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Chapter 1

I ntroduction

Water managers in the western U.S. and throughout the world are facing the
increasing problem of meeting water demands for awide variety of purposesincluding
municipal, industrial, agricultural, power production, and environmental. Strict plan-
ning is necessary to meet demands on water quality, volume, timing and flowrates.
Thisis particularly true in the Truckee-Carson Basin where snowmelt from the Sierra
Nevada Mountains is virtually the only water source for the semi-arid desert of west-
ern Nevada. With the bulk of the water in the Truckee and Carson Rivers coming in
just four months (April, May, June, and July) and a potential evaporation to precipita-
tion ratio of 12:1 in most of the basin, water managers must plan very carefully how
they will meet al the demands. Management issues are particularly complex due to the
large number or reservoirs, diversions, and varying demands in the basin. The U.S.
Bureau of Reclamation (USBR) manages the operations on the Truckee and Carson
Rivers. The forecast for the upcoming water year is instrumental to their planning pro-
cess. Skilled forecasts provide the information necessary to facilitate effective plan-

ning of reservoir releases and diversions throughout the system.

1.1 Motivation
One of the key components of water management on the Truckee-Carson river

system is the interbasin transfer of water from the Truckee River through the Truckee



Canal to Lahontan Reservoir, on the Carson River, to provide water for the Newlands
Project irrigation district and other water users. Water managers use the spring stream-
flow forecasts for the Truckee and Carson Rivers to determine the amount of water to
be diverted through the Truckee Canal. Due to the limited capacity of the canal and the
short water season, skilled forecasts of spring flows on these rivers are important for
efficient water management in the system.

The Newlands Project is a network of canals, ditches and reservoirs devel oped
by the USBR in the early 1900s to provide the water necessary for the successful
development of agriculture in western Nevada. Key to the Newlands Project’s success
isthe 32.5 mile (52 kilometer) Truckee Canal. The primary operating criterion for the
Newlands Project is to maximize use of water from the Carson River and minimize
diversions of Truckee River water into the Truckee Canal. If managers divert too much
water into the Truckee Canal, they leave insufficient flows in the Truckee River to
support other water users, including endangered fish populations, along the last reach
of the river. Yet, if managers divert too little water, farmers in the Newlands Project
district will have insufficient water to sustain their crops. The USBR Lahontan Basin
Area Office utilizes spring streamflow forecasts for the Truckee and Carson Rivers to
determine the allowable diversions through the Truckee Canal.

The USBR Lahontan Basin Area office needs an improved forecasting model
to use for watershed management and decision-making. Accuracy of forecasts has
become evermore important in the water-stressed Truckee and Carson River Basins.
Recently implemented policies limit diversions through the Truckee Canal and require
specific reservoir releases to aid in the protection of the endangered fish populations.
These policies depend heavily on the seasonal streamflow forecast. The current USBR
forecasting model is limited in the skill, the lead-time, and the quantification of uncer-
tainty in the forecasts it offers. The current forecasting method uses linear regression

based on the existing snowpack. Though the basin is predominantly snowmelt driven,



using only snowpack information in the forecast means the forecast is not available
until the beginning of January-after a reasonable amount of snow has fallen. Further-
more, because this forecast only incorporates weather that has already occurred (i.e.,
snow that has aready fallen) it cannot do a good job of projecting the accumulation
season’s total snow, and hence, runoff to come. An improved seasona forecasting
model is necessary to strengthen seasonal planning strategies in the Truckee and Car-

son Basins.

1.2 Sudy Area
The Truckee and Carson Rivers originate high in the California Sierra Nevada

Mountains and flow northeastward down through the semiarid desert of western
Nevada. A map of the adjacent basins is shown in Figure 1. The vast mgjority of both
basins surface area and demands for water resources lie within the State of Nevada
Most of the precipitation and high alpine storage reservoirs, however, are located in
the State of California (Horton, 1996). (See Figure 2.) Historicaly, the rivers have
been used for fishing, logging and paper making, mining, ice production, irrigation,
power production, and municipal and industrial (M & 1), among other uses (Horton,
1995). The two basins are connected by the one-way Truckee Cana which brings
water from the Truckee Basin into the Carson Basin. The individual river basins are

described in detail below.

1.2.1 Truckee Basin

The Truckee River Basin encompasses an area of approximately 3,060 square
miles in the States of California and Nevada. Of the total basin area, approximately
790 square miles, or almost 26 percent of total area, lie within the State of California.
The remaining 74 percent lies in the State of Nevada. The Truckee River originates as
outflow from Lake Tahoe in California, runs northeastward approximately 105 miles,

and terminates in Pyramid Lake in Nevada. The Truckee River has an average annual
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EXPLANATION

Hydrographic basin boundary

Hydrographic subunit boundary

flow of 548,200 acre-feet (1973-1994 period of record) crossing the California-

Nevada border at the Farad gaging station. (Horton, 1991)

The upper Truckee basin is steep, high apine or forested land with elevations

reaching 9,000 to 10,000 feet (Horton, 1995). This areareceives the greatest precipita-
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tion in all the basin: 30 - 60 inches ayear mostly in the form of snow (Taylor, 1998).
The Truckee River has seven major storage reservoirs in the upper part of the basin:
Lake Tahoe, Donner Lake, Independence Lake, Martis Creek Lake, Prosser Creek
Reservoir, Stampede Reservoir, and Boca Reservoir. These reservoirs are used for both
flood control and storage of water for downstream uses.

The Truckee River originates as outflow from Lake Tahoe, the subbasin of
which comprises 24 percent of the total Truckee River Basin. The Lake Tahoe Basinis
fed by 63 creeks and streams and is a major contributor to flowsin the Truckee River.
After Lake Tahoe, numerous streams join the Truckee River in the 15 mile stretch
between Tahoe City and the town of Truckee. These streams include Bear, Squaw,
Deer, Silver, Pole, Deep, and Cold Creeks. Between the towns of Truckee and Boca,
major tributaries include Donner, Martis, and Prosser Creeks and, the largest tributary,
the Little Truckee. The Little Truckee River is vitally important to the Truckee River
Basin due to the fact that several crucial water storage systems--Boca and Stampede
reservoirs, and Independence L ake--are located within its drainage basin.

After its confluence with the Little Truckee, the Truckee River flows down a

steep canyon into Nevada and down to the Truckee M eadows that encompass the cities



of Reno and Sparks, Nevada. The Truckee Meadows isin the rain shadow of the Sierra
Nevada Mountains and receives less than 8 inches of precipitation a year (Taylor,
1998). Though once an agricultural area, the Truckee Meadows is how nearly con-
sumed by the expanding cities of Reno and Sparks. Consequently much of the water
from the Truckee is used for municipal and industrial (M&I) purposes. Used M&I
water, treated at the Truckee Meadows Wastewater Reclamation Facility, is released
into Steamboat Ditch and eventually returns to the Truckee River.

Downstream of Reno/Sparks, the Truckee River flows across an arid plateau.
At Derby Dam, an annual average of amost 187,000 acre-feet of Truckee River Water
is diverted through 32.5 mile Truckee Canal. With a nominal capacity of 900 cfs, the
Truckee Canal transports water from the Truckee Basin into Lahontan Reservoir in the
Carson Basin for use in the Newlands Project irrigation district. In dry years, such as
the 1988-1994 period, this diversion can withdraw up to two-thirds of the total Truc-
kee River water. Arguably, this interbasin transfer represents the single greatest con-
troversy within the Truckee and Carson River Basins. The Newlands Project diversion
comprises the most significant single withdrawl of the Truckee River’'s waters.

The portion of the river that is not diverted to the Truckee Canal continues
through desert before emptying into Pyramid Lake within the Pyramid Lake Indian
Reservation. Two culturally and economically important fish to the Pyramid Lake
Paiute Tribe live in Pyramid Lake: the endangered cui-ui and the threatened Lahontan
cutthroat trout. These fish must migrate upstream to spawn. Low flows and shallow
depths in Truckee River below Derby Dam, however, have inhibited spawning, egg

incubation, and survival of these species (Taylor, 1998).

1.2.2 Carson Basin.

The Carson River Basin boarders the Truckee River Basin to the south, is

roughly the same size and has very similar topography. The Carson Basin comprises



an area of 3,360 square miles, 15 percent of which liesin California (Horton, 1996).
The Carson River runs northeastward 184 miles from its headwaters approximately
fifty miles south of Lake Tahoeto itsterminusin the Carson Sink in Nevada. The aver-
age annua flow in the Carson River, as gaged at Ft. Churchill above Lahontan Reser-
voir, is 266,420 acre-feet (Horton, 1996).

Much like the Truckee Basin, the Carson Basin receives most of its precipita-
tion in the form of snow, high in the Sierra Nevada Mountains in California. At its
headwaters, the Carson River consists of two forks: the East Fork and the West Fork.
The East Fork Carson is roughly twice aslong as the West Fork Carson (65 miles com-
pared with 33 miles) and the average annual discharge is 255,560 acre-feet, roughly
3.2 times that of the West Fork (Horton, 1996). The upper basin of the Carson River is
significantly less developed than the Truckee. The Carson Basin has several relatively
small storage reservoirs in its upper basin. Due to their size, these reservoirs do not
play as integral arolein policy and management decisions as do the reservoirs in the
Upper Truckee Basin.

The east and west forks of the Carson River flow down from the steep moun-
tainsinto the Carson Valley. The Carson Valley serves as a natural catchment basin for
the many short streams which feed the East and West Fork Carson and often flood the
basin. The East and West forks join near the western part of the Valley, though the
exact location changes from year to year. The valley isrich in farmland (over 35,000
irrigated acres) and is consequently marked by significant diversions. Here the waters
of the Carson River are rapidly diminished by extensive irrigation diversions, though
the exact depletion is not known.

In the lower basin, the Carson River flows northeast from the town of Carson
City toward Lahontan Reservoir in Lahontan Valley. The arid Lahontan Valley isin the

rain shadow of the Sierra Nevada Mountains and receives an average of only five



inches of precipitation a year. In contrast, the average potential evaporation here
exceeds 60 inches, with rates recorded as high as 70 inches per year (Horton, 1996).

Water diverted from the Truckee River pours into Lahontan Reservoir via the
Truckee Canal to provide water for the Newlands Project. The Newlands Project con-
sists of approximately 73,000 water-righted acres, of which about 59,800 are actually
irrigated (Horton, 1996). While controversy continues to surround the Newlands
Project with respect to its sources of water, the project’s efficiency, and the water qual-
ity of its return flows, the economic benefits of this reclamation project are indisput-
able. Agriculture ranks only second (to the Falon Nava Air Station) in its
contributions to local employment, incomes, and spending in Churchill County (Hor-
ton, 1996).

Past Lahontan Reservoir the mgjority of the Carson River splits off into a net-
work of ditches and canas that make up the Truckee-Carson Irrigation District
(TCID), which represents Newlands Project farmers. Extensive Newlands Project irri-
gation has atered the natural flow to wetland areas and modified the hydrologic char-
acterigtics of the Lahontan Valley, raising the local water table. The Carson River
terminates past the Newlands Project in the area of the Carson Sink. Depending on the
time of year and annual runoff from the upper basin, this area can be an extensive lab-
yrinth of interconnected lakes, marshes, and wetlands or a barren, alkali desert and salt

flat.

1.3 Policies and Operationson the Truckee and Carson Rivers
The Truckee and Carson Rivers have been, and continue to be, crucial to the

sustainment of life in western Nevada. The rivers have played a major role in the set-
tlement and development of the area. Consequently, the policies and operations on
these rivers extend back to before the turn of the century and continue to be negotiated
to this day. Current negotiations seek to balance the demands of M&1 for the cities of

Reno and Sparks, irrigation for Truckee Meadows and TCID, power production oper-
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ated by the Sierra Pacific Power Company in the Truckee Canyon, as well as protec-
tion of the cui-ui (an endangered sucker) and Lahontan cutthroat trout (a threatened
species). As negotiations over new policies continue, the USBR and Federal Water
Master implement the provisional policiesin their daily operations on the Truckee and
Carson Rivers (Horton, 1995).

Of primary importance to this research is the Operating Criteria and Proce-
dures (OCAP) for the Newlands Project irrigation district. OCAP was originally estab-
lished in 1967 to regulate agricultural diversions to the Newlands Project. For many
years before this date, water was diverted from the Truckee River to the Newlands
Project without restrictions. This water would otherwise have flowed to Pyramid
Lake, the river’'s terminus, on the Pyramid Lake Indian Reservation. Due to these
diversions, the water level of Pyramid Lake declined for decades-- over 85 vertical
feet between the early 1900s and 1967. This declinein the water level eventually made
it difficult or impossible for cui-ui and Lahontan cutthroat trout to swim upstream in
the Truckee River and spawn. The Pyramid Lake Paiute Tribe filed a number of suits
resulting in the initial establishment of OCAP and further revisions in 1988 and 1997
(Horton, 1995).

The primary goal of OCAP is to maximize the use of Carson River water and
minimize diversions of Truckee River water into the Truckee Canal. The USBR
Lahontan Basin Area Office usesforecasts of the spring runoff in the Carson and Truc-
kee Basins to assist in achieving this objective.

Newlands Project OCAP specifies the circumstances under which water can be
diverted from the Truckee River. Specifically, OCAP alows diversions of up to 1,500
cfs through the Truckee Canal (although the canal’s nominal capacity is only 900 cfs)
and up to atotal of 288,129 acre-feet per year. The actual quantity of water which may
be diverted from the Truckee River at Derby Dam varies with the determination of the

irrigation entitlement each year, the runoff forecasts for the Carson and Truckee Rivers



and water in storage in Lahontan Reservoir. Irrigation entitlements are based on the
actual irrigated acreage in any given year: 3.5 acre-feet per acre per year (bottom
lands) and 4.5 acre-feet per acre per year (bench lands).

The USBR incorporates these criteria into operations by setting an end-of -
month storage targets for Lahontan Reservoir. Monthly storage targets from January to
May vary based on both the Ft. Churchill runoff forecast and the TCID water demand.
From June through December, the storage targets vary based only on projected TCID
water demand.

OCAP aso specifies that diversions to the Truckee Canal be coordinated with
releases from Stampede Reservoir and other reservoirs, in cooperation with the Fed-
eral Water Master, to minimize fluctuations in the Truckee River below Derby Dam in
order to meet annual flow regimes established by the United States Fish and Wildlife
Service (FWS) for the listed species in the lower Truckee River. Increases in canal
diversions which would reduce Truckee River flows below Derby Dam by more than
20 percent in a 24-hour period are not allowed when Truckee River flow, as measured
by the gauge below Derby Dam, is less than or equal to 100 cfs. During times when
diversions are technically not allowed (e.g., after the monthly storage target on Lahon-
tan has been met), the Truckee Canal must be managed to achieve an average flow of
20 cfsor less.

OCAP also seeks to increase efficiency in the Newlands Project irrigation dis-
trict. OCAP requires that TCID farmers estimate their demands for the coming grow-
ing season and then irrigate at a minimum of 68.4 percent efficiency on that projected
demand. If the District fails to meet the targeted efficiency, then a calculation is made
as to how much water was used or diverted in excess of what it would have taken if the
efficiency target had been met. Once that total excess reaches 26,000 acre feet, OCAP
requires that the District reduce the water delivery in the following year to all water

users by the amount of that excess. To date the District has not been able to achieve an
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efficiency any greater than 63 percent (TCID web site, retrieved 10/13/02).

The USBR is responsible for calculating the allowable Truckee River diver-
sions and consulting with interested parties including the Pyramid Lake Paiute Tribe,
the U.S. Fish and Wildlife Service (FWS), TCID, and others. During the last week of
each month the USBR determines the next month’s Truckee Canal diversion schedule
based on OCAP and Carson and Truckee River forecasts. USBR water engineers
revisit the diversion schedule when necessary, based on observed runoff and forecast
revisions in order to meet the end-of-month storage target at Lahontan Reservoir. In
some months there is not enough water available, even with diversions, to meet the
storage target.

TCID currently operates Derby Dam under a temporary contract with the
USBR. The USBR Lahontan Basin Area Office monitorsthe flows at the U.S. Geol og-
ical Survey (USGS) gage on the Truckee Canal near Hazen to determine if and when
flows are in excess of those needed and works with TCID to bring the flows back into
compliance when excessive.

Fish spawning releases are also particularly important to thisresearch. In 1982,
the Stampede Reservoir Judgement allotted all of the water and storage in Stampede to
protecting, and encouraging the spawning of, the endangered cui-ui and threatened
L ahontan cutthroat trout. Rel eases are based on schedules set by FWS and the Pyramid
Lake Tribe. Forecasted runoff, storage values, and time since the last run all affect the
annual decision of whether to have a cui-ui spawning run. If FWS and the Pyramid
Lake Tribe decide to have a spawning run, the releases from Stampede aim to meet the
following flow targets at Pyramid Lake: January 90 cfs, February 120 cfs, March 190
cfs, April 570 cfs, May 1000 cfs, June 50 cfs (Berris 2001).

Other major policies and laws in the basin include the Truckee River Operating
Agreement, flood control, Floristan Rates, and the Tahoe-Prosser Exchange. (See

Appendix A, “Operating Policy in the Basin” and Appendix B, “Description of Select
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Laws’ for more details on operations and policies in the Truckee-Carson River Sys-

tem.)

1.4 Current forecasting methods
The USBR Lahontan Basin Area Office currently makes monthly forecasts of

streamflow in both the Truckee and Carson Rivers. The Carson forecast is used to
determine the natural inflows to Lahontan Reservoir. The Truckee forecasts are used to
determine the Truckee River water available for diversion. From awater supply stand-
point, the USBR Lahontan Basin Area Office considers the total April through July
runoff as the most important component of their forecasts, as thisis when the mgority
of the streamflow comes (Scott, 2002). (The Truckee River receives an average of 66
percent of its total annual flow and the Carson River receives 63 percent of its total
annual flow during this time period.) Forecasting the distribution of the spring runoff,
however, isalso important for scheduling Truckee Canal diversions and setting storage
targets on Lahontan Reservoir (Reynolds, 2002).

The current USBR forecasting techniques use linear regression analysis based
on snow water equivaent (SWE) information. Lahontan Basin Area Office forecasters
typically regress streamflow data against monthly basin average SWE, percent of nor-
mal snowpack, total accumulated precipitation, and observed runoff data to develop
regression equations for each month. Forecasters then use the monthly regression
equations to predict the most probable streamflow value. USBR forecasts also include
information from the Natural Resource Conservation Service (NRCS) official fore-
casts, whenever they are available. The USBR regression equations are always used to
forecast the January to March runoff. The NRCS official forecasts are the primary
April to July forecasts, if recently issued. If recent NRCS forecasts are not available,
the USBR regression equations are used to forecast April to July natural flow. In al

cases, the monthly distribution of the forecasted runoff is determined from similar
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years selected based on forecasted January to March and April to July volume fore-
casts.

The USBR Lahontan Basin Area Office typically forecasts one key point on
each river: the Ft. Churchill USGS gaging station on the Carson River and the Farad
USGS gaging station on the Truckee River. Sometimes a separate forecast for the Lit-
tle Truckee River is aso issued. The Carson River forecast is taken as the natural
streamflow entering Lahontan Reservoir. The Truckee River forecast for Farad is spa-
tially disaggregated to the various reservoirs upstream. This disaggregation is based on

the historical contribution of each subbasin to the total streamflow at Farad.

