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This research analyzes hydrological variability in association with climate 

variability and climate change; and using this information it develops a statistical 

forecasting framework which is then integrated with a decision support system to 

manage water resources efficiently. This research has three major components: (i) 

Climate diagnostics of hydroclimate variables; (ii) Development of a statistical 

forecasting framework; and (iii) Evaluation of water resources decision strategies. As 

part of the first component, interannual variability of various hydroclimate variables 

is studied and large-scale climate features that drive the variability are diagnosed. The 

second component develops a framework for ensemble seasonal streamflow forecasts 

using the large-scale climate information obtained from the diagnostics. This uses 

nonparametric methods (assumption free and data driven) in association with an 

objective criterion, Generalized Cross Validation (GCV, selects a suite of best 

models) to issue ensemble forecasts of seasonal streamflow at several lead times (i.e., 

one month to five months at monthly intervals), and at several locations 

simultaneously. In the third component, forecasted streamflow ensembles drive a 

water resources Decision Support System (DSS) and the skills of various decision 

variables are evaluated. The DSS used is RiverWare, a flexible tool in which 

operational policies are easily incorporated. 
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The utility of this integrated climate diagnostics-to-DSS framework is 

demonstrated by successfully implementing it on the Gunnison River Basin, in 

Colorado, USA.  This basin is in a semi-arid climate and has several competing water 

resources including agriculture, water supply, energy and environmental 

considerations. The framework can also be used for future planning and management 

of water resources in the basin. This offers an attractive tool for integrated water 

resources management and planning, especially in the western US, which is severely 

water stressed. Last, but not least, a methodology is proposed to generate realistic 

streamflow scenarios using paleo reconstructions (tree ring based reconstructions of 

past streamflows) in conjunction with the limited observational record. This approach 

provides the ability to generate a richer variety of drought and flood scenarios than 

those observed in recent history. It, thus, provides useful insight into streamflow 

variability, which is crucial for water resources management and planning in the 

basin. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

1.1.1. Water Management Challenges 

Water resources play an important role in various socio-economic and 

environmental needs such as agriculture, industry, environmental preservation, 

energy production, and recreational purposes, and thus consequently, in the prosperity 

of society, environment and economy. The importance is further underscored in arid 

to semi-arid regions of the world where the water resources are variable in amount, 

quality, and demand. In addition, other variables such as competing water demands, 

societal development, population growth, future demand projections and climatic 

changes influence the planning and management of water resources. In recent years, 

several of these variables — in particular, increased development, population growth 

and climatic changes — have put great stress on the water resources around the world 

(e.g., Vorosmarty et al., 2000) and particularly in the western USA (e.g., Hamlet et 

al., 2002; Piechota et al., 2001). The recent 5-year long dry spell in the western USA, 

in association with increased demands, has generated many questions about the water 

resource system reliability, river basin planning and future management and 

robustness of current water compacts. In light of these concerns, careful planning and 

development is necessary to manage the competing water demands of the system 

(e.g., agricultural, municipal and industrial demand and releases required for 

ecological and environmental purposes), so as provide sustainable supplies. 
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1.1.2. Need for Forecasting 

Hydrologic variability can be significant in the streamflows of river basins in the 

western US. For example, annual streamflows of Tomichi Creek (a tributary of the 

Gunnison River) at Gunnison, CO (Figure 1) indicates frequent wet and dry spells. 

Such variability leads to unreliable water availability to meet the diverse demands in 

the basin. To reduce the impacts of variability water, storage structures (e.g., 

reservoirs, canals) are developed which store water to ride out the dry spells and to 

provide a steady and reliable supply of water. 
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Figure 1: The annual streamflow of the Tomichi Creek at Gunnison, CO. The thick 
solid line corresponds to the average annual streamflow of all years at this location. 

In the Gunnison River Basin, the study area of this research, the storage structures 

(i.e., reservoirs) have limited capacity, unlike the large reservoirs on the Colorado 

River. Furthermore, the demands on the basin are diverse and often in competition – 

e.g., the conflict between the amount of water stored and the timing of releases to 

meet agriculture, hydropower generation and environmental needs. Given these 
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challenges, skillful long lead forecast of streamflows (e.g., seasonal/monthly volume, 

timing of peak flow) are key to efficient and sustainable water resources development 

and management in this basin and in other such basins. 

1.1.3. Current Forecast Framework  

In the western USA, including the Gunnison and San Juan River basins (the study 

area of the research), most of the winter precipitation falls as snow, and in spring, the 

accumulated winter snow melts contributing a large amount to the annual flows. 

Therefore, winter snow pack is used as a predictor of the following spring runoff 

(Serreze et al., 1999). Currently, water managers use the basin snow water equivalent 

(SWE) during winter in a linear regression method for predicting the following spring 

streamflow. Additionally, a few large-scale climate patterns such as El Nino Southern 

Oscillation (ENSO) (Allan et al., 1996; Trenberth, 1997) and Pacific Decadal 

Oscillation (PDO) (Mantua et al., 1997) have also been used to predict streamflows in 

the western US.  Hamlet and Lettenmaier (1999b) forecasted Columbia River 

streamflows using ENSO and PDO with several months lead-time. Clark et al. (2001) 

showed that including large-scale climate information together with SWE improved 

the overall skill of the streamflow predictions in the Columbia and Colorado River 

Basins. In almost all of these studies standard indices of ENSO and PDO have been 

used in conjunction with SWE. This is inadequate for several reasons. (1) Snow pack 

information is complete only by the start of snowmelt, thus limiting the lead time of 

the forecast. (2) Assumptions of linearity between the streamflows and predictors are 

not accurate. (3) Standard indices are not always well related to the streamflows 

because the surface climate is sensitive to minor shifts in large-scale atmospheric 
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patterns (e.g., Yarnal and Diaz, 1986). (4) The relationships are not stationary, as 

shown by McCabe and Dettinger (1999), who observed variation in the strength of 

ENSO teleconnections with precipitation in the western USA. Recently, Grantz et al. 

(2005) offered skillful predictions of spring streamflows on the Truckee and Carson 

Rivers in Nevada at two seasons ahead using large-scale climate information that 

alleviates some of these drawbacks. 

In addition to the regression models, water managers in the Gunnison and San 

Juan River basins make operational decisions (e.g., daily, monthly) based on a 24-

month operational forecast. In this, at the start of each month, streamflow 

forecasts/projections of the successive 24-month period are used to drive a simulation 

model of the river basin. The values of the system decision variables obtained from 

this 24-month outlook are used to make decisions such as reservoir releases and 

hydropower generation. The 24-month streamflow projection, issued by the U.S. 

Bureau of Reclamation (BOR), typically uses the Colorado Basin River Forecast 

Center’s (CBRFC) April to July runoff forecast for the forecasts done in months 

January through July, and the CBRFC 3-month forecast for the remainder of the year, 

followed by climatology (monthly average flows) for the remaining months. CBRFC 

issues 10%, 50%, and 90% exceedance forecasts using primarily Extended 

Streamflow Prediction (ESP) and statistical regression that utilizes snow, streamflow, 

precipitation and climate indices (CBRFC scientists, personal communication, 2005). 

Thus, a single trace of the 24-month flows is developed combining all of the above 

information. 
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1.1.3.1. Limitations 

In addition to the shortcomings of the SWE and standard climate indices based 

linear regression method for flow forecast, the key drawbacks of the BOR’s forecast 

set up are: (i) a single 24-month trace does not quantify any uncertainty and (ii) the 

ESP method produces ensembles by driving a hydrologic model with past weather 

scenarios and current initial conditions, e.g., if there are 20 years of data available at a 

location the ESP method can only produce 20 ensembles. Although the input time 

series (i.e., past weather scenarios) of the ESP method is adjusted with monthly and 

seasonal forecasts of climate variables (e.g., temperature, precipitation, 

teleconnection indices), the range of uncertainty captured is still quite limited as it 

does not account for other sources of uncertainty (e.g., model structure and 

parameters). 

Given these limitations in the current forecast framework and the increasing 

evidence that large-scale climate features (detailed in the Chapter 2) drive variability 

in regional hydrology at all time scales (sub-seasonal to decadal), a robust forecasting 

framework is proposed in this research. This new framework (described in the 

Chapter 3) incorporates predictive information from ocean-atmosphere-land system to 

generate spring seasonal ensemble streamflow forecasts at several lead times, 

providing a realistic representation of the uncertainty. The proposed method was 

applied to the Gunnison and San Juan River basins in the western USA. 
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1.1.4. Gunnison River Basin 

1.1.4.1. Geographic Characteristics 

The Gunnison River Basin (GRB) is located in the southwest part of Colorado 

(Figure 2). With a drainage area of approximately 7930 mi2 (20,618 km2) and basin 

elevations ranging from 4,550 ft (1,387m) to 14,300 ft (4,359 m), the GRB extends 

from the continental divide to Grand Junction where it joins the Colorado River 

(McCabe, 1994). The Aspinall Unit is the major water development feature of the 

Colorado River Storage Project in the GRB. It consists of a series of three dams with 

associated storage reservoirs and hydroelectric plants, Blue Mesa, Morrow Point and 

Crystal, along a 40-mile (64 km) stretch of the river. The three reservoirs have a 

combined storage of approximately 1.1 million acre-feet (1,357 million m3) and 

hydropower generation capacity of 287 megawatts, and control one third of the total 

discharge of the river. The Gunnison tunnel, which is at the downstream of the 

Aspinall Unit, diverts water from the Gunnison River to the Uncompahgre Valley. 

1.1.4.2. Hydrologic Characteristics 

Climate in the GRB varies greatly due to its broad range of elevation; this is 

evident in the range of annual precipitation in the basin. The high mountains receive 

the highest precipitation of about 45-50 inches (1140-1270 mm) per year. The low 

elevated plains receive lowest precipitation of less than 10 inches (255 mm) per year 

(Ray, 2004). In addition to spatial variability, the precipitation also exhibits temporal 

variability. Stations at lower elevations have peak precipitation in summer whereas 

the high mountains have peak precipitation in the winter, with most of the annual 
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precipitation falling as snow. The annual hydrograph of the GRB (average of 

streamflows at selected six locations, detailed in Table 1) is shown in Figure 3. It can 

be seen that the majority (greater than 70 percent) of the annual flow occurs during 

the spring snowmelt (April – July). Consequently, spring flow plays a vital role in the 

decisions and management of the water, and several key decisions (e.g., fish releases) 

are made in January and February, hence long lead spring streamflow forecasts are 

crucial. 

