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Thesis directed by Assistant Professor Balaji Rajagopalan 
 

The stochastic nature of hydrologic inflows complicates the simultaneous optimization 
of hydropower for a multi-stage, multi-reservoir system. The expected value of hydropower must 

be simultaneously optimized over all time steps and scenarios. Previous research (Stochastic 
Programming with Recourse) has represented alternative inflow scenarios with a tree structure 

that branches after each time step and grows exponentially. This research replaces the tree 
structure with a network structure that grows only linearly as the number of time steps modeled 
increases. Benders Decomposition allows both the tree structure and the network structure to 
be optimized as a series of subproblems - one for each arc in the scenario structure. Using this 

network representation, an 8-week network stochastic programming model of the Tennessee 
River Basin converged rapidly to an upper bound on hydropower value. This research also 
provided preliminary results for a lower bound calculation as well as a goal programming 

solution. The network structure may also be a suitable replacement for the tree structure in 
stochastic applications outside of hydropower optimization. 
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Chapter 1 
 
 

INTRODUCTION 
 
  
 

 Reservoirs are operated to serve two primary purposes:  (1) to generate 

hydroelectric power, and (2) to manage natural fluctuations in flows.  The benefits of 

managing natural fluctuations in flows are many, including provision of water 

supplies, water quality management, flood control, drought management, recreational 

use, navigation, and many others.  Organizations may operate their reservoir systems 

differently, but these two purposes lie at the center of most operational policies.  For 

example, the U.S. Army Corps of Engineers (USACE) has played a dominant role in 

constructing and operating major reservoir systems for navigation and flood control, 

while the U.S Bureau of Reclamation (USBR) water resources program was founded 

upon demands for irrigation and hydroelectric power (USACE, 1991).  The 

Tennessee Valley Authority (TVA) operates as part of the TVA Act passed by 

Congress in 1933.  According to this act, TVA’s reservoir system must be used to “… 

regulate the streamflow primarily for the purposes of promoting navigation and 

controlling floods,” and so far as may be consistent with such purposes, “…for the 

generation of electric energy…” (Shane and Gilbert, 1982).  Although these 

organizations each operate under differing policies, they share the similar purpose of 

generating hydroelectric power and managing the natural fluctuations of flows. 
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Hydroelectric power is one of the most reliable, efficient, and economic 

renewable energy resources available (www.tva.gov).  However, hydroelectric power 

is also a limited resource. The quantity of water available for hydroelectric production 

depends upon limited amounts of rainfall or snowmelt, and water stored in 

hydroelectric reservoirs must be managed accordingly.  Reservoirs serve to manage 

natural fluctuations in flows by controlling releases and storing water during wet 

periods and utilizing stored water during dry periods.  The most extreme scenarios of 

wet and dry periods come in the form of floods and droughts, and reservoirs serve to 

minimize the impacts of these events and create a dependable water and power 

supply.   

In most basins, the majority of water that flows into the reservoir system 

arrives seasonally.  For example, in most of the basins in the Rocky Mountains, 

approximately 70 percent of the annual inflow into a basin occurs during April, May, 

June, and July due to snowmelt runoff (Regonda, 2004) with very little contribution 

coming from storm events throughout the remainder of the year.   In other basins, 

such as the Yakima basin in Washington, the inflow may occur bi-annually during 

spring and fall wet seasons (Stapleton, 2004).  Regardless of the timing of the inflow 

events, the demand for water as a source of electricity is independent of runoff 

seasons, so reservoir operators attempt to manage these inflows in such a manner that 

hydroelectric power demands can be met throughout the year.  

Reservoir operators are aware of these fairly dependable cycles and operate 

their reservoir systems to account for these cycles.  According to Gilbert (1985), TVA 

operates their reservoir system on an annual cycle.  In the Tennessee River basin, the 
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winter and spring seasons are wet and have a higher danger of flooding.  To account 

for this, the reservoirs are drawn to their lowest levels in December in preparation for 

the winter flood season.  In January, TVA begins to fill their reservoirs gradually, but 

maintains relatively low storage levels, except during a flood, until the spring fill 

season. Then, beginning in April, TVA begins to aggressively fill the reservoirs and 

realizes the highest reservoir levels in late spring or early summer.  These high 

reservoir levels are managed throughout the dry summer and fall seasons to 

supplement the natural streamflows for navigation, power production, and water 

supply. 

For long periods of drought that may occur in a basin, reservoir operators 

attempt to store enough water so that demands can be met throughout the duration of 

the drought.  If reservoirs are allowed to get to a point where the water supply is not 

enough to meet power demand, less flexible and more expensive power sources must 

be utilized.  By operating reservoirs effectively, reservoir operators are able to 

provide a safe and dependable water and power supply, regardless of inflow 

conditions.   

 
1.1  Hydropower as a Flexible Power Supply 

The control and flexibility associated with hydroelectric power plants vary 

greatly from reservoir to reservoir, but all offer an excellent alternative or compliment 

to power supplies such as fossil fuel and nuclear power plants.   According to Jacobs 

et al. (1995), hydroelectric plants are operated in a range of manners as follows. 

Storage hydro plants are the most common and flexible type of hydroelectric plant. 

Storage hydro plants are large, dammed reservoirs that are equipped with relatively 
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easily adjustable gates to control the flow of water through turbines.  On the other end 

of the spectrum are run-of-the-river reservoirs that store little water and generally 

operate as necessitated by current streamflow conditions. Between these two 

extremes are a variety of hydro plants whose operations are being controlled 

differently for a wide variety of reasons.  

Jacobs et al. (1995) explain that in many basins, pumped storage hydro plants 

can be used to increase peak energy production without an increase in basin inflows.  

Pumped storage units operate by pumping water into an uphill reservoir during 

periods of low power demand, making the water available to be released for 

generation during peak generation periods.  These plants provide an economical 

approach to storing electricity.  

In addition to the variety of hydro plants, many power companies also operate 

fossil fuel and nuclear plants to generate electricity and use hydropower as a 

supplement to these power supplies.  For example, the Pacific Gas and Electric 

Company (PG&E) generates power from a variety of sources including fossil-fueled 

plants, hydroelectric powerhouses, and one nuclear power plant (www.pge.com).  

TVA operates 11 fossil fuel plants, 6 nuclear plants, 29 hydroelectric dams, and one 

pumped storage unit (www.tva.gov).  In 2003, fossil fuel plants provided 60 percent 

of TVA’s total power output, nuclear plants produced 29 percent, and hydroelectric 

plants produced 11 percent (www.tva.gov).   

The fossil fuel and nuclear plants in these systems are very important to the 

power production of the basins but provide a less flexible source of energy.  Fossil 

fuel and nuclear plants generally have slow ramp up times and are very inefficient in 
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varying power output if fluctuations in power demand arise.  For this reason, these 

sources tend to provide a base level of power, with limited flexibility.  In contrast, 

hydropower plants, particularly those associated with large reservoirs, are used to 

meet fluctuations in demand, unless a reservoir is in, or near, flood control.  

Flexibility in hydroelectric pants means they can supply electricity for power demand 

on relatively short notice and, unlike fossil fuel or nuclear power, can be brought on 

line almost instantaneously (Gilbert, 1985). Thus, for utilities such as PG&E and 

TVA, hydropower provides a very attractive way to smooth out the daily peaks in the 

power load and to provide a readily available reserve to be used in the event of 

extreme load increases or a loss of generating capacity elsewhere in the system 

(Gilbert, 1985). It would be very expensive and inefficient to attempt to meet these 

demands with fossil fuel or nuclear power.  In fact, according to Wunderlich (1989), 

$1 per megawatt-hour (MWh) in hydroelectric operation cost can replace $20 to $90 

per MWh power generation cost from other power sources.  This makes hydropower 

a very attractive source of electricity.   

 
1.2  Variations in Power Value 

One of the issues associated with the operation of hydroelectric power plants 

is the fact that the economic value of hydropower is not constant.  The value of 

hydropower is a function of demand and supply, and the goal of hydro plant operators 

is to generate power during peak demand when hydropower is most valuable.  

According to Jacobs et al. (1995), PG&E attempts to obtain the maximum value from 

its hydroelectric resources by minimizing spills and timing hydroelectric generation 

so that electricity is produced when it is most valuable.  It is also necessary to 
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maintain enough water in storage to capture the flexibility benefits described earlier.  

This strategy is not unique to PG&E’s operation and is, essentially, the strategy of 

any hydro plant that wishes to operate its reservoir system with consideration to the 

economic value of their hydroelectric power.   

To some degree, the variation in power demand is predictable; however, there 

are certainly factors that make this demand uncertain.  Seasonally it is expected that 

during the hot summer months, more residential, industrial, and commercial sites will 

be operating air conditioning units. This high demand for power makes hydropower 

very valuable.  However, during these hot summer months there are often periods of 

cooler weather, which typically are accompanied with storm events.  During these 

events the air temperature is cooler and the use of air conditioning decreases, causing 

less demand for power.  In the cold winter months, there is a high demand for power 

for heating purposes.  In some basins, such as the Tennessee River Basin, air 

temperature increases before storm events causing less demand for heating power.  

These physical patterns typically cause inflows to arrive when power is not in highest 

demand.  When the supply of available water in the system is increasing, the demand 

for hydropower is lower.  In this sense, power demand amplifies the effects of 

variations in water supply. 

The demand for power on a weekly timescale is also somewhat predictable.  

Generally, more power is required during the week when the majority of commercial 

and industrial entities are operating at full capacity.  During the weekend, when a 

large number of businesses are not operating, the demand for power is much less.  On 

a daily timescale, the demand for power fluctuates in a similar manner.  During 



 19

certain periods of the day there may be great demand for industrial and commercial 

use and at other times, generally mornings and evenings, there may be more 

residential use.  During the night when most people are sleeping, there is much less 

demand for power. However, there are situations on these time scales that make the 

variation in power demand difficult to predict.  For example, there can be substantial 

fluctuations in temperature over the course of a day from storms, cloud cover, or any 

number of meteorological reasons.  Also, it is quite possible for unforeseen outages to 

occur somewhere in the system, which will increase demand significantly in other 

areas of the system. 

 Along with being a function of demand, the value of water is affected by 

other factors.  Many power companies purchase electricity from outside suppliers. If 

the market value for electricity is cheap, the benefit of producing electricity internally 

through hydropower is not as great. It may be more economical to save the water in 

storage for use when market values are higher.  The amount of water available in the 

system also plays a significant role in determining the value of water. The long-term 

value of water is both a function of water available in storage and uncertain 

hydrologic inflows in the future.  Most hydro plant operators attempt to quantify the 

value of water in some manner, and operations models serve as valuable tool for 

achieving that goal. 

 
1.3  Modeling for Operation Planning 

In an effort to maximize the value of hydropower, many hydropower 

companies have developed models to schedule their hydropower operations.  Gilbert 

(1985) and Wunderlich (1989) describe a series of models that TVA developed to 
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plan the operation of a large system of reservoirs. The goal of these models is more 

efficient use of hydropower, better strategic planning, and policy formulation 

(Gilbert, 1985).  Gilbert describes two primary models developed by TVA; known as 

the Economy Guide Development Model and the Weekly Scheduling Model.  The 

Economy Guide Development Model was proposed as a long-term planning model to 

derive economy guide curves of the expected future power generation cost (Gilbert, 

1985).  The Weekly Scheduling Model was designed to be run weekly as an aid to 

real time operation (Gilbert, 1985).  Jacobs et al. (1995) developed a long-term model 

for PG&E called Stochastic Optimal Coordination of River-basin and Thermal 

Electric Systems (SOCRATES).  [An extensive review of multiple purpose modeling 

and analysis approaches is provided in USACE (1991).]  These models serve as a tool 

for hydro-plant operators to analyze outcomes of operation decisions prior to making 

any release decision. 

 
1.4  Generate Now or Save for Later    

When considering the variations in the value of hydropower, reservoir 

operators must answer the following question: Is it better to generate hydroelectricity 

now or save the water to release later when the value of power may be greater?  This 

decision must be made within the context of other operating criteria such as 

maintaining minimum or maximum storage levels, minimum flow requirements, 

recreation considerations, etc.  For example, operating objectives for the TVA basin, 

as presented by Shane and Gilbert (1982) include:   

• Flood Prevention 

• Navigation 
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• Water Supply 

• Power Generation 

• Water Quality Releases 

• Recreation 

• Reservoir Balancing 

While this list is specific to the TVA basin, it is a good indication of the types of 

objectives that must be considered for reservoir management in any basin.     

Another issue that makes this operation decision difficult is the fact that the 

entire basin is interconnected, so releases made at upstream reservoirs will have an 

effect on downstream reservoirs.  In the Tennessee River basin, the farthest upstream 

reservoirs, those in the mountainous regions, are the largest and operate as storage 

hydro plants.  The reservoirs farther down in the basin can be smaller and operate 

more closely to run-of-the-river-reservoirs.  In these situations, large releases made at 

upstream reservoirs may cause spill in the lower reservoirs, which could result in loss 

of potential hydropower production.  In other areas such as the Colorado River, 

exactly the opposite situation exists. There are extremely large reservoirs in the 

downstream areas, and a relatively small amount of water is stored upstream. The fact 

that typical systems, such as those on the Colorado and Tennessee River) are largely 

mismatched, reservoir decisions cannot be managed independently, and it is 

necessary to develop a system-wide release policy.   

With all of these considerations, it can be difficult to decide if power should 

be generated now or later.  If the short-term economic benefits of hydropower 

production are only considered, the maximum amount of water will be released, 
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leaving very little remaining water for future operation.  This occurs because 

hydropower production is the most economical source of power and, if the long-term 

operation is not considered, stocks of potential hydroelectric energy are depleted now 

for their immediate economic benefit.  In this scenario, if low inflow volumes occur, 

it then may be necessary to use more expensive thermal generation or potentially not 

meet demand requirements (Pereira, 1989).  Instead, short-term use of water for 

hydropower generation must trade off against the value of using the water in the 

future.  A common approach to quantify this tradeoff is to separate the short-term and 

future values.   

The short-term value of water is relatively certain and is based on the market 

values or on a reduction in the cost of alternative power generation (e.g. fossil fuel or 

nuclear power to meet demand). Also, in the short-term, load requirements, reservoir 

levels, and inflows into the system are known with some certainty making the value 

of water at the current time easier to determine. However, the future value of water is 

less certain because future inflows to the system are not known.  The future inflow 

into the system affects the volume of water available in storage.  The value of water 

in storage is essentially a function of supply and, in general, as reservoir storage 

increases, the incremental value of additional stored water decreases.  For example, if 

inflow values are low, which has the effect of lowering reservoir levels, water will be 

allocated for use only during peak generation periods.  In contrast, if inflow values 

are high, more water will be allocated for use during off peak generation, when water 

is less valuable.  Also, during periods of high inflow, the water in storage is more 

likely to be spilled which provides no economic benefit.          
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Although greater storage values cause the incremental value of water to 

decrease for the reasons mentioned above, this is partially offset by the fact that more 

power is produced per unit of water released as reservoir elevation increases.  This 

actually causes a small increase in the marginal value of water at high reservoir 

elevations.  Together, however, these factors still cause the incremental value of 

additional water to decrease as storage increases, but the change is relatively slow and 

the curvature of value as a function of storage is relatively small.  Figure 1 shows a 

schematic exaggeration of this curve, and Figure 2 shows a to scale representation of 

this curve for a TVA reservoir using their current equations for estimating the future 

value of stored water.  
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Figure 1:  Value of Water vs. Storage 
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Figure 2:  Value of Water vs. Storage 

 
1.5  Stochastic Nature of Inflow 

Because the future value of water depends, in part, on uncertain future 

hydrologic inflows, operations planning models must account for this uncertainty.    

In order to account for these future inflow values, a hydroelectric schedule must 

anticipate future inflow values and hedge against the consequences of extreme 

streamflow scenarios (Jacobs et al., 1995).  Some models use a deterministic 

approach, in which expected streamflow value is used and others may use an 

ensemble of possible hydrologic inflow values that are referred to throughout this 

paper as hydrologic scenarios.   
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One of the major drawbacks to using the expected streamflow values in a 

deterministic model is that these models do not hedge against the consequences of 

extreme streamflow scenarios.  Deterministic models underestimate the economic 

effects at the extremes and produce an “optimistic” operation schedule that, in the 

case of having an extreme inflow scenario, can lead to high economic losses (Pereira 

and Pinto, 1985).  Prior to the development of the SOCRATES model, PG&E used 

such a deterministic approach but PG&E, as well as many other hydroelectric 

operators, recognized these shortcomings and began to implement models that 

incorporate stochastic streamflow scenarios. 

In contrast to deterministic models, which generate operation schedules based 

on perfect knowledge of the future, stochastic models consider a number of possible 

inflow scenarios that could potentially occur (Watkins et al., 1999).  Because it is 

impossible to have perfect forecasts for the future inflow scenarios, there is an 

inherent uncertainty in the future inflow values making them stochastic (Pereira and 

Pinto, 1985).  Models that consider stochastic scenarios produce a more conservative 

operation schedule because the effects of the extremes are considered. The result is 

that reservoir operating levels tend to remain more toward the middle of standard 

operating conditions so that extreme streamflow scenarios can be managed more 

economically. 

Along with the inherent uncertainty of future streamflow conditions, there is 

also some correlation of streamflows from one time period to the other.  For a variety 

of physically explainable reasons, there is a correlation between current and previous 

inflows at a range of timescales. Watkins et al. (1999) show that model results can be 
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improved by using a scenario generation technique that preserves this correlation of 

inflows.  The correlation of inflows means that wet conditions currently are more 

likely to lead to wet conditions in the future and dry conditions are more likely to lead 

to dry conditions.  This correlation can be due to localized climatic high-pressure 

systems, large-scale climate conditions, or the persistence of base flow in the basin.   

On a short time scale, it is somewhat possible to predict the upcoming weather 

in a basin and have an idea for the amount of moisture that will fall in the upcoming 

weeks.  It is fairly easy to track high-pressure systems and know what kind of effect 

these systems will have when they arrive in any given basin.  Localized storm 

systems also contribute to the runoff and recharge of the river basin. 

     On the annual time scale, there are large-scale indicators, such as El Nino or 

the Southern Oscillation Index that can provide an indication of the amount of 

moisture that may fall in the upcoming year (Grantz, 2003).  Studies have shown that 

the strength of the signal received from these indicators gives some ability to predict 

inflows in the upcoming water year and in some cases can provide fairly accurate 

forecasts (Grantz, 2003).  In the southeastern United States, these signals can also 

give an indication of the severity of the upcoming hurricane seasons.  Severe 

hurricane seasons can bring a tremendous amount of water to a basin and severely 

affect reservoir operations.  

   The amount of water that has arrived in the system previously can also affect 

the base inflow in a river basin.  Base inflow is generally a function of prior 

precipitation, which can persist for long periods of time.  If the previous year 

happened to be an extremely wet year, streamflow values may remain fairly high due 
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to base inflow, even if the current year is somewhat dry.  Also, storm events may 

produce greater streamflow values because less water is being absorbed into the soil. 

The opposite may occur in dry situations where a storm event mostly recharges soil 

moisture and very little water actually reaches the hydroelectric system.  

The fact that future inflow values are uncertain, with some ability to be 

forecast, as well as correlated from time period to time period, means that for 

developing long-term operation plans, it is necessary to account for these 

characteristics.  To do so, models have been developed that incorporate these 

characteristics.  The inflow scenario frameworks of these models are typically known 

as multi-stage stochastic networks.  

 
1.6  Solving as a Multi-stage Stochastic Network 

Most long-term planning models attempt to optimize the reservoir scheduling 

operations. Often the goal is either to determine a generation schedule for each plant 

in a system that minimizes the expected operating cost along the planning period 

(Pereira and Pinto, 1985) or to maximize the avoided cost of using more expensive 

forms of energy such as market purchases, fossil fuels, or nuclear power (Biddle, 

1999).  Due to the fact that these models incorporate future inflows, uncertainty in 

streamflow values is generally considered. 

Optimizing reservoir scheduling with regard to uncertainty in inflows is 

generally classified as Stochastic Optimization.  Historically, two approaches have 

dominated the stochastic optimization of reservoirs: Stochastic Dynamic 

Programming (SDP) and Stochastic Programming with Recourse (SPR).  The 

literature is not always clear about this distinction, and the titles of articles can be 
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misleading.  Where Birge (1997) uses the terminology SPR as described here, Pereira 

(1989) and Pereira and Pinto (1985, 1991) use the terminology Stochastic Dual 

Dynamic Programming (SDDP), which is easily confused with SDP.  

In applying these stochastic optimization methods, the problem is broken 

down into a multi-stage stochastic network.  This multi-stage network is divided into 

time periods, or stages (e.g. weekly, monthly or annually), and possible streamflow 

scenarios.  Each branch in the network represents a potential streamflow scenario. At 

each time period, any number of branches can be considered at each transition.  

Figure 3 shows a representation of this multi-stage stochastic network in which three 

possible scenarios (high (h), normal (m), and low (l) flow) are considered at each 

stage.  This figure represents the traditional structure in the SPR methodology but is 

similar to that of SDP. 

(h,h)

h

m

l

(h,m)

(h,l)

(m,h)

(m,m)

(m,l)

(l,h)

(l,m)

(l,l)t = 1                              t = 2   

 

Figure 3: Multi-stage Stochastic Network 
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A large share of the research done in long-term planning models has been 

SDP.  A typical SDP problem represents the “state” of a reservoir system by a vector 

of possible reservoir storage levels, and the “state space” is discretized into a finite 

number of storage values (Pereira and Pinto, 1985).  This technique has proven 

successful for systems that have a small number of reservoirs, but has been more 

difficult to implement as the number of reservoirs increases. Bellman (1952) ascribes 

this situation to the well known “curse of dimensionality” that limits the application 

of dynamic programming in general.  Many methods have been developed to 

circumvent this limitation in SDP [References to these methods can be found in 

Stedinger et al. (1984), Tejada-Guibert et al. (1995) and Labadie (2004)] which are 

discussed in more detail later in this paper.  In general, these techniques have 

increased the number of reservoirs that can be modeled but have not eliminated the 

curse of dimensionality.   