1.5 Incor poration into a Decision Support System (DSS)
Once aforecast is issued, water managers must decide how to best operate the

system given the predicted flow values. The USBR is currently developing a decision
support tool using the general-purpose river and reservoir modeling software River-
Ware (Zagona et al., 1998 and 2001). The Truckee RiverWare model simulates the
movement of water through reservoirs, reaches, and diversions using objects in a
graphical user interface. Simulated reservoir releases and diversion schedules are con-
trolled by rules: user-defined, prioritized logic based on the laws and policies of the
rivers. The model also includes an accounting network to track water as it moves
through the system. It is thus possible to track whether water was released to meet in
stream flow targets or for irrigation demands. The rules dictate how much water is
released from each reservoir, what account the water came from, and where the water
goes. By using different rules to move water through the system, it is possible to simu-
late flow patterns using different policies. Together with the forecasts, the DSS will be

used to assist with daily operations and seasona and long-term planning in the basin.
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1.6 Proposed Research
The USBR Lahontan Basin area office funded part of this research in an effort

to obtain an improved seasonal forecasting model to strengthen planning and manage-
ment in the Truckee and Carson River Basins. Thisresearch aims to achieve the objec-
tive by utilizing large-scale climate information and nonparametric stochastic
forecasting techniques as described bel ow.

The link between streamflow in the Western United states and global climate
variables has been strongly supported in the literature. This research uses climate diag-
nostics to demonstrate that the spring streamflowsin the Truckee and Carson rivers are
strongly related to atmospheric circulation features over the northern Pacific during
the preceding winter and fall. This enhances the prospects for along-lead forecast. We
develop indices from the relevant oceanic-atmospheric circulation variables to be
applied in aforecasting mode.

This research utilizes nonparametric stochastic forecasting techniques. We use
large-scale climate information together with known streamflow predictors to develop
a flexible streamflow forecasting model. The model developed in this research pro-
duces ensemble forecasts of spring streamflows. The ensemble forecasts can be ana-
lyzed to obtain various exceedence probabilities of interest to water managers in the
Truckee and Carson River Basins.

After issuing the forecast, this research tests the utility of the forecast to water
resources decision making. Ensemble streamflows used as inputs to a DSS. We then
analyze the forecasts' impact on different decision variablesin the system.

The overall approach is outlined in the flowchart below. A description of each
step in this process follows.

1. Determine large-scale climate features correlated to spring streamflow in

the Truckee and Carson Rivers. Verify the physical relationship supporting

this correlation. Develop indices for the significant predictors to be used in
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the forecasting model. This step is discussed in Chapter 2, “ Climate Diag-
nostics.”

2. Develop an empirically based predictive streamflow model that can be cou-
pled with the DSS. Standard statistical methods are used to validate the
model and measure the skill of the forecasts. Thisis presented in Chapter 3,
“Nonparametric Stochastic Forecasting Model.”

3. Couple the streamflow ensembles from the stochastic forecasting model
with the DSS to determine flows throughout the system. Analyze various
decision variables and exceedence probabilities to test the utility of the
ensemble forecasts. Steps 3 and is discussed in Chapter 4, “ Decision Sup-
port System.”

1.7 Contribution of this Research

This research produces two tools that can be used to improve forecasting
results, and, hence, water resources operations and planning in the Truckee and Carson

River Basins. First, we demonstrate that incorporating large-scale climate information
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in a forecasting model can produce more skillful, longer lead-time forecasts. Second,
results show that nonparametric stochastic forecasting techniques used in this study
have the added benefit of producing ensemble forecasts which can be analyzed to
determine exceedence probabilities. The improved forecasts, when coupled with a
DSS, facilitate efficient seasona planing and management of water in the Truckee-
Carson river basin. Finally, this research highlights additional areas that warrant more

research.
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Chapter 2

Climate Diagnostics

Researchers have gathered an increasing body of evidence to demonstrate the
relationship between large-scale climate features and hydroclimatology in the western
United States. Much of the work has involved studying climate phenomena such as El
Nifio-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) and
their impacts on hydrologic variables such as precipitation, temperature and stream-
flowsin the western United States. Researchers have used a variety of technigues, both
physically and empirically based, to analyze the atmosphere-ocean-land interactions
that influence hydrology in the West. Statistical techniques typically relate the domi-
nant modes of large-scale ocean-atmosphere patterns in sea surface temperatures
(SSTs) and sea level pressures (SLPs) to regional hydrologic variables for diagnostics
and prediction. Deterministic methods often employ regional watershed modelsto pre-
dict streamflow based on the state of the atmosphere as indicated by large-scale global
climate models. Using these approaches, the predictive capability of atmospheric cir-
culation patterns on streamflows has been applied to improve water resources manage-
ment and planning on several river basins in the West.

There has, however, been little research on diagnosing and predicting the vari-
ability of streamflows in the Truckee and Carson Basins. Current forecasting tech-

niques in the Truckee and Carson River Basins do utilize large-scale climate
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information, though only qualitatively (e.g., in El Nifio years, forecasters may subjec-
tively alter the forecast). Given this lack of research and the importance of water
resources planning in the basin, there is a need to systematically diagnose the stream-
flow variability in an effort to improve forecasting. This chapter first reviews past
studies of large-scal e climate features and hydrologic variability in the western United
States then follows up with the authors' analysis of large-scale climate features' influ-

ence on streamflow variability in the Truckee-Carson River Basin.

2.1 Influence of Large-Scale Climate Features on Hydrologic Variability in the
Western United States: Past Studies

Precipitation and its resulting streamflow are an important source of water for
the semi-arid western United States. El-Ashry and Gibbons (1988) estimate that water
consumption in the western US averages 44% of renewable supplies, compared with
4% in therest of the country. Yet, precipitation in this area varies both inter-seasonally
and inter-annually. Given the importance of precipitation and streamflow in the west-
ern United States, many research efforts strive to determine the cause of their spatial
and temporal variability. Efforts in recent decades have focused on the links between
large-scale climate features and hydrology in the West in an attempt to understand this
variability.

We have long understood that in the mid-latitudes the jet stream moves mois-
ture laden air masses from the Pacific Ocean eastward over the North American conti-
nent. The jet stream is strongest during winter when the equator-to-pole temperature
gradients are greatest and, hence, is most active in carrying low pressure systems dur-
ing thistime. As moist air travels eastward and encounters the mountainous regionsin
the western United States, it rises and cools, forming precipitation.

The strength and location of the jet stream govern the inter-seasonal and inter-
annual variability of precipitation over North America. The jet stream typically moves

in a sinuous motion from west to east-- with a trough over the North Pacific Ocean, a
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ridge over the Rocky Mountains, and a trough over the eastern United States. This
structure is described by several teleconnection patterns (Wallace and Gutzler, 1981;
Barnston and Livezey, 1987; Leathers, et al., 1991). For example, the PNA teleconnec-
tion pattern describes variability in four pressure centers over the Pacific Ocean and
North Americathat persist from late summer to spring and are strongest in winter. The
PNA is marked by low pressure systems south of the Aleutian Islands (the Aleutian
Low) and over the southeastern United States and high pressure systems near Hawaii
and over the Rocky Mountains (central Canada) in winter and fall (spring.) These pos-
itive and negative pressure systems direct the movement of the jet stream: counter-
clockwise near the low pressure systems and clockwise near the high pressure
systems, resulting in the sinuous motion seen in Figure 4.

Intensification of the PNA is associated with a deepening of the Aleutian Low

and a strengthening over the ridge of the Rockies. This situation deflects storm sys-

Figure4: Typical PNA Pattern and itseffect on thejet stream
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tems north toward Alaska and reduces precipitation over much of the western US.
Weakening of the PNA is associated with a weaker Aleutian Low and a weaker ridge
over the Rocky Mountains. In this situation cyclonic disturbances can penetrate into
the western US, resulting in increased precipitation. Variability in the location and
strength of the PNA wave train over North America can have pronounced impacts on
local climate in specific regions. These variations are actively forced by slow changes
in SST patterns in the tropical and extra-tropical Pacific Ocean. Changesin SST pat-
terns are associated with the ENSO and PDO teleconnections which are described
below.

ENSO is a quasi-cyclic phenomenon that occurs in the tropical Pacific Ocean
every three to seven years and has pronounced effects on weather around the world. In
normal years, easterly “trade winds’ in the tropical Pacific drive surface waters west-
ward. This results in warmer waters (6-8° C warmer) in the western tropical Pacific
due to longer exposure to solar heating, and cooler waters in the eastern tropical
Pacific due to oceanic upwelling. In some years the trade winds weaken, allowing
warmer waters off the western Pacific to migrate eastward and eventually reach the
South American coast. These situations are knows as El Nifio events. The opposite
phenomenon, termed La Nifia, is characterized by stronger trade winds and colder
SSTsin the tropical Pacific Ocean. (Allan, 1996; Dingman, 2002) (See Figure 5.) The
Southern Oscillation refersto a see-saw shift in surface air pressure at Darwin, Austra-
liaand the South Pacific Island of Tahiti. When the pressureis high at Darwinitislow
at Tahiti, and vice versa. El Nifio and La Nifia occur during the extreme phases of the
Southern Oscillation. Climatologists have developed several indices based on SSTs
(e.g., Nino3, Ninal+2, Nino3.4, etc.) and SLPs (e.g., SOI, Darwin SLP, etc.) that indi-
cate the strength and phase of ENSO. The indices measure SSTs or SLPs in specific
regions of the tropical Pacific Ocean that are strongly influenced by ENSO.
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El Nino Southern Oscillation
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Figure5: Color comparisons of warm versus cold phase El Nifio/La Nina, SST,
sea-level pressure, and surface wind stress anomaly patterns

Although ENSO is defined by large-scale oscillations in oceanic and atmo-
spheric conditions in the tropical Pacific, the phenomenon affects weather patterns
across the globe. Perhaps the most notable effect for North Americais the shift in the
jet stream which carries storm systems from the North Pacific across the North Amer-
ican land mass in late fall and winter. In El Nifio years warmer than average SSTs
cause increased convection and precipitation in the tropics near and east of the date
line. La Nifia events are marked by decreased convection and precipitation just west of
the date line (Hoerling et al., 1997). This change in the magnitude and location of typ-
ica convection patterns perturbs the areas of high pressure where air subsides on
either side of the equator, in turn altering atmospheric circulation in the mid-latitudes.
During ENSO events, the altered PNA pattern shifts the location and strength of the jet
stream. (See Figure 6.) The PNA wave train is typically strengthened during El Nifio
events and aweakened during La Nifia events. The overall result is unusually warm or
cold winters in particular regions, drought in normally productive agricultural areas,
and torrentia rainsin normally arid regions (Rasmussen, 1985; Ropelweski and Halp-
ert, 1986 and 1989).
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Figure 6: El Nifio effect on jet stream

The PDO is a long-term fluctuation in SSTs and sea levels in the northern
Pacific Ocean that waxes and wanes approximately every 20 to 30 years (Mantua et
al., 1997). Like ENSO, the PDO oscillates between a “warm” (positive) phase and a
“cool” (negative) phase. (See Figure 7.) The PDO index, which is based on the first
principal component of Pacific SSTs, denotes the strength of the PDO and its phase.
(See Figure 8.) Based on atmospheric and oceanic data, scientists believe we have just
entered the “cool” phase. The “cool” phase is characterized by a cool wedge of lower
than norma sea-surface heights and ocean temperatures in the eastern equatorial
Pacific and a warm horseshoe pattern of higher than normal sea-surface heights con-
necting the north, west and southern Pacific. In the “warm” phase, which appears to
have lasted from 1977- 1999, the west Pacific Ocean becomes cool and the wedge in

the east warms. Two main characteristics distinguish PDO from ENSO, however.
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Figure 7: Color comparisons of warm versus cold phase PDO, SST, Sea-level
pressure, and surface wind stress anomaly patterns
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Figure 8: Monthly Values of the PDO index: January 1900-August 2003
First, twentieth century PDO “events’ persisted for 20-t0-30 years, while typical
ENSO events (El Nifio or La Nifia) persisted for 6 to 18 months. Second, the truly dis-
tinguishing climatic features of the PDO are most visible in the North Pacific/North
American sector, while secondary signatures exist in the tropics - the opposite is true
for ENSO.

The change in location of the cold and warm water masses resulting from a
shift in the PDO alters the path of the jet stream. The PDO phase that we appear to
have entered will act to steer the jet stream further north over the Western United

States. This shift will in turn transport winter precipitation and storm systems further
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north than what has been the norm for the past 30 years. As can be perceived, the PDO
has several attributes in common with ENSO. Hence, the PDO, as an independent phe-
nomenon like ENSO, is an area of active research.

The influence of tropical Pacific climate conditions (such as ENSO and PDO)
on North American hydroclimatic variability has been well documented (e.g., Ropel-
weski and Halpert, 1986; Cayan and Webb, 1992; Kayha and Dracup, 1993; Redmond
and Koch, 1991; Cayan and Redmond, 1996; Gershunov, 1998; Kerr, 1998; Dettinger
et a., 1998 and 1999; Cayan et al., 1999; Hidalgo and Dracup, 2003). In 1986, Ropel-
weski and Halpert demonstrated that El Nifio events are associated with increased sea-
sonal precipitation in the southwestern and southeastern United States. Several years
later, Kerr (1988) suggested that La Nifia events can cause drought in the same regions
of North America. From this time onward, studies relating atmospheric circulation
features over the Pacific to hydrology, particularly in the semi-arid western United
States, have abounded.

As most basins in the western US receive the bulk of their annua flow from
spring snowmelt (Serreze et a., 1999), many studies focus on the correlation between
large-scale climate features and western mountain snowpack. For example, McCabe
and Dettinger (2002) used principal component analysis to determine the primary
modes of April 1st snowpack and found that the two components which account for
61% of the variance in the western United States are closely related to the PDO and the
Nino3 (tropical Pacific) SSTs.

Other studies exhibit a strong correlation between atmospheric circulation pat-
terns and warm season precipitation. Hidalgo and Dracup (2003) investigated the link-
ages between ENSO and hydroclimatic variations in the Upper Colorado River Basin.
The results for warm season precipitation response to ENSO were much stronger than
results obtained for cold season precipitation.

Pizarro and Lall (2002) studied the effect of the ENSO and PDO on annual
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maximum floods in the Western U.S. Their correlations with Nino3 suggested an
enhanced probability of winter floods in El Nifio years in California and Oregon,
spring floodsin S. Idaho, N.E. Utah and Colorado, and summer floods in New Mexico
and S. Colorado. In Washington, N. Idaho, Montana and Wyoming, the likelihood of
flooding appears reduced. However, when they considered the recent weakening of the
negative PDO signal, these probabilities changed, stressing the interplay of ENSO and
PDO signals. Under the weakened PDO assumption, the probability of floods
decreased in California, N. Washington and S. Colorado and increases in the other
regions.

Rajagopalan et al. (2000) studied the teleconnection between the winter ENSO
and summer drought in the United States. They discovered a strong relationship
between ENSO and drought in the southwestern U.S. (e.g., Texas, southern Arizona
and Cadlifornia). They determined, however, that this relationship varied spatially and
temporally over the twentieth century, thus underscoring the complicated nature of the
relationship and the difficulty in forecasting.

Because ENSO and PDO generally persist for several months (to years, in the
case of PDO), useful long-range hydrological forecasts can be madein regionsthat are
particularly affected by these patterns. A number of studies have found relationships
between streamflows and ENSO cycles (e.g., Dracup and Kayha, 1994). In basins that
exhibit strong hydrologic-atmospheric circulation pattern linkages, incorporation of
climate information has been shown to improve streamflow forecasts. Clark et al.
(2001) examined the effects of the ENSO signa and SWE on streamflow in the
Columbia and Colorado River systems. They determined that in basins which exhibit
strong ENSO seasonality, a forecast incorporating both the ENSO signal and SWE is
more accurate than a forecast based on SWE alone. While SWE is good a measure of
initial conditions, the ENSO signal provides information about weather to come

throughout the remainder of the winter season.
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Several researchers have focused on the possibilities of improving water man-
agement through the use of climate information. In their analysis of adaptive manage-
ment on the Colorado River, Pulwarty and Melis (2001) presented the need for
monitoring climate parameters in addition to the April 1st snowpack when analyzing
runoff forecasts. They argued that careful application of climatic information could
result in enhanced management of water supply, flood control, power generation and
environmental issues.

The incorporation of large-scale climate features can also improve the lead-
time of forecasts. Because atmospheric-oceanic conditions change slowly from season
to season, it is possible to use summer and fall climate information to predict April 1st
snowpack (McCabe and Dettinger, 2002) or even summer streamflow (Hamlet et al.,
2002). This enhanced lead-time allows for more efficient management of the system.
Hamlet, Huppert and Lettenmaier (2002) presented the economic value of the
increased hydropower production in the Columbia River Basin as a result of incorpo-
rating climate information in the streamflow forecast to increase lead time--in this
case, six months earlier.

The effects of large-scale climate phenomenona, however, are non-linear in
gpace and time (Hoerling and Kumar, 1997). Not al El Nifio's are the same, nor does
the atmosphere always react in the same way from one El Nifio to another. An anoma-
lous ENSO signal may have strong effects in one basin and none at all in another
basin. Similarly, the signal may correlate strongly with years of high streamflow, but
have no apparent link to drought conditions. Furthermore, the interplay of multiple cli-
mate patterns such as ENSO, PDO and PNA make the impacts on hydroclimatic vari-
ability more complex. Jain and Lall (2000 and 2001) found non-linear relationships
between annual maximum floods and ENSO and PDO, particularly when multiple
indices were considered. Additionally, the influence of climate indices may only be

apparent in years when the indices are at extreme values. Pizarro and Lall (2002)
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determined that major changesin rainfall or floods occur only for extreme NINO3 and
PDO vaues with the intermediate values leading to no effect. Furthermore, subtle
shiftsin atmospheric circulation patterns can cause significant changes in precipitation
and temperature, meaning that standard tel econnection indices provide a poor descrip-
tor of climate changes in many regions. In order to utilize climate information to fore-
cast in a specific basin, it makes sense to analyze the direct linkages between

individual climate features and streamflow (or precipitation) in the given basin.

2.2 Analysis of Atmospheric Circulation Features Impact on Sreamflow in the
Truckee and Carson Rivers

Given the influence of atmospheric circulation patterns on hydrologic variabil-
ity in the western United States, we analyze their direct impact on our basin of interest,
the Truckee-Carson Basin. We perform climate diagnostics to determine the relevant
large-scale climate features related to streamflow in the Truckee and Carson Rivers.
The dominant teleconnection patterns described above (ENSO, PDO, PNA) clearly
have a significant impact on hydrology across the western US as awhole. Subtle vari-
ationsin these patterns, however, can significantly shift the basin-scale area of impact.
These patterns, therefore, may not always directly impact the hydrology in the Truc-
kee-Carson Basin. In this study we analyze the dominant teleconnection patterns as
well as other large-scale atmospheric variables. We attempt to identify which patterns
are most important (dominant or otherwise) and develop indices of these patterns to
forecast streamflow. The results from this analysis are later utilized for forecasting
seasonal streamflow in the basin, as is presented in Chapter 3, “Nonparametric Sto-
chastic Forecasting Model.”

The Truckee and Carson Rivers are spring snowmelt dominated. Serreze et al.
(1999) estimate that 67% of annual precipitation in the Sierra Nevada Mountains falls
as snow. Mountain snowpack and winter precipitation are key to forecasting on these

rivers. The total snowpack, however, is not known until late winter or early spring and
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earlier snowpack measurements provide lower skill in forecasts. Atmospheric circula-
tion patterns, however, have been shown to be good indicators of what precipitation
will come throughout the winter season, and hence offer insight into spring stream-
flows. In this study, relationships between spring streamflows and climate variables
from the preceding winter and fall are identified. Consequently, we identify physical
mechanisms governing the interannual variability of streamflow in the Truckee and

Carson Rivers and determine their application to forecasting.

2.2.1 Data

The following data sets for the 1949 - 2003 period are used in the analysis.

(i) Monthly natural streamflow data from Farad and Ft. Churchill gaging sta-
tions on the Truckee and Carson Rivers, respectively.

(if) Monthly SWE datais obtained from the NRCS National Water and Climate
Center website (http://www.wcc.nrcs.usda.gov). The SWE datais gathered
from snow course and snotel stations in the upper Truckee Basin (17 sta-
tions) and upper Carson Basin (7 stations) to compute an area average for
each basin.