 

Figure 2: Map of the Gunnison River Basin and six selected streamflow locations 
(detailed in the Table 1) shown as filled circles. Map was provided by James 
Pasquotto, University of Colorado, Boulder. 
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Table 1: Gunnison River Basin streamflow data information. 

Station 
Number 

Site Number 
(USGS) Site Name Elevation 

(m) 

Drainage 
Area (106 

m2) 
1 09110000 Taylor River at Almont, CO 2442 1235 

2 09112500 East River at Almont, CO 2440 749 

3 09119000 Tomichi River at Gunnison, CO 2325 2748 
4 09124500 Lake fork at Gate View, CO 2386 865 

5 09132500 North fork Gunnison River near 
Somerset, CO 1914 1362 

6 09147500 Uncompahgre River at Colona, CO 1926 1160 

 
 

 
Figure 3: Annual average hydrograph of the Gunnison River Basin. Monthly values 
(cms) are the average of streamflows at selected six locations (detailed in the Table 
1). 
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1.1.5. San Juan River Basin 

1.1.5.1. Geographic Characteristics 

The San Juan River Basin (SJRB) extends in four western United States (Figure 

4) - Colorado, New Mexico, Arizona and Utah - draining approximately 24600 mi2 

(63,960 km2). Basin elevation ranges from 3700 feet (1110 m) at the confluence with 

Lake Powell to 14,000 feet (4200 m) at the crest of the San Juan Mountains. The one 

major water storage structure is Navajo Dam, situated at the Colorado-New Mexico 

border on the San Juan River. Navajo Reservoir is an important source of water 

supply for northwest New Mexico. It supplies the town of Farmington, NM, 

agricultural users and the Navajo Nation. In addition, it exports 100,000 acre-feet 

(123 million m3) water per year to the Rio Grande system through the San Juan-

Chama Project. 

1.1.5.2. Hydrologic Characteristics 

Upstream of the basin is alpine whereas downstream of the basin is arid. Most of 

the basin precipitation falls in the upstream (San Juan) mountains as snow. In the 

lower elevations the precipitation is mostly supplied by summer monsoon rainfall. 

Annual precipitation varies greatly across the basin, from 60 inches (1520 mm) in 

small areas along the mountains, to less than 10 inches (255 mm) in extensive parts of 

the basin, to less than one-tenth inch in others. The annual streamflows in the 

upstream of the basin are spring driven, i.e., approximately 70% of the annual 

streamflows is contributed by the melting of snow (Figure 5) during spring and plays 

a key role in meeting various demands. 
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Animas River at Durango 

Mcelmo Creek near CO-UT state borderline 

 

Figure 4: Map of the San Juan River Basin and selected two streamflow locations 
(detailed in the Table 2) shown as filled circles. 
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Figure 5: Annual average hydrograph of the Animas River at Durango. 
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1.1.6. Decision Support System 

To meet the diverse and often conflicting water demands efficiently under varying 

hydrologic conditions, water development projects have been constructed and 

management policies have been formulated. However, increasing demands, climate 

change, extensive water laws, decrees and compacts made the system operations 

more complex. To enable efficient planning and operations of water resources under 

such a challenging environment, decision management tools such as RiverWare 

(Zagona et al., 2001) are developed. These are capable of integrating forecast 

information with operating policies and demands to forecast operational strategies. 

They also have the capability to analyze the efficacy of operational policies using risk 

and uncertainty metrics, and can derive optimal water management policies. 

However, the value of the output of these decision tools is limited by the accuracy of 

the forecast information that is input. To evaluate the utility and transferability of the 

skills in the input (streamflow forecasts) to output (water resources decision 

variables) of the decision tools, an experimental decision support system (DSS) for 

the water resources management of the GRB was developed. The DSS consists of a 

RiverWare model of the GRB coupled with the streamflow forecast framework 

mentioned earlier (described in Chapter 3). 

1.1.7. Streamflow Scenarios for Long-term Planning  

Long-term planning and development of water resources require plausible 

information on hydrologic variability, especially on extreme wet and drought 

conditions. Paleo reconstructions of streamflows are available on the GRB (C. 

Woodhouse, personal communication, 2006). These long flow records offer rich 
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information as to the potential variability of streamflows and complement the shorter 

observational flow data. Combining the observational and paleo reconstructed 

streamflows provides the ability to generate a richer variety of drought and flood 

scenarios than those in the observational record. Such variety will be of great use to 

water managers for long-term planning and development of basin water resources. To 

this end, a new methodology is proposed to simulate streamflow scenarios at decadal 

time scales that combines the paleo-reconstructed flows and the observational data. 

1.2. Proposed Research 

The motivation of the previous sections clearly compels the need for an integrated 

framework that seamlessly spans the physical climate system-to-water resources 

decision making, for sustainable and efficient management of water resources under 

high degree of hydrologic variability, competing and increasing demands, intricate 

water laws and procedures of management. Such an integrated framework, that is 

new, is developed in this research and demonstrated via application to the GRB 

(Figure 6). This is the most significant contribution of this research. The GRB acts as 

a good test basin as the water issues in the basin are a microcosm of those described 

earlier. The basin water resources play a key role in the economy by providing water 

supply for various competing socio-economic-environmental activities, e.g., water 

use for irrigation, municipal and industrial demands, hydropower generation, and for 

preservation of endangered fish habitat (detailed in the Chapter 5).  

The proposed framework has three major components. (1) Understanding and 

identifying the drivers of interannual variability of GRB hydrology in the global land-

ocean-atmospheric system. This involves analyzing the multivariate space-time data 
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of large-scale climate variables, and various basin attributes (e.g., soil moisture 

effects, topography). (2) Developing a robust statistical modeling approach for 

ensemble streamflow forecast. In this, a nonparametric functional estimation method 

was adapted to identify the best subset of predictors and multimodel ensemble 

forecast. (3) Evaluating the skill of streamflows forecast in the decision variables of 

the water resources system. Here, a decision support model, RiverWare, was adapted 

and improved to represent the water management and decision aspects in the basin. 

The RiverWare model of the GRB, along with multimodel ensemble forecast 

framework, forms an experimental decision support system (DSS). The ensemble 

streamflow forecasts drive the RiverWare model resulting in ensembles of decision 

variables. In addition, future streamflow scenarios generated on long time scales 

(decadal or longer) using the paleo reconstructions can also be used with the 

RiverWare model to evaluate the system reliability and various management 

strategies for sustainable water resources. 

1.3. Outline of the Thesis 

The thesis is organized as follows. 

Chapter 2 provides a comprehensive background from past literature on the role 

of large-scale climate features in the variability of western US hydroclimatology. The 

links between large-scale ocean-atmosphere patterns and hydrologic process at 

different temporal and spatial scales and their role in improving streamflow forecast 

is described. Also, literature on seasonal cycle shifts in hydroclimatology and the role 

of climate change is described. This background description makes a case for 
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including the large scale climate information in streamflow forecasting framework for 

improved skills. 

Chapter 3 presents a new multimodel ensemble forecast framework for seasonal 

streamflows. In this predictors are identified from the large-scale ocean-atmosphere-

land system. A nonparametric functional estimation method based on local 

polynomials in combination with principal component analysis is used to generate 

ensemble forecast of streamflows at six locations in the GRB (Table 1) and two 

locations in the San Juan basin (Table 2) simultaneously. The significant contribution 

is that ensemble forecasts are issued from several candidate models, which are then 

optimally combined to issue a multimodel ensemble forecast. The spring seasonal 

forecasts are issued at several lead times (as early as December, when the snow 

accumulation is partial at best). Significant long lead forecast skills have been 

demonstrated on these two basins. The forecast methodology and skill score 

estimation are described in detail in this chapter.  

In Chapter 4 a new framework to produce categorical streamflow forecasts at 

multiple sites is developed. Often times water mangers require the categorical 

streamflow forecasts. Typically, these are obtained by generating ensemble forecasts 

of streamflows as described in the Chapter 3 and counting the proportion of 

ensembles in the desired category. Alternatively, a simpler approach based on logistic 

regression can be devised to obtain the categorical forecasts directly – which is 

proposed in this chapter and applied to the six streamflow locations in GRB. This is a 

complementary approach to the multimodel ensemble forecast framework developed 

in the Chapter 3. 
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Chapter 5 develops an experimental decision support system (DSS) for the water 

resources management of the GRB. The DSS consists of a RiverWare model for 

water resources decision-making in the basin coupled with the multimodel ensemble 

forecast framework. The physical water resources system of the basin along with its 

operational rules and policies are represented in RiverWare. The ensemble 

streamflow forecasts (from chapter 3) drive the solution of the model to obtain 

ensembles of various decision variables. Significant skills in the decision variables 

were observed at long lead times, thus indicating the transferability of the streamflow 

forecast skills to the decision making context.  

Chapter 6 provides a novel approach to simulating streamflow scenarios on long 

time scales (decadal or longer) combining the observational and paleo reconstructed 

streamflows. This approach provides the ability to generate a richer variety of drought 

and flood scenarios than those in the observational record. Such variety will be of 

great use to water managers for long-term planning and development of basin water 

resources. Application to paleo reconstruction streamflow data in the GRB 

demonstrates its utility and also insights into the system risk (reliability) for various 

demand levels. 

Chapter 7 summarizes the results from this research and suggests potential 

improvements and extensions in future. 
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Figure 6: Flow chart of the proposed decision support system that applied on the 
Gunnison River Basin. 

 

Table 2: San Juan River Basin streamflow data information. 