In contrast, SPR has received relatively less application for reservoir 

scheduling. With SPR, it is possible to decompose the multiple-period, multiple-

scenario problems into smaller one period subproblems that can be solved more 

easily.  For example, in Figure 3, one problem can be solved for each streamflow 

scenario with some information sharing between stages.  The information that is 

generally shared between stages is reservoir levels and information to generate 

approximations of the future value of water.  These approximations of the future 

value of water are generated using shadow prices obtained from the solutions to the 

optimization problem and are interpreted as Bender’s (Bender, 1962) in a stochastic 

multi-stage decomposition (Pereira and Pinto, 1991). By using these piecewise 
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approximations of the future value of water, the application of SPR is less sensitive to 

the number of reservoirs than is an SDP algorithm because with SPR it is not 

necessary to break down the network into a finite number of states (Pereira and Pinto, 

1991).  However, the difficulty in applying SPR has been that the number of possible 

scenario combinations increases exponentially with the number of time periods 

modeled (Pereira and Pinto, 1985; Jacobs et al., 1995).   

This thesis presents a proposed methodology, called Network Stochastic 

Programming (NSP), to deal with the shortcomings of SDP and SPR.  The 

methodology is developed within the SPR framework and limits the combinatorial 

explosion of scenarios as the number of time periods increases. The concepts of SDP 

and SPR, including the benefits and shortcomings of each, are explained in more 

detail.  Case study analyses of the TVA Tennessee River basin are presented followed 

by conclusions and discussions of the results from application of the proposed 

methodology. 
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Chapter 2 
 

 
PREVIOUS WORK IN STOCHASTIC PROGRAMMING 

 
 
 

 The objective of stochastic programming algorithms, both SDP and SPR, is to 

maximize the current period objective function plus the expected value of future 

stages.  Stochastic programming algorithms are typically separated into stages, which 

subdivide the problem by time period, and possible streamflow scenarios.  The 

availability of limited amounts of hydroelectric energy, in the form of stored water in 

the system, makes the operational problem very complex because it creates a link 

between an operation decision in a given stage and the future consequences of this 

decision (Pereira and Pinto, 1985). Stochastic Dynamic Programming and Stochastic 

Programming with Recourse are two techniques that have been developed to solve 

such problems.    

 
2.1 Stochastic Dynamic Programming  

This section, which describes the stochastic dynamic programming approach 

to water resource operation planning and the motivation behind developing models 

using the stochastic programming with recourse approach, is not required reading to 

understand the technique being developed in this thesis.  The organization of the 

discussion begins with a general explanation of dynamic programming, followed by a 
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simple mathematical description of the SDP algorithm, a survey of work that has been 

done using the SDP algorithm, and ending with a discussion of the motivation to find 

improved techniques. 

 
2.1.1 General Characteristics of Dynamic Programming Problems 

Hillier and Lieberman (2001) describe dynamic programming as a useful 

mathematical technique for making a sequence of interrelated decisions and for 

systematically determining the optimal combination of decisions.  The dynamic 

programming approach involves decomposing a complex problem into a series of 

simpler problems that are solved sequentially, while transmitting information from 

one stage of the problem to the next using state concepts (USACE, 1991).   

The general characteristics of dynamic programming problems are (USACE, 

1991):   

First, the problem can be divided into stages, with a policy decision required 

at each stage.  In hydroelectric systems, the stages typically represent different points 

in time (i.e., determining reservoir releases for each time interval), but can also 

represent different points in space (i.e., releases from different reservoirs), or different 

activities (i.e., releases for different project purposes or water users).   

Second, each stage has a finite number of states associated with the beginning 

of that stage.  In general, the states are the various possible conditions in which the 

system might be at in that stage of the problem.  In hydroelectric systems, if there is 

no correlation between current flows and previous flows, reservoir storage is a useful 

state.  However, because there is generally a correlation of flow between time 

periods, at least two classes of state variables should be included: the reservoir 
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storage level and some information about the “hydrologic trend” in the system 

(Pereira and Pinto, 1991). 

 A third characteristic of dynamic programming algorithms is that the effect of 

a policy decision of each stage of the problem is to transform the current state to a 

state associated with the beginning of the next stage.  For example, if the policy 

decision is how much water to release from the reservoir at the current stage, this 

decision transforms the amount of water stored in the reservoir from the current 

amount to a new amount in the next stage.  

  Another characteristic of dynamic programming is that a return function 

indicating the benefit of the transformation is associated with each potential state 

transformation.  For example, in hydroelectric systems the future value function may 

be the value of energy in storage.  The future value function is calculated for 

discretized values of storage.  Figure 4 illustrates this calculation for the future value 

function.  The horizontal axis is the discretized storage levels, and the vertical axis is 

the function characterized by the set of corresponding future values. 
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Figure 4: Discretization Scheme in Dynamic Programming 

 

Hillier and Lieberman (2001) explain a fifth characteristic of dynamic 

programming that is really what makes these algorithms so attractive.  This 

characteristic is what is known as the principle of optimality for dynamic 

programming.  This principle states that given the current state, an optimal policy for 

the remaining stages is independent of the policy decisions chosen in previous stages.  

Therefore, the optimal immediate decision depends on only the current state and not 

how that state was arrived at.  The state encompasses all prior relevant information 

from previous solutions, and the problem only needs to be optimized from that state 

forward.   

These characteristics of dynamic programming problems provide a way to 

reduce a large, complicated problem to a series of smaller, tractable problems if the 

state space is relatively small.  Because the number of discretized states is limited, as 
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the number of stages being examined increases, the problem does not grow too 

rapidly.  This element is very beneficial because it allows hydroelectric models that 

have a large number of timesteps to be solved.  A visual representation of an SDP 

network is shown in Figure 5. 
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Figure 5: SDP Network 

 
2.1.2 Mathematical Representation of SDP Algorithms 

 For explanatory purposes, suppose that the objective is to maximize the 

expected sum of the contributions for each stage.  Assuming the simplest case in 

which no hydrologic state is considered, the stochastic dynamic recursion function 

would be of the form (Tejada-Guibert et al., 1995): 

                    ( ) )]}(),,([{max 11 +++= ttttttRQtt XfRQXBEXf
tt

                  (Eq. 1)                  

subject to 
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where 

                    n = number of reservoirs 

                     T = number of stages in planning horizon 

                     t = current stage in planning horizon 

                   Qt = inflow into the system in period t 

                   Xt = vector of storages at the beginning of stage t 

                   Rt = vector of target releases during stage t 

                Xt+1 = vector of ending storage in stage t (Xi,t+1 = Xi,t + Qi,t – Ri,t for i =  
1,…n) 

Bt(Xt, Qt, Rt)  =  benefit from system operation in the current stage t 

       Ft(Xt) = expected future return from the optimal operation of the 
              system from stage t to the end of the planning horizon given 

  that the system begins in period t in state (Xt)  
 
 
2.1.3 Survey of SDP Models and Enhancements 

 Loucks et al. (1981), present Stochastic Dynamic Programming as an effective 

technique for plan formulation and evaluation in water resources systems that contain 

inherent uncertainties in economic and hydrologic variables.  SDP has been a very 

useful technique for calculating single reservoir operating policies.  Labadie (2004) 

presents a list of researchers that have successfully implemented SDP for single 

reservoir problems.  Labadie’s list includes Stedinger et al. (1984), who successfully 

applied SDP to a dam in the Nile River System, and Huang et al. (1991), who 
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successfully applied SDP to the Feitsui Reservoir in India.  A more extensive list of 

papers that includes 14 researchers who have applied SDP to single reservoir systems 

is provide in Stedinger et. al (1984).   

While SDP is an attractive algorithm for problems that have a small state 

space, these problems can get extremely large if the state space is of higher dimension 

due to the well-known “curse of dimensionality” (Bellman, 1952).   For example, if a 

state vector is used to describe the storage level of each reservoir and some 

“hydrologic trend” information (as suggested by Pereira and Pinto, 1989) and each 

component of the state vector is discretized into X intervals, there are X2N discretized 

states in each stage.  In other words, the number of states increases exponentially with 

the number of state variables in the problem, greatly increasing computational effort.  

For example, suppose X = 20 intervals of discretization: 

1 reservoir  ⇒ 202  = 400 states 

2 reservoirs ⇒ 204  = 160,000 states 

3 reservoirs ⇒ 206  = 64 million states 

4 reservoirs ⇒ 208  = 25 billion states 

5 reservoirs ⇒ 2010 = 10 trillion states 

(from Pereira, 1989) 

The implication is that the solution of the SDP problem is computationally 

challenging for even relatively small reservoir systems.  This explosion of state space 

can cause SDP algorithms to be very unattractive when dealing with large reservoir 

systems. 

Improvements to Stochastic Dynamic Programming models have been 

examined in the past.  The motivation is to develop ways to solve systems with a 
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large state space within the context of SDP algorithms and not be limited so greatly 

by the “curse of dimensionality.”  Kelman et al. (1990) developed a technique called 

Sampling Stochastic Dynamic Programming that captures the complex temporal and 

spatial structure of the streamflow process by using a large number of sample 

streamflow sequences.  However, this method mitigates, but does not eliminate, the 

dimensionality problems of SDP and has not been applied to multireservoir systems. 

  Another approach developed to alleviate the dimensionality problems of SDP 

is to aggregate all the reservoirs in the system into a single representative reservoir.  

TVA used such an approach with their Economy Guide Development Program by 

using energy in storage to describe the system state (Shane and Gilbert, 1982).  In 

order to relate energy in storage to individual reservoir storage levels, TVA assumed 

that the optimal distribution of energy in storage maximizes the capacity of the entire 

system. In this case, TVA was successful in developing a 52-week model.  Labadie 

(2004) presents a list of other models that incorporate similar aggregation techniques 

beginning with Hall in 1970 and ending with Saad et al. in 1996.  Stedinger et al. 

(1984) also present two papers that have incorporated aggregation techniques.  These 

techniques have been successful in developing multireservoir, multi-stage problems.  

However, the problem with state aggregation methods is the often unacceptable loss 

of information that occurs during the aggregation process (Labadie, 2004).   

An expanded list of SDP models and improvements to standard SDP models 

is contained in Stedinger et al. (1984), Tejada-Guibert et al. (1995), and Labadie 

(2004).  All of these papers provide references to SDP models, but none of these SDP 

models are able to completely circumvent the curse of dimensionality.  To further 
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address the dimensionality problems of SDP, another technique has been developed 

known as stochastic programming with recourse.  

 
2.2  Stochastic Programming with Recourse (SPR)  

 This section describes the stochastic programming with recourse (SPR) 

approach to water resource operation planning.  A general description of SPR is 

followed by a mathematical description of the SPR algorithm and a two-stage 

example of the SPR mathematics.  A survey of work using SPR and the shortcomings 

of SPR are presented along with a proposed methodology to avoid these 

shortcomings.  

 In the past, SPR has also been referred to as Dual Dynamic Programming 

(Pereira, 1989).  However, this expression has been used in reference to other 

methods as well (Yang and Read, 1999). 

 
2.2.1 General Description of SPR  

In contrast to SDP, SPR is able to handle a large number of reservoirs 

relatively easily.  SPR avoids the curse of dimensionality by attempting to construct 

an approximation of the future value function (shown in Figure 4) directly from 

shadow price information from the solution to the optimization problem (Pereira and 

Pinto, 1989).  Most SPR solution procedures that have been developed in the past are 

based on Bender’s Decomposition (Bender, 1962), and these future value 

approximations are typically referred to as Bender’s cuts.  

Historically, the SPR network is represented by a tree structure (Figure 6).  

The arcs in the tree structure represent a possible hydrologic scenario that may occur 
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for the entire basin.  In this traditional representation, there is a single hydrologic 

scenario considered for the node at t = 1.  The outcome of this hydrologic scenario 

results in some set of initial conditions to be considered at the nodes for time period  

t  = 2.  Each arc that precedes an individual node represents the hydrologic scenario 

that is considered for the initial conditions of the node.   

t = 1                                    t = 2                                  t = 3
 

Figure 6: Multi-stage Stochastic Network 

For ease of explanation throughout this paper, this traditional tree can be 

mapped slightly differently as illustrated in Figure 7.  This representation of the SPR  

is used in the framework of this research.  The tree in Figure 7 represents the exact 

same problem as in Figure 6, just mapped differently.  In Figure 7, the node at time t 

= 1 represents the initial conditions of the system.  The single arc between t = 1 and t 

= 2 represents the hydrologic scenario that is considered for the first week of the 

model.  This hydrologic scenario results in some set of initial conditions for time t = 

2.  During the second week, three hydrologic scenarios may occur, each resulting in 
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some initial conditions to begin time t = 3.  This mapping can continue throughout the 

rest of the planning horizon to t = T.   
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Figure 7: Alternate Representation of the Multi-stage Stochastic Network 

The difficulty is that a relatively small number of hydrologic scenarios result 

in an extremely large-scale linear program.  Bender’s Decomposition alleviates this 

difficulty by allowing the problem to be broken down into a series of smaller 

subproblems, with one linear program (LP) to be solved at each arc of the tree.  In 

these models, the first stage releases are made with consideration of the potential 

scenarios in the future.  Only the first stage decisions are actually implemented, since 

future scenarios are not known with certainty.  Following the implementation of the 

first stage decisions, the problem is reformulated with the next period decisions and 

solved over the remainder of the operational horizon (Labadie, 2004). 

The essence of the solution process for a multi-stage Bender’s Decomposition 

is as follows.  Each time an LP is solved, it is solved with a set of initial storage 
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values. After the solution is complete, the “current” LP has information to send to 

both previous and future LPs.  The future LPs receive the ending storage levels from 

the current problem.  The future problem can be solved using these values as initial 

storage values.  For example, when a problem is solved for arc 1 in Figure 7, the 

ending storage value for this arc then becomes the initial storage value for arcs 2, 3 

and 4.  

The previous LPs receive the incremental value (also referred to as shadow 

prices, dual variables, or simplex multipliers) of increasing initial storage for the 

problem just solved, which is equivalently the incremental value of increasing the 

final storage in the previous problem. In other words, when a problem is solved for 

arc 2, information can be gathered from the LP to determine the incremental change 

in the stage 2 objective if there were slightly different initial storage values for this 

problem.  These values are used to create constraints on the previous stage problems, 

which are known as the Bender’s cuts in the solution.  The specifics of this cut 

generation are described in the following section. 

In this tree structure, no cuts are produced for the arc at time t = 1.  This is 

because there are no arcs preceding this time period that could result in different 

initial conditions for time t = 1.  The initial conditions for this time period are input 

into the model.  At time t = T, the ending storage levels are not passed to the next 

time period because there are no more arcs in the network beyond this stage.  The last 

time period also contains no Bender’s cuts to constrain the future value estimate. 

Typically some boundary condition or estimate of the future value is input for the last 
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time period.  In addition, the solutions in time period T are optimal given the initial 

storage levels. 

The solution to the SPR algorithm is an iterative procedure.  One sequencing 

of the iterations that has been successful in previous research and that is used in this 

research has been termed “fastpass” (Jacobs et al., 1995).  As the algorithm moves 

forward from t = 1 to t = T, the cuts are passed back to the previous time period. 

When the algorithm reaches the end of the planning horizon (t = T), it reverses 

direction and moves back to t = 1.  As the algorithm moves backward, problems are 

solved using the same initial conditions as during the forward iteration, but there are 

now additional constraints in the form of cuts for the problem to use. Each time the 

algorithm makes an iteration, more cuts are added until the cuts sufficiently 

approximate the future value of water.  This process continues until a solution is 

converged upon for the first time period.  

 
2.2.2 Mathematical Description of SPR  

 The SPR solution optimizes the expected value over a set of all possible 

scenarios that could occur.  In the SPR tree shown in Figure 7, there is one hydrologic 

scenario that occurs during the first stage.  Following this hydrologic scenario, three 

possible scenarios could occur (scenarios 2, 3, 4) in the second stage.  Each of these 

scenarios can then be followed by three more scenarios (scenarios 5, 6, 7,…13) as 

shown. 

 Each of these scenarios that could potentially occur at a given time period 

have a given probability based on the predecessor scenario as well as a unique 

hydrologic inflow representation.  In other words, any arc following a scenario 



 44

represents a different hydrologic inflow value than the other arcs following the same 

predecessor scenario (i.e., scenario 5 is different than scenarios 6 and 7).  The 

scenarios that the arcs represent are conditioned on the path that leads to that 

particular scenario.  For example, arc 5 is determined by the path 1 to 2 to 5 and arc 

13 is determined by the path 1 to 4 to 13.   

 In order to represent these scenarios in a mathematical model, each arc can be 

represented by the notation ωt.  The notation ωt of a given arc represents each 

scenario that could occur at time period t.  This scenario ωt is a representation of each 

scenario that could occur at the given stage based on what happened in the previous 

stages.  For example, in the third stage, shown in Figure 7, there are 9 possible 

scenarios that could occur, each representing a different scenario that could occur 

over the entire planning horizon.  These scenarios could therefore be represented by 

ω[1,2,3…9]t , where t = 3.  

 The solution to a multi-stage stochastic network is classified as large scale due 

to the existence of multiple interconnected reservoirs and the need for multi-period 

optimization (Pereira and Pinto, 1985).  The mathematical formulation of this large- 

scale problem can be represented by: 
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where 
ct = a vector of stage t objective function coefficients 
xt = a vector of stage t period decision variables 
ωt = scenario index 
p = probability of particular scenario 
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At = vector of stage t constraint coefficients 
bt = vector of stage t right hand side constraints 
Bt = correlation coefficient, dependency on xt-1 

The objective function is the expected value of the total profit over all time 

periods.  The first block of constraints represents the first period constraints.  The 

second block of constraints is the constraints for all time periods under all scenarios.  

The solution of the problem in Equation 2 involves computing all the equation 

variables simultaneously over all time periods in the network represented in Figure 7.  

At each stage in the network, the vectors xt, At, ct, etc. could represent thousands of 

variables, coefficients and constraints.  The solution of this problem is too 

computationally difficult to actually be implemented.  However, Bender’s 

decomposition allows this problem to be broken down into smaller subproblems, 

sub(ωt), that are much simpler to solve. 

 
2.2.3 Bender’s Decomposition 

 In general terms, the objective of a stochastic programming subproblem is to 

maximize the current period objective function plus the expected value of the future 

stages.   The future periods contain several possible hydrologic inflows that may 

occur.  The expected value of the future stages is calculated as the sum of the 

probability of each scenario times the predicted value of the future stages.  The 

stochastic solution is maximizing the expected value over a number of scenarios and, 

as a result, sacrifices the maximum objective for each individual scenario in order to 

obtain a robust solution over all scenarios (Birge and Loveaux, 1997). 
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where 

Pω= Probability of particular scenario 
fω =  future value under scenario ω (Bender’s cut) 

ωπ ,r′ = dual price from stage t+1 solution 
Sr = storage at end of stage 1 (variable) 

 rS ′= storage at beginning of stage t+1 from a previous  
         problem  

1−′tx  = a vector of values that are fixed at specific values during 
           this subproblem (storage carryover from previous stage) 

 
 

The current period decision variables, xt, are constrained by typical short-term 

constraints (i.e., mass balance, reservoir levels, turbine release, etc.).  The future 

values, fω, are constrained by a series of inequalities that have been referred to 

previously as cuts.  Each cut is the result of a previous solution of a different 

optimization problem for time period t +1. Each future period problem is indexed by 

the symbol ( ′ ) and is solved for a particular hydrologic scenario ω and with storage 

at the end of period t for each reservoir r momentarily fixed at rS ′ .  The future period 

optimization problem has an optimal solution with value ωjOb ′  and incremental 

storage values for each reservoir ωπ ,r′ .  Together these values from the future period 

optimization problem can be used to produce a cut for the current period problem  

trr
r

r SSjObf ωωπ ωωω |)(, ′∀′−′+′≤ ∑ . 

  Thus, if the first period ending storage Sr happens to equal rS ′  for all 
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reservoirs, then the future value of scenario ω, fω, is limited to ωjOb ′ . In this case, the 

cut is exactly predicting the second period value of the first period solution if scenario 

ω is realized.  If the first period storages are different from these values, the cut 

becomes an upper bound on the second period solution.  The cut tends to be a good 

estimate for a set of storage values close to the fixed values in the cut.  

  This approach utilizes the flatness of the value of storage function shown in 

Figure 1.  Because the function changes slowly, a relatively small number of cuts 

from future period solutions can provide a good estimate of the current period 

objective function for a large range of storage values.  While the above explanation is 

for a two-stage decision process, it can be extended to a multi-stage process.  Each 

stage has a short-term decision problem, alternative future hydrologic inflows, and 

cuts for each hydrologic alternative.  

 
2.2.4 Two-Stage Example 

For example, suppose a two-stage situation with two possible hydrologic 

inflows of equal probability with one scenario being a low inflow that produces a low 

value of the second stage objective function and the other scenario is a high inflow 

producing a higher stage two objective function.  The estimate of the second stage 

objective function is simply the weighted average (or in the case of equal probability, 

just the average) of these objective functions.  Figure 8 illustrates these objective 

functions for a single reservoir. 
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Figure 8: Future Stage Objective Function 

As can be noted on Figure 8, the stage 2 objective function is a piecewise linear 

representation of the true objective function.  The piecewise functions are obtained 

from the shadow price solutions of the stage 2 optimization problem.  Each linear 

segment corresponds to a Bender’s cut in a stochastic, multi-stage framework (Pereira 

and Pinto, 1991).  The cut represents the future value of water, or gradient, at the 

storage levels that were used to generate the cut.  As storage levels change, the 

gradient changes, and the cut becomes a weaker approximation of the objective 

function value.  At some point, enough cuts are generated so that there is very little 

improvement in the solution.  In some instances, the program is initialized with a 

reasonable set of cuts to reduce computation time (Morton, 1996).  

  For example, suppose the program begins with two initial cuts marked with 

solid lines as shown in Figure 9.  These two cuts provide an estimate of the second 

stage benefit as a function of the ending storage for the first stage.  If the reservoir 
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storage at the end of the first stage is 3, the cuts imply an estimate that the second 

stage has a value of 8.  Specifically, the estimate is an upper bound on the actual stage 

2 objective function for this scenario.  When stage 2 is actually solved at this storage 

level, it turns out that this is an overestimate. The actual value is 7 and a new cut is 

generated (the dashed line).  In general, any point may be overestimated by the 

existing cuts because any subset of the full set of cuts tends to overestimate the stage 

2 objective function. (If the actual solution to the stage 2 objective is the same as the 

stage 1 estimate, then all the necessary cuts have been generated and the solution has 

been found.)   

Storage at end of stage 1

Se
co

nd
 S

ta
ge

 V
al

ue Stage 1 est. value 
of stage 2 solution

actual stage 2
solution

New cut generated from 
stage 2 solution shadow 
prices

Initial cut 1

Initial cut 2

4
5

Est. of stage 2 solution (7.8) for 
storage (4) after new cut.