(iii) Monthly winter precipitation data for the California Sierra Nevada Moun-
tains region. This is obtained from the U.S. climate division data set from
the NOAA-CIRES Climate Diagnostics Center (CDC) website (http://
www.cdc.noaa.gov).

(iv) Monthly values of large-scale ocean atmospheric variables - SST, SLP,
wind, etc., for the globe are also obtained from the CDC website. These are
extracted from the NCEP/NCAR re-analysis data sets.

The natural streamflow data for Farad and Ft. Churchill isnot adirect measure-

ment of the water in the river, but rather, a calculation of what the streamflow would

have been without the effects of human development (e.g., reservoirs and depl etions).
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We use natural streamflow data because our interest lies in forecasting the total water
coming into the system before regulation. Once the natural streamflow is forecasted,
policies and regulations can be ssmulated using a DSS, asis addressed later in Chapter
4, “Decision Support System.” We obtain the natural streamflow data for the Truckee
River at Farad from the USBR Lahontan Basin Area Office. USBR engineers calculate
the natural streamflow in the Truckee River based on inflows to the seven mgjor stor-
age reservoirs near the top of the basin before any significant depletions have been
made. Data for the Carson River are scarce; though irrigators deplete significant
amounts of water before the Ft. Churchill, these depletions are not monitored, making
it extremely difficult to calculate natural streamflow. For Ft. Churchill, the USBR
takes the historical flow (i.e., the actual gaged flow in the river) to be the natura
streamflow. The historical flow data for Ft. Churchill can be obtained from the USGS
website (http://water.usgs.gov). We compute spring streamflow volumes (April to July
total) from the monthly natural streamflow data. The UBSR and the NRCS use the
April to July time period as the standard for spring runoff and base many operationsin
the basin on the April to July total volume forecast.

Basin SWE datais gathered from snow course and snotel stations in the upper
Truckee and upper Carson Basins. As shown in Figure 2, the vast mgjority of precipi-
tation, and certainly snow, fallsin the upper basins where elevations are highest. SWE
measurements from the upper basins, thus, provide a good measure of the total precip-
itation contributing to spring streamflows in the Truckee and Carson Rivers. Basin
averages of SWE are calculated using the method employed for the NRCS web site.
The SWE depth from every station in the basin is summed and then divided by the
sum of the long-term averages for each of the stations (Tom Pagano, 2003). This aver-
age gives more weight to heavier snow producing sites. Because basin averages are
measured in terms of percent of normal, this averaging method makes sense in terms

of calculating the total spring runoff-- the sites which contribute the most to the total
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runoff should carry more weight. For example, we compare two hypothetical sites one
with a long-term SWE average of 60 inches and the second with a long-term average
of 5 inches. If, in a given year, each site receives 5 inches above the average, the 60
inch site would report a 108% of normal snowpack and the 5 inch site would report a
200% of normal snowpack. Clearly, the total basin runoff in this year will be much
closer to 108% of normal than to 200% of normal, suggesting that higher value sta-
tions should get more weight. The basin average SWE method does not account for
missing data (i.e., at specific stations) in any given year. If the datais missing, that site
is left out of the average in that year. Also, the method does not account for higher
variability sites. These issues could potentially introduce bias into the basin average
(Clark et a., 2001). To correct for such baises, Clark et al. (2001) calculate z scores for
each station (by subtracting the long-term mean and dividing by the stadnard devia-
tion), calculate a basin-wide z score and then convert back to SWE units. For compar-
ison with current forecasting tehcniques (which use NRCS basin averages), we use the
NRCS averaging method.

For the large-scale atmospheric circulation variables such as SSTs, geopoten-
tial heights, and winds, we obtain monthly averages of the NCEP/NCAR re-analysis
data (Kalnay et a., 1996) for the 1949 to 2003 time period. These data sets are avail-
able from the CDC website given above. The re-analysis data are computed by run-
ning a global atmospheric circulation model that is initialized with observed global
atmospheric data every six hours. As aresult, all atmospheric circulation variables are
available on aregular 2.25° grid at severa levels - for details refer to Kanay et al.
(1996).

2.2.2 Methodology

Through climate diagnostics, we analyze the influence of large-scale climate

features on streamflow in the Truckee and Carson Rivers. The primary purpose for
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performing these climate diagnostics is to gather information regarding the physical
mechanisms that drive spring streamflow in the basins as well as to establish predic-
tors that can be used in a forecasting model.

Though it is well known that these basins are snowmelt dominated, we first
analyze their climatology to better establish the timing of precipitation and runoff. We
examine the interannual and seasonal variability of streamflow and precipitation and
demonstrate the relationship between the two variables. Next, we perform a correla-
tion analysis to resolve which atmospheric circulation features are relevant to the
basins. Correlations between spring streamflow in the Truckee and Carson Rivers and
various winter and fall atmospheric circulation features are presented as contour maps.
The contour maps cover the Pacific Ocean region and the contours represent the corre-
lation values between streamflow and climate variables at every point on the 2.25°
grid. Correlations are deemed statistically significant using standard t-test methods as
presented by Helsel (1995). The 95% significance level for correlationsin this analysis
is 0.27--correlations above this level are considered significant. We next perform a
composite analysis to establish the physical relevance of the statistically significant
variables. A composite analysis takes a group of selected years and presents the domi-
nant atmosphere and ocean circulation patterns during these years. Specifically, we
analyze atmosphere and ocean features in high and low streamflow years. The correla-
tion and composite analyses are conducted using the CDC web-based analysis tool
available at the CDC website given above. All correlation and composite images are
generated using this analysis tool. Finally, based on the above analyses, we establish
indices to be used as predictors in the forecasting model. Climate indices are taken as
area averages of the regions of highest correlation for the various relevant climate

variables.
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2.2.3 Reaults: Climatology Analysis

Figure 9 presents the average monthly streamflows for the Truckee and Carson
Rivers at Farad and Ft. Churchill, respectively. The plot demonstrates that the bulk of
the annual streamflow in both rivers comes in the springtime, specifically during the
months of April, May, and June. Streamflow in the remaining months is relatively

small.
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Figure 9: Average monthly streamflow volumes for the Truckee and Carson Riv-
ers (based on the 1949-2003 period)

Figure 10 illustrates the monthly average precipitation for the Sierra Nevada
region. Precipitation is highest in the winter months of December to February, with a
significant amount also falling in November and March. Based on Serreze et a.'s
(1999) estimate that 67% of precipitation in the Sierra Nevada's falls as snow, we
deduce that most winter precipitation falls in the form of snow. Precipitation stored as

snow in mountains throughout winter is released as runoff in spring when tempera-

tures rise, causing the spring pulse evident in Figure 9.

32



Average Monthly Preciptation

3.5 —
2.5 4

1.5

fﬂﬂﬂmmﬂ

Oct Nov Dec Jan Feb Mar Apr May Jun Ju Aug Sep
Month

Precipitation (in)
N

Figure 10: Average monthly precipitation for the Sierra Nevada mountain cli-
mate division (based on the 1949-2003 period)

Figure 11 and Figure 12 show the timeseries of spring runoff (measured as
total April to July streamflow) and winter precipitation (measured as April 1st SWE),
respectively, in the Truckee and Carson Basins for the period 1949-2003. The figures
demonstrate the high interannual variability in seasonal precipitation and streamflow.
In the water-stressed basin, where all available water is allocated, there often isn't
enough water to meet demands. Water managers in the basin must understand and pre-
dict the variability in the supply in order to efficiently manage the basin.

Figure 13 presents the scatterplot of end of winter SWE and spring runoff in
the Truckee and Carson rivers. There is a high degree of correlation between winter
SWE and spring runoff. The top figures represent the correlations for the Truckee
River; the bottom for the Carson River. The left figures are for March 1st SWE; the
right for April 1st. Not surprisingly, April 1st SWE correlates better with spring runoff
than March 1st SWE. Correlation values are 0.80 for the Truckee with March 1st
SWE, 0.81 for the Carson with March 1st SWE, 0.93 for the Truckee with April 1st
SWE and 0.90 for the Carson with April 1st SWE. April 1st SWE provides a more
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Figure 11: Spring streamflow in the Truckee and Carson riversfor the period
1949 to 2003. Thetop figure showsthe Truckee River spring streamflow; the bot-
tom show spring streamflow for the Carson River. The spring streamflow istaken
asthetotal volumefor the months April to July
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Figure 12: April 1st SWE in the headwater regions of the Truckee and Car son
riversfor theperiod 1949 to 2003. SWE istaken asa basin-wide average and
represented as a percent of normal value.
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Figure 13: March 1st (left) and April 1st (right) SWE versus spring runoff vol-
umein the Truckee (top) and Carson riversfor the period 1949 to 2003. SWE is
taken as a basin-wide average and represented as a percent of normal value.

accurate representation of the total snow available for runoff in the April to July sea-
son. March 1st SWE, however, also correlates well with spring runoff and offers the
opportunity for an earlier forecast. The scatter for the Truckee River istighter than that
for the Carson River. One possible reason for the lower correlation in the Carson is
that the Carson Basin has significantly fewer snow measurement stations than the
Truckee Basin (7 stations for the Carson versus 17 for the Truckee), limiting the accu-
racy of a basin-wide SWE value. The USBR is currently coordinating with the NRCS
to install more snotel stations in the Carson Basin. Another potential source of the
lower correlation values is that the natural streamflow values for the Carson are, in
fact, the gaged streamflow values at Ft. Churchill. With over 35,000 irrigated acres
before the Ft. Churchill gaging station, it isunlikely that the gaged streamflow isapre-

cise representation of natural streamflow. Having noted this, the plots nevertheless
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portray a strong correlation between SWE and the total spring streamflow at both
Farad and Ft. Churchill. These correlation values are statistically significant, indicat-

ing the potential for using SWE as a predictor to spring runoff in both rivers.

2.2.4 Results: Correlation Analysis

In the correlation analysis, we correlate spring streamflows in the Truckee and
Carson Rivers with winter indices of the dominant teleconnection patterns (i.e., ENSO
and PDO) as well as general oceanic and atmospheric circulation variables (e.g., SST
and pressure). Correlations between spring streamflow and the dominant winter tele-
connection indices Nino3, Nino3.4, SOl and PDO are not statistically significant. This
isnot surprising, given that climate (and streamflow) anomalies in specific regions are
sensitive to subtle shifts in atmospheric circulation patterns; shifts that are not well
described by the standard teleconnection indices. We therefore analyze the oceanic
and atmospheric circulation variables related to these larger dominant teleconnection
patterns: SST and pressure. The winter SSTs and 500mb geopotential height pressure
variables over the Pacific Ocean correlate strongly with spring streamflows in the
Truckee and Carson Rivers. We use the 500mb geopotential height pressure variable
because it is smoother than the SLP variable. Results from the analysis of these vari-
ables are presented below.

Figure 14 presents the correlations between the oceanic and atmospheric vari-
ables over the Pacific Ocean in winter (December to January) and the runoff during the
following spring (April to June) in the Carson basin. Figure 14(a) illustrates the
500mb geopotential height correlation and Figure 14(b) depicts the SST correlation.
Figure 15 similarly, presents the correlations for the Truckee basin.

Figure 14 and Figure 15 demonstrate that winter climate over the Pacific
Ocean correlates strongly with streamflow in the Truckee and Carson Riversin the fol-

lowing spring. In particular, the 500mb geopotential height pressure variable off the
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Figure 14: Carson River spring streamflow correlated with winter (a) geopoten-

tial height 500mb and (b) sea surface temperature
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Figure 15: Truckee River spring streamflow correlated with winter (a) geopoten-

tial height 500mb and (b) sea surface temperature

coast of Washington has a strong negative correlation (-0.7) with spring streamflow.

This means when pressure in this region is below average in winter, streamflow in the

Truckee and Carson Rivers the following spring will likely be above average. Simi-

larly, the sea surface temperature in the northern mid-Pacific Ocean in winter has a

strong positive correlation (0.5) with spring runoff; above average sea surface temper-

ature in this region in winter indicate above average runoff the following spring in the
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Truckee and Carson Rivers. To the east of this region, the SSTs exhibit a negative cor-
relation with the spring streamflows. The physical significance of these correlations
will be described in the following section.

It is not surprising that the climate correlation patterns are very similar for both
rivers. Because the headwaters to the Truckee and Carson Rivers are very close in
proximity, they are affected by many of the same weather patterns.

Correlations between spring streamflows and climate variables from the pre-
ceding fall are shown in Figure 16. The correlations in fall, though somewhat weaker
than those for winter (-0.5 for the geopotential height 500mb and 0.4 for the SST),
could provide early information about streamflow to come the following spring--
before SWE data is even available. It can be seen that these patterns are similar to the
winter patterns (Figure 14). This persistence in atmospheric circulation patterns

enhances the possibility of longer lead-time forecasts.
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Figure 16: Carson River spring streamflow correlated with fall (a) geopotential
height 500mb and (b) sea surface temperature

It isgenerally believed that the large-scal e ocean-atmospheric patterns are per-
sistent over time. To confirm that the patterns provide important information over

time, we correlate the spring streamflows with the large-scale climate variables in suc-
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cessive three month seasons starting with the preceding July (e.g., July-Sept., Aug.-
Oct., Sept.-Nov., etc.). For each map we take the correlation value for the geopotential
height and SST regions discussed above. We then plot the correlation values as they
increase with time. Thisis shown in Figure 17. Though correlations are strongest for
the winter months, Figure 17 illustrates that correlations are significant in fall and

even late summer.
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Figure 17: Persistence of geopotential height and SST correlations for months
prior to spring runoff

This approach of developing correlation maps and identifying the relationship
to large-scale climate variables is much more comprehensive than correlating with
standard indices such as the Nino3, Nino3.4, SOI, PDO, etc. In the latter, if the corre-
lation is weak with these indices, one might erroneously conclude a lack of relation-
ship with the large-scale climate phenomenon when in fact the correlation maps with
SSTs and geopotential heights might indicate otherwise. For instance, the correlation
between the spring streamflows in Truckee and Carson are very low (Statistically
insignificant) with winter Nino3, Nino3.4, SOI and PDO indices. However, the spatial

correlation maps clearly indicate a relationship with northern Pacific geopotential
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heights and SSTs which are part of the general PNA, PDO and ENSO patterns. The
standard tel econnection patterns describe variations in the amplitude of the PNA wave
train in specific locations. These variations may not be important in the Truckee-Car-

son Basin, therefore we find the exact patterns that are important.

2.2.5 Results: Composite Analysis

To understand the physical mechanisms driving the correlation patterns seen
above we perform a composite analysis. In this analysis, years are grouped according
to flow characteristics (i.e., the six years above the 90th percentile of streamflows and
the six years below the 10th percentile of streamflows). Average ocean-atmospheric
patterns for the selected years are obtained for each grid point around the globe. Spe-
cifically, we examine the SSTs and vector winds in the northern Pacific and plot the
patterns in high streamflow years and again in low streamflow years. The resulting
patterns provide insights into the physical link between the geopotential heights and
SSTs and spring streamflows in the Truckee and Carson rivers. The SSTs are shown as
colors, while the vector winds are shown as arrows-- the length of the arrows indicate
the strength of the winds.

Figure 18 presents the vector winds in the six highest streamflow years (a) and
the six lowest streamflow years (b). Figure 19 similarly presents the SSTs in high (a)
and low (b) streamflow year. Figure 20 illustrates the difference of vector winds and
SSTs between high and low streamflow years. (For the high minus low composite
plot, an average SST or wind vector is computed at each grid point for the high years,
again for the low years, and then the two values are differenced.) The SST plots
exhibit asimilar pattern to that in the correlation plots (Figure 14)-- warm SSTs in the
north mid-Pacific in high streamflow years and cool SSTsin thisregion in low stream-
flow years. The high minus low composite map shows that the SSTs across the north

Pacific exhibit a dipole pattern of warmer SSTs to west and cooler SSTs to the east--
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Figure 19: Climate composites. SSTsin high (a) and low (b) streamflow years
also seen in the correlations analysis (Figure 14). The winds in high streamflow years
show a counterclockwise rotation around the region off the coast of Washington-the
region of highest correlation detected in the correlation analysis (Figure 14). The
opposite wind rotation is seen in low streamflow years.

The Coriolis Force causes winds in the northern hemisphere to move in acoun-

terclockwise rotation pattern around a region of low pressure. This can be seen in the
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Figure 20: Climate composites. high minus low streamflow year s (a) sea surface
temperature and (b) vector winds

low pressure region off the coast of Washington. This process enhances southerly
winds to the area southeast of the low pressure region-- in this case the headwaters of
the Truckee and Carson Rivers. Southerly winds carry warm, moist air, thereby
increasing the chance of precipitation (in this case snow) when the air rises and cools
as it encounters the Sierra Nevada Mountains. Increased snowfall consequently
increases spring streamflows. This explains the physical significance of the negative
correlation between pressure and streamflow in the Truckee and Carson Basins.

The SST pattern, on the other hand, is a direct response to the pressure and
winds. The winds are generally stronger to the east of a low pressure region-- this
increases the evaporative cooling and also increases upwelling of deep cold water to
the surface. Together, they result in cooler than normal SSTs to the east of the low
pressure region. The oppositeis true on the west side of the low pressure region. Thus,
in the mid-latitudes it is typical to see alow pressure region lying between cooler than
normal SSTsto the east and warmer than normal SSTs to the west. A schematic of this

plausible physical mechanism is shown in Figure 21.
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Figure 21: Schematic of physical mechanism relating a low pressure pattern in
winter in the northern Pacific to spring streamflowsin the Truckee and Car son
Rivers.

2.2.6 Predictor Indices
Based on the correlation and composite analyses, we develop climate indices

by averaging the ocean-atmospheric variables over the areas of highest correlation.

Figure 22 illustrates the making of the geopotential height and SST indices. We com-
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Figure 22: Geopotential height (a) and SST (b) correlation plots. The boxesindi-
cate theregionsused in creation of theindices
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pute area averages for the regions inside the boxes depicted in Figure 22. Specificaly,
the gridded geopotential heights over the region 225-235° E and 42-46° N and the
SSTs over the region 175-185° E and 42-47° N are averaged for each year - thus,
resulting in atime series of theindices. For the winter index, we compute December to
February averages, and for the fall, September to November averages.

Figure 23 shows the scatterplot of the geopotential height index (fall and win-

ter) versus runoff the following spring. We use local regression (Loader, 1999) to fit
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Figure 23: Scatter plotsof winter (left) and fall (right) geopotential height index
and spring runoff in the Truckee (top) and Carson (bottom) rivers.

the spline shown in the scatterplot. (Details of this method are provided in Chapter 3,
“Nonparametric Stochastic Forecasting Model.”) A strong relationship exists between
the spring streamflows and both winter and fall indices. The relationship, however, is
not directly linear. While normal and above norma streamflow values express a

nearly-linear negative relationship with the geopotential height index, the relationship
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breaks down for lower streamflow values - thus providing a non-linearity. The tight-
ness of the scatter and the high correlation value signify the potential for using the
index as a predictor to streamflow in a forecasting mode.

Figure 24 presents the relationship between the SST index and runoff the fol-
lowing spring. Though correlation values are statistically significant, the relationship
is nonlinear. A large amount of scatter for the normal SSTs indicates that the index

may not be as useful in forecasting in normal SST years.
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Figure 24: Scatter plots of winter (left) and fall (right) SST index and spring run-
off in the Truckee (top) and Carson (bottom) rivers

Figure 25 shows the surface plot of the geopotential height index, the SST
index and the Truckee River spring runoff. Results are similar for the Carson. The
nonlinearities among all three variables are apparent in the undulations of the surface

plot. If the relationships were linear, the plot would appear as a flat sheet. The SST
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Figure 25: Three dimensional plot of geopotential height index, SST index and
spring runoff in the Truckee River

has a stronger relationship with streamflow when geopotential height index is low
When the geopotential height index is high, streamflow does not vary significantly
with the SST index. Similarly, the geopotential height index has a stronger correlation
with spring runoff when the SST index is low, and a weaker correlation with spring
runoff when the SST index is high. The nonlinearities evidenced in this plot under-
score the complex relationship between the SST index, the geopotential height index,

and spring runoff in the Truckee River. The use of local regression techniquesis neces-

sary if any useful information isto be gleaned from these indices.