Station 
Number 

Site Number 
(USGS) Site Name Elevation 

(m) 

Drainage 
Area (106 

m2) 
1 09361500 Animas River at Durango , CO 1981 1792 

2 09372000 McElmo Creek near CO-UT state 
line, CO 1490 896 
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CHAPTER 2 

LARGE SCALE CLIMATE FEATURES AND THE WESTERN US 

HYDROCLIMATOLOGY 

There is increasing evidence that variability at interannual to interdecadal time sales 

in the western US hydroclimatology is driven largely by large-scale ocean-

atmospheric patterns, especially of the Pacific Ocean. In this chapter a description of 

these connections from previous studies is provided and the need to incorporate these 

features in any hydrologic forecasting framework is discussed. 

2.1. Interannual Variability 

 Western US hydroclimatology is strongly modulated by several of the large-scale 

climate patterns such as ENSO1, PNA2 and PDO3, and the literature is rich in 

documenting the teleconnections of the climate patterns in association with various 

hydrologic processes. ENSO, an ocean-atmospheric phenomenon in the tropical 

Pacific Ocean, exerts the most influence on the interannual variability of 

hydroclimatology in the western US. During the El Nino years (i.e., warm ENSO 

events), increase in sea surface temperatures and consequent convection in the central 

and eastern tropical Pacific Ocean deepen the Aleutian Low pressure in the North 

Pacific Ocean - this amplifies the northward branch of the tropospheric wave train 

over North America and strengthens the subtropical jet over the Southwestern US 

(Bjerknes, 1969; Horel and Wallace, 1981; Rasmussen, 1985). This teleconnection 

                                                 
1 ENSO: El Nino Southern Oscillation  
2 PNA: Pacific North American Pattern 
3 PDO: Pacific Decadal Oscillation 
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due to El Nino results in above-normal and below-normal precipitation patterns in the 

desert southwest and Pacific Northwest regions, respectively (e.g., Ropelewski and 

Halpert, 1986; Redmond and Koch, 1991; Cayan and Webb, 1992; Dettinger et al., 

1998; Cayan et al., 1998, 1999). Generally opposing signals are evident in La Niña 

years (i.e., cold ENSO events), but some non-linearities are present (Hoerling et al., 

1997; Clark et al., 2001). Similar ENSO teleconnection patterns have been observed 

in the interannual variability of winter snow water equivalent (Clark et al., 2001; 

Cayan, 1996), surface temperatures (Redmond and Koch, 1991; Higgins et al., 2002; 

Gershunov and Barnett, 1998), and streamflows (Kahya and Dracup, 1993, 1994; 

Dracup and Kahya, 1994; Piechota et al., 1997; Maurer et al., 2004). 

Decadal variability of sea surface temperatures in the Northern Pacific (Mantua et 

al., 1997), described as PDO, is being identified as a primary driver of the western US 

hydroclimate variability on decadal time scales (McCabe and Dettinger, 1999, 2002; 

Hidalgo and Dracup, 2003; Brown and Comrie, 2004) – even though there is a debate 

on the independence of PDO from ENSO (Newman et al., 2003). In addition to inter-

annual and inter-decadal variability, recent studies also indicate a significant shift in 

the seasonal cycle of hydroclimatology in the western US (Cayan et al., 2001; 

Regonda et al., 2005a; Stewart et al., 2005) modulated by ENSO and the general 

warming trend, especially, the early occurrence of spring warming and consequent 

early spring time peak flows due to early snowmelt. 

The large-scale forcings, particularly ENSO and consequently PNA and the 

teleconnection patterns described above are highly persistent and thus have enabled 

long-lead hydroclimate predictions over the North America and western US in 
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particular. Higgins et al. (2004) forecasted surface temperatures across the United 

States using tropical Pacific Sea Surface Temperatures at 6-12 months lead-time. 

Hamlet and Lettenmaier (1999b) forecasted Columbia River streamflows using 

ENSO and PDO with several months lead-time. Clark et al. (2001) showed that 

combining large-scale climate information together with Snow Water Equivalent 

(SWE) improves the overall skill of the streamflow predictions in the Columbia and 

Colorado River Basins. Recently, Grantz et al. (2005) offered skillful predictions of 

spring streamflows on the Truckee and Carson Rivers in Nevada for two seasons 

ahead, using large-scale climate information. 

 Although much of the western US is strongly associated with large-scale climate 

patterns, interior west exhibited a weaker relationship because of the persistent winter 

storms of several different types in the region (Cayan, 1996). For example, unlike 

much of the western US, streamflows in the eastern central part of the western US 

(i.e., Rocky Mountains and the Great basin) are weakly correlated with upper level 

geopotential height anomalies (e.g., Cayan and Peterson, 1989; Klein et al., 1965; 

Weare and Hoeschele, 1983). Influence of various attributes of basin such as 

topography (i.e., irregular terrain), surface heating, and surface friction on winter 

precipitation are considered the potential causes for the observed weak correlations 

(e.g., Cayan and Roads, 1984). Also, there is a substantial variability in the strength 

of teleconnections from one river basin to another (McCabe and Dettinger, 2002) 

even in the regions that have strong teleconnections. Relatively minor shifts in large-

scale atmospheric patterns can result in large differences in surface climate (e.g., 

Yarnal and Diaz, 1986). Therefore, the typical indices (e.g., ENSO, PNA) that 
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capture large-scale climate patterns may not be useful in explaining the variability of 

the hydroclimatology, establishing a need for the development of nonstandard indices 

(e.g., Grantz et al., 2005). 

This is particularly the case in the Gunnison River Basin (GRB) and San Juan 

River Basin (SJRB) which are situated in the interior west between the Pacific 

Northwest and desert Southwest; the region lying outside the areas that are strongly 

affected by ENSO variability (e.g., Cayan and Peterson, 1989; Klein et al., 1965; 

Weare and Hoeschele, 1983; Cayan et al., 1998; Dettinger et al., 1998). Also, the 

climate signal of the region is not characterized by well known phenomena (e.g., 

Cayan, 1996; Clark et al., 2001; Klein, 1963; Klein and Bloom, 1987; McCabe and 

Legates, 1995). However, there are few circulation features, i.e., categorized/clustered 

geopotential height anomalies (e.g., Changnon et al., 1993; McCabe, 1994, 1996; 

McCabe and Legates, 1995; Robertson and Ghil, 1999), which modulate the winter 

snow pack and consequently the spring streamflows in the interior west. These 

circulation features vary with region and can not explain more than 50% of the 

variance of the hydrologic processes (e.g., Klein, 1963; McCabe, 1994; McCabe and 

Legates, 1995). Also, these features are quite different from the typical standard 

indices such as ENSO and PNA patterns. This background motivates the need to 

identify the appropriate large-scale climate information that modulates the 

streamflows in the GRB and SJRB. 

2.2. Hydroclimate Trends 

Changes in regional hydroclimatology can have substantial economic and 

environmental impacts. Increasing winter temperatures reduce the amount of snow in 
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a basin (e.g., more precipitation falling as rain than snow). This has been observed in 

several parts of the western USA (Aguado et al., 1992; Dettinger and Cayan, 1995). 

Also, higher spring temperatures initiate earlier runoff and peak streamflows in 

snowmelt-dominated basins (Aguado et al., 1992; Cayan et al., 2001). These can have 

significant impacts on water resources management – e.g., negative impacts on 

irrigation, non-firm energy, recreation, flood control, and instream flow for fish 

(Hamlet and Lettenmaier, 1999a). Knowing these shifts in advance can help water 

managers to optimize reservoir operations to meet competing demands such as 

irrigation, environmental needs, and power generation. 

Observations suggest an advancement of the seasonal cycle in the Northern 

Hemisphere, especially, early occurrence of spring, which Thomson (1995) attributed 

to increased atmospheric CO2 concentrations. Shifts in the seasonality of precipitation 

(Bradley, 1976; Rajagopalan and Lall, 1995) and streamflows (Roos, 1987, 1991; 

Aguado et al., 1992; Wahl, 1992; Lins and Michaels, 1994; Dettinger and Cayan, 

1995; Cayan et al., 2001; Regonda et al., 2005a; Stewart et al., 2004; Stewart et al., 

2005) have been observed across several regions of the western USA. Mote (2003) 

computed trends in snow water equivalent (SWE) in the Pacific Northwest and 

observed strong declines in SWE, in spite of increases in precipitation, which is 

consistent with an increase in spring temperatures. Recent research (Regonda et al., 

2005a) indicates early occurrence of spring warming and as a result an early spring 

peak over most of the western US – corroborating all of the earlier studies mentioned 

above. Enhanced ENSO activity in recent decades and the general warming trend 

were argued as potential causes for these shifts. In an analysis of hydrologic impacts 
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of climate change over west-central Canada, Burn (1994) found a strong shift towards 

the early occurrence of the spring runoff events, especially in the last 30 years. 

Dettinger and Cayan (1995) observed early flows in association with warmer winters 

in California. Cayan et al. (2001) documented the early onset of spring in the western 

US by examining changes in the blooming of plants and the timing of spring 

snowmelt pulses. McCabe and Wolock (2002) observed a step increase in streamflow 

in the conterminous United States over the period 1941-99, with pronounced 

increases in the eastern United States after 1970. 