7
7.8

3 4

 

Figure 9: Cut Generation 

 

  The new solution also produces a value of storage (or shadow price) of 

0.8.  This shadow price is the slope of the dashed line representing a new cut in the 

stage 2 objective function.  This shadow price represents the incremental increase in 
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the stage 2 objective with an increase in the storage at the end of stage 1.  In Figure 9, 

the new cut has a slope of 0.8 and a stage 2 objective function value of 7 at a stage 1 

storage of 3.  Thus the new cut is )3(8.7 −+≤ Sfi .  

  After adding this cut to the stage 1 problem, suppose the stage 1 solution had 

an ending storage of 4.  The estimated objective for stage 2 would be 7 + 0.8(4 – 3) = 

7.8  ( trr
r

r SSjObf ωωπ ωωω |)(, ′∀′−′+′≤ ∑ ).  The true objective value at a storage of 

4 is less than or equal this value as shown by the constraint )34(8.7 −+≤if . 

In this two-stage example, the actual objective is to maximize the first period 

objective function plus the expected value of future periods, ω
ω

ω fPxc
scenarios
∑

∈

+11 .  

Figure 10 provides and illustration of how the stage 2 cuts affect the stage 1 objective 

function and solution.  The lower solid line is the stage 1 objective function (c1x1), 

which increases as ending stage 1 storage decreases (and releases increase).  The 

dashed line represents the averaged cuts for the stage 2 scenarios ( ω
ω

ω fP
scenarios
∑

∈

).  The 

top solid line combines both curves ( ω
ω

ω fPxc
scenaios
∑

∈

+11 ) and represents the combined 

stage 1 and 2 objective.  This objective is used to solve for the optimal end of stage 1 

storage. 
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Figure 10: Combined Stage 1 and Stage 2 Objective 

Therefore, the optimal release decision in stage 1 is the release decision that results in 

the optimal combined stage 1 and stage 2 objective. 

 
2.2.5 Gradient Form of Bender’s Decomposition 

The constraint trr
r

r SSjObf ωωπ ωωω |)(, ′∀′−′+′≤ ∑  in Equation 3 represents 

this research conceptually.  However, a reformulation of the constraints in terms of 

gradients is useful for comparing this research to previous research.   

In Equation 3, some components of bt may be deterministic while others are 

stochastic.  In the framework of this research, the hydrologic inflows represent the 

components of bt that are stochastic and all other components are deterministic.  In 

general, the correlation coefficient Bt should have limited dependence on xt-1.  In this 

research, the only portion of xt-1 that is of interest is the storage that remains at the 

end of the previous stage.  Thus, Bt is non-zero only for ending storage variables of  

xt-1 and zero for all other variables. 
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Equation 3 illustrates the approach of this research and can be written in a 

more general matrix form.  The cut in equation 3: 

)(, rr
r

r SSjObf ′−′+′≤ ∑ ωωω π  

can be rewritten as: 

)()( ,, r
r

rr
r

r SSjObf ∑∑ ′+′′−′≤ ωωωω ππ                         (Eq. 4) 

where  

)(, r
r

r SjOb ′′−′ ∑ ωω π  is a constant.   

The collection of constants for different constraints can be replaced with a 

vector
1, +ttg ω .  The term )(, r

r
r S∑ ′ωπ  in each constraint can be replaced by rt SG

t 1, +ω , 

where 
1, +ttG ω  is a matrix and each row replaces ∑ ′

r
r,ωπ  and represents the gradient 

change at the specified storage level rS .  More generally it is possible to write 

tt xG
t 1, +ω , where G = 0 except for the case when xt = Sr.  This allows the cut to be 

written in the form: 

ttttt xGgf
tt

ωωωωω |   1,, 11 +∀−≤
++

                                          (Eq. 5)  

Now, the subproblem presented in Equation 3 can be written in the general form of: 
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where 

G and g are from valid cut inequalities generated during the 
 decomposition process 
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g  = cut intercepts 
G = cut gradients for xt 
e = a vector of 1’s for every cut that is generated for scenario ωt+1 

Thus, the last block of constraints includes one block for each scenario in the next 

time period. The term 1−′tt xB  in Equation 6 is omitted for the first stage because there 

is no carryover term from the previous stage.  For t = T , the last block of equations in 

Equation 6 are eliminated because there are no scenarios beyond stage T to generate 

cuts for that stage. 

The future value at stage T is generally represented by some boundary 

condition.  In the case studies used in this research, the stage T objective function 

implicitly includes ( )∑
r

Trr SFV , which is the future value of water as a function of 

storage for each reservoir.  This estimate of future value of water is the value that 

TVA currently uses and therefore makes sense as a boundary condition in the TVA 

models used here as case studies (presented in Chapter 4).  Previous research has used 

alternative boundary conditions for stage T.  In cases where the end of the planning 

horizon is at a period where the reservoirs should be drained in order to prepare for 

filling, a future value of zero is input as the stage T boundary. This has the effect of 

draining the reservoir at stage T (Jacobs, et al., 1995).   

The dual of Equation 6 is shown in equation 7. 

( )

0    

)|(     

 ..

')(  min

1

1

11

1

1

1
,,

,

1,

,,,

,
|

,1,,

≥

=

≥−

++=

+

+

++

+

+

+

+

− ∑

t

t

ttt

t

tt

tt
tttt

t

ttt
T

ttttt

tttttttt

pe

cGAts

gxBbz

ω

ω

ωωω

ω
ωω

ωωαπ

α

ωωα

απ

αωπ
ωω

           (Eq. 7) 



 54

In the dual formulation, the π variables are the dual prices on this period’s 

constraints ( 1)( −′+= tttttt xBbxA ω ) in Equation 6 and theα  variables are the dual 

prices on the future value constraints.  The solution of the dual is useful because the 

shadow prices 
tt ωπ ,  are generated immediately upon solving the dual and can then be 

passed to the predecessor scenario.  The dual prices from the first stage are not 

needed because dual price information is not being passed to the predecessor 

scenario.  The stage T dual of the subproblem is again simpler because, at stage T, no 

future scenarios exist. This simplification can be seen in Equation 8.  

( )

TTt

tTTTtT

cAts

xBbz

T

T
TT

≥

′+= −

ω

ωπ

π

ωπ
ω

,

1,

 ..

)(  min
,                                          (Eq. 8) 

 
  
 In this formulation of the model, the original problem and each subproblem 

are bounded and have a finite number of solutions.  Therefore, the gradient vector G 

and the cut intercept vector g are finite for each subproblem.  At the time of solving 

any given subproblem, only a portion of the cuts from G and g may be present.  In 

general, only a small fraction of all possible cuts are present.  The cuts presented 

above implicity use a 0 value for any α variable corresponding to a missing cut.  This 

is a feasible, if possibly less than optimal, dual solution.  

 

Theorem: The cuts in Equation 6 are valid.   

This theorem has been proven elsewhere (Bender, 1962; Infanger and Morton, 1996) An 

outline of the proof is provided below. The proof of the validity of these cuts is by 

recursion, proving validity for T and working backwards.  The proof for a generic step t 

is as follows:  
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An individual cut is equivalent to: 

 
tt

tt

ttt ttttttttt fgbxB ωω
ωω

ωωω αωππ ,1,
|

,,1, 1

1

1
)( −− ≥++′

+

+

+∑  

Proof of validity can be shown by duality through a series of intermediate inequalities: 

ttttttttttt xAgbxB
tt

tt

ttt ωω
ωω

ωωω παωππ ,,
|

,,1, 1

1

1
)( ≥++′

+

+

+∑−  

                          ttttt
T xGfe

tt

tt

tt

tt ∑∑
+

++

+

++
−+

ωω
ωω

ωω
ωω αα

|
,,

|
,,

1

11

1

11
 

because xt is feasible in the primal problem ( [
tt ωπ , ,

1, +tt ωα ] x constraints in Equation 

6), 
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because the dual prices, 
1,,  and
+tt tt ωω απ , are feasible (constraints in Equation. 7 x [xt , 
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by the definition of future value. 

A more thorough and involved description of Bender’s decomposition, is provided in 

Bender’s (1962) and Infanger and Morton (1996). 

 The important point to note from this proof is that a dual solution need only 

be feasible to generate a valid cut.  As illustratede in chapter 3, using this fact 

allows cuts to be shared: either used directly for multiple subproblems or slightly 

modified for other subproblems. 

 
2.2.6 Previous SPR Models 
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SPR has been applied to a wide variety of Stochastic Optimization problems, 

including hydroelectric scheduling.  According to Jacobs et al. (1995) Van Slyke and 

Wets first described how to apply Bender’s Decomposition to the two-stage problem.  

Birge then extended the work of Van Slyke and Wets to the multi-stage setting.  This 

multi-stage extension has been applied to hydroelectric scheduling in Brazil (Pereira, 

1989; Pereira and Pinto, 1985, 1991), California (Jacobs et al., 1995), Norway 

(Rotting and Gjelsvik, 1992), the Highland Lakes area in central Texas (Watkins et 

al., 1999), as well as many other basins.  A more complete list of such applications 

can be found in a recent state-of-the-art review (Labadie, 2004), and in any of the 

papers cited above. 

Pereira and Pinto (1985) formulated hydroelectric scheduling as an SPR 

model and then solved it using Bender’s Decomposition.  This allowed for the 

replacement of the classic dynamic programming state variables with an iterative 

approximation of the future value component at every stage, thereby eliminating the 

“curse of dimensionality” (Velasquez et al., 1999).  In their 1985 paper, Pereira and 

Pinto were able to determine a generation schedule for each plant in a hydroelectric 

system that minimizes the expected operation cost along the planning period.  Using 

the Bender’s Decomposition approach, they were able to generate a hydroelectric 

schedule for 37 reservoirs in a Brazilian basin.  (Of these reservoirs, 16 were 

constrained to a constant storage, and the remainder solved for storage using Bender’s 

cuts). The system operation was calculated over a five-stage planning horizon with 

two alternate inflow scenarios considered per stage.  The system was tested with three 

different combinations of streamflow sequences and convergence occurred within 12 
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to 14 iterations.  Pereira and Pinto also extended the model to run with three alternate 

inflow scenarios per stage over a four-stage planning horizon. Convergence occurred 

within 15 iterations. 

Several authors have extended this research to make it more compatible to a 

larger number of stages.  The primary challenge of the SPR solution is the number of 

subproblems that must be solved explodes exponentially as the length of the planning 

horizon increases (see Figure 6).  For example, if three possible hydrologic scenarios 

are considered at each node of the SPR tree, the number of scenarios to be considered 

increases in the following manner:  

2nd Stage: 3 scenarios 
3rd Stage: 9 scenarios 
4th Stage: 27 scenarios 
5th Stage: 81 scenarios 
6th Stage 243 scenarios 
7th Stage 729 scenarios 
8th Stage 2187 scenarios 

 

This explosion of the tree structure in the SPR framework often limits the 

number of stages that can be considered throughout the planning horizon.   

Pereira (1989) extended their previous work (Pereira and Pinto, 1985) and 

applied the name Stochastic Dual Dynamic Programming to the computational 

scheme developed in that paper.  The improvement presented was a way to avoid the 

“combinatorial explosion” that occurs with the scenario branching in traditional SPR 

networks.  This combinatorial explosion can be avoided for certain stochastic 

streamflow models.  In his 1989 paper, Pereira focuses mostly on the case of 

independent, or uncorrelated, streamflow realizations where the realization of the 

current stage scenario has no correlation with previous stages.  In this case, each cut 
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generated in the current stage is valid for the entire previous stage and not only for the 

predecessor scenario.  This is valid because if the stochastic scenarios are 

independent, then the future cost functions do not depend on the current scenario and, 

hence, cuts generated for a particular scenario are also valid for any other scenario at 

the same stage (Infanger et al., 1996).  Because of this feature in models that exhibit 

interstage independency, Pereira (1989) shows to simulate the sequential decision 

process for all possible scenarios is not necessary, but to use a sufficiently large 

sample to estimate the expected operational cost is adequate.  Pereira also 

acknowledges the value of this in models that do exhibit interstage dependency, but 

he did not apply the algorithm to this case.  Pereira and Pinto (1991) improve their 

network sampling procedure using Monte-Carlo simulations.  While all three of these 

papers by Pereira and by Pereira and Pinto describe an attractive technique for 

problems with many reservoirs, Velasquez et al. (1999) showed that these three 

papers (Pereira, 1989; Pereira and Pinto, 1985, 1991) were exactly correct for only 

two stages and were missing a term to be exactly correct for multiple stages.  

Velasquez et al. (1999) update the description of the algorithm proposed by Pereira 

and Pinto by including this additional term. 

Infanger and Morton (1996) present a methodology for sharing cuts in multi-

stage stochastic linear programs with interstage dependency. They show that models 

that have certain parametric distributions of flows can easily convert cuts generated 

from a particular scenario to cuts for other scenarios.  The ability to share cuts 

provides increased efficiency in these models by accelerating convergence and allows 

for sampling of the stochastic tree.  A detailed explanation of this cut-sharing model, 
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as well as that presented by Pereira (1989) is included in the next chapter.  The 

remaining challenge, which is the focus of this research, is the case of uncorrelated, 

non-parametric flows.  

In addition, two specific applications of SPR suggest the importance of 

accurate models.  Jacobs et al. (1995) apply an SPR algorithm to a generation 

scheduling system under development at PG&E called Stochastic Optimal 

Coordination of River-basin and Thermal Electric Systems (SOCRATES).  In this 

particular model, Jacobs et al. introduce upper and lower bounds on reservoirs, lakes, 

and rivers attributable to physical constraints, as well as minimum flow requirements 

for issues such as maintaining fish habitat.  This model is divided into subperiods due 

to the fact that the value of electricity varies significantly between weekday-peak, 

weekday-off-peak, weekend-peak, and weekend-off-peak time periods.   

Watkins et al. (1999) developed a multi-stage stochastic programming model 

for the management of the Highland Lakes by the Lower Colorado River Authority in 

central Texas.  Watkins et al. were able to show that the amount of water to contract 

for the coming year is highly dependent on the initial reservoir storage levels. 

Watkins et al. illustrated that model results can be improved using scenario 

generation techniques that preserve the correlation of historical flows.   

Morton (1996) developed performance enhancements for Bender’s 

Decomposition algorithm for solving multi-stage stochastic linear programs.  Morton 

enhanced the traditional Bender’s decomposition algorithm using warm start basis 

selection, advanced start procedures, multicut procedures, and tree traversing 

strategies.  According to Morton (1996 ) warm start techniques obtain “good” initial 
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basic feasible solutions for subproblems based on optimal basis information from 

previous subproblem solutions. Advanced start procedures generate preliminary cuts 

prior to initiating a formal Bender’s algorithm. The multicut Bender’s decomposition 

algorithm returns one cut for each descendant of a particular subproblem instead of a 

single aggregate cut. Tree traversing strategies prescribe the order in which 

subproblems of the decision tree are solved. 

In his 1996 paper, Morton demonstrated that beginning with good initial 

conditions and preliminary cuts can reduce the computation time of the algorithm.  

The multicut procedure has the disadvantage of requiring more decision variables but 

typically takes fewer iterations than the aggregate cut algorithms.  Morton (1996) also 

explored several options for tree traversing strategies and showed that the “fastpass” 

algorithm is an efficient and robust choice, but other choices may be comparable.  

These strategies were all tested on the PG&E model used by SOCRATES. 

 
2.2.7 Network Stochastic Programming 

 This research introduces the concept of Network Stochastic Programming 

(NSP), and it builds on the previous research cited in this chapter.  NSP shares three 

features with Periera and Pinto (1991) and Infanger and Morton (1996): Bender’s 

Decomposition, assumptions about the stochastic structure of inflows to prevent the 

exponential growth of the scenario tree, and using dual feasibility to share cuts from 

different subproblems.  Like Watkins et al. (1999), NSP also allows for flow 

correlation without using parametric methods.  Jacobs et al. (1995) believed that 

detailed time step modeling was important, and TVA’s prior experience suggests that 

detailed time step modeling (6-hour time step) is necessary for the entire model in 
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order to accurately capture realistic operations in their basin.  Following these 

suggestions, NSP is separated into weekly stages, but each stage is solved for 6-hour 

subperiods.  Based on Morton’s (1996) research, NSP also incorporates performance 

enhancing techniques such as the multicut formulation and the fastpass tree traversing 

strategy.  

NSP also shares a feature with SDP: both algorithms define state variables and 

solve a series of problems for each state and each time period.  For this reason, the 

graph of an NSP network appears quite similar to the graph of an SDP network. 

However, the states in NSP differ from each other in terms of alternative inflow 

forecasts for each point in time rather than predetermined storage states.  This is a 

significant difference; eliminating reservoir storage as a state variable dramatically 

reduces the dimension of the state space for basins that have many reservoirs. Despite 

the obvious graphical similarity and similar language (e.g., states and stages), NSP 

and SDP are very different algorithms  

 While previous research has concentrated on bounds and cuts based on duality 

theory, relatively little attention has been paid to the generation of primal solutions 

and convergence. The two approaches that have been used are to calculate a primal 

solution for every node of the tree or to use Monte Carlo simulation and a 

probabilistic statement of convergence based on the distribution of inflows. 

 In contrast, for this thesis, a formulation based on column generation to 

generate implicit primal solutions for any future scenario without exploring every 

node of the tree is used. By doing so a duality gap is defined for every node explored 

and its descendants.  Of course, the duality gap for the first stage is a duality gap for 
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the entire problem.  Thus, each primal solution is guaranteed to be within some 

percentage of optimality, and the algorithm can be terminated whenever the solution 

is within a predetermined optimality tolerance.  In addition, by choosing subproblems 

containing large duality gaps, the overall gap can be methodically reduced either by 

finding improved solutions or by eliminating other solutions. 
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Chapter 3 
 

 
NETWORK STOCHASTIC PROGRAMMING 

 
 

 
The premise of Network Stochastic Programming (NSP) is that the 

exponential growth of the scenario tree that makes traditional SPR so difficult is also 

unnecessary.  A reasonable hydrologic forecast does not uniquely depend on the 

entire history of inflows to any given point in time. Instead, we propose that a 

hydrologic forecast state can be defined as a set of alternative inflow forecasts with 

probabilities for each forecast.  The following assumption is central to this proposal. 

Assumption: a relatively small number of discrete forecast  
states can approximately capture the forecast differences of  
alternative scenarios, and actual inflow scenarios can be  
mapped into these states with relatively small forecast errors.  
 

In other words, there may be many alternative forecasts, but a small number 

of states can summarize the effect of the past on the forecasts.  Of course, with a 

relatively small number of states, each state typically includes several years from the 

historical record and may be reached in several different ways in the future.  This 

assumption leads immediately to a network representation of hydrologic forecast 

states rather than a tree structure. 

 A visual representation of what this network may look like is presented in 

Figure 11.  In this network, there is one node for each of the three hydrologic forecast 
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states for each time period (stage) with a transitional hydrologic inflow arc between 

states.  Each arc has a probability and a vector of hydrologic inflows for each 

reservoir.  For example, if each arc corresponds to one week and if each week is 

modeled at a 6-hour time step, each arc has a vector of 28 hydrologic inflows for each 

reservoir.  It is possible for there to be multiple arcs or no arcs between a pair of 

states in adjacent stages.  The details of the NSP algorithm and the definition of the 

state representation and the state transformation arcs are explained in greater detail in 

this chapter. 
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Figure 11: NSP Network 

A reasonable criticism is that this network model is inferior to other 

approaches for generating synthetic inflow scenarios.  Furthermore, the network 

model may be an overly simplistic approximation for many of the other purposes of 

synthetic inflow scenarios.  These are fair criticisms, but they are outweighed in the 

case of stochastic optimization by the need to have a branching process and a way to 
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limit the growth of the scenario tree.  From this perspective, NSP is a step towards 

more realistic flow models that can still be optimized with the added bonus of 

producing an optimality tolerance. 

We present NSP within the mathematical framework of SPR. The 

mathematical descriptions are very similar. The primary difference between NSP and 

SPR is that NSP eliminates the combinatorial explosion of the scenario tree seen in 

traditional SPR by using hydrologic forecast states to collapse the scenario tree to a 

network.  NSP can be described from the traditional SPR perspective as a cut sharing 

mechanism, but a drastic one where certain arcs share all of their cuts with each other. 

With this complete sharing of cuts, it seems simpler to represent the scenarios as a 

network.  If the scenario tree is collapsed to a constant number of states for each time 

period, the network only grows linearly as the number of stages increases, rather than 

exponentially. 

This chapter presents NSP in more detail.  It begins with a brief comparison to 

work done in the field of SPR that has attempted to reduce this tree explosion.  Next, 

it describes the definition of hydrologic state used in this paper, as well as potential 

alternatives and encouragement to explore other state definitions.  A representation of 

NSP with no temporal correlation is be presented first, followed by a more realistic 

model that considers temporal correlation.  Further explanation of the NSP network is 

also presented as well as a description of the implementation of NSP into RiverWare.  

A model of the TVA basin is used as a case study in this thesis, and many of the 

explanations and descriptions of the network pertain to that basin specifically) but 

there should be no limitation in extending this algorithm to other basins).  In this 
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TVA model, a stage in the NSP network represents one week, and the terms stage and 

week are used interchangeably throughout the remainder of the paper. 

 
3.1 Cut Sharing - SPR and NSP 

 The general mathematical description of Bender’s Decomposition presented in 

Chapter 2 includes as special cases NSP, classic SPR, and previous research to 

circumvent the problems associated with exponential growth of the scenario tree.  In 

this section, we use this description to explain how NSP and other algorithms have 

solved the problem of exponential tree growth.  In the process, we provide an 

overview of the cut sharing in NSP, but explain the process in greater detail later. 

 Pereira (1989) showed that, in the case of uncorrelated flows, a cut generated 

for one scenario is valid for every scenario in the previous stage, not just the 

immediate predecessor scenario.  Because the expected future cost functions do not 

depend on the current scenario, there is really only one approximate future cost 

function in each stage (Pereira, 1989).  Therefore, each cut generated is actually valid 

for all of the scenarios in the entire previous stage and not only for the predecessor 

scenario.  Infanger (1996) validates this statement and states that if future cost 

functions do not depend on the current scenario, cuts generated for a particular 

scenario are also valid for any other scenario at the same stage.   