2.3 Summary and Conclusions

Growing evidence from past studies supports the hypothesis that large-scale
atmospheric circulation patterns affect the hydroclimate in the western United States.

Researchers have conducted many studies that demonstrate various atmosphere-
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ocean-land relationships. Many of the studies focus on large-scale patterns (such as
ENSO and PDO) that impact weather around the globe. Several studies demonstrate a
link between these climate patterns and flooding and drought in various regions of the
western United States. Other studies have utilized the relationships for forecasting pre-
cipitation and streamflow. Research shows, however, that these relationships are
highly nonlinear and their physical mechanisms are not fully understood.

We conduct our own analysis to determine the prominent patterns that affect
hydroclimate in the Truckee and Carson basins. The basins are clearly snowmelt dom-
inated, thus we analyze winter atmospheric circulation patterns to glean useful infor-
mation that may affect runoff the following spring. Correlation analysis results show
that winter large-scale ocean-atmospheric patterns over the Pacific Ocean strongly
modulate the year to year variations of spring runoff in the basins. Particularly, 500mb
geopotential height and SST demonstrate a strong relationship with the spring runoff.
The persistence of these circulation patterns into fall enhances the prospect of a
longer-lead forecast using the large-scal e climate information. The composite analysis
provides a physical explanation of the pressure-streamflow relationship. Based on our

analysis we develop climate indices to be applied later in aforecasting model.
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Chapter 3

Nonparametric Stochastic Forecasting M odel

Animproved model is required to predict spring runoff in the Truckee and Car-
son Basins to better facilitate operation and management of the rivers. Specificaly, the
seasonal forecasting model will help establish allowable diversions through the Truc-
kee Cana to the Newlands project as well as reservoir releases for fish. The spring
forecast is of particular importance in the Truckee-Carson river system. Because run-
off from spring snowmelt accounts for nearly two-thirds of the total annual stream-
flow, forecasting this total volume is imperative. It is also important to disaggregate
this volume into monthly values throughout the season, as monthly forecasts deter-
mine storage targets for Lahontan Reservoir. Furthermore, the forecasting model
should quantify the uncertainty of the forecast to allow water managers to plan for
extreme scenarios. Finally the model must be easy to use and to implement into the
existing operational procedures. This chapter describes the development of a non-
parametric stochastic model for forecasting spring runoff. The model uses the large-
scale climate predictors identified in Chapter 2 and provides ensemble forecasts of
spring streamflows, thus quantifying the uncertainty of the forecast. This chapter pre-

sents the forecasting model, its predictive ability and the results obtained from it.
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3.1 Introduction
3.1.1 Need for an improved forecasting model

The USBR Lahontan Basin Area Office (LBAO) is currently searching for an
improved forecasting model to use for watershed management and decision-making.
Accuracy of forecasts has become evermore important in the water-stressed Truckee
and Carson River Basins. With the implementation of revised OCAP in recent years,
the release of water quality credit water for fish, as well as diversions through the
Truckee Canal, depend heavily on the seasonal forecast. The current USBR forecast-
ing model is limited in its skill, estimation of uncertainty, and lead-time. The model
does not always predict the spring runoff to arequired accuracy level and in certain sit-
uations can adversely affect the efficiency and management of the basin. Though flex-
ibility has been built into the system to accommodate for errors, it is not uncommon to
divert or release too much or too little water based on an inaccurate forecast. The lead-
time provided by the USBR forecasting model also leaves room for improvement. The
model employs snowpack information as the basis of the forecast, therefore spring
runoff can be predicted from January 1% at the earliest. Though current basin policies
do not require a seasonal forecast earlier than January, water managers could benefit
from advance notice of the coming water season (Scott, 2002). Furthermore, the Janu-
ary forecast is highly provisional due to the fact that only a small proportion of the
total seasonal snow has fallen by the end of December. A forecasting model that is not
limited to solely snowpack information could provide better skill in the early winter
months. Finally, there is a need to improve the quantification of uncertainty in the
forecasts. While the current forecasting methods do provide probabilistic forecasts,
these forecasts are based on the assumption that the data are normally distributed and
do not capture the true probability distribution. The importance of planning for
extreme events such as floods and droughts underscores the need for a reliable sto-

chastic model. In this study, we devel op aforecasting model to addressall these needs.
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3.1.2 Background

Streamflows can be modeled and forecasted by a number of different methods,
including physically-based (deterministic) methods and statistically-based (empirical)
methods. The streamflow in the Truckee River, for example, is currently being mod-
eled using the deterministic Precipitation Runoff Modeling System (PRMS) (Leaves-
ley et a., 1996) as well as the empirical regression models of the USBR and the
NRCS. Deterministic models such as PRMS aim to emulate hydrologic processes by
modeling basin response (e.g., streamflows and sediment yields) to various combina-
tions of precipitation, climate, and land use. Deterministic models, however, typically
have several parametersto be calibrated, thus requiring large amounts of data. Empiri-
cal models developed by the USBR and the NRCS seek to capture the underlying rela-
tionship between various hydrological parameters (e.g., streamflows and snowpack)
through statistical methods such as linear regression. While each of the models cur-
rently used in the Truckee-Carson Basin has its advantages, the forecasts produced are
not as accurate as needed for efficient and effective management of the system and the
USBR LBAO is seeking an improved model.

This research develops a nonparametric statistical forecasting model. We
choose a statistical model because, in general, statistical models require less initia
data and parameters and do not need to be calibrated like deterministic models do. The
model developed in this research aims to improve on existing models not only by
improving the accuracy of the forecast, but also by providing a longer lead-time and
better quantifying the uncertainty of the forecast. Because the model utilizes snowpack
information as well as large-scale climate information, it can forecast from fall and
provide water managers with an early perspective in planning for the coming water
season. Later forecasts increase in skill and can be used operationally. The model pro-
duces ensemble forecasts which provide reliable exceedence probabilities to be used

in planning for extreme events. The forecasting technique has no underlying data
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assumptions, and hence can better capture the probability distribution of the forecast.
Existing statistical forecasting methods are briefly discussed, followed by a descrip-
tion of the methods employed in this study and the results from the application to the
Truckee-Carson Basin.

Effective river basin planning and management requires the ability to model
streamflow variability. Stochastic models capture streamflow variability by generating
ensembles-- multiple scenarios of plausible streamflow values which include extreme
events such as floods and droughts and which preserve the statistics of the observed
data. The ensembles can be used to quantify the uncertainty of the forecast and to cal-
culate exceedence probabilities. Both statistically-based and physically-based models
can generate ensemble forecasts. For example, PRMS utilizes the National Weather
Service's Ensemble Streamflow Prediction (ESP) method to couple multiple scenarios
of precipitation (specifically, all datafrom the historical record) with initial conditions
(e.g., soil moisture) to generate multiple runoff timeseries. Empirically-based stochas-
tic models often selectively sample from the range of past streamflow data to generate
ensembles. In both frameworks, the models operate on the premise that the statistics
(mean, standard deviation, lag (1) correlation, and skew) of the historical flow (or pre-
cipitation) are likely to occur in the future, i.e. the stationary assumption.

Traditional statistical forecasting techniques fit a regression, often linear,
between the response variable (e.g., spring streamflows) and the independent variables

(e.g., predictors). They are of the form:

Vi = @XqpF Ao . ApX + g Eq. 3.1

Where the coefficients &, &,..., &, are estimated from the data. The error, €, is
assumed to be normally distributed with mean 0 and standard deviation 1.

In the above model, the independent variables can be past values of the
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response variable itself:

Yi = ay,_tagy, apyt_Io & Eq. 3.2

These models are termed autoregressive moving average (ARMA) and peri-
odic autoregressive (PAR) models. Hydrol ogists have devel oped and used such mod-
els for streamflow simulation and forecasting for many years (Salas 1985, Yevjevich
1972, and Bras and Iturbe 1985).

These traditional modeling techniques are termed “parametric” because they
are based on estimating parameters (e.g., determining the coefficients) to fit the model.
Parametric models inherently assume that the time series is normally (Gaussian) dis-
tributed (Salas, 1985). Typically, streamflow data do not fit a Gaussian distribution,
thereby violating this assumption. To address this, the data are transformed to a normal
distribution using a log or power transformation before fitting a parametric model to
the transformed data (Sharma et al., 1997). The forecasted values are then back-trans-
formed into the original space. This process of fitting the model on the transformed
data and then back transforming it often does not guarantee the preservation of statis-
tics (Sharmaet al., 1997; Salas, 1985; Bras, 1985; Benjamin, 1970). Thereisrich liter-
ature for fitting and testing such models and software packages are extensively
available (Helsel and Hirsch 1992). Such models have been widely used for hydrocli-
mate forecasting in the US (e.g., Piechota et al., 2001 and Cordery and McCall, 2000).
While parametric models generally preserve the mean, variance, and auto-correlations
of a data set, skewness is approximated and further uncertainty is introduced through
estimating model parameters. The inability to reproduce skew and bimodality, as well
as the model uncertainty introduced through parameter estimation can significantly
influence model results.

Nonparametric forecasting model s were devel oped to address the drawbacks of
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parametric models. Nonparametric models, unlike parametric models, are assumption
free and are driven by the data alone. Nonparametric models do not assume any under-
lying distribution in the data. No parameter estimations or data transformations are
necessary. Nonparametric models estimate the marginal and conditional probability
density function locally and hence capture any arbitrary relationship in the data, linear
or nonlinear, Gaussian or non-Gaussian. Severa types of nonparametric models exist
for streamflow forecasting. These include the kernel based (Sharmaet al., 1999), near-
est neighbor based (Lall and Sharma, 1996), and hybrid parametric/nonparametric
models (Srinivas and Srinivasan, 2001). This research employs nonparametric fore-
casting techniques, the further benefits of which will be expanded upon later in this

chapter.

3.2 Seasonal Forecasting Model
3.2.3 Modified K-NN Method

The seasonal forecasting model developed in this study utilizes the nonpara-
metric modified k-nearest neighbor (K-NN) approach developed by Prairie (2002) to
generate ensembl e forecasts of streamflow. The forecasts draw on the strong statistical
correlations and physical relationship between winter (and fall) large-scale climate
signals and the total spring runoff in the Truckee and Carson Rivers. The modified K-
NN model fits a nonparametric relationship using local polynomials (Loader, 1999)
between the predictors (500mb geopotential height, SST, and basin averaged SWE)
and the spring streamflows. For the given winter (or fall) predictors, the fit is used to
estimate the mean streamflow for the following spring. The residuals of thefit are then
resampled and added to the mean forecast to obtain the ensemble forecast. A weight-
ing scheme is used in the bootstrap of the k-nearest regression residuals, giving more
weight to the closest neighbors, less weight to the farthest.

The local polynomial fit for the mean forecast (an assumption free, nonpara-
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metric approach) has the ability to capture any arbitrary (linear or nonlinear) depen-
dence structure. The coupling of this with the residual resampling provides the
capability to capture any arbitrary dependencies and probability density functions
exhibited by the data, unlike conventional methods that can capture only linear depen-
dence and Gaussian probability density functions. Once the ensemble of the total
spring runoff is obtained, we apply similar techniques to disaggregate the total volume
into monthly values which are used to set storage targets on Lahontan Reservoir.

The modified K-NN a gorithm, adapted from Prairie (2002) to work with mul-
tiple predictorsin this research, is outlined below:

1.A loca polynomial isfit to the flow regressed on the three predictors, x, v, z:
Yy = f(X y,2) + Eqg. 3.1

2.Theresiduals (g") from the fit are saved.

3.Given the three predictors for the current winter (or fall), the mean flow from
Equation 3.1 is estimated.

4.The Euclidean distance between the current set of predictors and the sets of
predictors for all other years is calculated and k-nearest neighbors are
selected.

5.The neighbors are weighted using the weight function:

y.
L Eq. 3.2

k
2.
This weight function gives more weight to the nearest neighbor and less

weight to the farthest neighbor. The weights are normalized to create a

probability mass function or “weight metric”. Other weight functions with
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the same philosophy- i.e., more weights to nearest neighbors and lesser
weights to farther neighbors can be used as well. Prairie (2002) found little
or no sensitivity to the choice of the weight function.

6. Bootstrap the residuals. One of the neighbors is resampled using the
“weight metric” obtained from Equation 3.2 above. Consequently, itsresid-
ua (e) isresampled and added to the mean estimate.

7. Repeat 6 to obtain as many simulations as required (in this case, 100 simu-
lations provided reproducible ensembl e statistics.) Repeat steps 1 through 6
for other years.

Figure26 and Figure27 can be utilized to better visualize these steps.

Figure 26 shows the scatter plot of the historical area-averaged winter geopotential
height index and spring runoff for the Carson River at Ft. Churchill. The solid line

shows a local (or nonparametric) fit through the scatter. The nonparametric fit is a
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Figure 26: L ocal regression fit
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locally weighted regression scheme (Loader, 1999; Rajagopalan and Lall, 1998). At
any point in the regression, a local polynomia is fit to the k nearest neighbors. The
size of the neighborhood (i.e., k) and the order of the polynomial are obtained using an
objective criteria caled Generalized Cross Validation (GCV). This estimation is at
several points to obtain the solid line in Figure 26. We used the dtatistical package
LOCFIT developed by Loader (http://cm.belllabs.com/cm/ms/departments/sial/project/
locfit/) for fitting local polynomials. Because the forecasting model developed for this
research uses three predictors, the local regression fit is in a four-dimensional space.
The concept is the same as described for the two-dimensional example shown in
Figure 26.

Figure 27 depicts the bootstrapping of the residuals for the ensemble forecast.

Using the local regression we first obtain the expected (or mean) value for the forecast.
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Figure 27: Residual resampling
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Given the current state of the system (i.e., the current winter geopotential height, SST
and SWE), we determine the spring runoff associated with this value (Yt*). In the two-
dimensional example, thisis obtained by taking the current geopotential height value
on the x-axis, moving vertically up to the local regression line and finding the y-value
associated with that point on the regression. This y-value is the expected value of the
spring runoff. Next, using a heuristic scheme, we define the “neighborhood” around

the current x-value to capture the k-nearest points, where k is defined as:

k = ./n Eq. 3.3

A point is next picked from the “neighborhood” with the stipulation that the
points with values closer to the current x-value (in this figure, the geopotential height)
have a greater chance of being selected and those further away have a lesser chance.
The residual (et*) from the local regression associated with the selected point is then
added to the mean forecasted value (Yt*) to obtain the first member of the ensemble
forecast. This process of resampling the residuals is repeated several times (here, 100
times) to obtain an ensemble forecast with 100 members. This is often referred to as
“bootstrapping” the residuals. We tested various ensembl e sizes and found little differ-
ence in forecast skill or ensemble statistics when the residuals were resampled more
than 100 times.

One significant advantage of the K-NN (or modified K-NN) framework is that
variables can be easily added in the predictor set--e.g., the number of predictorsis not
limited and hence forecasts can incorporate hydrologic initial conditions (SWE or
accumulated precipitation), large-scale climate information, and any other relevant
predictors of streamflows in the basin.

The flexibility of the method allows it to be used within any timestep frame-

work-- e.g., monthly forecasts as done by Prairie (2002), seasona forecasts (from
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either winter or fall) as presented in this chapter, etc. Seasonal forecasts can easily be
updated monthly to incorporate new initial conditions. Because nonparametric tech-
niques are data driven rather than distribution-fit driven, there is no need to re-parame-
terize the model for each updated forecast.

The modified K-NN model is an improvement on the traditional K-NN model
in that it is able to generate values not seen in the historical record. This modification
was first presented in Prairie (2002) and was briefly mentioned in the conclusion of
Lal and Sharma (1996) and Rajagopalan and Lall (1999). The traditional K-NN resa-
mples the actual points in the neighborhood, rather than adding the residuals associ-
ated with neighbors to the mean forecast. Desouza and Lall (2003) used the traditional
K-NN approach to streamflow forecast in northern Brazil and obtained very good
results.

A drawback of the modified K-NN technique, however, is that due to residual
resampling it is possible to produce negative flow values in extremely dry streamflow
years. If the expected value (mean forecast from the regression fit) is close to zero and
negative residuals are added to this, it is possible to produce negative ensemble mem-
bers. A method to address this drawback is to take a log transformation of the data
before fitting the model and then transforming the forecasted val ues back into the orig-
inal space. It is worth noting that nonparametric techniques such as the modified K-
NN, though capable of producing negative flow values, are bounded by the tails of the
probability distribution. The lowest possible value is the lowest historical value plus
the largest negative residual. For comparison, parametric techniques, which assume a
Gaussian distribution, are inherently unbounded in the possibility of streamflow val-
ues. Because thetails of a Gaussian distribution extend from -oo to + oo, it is possible

to produce highly negative or positive streamflow values.
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3.2.4 Moded Verification and Skill Measure

In order to validate the forecasting model, we use standard cross-validation
techniques. We remove a streamflow value from the data set before fitting the model
and then use the model to produce an ensemble forecast of the “unknown” value. The
skill of the forecast is a measure of how adequately the model reproduces the
“unknown” value. Boxplots of ensemble forecasts with the observed values overlaid
on top provide a visual comparison of how well the ensembles capture the observed
values. In addition to this visual comparison, we use three skill measures to evaluate
the model performance:

(i) Correlation coefficient of the median of the ensemble forecast and the

observed value.

(ii) Ranked Probability Skill Score (RPSS).

(iii) Likelihood Function Skill Score.

The RPSS, typically used by climatologists, is used to quantify the skill of
ensemble forecasts. The RPSS verifies multicategory (in this case, above normal, nor-
mal, and below normal) probability forecasts by comparing the skill of the forecast rel-
ative to climatology. The term “climatology” here refers to the streamflow one would
expect based only upon the long-term historical climate data (e.g., precipitation, tem-
perature) for the basin. For example, a climatological forecast in any year will present
the historical mean as the most expected streamflow value and a 10% chance of
exceeding the goth percentile of the historical data. By defining the categories above
normal, normal, and below normal at the 33" and 671" percentile of the historical data,
climatology presents an equal probability (0.33) of faling into each category. The
RPSS ranges from +1 (perfect forecast) to - oo . Negative RPSS values indicate that the
forecast has less accuracy than climatology. The RPSS essentially measures how often
an ensemble member fallsinto the category of the observed value and compares that to

aclimatological forecast. The rank probability score (RPS) of the categorical forecast
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P=(Py, P, ... P for acertain timeis defined as:

RPS(p,d)—k—l{Z[ZP—ZdJ] Eq. 3.1

i=1\n=

for k mutually exclusive and collectively exhaustive categories. The vector
d (dq, do, ... dy) represents the observation vector such that d,, equals one if class n
occurs, and zero otherwise. The RPS has a range of zero to one and is positively ori-
ented (the higher the value, the better the forecast). (Toth, 2002)

The RPS is then used to calculate the rank probability skill score, RPSS:

RPS(forecast)
RPS(standard)

RPSS = 1- Eq. 3.2
(Toth, 2002).

The likelihood function is also used to quantify the skill of ensemble forecasts.
Aswith the RPSS, we classify three categories for the likelihood function: below nor-
mal, normal, and above norma with divisions at the 33" and 671" percentiles. The
likelihood function compares the likelihood of the ensemble forecast falling into the
observed category against climatology to develop a skill score. The likelihood skill

score for the ensemble forecast in any given year is calculated as:
1/N

Eqg. 3.3

v
nw,

Skill scores range from O to the total number of categories-- 3 in this case.