Climate model simulations under CO2 doubling show a strong seasonal shift in 

the snow accumulation and ablation seasons, leading to increased winter runoff and 

decreased spring runoff (Lettenmaier and Gan, 1990). Nash and Gleick (1991) used 

conceptual hydrological models to simulate streamflow response to changes in 

temperature and precipitation in the Colorado River basin. Increases in temperature of 

2-4oC decreased mean annual runoff by 4 to 20%, whereas changes in annual 

precipitation of +/-10-20% result in corresponding changes in mean annual runoff of 

10 to 20%. Seasonal shifts in flow were observed and attributed to an increase in the 

ratio of rain to snow. The potential effects of climate change (i.e., increased winter 

precipitation and warmer winter temperature) are quite pronounced in the Pacific 

Northwest region, where significant increases in winter flow, and corresponding 

decreases in summer flow, are shown under a range of different climate models 

(Hamlet and Lettenmaier, 1999a). The transitions in winter and summer flow 

volumes occur because of increased winter temperature and winter precipitation with 

resulting reductions in snow pack (see also Mote, 2003). 
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Recently a group of researchers evaluated future climate change impacts on 

western US water resources management as part of the Accelerated Climate 

Prediction Initiative (ACPI) (http://www.csm.ornl.gov/ACPI). The climate change 

scenarios of projected “Business as Usual” (BAU) greenhouse gas emissions were 

simulated using NCAR/DOE’s Parallel Climate Model (PCM). The BAU scenarios 

exhibited an average warming of about 1-2oC and both decrease and increase in 

precipitation across the western US. Downscaling these scenarios to the Colorado 

River basin, Christensen et al. (2004) find a significant decrease in April1 SWE (-

30%), annual runoff (-17%), total basin storage (-40%), and reservoir levels (-33%) 

by the end of the 21st century. Furthermore, Barnett et al. (2004), find that these 

climate impacts can potentially drive the Colorado compact to the brink of failure. In 

the Pacific Northwest region (Wood et al., 2004) and on the Columbia River basin in 

particular, Payne et al. (2004) and Leung et al. (2004) find that the climate change 

scenarios lead to a decrease in SWE, more frequent rain on snow events, changes in 

SWE accumulation/melting period and consequently, increased likelihood of winter 

flooding and an earlier refill of reservoirs. This increases the competition of instream 

releases for hydropower generation and endangered species allocation (Payne et al., 

2004; Barnett et al., 2004). Similar impacts of reduced winter and spring precipitation 

coupled with early spring warming and peak flows are seen in the Sacramento-San 

Joaquin basin (Vanrheenen et al., 2004) and several basins in the Sierra Nevada 

region (Dettinger et al., 2004). In general, climate change due to 1-2oC warming and 

shifts in spring streamflows (Dettinger et al., 2004; Stewart et al., 2004) were found 
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to significantly impact water resources in the western US by the end of the 21st 

century (Barnett et al., 2004; Leung et al., 2004). 

From the research efforts discussed above it is clear that the western US 

hydroclimatology is impacted significantly by large-scale climate features at all the 

time scales. Thus, a credible forecasting framework should include information of the 

large-scale climate system in order to provide skilful forecasts. This motivates the 

present research as can be seen in the forecasting framework developed in the 

following chapter. 
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CHAPTER 3 

A MULTIMODEL ENSEMBLE FORECAST FRAMEWORK 

As motivated in the preceding chapters, here, in this chapter a new framework for 

multi-site ensemble forecast of seasonal streamflows, incorporating large-scale 

climate information is presented. The method is demonstrated by application to 

streamflows in the Gunnison River Basin (GRB) and San Juan River Basins (SJRB). 

3.1. Streamflow Forecasting Framework 

Short-term decision-making requires skillful forecast of streamflow attributes, 

such as seasonal/monthly volume, timing of peak flow, at single/several locations. 

Streamflow forecasts at multiple locations act as points of release of water satisfying 

various basin needs (e.g., agricultural, municipal, and trans-basin diversions). 

Therefore, streamflow forecasts at all locations need to be generated simultaneously 

so as to capture the spatial dependence among locations. As noted in the chapter 3, 

large-scale climate forcings modulate the streamflow characteristics and hence, this 

also has to be included in the forecasting framework. 

To this end, a new modeling integrated framework is proposed that produces an 

ensemble of spring streamflow forecasts at multiple locations and at different 

monthly lead times incorporating large-scale climate information. The proposed 

methodology consists of four broad components: (i) Principal Component Analysis 

(PCA) of the (spring season) streamflows at the locations to identify the dominant 

modes of variability; (ii) climate diagnostics to obtain the large-scale ocean-

atmosphere predictors of the dominant modes; (iii) statistical model and multimodel 
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selection objective criterion to select a suite of models from the predictor set based on 

the Generalized Cross Validation (GCV); and (iv) multimodel ensemble streamflow 

forecast algorithm, in which ensembles of the dominant modes are predicted from the 

multimodels, and then combined, and translated into the original flow space to obtain 

the streamflow forecasts. These components will be described in detail in the 

following sections. 

3.1.1. Principal Component Analysis (PCA) 

 Principal Component Analysis is widely used in climate research. This method 

decomposes a space-time random field (i.e., a multivariate dataset such as the 

seasonal streamflows at the six locations in the GRB) into orthogonal space and time 

patterns using Eigen decomposition (Von Storch and Zwiers, 1999). The patterns are 

ordered according to the percentage of variance captured, i.e., the first space-time 

pattern (also called “mode”) captures the most variance present in the data and so on. 

The temporal patterns are called principal components (PCs). Typically, the first few 

modes (PCs) capture most of the variance present in the data. This can also be 

thought of as a dimension reduction technique, where a large multivariate data set is 

effectively represented by a few PCs (i.e., smaller dimension). Furthermore, since the 

PCs are orthogonal they can be analyzed independently and combined to reconstruct 

the original data. 

The mathematical formulation is as follows: 

1.3    ...             ][][][             MXMNXMNXM EYZ
rr

=  

2.3    ...           ][][][                   MXM
T

NXMNXM EZY
rr

=  
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Where, Z is the original flows, Y is the Principal Components, E is the Eigen vectors, 

M is the number of streamflow locations, and N is the length of the data.  Hence E 

can be considered a transformation matrix. 

The decomposition is obtained by minimizing the error 2]E [ ii ZZE −=ε (this 

maximizes variance) such that 1=TEE   (Ortho normal criteria) 

3.1.2. Climate Diagnostics 

 The next step is to search for indices that can be used to predict the dominant 

streamflow PCs. The leading PCs are correlated with global ocean and atmospheric 

circulation variables (i.e., Surface Temperatures, Geopotential heights, Winds) from 

preceding seasons. In this case, the leading PCs of the spring streamflows will be 

correlated with circulation variables from the preceding fall and winter months. From 

the resulting correlation maps, regions that exhibit strong correlations are used to 

develop potential predictors. These are typically the area-averaged values of the 

variables. Thus, a suite of potential predictors can be obtained. Composite analysis 

will be performed to identify the physical mechanisms driving the variability of the 

streamflows and also the consistency of the predictors.  

3.1.3. Forecast Framework  

The leading PCs and their potential predictors are incorporated into a statistical 

model, which is typically of the form: 

       y = ƒ(x1, x2, x3, … xR) + e    …  3.3 

Where f is a function fitted to the R predictor variables (x1,x2,…,xR), y is the 

dependent variable (in this case the leading PC of the spring streamflows) and e is the 
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errors assumed to be normally (or Gaussian) distributed with a mean of 0 and 

variance σ2. Traditional statistical methods fit a linear function that minimizes the 

squared errors, known a linear regression. The theory behind this approach, the 

procedures for parameter estimation, and hypothesis testing are very well developed 

(e.g., Helsel and Hirsch, 1995; Rao and Toutenburg, 1999) and are widely used. 

However, they do have some drawbacks: (i) the assumption of a Gaussian distribution 

of the errors and the variables and (ii) fitting a global relationship (e.g., a linear 

equation in the case of linear regression) between the variables. If the linear model is 

found inadequate, higher order models (quadratic, cubic, etc.) have to be considered, 

which can be difficult to fit in the case of short data sets. Also if the variables are not 

normally distributed, which is often the case in practice, suitable transformations have 

to be obtained to transform them to normal distribution. All of this can make the 

process unwieldy. Thus, a more flexible framework would be desirable. 

 Local estimation methods (also known as nonparametric methods) provide an 

attractive alternative. In this, the function f is fitted to a small number of neighbors in 

the vicinity of the point at which an estimate is required. This is repeated at all the 

estimation points. Thus, instead of having a single equation that describes the entire 

data set, there are several ‘local fits’, each capturing the local features. This provides 

the ability to model any arbitrary features (linear or nonlinear) that the data exhibits.  

 There are several approaches for local functional estimation applied to hydrologic 

problems (see Lall, 1995). Of these, the Locally Weighted Polynomial regression 

(LWP) is simple and robust, and has been used in a variety of hydrologic and 

hydroclimate applications with good results - for streamflow forecasting on the 
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Truckee and Carson river basins (Grantz et al., 2005), salinity modeling on the upper 

Colorado river basin (Prairie et al., 2005), forecasting of Thailand summer rainfall 

(Singhrattna et al., 2005), and spatial interpolation of rainfall in a watershed model 

(Hwang, 2005). Given these experiences, the LWP method is adopted in this research. 

 A brief description of the method is provided here and for specific details readers 

are referred to Loader (1999) and Grantz et al. (2005). In the LWP method a small 

number, K = α∗N (where α = (0,1] and N = number of observations) neighbors of the 

point of estimate, x* are identified from the data set. To the K neighbors, a polynomial 

of order p is fitted (equation 3) by a weighted least squares method where the K 

observations are weighted inversely to their distances to x* using a weight function. 

The fitted polynomial is then used to obtain the mean estimate for the dependent 

variable, y* at the point of estimate.  The standard regression theory also provides an 

estimate of the error variance (σle
2) corresponding to the predicted value of the 

dependent variable, y* (Loader, 1999). Random normal deviates with this variance 

and zero mean, when added to predicted value, y*, provide an ensemble. This 

assumes that the errors are normally distributed around the predicted value. Prairie et 

al. (2006a) developed a residual resampling approach to generate ensembles. In this 

the residuals of the LWP fit are resampled and added to the mean estimate. This can 

better capture the local error structure without assuming normality, but on short data 

sets the variety of ensembles produced is limited. Note that the LWP approach 

collapses to a traditional linear regression, when α is set to 1, p is set to 1, and each 

observation is weighted the same.  
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 The two key parameters in this method, the size of the neighborhood, K, and the 

order of the polynomial, p are obtained by minimizing an objective criterion, 

Generalized Cross Validation (GCV) which is a good estimate of predictive risk of 

the model, unlike other functions which are goodness of fit measures (Craven and 

Whaba, 1979). This is given as: 

2
1

2

1

),(

⎟
⎠
⎞

⎜
⎝
⎛ −

=
∑
=

N
v

N
e

pKGCV

N

i

i

     … 3.4 

Where ie is the model residual, N is the number of data points, v  is the degrees of 

freedom in the local polynomial model. Typically, several combinations of (K, p) are 

used and the combination that results in a minimum GCV value is selected. 