 Figure 12 represents a two-stage scenario tree in the traditional SPR 

representation.  Each arc (i.e., arc 1, 2 and 3) of this tree structure represents a similar 

problem in that the future value functions of all arcs are the same.  Because the future 

scenarios in the third week are the same, regardless of the stage 2 scenario, the SPR 

tree shown in Figure 12 could be “collapsed” into a network as shown in Figure 13.  
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Within the framework of the NSP definition, the uncorrelated case can be thought of 

as having a single state per week, where all hydrologic scenarios produce the same 

state.  Pereira (1989) presented cut sharing as a mechanism for improving 

performance of scenario tree optimization but did not suggest a collapsed graph like 

those shown in Figure 13. The collapsed graph provides a better visual representation 

of the fact that each arc shares the same future value functions, albeit one that is 

solved for many different initial storage vectors in the course of optimizing the 

stochastic optimization problem.   
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Figure 12: Special Structure of the NSP Network 
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Figure 13: Uncorrelated NSP Network 

 A second form of cut sharing is also possible in this model.  A cut generated 

for one scenario in the current stage can be converted to a similar cut for all of the 

scenarios in the current stage.  The validity of this cut sharing is proven in previous 

work via duality theory (Pereira, 1989; Infanger, 1996) and is best explained upon 

examination of the dual solution to the current subproblem as presented earlier in 

Equation 7: 
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Examination of the dual problem shows that, because the probability of the future 

scenario has no dependency on the current scenario, )|( 1 ttp ωω +  = )( 1+tp ω , the only 

difference between any two subproblems with the same future value function is the 
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coefficient 1')( −+ tttt xBb ω  in the objective function.  Thus, a dual feasible solution 

for one subproblem is feasible for all subproblems at that stage. As discussed in 

Section 2.2.2, a dual solution need only be feasible to generate a valid cut; optimality 

is not necessary.  A cut for one subproblem can be converted to a valid cut for another 

subproblem by adjusting for the difference in objective functions: 

( ))()'(, ttttt bb
t

ωωπ ω −  for each previous scenario.  The exact cuts are shown below in 

Section 3.3. 

Infanger (1996) extended the cut sharing strategy to models in which the 

stochastic scenario bt (hydrologic inflow scenarios in this research) has some 

dependency on the previous stage in the form of an AR(1) model where 

tttt bRb η+= −1 , with Rt being  a matrix of correlation coefficients and  tη  

representing a vector of random uncorrelated portion of the flow.  Using this type of 

simple correlation, Infanger was able to break the model down into an uncorrelated 

flow portion and a correlated flow portion in which the correlated flow portion 

existed only in the objective function of the dual problem and the uncorrelated flow 

existed only in the constraint list.  This structure of the problem allowed cuts to be 

shared between stages by adjusting the cuts using the correlated portion of the flow. 

(Details of this cut sharing methodology are described in Infanger, 1996.)  Infanger 

extended this model to general ARMA correlated models and also included the 

carryover term Bt as a stochastic parameter. 

Infanger developed this model as a general SPR model, not one developed 

specifically for water resources management.  In water resources management, a 

parametric correlation in hydrologic inflows is generally too simple of a 
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representation, and modeling the carryover term Bt as a random variable is 

unnecessary because whatever water is remaining at the end of one stage is precisely 

the amount of water remaining at the beginning of the next stage.  

Both models mentioned above were developed so that a sufficient number of 

cuts could be added to the solution without having to solve every scenario in the tree.  

By sharing cuts, these models were able to sample only a portion of the tree using 

Monte Carlo simulation.  

NSP differs from the previous research in a variety of ways.  First, the 

previous models assume that the stochastic variation in the hydrologic scenarios is of 

the form ∑∑=Ω tt xx...1 .  In other words, all the scenarios leaving one node are 

the same scenarios that are leaving a different node in that stage.  NSP does not 

require this assumption.  (If any two states have the same scenarios, with the same 

probabilities and ending states they can be collapsed into a single state.)  Second, 

previous research assumes a parametric process for determining inflow correlation, 

and NSP uses a non-parametric approach to map historical inflows into the network 

without using a parametric distribution of flows.  Finally, the lower bound calculation 

in previous models is determined either statistically or by solving an exponential 

number of subproblems.  The lower bound in NSP can actually be computed but does 

not require an exponential number of solutions.   

The cut sharing in an NSP model is similar to the cut sharing in the 

uncorrelated model of Pereira and Pinto (1991).  The main difference is that NSP 

requires one subproblem for each hydrologic state in each time period, while Periera 

and Pinto had one subproblem for a single state for each time period.  However, in 
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both approaches, all of the arcs coming into a node share the same future value 

functions.  Thus, cuts generated by any arc leaving a given node are valid for all of 

the arcs coming into the node.  

The second form of cut sharing in the uncorrelated model also generalizes to a 

correlated NSP network. Suppose, for example, that two arcs, A and B, enter the 

same node for the current time period.  A cut generated by solving arc A is passed 

back to all of the arcs that directly precede A using the reasoning in the established 

above. Because arc B shares the same potential future with arc A, the dual prices for 

the cut for arc A are valid for arc B as well, and the cut from arc A is converted to a 

cut for arc B by the same process used in the uncorrelated case:  adjust for the 

difference in objective functions: ( ))()'(, ttttt bb
t

ωωπ ω − . This new cut can then be 

shared with all the predecessors of arc B.  This technique differs from the 

uncorrelated case in that the predecessors of arcs A and B are frequently different. 

 
3.2 Stochastic Modeling of Inflows 

3.2.1 Creating arcs through the historical record 

  In developing the NSP network, approximately 100 years of historical data 

from the TVA basin were used to create hydrologic scenarios that are statistically 

similar to the historical record in that the scenarios maintain the spatial and temporal 

correlation of the flows.  In this network, hydrologic states are defined as functions of 

previous flows for each stage.  Once the hydrologic states have been defined, each 

historical flow is mapped into exactly one state for each stage with a transitional arc 

between states for each historical flow.  The probability of moving from one state at 

the current stage to another state at the future stage is simply the number of historical 
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arcs that make that state transition divided by the total number of historical traces 

leaving the state at the current stage: 

statecurrent   theleaving  traceshistorical ofnumber   total N
sition that tranmaking  traceshistorical ofnumber  x 

n transitiostategiven  a ofy probabilit  P
:where

x/NP

=
=
=

=

 

In the network, the sum of the probabilities of the arcs leaving a given state should be 

one. 

 
3.2.2 Defining Hydrologic States 

 Although the definition of the hydrologic state is a very important area of 

research, it is not the primary focus of this work.  Here, an intentionally simple 

definition of hydrologic state has been chosen, and further exploration of the 

definition is a topic for future research.  Many other definitions of the hydrologic 

state are compatible with the NSP network.   

 In this research, the hydrologic state is defined as a function of previous 

inflows.  Specifically, the hydrologic state is defined as the sum of total inflow volume 

into the entire watershed in the previous week.  To create the NSP network, a 

specified number of states are chosen for each week, and the state is determined by a 

specified percentile range.  For example, if three hydrologic states were assigned to a 

given week, the states could potentially represent the top, middle, and bottom third of 

previous flows.  The network is not limited by the number of states or the percentile 

assignments that could be used at each stage (i.e.,  3 states represented by top 20%, 

middle 60%, bottom 20% or 5 states each at 20%).   
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 Developing the NSP network in this manner preserves spatial correlation by 

using actual historical flows for each scenario.  It also potentially preserves temporal 

correlation throughout the network to the extent that the hydrologic states are well 

chosen.  

 The network setup is shown in Figure 14.  This network is broken up into five 

stages (each stage representing a week) with three hydrologic states at each stage of 

the network (representing, high, medium and low states).  In most basins, the short-

term forecast of hydrologic inflow is fairly accurate.  In particular, in TVA’s basin, 

forecasts for one week are assumed to be quite accurate and future flows are less 

certain (Gilbert, 1985).  For this reason, there is only one hydrologic scenario that is 

considered for the first week in the network.  Based on the historical record of flows 

for this particular week, week 1’s forecasted scenario could fall into any one of the 

three states considered.  Figure 14 shows the week 1 forecast falling into a middle 

state.   
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Figure 14: Creating the NSP network 

The probability of the week 2 transitions can now be determined based on the 

week 1 state.  For week 2, the number of historical traces for that time period that 

follow a middle flow value for the previous week is determined.  Knowing the total 

number of week 2 historical traces, it is possible to determine how many of these 

historic hydrologic scenarios then transition into a high, middle, or low state for week 

two. For example, if there were a total of 45 historical flow values for week 2 

following a middle state for week 1 and 15 of those historical values transitioned 

from a middle state in week 1 to a high state in week two, the probability of that 

particular state transition is 15/45 or 33%. It is possible that none of the historical 

traces follow a particular state transition. For example, if the network was very highly 

correlated it would be unlikely that a high flow state in week one would be followed 

by a low state value in week 2. 

This state transformation is then carried out for week 3, week 4, etc., 

developing transition probabilities for each arc in the network. The state 

representation in the final stage is different than the other stages because at this stage 

it is assumed that the future value of water is the same under all scenarios. The details 

of this assumption were mentioned briefly in Chapter 2 and are explained later. 

 
3.2.3 Alternative Definitions of Hydrologic State 

 Using just the basin’s previous week flow values as the definition of 

hydrologic state in the NSP network is an admittedly simple assumption.  It is 

possible to use any number of alternate functions to define the hydrologic state in the 

network, and more sophisticated approaches could improve the performance of NSP.  
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The alternatives that could be considered involve both temporal and spatial 

adjustments.  Temporally, one could examine previous flows in different numbers of 

weeks, average of recent weeks, exponential smoothing of recent weeks, etc.  In 

addition, base flow separation could enhance the accuracy of the model.  Spatially, 

one option would be to divide the flows into various subbasins.  In the TVA basin 

there is a significant distance between the upper and lower basins and significantly 

different geography.  Separate states for each basin could potentially provide a better 

representation of the streamflow characteristics. 

 Another alternative approach would be to define the hydrologic states based 

on physical criteria such as those used for Extended Streamflow Prediction (ESP) 

(Watkins and Wei, 2004).  The states could be tailored to a specific basin, and the 

alternative hydrologic scenarios could be similar to those generated via ESP methods.  

Each scenario would transition from one physical state to another and provide a series 

of hydrologic inflows for each reservoir.  The definition of the physical state might 

have to be simplified to keep the number of alternative physical states reasonably 

small.  

 Defining alternative hydrologic state is not attempted in this thesis.  However, 

results of the stochastic network solutions are more reliable as the network more 

closely describes the true physical characteristics of the basin.  For the purposes of 

this research purposes, the focus is the development of the NSP algorithm.  However, 

it could be possible that in some basins, previous inflows sufficiently capture the 

hydrologic state of the system. 

 
3.2.4 Reduction in Arcs – Efficiency Requirement 
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 When solving the NSP network, an individual linear program is solved several 

times for each arc in the network.  For this reason, the number of arcs in the network 

greatly affects the efficiency of the algorithm.  In this research, some historical 

streamflow scenarios that duplicate the transition between the same pair of states are 

removed from the network.  Figure 14 illustrates this removal in that there is only one 

arc connecting any two states.  The arc connecting any two hydrologic states 

represents a single historic streamflow scenario.  The aim is to represent the historical 

record as accurately as possible with a limited number of arcs per week by choosing 

good representative streamflow scenarios for each state transition.  If the number of 

arcs used to represent each state transition were not limited, the number of arcs 

examined at each stage in the network would be equal to the number of hydrologic 

scenarios in the historical record for that time period. 

 The number of arcs present in each stage can be any number.  The network is 

not limited to having only a single arc connecting any two states.  However, during 

the arc reduction process, at least one historical arc is retained per state pair (if one 

exists in the historical record) and the rest of the arcs are assigned to each state pair 

roughly proportional to the number of historical arcs that exist between each state 

pair.  For each state pair, the arcs that best represent the historical streamflow 

scenarios are the ones retained.  For example, if only one arc is retained for a given 

pair, the median historical value for that state transition is chosen.  If five arcs happen 

to be retained for a given state pair, the historical scenarios that roughly represent the 

percentiles of 10%, 30%, 50%, 70% and 90% are chosen.  When choosing the 

retained arcs for a given state pair, it is necessary to adjust the probability of the 
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retained arcs so that the state-to-state transition probability is the same as before the 

arc reduction.   

For example, suppose again that there were a total of 45 historical scenarios in 

this network for week 2 that followed a middle hydrologic state in week 1.  Earlier for 

explanation purposes, it was suggested that 15 historical scenarios made the 

transformation from a middle state in week 1 to a high state in week 2.  In addition to 

this state transformation, assume that there are five historical scenarios making a 

middle to middle state transformation, and 25 making a middle to low state 

transformation.  In this case, if there were four hydrologic scenarios to be used in 

week 2, one arc would be assigned to the top and middle state pairs, and two arcs 

would be assigned to the low state transformation because this state transformation 

has the highest number of historical arcs.  In this case, because the probability of 

making this transition is roughly 56% (25/45), each arc in this state pair would be 

assigned a probability of roughly 28% (56%/2).  This arc assignment example for 

week 2 is illustrated in Figure 15. 



 78

correlated, NSP network

0 1 2 3 4 5 6

Stage (time)

H
yd

ro
lo

gi
c 

S
ta

te

P1 = 33%

P2 = 11%

P3 = 28%

P4 = 28%

 

Figure 15: Arc Assignment 

  Alternatives to the approach mentioned above were not explored in this 

research.  However, there are other possibilities to consider when attempting to limit 

the number of arcs that are optimized.  For example, problems could only be solved 

for the historical traces that actually occurred. 

 
3.3  Scenario networks of the NSP algorithm 

 The network of the NSP algorithm takes advantage of this state representation 

to limit the size of the network as the number of stages increases.  In this section, two 

alternative limitations on traditional SPR trees are used to further explain the 

network.  In the first case it is assumed that the inflows at the current stage are 

uncorrelated with previous stage flows.  However, the spatial correlation of the flows 

is preserved.  The second case allows both spatial and temporal correlation of the 

inflows.  Specifically, in the second case, it is assumed that the system can be 

described as being in one of a finite number of hydrologic states as defined 
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previously.  In this case, the probability of an inflow vector depends only on the 

hydrologic state.  The hydrologic inflows are sufficient to describe the transition from 

the hydrologic state in one stage to the hydrologic state in the next stage.  The second 

case is a much more reasonable assumption for most watersheds given the correlation 

of inflows, but the uncorrelated case is both conceptually and computationally 

simpler and provides a good basis for the second state explanation.   

 Previously, the process of how cuts can be shared was illustrated; by adjusting 

for the difference in objective functions in the dual problem in general matrix form: 

( ))()'(, ttttt bb
t

ωωπ ω − .  In the following sections, the cut sharing technique 

specifically associated with this research conceptually using the primal form of the 

subproblem presented in Equation 3 is discussed. 

 
3.3.1  Uncorrelated Flows 

In the case of uncorrelated flows, special structure of the problem 

considerably reduces the number of cuts required to generate a sufficient 

approximation of the future value function.  Figure 12 represents a two-stage scenario 

tree in the traditional SPR representation.  Each arc of this tree structure represents a 

similar problem in that the future value function of each arc is the same.  Pereira 

(1989) showed that in this case, a cut generated in stage t + 1 is a valid cut for all 

stage t scenarios, allowing the network to be represented as shown in Figure 13.  In 

addition to this type of cut sharing that was explained earlier, duality theory also 

shows that a cut solved for any scenario in stage t, also produces a similar cut for the 

remainder of the stage t scenarios, just adjusted by the difference in inflow vectors.  

More specifically, suppose we solve a problem in period t+1 for inflow scenario i, at 
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reservoir r, which has inflows, It+1,r,i and with initial storage, St,r,k  and generate a cut, 

k: 

)( ,,,,,,,,, krtrt
r

ikrtkitit SSObjf −+≤ ∑π  

 
It is also possible to generate a valid cut for any other scenario, i′  just by shifting it 

by the difference in inflows: 

',,1',,1,,,,,,,,, )( iirtirtkrtrt
r

ikrtkitit IISSObjf ∀−+−+≤ ++′ ∑π  

 
Therefore, sharing cuts in this manner for the model represented in Figure 13 would  

generate three cuts to be used by the stage 1 solution, each time an individual stage 2 

scenario is solved.  This would produce a total of nine cuts each time stage 2 was 

solved (rather than the three that would otherwise be generated).  

In summary, if the hydrologic inflows were not temporally correlated, the 

network can be simplified to a single node for each time period. The arcs are still 

solved multiple times for alternate initial storage values (i.e., one or more storage 

values for each arc entering a node).  At optimality, the initial week has one optimal 

release schedule that optimizes the short-term value and the expected long-term value 

of water. If one of these scenarios after the first period is realized, it is possible to 

solve the second period arcs using the associated inflows and the initial storages that 

the first period solution provided. The second stage problem is to optimize the second 

period value and the expected long-term value. The optimal solution exactly 

corresponds to one of the cuts in the first stage LP.  As the algorithm steps forward 

through stages, alternately adding an inflow scenario and optimizing a time period, 

each solution corresponds to a cut in the previous stage.  A graphical representation 

for a two-stage and multi-stage problem of this type is shown in Figure 13.  Within 
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the framework of the NSP definition, the uncorrelated case can be thought of has 

having a single state per week.  All hydrologic scenarios fall into the same state.   

 
3.3.2  Correlated Flows 

The uncorrelated case is not realistic for most watersheds.  Most watersheds 

have temporal and spatial correlation in the hydrologic inflows, and previous research 

(Watkins et al., 1999; Yang and Read, 1999) has shown that models that ignore this 

fact under represent extreme scenarios in the hydrologic record.  It is possible to 

capture this correlation with a set of hydrologic states for each time period as defined 

earlier. The NSP network assumes that there are a relatively small number of 

hydrologic states that can differentiate the probabilities of future inflows.  As 

discussed earlier, in this research each state is defined as a function of the previous 

week’s hydrologic inflows. 

A network representation of the historical record would include one arc for 

each state transition.  This network may have multiple arcs between a pair of nodes. 

The number of arcs is proportional to the probability of making a particular transition 

between nodes, as illustrated in Figure 15.  This network is different than a typical 

SPR problem because it is not necessary to consider the entire historical record.  

Rather, there are several paths that can yield the same hydrologic state.  For each state 

in a given time period, there is a transitional probability of moving to a state at the 

next time period.  The probability of moving into a state in the next time period is 

dependent only on the current hydrologic state and not necessarily on how that state 

was reached.  In essence, the correlated NSP network represents a collapsed SPR tree 

that has different past scenarios leading to the same current hydrologic state.  By 
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designing the network in this manner, if each time period has a constant number of 

hydrologic states, then the size of the network grows linearly with the number of time 

periods.  (A linear increase in the number of states as a function of time would result 

in quadratic growth of the network, but this option in the was not explored in the 

current research.)  This NSP network is precisely the network of LPs that is optimized 

in this work.  A representation of this network can be seen in Figure 16. 
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Figure 16: Correlated NSP Network 

In a similar fashion as the uncorrelated case, special structure of the correlated 

network also allows for increased cut sharing.  In the uncorrelated network, all arcs at 

stage t end at the same node and, therefore, share the same future value functions.  In 

the correlated network, a subset of all of the arcs at stage t end at the same node and, 

therefore, a cut generated for any arc at stage t + 1 is a valid cut for the subset of arcs 

in stage t that end at that node.  For example, in Figure 16, a cut generated in stage 4 

for arc number 4, 5 or 6 is a valid cut in stage 2 for arcs 1, 2 and 3. 
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In addition to this type of cut sharing, for any cut  k that is generated at stage t, 

it is also possible to generate a feasible cut for any other scenario ending at the same 

node as the scenario that generated cut k by shifting cut k by the difference in inflows 

in the same manner as in the uncorrelated case: 

',,1',,1,,,,,,,,, )( iirtirtkrtrt
r

ikrtkitit IISSObjf ∀−+−+≤ ++′ ∑π  

For example, a cut generated for arc number 1 at stage 2 in Figure 16 would 

produce a feasible cut for arcs 2 and 3 but not any other arc in stage 2.  The increased 

cut sharing in the correlated case should also allow for sufficient approximation of the 

future value function without solving every possible subproblem.  Approaches to 

avoid solving every possible subproblem are discussed in detail in Section 3.7 below. 

 
3.4  Boundary Conditions 

In solving stochastic programming algorithms, there are some boundary 

conditions that must be considered.  The first boundary condition that exists in both 

previous research and the NSP algorithm is the initial reservoir storage levels at time 

 t = 0.  These storage levels are simply the current reservoir storages in the basin. 

A second boundary condition that was mentioned briefly in Chapter 2 must be 

set at the final stage of the network, stage T, in order to represent the future value of 

water beyond the end of the planning horizon.  Previous research has used differing 

choices for this boundary condition.  Jacobs, et al. (1995) developed SOCRATES in 

such a manner that the end of the planning horizon is at a period where the reservoirs 

should be drained in order to prepare for filling and therefore set the stage T future 

value of water equal to zero.  This has the effect of draining the reservoir at the end of 

stage T.   
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Watkins et al. (1999) also place zero value on the water supply beyond the end 

of the planning horizon for some reservoirs in their basin.  On other reservoirs, an 

ending target storage value is set as a constraint.  The reservoirs that have zero future 

value are drained at the end of stage T in the same manner as those in SOCRATES. 

  In the case studies used in this research, the stage T objective function 

implicitly includes ( )∑
r

Trr SFV , otherwise known as the “value of project storage” 

(VPS), which is the future value of water as a function of storage for each reservoir.  

This estimate of future value of is currently used by TVA in their one week 

optimization models, and serves as a logical boundary condition in the models used 

here as case studies.  The visual representation of this for a single reservoir was 

shown in Figure 2.  Another alternative to this boundary condition would be to set a 

range of possible ending storage values for each reservoir in the basin. 

 
3.5   Lower Bounds 

In this algorithm, the upper bound is being created by the addition of cuts in the 

stochastic program.  The second piece of the algorithm that must be considered is 

producing a lower bound on the network.  

Previous methods for determining lower bounds have generally involved two 

strategies.  The details of these methods are not presented here but can be found in 

Pereira (1989), Jacobs et al. (1995), and Infanger and Morton (1996).  The first 

method involves calculating a feasible objective function for every arc in the 

traditional SPR scenario tree.  The network representation of NSP could use this 

method by solving a subproblem for every waiting storage vector at each node on the 

forward pass; however, this approach is not reasonable because of the exponential 



 85

growth in the number of subproblems to solve at each stage (see discussion in Section 

3.7.1 and Table 1 in that section).   

