section of the pipe and a concentration distribution that is

very near uniform can be maintained.
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Figure 4.11: Effect of Reynolds Number on Effective Decay
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Figure 4.12: Effect of Reynolds Number on Effective Dispersion
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Sensitivity to Damkohler Number

Aswith the laminar flow model, the effects of diffusion limitations on the tur-
bulent flow effective parameters are examined through the dimensionless Damkohler
number. For turbulent flow, the Damkohler number is computed as ka?/D where D is
the average value of the radial dispersion coefficient.

Figure 4.13 shows the rel ationship between the Damkohler number and effec-
tive decay for two ratios a/b and for two different Reynolds numbers. At low
Damkohler numbers the system is rate limited and the effective decay approaches the
maximum decay seen in the absence of diffusion limitations. At high Damkohler num-
bers the system is more diffusion limited and the effective decay is much smaller than
the maximum decay. These results are almost identical to those seen in the laminar
flow case (Figure 4.8).

Figure 4.13: Effective Decay vs. Damkohler Number
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The influence of the Damkohler number on effective velocity is not shown

because the variations in effective velocity are too small to display in agraphically
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meaningful way. In turbulent flow, the effective velocity is always very close to the
mean flow velocity (differences on the order of 1072 - 10°9).

Figure 4.14 shows the relationship between the Damkohler number and the
effective dispersion coefficient. The figure showsthe results for two different Reynolds
numbers for an a/b ratio of 0.9. Only one a/b ratio is displayed because the results for
different ratios are amost identical. The general trend shown in thefigureis similar to
that seen in the laminar flow case (Figure 4.10). In arate limited scenario (low
Damkohler number), the concentration distribution is nearly uniform, so the effective
dispersion approaches and actually exceeds the dispersion value for the no biofilm
case. The reason that the effective dispersion value exceeds Dygi, iS due to a storage
effect in the biofilm. At low Damkohler numbers, massis entering the biofilm but it is
not decaying very fast. Therefore, massis stored in the biofilm and is quickly sepa-
rated from mass in the bulk flow. In a diffusion limited scenario, |ess mass exists near
the pipe wall where the shear is greatest. Therefore, there is less longitudinal separa-
tion of particles and the effective dispersion coefficient decreases from the dispersion

seen in the absence of abiofilm.
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Figure 4.14: Effective Dispersion vs. Damkohler Number
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Chapter 5

Conclusion

A particle tracking model was used to quantify the effective transport parame-
tersin acircular pipe with areactive biofilm. First order kinetics were used to model
decay in the biofilm region. Solute transport under laminar flow conditions was exam-
ined and verified with the analytical solutions developed by Cox (1997). A turbulent
flow model was used to examine solute transport with and without the effects of a
reactive biofilm. For the case of turbulent flow without a biofilm, the effective disper-
sion coefficient was compared with Taylor’s result of 10.1au.. Using more recently
accepted velocity profilesin the turbulent core and the wall region, it becomes appar-
ent that Taylor’s result is not valid for arange of Reynolds numbers.

Under laminar flow conditions, the model results provide considerable insight
into the relationship between biofilm characteristics and the effective bulk flow param-
eters. It is shown that a reactive biofilm results in a non-uniform distribution of solute
across the pipe cross section. Since less solute mass exists near the pipe wall, the effec-
tive velocity is greater than the mean velocity and the effective dispersion isless than
the dispersion in a pipe with no biofilm. A sensitivity analysis to porosity and D/Dy,
shows that the model is not very sensitive to changes in these two parameters. How-
ever, the sensitivity is greater in rate limited systems than in diffusion limited systems.

In general, as the reactive potential in the biofilm increase, whether through an



increased decay rate, increased porosity, or biofilm thickness, the effective decay and
velocity tend to increase and the effective dispersion tends to decrease.

For comparison with the Horn and Hempel experiments, simulations were per-
formed for awide range of Reynolds numbers. Contrary to the Horn and Hempel
results, the effective decay coefficient does not depend on the Reynolds number. It is
apparent that the Horn and Hempel experiments are observing pre-devel opment effec-
tive decay coefficients. Therefore, their expression for the mass transfer coefficient
does not represent the asymptotic effective decay rate that may be used in an effective
one-dimensional advection-diffusion reaction equation.

The development of the turbulent flow models required research into the nature
of the velocity profile and eddy diffusivity in the wall region of the pipe. The well-
known universal velocity profile was used in the turbulent core. In the laminar sub-
layer, expressions developed by Wasan, Wilke, and Tien (1963) were used to describe
the velocity and eddy diffusivity. Using these profiles, a particle tracking model was
constructed to determine the effective dispersion coefficient for a pipe with no biofilm.
Theresultswere verified by an analytical solution based on Taylor’s analysis and were
compared to his expression of 10.1au- for the effective dispersion coefficient. Since
the velocity profiles used in the particle tracking model varied with Reynolds number,
the resulting effective dispersion coefficient should also with Reynolds number. This
relationship was clearly seen in the model results and the “ constant” 10.1 was actually
much higher for low Reynolds number and was lower for high Reynolds numbers.
Taylor’'s analysis, however, was based on avelocity profile which did not change with
Reynolds number. Hence, his analysis was unable to capture the effects of changesin
the laminar sublayer thickness at different Reynolds numbers. Since the physical
experiments used to verify Taylor's analysis did not include a wide range of Reynolds
numbers, this behavior went unnoticed. It is probable that the velocity profile used in

Taylor’s result was devel oped from velocity data seen in the pipe experiments (or from
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an experiment performed at similar Reynolds numbers). Therefore, this topic should
be re-examined with additional physical experimentation for awide range of Reynolds
numbers.

Simulations were aso performed to analyze the influence of areactive biofilm
on the effective transport parametersin aturbulent flow field. Since no previous
research has been done in this area, and no analytical solutions to this problem exist,
the particle tracking results could not be verified. Similar trends between the biofilm
parameters and the bulk transport parameters were seen in the turbulent flow model
and the laminar flow model. The presence of areactive biofilm resultsin a non-uni-
form, cross sectional concentration distribution. Therefore, the effective velocity
increases from the mean velocity and the effective dispersion decreases from the dis-
persion in a pipe with no biofilm. The variations in the effective parameters, however,
are much less pronounced in the turbulent flow model than in the laminar flow model.
Since there is considerable lateral mixing due to turbulent eddies, a cross sectional
concentration distribution that is very near uniform is always maintained. Therefore,
the biofilm only affects avery small region of flow near the pipe wall (namely the lam-
inar sublayer). As the Reynolds number increases, the thickness of thisregion
decreases and the effects of the biofilm become less significant. For this reason, and
unlike the laminar flow system, the effective decay rate in a turbulent flow system var-

ies with Reynolds number.
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