3.1.4. Multimodel Selection 

 The predictor variables used in the regression equations tend to be highly 

correlated. If all the correlated predictors are used in the model, it can lead to over-

fitting and poor skill in prediction; this is known as ‘multicollinearity’. Thus, the 

‘best’ subset of predictors needs to be identified. Typically, this is done using 

stepwise regression (e.g., Rao and Toutenburg, 1999; Walpole et al., 2002) where in, 

an objective function such as Mallow’s Cp statistic or adjusted R2 or AIC (Akaike 

Information Criteria) or an F-test, is calculated from the fitted model to several 

predictor combinations. The best subset is then selected based on the combination 

that gives the optimal value for the chosen objective function. For noisy data (i.e., 

most real data) the values of the objective functions for several predictor 

combinations tend to be very close, suggesting that several combinations (i.e., 
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candidate models) might be admissible. Thus selecting the ‘best’ subset might not be 

a good strategy, which warrants a multimodel approach. Recent studies show that 

multimodel ensemble forecasts tend to perform much better than a single model 

forecast (Hagedorn et al., 2005; Krishnamurti et al., 1999, 2000; Rajagopalan et al., 

2002).  

 Here, the use of GCV for multimodel selection is proposed. The approach is as 

follows: 

(i) GCV is computed for all the possible combinations of the predictor set and 

parameter set (K, p). 

(ii) All combinations with GCV values within a prescribed threshold are selected as 

admissible – constituting the pool of candidate models, i.e., multimodels. 

(iii) Combinations with predictor variables significantly correlated amongst each 

other (i.e., multicollinear) are removed from the multimodel pool. 

3.1.5. Multimodel Ensemble Forecast Algorithm 

 The ensemble forecast from the multimodels identified above is summarized in 

the following six steps:  

1. PCA is performed on the six streamflows in the GRB, and the leading PCs are 

selected. 

2. All potential predictors of the leading PCs are identified from climate diagnostics. 

3. These are passed through the forecasting framework and the multimodel 

selection. This results in a pool of multimodels, which includes the predictor set, 

and the corresponding parameter set. 
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4. Ensemble (say, 100) forecasts of the leading PCs are generated from each model 

of the multimodel pool.  For each ensemble, the other non-leading PCs are 

randomly selected (i.e., bootstrapped) from those obtained from the PCA. Thus, 

each ensemble forecast member consists of all PCs with the leading PCs obtained 

from the model forecast and the rest bootstrapped from the historic values. If ten 

models are selected in the multimodel pool the ensemble forecast will be a matrix 

of size (1000 x 6). 

5. The ensemble forecast matrix of the PCs is multiplied by the Eigen vectors to 

back transform into the streamflow space, i.e., EYZ
r

*** = . 

6. Clearly, ensembles from all the models are not equal. The model with the least 

GCV value should be given more weight relative to the one with a higher GCV. 

To this end, a vector of probabilistic weights is created based on the GCV values 

(the weights are normalized to sum to unity); using this weight metric, a model is 

selected; then an ensemble member from this model is selected at random. This is 

repeated numerous times (say, 100), thus, resulting in a final multimodel 

ensemble forecast. 

Steps 2 through 6 are repeated for each lead time; thus, each lead time will have a 

different suite of multimodels with their own predictor and parameter sets. 

3.1.6. Links to Model Averaging Literature 

 The typical statistical modeling approach involves identifying a single best model 

based on an objective criterion. This neglects model inadequacy and increases the 

associated risk of model inferences. To alleviate this, a combination of several 

candidate models, also known a ‘model averaging’ has been proposed (Reid, 1968; 
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Bates and Granger, 1969; Clemen, 1989). Another approach in a similar vein is to 

generate ensembles from several candidate models and combine them to provide a 

model average probabilistic forecast. This approach has been shown to perform better 

than any individual model ensemble, particularly in short term and seasonal climate 

forecast (Hagedorn et al., 2005; Hou et al., 2001; Krishnamurti et al., 1999, 2000; 

Regonda et al., 2005b; Tamea et al., 2005). The candidate models are combined by 

weighting them, where the weights are obtained from different approaches, e.g., 

Regression, Bayesian framework, etc. Weighting the multimodels in a Bayesian 

framework is known as Bayesian Model Averaging (Raftery et al., 1997; Hoeting et 

al., 1999). There are several variations within this framework (e.g., Madigan and 

Raftery, 1994). The key message in all of these is that combining several models 

tends to perform better in terms of predictive skill and reliable uncertainty estimates 

than a single model. 

 The multimodel combination approach proposed in this paper is consistent with 

the model averaging framework and provides an attractive alternative approach for 

performing model averaging. The multimodels are selected based on the GCV criteria 

and they are combined using weights based on their GCV values as described in the 

previous sections. 

3.1.7. Forecast Skill Evaluation 

 Since the framework generates an ensemble forecast, i.e., the probability density 

function (PDF), the skill of the forecast needs to be evaluated in probabilistic terms. 

One such common measure is the Ranked Probability Skill Scores (RPSS) (Wilks, 

1995). 
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 Essentially, it measures the accuracy of multi-category probability forecasts relative 

to a climatological forecast. Typically, the flows are divided into k mutually exclusive 

and collectively exhaustive categories for which the proportion of ensembles falling 

in each category constitutes the forecast probabilities (p1, p2, …,pk). The observational 

vector (d1, d2, ….,dk) is obtained for each forecast, where ‘dk’ equals one if the 

observation falls in the kth category and zero otherwise. 

The ranked probability skill score (RPSS) is defined as follows: 

3.6   ...                 
ology)RPS(climat

)(1                            forecastRPSRPSS −=  

In this research, the streamflows are divided into three categories, at the tercile 

boundaries, i.e., 33rd and 66th percentile of the historical observations. Values below 

the 33rd percentile represent ‘dry’, above 66th percentile ‘wet’, and ‘near normal’ 

otherwise. Of course, the climatological forecast for each of the tercile categories is 

1/3. 

The RPSS ranges from negative infinity to positive one. Negative RPSS values 

indicate the forecast accuracy to be worse than climatology, positive to be higher than 

climatology, zero to be equal to that of climatology, and a perfect categorical forecast 

yields an RPSS value of unity. In this application the RPSS is calculated for each year 

and the median value is reported. 
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3.2. Data Sets 

 The following datasets are used in developing the ensemble streamflow forecast 

framework on both Gunnison and San Juan River basins. The description of the 

datasets is presented below. 

3.2.1. Streamflow 

Streamflow locations are selected from the Hydro Climate Data Network 

(HCDN). This network, HCDN, was developed by USGS to analyze the climate 

impacts on the rivers and has more than 1000 streamflow stations across the 

continental USA with minimal human impact (Slack and Landwehr, 1992). For the 

GRB, HCDN provided six locations (Figure 2) that have continuous flow records 

from 1949 to 2002. The stations, described in Table 1, are situated in five of GRB’s 

six cataloging units. Four of the six stations contribute inflows to the reservoirs of the 

Aspinall Unit. Spring flow, the summation of daily flows from April through July, is 

computed for each of the locations for further analysis. 

For the SJRB, two streamflow locations, Animas River at Durango and McElmo 

Creek at Colorado-Utah border, are selected (Figure 4). Among all SJRB streamflow 

stations including HCDN listed ones, only the above-mentioned two locations 

satisfied the selection criteria, i.e., irrigated acreage is  less than 1% of their 

contributing drainage area. The selected stations have continuous flow records from 

1951-2003, and details are presented in Table 2. The Animas River is a part of the 

upper San Juan River Basin, whereas McElmo Creek is in the lower San Juan River 

Basin. Here too, spring flow time series is computed for the selected two locations. 
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3.2.2. Snow 

Snow water equivalent (SWE) data is obtained from snow-course surveys 

conducted by the Natural Resources Conservation Service (NRCS). SWE 

measurements are generally taken at or about the beginning of each month and are 

most frequently taken at the beginning of April, which is the peak SWE in many 

regions. For this study, I selected stations with at least 80% of their records available 

from 1949-2002 for February 1st, March 1st, or April 1st. For the GRB, three, four, and 

six stations met the criteria for the months February, March and April, respectively. 

For the SJRB, five locations satisfied the same selection criteria for April month. 

3.2.3. Large-scale Climate Variables 

Data of ocean-atmospheric circulation variables that capture the large-scale 

climate forcings that drive the regional hydrology are available from the NOAA’s 

Climate Diagnostics Center website (http://www.cdc.noaa.gov). These variables 

include Geopotential Height, Surface Air Temperature, Sea Surface Temperature 

(SST), Zonal Wind and Meridional Wind. These variables are provided on a 2.2deg x 

2.2deg grid spanning the globe from NCEP-NCAR Re-analysis project (Kalnay et al., 

1996) for the period 1949 – 2002. 

Also, standard teleconnection indices such as NINO regions SSTs (NINO 1.2, 

NINO 3.0, NINO 3.4, and NINO 4.0), Southern Oscillation Index (SOI), Northern 

Atlantic Oscillation (NAO), Northern Oscillation Index (NOI), Pacific Decadal 

Oscillation (PDO) and Pacific Northern American Pattern (PNA) are considered. 

http://www.cdc.noaa.gov/
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3.2.4. Palmer Drought Severity Index  

The Palmer Drought Severity Index (PDSI) is estimated based on the principle of 

balance between moisture supply and demand, but man-made changes are not 

considered in its calculation. It provides information on the severity of wet or dry 

conditions. The index generally ranges from -6 to +6 with negative values 

representing dry conditions and positive values denoting wet conditions. Data 

obtained from the Climate Diagnostics Center website (http://www.cdc.noaa.gov). 

3.3. Results 

 The multimodel ensemble forecast framework developed in the previous section 

was applied to streamflow locations of the Gunnison River Basin (GRB) and San 

Juan River Basin (SJRB). The details of the datasets used are presented, followed by 

results of each basin, concluding with a summary and discussion of the results. 