The second method applied in previous research uses the Monte Carlo 

Simulation strategies (discussed in Chapter 2 and the beginning of Chapter 3) to 

reduce the number of subproblems solved in the scenario tree.  The lower bounds 

computed by applying this strategy are determined using a probabilistic argument 

based on the number of scenarios sampled during the forward simulation.  With this 

probabilistic argument, a tolerance can be set using the standard deviation to 

determine when the solution is close enough to optimality. 

The technique used to determine a lower bound in the NSP algorithm is not be 

determined statistically.  Rather, the lower bound is actually computed based on 

feasible solutions but does not require an exponential number of objective functions 

to be solved as in the first method mentioned above.  This is made possible by the 

network structure present in the NSP algorithm.  Conceptually, this lower bound can 

be visualized as in shown Figure 17.  
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Figure 17: Calculating a Lower Bound 

Due to the boundary conditions present in stage T, subproblems solved for 

arcs in this stage are different from the other stages.  They create both a true optimal 

solution for that stage for a given initial storage vector (the future is not estimated by 

cuts) and valid cuts for previous stages.  For explanation purposes, suppose two of the 

cuts generated to give an estimate of the stage 2 objective function are produced using 

point 1 and point 2 in Figure 17.  Theoretically, if a line is drawn connecting point 1 

and point 2, this is a lower bound on the objective function.  As mentioned earlier, the 

estimate of the objective function produced by the cuts is an over-estimate of the true 

objective function.  Once a lower bound has been established, it is possible to 

continue to sample the scenario tree until the difference between the upper and lower 

bound is small enough to be near acceptable optimality.  This lower bound is a 

feasible, but perhaps less than optimal solution. 
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Because the stage T subproblems create a true optimal solution for that stage 

for a given initial storage vector, the algorithm can be initialized with a lower bound 

for each waiting storage vector in the last stage equal to the optimal solution: 
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The next step is to calculate a lower bound for the waiting storage vector at a node 

(i.e., the expected value of the lower bounds for the arcs after that node):  
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This process can be generalized to arcs and nodes that are not in the last stage.  The 

arcs that precede each node can now calculate a lower bound for any initial storage 

vector by limiting the ending storage vector to be a convex combination of the storage 

vectors that have lower bounds at this node.  By constraining the ending storage 

vector, a true optimal solution may have been excluded.  Thus, the optimal objective 

function value is a lower bound on the optimal value.  Conceptually, the line 

connecting points 1 and 2 in Figure 17 represents this convex combination.  However, 

Figure 17 represents only a single reservoir. 
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 The linear program is as follows:  
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The complete algorithm for calculating a lower bound can now be stated as: 

1. Solve a forward pass of the existing stochastic programming algorithm, 
creating storage vectors (Sk) at each node (n) of the network. 

 
2. Use the optimal solutions for the arcs in the last stage as lower bounds for 

those arcs, LBa(Sk). 
 

3. Calculate lower bounds for each node, LBNn(Sk), based on the expected value 
of following arcs. 

 
4. Calculate lower bounds for the preceding stage arcs by limiting the final 

storage to a convex combination of storage vectors for the ending node. 
 

5. Repeat steps 3 and 4 until solving for the arc in the first stage. 

 

The result of the algorithm is an implicit operating plan for each arc for certain 

storage vectors for any set of arcs that might be realized.  Each ending storage vector 

(and thus each initial storage) is a convex combination of storage vectors for which 

lower bounds have already been calculated.  The operating plan for any of the arcs 
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leaving that node is the same convex combination of short-term operating plans 

associated with using those storage vectors as starting storages: 
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The linear programs in step 3 may be infeasible in theory.  In practice, calculation of 

the bound is abandoned if any LP is infeasible.  If a lower bound is infeasible, it is no 

longer possible to compute a total lower bound for the network because an arc lower 

bound cannot be passed back to the node to calculate the node lower bound. 

However, on future iterations, enough information should become available to 

eventually generate lower bound.  

If lower bounds are calculated for a given arc and waiting storage vector, the 

bounds and associated storage vectors should be retained; any of the previous lower 

bound solutions can be used as part of a convex combination.  This is similar to 

retaining cuts from previous solutions. 

 
3.6   Iteration of the Stochastic Programming Algorithm 

 Previous research has investigated the most efficient iteration procedure for 

the stochastic programming algorithm.  Morton (1996) and Jacobs et al. (1995) 

present several options for iteration:  shuffle, cautious, ε-shuffle, ε-cautious, and 

fastpass.  Their experience showed that fastpass was the most efficient and robust 
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iteration procedure and that same procedure is applied here. As mentioned in Chapter 

2, the fastpass procedure is as follows.   

The algorithm moves forward from stage 1 to stage T, with what is termed the 

“forward pass,” and solves each subproblem at a given stage.  The cuts from a 

subproblem are passed back to the previous time period. When the algorithm reaches 

the end of the planning horizon (stage T), it reverses direction and moves back to the 

first stage on a “backward pass.”  As the algorithm moves backward, problems are 

solved using the same initial conditions as during the forward pass, but there are now 

additional constraints in the form of cuts for the problem to use.  The backward pass 

also produces cuts to pass back to the previous time period, but it does not pass 

storage vectors forward to the future time period.  (In fact, during the backward pass 

after a storage vector is used, it is cleared and a new storage vector is used on the next 

iteration).  Each time the algorithm makes an iteration more cuts are added until the 

cut sufficiently approximates the future value of water.  This process continues until a 

solution is converged upon for the first time period.  (Discussion of convergence is 

provided later in this thesis.) 

From an implementation perpective, the forward and backward passes can be 

represented by a set of loops. A simplified version of the forward and backward pass 

algorithm would have the following structure.   

Forward Pass: 
 
t = state number 
k = hydrologic state variable 
w = waiting storage vector 
h = hydrologic scenario 
 
for ( t = 1 to T ) 
{ 
      for ( k = 1 to number of hydrologic states for time t ) 
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     { 
           for ( Upper  Bound then Lower Bound ) 
           NOTE: a lower bound is not computed on the forward pass 
           in all situations (explanation later). 
           { 

   for ( w = a subset of waiting storage vectors at state k ) 
    NOTE: for t = 1, the  storage vector is always the initial 
    storage vector for the entire run. 
    NOTE: if a subproblem is solved for every waiting  
     storage vector at state k, the NSP algorithm has the 
     same exponential growth as the traditional SPR 
     algorithm  (explanation to avoid this is later). 
     { 
          for ( h = 1 to # of hydrologic scenarios at state k) 
          { 
  Solve the subproblem for scenario h. 
  NOTE: if this is the Upper Bound, pass a new cut backward 
  and the ending storage vector forward. 
  NOTE: if this is the Lower Bound, pass the “duality Gap”  
  forward  (explanation later). 
          } 
     } 
            }  
      } 
 }    
     

 Backward Pass: 
 
 The backward pass is the same as the forward pass except: 
 

1. The backward pass moves from t = T to t = 1. 
2. The storage vector is cleared after it is used. 
3.  If the current subproblem is a lower bound, it is passed back to the previous period to 

compute the total lower bound  (explanation later).  
 

In this loop setting, the tightest loop is incremented first.  Once this loop reaches 

the end, it is reset to its initial value and the next outer loop is incremented. 

 The first time that a forward pass is performed there are no cuts available to 

provide guidance on the future value of water estimates for a given time period.  

Therefore, for the first initial pass, the value of project storage that TVA currently 

uses for their future value estimates is applied.  Note that this value is also the 

estimate that is used as a boundary condition for the future value at stage T.  Also, 

because the future value on the first forward pass is being estimated in this manner, 

we cannot generate valid cuts cannot be generated during this pass.  Once the 
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algorithm reaches stage T and begins the backward pass, the future value is based on 

the cuts, and cuts can now be produced to estimate the future value of storage.  Cuts 

can also be generated for all subsequent forward and backward passes.  This estimate 

on the first forward pass simply initializes the algorithm and provides some 

reasonable storage vectors to begin producing cuts.  In the future, it may be possible 

to use results from previous runs to establish estimates on the first forward pass.   

As the iteration proceeds, cuts and lower bounds tend to become irrelevant for 

earlier iterations.  The newer cuts and lower bounds tend to be used instead.  After 

enough iterations, the algorithm should eventually converge.  Details of convergence 

are discussed later. 

 
3.7  Reducing Waiting Storage Vectors 

During a forward pass of the fastpass algorithm, the solution of each 

subproblem at stage t results in a vector of ending storage values.  This ending storage 

vector becomes a vector of initial storage values at stage t + 1 for the descendant 

subproblems.  In the traditional SPR scenario tree, each subproblem has one vector of 

initial storage values waiting to be optimized because a single scenario precedes each 

node (see Figure 7).  The nodes single predecessor scenario produces this storage 

vector.  

In the NSP network, each subproblem may have several immediate 

predecessors and one waiting storage vector from each of these ancestors.  For 

example, in Figure 16 scenarios 1, 2 and 3 all terminate at the same node.  This would 

result in three initial storage vectors to be solved for arcs 4, 5 and 6.  In fact, if a 

subproblem is solved for every possible waiting storage vector in the scenario 
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network, the number of subproblems solved at each stage grows exponentially, and 

the only advantage over the traditional SPR tree is in the increased cut sharing.  

However, because each individual subproblem shares a similarity in structure when 

determining the objective function, it is not necessary to generate the objective 

function cuts for every possible waiting storage value. This is due to the cut sharing 

benefits of the NSP algorithm discussed previously.  On the other hand, it is 

necessary to sample enough of the network to produce a good approximation of the 

objective function.     

 The presence of multiple waiting storage vectors at each node results in the 

algorithmic choice of which storage vector to use as the initial storage vector for a 

given subproblem.  In this research, two methods for choosing a waiting storage 

vector at a node are implemented.  The first approach, which is similar to the Monte 

Carlo simulation of previous research, is to randomly select one storage vector to 

solve at each node.  

 
3.7.1 Choosing a Waiting Storage Vector Via the Duality Gap 

A second option is to score each of the waiting storage vectors with a criteria 

and choose the vector with the best score.  The “score” used here is the duality gap 

for a given storage vector (i.e., the difference between the current upper bound and 

lower bound for that vector).  The procedure to choose a waiting storage vector via 

the duality gap is based on the lower bound computation discussed previously.  This 

duality gap is determined by first solving an arc for a given waiting storage vector 

using the cuts as the future value estimate.  The ending storage vector of this solution 

is passed to the next time period along with an associated upper bound. A lower 
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bound is then computed for this same arc using the same initial waiting storage vector 

by constraining the ending storage in the manner described above to compute a lower 

bound.  This lower bound is then subtracted from the upper bound for the waiting 

storage vector associated with this arc.  The waiting storage vector now has an 

associated gap between the upper and lower bound, and the storage vector with the 

largest gap is used in the next forward pass.   

The only requirement to computing a gap in this manner is that a feasible 

solution for a lower bound has been found for all arcs in future stages.  Because a 

lower bound is not computed until the backward pass, the first forward pass cannot 

choose waiting storage vectors in this manner.  In practice, on the first forward pass 

the random method is used for selecting a waiting storage.  Also, on subsequent 

iterations, if a lower bound was not feasible for any future arcs, again the random 

method is used for choosing a waiting storage.  This should not occur often but is 

more likely during early iterations. 

Selection of the vector with the largest gap was chosen because it has the 

largest potential to result in new information that should either reduce the upper 

bound or increase the lower bound.  However, when choosing the storage vector in 

this manner, it becomes necessary to compute both an upper and lower bound for 

each arc.  This doubles the number of subproblems solved at each stage.  However, 

choosing the storage vector in this manner could have the potential advantage of 

causing the algorithm to converge with fewer iterations.  

 The number of subproblems that need to be solved at stage n of a forward pass 

for each alternative, as presented, is shown in Table 1. 
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Table 1: Number of solutions for a forward pass in 

week n of a 10-week solution 
 

Nodes per Week*  = 3 
Branches per Node = 3      

            

Week  1 2 3 4 5 6 7 8 9 10 

Algorithm            
All Waiting 
Storages        1 3 9 27 81 243 729 2187 6561 19683 

Random  1 3 9 9 9 9 9 9 9 9 

Duality Gap  2 6 18 18 18 18 18 18 18 18 

      
Nodes per Week* = 5 
Branches per Node = 5  

Week  1 2 3 4 5 6 7 8 9 10 

Algorithm      
All Waiting 
Storages  1 5 25 125 625 3125 15625 78125 390625 1953125 

Random  1 5 25 25 25 25 25 25 25 25 

Duality Gap  2 10 50 50 50 50 50 50 50 50 

      

*Week 1 & 2 have a single node   
 

As shown in Table 1, reducing the number of waiting storages significantly decreases 

the number of subproblems solved at each stage of the network, especially beyond the 

fourth stage.  

 
3.7.2  Iteration: When to Calculate Lower Bounds  

The calculation of a lower bound requires one solution for each waiting 

storage vector in the network during a backward pass.  During the forward pass, an 

arc in the network is solved only for a single waiting storage vector.  For the network 

shown in Figure 16, this would result in three waiting storage vectors to consider at 

each node (one for every arc entering a node).  On the forward pass, a solution is 

calculated only once for each arc, but when computing a lower bound on the 

backward pass, a lower bound solution is calculated for all three waiting storages at 

each node. However, because the number of problems solved during the forward pass 
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has been limited, the number of solutions required to calculate a lower bound is still a 

linear function of the number of stages.  The number of lower bound subproblems 

required to be solved at stage n of a 10-week solution is shown in Table 2.  Note that 

an upper bound solution is still solved once for each arc during the backward pass, so 

the total number of solutions solved at each stage is also shown in Table 2. 

 
Table 2: Number of lower bound solutions for a backward pass in 

week n of a 10-week solution 
 

Nodes per Week*  = 3 
Branches per Node = 3      

            

Week  1 2 3 4 5 6 7 8 9 10 

Solutions            

Lower Bound        1 3 9 27 27 27 27 27 27 27 

Total  2 6 18 36 36 36 36 36 36 36 

      
Nodes per Week* = 5 
Branches per Node = 5  

Week  1 2 3 4 5 6 7 8 9 10 

Algorithm      

Lower Bound  1 5 25 125 125 125 125 125 125 125 

Total  2 10 50 150 150 150 150 150 150 150 

      

*Week 1 & 2 have a single node   
 

Again, it is possible that during the backward pass, the computation of a lower bound 

for any given arc could be infeasible.  If this occurs, the iteration procedure quits 

attempting to compute a lower bound for the network and waits until a subsequent 

pass to compute a lower bound. 

 
3.7.3   Convergence 

All optimization solvers, as well as previous stochastic programming 

algorithms, terminate when the solution is within a given optimality tolerance.  



 97

Specifically, stochastic programming algorithms terminate when upper and lower 

bounds are within a specified tolerance level: 

nceGap ToleraLBUB ≤−  

Generally, the benefit of reaching true optimality does not outweigh the additional 

cost and time associated with doing so. Therefore, it is acceptable to terminate 

computation when the upper and lower bounds are within some tolerance level.   

 Above the mathematical formulation for computing a lower bound for the 

NSP network was described.  Computing the lower bound requires a feasible solution 

to every subproblem in the future stages.  As shown each time a lower bound is 

computed on a backward pass in a three-branch network, a total of 36 subproblems 

would be solved at most stages (Table 2) as opposed to 9 (Table 1) if subproblems 

were solved only for a single waiting storage vector.  While the total number of 

subproblems solved grows linearly as the number of stages increases, there are still 

more subproblem solutions than if only an arc for a single waiting storage vector were 

solved (Table 1 vs. Table 2).   

For this reason, in practice, a lower bound is not calculated on every pass. 

Instead, a total lower bound is computed with user-determined frequency.  The 

frequency needed to adequately compute a total lower bound is not known a priori 

but must be identified by experimentation. 

Ultimately, the concern in solving this NSP problem is deciding at what point 

enough problems have been solved and enough cuts generated to guarantee 

optimality.  After the forward and backward pass, the algorithm could evaluated if the 

first period solution is sufficiently close to optimality.  If it is sufficiently close to 
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optimality, a reasonable first period solution has been found and the iteration 

procedure stops.  Otherwise, another forward and backward pass is performed.  For 

determining optimality in case studies used in this research, the appropriate gap 

between upper and lower bounds is uncertain.   

In this research 13 iterations were performed and the results of the upper and 

lower bound computations were examined.  In these test cases, the appropriate 

convergence criterion is not known a priori, and this should also be determined by 

experimentation.   

 
3.8  Goal Programming 

 Estimation of the future value function through Bender’s cuts assumes a 

convex shape of the future value function at all storage levels.  If only a single 

objective function is considered (maximizing the economic benefit of hydropower) 

this is always the case.  The initial test cases presented in this paper use only a single 

objective to analyze the validity of the NSP algorithm. 

 In practice, realistic problems would likely use Preemptive Goal Programming 

constraints in the model.  These goal programming constraints consider multiple 

objectives such as minimum flows, minimum storages, maximum fluctuations, etc. 

This research considers one multi-objective test case as a more realistic operations 

study.  When considering multiple objectives, it is possible for there to be points in 

the curve that are non-convex.  These points in the curve exist where there are 

competing objectives between minimum (or maximum) storage levels and release 

decisions.  At these storage levels, release decisions are not optimal from an 

economic standpoint because the solution is attempting to meet the minimum (or 
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maximum) storage levels.  In the case of minimum storage levels, instead of making 

the optimal economic release decision, the solution releases the minimum flows in 

order to meet the storage objective.  

At the storage values where this occurs, the shape of the objective function 

diverges from the optimal objective curve, as shown in Figure 18.  As the releases are 

held back to meet these storage values, the maximum economic return of 

hydroelectric releases is larger than the economic return of reducing flows to meet 

storage constraints.  As the storage drops well below the storage values in these goal 

programming constraints, the minimum releases become closer to the true optimal 

release decision and the curve eventually returns to the optimal curve.  The same 

thing occurs at the other end of the curve with maximum releases and high storage 

values. 
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Figure 18: Goal Programming Curve 
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If a cut is produced for values of storage just below the minimum value, S1, or 

just above the maximum value, S2, the cuts eliminate a large portion of the future 

value estimate.  To account for this problem, when a given subproblem ends with 

storage values below the minimum goal or above the maximum goal, these storage 

values are adjusted to be just inside of the convex region, and a cut is produced along 

the dotted lines in Figure 18. 

This is a reasonable choice to make because the goal of the stochastic 

programming algorithm is to keep the system in normal operating conditions.  By 

generating a cut for the future value estimate that is guaranteed to be within the 

convex region, the feasible region is limited to the normal operation range.  Also at 

the extreme levels (which are rare), the system is not likely to be operating under 

economic considerations. 

It is possible that several locations in the future value curve have this 

nonconvex structure.  For example, in TVA’s models, their goal programming 

constraint sets have prioritized goals for top and bottom of daily operation zones, 

balance guide levels, flood guide levels, etc.  The region in which the storage level is 

to be constrained is the inner most gap between high and low storages.  Specifically, 

for the reservoirs for which cuts are being generated for in this research, this region is 

the area between the balancing guide and the flood guide level.  If other goals existed 

inside of this region, it would be possible to adjust the storages to be within that 

range. 

 
3.9  Implementation into a Hydrologic Modeling Tool: RiverWare 
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 The NSP algorithm presented in this paper is implemented in a hydrologic 

modeling tool known as RiverWare.  RiverWare is a generalized river basin decision 

support system that allows for site-specific construction of basin models using a point 

and click interface (Zagona et al., 2001).  Optimization solutions in RiverWare are 

based on Preemptive Goal Programming that automatically linearizes the decision 

variables and utilize the very powerful commercial linear program solver CPLEX 

(Eschenbach et al., 2001)      

 By implementing this algorithm into RiverWare, it is possible to take 

advantage of work that has already been done.  Primarily, it is easy to build relatively 

realistic reservoir basin models to test the NSP algorithm.  TVA has already 

constructed optimization models of their basin in RiverWare and has been very 

cooperative with sharing models, supplying data, and providing feedback on model 

construction.  These models already contain constraint sets, economic data, individual 

reservoir power calculations, etc.  Without taking advantage of previous work in 

RiverWare, the development of a basin model would be a very difficult task. 

 Also, if the NSP algorithm proves to be a valuable tool, it is likely that it could 

be implemented as a commercial product in RiverWare with follow-on work, code 

enhancements, etc.  Developing the algorithm in the RiverWare framework makes 

this transition more possible. 

 Implementation of this algorithm into RiverWare involves an extensive 

amount of coding in C++.  The code for this project utilizes a large portion of existing 

C++ code written for RiverWare as a commercial project and also introduces an 

extensive amount of new code written for research purposes.  New code added to the 
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RiverWare C++ library includes, but is not limited to, new user-interface objects 

known as slots for inputting data regarding the NSP network, user-selectable methods 

for determining the specifics of the NSP algorithm (i.e., duality gap vs. random 

waiting storages, lower bound computations, etc.), a new time controller to perform 

the forward and backward pass of the NSP algorithm, logic to appropriately iterate 

through the NSP network, data objects to store data, etc.  A sample of some of the 

slots added to RiverWare for this research is shown in Figure 19.  

The efficiency criterion in this research is based on reducing the number of 

subproblems to be solved.  In implementing this algorithm into RiverWare, no 

consideration is made to reduce the computation time of an individual subproblem.  

Future work could make this improvement in efficiency as well. 
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Figure 19: Slots Added to RiverWare for the NSP Algorithm 

 
3.9.1  Modeling Assumptions for Algorithm Implementation 

In order to implement this algorithm using an existing RiverWare model, it is 

necessary to make several assumptions regarding the physical conditions of the 

system.  First, the NSP algorithm does not generate Bender’s cuts for every reservoir 

in the basin.  Instead, the focus is on generating cuts for the largest reservoirs in the 

system that have the greatest impact on the economic operation of the basin. The 



 104

remainder of the reservoirs are considered run-of-river reservoirs that do not have 

much potential for their long-term storage levels to vary and whose operation is 

driven more by inflow conditions and short-term economic value (rather than long-

term economic considerations).  For these reservoirs, the storage value is fixed at the 

beginning and end of each stage to a target value.  However, these reservoirs are 

allowed to fluctuate between the start and end dates of the individual subproblems. 