A likelihood score of zero indicates no skill, a score of 1 indicates the same skill ascli-
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matology, and a skill score between 1 and the number of categories represents skill
better than climatology. The likelihood measure is generic and is related to informa-

tion theory (Rajagopalan et al., 2001).

3.2.5 Reaults

Wefirst determine the optimal set of predictors by evaluating a model that uses
all three predictors (SWE, SST, and 500mb geopotential height) against a model based
on SWE and 500mb geopotential height data alone. Results show little or no improve-
ment in forecast skill when the SST index isincluded in the predictor set. Therefore, in
the interest of parsimony, we do not include the SST in the final forecasting model.
Though SST correlations coefficients determined in Chapter 2 are statistically signifi-
cant, the SST patternis, at least in part, aresponse to the atmosphere-- hence providing
little independent information. It is possible that the SST pattern contains a component
which acts independently as a driving force for streamflow in the Truckee and Carson
Basins. The relatively low correlation coefficient, however, introduces error in the
model, thus decreasing any forecast skill that could be provided by an independent
driving force. GCV and other objective criteria can be used to formally select an opti-
mal set of predictors from alarge suite of possible predictors. In linear regression, the
stepwise regression method is typically used. This research uses only three predictors,
therefore making it easy to perform an exhaustive search. All of the forecasting results
presented below include only the geopotential height index and SWE in the predictor
set. Results indicating the legitimacy of including the geopotential height index as a

predictor are aso presented.

3.2.5.1 April 1% Forecast
Figure 28 illustrates the modified K-NN model’s ability to forecast each year

in the historical record using standard cross-validation techniques. This model uses

April 1% SWE and the winter (December to February) geopotential height index, mak-
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Truckee Modified K-NN Prediction (1949-2003)
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Figure 28: Timeseries of spring runoff with ensemble forecastsfor each year
(1949-2003). The solid linerepresentsthe historical timeseries. The boxplotsrep-
resent the ensemble forecast issued from April 1% in each year. The dashed hori-
zontal lines represent the quantiles of the historical data (5", 25t", 501", 751" and
o5th percentiles). Thetop figureisfor the Truckee River; the bottom for the Car-
son River.

ing the forecast available April 1%. The solid line in the plots represents the historical
timeseries of spring runoff in the Truckee River (top) and Carson River (bottom). The
boxplots at each year illustrate the ensemble forecast in that year. The box portion of
the boxplots represent the interquartile range of the ensemble forecast (25th to 751
percentile) with the horizontal line inside each box denoting the median of the forecast
(most probable value.) The whiskers of the boxplot extend to the 5 and 951 percen-
tiles of the ensemble forecast. Points outside the whiskers are outliers of the ensemble.
Larger boxplots indicate greater forecast uncertainty, or a wider range of possible
streamflow values in the ensemble. The dashed horizontal lines represent the quantiles
(5t 25t 50t 751 and 951 percentile) of the historical data and help the viewer
establish the relative streamflow in each year.

As demonstrated in Figure 28, the model typically captures the observed value

within the interquartile range of the ensemble forecast, indicating fairly good skill in
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the forecast. The fact that the median of the ensemble is not in the center of the box
illustrates skew in the ensemble forecast-- a feature that linear techniques cannot pro-
duce. Representing skew in the ensemble is important in determining exceedence
probabilities of various forecasts.

Figure 29 shows the scatter plot of the median of the ensemble forecast and the
observed spring runoff. If the forecast were perfect in every year, the pointsin the scat-
ter plot would fall directly on the 45 degree lines shown in the figure. A larger amount
of scatter denotes more error in the median forecast. Ther value of correlation is noted

in the lower right corner or each plot.
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Figure 29: Median of April 1% ensemble forecast vs. observed spring runoff for
the Truckee forecast (left) and Carson forecast (right).

The results presented in Figure 29 demonstrate that, even without the added
benefit of quantifying uncertainty, the most probable forecasted value falls quite close
to the observed value. Forecasting results for the Truckee River (r=0.93) are dlightly
better than those for the Carson River (r=0.87). As noted in Chapter 2, the correlation
coefficient between SWE and spring runoff is slightly lower in Carson Basin than that
in the Truckee Basin. Forecasters in the Truckee-Carson Basin historically have had

more difficulty forecasting runoff in the Carson River and believe thisis partly due to
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the relative scarcity of snowpack datain the Carson Basin (Reynolds, 2002).

Figure 30 shows the scatter plots of the April 1% NRCS official forecast versus
the observed spring runoff. Historic forecast data from the USBR “similar years’
model are not available, therefore we analyze the NRCS forecast. The r values are
comparable to median of ensemble forecast results presented above: 0.93 for the Truc-

kee River and 0.88 for the Carson River. Based on this comparison, one might argue

NRCS Truckee Forecast NRCS Carson Forecast
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Figure 30: NRCSforecast vs. observed spring runoff for the Truckee River (left)
and Carson River (right).

that the model used in the research does not improve on the NRCS forecasting model.
This comparison, however, does not evaluate the added benefit of the ensemble fore-
casts produced in this research. Ensemble forecasts provide important information
regarding exceedence probabilities and the uncertainty in the forecast. The official
NRCS forecast does provide the 10", 30", 501, 70t and 90" exceedence probabili-
ties. However, the ensemble forecasts generated in this research can be evaluated to
find exceedence probabilities for any threshold flow value that may be of particular
importance in the basin.

The graphs of Figure 31 and Figure 32 emphasize the model’s ability to fore-

cast in extreme years. We select the years above the goth percentile of the historical
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Figure 31: Ensembleforecastsfor extremely wet years(abovetheQOth per centile).
The solid line represents the observed spring runoff. The boxplotsillustrate the
ensembleforecast issued April 1% of each year. The dashed horizontal lines sig-
nify the quantiles of the historical data (51", 251", 50™", 75t" and 95" percentiles).
Thetop figureisfor the Truckee River; the bottom for the Carson River.
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Figure 32: Ensemble forecastsfor extremely dry years (below the 10th percen-
tile). The solid linerepresentsthe observed spring runoff. The boxplotsillustrate
the ensemble forecast issued April 1st of each year. The dashed horizontal lines
signify the quantiles of the historical data (5th, 25th, 50th, 75th, and 95th per cen-
tiles). Thetop figureisfor the Truckee River; the bottom for the Carson River.
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record (Figure 31) and below the 10t percentile (Figure 32) to test the model’s perfor-
mance in forecasting extreme wet and extreme dry years. The results demonstrate that
the model does afairly good job of forecasting even these extreme streamflow values.
While the model does not always capture the extreme values within the interquartile
range of the data, the observed value is not far outside the range of possible stream-
flow values.

We calculate the RPSS for each forecasted year (i.e., 55 different skill scores)
and boxplot the results shown in Figure 33. To ascertain the model’s skill in wet and
dry years, we boxplot the RPSS of those years separately, as well. We define wet as

those years with streamflow above the 75t percentile and dry as years below the 25th

percentile.
All Years Wet Years Dry Years
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Figure 33: Rank Probability Skill Score (RPSS): all years (a), wet years (b) and
dry years(c).

The model performs quite well overall, doing a particularly good job in wet
years, with dlightly decreased skill in dry years. Note that the scores are heavily
skewed toward the upper boundary (1) making the g5th percentile whisker difficult to
distinguish. For all categories (all years, wet years, dry years) the interquartile range of
the RPSSs is well above O, indicating that overall, the model performs significantly
better than climatology. The median value of the skill scores are presented in Table 1,

along with results from the likelihood skill measure.
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The results of the likelihood skill measure are presented in Figure 34. Likeli-
hood results also show that the ensemble forecast performs significantly better than
climatology. For al categories, the interquartile range of the skill scores lies well
above 1.

The median skill scores for the RPSS and likelihood function are presented in
Table 1.Both skill measures indicate that the model performs better than climatology
in both rivers. The skill score for the Truckee River is dightly higher than that for the

Carson River. The model performs best in wet years, with a slight decrease in skill in

dry years.
All Years Wet Years Dry Years
Truckee LL Carson LL Truckee LL (Wet) Carson LL (Wet) TruckeeLL (Dry) Carson LL (Dry)
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Figure 34: Likelihood skill measure: all years (a), wet years (b) and dry years(c).
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Median Skill Score
RPSS LL
Truckee | Carson | Truckee | Carson
All Years 1.0 0.9 2.3 2.3
Wet Years 1.0 1.0 3.0 2.6
Dry Years 0.9 0.8 2.2 2.2
'°°*0>1 O’ 1> 3

Table 1: Skill measure of the ensembleforecast in all years, wet years, and dry
years.
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One of the benefits of ensemble forecasts is that they can be used to obtain
exceedence probabilities. This can be seen using plots of the probability density func-
tion (PDF) of the ensemble. Figure 35 presents the PDF of the ensemble forecast in a
below normal streamflow year (1992) on the Truckee River. Figure 36 shows the PDF
of the ensemble forecast in an above normal year (1999) for the Truckee River. Plots
for the Carson River look similar to those presented for the Truckee. The climatologi-

cal PDF (i.e., the PDF of the historical data) isoverlaid in these plots.

PDF

(P=0.49) .
climatology

(P=0.92)

0.000 0.004 0.008

0 100 200 300 400 500 600

Truckee Spring Runoff 1992 (kaf)
Figure 35: PDF on the ensemble forecast in adry year (1992)

Notice that in Figure 35 and in Figure 36 the PDF of the ensemble forecast
shifts away from climatology, better capturing the runoff in the coming year. In 1992,
the streamflow in the Truckee River was 75 kaf, well below the average value. While
climatology shows an exceedence probability of 92 percent for that flow, the ensemble
forecast supports a much lower exceedence probability (49 percent) for the same flow,
more accurately representing the probability of that flow value. Similarly, for the
above average flow of 408 kaf in 1999, climatology suggests an exceedence probabil-
ity of 17 percent while the ensemble forecast shows a much higher probability of

exceedence (59 percent), better capturing the probability of the observed flow value.
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Figure 36: PDF of the ensembleforecast in a wet year (1999)

3.2.5.2 March 1% Forecast
All model results discussed thus far have utilized April 1% SWE in the model.

Here, we present results from a forecast based on March 1% SWE. Water managersin
the Truckee-Carson river system consider the April 1% forecast the most important for
seasonal operations and decision-making, however, preliminary forecasts issued prior
to April 1% are also used. Farmers use preliminary forecasts to help estimate their pro-
jected seasonal water demand and water managers perform preliminary model runs to
get an idea of what policies may have to be implemented in the upcoming water sea-
son-- including flood control measures.

Figure 37 shows the scatter plot of the median of the ensemble forecast versus
the observed value and demonstrates that a forecast issued at the end of February has
considerable skill. The correlation value is 0.76 for the Truckee River and 0.75 for the
Carson River. The March 1% forecast skill is less than the April 1% skill; this is
expected because as forecast lead time increases, the resulting skill decreases.

Figure 38, Figure 39, and Table 2 display the skill scores for the March 1%

forecast in al years, wet years, and dry years. Interestingly, the RPSS demonstrate bet-
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Figure 37: Median of March 1% ensembleforecast vs. observed spring runoff for
the Truckee forecast (left) and Carson forecast (right).

ter forecast skill in the Carson than the Truckee, whereas the Likelihood function indi-
cates the opposite. This discrepancy highlights the differences in these skill measures,
indicating that various skill measures should be tested to gain true insight into the fore-
casting skill. Compared with the April 1% results (Table 1), the March 1% results do not
show as significant of differences between all years, wet years, and dry years. Overall,
the skill scores indicate that the March 1% ensemble forecasts provide significantly
greater skill than climatology. This skill can be utilized to better prepare for the com-
ing water season (e.g., releasing water sooner than normal for increased flood storage,

or holding back on flood control measuresin extreme dry years.)

3.2.5.3 Fall Forecast
Figure 40 shows the fall forecast results: the scatter plot of the median of the

ensemble forecast versus the observed value. The forecast, issued at the end of
November, uses the September to November 500mb geopotential height index as a
model predictor. As SWE data is often unavailable at this time, no snowpack or pre-

cipitation information is incorporated in the forecast. The correlation coefficient
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Figure 38: March 1% RPSS: all years (a), wet years (b) and dry years (c).
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Figure 39: March 1% likelihood skill score: all years (a), wet years (b) and dry

years (C).

Median Skill Score
RPSS LL
Truckee | Carson | Truckee | Carson
All Years 0.7 0.7 2.0 2.0
Wet Years 0.6 0.7 2.0 1.9
Dry Years 0.3 0.7 1.9 1.9
-0=0»1 0~ 1~ 3

Table 2: March 1% skill measure of the ensemble forecast in all years, wet years,
and dry years.

between the median forecasted value and observed value is 0.36 for the Truckee River

and 0.28 for the Carson River. These correlation coefficients, though much lower than

those for the April 1st and March 1st forecasts, are statistically significant and indicate

positive skill in the fall forecast.
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Figure 40: Median of fall ensemble forecast vs. observed spring runoff for the
Truckee forecast (left) and Carson forecast (right).

Figure 41, Figure 42, and Table 3 show the skill scores for the fall forecastsin
all years, wet years, and dry years.The skill scoresindicate that afall forecast does best
in capturing the wet years, with mild improvements over climatology in all years and
dry years. The RPSS shows more of an increase in skill in the wet years than the like-
lihood function. The RPSS also indicates no improvement over climatology in dry
years, whereas the likelihood function shows some improvement in every category: al

years, wet years, and dry years.
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Figure4l: Fall RPSS: all years (a), wet years (b) and dry years(c).
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Figure 42: Fall likelihood skill score: all years (a), wet years (b) and dry years (c).
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Median Skill Score
RPSS LL
Truckee | Carson | Truckee | Carson
All Years 0.2 0.0 1.1 1.1
Wet Years 0.4 0.3 1.1 1.2
Dry Years 0.0 0.0 11 11
-0 0> 1 0~ 1» 3

Table 3: Fall skill measure of the ensembleforecast in all years, wet years, and
dry years.

The results and skill scoresillustrate that there is substantial and useful skill in
the long lead time forecasts (as much as 5 months for forecasts issued in fall). The skill
improves significantly as the lead time decreases (i.e., going from fall to spring) and
provides useful information about the coming water season. A forecast issued in fall
gives water managers a look at the type of runoff season to come. The benefit of a
forecast from fall is not that water managers know the exact volume of spring runoff,
but that they have an idea of whether the coming season will be above average or
below average. Because current forecasting techniques only utilize snowpack informa-
tion, water mangers do not have the opportunity to utilize afall forecast in their opera-
tions and decision-making. USBR engineers, however, believe that a forecast in fall

would definitely be helpful in planning for the coming water season (Scott, 2002).
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3.2.5.4 Use of Climate in the Forecast: A Comparison
Though forecasters have used snowpack data in forecasting models for many

decades, combining SWE with large-scale climate information to forecast is a rela-
tively new technique (see Chapter 2 for details). We test the utility of including large-
scale climate information in the model by comparing the skill of a forecast which
includes both SWE and the geopotential height index as predictors against a forecast
based on SWE alone.

As extreme wet and dry years affect management and decision making the
most, we first present the results for these years. Figure 43 and Figure 44 show the
comparisons of incorporating large-scale climate information in the April 1% forecast
of extreme wet and dry years. (Extreme wet and dry years are defined as those years
with spring streamflow above the 90" percentile and below the 101 percentile, respec-
tively.) Figure 43 demonstrates that including the 500mb geopotential height index in
the predictor set significantly improves the forecast in extremely wet years. The
improvement in extremely dry years, though not as strong as in wet years, is aso
apparent in Figure 44. In both cases, the boxplots are tighter for the forecasts that uti-

lize the large-scale climate information, indicating less uncertainty in the forecast.

Truckee Wet Years (No Climate Index) Truckee Wet Years (Using Climate Index)

1952 1967 1969 1982 1983 1995
1952 1967 1969 1982 1983 1995

Carson Wet Years (No Climate Index)
Carson Wet Years (Using Climate Index)

T

g T

I
s 8 :
T\/g\/ < T
}—‘ £
+ T §§ ‘
i :

1952 1967 1969 1982 1983 1995

Figure 43: Incor porating lar ge-scale climate information in the forecast: wet
years
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Figure 44: Incor porating lar ge-scale climate information in the forecast: dry
years

We next analyze the benefit of including the geopotential height predictor
when forecasting all years in the historical record (rather than only extreme wet and
dry years). We look at the comparison for each monthly forecast starting from a
November 1% forecast through to the April 1¥ forecast. Forecast skill is presented in
terms of (i) the correlation coefficient between median of the ensemble forecast and
the observed value, (i) the RPSS, and (iii) the likelihood function.

Figure 45 shows the correlation coefficient between the median of the fore-
casted ensemble versus the observed value for each monthly forecast. The results
show that the mean forecast is closer to the observed value if the geopotential height
index isincluded in the set of predictors. Thisistrue for each monthly forecast (though
less so in the later months) on both rivers. Note that the November 1% and December
1% forecasts use only the geopotential height index as a predictor. No forecast is avail-
able during these months if only SWE information is used. The difference in skill is
most pronounced in the long lead forecasts, indicating that initial conditions (i.e.,
SWE) provide better information later in the forecasting season.

Figure 46 shows the RPSS for all years for each monthly forecast. The RPSS

results, too, demonstrate that incorporating the 500mb geopotential height as a predic-
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Figure 45: Incor porating large-scale climate information in the forecast: correla-
tion coefficient for monthly forecasts from November 1% through April 1% for the
Truckee (a) and Carson (b) Rivers.
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Figure 46: I ncor por ating lar ge-scale climate information in the forecast: RPSS
for monthly forecasts from November 1% through April 1% for the Truckee (a)
and Carson (b) Rivers.

tor adds skill to the forecast. While the correlation coefficient discussed above mea-
sures the skill of the mean of the ensemble forecast, the RPSS measures the skill of the
entire forecast distribution (i.e., including the spread). It is interesting to note that
when the entire ensemble forecast is considered (i.e., as with the RPSS), using both
SWE and the geopotential height index produces significantly better results even for
the March 1% and April 1% forecasts. One also might note the decrease in skill on the
Truckee River when moving from the December 1% forecast to the January 1% fore-

cast. This could be due to the fact that January SWE data is highly provisional and
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including this information may introduce significant error into the forecast. The
decrease could also be due to the January SWE data starting in 1966, rather than 1949,
meaning that the January regression contains 17 fewer points than the regressions for
other months. Regardless, the results show that including the climate information pro-
vides significant skill.

Figure 47 shows the likelihood scores for all years for each monthly forecast.
Similar to the RPSS, the likelihood function measures the skill of the entire ensemble
forecast. The likelihood skill measure results also show that including the geopotential

height as a predictor increases the skill of the forecast.

Truckee Likelihood Results Carson Likelihood Results

N
a

N
o

A/:
o

T

m

et
=

N

N

[
(&)

=
o

[N

[

o
o

I
o

Median Likelihood (all years)

—e— GpPH&SWE

—m— SWE

Nov1st Dec 1st Janl1st Feb1st Mar1st Apr 1st
Month

—&— GpH& SWE
—&— SWE

Novlst Dec 1st Janlst Febi1st Marilst Aprlst
Month

(@ (b)

Figure 47: Incor porating lar ge-scale climate information in the forecast: likeli-
hood score for monthly forecasts from November 1% through April 1% for the
Truckee (a) and Carson (b) Rivers.
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Clearly, including the geopotential height index as a predictor increases the
forecast skill. The SWE data provides important information regarding basin initial
conditions (i.e., the amount of snow currently available to affect runoff). The atmo-
spheric data, however, provides information about weather yet to come in the basin.
The geopotentia height, for example, will include information about precipitation in
the month of April. This information is not captured in the April 1% SWE measure-
ment, but will nevertheless affect spring runoff. It isthus possible for atmospheric data

to increase forecast skill.
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3.3 Seasonal to Monthly Disaggregation M odel
In practice, for seasonal operations and planning, the monthly breakup (April,

May, June, and July) of the spring seasonal runoff is required. The monthly values are
used specifically to set target storage values on Lahontan Reservoir. Water managers
use the storage targets in determining the allowable diversions through the Truckee
Canal. They must establish how much water will come from the Carson River before
allowing depletions from the Truckee River. Water managers seek to meet the target
values so that Lahontan Reservoir will contain adequate water supplies throughout the
irrigation season. Storage targets are based partly on projected demands in the Truc-
kee-Carson Irrigation District (TCID) and partly on the forecasted water availability
from the Truckee and Carson Rivers. As stated in Chapter 1, however, sometimes
there is not enough water in either river to meet the storage target.