3.3.1. Gunnison River Basin 

3.3.1.1. Streamflow characteristics: Principal Component Analysis 

 The selected six streamflow locations exhibited spring snowmelt-dominated 

annual hydrograph, i.e., more than 50% of annual streamflow are from spring (April 

through July) flows. Further, as it discussed in the chapter 2, spring flows play a key 

role in various decisions. Therefore, spring flow time series is prepared for each of 

the six streamflow locations. 

PCA was performed on the normalized spring season streamflows from the six 

locations. The first PC explained most of the variance (around 87%) and the 

remaining five PCs together explained about 13% of the variance (Figure 7a). 

http://www.cdc.noaa.gov/
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Clearly, the first PC (Figure 7b) is the dominant and leading ‘mode’ containing the 

‘signal’, while the rest can be treated as ‘noise’. The Eigen vectors (i.e., loadings) at 

all the six locations (Figure 7c) corresponding to the first mode are of similar 

magnitude and sign suggesting that the basin is homogenous in its variability. To 

corroborate this, the first PC correlates strongly (correlation coefficient > 0.85) with 

the basin average spring flow. 

 

Figure 7: (a) Percentage variance explained by the six Principal Components (PCs), 
(b) Time series of the first PC and, (c) Eigen loadings of the first PC at the six 
streamflow locations. 

PCA is also performed on the SWE data separately for each month (February 1st, 

March 1st, and April 1st). Here too, the first PC explained most of the variance in all 

the months. As expected, the leading PC of SWE and the leading PC of the spring 
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streamflows were highly correlated, with the first PC of April 1st SWE having the 

highest correlation (0.82) with the flow PC (Figure 8a). It is interesting to note that 

there are few years (e.g., 1979, 1984, 1986, 2002 shown as solid circles in Figure 8a) 

in which flows are not proportional to the April 1st SWE. My hypothesis is that if the 

preceding summer/fall is drier than normal and the following winter is wetter than 

normal, then a large part of the following spring runoff is absorbed by the soil and 

lost to the atmosphere through evaporation, thus reducing the streamflow output. To 

test this, the average preceding fall season Palmer Drought Severity Index (PDSI) is 

computed over the basin, a good surrogate for soil moisture (Dai et al., 2004), and 

plotted them against the residuals of the linear regression between the first PC of the 

streamflow and SWE (Figure 8b). The correlation between the residuals and the fall 

PDSI is 0.35, which is low but statistically significant. But for the years that do not 

follow the linear SWE-flow relationship (solid circles in Figures 8a and b) the 

residuals show a very strong correlation with the preceding fall PDSI (0.873, solid 

line in Figure 8b). This suggests the key role of the PDSI in modulating the 

streamflows especially during years with a drier than normal fall season followed by 

a wet winter and spring, and the need for it to be included in the suite of predictors. 
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Figure 8: (a) Scatter plot of first PC of spring flow and April 1st SWE along with the 
best fit linear regression line, and (b) Scatter plot of residuals of the first PC of spring 
flow from the regression fit in (a) with the preceding fall season PDSI – the thin line 
is the best fit line for the scatter and the solid line is the best fit line of the filled circle 
points. 

3.3.1.2. Climate Diagnostics - Predictor Selection 

 As a first step, the first PC of spring streamflow is correlated with the standard 

large-scale climate forcing indices of ENSO, PDO and PNA, and no relationship was 

found. This is consistent with the past research results for the GRB (Cayan, 1996; 

Clark et al., 2001; Klein, 1963; Klein and Bloom, 1987; McCabe and Legates, 1995), 

which suggest that climate signals (particularly ENSO and PNA) in the inter-

mountain West tend to be weak due to the fact that the region is situated in the 

transition zone of the ENSO and PNA teleconnections. 

The first flow PC was correlated with the preceding seasons' atmospheric and 

oceanic circulation variables, i.e., 700 mb geopotential heights, surface air 

temperature, sea surface temperature, zonal (700 mb) and meridional (700 mb) winds. 

Correlation maps with the November - March season are presented in Figure 9. 
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Negative correlations are observed between the spring flows and 700 mb heights over 

the western USA (Figure 9a), indicating an above average spring streamflow in the 

GRB with negative geopotential height anomalies in this region, and vice-versa. The 

negative height anomalies tend to direct the storm tracks into the basin resulting in 

increased SWE, and consequently, increased streamflows in the spring. The surface 

air temperatures are negatively correlated with the spring flows in this region (Figure 

9b), consistent with Figure 9a. Correlations with zonal and meridional winds at 

700mb (Figures 9c and 9d) are consistent with the 700mb geopotential heights in that 

winds over the southwestern US bring moisture into the GRB basin, leading to above 

average spring streamflows. The sea surface temperature correlation (Figure 9e) 

shows a weak ENSO pattern with positive correlation in the tropical Pacific and 

negative in the northern Pacific. The correlations in the regions described above are 

statistically significant. Composite maps of vector winds at 700mb corroborate the 

results from the correlation maps (Figure 10). In wet years (years with PC values 

above the 90th percentile) the average wind pattern (Figure 10a) is from the 

southwest direction, blowing in to the basin from the ocean bringing in moisture, and 

consequently, more snow and streamflow - vice-versa during dry years (Figure 10b). 

The sea surface temperature composites (not shown) also indicated results consistent 

with the correlations. These observations are qualitatively in agreement with McCabe 

and Legates (1995). 

 From the correlation maps the regions of strong correlations are identified to 

develop the predictors by area, averaging over these regions. The difference between 

the regions of positive and negative correlations is taken in order to reduce the 
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number of predictors and enhance the predictor signal. From Figure 8b it is observed 

that the land surface information during the preceding fall plays a role in the 

following spring melt flows. Hence, the PDSI is also included in the set of predictors. 

In addition, the first PC of the SWE is included. In all, the climate diagnostics suite of 

predictors (geopotential height anomalies, surface air temperature, winds, PDSI, 

SWE) were developed for the April 1st forecast and they are detailed in Table 3. 

 

Figure 9: Correlation between the first PC of Spring flow and Nov-Mar large scale 
climate variables (a) Geopotential Height – 700 mb (b) Surface Air Temperature (C) 
Zonal wind - 700 mb (d) Meridional wind - 700 mb (e) Sea Surface Temperature. 
Maps were generated from NOAA’s Climate Diagnostic Center Website. 



 43  

 The correlation analysis is performed for all the lead times separately, e.g., for 

March 1st forecast, the first PC of spring flows is correlated with November-February 

climate variables and the predictors obtained from the maps and so on. It is found that 

the regions of strong correlation to be largely the same with slight differences among 

the lead times. 

 

Figure 10: Composite maps of vector wind anomalies at 700 mb for (a) wet years and, 
(b) dry years. Maps were generated from NOAA’s Climate Diagnostic Center 
Website. 

3.3.1.3. Multimodel Ensemble Forecast 

 As mentioned at the outset, spring streamflow forecasts at several lead times 

before the spring flow period are required by the water managers; hence, forecasts of 

the upcoming spring streamflows are issued on the first of every month starting 

December 1st through April 1st. The predictors and the first PC of spring flows are 

passed through the modeling framework described in the previous section. The 

residuals (or errors) from the model were all found to be normally distributed using a 

Kolmogorov-Smirnov test (Wilks, 1995). The forecasts are made in a cross-validated 

mode, i.e., a year is dropped from the data set, the PCA analysis is performed on the 

remaining data, and an ensemble forecast is issued. This is repeated for all the years. 
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Table 3: Suite of predictors of GRB spring streamflow for April 1st forecast. 

Positively Correlated Regions
Negatively Correlated Regions

 
 

Index 
Series Climate Variable

P1 P2 N1 N2 

SAT-N1 Surface Air 
Temperature - - 

Latitude: 
35.0-55.0 

Longitude: 
235.0-265.0 

- 

(GPH-P1) –   
(GPH-N1) 

Geopotential 
Height at 700mb 

Latitude: 42.5-
57.5 

Longitude: 
272.5-300.0 

- 

Latitude: 
32.5-42.5 

Longitude: 
230.0-250.0 

- 

(GPH-P2) – 
(GPH-N1) 

Geopotential 
Height at 700mb - 

Latitude: 55.0-
62.5 

Longitude: 
200.0-217.5 

Latitude: 32.5-
42.5 

Longitude: 
230.0-250.0 

- 

(MW-P1) - 
(MW-N1) 

Meridional Wind 
at 700mb 

Latitude: 52.5-
40.0 

Longitude: 
255.0-280.0 

- 

Latitude: 55.0-
75.0 

Longitude: 
300.0-320.0 

- 

(MW-P1) – 
(MW-N2) 

Meridional Wind 
at 700mb 

 

Latitude: 52.5-
40.0 

Longitude: 
255.0-280.0 

- - 

Latitude: 57.5-
42.5 

Longitude: 
222.5-232.5 

(ZW-P1) – 
(ZW-N1) 

 

Zonal Wind at 700 
mb 

Latitude: 35.0-
25.0 

Longitude: 
235.0-257.5 

- 

Latitude: 55.0-
47.5 

Longitude: 
235.0-255.0 

- 

(ZW-P2) – 
(ZW-N1) 

Zonal Wind at 700 
mb - 

Latitude: 30.0-
20.0 

Longitude: 
145.0-185.0 

Latitude: 55.0-
47.5 

Longitude: 
235.0-255.0 

- 

(SST-P1) – 
(SST-N1) 

Sea Surface 
Temperature 

Latitude: 50.5-
44.8 

Longitude: 
187.5-204.4 

- 

Latitude: 33.3-
21.9 

Longitude: 
144.4-185.6 

- 

(SST-P2) – 
(SST-N1) 

Sea Surface 
Temperature - 

Latitude: 
-8.6 - -18.1 
Longitude: 
247.5-275.6 

Latitude: 33.3-
21.9 

Longitude: 
144.4-185.6 

- 

PDSI Palmer Drought 
Severity Index Colorado Region 2 (Aug – Oct Seasonal values) 

PC1 SWE April1 SWE From the Gunnison River Basin 
 

Of course, for the forecasts issued on December 1st and January 1st, only the climate 

predictors are used (as the SWE information is not yet available). But for the 
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forecasts issued in subsequent months, the first PC of SWE is also included in the 

predictor mix. 