 It was also necessary to make assumptions regarding the modeling of lagged 

reaches.  In the NSP algorithm, when the model progresses from stage t to stage t + 1, 

the only data that are moved forward to use in the solution to the next stage is the 

ending storage vector for the large reservoirs mentioned above.  However, for reaches 

that require some lagged inflow values to solve for outflow, no data are retained from 

dates previous to the beginning of stage t + 1.  To circumvent this problem, the 

lagged inflow values are set equal to zero for the appropriate number of timesteps 

before the beginning of stage t + 1.  Also, for the sake of consistency, when solving 

stage t, the lagged inflow values for the appropriate dates at the end of the stage are 

set equal to zero.  In theory, such flows could be incorporated into the cuts rather than 

being fixed. 

  Another difficulty in the physical modeling of the basin is in regards to 

reservoirs that do not have a direct relationship between pool elevation and storage 

(known as sloped storage reservoirs).  As much as possible, these reservoirs are 

treated in the same manner as run-of-river reservoirs mentioned above by setting 

target values at the beginning and end of each stage.  However, these reservoirs are 

slightly more difficult to constrain in this manner because there is no direct 
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relationship between pool elevation and storage.  Depending on the inflow conditions 

into the reservoir, for a given pool elevation, the storage may vary.  Also, for these 

reservoirs, in order to compute storage at a current timestep, lagged inflows must be 

considered in a similar manner as lagged reaches.  To circumvent this problem as 

much as possible, the lagged inflow values are constrained prior the beginning of a 

stage.  Specifically, reasonable flows are chosen for the time of year that the model 

considers.  The pool elevations were constrained at the beginning of each stage as a 

target, and RiverWare was allowed to solve for storage value.  At the end of the stage, 

only the pool elevation was constrained, but the outflow and storages were allowed to 

vary.  This could cause some minor discrepancy because the ending conditions of 

stage t do not exactly coincide with the initial conditions at stage t + 1.  These 

discrepancies should be minor. 

 All of the above assumptions were made so as to be able to maintain ending 

conditions of one stage as the beginning conditions of the next.  While these 

assumptions may not be perfect from a physical modeling standpoint, they should 

have limited effect on the outcome of the results and are necessary for analyzing the 

NSP algorithm.  Future research could examine more realistic assumptions from a 

physical modeling perspective but should have no effect from an algorithm 

implementation viewpoint. 
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Chapter 4 
 
 

CASE STUDIES USINGTHE TENNESSEE RIVER BASIN 
 
 
 

 The Network Stochastic Programming algorithm is tested using the Tennessee 

River Basin.  The Tennessee Valley Authority (TVA) has been using optimization in 

RiverWare to aid in operation of their basin for over a decade, and TVA’s existing 

RiverWare models to are utilized in this research. This chapter introduces some of the 

general characteristics of TVA’s basin.  The sources for the information regarding 

their system include: www.tva.gov, Biddle (1999, 2005), Shane and Gilbert (1982), 

and Gilbert (1985). 

This chapter also explains the alternative NSP networks that were analyzed in 

this research, as well as the motivation behind the cases chosen.    

 
4.1  TVA: General Characteristics 

TVA is the largest public power provider in the United States.  On average 

they generate 16,000 GWH/year. They operate 49 dams and reservoirs and provide 

power to an area of nearly 80,000 square miles including all of Tennessee and parts of 

Mississippi, Kentucky, Alabama, Georgia, North Carolina and Virginia (Figure 20).  

TVA’s power facilities include 11 fossil fuel plants, 29 hydroelectric dams, 3 

nuclear plants, 6 combustion turbine plants, a pumped-storage facility, and 17,000 
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miles of transmission lines.  The operation of their basin is considered multi-

objective, and the operation plan supplies year-round commercial navigation, reduced 

risk of flooding, affordable and reliable electricity, improved water supply, improved 

water quality, and recreation opportunities.  The basin receives nearly 50 inches of 

rainfall and 22 inches of runoff annually. The average monthly runoff in the basin is 

shown in Figure 21. 

 

Figure 20: Map of the Tennessee Valley 
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Figure 21: Mean Monthly Runoff in the Tennessee Basin 

The Tennessee River Basin begins in the Smoky Mountains of Tennessee and 

North Carolina.  The reservoirs in this region provide most of the dynamic storage in 

the basin because they are generally deep reservoirs that allow for a wide range of 

potential operating head.  The turbines in these reservoirs typically generate 

electricity less frequently than the reservoirs further downstream because water is 

held back to be used when the demand is greatest.   

As the water flows out of the Smoky Mountains and heads into the Tennessee 

Valley, it flows through a series of large sloped storage reservoirs.  These reservoirs 

have the appearance of big, wide rivers that are relatively shallow, especially 

compared to the storage reservoirs of the Smoky Mountains.  These shallow 

reservoirs provide less dynamic storage but carry a tremendous volume of water.  

These reservoirs generate electricity more frequently, including more off peak 

generation, because if the turbines are not open, the water is likely to spill and be 

wasted.  Since these are almost run-of-the-river reservoirs, whatever water comes into 

the reservoir must go out relatively quickly, either as spill or through turbines. The 



 109

percent utilization of the hydroplants at upstream storage reservoirs and the 

downstream sloped storage reservoirs are shown in Table 3.  With the exception of 

only a few of the upstream reservoirs, the downstream reservoirs generate electricity 

more frequently. 

 

Table 3: Percent utilization of hydroplants in the TVA basin 

Upstream Res. % Utilization  Downstream Res. % Utilization 
GREAT FALLS 52%  FT. LOUDOUN 59% 
NORRIS 43%  WATTS BAR 52% 
MELTON HILL 23%  CHICKAMAUGA 66% 
SOUTH HOLSTON 29%  NICKAJACK 65% 
WATAUGA 22%  GUNTERSVILLE 64% 
WILBUR 23%  WHEELER 41% 
BOONE 21%  WILSON 45% 
FT. PAT HENRY 31%  PICKWICK 59% 
CHEROKEE 26%  KENTUCKY 65% 
DOUGLAS 31%    
FONTANA 36%    
CHATUGE 24%    
NOTTELY 22%    
HIWASSEE 19%    
APALACHIA 69%    
BLUE RIDGE 32%    
OCOEE 3 69%    
OCOEE 2 55%    
OCOEE 1 40%    
TIMS FORD 23%    

 

 

The physical makeup of this system is such that the downstream slope power 

reservoirs act as a bottleneck to the upstream reservoirs.  Water that is released from 

the upstream reservoirs in the Smoky Mountains eventually flows through the sloped 

power reservoirs downstream.  In fact, if the upstream reservoirs release large 
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amounts of water, the sloped power reservoirs are likely to spill water even if the 

turbines are operating at full capacity.  

 
4.2   Optimization in TVA 

Currently, TVA uses RiverWare for two different optimization models.  The 

first is a two day model with an hourly timestep.  The second model, which is the one 

used herein as the basis for NSP, is a 1- to 2-week model with a 6-hour timestep.  

This model is used to develop a weekly hydropower generation schedule that utilizes 

the flexibility of the TVA reservoir system to reduce the total power supply cost 

(Biddle, 1999).  This model is a deterministic optimization model that considers only 

a single hydrologic scenario for the upcoming week.  However, this model can be run 

several times per day if the forecast for the future hydrologic scenario changes. 

In this model, TVA utilizes preemptive goal programming (Eschenbach et al., 

2001) with potentially over 900 goal programming constraints depending on which 

season the model is considering (Biddle, 2005).  The model uses linear goal 

programming to define physical constraints on the reservoir system, such as 

backwater profiles, as well as user-defined prioritized constraints including flood 

control, navigation, recreation, water quality, etc. (Biddle, 1999).  The recommended 

hydropower generation schedule maximizes the short-term avoided operating cost 

plus the total future value of water remaining in storage.  The avoided operating cost 

at each reservoir is determined by replacing more expensive forms of power 

generation, such as market purchases or fossil fuels, with less expensive hydropower 

(Biddle, 1999).  
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The RiverWare models that TVA uses in practice contain a large amount of 

data, including hourly hydropower values for the short-term optimization period, 

expected future hydropower value of stored energy beyond the short-term, guide 

curves, minimum operating levels, etc (Biddle, 1999).  The layout of this model is 

shown in Figure 22. 

 

Figure 22: TVA’s RiverWare Optimization Model 

 

As a current estimate of the future value of stored energy beyond the short-

term, TVA produces a single future value curve per reservoir (Figure 2), known as the 
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value of project storage (VPS).  As discussed previously, the value of project storage 

is determined as a function of storage in each reservoir.  The summation of the value 

of water remaining in storage in each reservoir at the end of the planning horizon 

provides the cumulative future value of water remaining in the basin, ( )∑
r

rr SFV . 

TVA determines this VPS value for each reservoir by using end-of-season target 

elevations, expected future hydrologic inflows, and expected market value of 

hydropower.  The VPS estimates are somewhat stochastic in that they do consider 

alternative historical hydrologic inflows, but they use relatively simple averaging of 

the historical record to produce these curves.  In addition, these VPS curves provide 

an estimate of the future value of water in a single reservoir without consideration of 

the water remaining in storage for other reservoirs.  Biddle (1999) provides a more 

detailed explanation of TVA’s use of RiverWare.  

 
4.3  Case Studies Performed 

 Several case studies are used to evaluate the NSP algorithm.  In choosing 

these case studies, the intention is to show a variety of different NSP networks to 

demonstrate that NSP can produce reasonable reservoir operation schedules without 

encountering the exponential growth seen in traditional SPR.  Implementation of the 

NSP algorithm in itself avoids the exponential explosion, and the results from these 

case studies will demonstrate that the NSP algorithm also provides acceptable 

solutions in a reasonable number of iterations.   In addition, these case studies will 

allow comparison of solutions for alternative NSP network setups to determine the 

factors to which the NSP algorithm is sensitive.  
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In this research, although the model shown in Figure 22 is used, the focus of is 

primarily on optimizing the short-term avoided cost plus the long-term expected 

value, and in most of the runs, the other goal programming constraints are not 

considered.  This choice was made primarily to determine if the concept of the NSP 

algorithm is acceptable, however, one goal programming case study is used to test 

NSP under more realistic operating conditions.  One long-term goal of this research is 

to potentially replace TVA’s current estimate of expected future hydropower value of 

stored energy beyond the short-term.   

All of the case studies in this research are divided into one-week stages.  An 

individual subproblem is a one-week model that is solved using 6-hour timesteps.  

TVA uses a 6-hour modeling timestep because it is adequate to capture the variation 

in power value for purposes of weekly planning in their basin.  At a larger timestep, 

too much approximation is required, and the model cannot sufficiently capture the 

details of the daily operation.  In practice, TVA further refines the results from the  

6-hour model using the hourly model over 2 days.  In other basins, it may be worth 

the computational effort to model the entire week with an hourly timestep.   

Therefore, in case studies used in this research, each arc corresponds to one 

week, and each week is modeled at a 6-hour time step, meaning that each arc 

represents a vector of 28 hydrologic inflows for each reservoir.  All other data in the 

model, input as well as computed, exist in this form.   

Because the reservoirs in the upper basin have more dynamic storage, the NSP 

algorithm generated Bender’s cuts for some of the storage reservoirs in the upper 

basin and constrains the beginning and ending storages for the remainder of the 
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reservoirs at each stage as (discussed in Chapter 3).  Due to the physical 

characteristics of the TVA basin discussed in Section 4.1, this is an acceptable 

modeling assumption.  The five largest storage reservoirs in TVA’s basin have been 

chosen as the reservoirs for which Bender’s cuts are generated. These reservoirs are 

Cherokee, Douglas, Hiwassee, Norris and Fontana.  In theory, more reservoirs could 

be included for producing Bender’s cuts, with the expectation that convergence might 

be slightly slower.  However, the algorithm would remain unchanged. 

The test cases begin on February 7 and cover a duration of 1 to 8 weeks.  This 

time period is considered the beginning of the spring fill season in the TVA basin and 

the largest hydrologic inflows arrive in the sixth, seventh and eighth weeks.  NSP 

networks that consider more stages should anticipate these large inflows in the future 

and adjust the reservoir releases accordingly. 

All test cases that are setup as correlated NSP networks consider 3 states per 

stage.  The historic hydrologic inflows are mapped to these states (as discussed in 

Section 3.2).  Only a single scenario was used to represent each state-to-state 

transition.  The 3 hydrologic states represent a low, middle, and high hydrologic state 

with the low state representing the 40th percentile (0.0 to 0.4), the middle state 

representing the succeeding 40th percentile (0.4 to 0.8), and the high state representing 

the highest 20th percentile (0.8 to 1.0).  These percentiles were chosen ad hoc upon a 

brief visual examination of the historical data, but no further analysis was done to 

determine these states. 

 
4.3.1  Research Questions 
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The primary questions to be answered in this research revolve around NSP as 

a potential stochastic algorithm for reservoir scheduling.  Below are the primary 

questions identified regarding NSP.  

1. Does the upper bound converge on a solution, and if so, does it converge in a 

reasonable number of iterations? 

Answering this question will verify that conceptually, the NSP algorithm 

works as anticipated.  The upper bound should converge rapidly due to the 

increased cut sharing in the NSP algorithm.  Each alternative NSP network 

used as a test case will address this question.  To address this question, an 

uncorrelated 8-week model, several correlated 8-week models, a correlated 6-

week model, and a correlated 4-week model were used. 

2. Is there a difference between the correlated and uncorrelated models? 

Answering this question allows an evaluation to determine if NSP is 

sensitive to correlation in the models.  In the framework of NSP, the 

uncorrelated model has a single state at each state.  Solving the uncorrelated 

network using NSP turns out to be the same cut sharing algorithm that 

Infanger and Morton (1996) proposed for “SLP-T with stochastic parameters 

exhibiting interstage independence.”  To answer this question, a single 8-week 

uncorrelated model is used and the results are compared with several 8-week 

correlated models.  

3. Does the solution depend on the number of stages? 

Answering this question will provide a determination if the NSP 

solutions are dependent on the number of stages in the network.  Previous 
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research in stochastic programming with recourse suggests that the solution is 

not dependent on the number of stages (Jacobs et al., 1995).  To answer this 

question, a correlated 4-week model, a correlated 6-week model, and several 

correlated 8-week models, are compared. 

4. How do the stochastic solutions compare with TVA’s current VPS future value 

estimate? 

This question is posed in order to compare results of this research to an 

existing method that is used in practice and to provide a basis to determine if 

the results from NSP are reasonable.  To make this comparison, one 

deterministic model is solved using TVA’s current future value estimate and 

the results are compared to the NSP networks (discussed in Question 1 

above). 

5. Is it possible to compute a lower bound to guarantee acceptable optimality? 

This question is posed in order to determine if the proposed method for 

computing a lower bound is effective as implemented.  Previous research that 

limits the exponential growth of the scenario tree has been able to determine a 

lower bound only statistically.  The proposed method herein should compute 

an actual lower bound.  This question is answered using all the NSP networks 

discussed in Question 1. 

6. Is there improved efficiency when choosing waiting storages based on the 

duality gap? 

Answering this question provides a determination if choosing waiting 

storage vectors selectively within the NSP algorithm improves the rate of 
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convergence.  In order to evaluate this question, a correlated 8-week model 

that selects waiting storage vectors using the duality gap is compared with 

three correlated 8-week models that randomly select waiting storage vectors. 

7. Can the NSP algorithm converge on a solution when considering goal 

programming? 

Answering this question we provide a determination if the NSP 

algorithm works when goal programming constraints are considered.  Because 

TVA uses goal programming constraints in their optimization models, this 

provides a realistic test case for them.  For this evaluation, a correlated 6-week 

model with goal programming constraints is used.  

 

A comprehensive list of the test cases examined to answer these questions is 

provided in Table 4.  These test cases should allow for sufficient analysis of the NSP 

algorithm and reveal strengths and weaknesses of the current algorithm. 
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Table 4: Test cases performed to analyze the NSP algorithm 

  Cut    
Storage 
Vector  LB comp  

 Weeks Reservoirs States/Stage Arcs/Stage** Selection Passes Frequency Reason 
VPS 1 5 N/A N/A N/A N/A N/A BASE 
CASE 1 8 5 1 9 RAND 13 4 uncorrelated 
CASE 2 8 5 3 9 RAND 13 4 RAND/cor/LB 
CASE 3 8 5 3 9 RAND 13 2 RAND/cor/LB 
CASE 4 8 5 3 9 RAND 13 2* RAND/cor/LB 
CASE 5 8 5 3 9 GAP 13 2* GAP/cor/LB 
CASE 6 6 5 3 9 RAND 13 1 6 v. 8-week/LB 
CASE 7 4 5 3 9 RAND 13 1 4 v. 8-week/LB 
CASE 8 6 5 3 9 RAND 13 N/A Goal Programming
 
*the lower bound algorithm was modified slightly for these test cases.  

**there is one arc for stage 1, three arcs for stage 2, and  nine arcs for each successive stage. 
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Chapter 5 
 
 

RESULTS AND DISCUSSIONS 
 
 
 

In this chapter, the results of each individual run are presented first.  The 

results include: 

• End of stage 1 storage values for each cut reservoir as a measure of how 
much water is released in the first week. 

 
• Short-term objective function (stage 1 avoided cost) 

• Total objective function (combined stage 1 avoided cost plus future value) 

• Upper bound convergence 

• Lower bound convergence when possible 

• Reduced cost (a.ka. marginal value, shadow price) of increased storage for 
each cut reservoir at the end of the first stage for selected cases  

  
These results show (1) whether or not NSP can generate a solution in a 

reasonable number of iterations, and (2) whether or not NSP produces reasonable 

solutions for the short-term release schedule.  After presenting these run results 

individually, the lower bound implementation is discussed along with selecting the 

waiting storage vectors using the duality gap (presented in Section 5.2).  In Section 

5.3, the upper bound solutions are compared in several ways.  In Section 5.4, a 

comparison of solutions is made in order to analyze the benefits of an accurate future 
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value assumption.  Finally, in Section 5.5 a very simple sensitivity analysis is 

provided.   

 When comparing differences between total objective function values in many 

of the results in this chapter, the differences are very small when expressed as a 

percent difference.  For example, the difference in the total objective function values 

between using the VPS future value estimate and the 8-week NSP stochastic networks 

ranges from .00016 to .00025% when combining short-term and long-term objective 

functions (as discussed later in Section 5.3). Based on these differences it is possible 

to make an erroneous conclusion: the choice of algorithm does not matter. However, 

this same example also illustrates the differences are significant; if these differences 

are extrapolated over the course of 52 weeks, the total dollar difference ranges from 

approximately $2,000,000 to $2,500,000.  (This extrapolation over 52 weeks is a 

rough estimate and only illustrates a potential benefit.  It is possible (in fact, likely) 

that the differences presented in Section 5.3 could be either larger or smaller if the 

test cases considered different seasons, hydrologic states, network setups, or any other 

perturbations in addition to those considered in these test cases.) 

 Two factors explain why the percent differences are so small. 

1. The quantity of water in storage in these large reservoirs is extremely large 

and therefore, the value of water in storage is orders of magnitude larger than 

any rational release. 

2. The structures of the short-term objective functions are identical.  The only 

possible changes are due to the long-term value of water. 

 
5.1  Individual Runs 
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The results from each individual test case are presented below.  In these test 

cases, the total objective function values using the VPS solutions appear much 

different than the total objective function values from the NSP network.  The reason 

for this difference is the VPS solutions optimize only the short-term objective from 

the stage 1 solution plus the total value of water in storage.  The NSP solutions 

implicitly include a short-term objective function value for each stage in the network 

plus the total value of water left in storage at the end of the planning horizon.  For this 

same reason, 4-, 6-, and 8-week NSP networks appear to have much different total 

objective function values.  However, this does not necessarily imply significant 

difference in the first stage release decisions. 

 
5.1.1  VPS Case 

The results for this case are from the TVA deterministic model using their 

current VPS future value estimate (presented in Table 5).  The output of this 

deterministic model provides a base solution to which the other solutions can be 

compared.   

Table 5: VPS results 

 
End of Week 1 

Storage (108 m3)
Reduced Cost 

($/103 m3) 
Cherokee 9.488089 9.431141 
Douglas 4.029506 8.062289 
Hiwassee 2.492492 11.776052 
Norris 16.847609 9.210425 
Fontana 10.895824 27.202103 

 

Total Objective 
Function Value 

($103) 

Short-term Objective 
Function Value  

($103) 
158,389 16,495 
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5.1.2  Case 1 

Case 1 is an 8-week NSP stochastic network.  This network is uncorrelated 

and, therefore, has only one state per stage.  The waiting storage vectors are chosen 

randomly. Computation of a lower bound was attempted every fourth iteration, but a 

lower bound is never computed successfully for this case (which will be discussed 

later). Therefore, only the convergence for the upper bound is presented in Figure 23.  

The results of this test case are presented in Table 6.  

 
Table 6: Case 1, 8-week, uncorrelated, 

random network results 

 
End of Week 1 

Storage (108 m3)
Reduced Cost 

 ($/103 m3) 
Cherokee 9.263667 7.951616 
Douglas 3.727313 6.90675 
Hiwassee 2.2468868 22.202485 
Norris 16.77872 10.502421 
Fontana 10.78107 7.922123 

 

Total Objective 
Function Value 

($103) 

Short-term Objective 
Function Value  

($103) 
312,653 17,547 
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Figure 23: Upper Bound Convergence for Case 1 

Convergence of the upper bound appears to occur within five iterations with very 

little change in the objective function after the fifth iteration. 

5.1.3 Case 2 

Case 2 is an 8-week NSP stochastic network.  This network is correlated with 

three states at each stage.  This is the only difference between Case 2 and Case 1.  

The waiting storage vectors are chosen randomly.  The lower bound is computed 

every fourth iteration.  As in Case 1, a lower bound was not computed successfully 

(which will be discussed later). Therefore, only the convergence for the upper bound 

is presented in Figure 24.  The results of this test case are shown in Table 7. 
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Table 7: Case 2, 8-week, correlated,  
random network results 

 
End of Week 1 

Storage (108 m3)
Reduced Cost  

($/103 m3) 
Cherokee 9.446894 8.529282 
Douglas 3.80326 7.415767 
Hiwassee 2.333013 23.72331 
Norris 16.77872 11.009091 
Fontana 10.79902 8.370175 

 

Total Objective 
Function Value 

($103) 

Short-term Objective 
Function Value  

($103) 
304,464 17,210 
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Figure 24: Upper Bound Convergence for Case 2 

Convergence in Case 2 occurs after eight iterations but there is some decrease 

occurring in the objective function value beyond that. 

 
5.1.4  Case 3 

Case 3 is an 8-week NSP stochastic network.  This network is correlated with 

three states at each stage.  The waiting storage vectors are chosen randomly.  The 
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lower bound is computed every other iteration, as opposed to every fourth iteration as 

in Case 2.  However, a total lower bound was not computed successfully for this test 

case.  Therefore, only the convergence for the upper bound is presented in Figure 25. 