Rather than making monthly forecasts, which may not mass-balance with the
total spring runoff forecast, we disaggregate the total volume into monthly propor-
tions. We use the K-NN approach described earlier in this disaggregation. First,
monthly fractions of the total spring runoff volume are computed for each historical
year. Given the current year’s seasonal forecasted runoff, we find k neighbors (i.e., his-
torical years) based on their closeness to this forecasted value. One of the k years is
resampled and consequently, the monthly proportions associated with it. Thus resam-

pled monthly proportions are applied to the current year’s seasonal forecast.

3.3.6 Results

Figure 48 displays the results of disaggregating the 1999 total seasonal volume
into monthly values. The solid line represents the April to July monthly volumes in
1999. The boxplots illustrate the ensemble forecast in each month. Results in other
years are similar. This monthly disaggregation schemeis preliminary and requires val-

idation and testing. However, the results are encouraging.
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Figure 48: Disaggregation of total seasonal volume into monthly values: 1999.
The solid line represents the obser ved monthly value in that year. The boxplots
represent the ensemble forecast for each month.

3.4 Summary and Conclusions

Using the predictors determined in Chapter 2, we develop a nonparametric sto-
chastic model to forecast spring streamflows in the Truckee and Carson Rivers. The
nonparametric model uses alocal polynomial approach for mean forecast and residual
resampling to provide ensembles, thus effectively capturing uncertainty. The method
offersasimple and flexible tool to model any arbitrary relationship present in the data.
Furthermore, this approach is data-driven with minimal assumptions, unlike the tradi-
tion parametric alternatives. The ensemble forecasts provide exceedence probabilities
which are useful to water managers. Results show that the incorporation of large-scale
climate information, specifically the 500mb geopotential height index, provides skill-
ful long lead time forecasts-- particularly in extreme streamflow years. A simple dis-
aggregation method based on the K-NN bootstrap also demonstrates the flexibility and
utility of the proposed approach. The application of these forecasts is demonstrated in
Chapter 4.
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Chapter 4

Decision Support System

A water resources decision support system (DSS) provides important informa-
tion to water managers, lawmakers, and stakeholders and aids in operations, planning,
and policy-making. The extremely complex operations and policies on the Truckee-
Carson river system require the assistance of a DSS. With highly variable flows, mul-
tiple storage reservoirs and diversions, demands typically greater than supply, and
ever-evolving policies, water managers and policy-makers have much to balance in
this basin. Forecasts assist greatly with planning and management, however, after the
issuance of aforecast, water managers and policy-makers must determine how to best
operate the system given the predicted flow values. DSSs provide the ability to model
various flow and policy scenarios to help water managers with operational decision-
making in the basin. This chapter describes the DSS currently under development for
the Truckee-Carson basin, discusses the application of forecasts in that DSS, and then
presents results from a smplified seasonal model developed in this study to test the
utility of the forecasts from Chapter 3.

4.1 Truckee- Carson Decision Support System (DSS)
A flexible water resources modeling framework for the Truckee Carson river

system is currently under development. USBR managers, partners and stakeholdersin

the Truckee Carson river basin require this type of DSS to address the complex and
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rapidly evolving water resources issues in the basin. The USBR Lahontan Basin Area
Office and the Truckee River Water Master’s Office will use the DSS to make man-
agement decisions as well as to formulate operational strategies to satisfy the ever-
changing legal requirements and multiple purpose water demands of this basin. The
operational capabilities of the model will allow both managers and stakeholders to
make decisions for storage, release and exchange of water. The USBR Lahontan Basin
Area Office has been building the DSS in collaboration with partners from the USBR
Technical Service Center, the US Geological Survey, the Bureau of Indian Affairs, the
Truckee River Operating Agreement planning coordinator, the Fish and Wildlife Ser-
vice and the Pyramid Lake Tribe.

The USBR Lahontan Basin Area Office is developing the Truckee-Carson
DSS using the general-purpose river and reservoir modeling software RiverWare
(Zagona et al., 1998 and 2001). The Truckee RiverWare model simulates the move-
ment of water through the river system using objectsin a graphical user interface. (See
Figure 49 below.) The laws and policies of the river are implemented with rules. These
rules, based on user-defined, prioritized logic, govern simulations of reservoir releases
and diversions throughout the network. The model simulates allocation of water rights
in the basin using the accounting network which tracks the ownership of the water asit
moves through the system. It is thus possible to monitor whether water was released to
meet instream flow targets or for irrigation demands. The rules dictate how much
water to release from each reservoir, which account the water comes from, and where
the water goes. By using different rules to move water through the system, it is possi-

ble to simulate flow patterns using different policies.

4.1.1 Incor por ation of Forecasts

The USBR couples forecasts with the decision support system to formulate

daily operations and seasonal planning in the basin. USBR natural flow forecasts of
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Figure 49: Screenshot of Truckee River Ware model
seasonal (April to July) runoff volume are used as model inputs at the top of the basin
and represent the inflow to the top most reservoirs. The Truckee RiverWare model first
spatialy disaggregates the forecast for Farad gage to represent the inflow to the vari-
ous top most reservoirs upstream. Modeling on the Carson River begins at Ft.
Churchill, thus no spatial disaggregation is necessary. Next, the model disaggregates
the seasonal volume into daily values using a “similar years analysis.” Similar years
analysis finds years in the historical record with seasonal flow volumes closest to the
current year and applies the associated daily streamflow values in those years to make
atimeseries for the current year. Finaly, the model takes the daily natural streamflow
and implements the policies and operations in the basin to simulate the actual water in
the river at any location on any day of the season.

The Truckee RiverWare model simulates three time periods throughout the
year: January to March, April to July, and August to December. Because the bulk of

the annual streamflow comes from the spring runoff, the April to July forecast domi-
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nates most of the operations throughout the year. The April to July natural streamflow
forecast directs much of the flood control procedures during the January to March
period. For example, forecasts predicting an above average spring runoff will result in
larger reservoir drawdowns during the first period of the year, and vice-versa for a
drought prediction. The spring forecasts affect the April to July operation period
because the bulk of the water moving into and through the system comes in this time
period. Managers aim to meet storage targets on Lahontan Reservoir during this period
to gear up for the irrigation season. Because very little water enters the system after
July, the August to December time period releases storage water built up during the
April to July period. In thisway, the April to July forecast and observed spring runoff
affect operations in the basin throughout the year. Forecasts issued for the January to
March and August to December time periods are necessary as inputs to the model,
though the accuracy of these forecasts is not nearly as critical as the accuracy of the
April to July forecast.

In January each year the USBR Lahontan Basin Area Office issues the April to
July forecast for all interested parties in the basin. Irrigators in the Newlands project
use thisinformation to determine their projected demand for the irrigation season. U.S.
Fish and Wildlife Service (FWS) representatives use the forecast to establish the feasi-
bility of a fish spawning run and to schedule Water Quality Credit Water (WQCW)
releases for spawning or to combat low flows. Based on projected demands and fore-
casted inputs, the USBR runs the Truckee RiverWare model to simulate operations for
the entire calendar year. As forecasters update the April to July forecast, the model is
run again to simulate operations in the system for the remainder of the year. The
USBR uses updated forecasts at the beginning of March and April and then throughout
the April to July period. The April 1% issued forecast is particularly important as man-
gers use these values to set target storages on Lahontan and to set guidelines for opera-

tions throughout the runoff season. The FWS uses the updated forecasts, too, in setting
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arelease schedule of WQCW from Stampede reservoir. As very little water comes in
the August to December period, forecasters do not update this forecast as regularly.
Modelers use new initial conditions (e.g., initial reservoir storage values) as model

input at the begin of each new run.

4.1.2 Incor por ation of Laws and Policies

The Truckee RiverWare ruleset mimics the laws and policies of the basin.
These rules are written in the form of prioritized logic to govern the movement of the
forecasted inflow values throughout the system. Flood control algorithms, minimum
flow requirements for fish, and allowable diversions for agriculture are examples of
rulesimplemented in the Truckee RiverWare model. Because the policies and laws are
expressed as dynamic data (rather than compiled in the model code), managers and
policy-makers can easily turn different rules on or off to test the outcome of different
policies. In this way, managers and policy-makers can determine the potential impacts

of pending laws and policies to help in decision-making.

4.1.3 Incor por ation of Physical Mechanisms

The Truckee RiverWare model simulates the physical movement of water
through the system using standard hydrologic and hydraulic principles. USBR engi-
neers can select different algorithms to simulate these processes based on available
data and the level of detail desired. For example, routing through areach can be simu-
lated using time-lag, impulse response, muskingum, muskingum-cunge, kinematic
wave or storage routing routines. Other selectable algorithms include power genera-
tion, tailwater calculation, evaporation and seepage. By modeling the hydrologic and
hydraulic mechanismsin the system, the Truckee RiverWare model aims to accurately
simulate the total amount of water moving through the system at any place and any

time during the ssmulation run.



4.1.4 Incor por ation of Water Rights

The Truckee RiverWare model tracks the legal ownership of water through the
water accounting system. The accounting System uses reservoir storage accounts and
flow and diversion accounts to smulate water rights, accruas, carryovers and
exchanges. The Truckee RiverWare model, for example, tracks how much reservoir
storage water belongs to irrigators and how much belongs to fish. The model also
tracks who releases are made for. Because water rights drive many of the policies in
the basin, account data is first assessed to determine the operating rules driving the

simulation.

4.2 Seasonal Operations Model

Because the Truckee RiverWare model is not yet fully operational, we develop
a simplified seasonal operations model to test the utility of the forecast results from
Chapter 3. The seasonal model incorporates scaled down versions of the major polices
and physical structures in the lower Truckee-Carson river system. Primarily, we test
the forecasts' influence on diversions through the Truckee Canal and the resulting
water available for irrigation and fish. The model operates on a seasonal timescale,
and thus does not account for daily operations. To understand the forecasts' influence
on daily operations and feedback mechanisms throughout the entire system, we will
couple ensemble forecasts with the full Truckee RiverWare model at alater date.

The simplified model, written in the S-plus coding language, takes output from
the forecasting model and simulates seasonal policies on the ensemble forecasts. (See
Appendix D “Seasonal Operations Model Code” for the policy code.) We analyze
three important decision variables. Lahontan Storage Available for Irrigation, Truckee
River Water Available for Fish, and the Truckee Canal Diversion. These decision vari-
ables are important in both seasonal operations and daily operations. Though the sea-

sonal model does not simulate daily operations, its results provide insight to the
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necessary daily operations throughout the season. For example, if seasonal model
results indicate a high probability of maximizing the total allowed diversion through
the Truckee Canal, daily operations will need to start diversions at full canal capacity
the first day of the season. Similarly, if the model results show a high probability of
minimal diversions through the canal, daily diversions should be small in the begin-

ning of the season to avoid diverting too much water through the one-way canal.

4.2.5 Decision Variables
4.2.5.1 Lahontan Storage Available for Irrigation

Farmers and project managers in the Newlands Project farming district need to
know the Lahontan storage available for irrigation before the runoff season starts.
Farmers need this information to help establish the size and type of crops they will
plant. The new OCAP require that Truckee Carson Irrigation District (TCID) farmers
estimate their demands for the coming growing season and then irrigate at a minimum
of 68.4% efficiency on that projected demand. If the district does not meet this effi-
ciency standard, the water available for irrigation can be reduced in the coming irriga-
tion season. For this reason, farmers really need to know the Lahontan storage
available for irrigation before the runoff season begins. TCID project managers, who
currently operate Lahontan Dam under a temporary contract with the USBR, utilize

the projected storage information to establish a release schedule from the dam.

4.2.5.2 Truckee Canal Diversion
Water managers (including TCID and the USBR) use projected Truckee Canal

diversion information to establish a diversion schedule and inform interested parties of
the schedule. Water managers shape the diversion schedule to pass the total projected
allowable diversion throughout the entire season. The diversion schedule must con-

sider the 900 cfs canal capacity as well as constraints in diversions during the warm
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months of July and August when endangered fish are particularly threatened by low

flows in the Truckee River and canal diversions must averages less than 20 cfs.

4.2.5.3 Truckee River Water Available for Fish
The FWS and the Pyramid Lake Paiute Tribe (PLPT) use the projected water

remaining in the Truckee River to determine the possibility of making afish run or the
need to release Stampede water to combat low flows. If the projected water remaining
in the Truckee River is particularly high, FWS will plan a fish spawning run in the
coming season. If model results project dangerously low flows, FWS will release
WQCW stored in Stampede Reservoir to protect the endangered cui-ui and threatened

Lahontan cutthroat trout.

4.2.6 Operational Policies Implemented in Simplified Model

We implement the dominant OCAP policies in a seasonal framework by first
streamlining them to work on a seasonal timestep. In reality, the policies are much too
complicated to be fully represented in a simple seasonal model; thisis why the USBR
has invested so many resources to build the Truckee RiverWare model. Several poli-
cies, such asthose related to projected irrigation demands, require additional datafrom
farmers to exactly reflect implemented procedures. Other polices, such as diversions
through the Truckee Canal, have nuances that require modeling on a daily timestep.
Nevertheless, the seasonal model, even with the streamlined policies, provides valu-
ableresultsfor analyzing forecasts’ impact on decision making and avail able water for
fish and irrigation.

The policies, asimplemented in the seasonal model, are described below:

» Water use from the Carson River is maximized before diversions from
the Truckee are made.
* Diversion through the Truckee Canal cannot exceed 164 kaf.

* Target storages on Lahontan Reservoir are based on projected April-July
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runoff volume for both the Truckee and Carson Rivers as measured at
Farad and Ft. Churchill gages, respectively. Thetarget is set at 2/3 the
total projected spring runoff for the year.

» The minimum Lahontan storage target is based on average historical
flows and demands in the basin. The minimum target is set as 1/3 of
average historical spring runoff.

We make several assumptions to streamline the policy in the seasonal model.
These assumptions include:

« All water available for irrigation is used in the same season and does not
carry over to the next irrigation season.

« All water diverted into the Truckee Canal at Derby Dam reaches L ahon-
tan Reservoir. (In reality, there are diversions and seepage along the
canal-- amounting to approximately 25% of the water originally enter-
ing the canal.)

* Diversions before Lahontan Reservoir and Derby Dam are neglected
(i.e., the simplified policies are implemented on the total forecasted
flow).

These ssimplified policies and assumptions do not exactly match reality, how-
ever considering the significant simplifications, model results are surprisingly close to
observed values. For example, the average annua water avialable for irriagtion in the
Newlands Project is 296kaf; model results show an average of 277kaf. Though the
simplified policy model does not exactly match reality, it is good enough to be used as
atool to analyze the forecasts' impact on the three decision variables discussed above.
Several specific differences between actual basin policy and the simplified policy
implemented in this model should be discussed. First, though OCAP allows annual
Truckee Canal diversions of up to 288kaf, in practice policies based on actual irrigated

acerage limit the April to July diversions to a value closer to 164kaf. Similarly, pro-

88



jected irrigated acerage is used together with the seasonal forecast to set Lahontan
storage targets. Because this irrigation data is not available to us, we set the target

based on the forecasts only.

4.2.7 Model Testing

To test seasonal operations and the utility of the forecast in any given year, we
run each of the 100 forecasted ensemble members through the seasona operations
model. The model’s output comes in the form of PDFs for the three decision variables
discussed above. Exceedence probabilities of various threshold values can be calcu-
lated for each of the variablesto assist in decision making. For example, fish biologists
have suggested that cui-ui and Lahontan cutthroat trout need 250 cfs of water in the
lower Truckee River to survive. A 50% probability of exceeding 60.5 kaf (250 cfs)
would aert FWS to plan Stampede rel eases to augment the low flows. For validation,
we aso simulate operations on the observed values for spring runoff in each year. A
comparison between model results from observed runoff and model results from fore-
casted runoff validates the forecasts' impact on the decision variables. We do not com-
pare the actual observed values of the decision variables because the assumptions in
the seasonal model preclude adirect comparison. The intent behind the simplified sea-
sonal model is not to provide a working decision support system, but rather to demon-
strate the utility of including forecast information in a decision support system. For
forecasting comparison, we simulate a climatological forecast by bootstrapping the
historical data 100 times and then run this ensemble forecast through the seasonal

operations model.

4.2.8 Resaults

Figure 50 presents the seasona operations model results for observed runoff
values versus the median of the model results from the ensemble forecast. We examine

each of the decision variables; the simulated values using the observed runoff value
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(i.e., aperfect forecast) and the values using the ensembl e forecasts generated in Chap-
ter 3. Each point in the scatter plot represents the median of the model’s output in each

year.
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Figure 50: Seasonal operations model decision variables: (a) L ahontan storage
water availablefor irrigation (b) Truckee Canal diversion, and (c) water remain-
ing in the Truckee River availablefor fish. The scatter plots comparethe median
of the model’s output based on the ensemble forecast with the model’s output
based on the observed runoff value for that year. Each point represents data for
one year.

Correlation values between the perfect forecast model results and median of
ensemble forecast model results are 0.90 for the Lahontan storage available for irriga-
tion, 0.80 for the Truckee Cana diversion, and 0.93 for Truckee River water available
for fish. These results indicate that operations based on the forecasted runoff ensemble
are quite similar to what operations would be given a perfect forecast. Though the skill
of the runoff forecast certainly plays an important role in this comparison, flow thresh-
olds and the overal flexibility in operations also affect the model results. It isimpor-
tant to test the streamflow forecast in an operations model to determine how well
streamflow forecast skill trandlates to skill in predicting the values of key decision
variables.

Figure 51 presentsthe seasonal operations model results based on the fall fore-
cast. Correlation coefficients are 0.37 for irrigation water, 0.30 for the diversion, and

0.32 for fish water. Using the standard t-test comparison, these results illustrate posi-
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Figure51: Fall forecast seasonal operations model decision variables. (a) Lahon-
tan storage water available for irrigation (b) Truckee Canal diversion, and (c)
water remaining in the Truckee River availablefor fish. The scatter plots com-
pare the median of the model’s output based on the ensemble forecast with the
model’s output based on the observed runoff value for that year. Each point rep-
resents data for oneyear.

tive skill in simulating the decision variables even as early as fall. Though the skill
using the fall forecast is much poorer than that for the April 1% forecast, model simula-
tions using the fall forecast will at least provide some information as to whether these
decision variables will be above norma or below normal. The usefulness of using a
fall forecast isthat it provides water managers with an early look at whether the com-
ing water season will be extremely wet or dry so they can start planning.