 As described in the methodology section, several models (i.e., predictor and 

parameter combinations) yield similar GCV values. This can be noticed in Table 4 

where the first 6 models are shown for the April 1st forecast, which illustrates the 

difficulty in selecting a single model uniquely and underscores the need for 

multimodel ensemble approach. A threshold of 20% of the least GCV value is defined 

and all the models within this range are selected. By inspection it is found that models 

within this threshold tended to have GCV values clustered together as seen in Table 

4. This rule of thumb seemed to work well for the application presented. But the need 

for a more objective criterion is recognized. The GCV based optimal values of K and 

p were found to be one, indicating that the relationship between the predictors and the 

flow is largely linear. However, the local functional estimation aspect of the method 

enables it to capture subtle nonlinearities between the variables that are present 

(Figure 11) with these parameter values. 

Table 4: Multimodel combinations of GRB for April 1st forecast (presence and 
absence of predictors are indicated by “1” and “0”, respectively). 

Number of 
Predictors 

SAT-
N1 

(GPH-P1) 
– (GPH-

N1) 

(GPH-P2) 
– (GPH-

N1) 

(MW-
P1) - 

(MW-
N1) 

(MW-P1) 
– (MW-

N2) 

(ZW-
P1) – 
(ZW-
N1) 

 

(ZW-
P2) – 
(ZW-
N1) 

(SST-P1) 
– (SST-

N1) 

(SST-P2) 
– (SST-

N1) 
PDSI

SWE
(First 
PC) 

GCV

1 0 0 0 0 0 0 0 0 0 0 1 2.07
2 0 0 0 0 0 0 0 0 0 1 1 2.14
2 0 0 0 1 0 0 0 0 0 0 1 2.15
2 0 0 0 0 1 0 0 0 0 0 1 2.32
3 0 0 0 1 0 0 0 0 0 1 1 2.34
3 0 0 0 0 1 0 0 0 0 1 1 2.51

 

 The number of models selected tended to decrease from December to April. This 

is intuitive, in that on December 1st SWE is not available and hence the forecasts have 
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to be made only from climate information. Consequently, individual models have 

greater uncertainty, and more models qualify as candidates for the multimodel pool. 

However, on April 1st, SWE information is complete and it is the best predictor of the 

ensuing spring streamflow. Therefore, fewer models with other predictor variables are 

necessary to capture the streamflow dynamics and its variability. Hence, a smaller 

number of multimodels are selected. 

 
(a) (b)

(c) (d)

 

Figure 11: Using the LWP approach for K=N and p=1, first PC flows are estimated as 
a function of (a) first PC SWE; (b) first PC SWE and PDSI; (c) first PC SWE and 
(MW-P1)-(MW-N1); and (d) first PC SWE and (MW-P1)-(MW-N2). 
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On the basis of criteria for selecting models for the multimodel ensemble, 15 

models for the December 1st forecasts and 6 models for the April 1st forecasts are 

identified. Ensemble forecasts for the streamflow location, Tomichi, issued on 

January 1st and April 1st, are shown as boxplots in Figure 12. The box represents the 

interquartile range, the whiskers are the 5th and 95th percentile of the ensembles, and 

the horizontal line within the box is the median. The dashed horizontal lines represent 

the 33rd, 50th, and 66th percentiles of the historic spring streamflow data at this 

location, and the historic values are shown as points connected by a solid line. Three 

observations can be made from this figure: (i) The ensembles are shifted in the right 

direction of the observed streamflow in almost all years. (ii) The ensemble forecasts 

issued on January 1st (with only the large-scale climate information) seem to capture 

the observations quite well. (iii) As expected, the ensemble forecasts issued on April 

1st are very good. The median RPSS for the January 1st forecast is 0.51 and the April 

1st is 0.77. This indicates that skillful predictions of the spring streamflows can be 

made for the GRB in the middle of winter even when the snow information is absent, 

which is quite significant for water resources management. 

 In order to evaluate forecast performance for extreme flows, flows are sorted into 

three categories: dry years (flows less than 25th percentile of the data), wet years 

(flows greater than 75th percentile), and near normal (remaining) years. Boxplots of 

the ensemble forecasts for the wet and dry years are shown in Figures 13 and 14, 

respectively. It can be seen that the ensembles do quite well forecasting flow 

extremes even on January 1st. This is very useful to the water managers as the 

extreme years place undue stress on the system operations. 
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(b) 

 

Figure 12: Boxplots of forecasted spring streamflow (million m3) at Tomichi, issued 
on (a) January 1st, and (b) April 1st. The dashed horizontal lines represent the 33rd, 
50th and 66th percentiles of the historical flow data which are shown as points 
connected by solid line. 

 

 
Figure 13: Same as Figure 12 but for forecast of wet years issued on (a) January 1st 
(b) April 1st. 
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Figure 14: Boxplots of forecasted spring streamflow (million m3) at Tomichi for 
forecast of dry years issued on (a) January 1st, and (b) April 1st. The dashed horizontal 
lines represent the 33rd, 50th and 66th percentiles of the historical flow data which 
are shown as points connected by solid line. 

Although April 1st forecast has high skill scores compared to January 1st forecast, 

in some years January 1st forecasts are more skillful than April 1st forecasts (e.g., 

1960, 1979, 1980, 1982, 1983, 1986, 1999; Figure 12). Snow is the main predictor for 

April 1st forecasts, and in these years snow is not a good representative of the 

streamflows (Figure 8a) and selected multimodels (i.e., combination of snow, PDSI, 

and winds) are unable to capture the responsible physical mechanism. Hence, 

forecasted values are either overestimated or underestimated. In addition, there are a 

few years (e.g., 1984, 1990, 1995) in which April 1st forecasts are underestimated 

(Figure 12b). Analyzing snow on April 1st and May 1st revealed the accumulation of 

snow during the month of April, i.e., May 1st snow is higher than April 1st snow. This 

means snow on April 1st represents proportionally lower streamflows; therefore, 

forecasted flows corresponding to April 1st are underestimated. However, these 
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anomalous years and corresponding behavior are site specific. Incorporating factors 

such as regional processes and May 1st snow, or post processing of streamflows with 

respect to regional processes of a specific station may further improve the multimodel 

ensemble forecasts, particularly in anomalous years. 

Categorical skill scores for several thresholds (5th percentile through 95th 

percentile) for the Brier skill score (BSS, Wilks, 1995) were also computed and 

similar performance of the multimodel ensembles was observed. 

 To test the utility of large-scale climate information, multimodel ensemble 

forecasts were generated at all lead times using just the large-scale climate predictors. 

The skills from these along with those including the SWE for forecasts issued from 

February 1st onwards are shown in Table 5. It can be seen that including large-scale 

climate information and SWE in the multimodel ensemble framework provides higher 

skill than just the climate predictors. Rank histograms (Hamill, 2001) of the 

multimodel ensembles (figure not shown) revealed a flattened (or uniform) 

distribution indicating that the uncertainty estimates are reliable in comparison to the 

single best model counterparts. As mentioned earlier, one of the advantages of the 

framework is to provide ensemble forecasts at all the sites capturing the spatial 

dependence. The average spatial correlation of the ensemble streamflow forecasts 

was found to be similar to that of the observations. 
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Table 5: Ranked Probability Skill Scores of GRB forecasts at different lead times 
using ‘Climate and PDSI” predictors and using ‘Climate, PDSI and SWE’ 
information. 

River Climate+PDSI Climate+PDSI+SWE 
Taylor Dec 1st Jan 1st Feb 1st Mar 1st Apr 1st Feb 1st Mar 1st Apr 1st

All Years 0.50 0.42 0.47 0.46 0.60 0.55 0.61 0.64 
Wet Years 0.79 0.91 0.74 0.93 0.97 0.94 0.96 0.98 
Dry Years 0.24 0.39 0.41 0.51 0.79 0.46 0.49 0.70 
East Dec 1st Jan 1st Feb 1st Mar 1st Apr 1st Feb 1st Mar 1st Apr 1st

All Years 0.34 0.44 0.38 0.56 0.64 0.60 0.52 0.71 
Wet Years 0.42 0.79 0.56 0.82 0.86 0.74 0.90 0.97 
Dry Years 0.38 0.31 0.45 0.51 0.80 0.61 0.40 0.86 
Tomichi Dec 1st Jan 1st Feb 1st Mar 1st Apr 1st Feb 1st Mar 1st Apr 1st

All Years 0.47 0.51 0.32 0.57 0.33 0.66 0.74 0.77 
Wet Years 0.52 0.75 0.39 0.83 0.92 0.88 0.92 1.00 
Dry Years 0.36 0.32 0.37 0.45 0.83 0.54 0.61 0.95 
Lake Fork Dec 1st Jan 1st Feb 1st Mar 1st Apr 1st Feb 1st Mar 1st Apr 1st

All Years 0.29 0.43 0.20 0.35 0.40 0.39 0.48 0.71 
Wet Years 0.07 0.46 -0.02 0.42 0.58 0.39 0.53 0.96 
Dry Years 0.27 0.15 0.24 0.30 0.62 0.56 0.57 0.89 
North Fork Dec 1st Jan 1st Feb 1st Mar 1st Apr 1st Feb 1st Mar 1st Apr 1st

All Years 0.36 0.46 0.40 0.56 0.63 0.46 0.45 0.78 
Wet Years 0.52 0.81 0.66 0.81 0.90 0.64 0.82 0.97 
Dry Years 0.21 0.21 0.38 0.42 0.82 0.50 0.33 0.65 
Uncompahgre Dec 1st Jan 1st Feb 1st Mar 1st Apr 1st Feb 1st Mar 1st Apr 1st

All Years 0.43 0.40 0.33 0.35 0.33 0.61 0.66 0.66 
Wet Years 0.40 0.74 0.46 0.79 0.84 0.84 0.81 0.98 
Dry Years 0.21 0.30 0.27 0.30 0.63 0.45 0.62 0.88 

3.3.2. San Juan River Basin 

Results of multimodel ensemble application are as follows. 