The results of this test case are presented in Table 8. 

   

Table 8: Case 3, 8-week, correlated, 
random network results 

 
End of Week 1 

Storage (108 m3)
Cherokee 9.358805 
Douglas 3.922726 
Hiwassee 2.301008 
Norris 16.778721 
Fontana 10.799887 

 

Total Objective 
Function Value 

($103) 

Short-term Objective 
Function Value  

($103) 
304,379 17,229 
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Figure 25: Upper Bound Convergence for Case 3 
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Convergence appears to occur within 8 iterations.  There is some leveling off after the 

fifth iteration but the objective function drops again after the seventh iteration. 

 
5.1.5  Case 4 

Case 4 is an 8-week NSP stochastic network.  This network is correlated with 

three states at each stage.  The waiting storage vectors are chosen randomly.  The 

lower bound is computed every other iteration.  A slight change was made in the 

lower bound algorithm for this test case after Cases 1 through 3 were run.  The 

convex combination of waiting storages was adjusted to also include the origin from 

Figure 17.  This modification should increase the feasible region when computing a 

lower bound problem and improve the possibility of computing a lower bound.  This 

modification is the only difference between Case 4 and Case 3.  The results for Case 

4 are presented in Table 29.  The convergence of the upper bound is presented in 

Figure 26. 

Table 9: Case 4: 8-week, correlated, 
random network results 

 
End of Week 1 

Storage (108 m3)
Cherokee 9.488089 
Douglas 3.797147 
Hiwassee 2.256071 
Norris 16.778721 
Fontana 10.799029 

 

Total Objective 
Function Value 

($103) 

Short-term Objective 
Function Value  

($103) 
304,549 17,263 
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Figure 26: Upper Bound Convergence for Case 4 

 

 After approximately eight iterations, the upper bound is changes only slightly; 

however, some decrease in the upper bound continues to the thirteenth iteration. 

 For this network, a lower bound was successfully computed.  After 13 

iterations the upper and lower bound are not particularly close and neither are 

converging at a significant rate.  Also, the scale at which the lower bound increases is 

much different than the scale at which the upper bound decreases. It would appear 

that the solution has not converged after 13 iterations.  These results are shown in 

Figure 27. 
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Figure 27: Upper and Lower Bound Convergence for Case 4 

 

 Because a lower bound is successfully computed in this test case, the gap 

between the upper and lower bound is computed.  The gap is presented here by 

computing the lower bound as a percentage of the upper bound and is shown in Table 

10. 

 

 

 

Table 10: Case 4, upper and lower bound comparisons 

Lower Bound 
Objective Function 

Value ($103) 

Upper Bound 
Objective Function 

Value  ($103) 

Gap 
LB/UB * 100 

(%) 
294,784 304,549 96.8 
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5.1.6  Case 5 

Case 5 is an 8-week NSP stochastic network.  This network is correlated with 

three states at each stage.  The waiting storage vectors are chosen based on the duality 

gap, instead of randomly as in prior cases.  The lower bound is computed every other 

iteration.  The same change of including the origin was made in the lower bound 

algorithm for this test as in Case 4.  The results of Case 5 are presented in Table 11 

and the upper bound convergence is presented in Figure 28. 

 

Table 11: Case 5, 8-week, correlated, 
gap network results 

 
End of Week 1 

Storage (108 m3)
Reduced Cost  

($/103 m3) 
Cherokee 9.355591 8.06938 
Douglas 3.691462 6.926875 
Hiwassee 2.219752 21.71432 
Norris 16.778721 10.333205 
Fontana 10.734569 8.253574 

 

Total Objective 
Function Value 

($103) 

Short-term Objective 
Function Value  

($103) 
305,046 17,630 
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Figure 28: Upper Bound Convergence for Case 5  

 

 From Figure 28, it appears that the upper bound converges after roughly five 

iterations.  However, it should be noted that this is the same network setup as in Cases 

2, 3 and 4 and should have approximately the same total objective function after 13 

iterations.  Instead, this test case converges to a larger upper bound.  Also, the change 

in the upper bound from the first to the fifth iteration is small when compared to the 

change in the upper bound for Cases 2, 3 and 4. 

 A lower bound was successfully computed for this test case.  However, 

similar to Case 4, after 13 iterations the upper and lower bound are not particularly 

close and neither is changing at a significant rate.  Because the upper and lower 

bounds are not changing significantly, it is most likely that the solution is getting 

locked into solving the same trace of the network for all iterations.  Further 

explanation of this issue will be presented later, but this could explain why the lower 
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bound remains relatively constant and the upper bound never converges to the same 

solution as in Cases 2, 3 and 4.  

The gap is presented  by computing the lower bound as a percentage of the 

upper bound and is shown in Table 12. 

 

Table 12: Case 5, upper and lower bound comparison 

Lower Bound 
Objective Function 

Value ($103) 

Upper Bound 
Objective Function 

Value  ($103) 

Gap 
LB/UB * 100 

(%) 
293,005 305,046 96.05 

 

 

5.1.7 Case 6 

Case 6 is a 6-week NSP stochastic network.  This network is correlated with 

three states at each stage.  Computation of a lower bound is attempted every other 

iteration prior to making the algorithm change (as was made in Cases 4 and 5), and a 

lower bound was successfully computed on the final iteration.  The waiting storage 

vectors are chosen randomly.  This model is used to compare the difference in the 

upper bound solutions between the 6-week and 8-week correlated models (Cases, 2, 3 

and 4).  The results of Case 6 are presented in Table 13 and the convergence of the 

upper and lower bound is presented in Figure 29. 
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Table 13: Case 6, 6-week, correlated, 
random network results 

 
End of Week 1 

Storage (108 m3)
Cherokee 9.488089 
Douglas 3.689715 
Hiwassee 2.424008 
Norris 16.778721 
Fontana 10.815095 

 

Total Objective 
Function Value 

($103) 

Short-term Objective 
Function Value  

($103) 
264,198 17,119 
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Figure 29: Upper Bound Convergence for Case 6 

 

Convergence in this model appears to occur after roughly seven iterations, but 

there is still a small decrease in the upper bound after further iterations. 

The gap is presented by computing the lower bound as a percentage of the 

upper bound and is shown Table 14.  The upper and lower bounds are much closer 

here than those in the 8-week models (96.05 – 96.8%). 
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Table 14: Case 6, upper and lower bound comparison 

Lower Bound 
Objective Function 

Value ($103) 

Upper Bound 
Objective Function 

Value  ($103) 

Gap 
LB/UB * 100 

(%) 
264,042 264,198 99.94 

 
 

5.1.8  Case 7 

Case 7 is a 4-week NSP stochastic network.  This network is correlated with 

three states at each stage.  Computation of a lower bound is attempted every iteration 

prior to making the algorithm change made (as was made in Cases 4 and 5), and a 

lower bound was computed.  The waiting storage vectors are chosen randomly.  This 

model is used to compare the difference in the upper bound solutions between the 4-

week, 6-week (Case 6), and 8-week (Cases 2, 3 and 4) models.  The results of Case7 

are presented in Table 15 and convergence of the upper and lower bound is presented 

in Figure 30. 

Table 15: Case 7, 4-week, correlated, 
random network results 

 Storage (108 m3)
Cherokee 9.488089 
Douglas 3.769278 
Hiwassee 2.492492 
Norris 16.858541 
Fontana 10.889437 

 

Total Objective 
Function Value 

($103) 

Short-term Objective 
Function Value  

($103) 
223,335 16,725 
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Figure 30: Convergence for Case 7 

 

This test case converges within three to four iterations when looking at both the 

change in the upper bound objective function as well as the difference between the 

upper and lower bounds. 

The gap is presented by computing the lower bound as a percentage of the 

upper bound and is shown in Table 16.  For all practical purposes, the upper and 

lower bounds are identical. 

Table 16: Case 7, upper and lower bound comparison 

Lower Bound 
Objective Function 

Value ($103) 

Upper Bound 
Objective Function 

Value  ($103) 

Gap 
LB/UB * 100 

(%) 
223,335 223,335 100 

 

5.1.9 Case 8 

Case 8 is a 6-week NSP stochastic network.  This network is correlated with 

three states at each stage.  The waiting storage vectors are chosen randomly.  This 

model uses a subset of TVA’s goal programming constraints.  This run is not used for 



 135

comparison purposes because the goal is to see if the NSP algorithm will produce a 

reasonable solution using goal programming. 

 
Table 17: Case 8, 6-week, correlated, 

random, goal programming network results 

 
End of Week 1 

Storage (108 m3)
Cherokee 9.70729 
Douglas 4.745804 
Hiwassee 2.583223 
Norris 17.222983 
Fontana 10.815665 

 

Total Objective 
Function Value 

($103) 

Short-term Objective 
Function Value  

($103) 
205,493 13,453 
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Figure 31: Upper Bound Convergence for Case 8 

 

After the fifth iteration, the upper bound begins to level off but there is 

another large drop in the upper bound after the eleventh iteration.  The final results 

after 13 iterations appear to be reasonable, but it is not obvious as to what causes the 
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big jumps in the upper bound solution or whether additional jumps might occur with 

additional iterations.  The test cases that do not consider goal programming 

constraints (particularly Cases 2, 3 and 4) have similar jumps early in the iterative 

procedure but then level off.  More experimentation is required to determine if this 

test case would level off after more iterations. 

 
5.2  Discussion of Lower Bound and Gap Algorithm 

Below is a discussion of the results of the lower bound implementation as well 

as of selection of waiting storage vectors based on the duality gap. To describe the 

concept of choosing waiting storages based on the duality gap, the terminology “gap 

algorithm” is used throughout this discussion.     

 
5.2.1  Implementation Problems with Lower Bound 

The results presented in Section 5.1 show that the implementation of the lower 

bound algorithm requires further work, particularly in the 6- to 8-week models.  The 

distance between the upper and lower bound does not reduce significantly on 

successive iterations (Cases 4 and 5) and in many instances, the lower bound is not 

computed at all (Case 1, 2 and 3).  This occurs because the lower bound subproblems 

are not feasible for some scenarios when constraining the ending storages.  A small 

change was made to the algorithm in the middle of testing to increase the chances of 

computing feasible lower bound subproblems by including the origin as part of the 

convex combination of waiting storage vectors, which resulted in some improvement 

in the lower bound computation (Cases 4 and 5).  Additional enhancements similar to 
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the one above could aid in the implementation of the lower bound but were not 

explored in this research.   

From a theoretical perspective, the lower bound algorithm shows promise 

because of the successful computation of a lower bound in the 4-week model (Case 7) 

and somewhat successful in computation of a lower bound in the 6-week model (Case 

6) and an in the 8-week model (Cases 4 and 5) after making an algorithmic change. 

However, in the 6- and 8-week models, the lower bound does not converge as rapidly 

as expected and more work needs to be done from an implementation perspective to 

work out some algorithmic and/or implementation oversights that could aid in this 

convergence.  

 
5.2.2  Inconclusive Gap Algorithm Results 

The existing problems with the lower bound implementation cause problems 

when using the gap algorithm to choose waiting storage vectors.  Because the gap 

algorithm chooses a waiting storage vector based on the difference in the upper and 

lower bound, it is necessary for both an upper and lower bound to be computed 

correctly.  The 8-week model that selects the waiting storage vectors using the gap 

algorithm (Case 5) has the same network setup as the 8-week models that select the 

waiting storage vectors using the random algorithm (Cases 2, 3 and 4).  For this 

reason, the expectation was that each of these test cases would eventually converge 

on the same solution, but this was not the case.  The final solution using the gap 

algorithm is larger ($305,046,000) than the final solutions using the random 

algorithm ($304,379,000 to $304,549,000).  Because these objective function values 

are so large, the percent difference between these values does not appear to be 
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significant. However, Figure 32 (in Section 5.3) shows clearly that the two algorithms 

are not converging on the same solution. 

This problem occurs for a particular reason.  Because the gap between the 

upper and lower bound is not decreasing significantly on successive iterations, the 

solution procedure appears to get locked into solving for the waiting storage vector 

for the same arc on every iteration.  By definition, the gap algorithm will choose the 

waiting storage vector that has the biggest gap at a given node, but if the total gap 

does not change significantly on successive iterations, it is likely that the gap at a 

given node is not changing significantly and therefore solving for the same scenario 

trace on every iteration.  In particular, these results show that the algorithm is 

choosing the waiting storage vector that produces the largest subproblem objective 

function value and is therefore producing an overestimate of the final objective 

function.  This final solution is a feasible solution to the stochastic network but not 

necessarily an accurate solution. 

Because of the existing problems in the lower bound implementation, it is 

premature to make any conclusions regarding the gap algorithm.  However, future 

work could resolve these problems and allow for further analysis of the gap 

algorithm. 

 
5.2.3  Future Research to Improve Lower Bounds and Gap Algorithm 

In order for any definite conclusions to be made regarding the lower bound 

and gap algorithm, further research is needed.  First, more testing could be done to 

determine exactly where the problems exist and reveal if the problem is an 

algorithmic or implementation oversight.  Additionally, as the algorithm functions 
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currently, during an attempt to compute the lower bound for the entire network, if a 

lower bound subproblem that is infeasible is encountered, computing the total lower 

bound during the current iteration is abandoned. It is possible to handle these 

infeasible subproblems more robustly so that a lower bound can be computed.  It 

could also be possible to construct the lower bound problems so that they are not 

infeasible.  An attempt was made in this research to include the origin as part of the 

convex combination of waiting storage vectors, and this approach improved the 

computation of the lower bound.  Additionally, other approaches could be explored.   

Fixing current implementation problems with the lower bound computation is 

expected to fix the problems that were observed with the gap algorithm.  If the gap 

between the upper and lower bound changed more rapidly, it would be less likely that 

the gap algorithm would follow the same scenario path on each iteration and would 

pick waiting storages from a different predecessor arc on each iteration.  However, 

changes could also be made to the gap algorithm to force this situation to not occur.  

For example, if the algorithm chooses the same waiting storage vector on several 

iterations it could be forced to choose a different waiting storage vector.  It could also 

be possible to periodically choose waiting storage vectors randomly so as to 

guarantee some variation in the network solution. 

 
5.3  Comparisons of Test Cases 

Results of the test cases presented in Section 5.1 are discussed and compared 

in the following sections.  In Section 5.3.1, the upper bound convergence of all test 

cases is reviewed and then the upper bound solutions of the 8-week correlated 



 140

random networks are discussed in detail.  In Section 5.3.2, the short-term objective 

values are compeared in order to answer some of the questions posed in Chapter 4.   

Table 18 contains the results for all the test cases.  Throughout this section 

portions of the table will be repeated and compared for runs that differ in only one 

attribute.  Each case number can be mapped to its specific attributes as presented in 

Table 4 (Chapter 4) but for ease of explanation, each test case will be referred to by 

its identifying attributes rather than by its case number when appropriate throughout 

this section. 

The results in Table 18 include the end of stage 1 storage values for each cut 

reservoir, the short-term objective function value, and the total objective function 

value for all test cases studied.  Cases 1 through 5 are the 8-week NSP networks.  

Case 1 is an uncorrelated network, and Cases 2 through 5 are correlated networks.  In 

Cases 2, 3 and 4, the waiting storage vectors are chosen randomly, and in Case 5 the 

duality gap is used to choose waiting storage vectors.  Case 6 is a 6-week NSP 

network, and Case 7 is a 4-week NSP network.  Case 8 is a 6-week network with goal 

programming constraints. 
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Table 18: Comparison of run results 

Storage in 108 m3 
 VPS CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 8 
Cherokee 9.488089 9.263667 9.446894 9.358805 9.488089 9.355591 9.488089 9.488089 9.70729 
Douglas 4.029506 3.727313 3.80326 3.922726 3.797147 3.691462 3.689715 3.769278 4.745804 
Hiwassee 2.492492 2.246887 2.333013 2.301008 2.256071 2.219752 2.424008 2.492492 2.583223 
Norris 16.84761 16.77872 16.77872 16.77872 16.77872 16.77872 16.77872 16.85854 17.22298 
Fontana 10.89582 10.78107 10.79902 10.799887 10.79903 10.73457 10.8151 10.88944 10.81567 
           
Short-term 
Value ($103) 16,495 17,548 17,210 17,229 17,263 17,629 17,119 16,725 13,454 
           
Total 
Objective 
($103) 158,389 312,653 304,464 304,379 304,549 305,046 264,198 223,335 205,493 
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5.3.1  Upper Bound Convergence 

5.3.1.1  Upper Bound Convergence of NSP Algorithm 

The results presented in Section 5.1 show that the upper bound does converge 

on a solution within a reasonable number of iterations.  Increased cut sharing in the 

NSP algorithm was expected to lead to rapid convergence of the upper bound and the 

results confirm this.  The upper bounds show only a small change in objective value 

after four to nine iterations for varying stage numbers.  The results from the three 8-

week test cases (Cases 2, 3 and 4) that randomly select the waiting storage vector are 

particularly encouraging because all three solutions are converging on a similar 

solution, albeit via different paths.  

5.3.1.2  Upper Bound Convergence of 8-week Random Solutions 

The three 8-week random correlated models (Cases 2, 3 and 4) use the same 

network setup (stages, states, arcs, etc.) and differ only in the waiting storage vectors 

chosen using the random algorithm.  The cuts used to produce the future value 

estimate of one test case are valid cuts for any other test case that has the same 

network.  In essence, these cuts just represent traces of the network that may vary 

from case to case, particularly in test cases where the waiting storage vectors are 

chosen randomly. The cuts generated from Case 2, 3 and 4 were combinded, and 

solved a new linear program for stage 1 was solved using CPLEX.  In essence, 

combining these three cut sets creates a “mega-cut set” that contains three times as 

many cuts as any individual test case.  This provides an even better estimate of the 

true future value function and allows an evaluation to determine if the test cases are 

truly converging after 13 iterations. 
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The results of this evaluation are shown in Table 19. 

 

Table 19: Combined cut set results 

 
End of Week 1 

Storage (108 m3)
Cherokee 9.355591 
Douglas 3.91735 
Hiwassee 10.799887 
Norris 2.301008 
Fontana 16.778721 

 

Total Objective 
Function Value 

($103) 

Short-term Objective 
Function Value  

($103) 
304,364 17,205 

 

 

 The objective function solution from this evaluation is plotted in Figure 32.  

Also shown in Figure 32 is the convergence of each of the three runs (Case 2, 3 and 

4) that were used to generate this combined cut set, as well as the cut set from the 8-

week solution that selects the waiting storage using the duality gap.  In Figure 33 the 

final solution of the three runs (Case 2, 3 and 4) is presented along with the solution 

from the combined cut set in order to show the differences in the solutions at a more 

visible scale. 
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Figure 32: Convergence of Case 2, 3, 4 and 5 Along  
with the Solution from the Combined Cut Sets 

 

304350

304400

304450

304500

304550

304600

0 0.5 1 1.5 2

To
ta

l O
bj

ec
tiv

e 
Fu

nc
tio

n 
Va

lu
e 

($
)

Case 4

Case 2

Case 3

Combined

 
 

Figure 33: Difference in Final Objective Between Case 2, 3 and 4 
and the Solution from the Combined Cut Sets 

 

 Figure 32 shows that the three solutions for the 8-week random algorithm 

models converge on a similar solution.  The solution for the 8-week gap algorithm 

should also be converging on this same solution but clearly is not for reasons 
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mentioned previously.  For this reason, the cut set from the gap algorithm has not 

been included in the mega-cut set. 

In Table 20, the final objective function values for each of the three runs are 

presented as a percentage of the solution from the combined cuts sets.  Also included 

in Table 20 is the total objective function value from the 8-week correlated model that 

uses the gap algorithm (Case 5) to show that it did not converge on the same solution 

as did the random algorithm models.  The combined cut set is chosen as 100%, and 

the other solutions are all larger than this value. 

 
Table 20: Objective function comparisons for Case 2, 3 and 4  

along with the combined cut set 

Case 5 
Total Objective 
Function Value 

($103)  

Case 2 
Total Objective 
Function Value 

($103) 

Case 3 
Total Objective 
Function Value 

 ($103) 

Case 4 
Total Objective 
Function Value 

($103) 

Combined 
Total Objective 
Function Value 

($103) 
305,046 304,464 304,379 304,549 304,364 

 

Case 5 
Percentage of 

Combined 
Objective (%) 

Case 2 
Percentage of 

Combined 
Objective  (%) 

Case 3 
Percentage of 

Combined 
Objective  (%) 

Case 4 
Percentage of 

Combined 
Objective  (%) 

Combined 
Pecentage of 

Combined 
Objective (%) 

100.224 100.033 100.005 100.061 100 
 

 

The three test cases (Cases 2, 3 and 4) used to produce this additional 

constraint set have the same network setup and randomly select the waiting storage 

vectors. Because of the randomness in the solution procedure, the solutions converge 

with different paths, but after several iterations begin to converge on the same 

solution.   In addition, the solution for the problem with the combined cut sets is 

lower than any of the three solutions used to generate this cut set.  This is the 
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expected outcome because there are now more constraints in the form of cuts to 

approximate the upper bound. 

Table 21 presents how close each solution (Case 2, 3 and 4) is to the 

combined cut set solution.  This table shows that the solution from Case 3 is much 

closer to the solution for the mega-cut set than are Cases 2 and 4.  This implies that 

the cuts from Cases 2 and 4 have relatively little additional information about the 

future value of water. 

Even though these three models converge on similar objective function 

values, Table 18 shows that the end of week 1 storage value for each reservoir is 

somewhat different in each case.  In Table 22 these differences can be analyzed more 

closely.  The standard deviations reveal that the largest differences are at Cherokee, 

Douglas and Hiwassee with relatively little difference at Norris and Fontana.  The 

coefficients of variation are extremely small, reflecting the fact that any reasonable 

change in reservoir storage in one week is miniscule in comparison to the total 

storage in these reservoirs.   