The remaining results of the seasonal operations model are presented in the
form of PDFs. We present five plots for each year of analysis: Truckee River spring
runoff, Carson River spring runoff, Lahontan Storage Available for Irrigation, Truckee
Water Available for Fish, and Truckee Canal Diversion. Each plot contains a PDF rep-
resenting historical observed data (the dashed line), a PDF for the ensemble forecast
generated in Chapter 3 (the solid line), a solid circle illustrating results using the
observed runoff values, and an open circleillustrating results using the NRCS forecast.
We present the Truckee and Carson spring runoff PDFsto assist in the analysis of how
the skill of the forecast in each river affects the skill in capturing the various decision

variables.
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Figure 52 presents seasona operations model results for a below average
streamflow year: 1992. For al decision variables, the PDF representing the ensemble
forecast shifts away from the climatological PDF to better capture what would have
occurred given a perfect forecast. These results demonstrate that utilizing the ensem-
ble forecast provides water managers with an accurate representation of the decision
variables for the coming season. Comparison with the NRCS forecast model results

illustrates that in 1992 both the NRCS forecast and the forecast from this research do
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Figure 52: Seasonal Operations Model Results: 1992. Truckee River spring run-
off (a), Carson River spring runoff (b), Lahontan storage available for irrigation
(), Truckee Canal diversion (d), and Truckee River water available for fish (e).
The solid line represents model results based on ensemble forecasts and the
dashed line represents mode results based on a climatological forecast. The solid
circleillustratesmodel resultsusing the observed runoff value and the open circle
showstheresultsusing the NRCS forecasted value.
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agood job in capturing the decision variables. The real benefit of using the ensemble
forecasts of this research (rather than the single NRCS forecasted value) comes from
the resulting PDFs. Exceedence probabilities obtained from these PDFs will further
assist in decision-making. For example, there is a 49% probability that Truckee River
water remaining for fish will exceed 60.5 kaf (250 cfs). This probability suggests that
flows will likely be close to this threshold value, alerting FWS that they may need to
release water quality credit water in the hot summer days. For comparison, using
model output of historical streamflow data presents a 85% probability of exceeding
the low flow threshold value. Irrigation water available to the Newlands Project farm-
ing district averages 296 kaf per year. Model results show a 2% percent chance of
exceeding this value in 1992, indicating to farmers that they may need to reduce their
planting this year or use low water crops. By comparison, model output of historical
streamflow data presents a 50% chance of exceeding this average value. Model results
show the most likely (50th percentile) Truckee Canal diversion is 57 kaf, with a 19%
chance of the diversions exceeding 100 kaf. Water managers can utilize this informa-
tion in setting the daily diversion schedule in the Truckee Canal.

Figure 53 demonstrates model results in relatively norma streamflow year:
2003. Asin the below normal streamflow example of Figure 52, the PDFs represent-
ing the ensemble forecast provide water managers with an accurate representation of
the decision variables the coming season. The NRCS results and the results from the
ensemble forecast are quite similar in 2003, as well. Analysis of the fish water PDF
reveals a 100% exceedence probability for the low flow threshold value of 60.5 kaf
(250 cfs). This means that out of 100 smulations, not one value fell below 60.5 cfs.
Though FWS will likely monitor the situation throughout the season, this exceedence
probability alows them the rest much easier regarding low flows. Model output from
historical streamflow data, by comparison suggests a higher probability (15%) of hav-
ing to release WQCW. Model results show a 6% chance of exceeding the historical
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Figure 53: Seasonal Operations Model Results: 2003. Truckee River spring run-
off (a), Carson River spring runoff (b), Lahontan storage available for irrigation
(), Truckee Canal diversion (d), and Truckee River water available for fish (g).
The solid line represents model results based on ensemble forecasts and the
dashed linerepresents model results based on a climatological forecast. The solid
circleillustratesmodel resultsusing the observed runoff value and the open circle
showstheresultsusing the NRCS forecasted value.

average of 296 kaf available for irrigation. The 50th percentile is 209 kaf, indicating to
farmers that though it will not be a wet year, drought precautions are not necessary.
The most probable Truckee Canal diversion is 94 kaf.

Figure 54 demonstrates results for an above average streamflow year: 1993. In
this year, the model results from the ensemble forecast are much better than the NRCS

forecast results-- particularly when determining irrigation water and fish water. Model
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Figure 54: Seasonal Operations Model Results: 1993. Truckee River spring run-
off (a), Carson River spring runoff (b), Lahontan storage available for irrigation
(), Truckee Canal diversion (d), and Truckee River water available for fish (e).
The solid line represents model results based on ensemble forecasts and the
dashed line represents mode results based on a climatological forecast. The solid
circleillustratesmodel resultsusing the obser ved runoff value and the open circle
showstheresults using the NRCS forecasted value.

results of the ensemble forecast show a 100% chance of exceeding the 60.5 low-flow
threshold for fish in the lower Truckee River. In fact, the most probable value is 267
kaf, suggesting to FWS that it is an excellent year to schedule a fish spawning run.
Lahontan storage available for irrigation shows a 100% chance of exceeding the 296
average value. TCID farmers can plan on having plenty of irrigation water for thisyear

and will likely consider carryover storage in Lahontan. The PDF for the Truckee Canal
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diversions is very tight next to 164 kaf--the maximum allowable diversions. Water
managers should use this information to schedule diversions at full canal capacity

starting from the beginning of the season.

4.3 Summary and Conclusions

While seasonal forecasts help water managers to determine the volume of
water available in the coming season, the daily operations on how that water will be
divided up to comply with laws and policiesin the basin, as well as seasonal and long-
term planning strategies, still remains as alarge task. DSSs, such as the Truckee River-
Ware model, utilize forecasts to determine reservoir releases and diversions through-
out the system by modeling the physical river network together with the policies
governing operations in the basin. For this study, we develop a simplified seasonal
operations model to test the utility of the forecast in different years. Model results for
normal, above normal, and below normal streamflow years demonstrate that utilizing
the ensembl e forecasts from Chapter 3 in a decision support system framework pro-
vides water managers with valuable information regarding decision variables in the

coming season.
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Chapter 5

Conclusions and Recommendations

This section summarizes and concludes this thesis. We review the motivation
and original goals of this research, summarize the final results, and draw conclusions
from these results. We also make recommendations for future work that will improve

and extend this study.

5.1 Summary
Asin other western U.S. river basins, water managers of the Truckee and Car-

son rivers must plan carefully to meet the many demands on water quality, volume,
timing and flow rates. Operations on these rivers are particularly complex due to mul-
tiple storage reservoirs and diversions as well as the many policies and laws. An
important feature in the Truckee-Carson river system is the Truckee Canal, which typ-
icaly diverts over 1/3 of the annual Truckee River flow to the Carson River basin for
use in the Newlands Project irrigation district. Resulting low flows and shallow depths
in Truckee River below this diversion have inhibited the spawning and survival of the
threatened Lahontan cutthroat trout and the endangered cui-ui. The hydrology of the
basins adds to the complexity in operations and management. Snowmelt from the
Sierra Nevada mountains is virtually the only water source for the agricultural, munic-
ipal, and industrial development of the arid lower basin. Water managers must under-

stand the interannual and interseasonal variability of flowsin the Truckee and Carson
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rivers to enable the sustainment of development in this western Nevadan basin. The
USBR utilizes forecasts of the spring runoff to help with operations and planning on
the rivers. Current forecasting techniques, however, are not skillful enough and do not
provide enough |ead-time to optimize management effectiveness.

In this study, we set out to develop a seasonal forecasting model to assist with
water resources decision making in the Truckee-Carson river system. We investigate
the use of large-scale climate information as a spring runoff predictor to improve the
skill and lead-time of the forecasts. We use nonparametric stochastic forecasting tech-
niques to provide ensemble forecasts which can aid in decision making by providing
exceedence probabilities. We set out to demonstrate the utility of the improved fore-
cast by coupling them with the DSS and analyzing different important decision vari-
ables.

There is growing evidence that large-scale atmospheric circulation patterns
affect the hydroclimate in the western United States. In this study, we conduct our own
analysis to determine the prominent patterns that affect the hydroclimate in the Truc-
kee and Carson basins. Correlation analysis results show that winter large-scale ocean-
atmospheric patterns over the Pacific Ocean strongly modulate the year to year varia-
tions of spring runoff in the basins. Particularly, 500mb geopotential height and SST
demonstrate a strong relationship with the spring runoff. The persistence of these cir-
culation patterns back to fall enhances the prospect of alonger-lead forecast. Compos-
ite analysis results provide the physical explanation of the pressure-streamflow
relationship. Based on our analysis we develop climate indices to be applied in afore-
casting mode.

We develop a nonparametric stochastic forecasting model to predict the April
to July streamflows in the Truckee and Carson rivers. The nonparametric approach is
assumption free and can capture nonlinearities as well as linear dependencies in the

data. Results show that the incorporation of large-scale climate information improves
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the skill and lead time of the forecast. The resulting ensemble forecasts provide
exceedence probabilities which can aid in water resources decision making. We also
demonstrate the ability to use the modified K-NN technique to disaggregate seasonal
volumes into monthly values. The true application of these forecasts comes in cou-
pling them with a decision support system.

Water managers in the Truckee Carson river basin are currently developing a
decision support system to aid in operations and planning in the basin. The Truckee
RiverWare model utilizes forecasts to drive simulations of the physical mechanisms,
policies, and water rights in the Truckee-Carson river system. For this study, we
develop asimplified seasonal operations model to test the utility of the forecast in dif-
ferent years. Model results for normal, above normal, and below normal streamflow
years demonstrate that utilizing the ensemble forecasts from Chapter 3 in a decision
support system framework provides water managers with valuable information regard-

ing water available for irrigation and fish in the coming season.

5.2 Conclusions
This research demonstrates that incorporating large-scale climate information

in forecasting can produce better, longer lead-time forecasts. Results show that the sto-
chastic forecasting technique has the added benefit of providing exceedence probabili-
ties for various seasona flow values. The improved forecasts facilitate efficient
seasonal planing and management in the complex Truckee-Carson River Basin.
Though the process of incorporating large-scale climate information into water
resources decision making is applied to the Truckee-Carson river system in this study,
the approach is quite flexible and can be extended to other basins throughout the west-

ern US.
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5.3 Recommendations for Future Work
Many areas of this research warrant further research and analysis. We present

several issues that should be addressed to complete this study as well as possibilities

for extending the techniques of this research to new realms.

5.3.1 Coupling ensemble forecasts with the Truckee River Ware model

The ensemble forecasts generated from this research need to be coupled with
the Truckee RiverWare model after its completion. Thisfinal step of the study plays an
integra role in determining the utility of the ensemble forecasts to water resources
decision making in the basin. Results from the smplified seasonal policy model dem-
onstrate that the forecasts provide important information which can be applied to oper-
ations and management. However, the full RiverWare model must be tested to
determine the exact impact forecasts have on the multiple decision variables in the
basin. Using the Truckee RiverWare model will not only allow for daily analysis of all
the policies in the entire basin, it will aso include the tracking of water rights. The
forecasts presumably affect many other decision variables not addressed in the ssimpli-
fied model. Other impacts to analyze in the full DSS include the forecasts' impact on
flood control and water rights. The utility of passing entire ensemble forecast through
the Truckee RiverWare model, rather than utilizing current methods which only pass

the expected value and the 301 and 70" percentiles, should also be explored.

5.3.2 Tempor al disaggregation

Further work on developing a temporal disaggregation scheme should be
investigated. The temporal disaggreation of the forecasted April to July runoff plays
an important role in model simulations. The Truckee RiverWare model requires both
daily and monthly streamflow values during the April to July period. Daily values are
used as input to drive the ssimulations in the operations model. Monthly values drive

the rules that set target storages on Lahontan Reservoir.
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Preliminary results of using the modified K-NN technique to disaggregate the
seasonal runoff to monthly values are encouraging. This application of the technique
requires more testing and validation.

The Truckee RiverWare model currently usesa“similar years analysis’ to dis-
aggregate the total seasona volume into daily values. It would be interesting to test
whether the nonparametric techniques of the modified K-NN method improve the skill

of the daily disaggregation.

5.3.3 Forecast | mprovements

Streamflow forecasting is not an exact science. Researchers in the field utilize
many different techniques that may or may not improve forecasting skill in a given
basin. Results from the techniques presented in this study show good forecast skill.
However, given that water managers in the Truckee-Carson basin rely heavily upon
the spring forecast, any improvement in forecast skill would have pronounced effects
throughout the basin.

Improving the predictor selection criteria for the modified K-NN model could
possibly increase forecast skill. This study uses correlation analysis and significance
tests to determine valid statistical relationships. The composite analysis establishes the
physical mechanisms relating various predictors to streamflows in the Truckee and
Carson rivers. A more objective criteria could be used to sort through an entire suite of
predictors to determine the best set. Methods similar to general cross validation, but
applicable in nonlinear models, are available for this purpose.

The potential of issuing ajoint forecast to increase forecast skill could also be
explored. This study issued forecasts separately for the Truckee River and for the Car-
son River, relying on the forecasters knowledge that the two rivers are highly corre-
lated. Forecasting the Truckee and Carson jointly may better capture the covariance

between therivers.
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As aways, the skill of the forecast depends heavily on data quantity and qual-
ity. Longer data sets typically provide better model fitting and, hence, forecasting skill.
Data sets extending further back than 1949 would likely increase forecasting skill.
More accurate SWE data, particularly in the Carson basin, will also improve forecast-

ing results. Other methods of cal culating basin-wide SWE could also be explored.

5.3.4 Comparisons with a statistical-physical forecasting model

This study could be extended to compare results from a the statistical model
presented in this thesis with a statistical-physical model. The statistical-physical model
would couple a stochastic weather generator with the existing physically-based Truc-
kee PRM S model. The weather generator produces ensembles of possible weather sce-
narios (e.g., precipitation and temperature) using past data. The Truckee PRM S model
will use the weather ensembles as input to generate traces of possible runoff scenarios.
The skill of the statistical-physical model should be compared to the skill of the fore-
casting model presented in this study. The ensemble forecasts from both models
should be coupled with the DSS to compare their impacts on decision variables in the

basin.
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Appendix A

Operating Palicy in the Basin

The Truckee-Carson River System is highly regulated and litigated. Over the
past century there have been a number of laws, regulations, court cases, and decrees
that affect basin operations. Typically, new agreements or laws incorporate the previ-
ous policy, so many of the original policies are still in force today. This section briefly
describes the river operations of the past, the present and future. A description of the

major policies and laws can be found in Appendix B, “Description of Select Laws’.

A.1Historic and current policy
As in most river basins, flood control is the highest priority operation in the

Truckee and Carson River Basins. Except for Lake Tahoe, Donner Lake, and Indepen-
dence Lake, the reservoirs are operated in accordance with the U.S. Army Corps of
Engineersflood control regulations to prevent flooding downstream.

After flood control, the main operating policy isthe Floriston rates. The Floris-
ton rates, which were originally established in 1908 and later reaffirmed in the 1944
Orr Ditch Decree, are a set of flow rates that must be met at the Farad USGS gage near
the town of Floriston on the border of California and Nevada. These rates vary
between 300 and 500 cfs based on the level of Lake Tahoe and the time of year. Oper-
ating procedures meet the Floriston rates first by using unregulated flows, then by

release storage water from Boca, Prosser, and Tahoe. Municipal, industrial, and agri-
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culture interests downstream all use the water released for Floriston rates.

Donner Lake and Independence Lake are privately owned. The Sierra Pacific
Power Company owns all of the storage rights in Independence Lake and half of the
storage rightsin Donner Lake. TCID owns the other half of the storage rightsin Don-
ner Lake. These private entities can schedule releases to use the water they have in
storage for municipal, agricultural and industrial purposes. Although these lakes are
private, their storage rights do not have higher priority than the Floriston rates; they
can only store water when the Floriston rates are met.

Stampede Reservoir was originally constructed to supplement agriculture and
municipal water. In 1982, the Stampede Reservoir Judgement decreed all of the water
and storage in Stampede to the protection of the endangered cui-ui and threatened
Lahontan cutthroat trout. The FWS and Pyramid Lake Paiute Tribe schedule releases
based on the projected need to supplement flows for the spawning or survival of these
species. Spawning runs are scheduled based on storage values, forecasted flows, and
time since the last run. In spawning run years, FWS and the Pyramid Lake Paiute Tribe
schedule releases from Stampede to try to meet the following flow targets at Pyramid
Lake: January 90cfs, February 120cfs, March 190cfs, April 570cfs, May 1000cfs, June
50cfs (Berris 2001). Because of its more recent construction and therefore junior
water rights, Stampede rarely fills completely.

The Truckee Canal diverts Truckee River water into the Carson River Basin for
use in the Newlands Project irrigation district. Diversion criteria, as defined by OCAPR,
are based on forecasted flows on the Carson River and project land that is actually irri-
gated.

In the upper basin, the Tahoe-Prosser Exchange Agreement helps maintain
instream flows below Tahoe Dam by allowing exchanges between Tahoe and Prosser
Reservoirs. With the exchange agreement, Tahoe can release water to keep a live

stream below the dam even though releases are not required. Meanwhile, Prosser can
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store inflows which would otherwise have been released. In this way, Prosser stores
some of Tahoe's water-- this is known as an exchange. Exchanges like this also exist

between Boca and Donner Reservoirs. These exchanges add flexibility to the system.

A.2 Future policy affecting the Basin

Past policies and procedures will affect how the river operates in the future.
The new Truckee River Operating Agreement, if agreed on, will regulate the river in
the future while still incorporating many of the past laws and policy. In particular, Flo-
riston rates will still be the main operations goal but those entitled to use Floriston rate
water could store some of their water for specific purposes later. The stored water will
later be released only to benefit the purpose for which it was stored. (Truckee River
Operating Agreement DEIS/DEIR 1998). Another change in TROA is the condition
in which stored water can be exchanged with scheduled releases to make operations
more flexible for multiple purposes. The new TROA will aso alow Floriston rates to

be reduced to store WQCW even when cui-ui are not spawning.

111



Appendix B

Description of Select Laws

Thefollowing is a description of some of the major lawsin the Truckee-Carson
River System. See the Truckee River Chronology (Horton, 1995), the Truckee River
Atlas (Horton, 1995), and the Carson River Chronology (Horton, 1996) for a full

description of history and laws in the basins.

B.1 Floriston Rates
The Floriston rates were established in 1908 as an agreement between the Flo-

riston Paper Company and the Truckee River Genera Electric Company. This agree-
ment established mean instream flows of 500cfs between March 1 and September 30
and 400cfs for the rest of the year as measured at Floriston, CA. The Truckee River
Genera Electric Decree of 1915 and the Truckee River Agreement of 1935 amended
the Floriston rates to allow for reduced rates based on the level of Lake Tahoe.
Between November 1 and March 31, Floriston rates were 350cfs whenever Lake
Tahoe was below 6225.0 ft. AMSL and 300 cfs whenever Lake Tahoe fell below
6225.25 ft. Unregulated flow, Tahoe releases, and Boca releases (once it was built)
were used to meet these flow requirements. To this day, the reservoirs must be oper-

ated such that the Floriston rates are met. (Horton 1995)

B.2 Truckee River Agreement
The Truckee River Agreement (TRA) of 1935 enacted a contract among the

federal government, Sierra Pacific Power Company, TCID, and Washoe County Water
Conservation District. This agreement reaffirmed the Floriston rates and established

rules regarding the use of Lake Tahoe water. The agreement set the natural rim of Lake
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Tahoe at 6223.0 ft. AMSL allowing 6.1 feet of storage depth in the lake. This agree-
ment, in conjunction with the Truckee Storage Project, confirmed the need for the con-

struction of Boca Reservoir on the Little Truckee River. (Horton 1995)

B.3 Orr Ditch Decree
The Orr Ditch Decree of 1944 incorporated the provisions of the TRA and

delineated Truckee River water rights. In general, the decree established that the Pyra-
mid Lake Paiute Indian Tribe had the most senior water rights to irrigate land. The
Decree next permitted the Newlands project to divert up to 1500 cfs through the Truc-
kee Canal. The Sierra Pacific Power Company was given the next water rights for

municipal, domestic, and industrial purposes.

B.4 Tahoe -Prosser Exchange Agreement
The Tahoe-Prosser Exchange Agreement of 1959 maintains flows directly

downstream of Lake Tahoe during periods when releases from Lake Tahoe are unnec-
essary to meet Floriston rates. This agreement allowed an equal amount of water
released from Tahoe to be stored in Prosser thereby exchanging water between the two

reservoirs.