Additionally, as shown in Table 23, the total volume of storage in the five 

reservoirs is very similar in all three cases (Case 2, 3 and 4).  Thus, these solutions 

differ primarily in the choice of which reservoir from which to release water.  This 

result reflects that in some instances, shifting water/energy from one reservoir to 

another has little effect on the solutions.  This result is consistent with previous 

research and was the motivation for TVA’s aggregate reservoir SDP model 

(discussed in Chapter 2).
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Table 21: Difference between individual NSP solutions and mega-cut set solution 
 

 3 Cut Soln Case 2 - 3 Cut Soln Case 3 - 3 Cut Soln Case 4 - 3 Cut Soln 
 (108m3) (108m3) (104m3) (108m3) (104m3) (108m3) (104m3) 
Cherokee 9.35559 9.44689 913 9.35881 32 9.48809 1325 
Douglas 3.91735 3.80326 -1141 3.92273 54 3.79715 -1202 
Hiwassee 2.30101 2.33301 320 2.30101 0 2.25607 -449 
Norris 16.77872 16.77872 0 16.77820 -5 16.77872 0 
Fontana 10.79989 10.79902 -9 10.79989 0 10.79903 -9 
Total   83  81  -335 
 

Table 22: Comparison of ending storage in NSP networks 

 Case 2 Case 3 Case 4 Mean St. Dev. COV 
 (108m3) (108m3) (108m3) (108m3) (104m3)   
Cherokee 9.44689 9.35881 9.48809 9.4313 660 0.00700 
Douglas 3.80326 3.92273 3.79715 3.8410 708 0.01843 
Hiwassee 2.33301 2.30101 2.25607 2.2967 387 0.01683 
Norris 16.77872 16.77820 16.77872 16.7785 3 0.00002 
Fontana 10.79902 10.79989 10.79903 10.7993 5 0.00005 
 

Table 23: Total remaining volume comparison for all test cases 

 VPS CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 8 
Total Volume  
(108m3) 43.75352 42.79766 43.16091 43.16115 43.11906 42.7801 43.19563 43.49784 45.07497 
% of  
 Case 8* 0.971 0.949 0.958 0.958 0.957 0.949 0.958 0.965 1.000 
*there is no significance to using case 8, this is just a means of 
comparing the values easily. 
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5.3.2 Comparing Short-term Objective Values and Ending Storage Levels 

In this section the short-term objective values and the end of stage 1 storages 

values are compared between varying test cases. Several of the questions regarding 

NSP posed in Chapter 4 are reviewed and answered. 

 
5.3.2.1  How do Solutions Between Correlated and Uncorrelated Networks Compare? 

   Table 18 shows that in the 8-week stochastic networks (Cases 1 through 5), 

the uncorrelated case (Case 1) has a larger short-term objective function than do the 

correlated networks that use the random algorithm (Cases 2, 3 and 4) and a slightly 

smaller short-term objective than does the correlated network that uses the gap 

algorithm (Case 5).  However, as discussed earlier, the gap algorithm seems to over-

estimate the objective function because it is selecting waiting storages based on the 

duality gap, and the current lower bound algorithm needs more work.  The 

uncorrelated network has lower end of stage 1 storage values for the selected cut 

reservoirs, indicating a larger release during the first week.  The cuts produced in the 

uncorrelated network imply a higher future value of water than do the cuts from the 

correlated network.  The conjecture here is that because the uncorrelated model has 

less persistence of flows between stages, there is a lower likelihood to move toward 

extreme scenarios and water can be managed more easily without encountering losses 

such as spill. 

 
5.3.2.2 How is the Solution Affected by the Number of Stages in the Network?  

In our test cases, the correlated networks do show a difference in solutions 

based on the number of stages considered.  The 4-week model (Case 7) has the 
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smallest short-term objective function value and the highest end of stage 1 storage 

values.  The 6-week model (Case 6) has a higher short-term objective function value 

than does the 4-week model and lower end of stage 1 storage values.  The 8-week 

models (Cases 2, 3 and 4) have the highest short-term objective function value and 

the lowest end of stage 1 storage values.  In summary, the short-term objective 

function value increases and the end of stage 1 storage values decrease with 

additional stages.  The NSP networks anticipate large inflows in the future and adjust 

the stage 1 releases accordingly  

A conclusion is not drawn based on these results.  In theory, the NSP solution 

could also hold back water in anticipation of low future inflows, but this situation was 

not explored.  It is possible that the trend regarding the number of stages is due to the 

algorithm considering more stages in the network, but the trend is most likely due to 

larger inflows in weeks 6, 7 and 8.   

Additional experiments are necessary to determine if the algorithm itself 

depends on the number of stages considered. 

 
5.3.2.3  How do the NSP Solutions Compare with the VPS Solutions? 

The results in Table 18 show that, in general, the end of week 1 storage values 

for all cut reservoirs using the VPS solution are larger than are the end of week 1 

storage values for the NSP solutions.  In some cases, the storage values are the same 

for some reservoirs, but the NSP values are never greater than the VPS values.  Also, 

the short-term avoided cost using the VPS solution is lower than the short-term 

avoided cost for the NSP solutions.  Both of these results indicate that the VPS 

solution places more value on using the water in the future than using the water now.  
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The NSP solutions release more water in the current stage, potentially in anticipation 

of large inflows that may arrive in future weeks.  As mentioned in Chapter 4, the VPS 

estimates do consider future inflows based on averaging of historical hydrologic 

flows but the conjecture is that the averaging of scenarios underestimates large 

correlated future inflows.   

Another way to view the differences between the VPS solution and the NSP 

solutions is to convert the storage volume differences to differences in the average 

outflow during the first stage.  Table 24 presents the solution from the combined cut 

set of the three 8-week NSP networks as a representative sample of the NSP solutions 

to compare the outflow differences. 

 This comparison is done by computing the differences between the end of 

stage 1 storage values for the NSP solution and the VPS solution to get the 

differences in volumes, then divide by the number of seconds in a week to get the 

average outflow difference as a flow rate.  In Table 24, column 1 contains the ending 

storage values for the combined cut set NSP solution, column 2 is the VPS solution, 

column 3 is the difference in storage levels, and column 4 is the average outflow 

difference. 

 
Table 24: Average outflow differences between VPS and 

combined cut set NSP solution 

 
Combined Cut 
Set Solution VPS Difference Outflow Difference 

 (108m3) (108m3) (104m3) (cms) 
Cherokee 9.35559 9.488089 1325 21.91 
Douglas 3.91735 4.029506 1122 18.54 
Hiwassee 2.30101 2.492492 1915 31.66 
Norris 16.77872 16.84761 689 11.39 
Fontana 10.79989 10.89582 959 15.86 
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As discussed earlier, the NSP solutions produce larger releases in the first 

stage.  The results in Table 24 support this by showing that the solutions for the 8-

week correlated random networks recommend an average increased outflow over the 

course of the first week of approximately 21.91 cms for Cherokee, 18.54 cms for 

Douglas, 31.66 cms for Hiwassee, 11.39 cms for Norris, and 15.86 cms for Fontana. 

 
5.3.2.4  Can the NSP Algorithm Converge on a Solution when Considering Goal 

Programming Constraints? 

As can be seen in Table 18, NSP does converge on a reasonable solution when 

goal programming constraints are considered.  However, Figure 31 shows that the 

goal programming upper bound appears to converge after 4 iterations but that there is 

another large drop after the tenth iteration.  Further analysis is required to determine 

if there is another drop in the upper bound beyond the thirteenth iteration. 

 
5.4  Comparing Combined Short-term and Long-term Objective Values 

Many of the test cases in this research are based on different stochastic models 

of future inflows.  The VPS model assumes a deterministic value of ending storage 

levels.  Case 1 assumes an uncorrelated stochastic network. Cases 2 through 5 assume 

an 8-week correlated network.  Case 6 considers a 6-week network.  Case 7 considers 

a 4-week network, and Case 8 considers goal programming constraints.  These 

different stochastic models lead to different objective functions.  Thus, a normal 

comparison of objective values is not possible.  Each group of cases --VPS, 

uncorrelated, 8-week correlated, 6-week correlated, 4-week correlated and goal 

programming -- attempt to optimize their assumed objective.  To the extent that one 
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of these assumptions is correct, the associated solution and convergence produces a 

near-optimal solution and the superiority of that solution can be believed. 

With this limitation in mind, the best possible comparison of solutions from 

different groups is to evaluate them using the objective functions from alternative 

groups.  The expectation is that a near-optimal solution for any objective function is 

better than a solution based on another objective.  However, this is not guaranteed 

because none of the objectives were optimized to an absolute optimal solution. 

The comparisons in this section are presented in tabular form with the rows 

representing the optimal short-term solution for a given case and the columns 

representing approximate alternative long-term objective functions, or criteria, for 

evaluating the solutions.  The objective functions are only approximate because the 

final cut set is used to approximate the future value. 

The mechanics of evaluating the solution for one test case using the objective 

function for another test case are as follows: 

1. Solve the stage 1 optimization problem: short-term avoided cost + long-term 

future value.  This is the final stage 1 solution for any selected test case. 

2. Store the associated short-term value for the stage 1 solution. 

3. Store the ending storage values for all cut reservoirs from stage 1 solution. 

4. Solve a new linear program using the short-term value and storage vector 

from steps 2 and 3 paired with the long-term estimate from any other test case 

that has been solved.  

For example, suppose we have solved one test case has been solved using the 

VPS estimate as the future value, and another test case has been solved using the NSP 
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network described in Case 1.  To compare the future value estimate of these two 

cases, it is possible to store the VPS short-term objective value and ending storage 

values and solve an LP using the Case 1 future value constraints.  Combining short-

term and long-term values in this manner provides a gauge of the difference in the 

total objective function if a different future value estimate is used.  Theoretically, 

each method to determine the short-term value will have the greatest combined 

objective using the same future value for which the problem was originally 

optimized; if all possible cuts were present, this result is guaranteed.  The analysis 

here focuses on the difference in the combined objective value using a different future 

value estimate.  The comparison can be thought of in this manner: if a decision is 

made for the short-term based on an assumption regarding the future, what would be 

the outcome if a different representation of the future value is actually the true 

representation? 

  This comparison can be achieved using the CPLEX solver.  When RiverWare 

solves an optimization problem, it saves the problem as a text file that can be read by 

CPLEX.  This allows editing of the file and it is possible to separate the short-term 

solution from the long-term solution, and solve a new problem using CPLEX directly.   

This comparison was conducted with selected test cases.  First, the 

comparison was made of representative samples of the 8-week networks to see how 

the NSP solutions compare with the VPS solutions. The correlated gap algorithm 

model (Case 5), the uncorrelated random algorithm model (Case 1), and the 

correlated random algorithm model (Case 2), were selected as the representative 

samples.  In theory, Case 5 and Case 2 can be compared directly because they share 
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the same stochastic network.  However, Case 2 and Case 5 are compared using their 

individual cut sets because Case 5 converged on a false optimum. 

 The results of this comparison are shown in Table 25.  In the tables below, 

the test cases across the top represent the alternative future value criteria, and the 

cases on the left represent alternative solutions.  The values combine the short-term 

and long-term objective values for each solution.  For example, if the short-term 

value for the VPS solution and the long-term value from the uncorrelated random 

algorithm model are compared, the VPS row on the left intersects with the 

RAND/uncor column across the top at 312,555. 

 
Table 25: Objective function comparison between VPS 

and 8-week NSP solutions 

[Units: $103] 
 VPS GAP/cor RAND/uncor RAND/cor

VPS 158,389 304,942 312,555 304,415 
GAP/cor 158,261 305,046 312,652 304,457 

RAND/uncor 158,298 305,043 312,653 304,451 
RAND/cor 158,348 305,035 312,644 304,464 

 

For simpler analysis, the difference in these objective function values is presented in 

Table 26. 

 
Table 26: Additional objective function comparison between VPS 

and 8-week NSP solutions 

[Units: $103] 
 VPS GAP/cor RAND/uncor RAND/cor

VPS 0 -104 -98 -49 
GAP/cor -128 0 -1 -7 

RAND/uncor -91 -3 0 -13 
RAND/cor -41 -11 -9 0 
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As expected, when a short-term solution is paired with its respective long-

term solution (i.e., VPS-VPS), that combination produces the greatest total objective.  

However, the results of most interest are the outcome of making a stage 1 decision 

(i.e., VPS recommended release schedule) if the true future value function is a 

different function (i.e., an 8-week correlated NSP network).   

 These results show that if the NSP stage 1 release schedule were implemented 

but the true future value estimate was the VPS estimate, the total objective function 

value would be roughly $41,000 to $128,000 less than if the NSP future value 

represented the true future value.  On the other hand, if the VPS short-term solution 

were implemented, but the NSP network more correctly captures the future value 

estimate, the total objective function would be roughly $49,000 to $104,000 less than 

if the VPS future value function represented the true future value. 

 The correlated random solutions (Case 2) paired with the VPS solutions 

produce the smallest difference in the total objective function.  Table 18 shows that 

the correlated random (Case 2) short-term objective function and end of stage 1 

storage levels are more similar to the VPS short-term objective and end of stage 1 

storage levels than are the uncorrelated (Case 1) and correlated gap algorithm  

(Case 5) solutions.  For this reason, it makes sense that the combination of these two 

solutions produces the closest total objective.  Additionally, the NSP solutions when 

paired are much closer to each other than when paired with the VPS solution 

 As discussed earlier, the uncorrelated network (Case 1) and the correlated 

network using the gap algorithm (Case 5) seem to over-estimate the total objective 

function value.  Table 25 shows that combining the uncorrelated model’s short-term 
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objective with the correlated gap long-term objective (and vice versa) produces very 

similar total objective functions (approximate differences of roughly $1,000 to 

$3,000).  This result is surprising because the correlated gap algorithm network is 

identical to the correlated random network and should produce solutions closer to 

these solutions. 

 This comparison is also performed for the 8-week, 6-week and 4-week 

networks in order to analyze how the number of stages affects the NSP solution.  

Case 2 is chosen as the representative 8-week model.  The results of this comparison 

are shown in Table 27. 

 
Table 27: Objective function comparison for  

alternate number of stages 

[Units: $103] 
 VPS 4-week 6-week 8-week 

VPS 158,389 223,313 264,157 304,415 
4-week 158,386 223,335 264,189 304,446 
6-week 158,357 223,321 264,198 304,462 
8-week 158,348 223,314 264,195 304,464 

 

 

Again, for simpler analysis, the difference in these objective function values is 

shown in Table 28.  

 
Table 28: Additional objective function comparison for 

alternate number of stages 

[Units: $103] 
 VPS 4-week 6-week 8-week 

VPS 0 -22 -41 -49 
4-week -3 0 -9 -18 
6-week -32 -14 0 -2 
8-week -41 -21 -3 0 
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 These results show that as the number of weeks increases, the solutions 

deviate more from the VPS solutions.  This result makes sense because, as can be 

seen in Table 18, the 4-week (Case 7) short-term release schedule is closer to the VPS 

solution than are the 6-week (Case 6) and 8-week (Cases 2, 3 and 4) release 

schedules.  As mentioned in Chapter 4, the largest inflows during the time period that 

these networks represent arrive in weeks 6, 7 and 8.  As these results show, the NSP 

solutions with more weeks release more water in the first stage than in the VPS 

solutions, likely in anticipation of larger future inflows.   

 
5.5  Sensitivity Analysis 

For an additional comparison, selected test cases are used to compare the 

effect of changing the end of stage 1 storage levels on the marginal value of water 

(reduced cost).  These results are shown in Table 29. 

 

Table 29:  Reduced cost comparison for selected test cases 

 
VPS Reduced Cost 

($/103 m3) 

CASE 1: RAND/uncor
Reduced Cost 

($/103 m3) 

CASE 2: RAND/cor 
Reduced Cost 

($/103 m3) 

CASE 5: GAP/cor 
Reduced Cost 

($/103 m3) 
Cherokee 9.431141 7.951616 8.529282 8.06938 
Douglas 8.062289 6.90675 7.415767 6.926875 
Hiwassee 11.776052 22.202485 23.72331 21.71432 
Norris 9.210425 10.502421 11.009091 10.333205 
Fontana 27.202103 7.922123 8.370175 8.253574 
 

 

There is no obvious trend in these results other than biggest differences between the 

VPS and NSP solutions are at Hiwassee and Fontana. 
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Chapter 6 
 
 

SUMMARY AND CONCLUSIONS 
 
 
 

 
6.1 Answers to Questions Regarding NSP 

This research has shown that the NSP algorithm produces reasonable results, 

with possible improvement over TVA’s existing VPS solution, depending on what 

assumption about the future value is the most accurate representation of the future 

value of water in an individual basin.  Particularly successful was the computation of 

an upper bound on the NSP network.  The upper bound solutions generate reasonable 

release schedules and converge on a solution quite rapidly due to increased cut 

sharing in the NSP network.  The results from the test cases answer the first question 

posed regarding NSP: the upper bound solution does converge on a solution and does 

so in a reasonable number of iterations (approximately 4 to 9 iterations) for the 

networks of varying stage length used in this research. 

 Some previous work has shown that SPR is not dependent on the number of 

stages in the network (Jacobs et al., 1995).  For the test cases used in this research, 

fewer stages resulted in smaller stage 1 releases.  However, this is not to say that this 

occurrence is a result of the algorithm considering additional stages; rather it is more 

likely due to the large differences in inflows in weeks 6, 7 and 8 as opposed to earlier 
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weeks.  As mentioned previously, the time period considered in these test cases is the 

beginning of the spring fill season in the TVA basin, with the largest inflows arriving 

in weeks 6, 7 and 8.  The 6-week and 8-week models anticipate these large future 

inflows and release more water in stage 1 than does the 4-week model.  It is possible 

that if weeks 6, 7 and 8 did not have such large inflows, that the release 

recommendations from the 4-week network would be closer to release 

recommendations for the 6-week and 8-week networks showing limited dependency 

on the number of stages.  This characteristic of the high inflows arriving in weeks 6, 7 

and 8 is a seasonal phenomenon that occurs during the spring snowmelt in the TVA 

basin.  If alternative seasons were considered where there was not such significant 

difference in flows between the early and late weeks, it is likely that considering more 

weeks would not produce such noticeable differences.  However, the ability to 

anticipate these large future inflows in a multi-stage network is attractive, especially 

if one is confident in the future forecasts. 

The model results presented also answer the remaining questions posed 

regarding the NSP algorithm.  In the research test cases, there is a difference in results 

between the uncorrelated and correlated networks.  Specifically, the uncorrelated 

model has a larger total objective function value and recommends larger stage 1 

releases than do the correlated networks.  Additionally, the VPS solutions recommend 

even smaller releases than do the NSP solutions.   

Further research could determine to what extent the results depend on the state 

definition.  As discussed previously, the previous weeks inflow is an admittedly 

simple state definition.  A more complex, and perhaps realistic, state definition could 
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potentially show different patterns.  Similarly, future research could determine if 

these results hold up for alternative network setups (additional stages, states, arcs, 

etc.).     

 
6.2  Limited Success of the Lower Bound 

Implementation of the lower bound algorithm was not entirely successful.  

More testing needs to be done to determine what problems exist in the current 

implementation of the algorithm and what enhancements could be made to make the 

implementation more useful.  Future work is also necessary to determine if the 

proposed approach to computing a lower bound in the NSP algorithm is a viable 

approach.  It appears that the approach is viable because of the success with the 4-

week model and limited success with the longer models.  Currently, any conclusions 

about the lower bound would be premature. 

 The current state of the lower bound implementation also means it is 

premature to make any conclusions regarding selecting waiting storages based on the 

duality gap. 

 
6.3  Ready for Improved State Definition 

It has been demonstrated from an algorithmic perspective, that NSP is able to 

produce reasonable release schedules using this study’s simple state definition.  It 

would be very useful to study more realistic state definitions.  From a practical 

implementation perspective, if states could be defined that better represent the 

physical characteristics of the basin, and if more effort could be put into forecasting 
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scenario probabilities, then the results would be more accurate, and larger 

improvement over the VPS solution might be realized. 

 
6.4  Additional Future Work 

In addition to the future work mentioned above, there are also additional 

properties of the NSP network that would be interesting to explore.  For this research, 

a relatively small sample of NSP networks were selected in order to determine if the 

NSP algorithm produces a reasonable solution and to analyze those factors to which 

the network is sensitive.  Future work could explore additional network setups that 

contain more states per stage, more arcs per stage, differing stage lengths, different 

time periods, additional cut reservoirs, or any number of alternative network 

representations.  With the addition of additional cut reservoirs, it is expected that 

convergence might be slightly slower but the algorithm would remain unchanged.  It 

would also be useful to give attention to analyzing the NSP algorithm using goal 

programming. 

Other work that could be explored involves the boundary conditions at the end 

of the planning horizon.  In this research, TVA’s VPS estimates were used.  However, 

when TVA produces these VPS curves, a different curve is produced for every week 

of the year.  In this study the week 1 VPS curve is used for all stochastic networks 

regardless of the number of weeks the stochastic network considered.  A more 

accurate choice is to use the VPS curve that would actually be used if the VPS model 

is implemented at the end of the planning horizon.  Such a change could change the 

differences in the VPS solutions and the NSP solutions.  For basins other than the 
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Tennessee Valley, alternative boundary conditions such as target storage values could 

also be explored. 

Future work could also enhance this research to a commercial implementation 

level.  As mentioned earlier, the focus of this research was to increase efficiency 

based on the number of subproblems solved, with no work done to improve 

individual subproblem solution time.  Currently, each subproblem is created from 

scratch and takes roughly 30 to 55 seconds on a fast Windows machine.  Because, 

these problems share a similarity in structure, it would be possible to save the warm 

basis of these problems and dramatically reduce solution time.  Based on previous 

experience, it is believed that the solution time could be reduced to 1 to 5 seconds. 

Additional improvements could also be made regarding the use of this 

algorithm in RiverWare.  The work done in RiverWare for this research focuses 

mostly on NSP from a research perspective.  The GUI interface for creating and 

viewing the stochastic network and the solutions could be improved.  

 
6.5  Final Conclusions 

In this research we have shown that Network Stochastic Programming 

successfully produces reasonable reservoir release schedules without running into the 

exponential growth of scenario trees traditionally associated with Stochastic 

Programming with Recourse algorithms by reducing the scenario tree to a network of 

hydrologic states.  We showed that the NSP algorithm converges on a solution 

quickly with relatively little iteration.  With additional research regarding the 

definition of the hydrologic state of the NSP network and accurate modeling of the 

stochastic hydrology, this algorithm could be applied to TVA’s operation models, as 
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well as any other basin that wishes to optimize reservoir scheduling.  In our test cases, 

the percent difference of the final objective function solutions was relatively small 

when compared to TVA’s existing VPS solutions due to extremely large value of the 

large volume of water remaining in storage after one week.  However, extrapolated 

over the course of an entire year, the benefit of the NSP algorithm has the potential of 

being millions of dollars, which makes the NSP algorithm a procedure worth 

considering for stochastic reservoir scheduling.   
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