B.5 Newlands Project Operating Criteria and Procedures (OCAP)
Newlands Project OCAPR, originally established in 1967, regulate the diver-

sions from the Truckee River to the Newlands Project via the Truckee Canal. The pri-
mary objective is to maximize use of Carson River water and minimize diversions
from the Truckee River. In 1997, the Secretary of the Interior adjusted the 1988 OCAP
to make the Newlands Project less dependent on Truckee River water and to increase

the Newlands project water use efficiency.

B.6 Sampede Reser voir Judgement
In 1982, the federa Ninth Circuit Court ruled in Carson-Truckee Water Con-
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servation District v. Watt that all water in Stampede Reservoir be used for threatened
and endangered fish in Pyramid Lake until those species are no longer on the Endan-
gered Species List. FWS and the Pyramid Lake fisheries establish the release sched-

ules to protect these listed species.

B.7 Preliminary Settlement Act
The Preliminary Settlement Act of 1989, negotiated between Pyramid Lake

Paiute Tribe and Sierra Pacific Power Company (SPPCo), provided 39,500 acre-feet
of storage rights to SPPCo when not needed for M&| uses. Excess water in storage
could be used for fishery purposes and SPPCo gave up its right to single use hydro-

power flows. This act allowed for the storage of water to be used for spawning.

B.8 Negotiated Settlement Act: P.L. 101-618
The Negotiated Settlement Act (PL. 101-618) provided legisation to settle

many of the outstanding court cases and disputes over water rights in the Truckee
River Basin. The Act provided for protection of wetlands, recovery of endangered and
threatened fish, improved management of the Newlands project, settlement of Fallon
Pai ute-Shoshone and Pyramid Lake Paiute Tribe water issues, and apportionment of
interstate water. The act incorporated the conditions set in the Preliminary Settlement
Agreement but declared that the act is not effective until a new operating agreement is

negotiated and ratified.

B.9 Water Quality Settlement Agreement
In 1996, the U.S. Department of Justice, Environmental Protection Agency,

Department of the Interior, Nevada Department of Environment Protection, Washoe
County, Reno, Sparks and the Pyramid Lake Paiute Tribe all signed the Truckee River
Water Quality Settlement Agreement. This agreement set up a program to improve
Truckee River water quality downstream of Reno by augmenting river flows during

low flow periods. The Federal government and Washoe County have each agreed to
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purchase $12 million worth of water rights explicitly for water quality purposes. This
water quality credit water (WQCW) is to be stored in the federally controlled reser-

voirs and released by decision of acommittee.

B.10 Truckee River Operating Agreement
The Truckee River Operating Agreement is a negotiated settlement involving

all of major entities in the Truckee River Basin. As of November 2003, the agreement
has not been approved and is still under negotiations. In general, the agreement will
coordinate reservoir releases and storage, improve exchange of stored water, improve
efficiency of water and storage space, improve the accounting procedures to track

water, and set up the Interstate Allocation.

B.11 Water Rights Acquisition Program (WRAP)
Public Law 101-618 provides for a program to acquire water rights to preserve

and enhance wetlands in Lahontan Valley. As a result, the Water Rights Acquisition
Program (WRAP) will acquire approximately 75,000 acre-feet of water to help pre-
serve 25,000 acres of wetland in the Stillwater National Wildlife Refuge and Stillwater
Wildlife Management Area. Most of this water will come from the Carson Division of
the Newlands Project but some of the water could be diverted from the Truckee River

viathe Truckee Canal.

115



Appendix C

Glossary

Following is a glossary of important acronyms and terms used in this thesis.
Cui-ui
The cui-ui is an endangered sucker fish that livesin Pyramid Lake and swims
up the Truckee River to spawn. Low flows in the Truckee River below Derby
Dam have threatened its survival.
DSS
A decision Support System (DSS) is atool used by water resources managers
to evaluate operations and policy alternatives.
Exceedence probability
The probability of exceeding a certain threshold flow value.
ENSO
El Nino-Southern Oscillation.
FWS
U.S. Fish and Wildlife Service.
Lahontan cutthroat trout
The Lahontan cutthroat trout is a threatened fish that livesin the Truckee River
and Pyramid Lake.
M&l
Municipal and Industrial (M&I) water is a classification of Truckee River
water that is treated and used for domestic or industrial uses.
Natural Flow

The flow that would be present in the river without the effects of human devel-
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opment (e.g., reserviors and diversions).
Newlands Proj ect
Farming district of 65,000 irrigated acres for which Truckee River water is
diverterted through the Truckee Canal.
NRCS
Natural Resources Conservation Service.
OCAP
Operating Criteria and Procedures for the Newlands Project Irrigation district.
PCA
Principal Component Analysis.
PDO
Pacific Decadal Oscillation.
PNA
Pacific/North American climate pattern.
RiverWare
RiverWare is a general purpose river and reservoir modeling tool created by
the Center for Advanced Decision Support for Water and Environmental Sys-

tems at the University of Colorado, Boulder.

SST

Sea Surface Temperature.
SLP

SealLevel Pressure.
SWE

Snow water equivalent. The total water content contained in the snowpack,
reported as a depth. SWE data provides useful information for determining the

amount of water stored as snow.
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TCID

Truckee-Carson Irrigation District. TCID manages all the canals, ditches, dams
and reservoirs for the Newlands Project irrigation district.

USBR

U.S. Bureau of Reclamation.
USGS
U.S. Geologica Survey.
WQCW
Water quality credit water (WQCW) is created from water rights purchased as
part of the WQSA and stored in federally controlled reservairs.
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Appendix D

Modified K-NN Forecasting Code

# 1. Use y-hat from the locfit model

# (fpredicted.loc$fit and cpredicted.locHfit)

# 2. Theresiduals from the locfit model will be used

# (residuals(locf.model), residuals(locc.model))

# 3. Get the distance between the predicted point x values

# andthex valuesfor al pointsin the model (will get the

# Euclidean distance of the normalized values)

# 4. Pick the K (based on heuristic scheme) nearest neighbors

#5. Weight the K nearest neighbors

# 6. The weighted K-NN residuals will then be used in a bootstrap

# SET UP PARAMETERS
x=matrix(scan("predictors.dat"),byrow=T,ncol=9) # all 9 possible predictors

# 1 NCDC Precip

# 2 Geopotential Height

# 3 SST

# 4 Average SWE Marl

#5 Average SWE Aprl

# 6 Truckee SWE Marl

# 7 Truckee SWE Aprl

119



# 8 Carson SWE Marl

#9 Carson SWE Aprl
yfVol=scan("faradNatural.amjj.vol.dat") # y-values (streamflow at farad)
ycVol=scan("churchillNatural .amjj.vol.dat") # y-values (streamflow at
churchill)
#nrcsf=scan("nrcsTruckeeApril") # 1990-2003 NRCS forecasts
#nrcsc=scan("nrcsCarsonApril™) # 1990-2003 NRCS forecasts

const=1948 # the year before the data starts

Xs=(1949-const) # the starting position of the data set (change as needed)
xe=(2003-const) # the ending position of the data set (change as needed)

yp=xe-xst+1 #yp for the number of yearsto predict at-- predict each year

xx=scale(x) # normalize the data (so higher magnitude variables

# don't get more weight in distance cal culation)

# set up matricies to hold ensemble forecast
ensembl ef=matrix(nrow=100,ncol=yp)

ensemblec=matrix(nrow=100,ncol=yp)

## TRUCKEE

## Need to make the forecast for every year, so put into loop

#x=cbind(x[,7],X[,2] .X[,3]) # swe,geopot,sst

x=cbind(x[,7],x[,2]) # swe,geopot

p=length(x[1,]) # p for the number of predictors
# ** NOTE: If pisnot 3, MUST CHANGE number
# ** of termsin distance calculation

for(i in 1:yp)
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# pl isthe position of the year we're predicting
pl=i

xpred=x[p1,]

yfpred=yfVol[pl]

if(pl ==x9)

{
xmodel=x[(xs+1):xe|]
yfmodel=yfVol[(xst+1):x€]

}

if(pl == xe)

{
xmodel=x[xs:(xe-1),]
yfmodel=yfVol[xs:(xe-1)]

}

if(pl!=xe&& pl!=xs)

{
xmodel=rbind(x[xs:(p1-1),] X[(p1+1):xe])
yfmodel=c(yfVol[xs.(pl-1)],yfVol[(p1l+1):xe])

}

ym=length(xmodel[,1])

# DISTANCE CALCULATION
# calculate the distance between the (predictors of the) point we're predicting
# and all other points-- use scaled data
xdist=scal e(xmodel)
distance=1:ym
for(j in 1:ym)
{
# distance]j]=sart(((xx[p1,1]-xdist[j,1])*2)+((xx[p1,2]-
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xdist[j,2])"2)+((xx[p1,3]-xdist[j,3])"2))
distancefj]=sqrt((xx[pL,1]-xdist]j, 1])*2)+((xx[pL,2]-xdist]j,2])*2))

# RANK the distances

drank=rank(distance) # hererank 1 is the nearest neighbor
# (i.e. the smallest distance)

# DETERMINE K and weight it

n=length(distance)

kk=sgrt(n)

kk=round(kk)

W=1:kk

w=1/W

W=W/sum(W)

W=cumsum(W)

# Find the alpha for the locfit model-- take the al pha whith the lowest gcv
aphaf=seq(0.2,1,by=0.05)

xxf=gcvplot(yfmodel ~xmodel ,al pha=al phaf,deg=1,kern="bisq" ,ev="data")
zxf=xxf$values

zzf=order(zxf)

alphaf=al phaf[zzf[1]]

# Do the LOCFIT and get the expected value for each of the p points
locf.model=locfit(yfmodel~xmodel, alpha=al phaf, deg=1, kern="bisq")
fit=locf.model

# Make the mean prediction
# hack-fix so predict.locfit will work: make xpred a matrix with
# thereal xpred thefirst row. Take first predicted point.
xpred=rbind(xpred,xmodel)
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fpredicted.loc=predict.locfit(locf.model, xpred, se.fit=T, band="global")

# now weight the neighbors and pick one at random (using the weights)
# do this 100 times
residual sf=residual s(locf.model) # get the residuals of the locfit model

for(k in 1:100) # do innerloop 100 times (bootstrap residu-
als)
{
rannum=runif(1,0,1)
xXy=c(rannum,W) # adds arandom number (between 0 and 1)
# to the weight function (CDF)
rankW=rank(xy) # assigns arank to the random number
# (and W vector)
pos=order(drank)[rankW[1]] # gives the position in the distance matrix
(and
# corrrespondingly they matrix for the
selected
# neighbor)
resids=residual sf[pos] # Once | get aneighbor, | need to find the
# residual associated with that neighbor
ensemblef[k,i]=fpredicted.loc$fit[ 1] +resids
# add that residual to the y-hat from the
# locfit model
}
}
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## CARSON
x=matrix(scan("predictors.dat"),byrow=T,ncol=9) # all 9 possible predictors
#x=cbind(x[,9],X[,2] .X[,3]) # swe,geopot,sst
x=cbind(x[,9],x[,2]) # swe,geopot
p=length(x[1,])
for(i in 1:yp)
{
pl=i
xpred=x[pl,]
ycpred=ycVol[pl]

if(pl == xs)
{
xmodel=x[(xst+1):xe]

ycmodel=ycVol[(xs+1):xe]

}

if(pl == xe)

{
xmodel=x[xs.(xe-1),]
ycmodel=ycVol[xs.(xe-1)]

}

if(pl!=xe&& pl!=xs)

{
xmodel=rbind(x[xs:(p1-1),] X[(p1+1):xe])
ycmodel=c(ycVol[xs:(p1-1)],ycVol[(pl+1):x€])

}

ym=length(xmodel[,1])

# DISTANCE CALCULATION
xdist=scal e(xmodel)

distance=1:ym
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for(j in 1:ym)
{
#distancefj]=sgrt(((xx[p1,1]-xdist[]j,1])*2)+((xx[p1,2]-
xdist[j,2])"2)+((xx[p1,3]-xdist[],3])"2))
distance]j]=sgrt(((xx[p1,1]-xdist[j,1])"2)+((xx[p1,2]-xdist[j,2])"2))

# RANK the distances

drank=rank(distance)

# DETERMINE K and weight it
n=length(distance)

kk=sgrt(n)

kk=round(kk)

W=1:kk

wW=1/W

W=W/sum(W)

W=cumsum(W)

# Find the alpha for the locfit model-- take the al pha whith the lowest gcv
alphac=seq(0.2,1,by=0.05)

xxc=gevplot(ycmodel~xmodel ,a pha=al phac,deg=1,kern="bisq" ,ev="data")
zxc=xxcPvalues

zzc=order(zxc)

alphac=alphac[zzc[1]]

# Do the LOCFIT and get the expected value for each of the p points
locc.model=locfit(ycmodel ~xmodel, a pha=alphac, deg=1, kern="bisq")

fit=locc.model

# Make the mean prediction
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xpred=rbind(xpred,xmodel)
cpredicted.loc=predict.locfit(locc.model, xpred, se.fit=T, band="global")

# now weight the neighbors and pick one at random (using the weights)
# do this 100 times
residual sc=residual s(locc.model)
for(k in 1:100)
{
rannum=runif(1,0,1)
xy=c(rannum,W)
rankW=rank(xy)
pos=order(drank)[rankW[1]]
resids=residual sc[pos]
ensemblec[k,i]=cpredicted.loc$fit[ 1] +resids

# Write the ensembl e forecast matricesto file

# (i.e. write an object from Splusinto an ASCII file)
write(t(ensembil ef) file="knnFaradA prSWEGpHA pr.out" ,ncol =55)
write(t(ensembl ec),file="knnCarsonAprSWEGpHApr.out”,ncol=55)

# Make boxplots
plotbeg=1949-const
plotend=2003-const

par(mfrow=c(2,1))
neval s=plotend-plotbeg+1
xeval s=ensembl ef[,plotbeg: plotend)]

xs=1:nevals

126



gf=quantile(yfVvol,c(.05,.25,.5,.75,.95))
zz=boxplot(split(t(xevals),xs),plot=F,cex=1.0,print=F,cex=1.0,ylim=range(0,800))
zz$names=rep("",|length(zz$names))
z1=bxp(zz,xlab=""ylab="",style.bxp="old",cex=1.25)

title(main="Truckee Modified K-NN Prediction (1949-2003)")

title(ylab="AMJJ Volume (kaf)")

lines(z1,yfVol[plotbeg:plotend],Ity=1,lwd=2)

for(i in 1:5)
{

abline(h=qf[i],Ity=2)
}

xeval s=ensembl ec[,plotbeg: plotend]
xs=1l:nevals
gc=quantile(ycVol,c(.05,.025,.5,.75,.95))
zz=boxplot(split(t(xevals),xs),plot=F,cex=1.0)
zz$names=rep("",|ength(zz$names))
z1=bxp(zz,xlab="",ylab=""style.oxp="0ld",cex=1.25, ylim=range(0,800))
title(main="Carson Modified K-NN Prediction (1949-2003)")
title(ylab="AMJJ Volume (kaf)")
lines(z1,ycVol[plotbeg:plotend],Ity=1,lwd=2)
for(i in 1:5)
{

abline(h=qc]i],Ity=2)
}
#end of file

}
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Appendix E

Seasonal Policy Model Code

# A simplified policy model for Newland's Project OCAP.

# Solves for storage on Lahontan Reservior, water remaining

#in the Truckee River, and diversion through the Truckee Canal

year=2003 # change value as necessary

# Lahontan minimum storage target is (1/3) of average historical total flow on T and C
minTarget=(1/3)* (mean(yfVol)+mean(ycVol))

# minimum flow that must remain in Truckee for fish-- change to test different policies
fishFlow=0

# max diversion through the Truckee Canal is 164kaf

maxDiversion=164

# get the ensemble for the particular year we want to run

ensembl ef=matrix(scan("knnFaradA prSWEGpH.out"),byrow=T,ncol=55)
ensemblec=matrix(scan("knnCarsonAprSWEGpH.out"),byrow=T,ncol=55)
c=year-1948

alf=ensemblef[,c]

allc=ensemblec],c]

# model does not allow negative flow values from the forecast

for(i in 1:100)
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if(allf[i]<0)
{
alf[i]=0
}
if (allc[i]<O0)

{
alc[i]=0

# add climatology, to check what managers would do w/o aforecast
# bootstrap the historical datato get climatology
n=sample(1:54, 100,replace=T)
if(c==1)
{
climf=yfVol[2:55]
climc=ycVol[2:55]
}
if (c==55)
{
climf=yfVol[1:54]
climc=ycVol[1:54]
}
if (c!=1& c!=55)
{
climf=c(yfVol[1:c-1],yfVol[c+1:55])
clime=c(ycVol[1:c-1],ycVol[c=1:55])
}
climf=climf[n]

clime=climc[n]
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alf=c(allf,climf)

allc=c(allc,climc)

# add the observed value, to check what would have occured w/ perfect forecat
alf=c(alf,yfVol[c])
alc=c(alc,ycvol[c])

# set up vectors for decision variables
lahontanStorage=1:201
truckeeDiversion=1:201
truckeeToPyramid=1:201

for(i in 1:201) # run 100 times (for each set of ensembles) plus one for observed value

{

# Available for diversion is Truckee water - minimum fish flow water
faradAvail ForDiversion=allf[i]-fishFlow
if (faradAvailForDiversion<0)

{

faradAvail ForDiversion=0.0

# Available for diversion cannot excede maxDiversion

if (faradAvailForDiversion>maxDiversion)

{

faradAvail ForDiversion=maxDiversion

# maximize use of Carson water before diverting from Truckee

carsonWater=allc[i]
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# Lahontan storage target isinitially set as (2/3) of total T and C --most probable
forecasted flow

lahontanTarget=(2/3)* (alf[i]+allc[i])

if (lahontanTarget < minTarget)

{

lahontanTarget=minTarget
}
# Set the Truckee Diversion

# First, divert only what is needed to meet |ahontanTarget.
# If there isn't enough faradAvailForDiversion to meet lahontanTarget,
# the farmers get shorted (fish get highest priority)

truckeeDiv=IlahontanTarget-carsonWater
if (truckeeDiv > faradAvailForDiversion)
{

truckeeDiv=faradAvail ForDiversion
}
lahontanStorage]i]=carsonWater+truckeeDiv
truckeeDiversion[i]=truckeeDiv
truckeeToPyramid[i]=allf[i]-truckeeDiv

#Plot the decision variables

par(mfrow=c(3,2))

sm.density(ensembl ef[ ] ,xlim=c(0,600),ylab="PDF" xlab="Truckee Spring Flow
(kaf)")

sm.density(climf,add=T,Ity=2)

points(yfVol[c],.0001,pch=19)

sm.density(ensemblec|,c],xlim=c(0,600),ylab="PDF" xlab="Carson Spring Flow
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(kaf)")
sm.density(climc,add=T,Ity=2)
points(ycVol[c],.0001,pch=19)

sm.density(lahontanStorage] 1:100],xlim=c(0,600),ylab="PDF" xlab="L ahontan Stor-
agefor Irrigation (kaf)")

sm.density(lahontanStorage] 101:200], add=T,Ity=2)

points(lahontanStorage[ 201],.0001, pch=19)

sm.density(truckeeDiversion[1:100],xlim=c(0,600),ylab="PDF" ,xlab="Truckee Cana
Diversion (kaf)")

sm.density(truckeeDiversion[101:200], add=T,Ity=2)
points(truckeeDiversion[201],.0001,pch=19)

sm.density(truckeeToPyramid[ 1:100] ,xlim=c(0,600),ylab="PDF" xlab="Water
Remaining in Truckee (kaf)")

sm.density(truckeeToPyramid[101:200], add=T,Ity=2)

points(truckeeToPyramid[ 201],.0001,pch=19)

#end of file
}
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