3.3.2.1. Streamflow characteristics - Principal Component Analysis 

Two streamflow locations, Animas River at Durango and McElmo Creek at the 

Colorado-Utah border in the San Juan River basin, are selected (Figure 4). The 

Animas River is a part of the upper San Juan River Basin, which is in the San Juan 



 52  

Mountains and it receives most of the annual precipitation as snow. The annual 

streamflows of this river are spring driven, i.e., approximately 70% of the annual 

streamflows is contributed by the melting of snow (Figure 5) during spring (April 

through July) and plays a key role in meeting various demands. The McElmo Creek is 

in the lower San Juan River Basin, where most of the region is plains and receives 

precipitation from both rain and snow. It is seen that McElmo’s annual streamflows 

are modulated by snow in winter and by rain in the following months, thus 

maintaining a uniform monthly contributions to annual flows (see Figure 15). The 

McElmo’s spring runoff contribution to the annual streamflow is small compared to 

the Animas River, i.e., approximately 30% of annual streamflows. Although the 

contribution by spring runoff is less, it is important for late fall and summer water 

releases. Therefore, spring streamflow time series is generated for selected two 

locations and is used in the multimodel ensemble forecasting. 

 

Figure 15: Annual average hydrograph of McElmo Creek at CO-UT border line. 
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Principal Component Analysis is applied to the normalized spring flow time 

series, and then PCs and corresponding percentages of variances are estimated. The 

first PC (Figure 16) explained 88% of the variance and is considered as leading mode 

and is thus treated as the signal. It also exhibited high correlations (0.94) and equal 

eigen loadings at both streamflow locations. Second PC, because of its less explained 

variance (i.e., 12%) is treated as noise. These results suggest domination of a single 

mechanism and similar variability at the selected streamflow locations. 

PCA is also applied on the five locations of April 1st SWE. Even at these 

locations, first PC explained most of the variance (88%) (Figure 17a); hence it is 

considered as the leading PC (Figure 17b). The remaining four PCs explained 12% 

variance and are treated as noise, i.e., these PCs, unlike first PC, do not have any 

signal/information within them. High correlations (>=0.90) and equal eigen loadings 

(Figure 17c) of the leading PC at all locations suggest unique variability and climate 

mechanism across the basin. PCA on spring streamflows and winter SWE suggested 

similar results. Such results are expected because spring flows are derived from 

winter snow. Corroborating further, the first PC of spring flows and April 1st SWE are 

highly (i.e., 0.79) correlated (Figure 18). Although there is a strong linear relation 

between SWE and spring flows, the relation is not found to be valid during some 

years. Preceding season’s drier/wetter conditions are expected as potential cause for 

the scatter in the linear relation. The significant correlation (i.e., 0.4) among PDSI 

(i.e., surrogate for soil conditions) and residuals of linear regression between SWE 

and spring flows explains the influence of soil conditions for the deviation in the 

behavior. 
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Figure 16: Time series of the first PC of spring streamflows of SJRB. 
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Figure 17: (a) Percentage variance explained by the five Principal Components (PCs), 
(b) Time series of the first PC and, (c) Eigen loadings of the first PC at the five SWE 
locations. 
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Figure 18: Scatter plot of first PC of, spring flow and April 1st SWE along with the 
best fit linear regression line. 

3.3.2.2. Climate Diagnostics-Predictor selection 

The first flow PC is correlated to various teleconnection indices for different 

months of winter, i.e., October through March. The teleconnection indices include 

NINO region Sea Surface Temperatures (SST) anomalies, Southern Oscillation Index 

(SOI), Pacific Decadal Oscillation (PDO), Pacific Northern American pattern (PNA), 

Northern Atlantic Oscillation (NAO), and Northern Oscillation Index (NOI). Few of 

these indices exhibited significant correlations in some winter months (Table 6). This 

is unlike teleconnection patterns of the GRB streamflows; The SJRB’s expansion into 

Southwestern US, in which strong links of teleconnections exist, enhanced the 

teleconnections link when compared to the GRB. 
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Table 6: Teleconnection indices that are significantly correlated and corresponding 
seasons with their correlations are mentioned. 

Teleconnection Index For January 1st forecast For April 1st forecast 

NINO 1.2 October - December: 0.29 October - March: 0.31 

NINO 3.0 NA March: 0.28 

NINO 3.4 NA March: 0.28 

NINO 4.0 NA NA 
Southern Oscillation 
Index (SOI) November: -0.32 January-February: -0.32 

Northern Atlantic 
Oscillation (NAO) October - December: 0.38 October - March: 0.37 

Northern Oscillation 
Index (NOI) NA January - February: -0.45 

Pacific Decadal 
Oscillation (PDO) NA March: 0.33 

Pacific Northern 
American Pattern (PNA) December: -0.34 March: -0.40 

 

The first flow PC is also correlated to large-scale ocean-atmospheric circulation 

variables (mentioned in the ‘GRB results’ section) over two different seasons, 

November-December and November-March. Correlation patterns of November-

March season are presented in Figure 19. For both GRB and SJRB, similar 

correlation features (Figures 8 and 19) are identified revealing similar large-scale 

climate drivers responsible for streamflow variability. This is further supported by 

similar composite maps of both basins (Figures 9 and 20). In addition to common 

features, SJRB streamflows are influenced by the elements of the Atlantic Ocean. 

These are exhibited in terms of first flow PC strong correlations with Atlantic sea 

surface temperatures (Figure 19e) and Atlantic Ocean related standard indices such as 

NAO and NIO (Table 6). 
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Figure 19: Correlation between the first PC of Spring flow and Nov-Mar large scale 
climate variables (a) Geopotential Height – 500 mb (b) Surface Air Temperature (C) 
Zonal wind - 500 mb (d) Meridional wind - 500 mb (e) Sea Surface Temperature. 
Maps were generated from NOAA’s Climate Diagnostic Center Website. 

From these strongly correlated regions, potential predictors are prepared by 

averaging the climate variables information over the region. Similar correlation 

patterns are observed for November-December season as well and a different set of 

predictors are generated from corresponding strongly correlated regions of the season. 
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Similar to the previous section, a new predictor set with the difference between the 

regions of positive and negative correlations is prepared. April 1st forecast includes 

the first PC of SWE in addition to large-scale climate variables, PDSI and other 

teleconnection indices, which are potential predictors for January 1st forecast. 

 

Figure 20: Composite maps of vector wind anomalies at 500 mb for (a) wet years and, 
(b) dry years. Maps were generated from NOAA’s Climate Diagnostic Center 
Website. 

3.3.2.3. Multimodel Ensemble Forecast 

Similar to the spring streamflow forecasts of the GRB, the selected predictors and 

first flow PC are passed through multimodel selection algorithm, and an ensemble 

forecast of spring streamflows is made for all years in the cross validated mode from 

each of the multimodels. The forecasts are issued at two different lead times, on 

January 1st and April 1st. The January 1st forecast predictor set consists of only 

climate information (as the SWE information is not available at that time of the year) 

(Table 7) whereas April 1st forecast comprises of both climate and SWE information 

(Table 8). 
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Table 7: Suite of predictors of SJRB spring streamflow for January 1st forecast. 

Positively Correlated Regions 
Negatively Correlated Regions 

 
 

Index 
Series Climate Variable 

P1 P2 N1 N2 

SAT-N1 Surface Air 
Temperature - - 

Latitude:  
32.5-52.5 
Longitude: 
235.0-257.5 

- 

(GPH-P1) –    
(GPH-N1) 

Geopotential Height 
at 700mb 

Latitude: 32.5-
45.0 
Longitude: 
280.0-295.5 

- 

Latitude: 
30.0-52.5 
Longitude: 
235.5-260.0 

- 

(GPH-P2) – 
(GPH-N1) 

Geopotential Height 
at 700mb 

- Latitude: 40.0-
52.5 
Longitude: 
202.5-220.0 

Latitude: 
30.0-52.5 
Longitude: 
235.5-260.0 

- 

(MW-P1) - 
(MW-N1) 

Meridional Wind at 
700mb 

Latitude: 32.5-
50.0 
Longitude: 
260.0-280.0 

- 

Latitude: 30.0-
57.5 
Longitude: 
220.0-240.0 

- 

(MW-P1) – 
(MW-N2) 

Meridional Wind at 
700mb 

 

Latitude: 32.5-
50.0 
Longitude: 
260.0-280.0 

- - 

Latitude: 40.0-
70.0 
Longitude: 
290.0-320.0 

(ZW-P1) – 
(ZW-N1) 

 

Zonal Wind at 700 
mb 

Latitude: 27.5-
37.5 
Longitude: 
240.0-267.5 

- 

Latitude: 47.5-
60.0 
Longitude: 
239.0-254.0 

- 

(ZW-P2) – 
(ZW-N1) 

Zonal Wind at 700 
mb - 

Latitude: 15.0-
35.0 
Longitude: 
267.5-300.0 

Latitude: 47.5-
60.0 
Longitude: 
239.0-254.0 

- 

(SST-P1) – 
(SST-N1) 

Sea Surface 
Temperature 

Latitude: 42.5- 
51.0 
Longitude: 
187.5-210.0 

- 

Latitude: 12.5-
37.5 
Longitude: 
140.0-190.0 

- 

(SST-P2) – 
(SST-N1) 

Sea Surface 
Temperature - 

Latitude:  
-5.0 - -27.5 
Longitude: 
255.5-285.0 

Latitude: 12.5-
37.5 
Longitude: 
140.0-190.0 

- 

(SST-P2) – 
(SST-N2) 

Sea Surface 
Temperature - 

Latitude:  
-5.0 - -27.5 
Longitude: 
255.5-285.0 

- 

Latitude: 7.5-
25.0 
Longitude: 
305.0-342.5 

PDSI-CO-2 Palmer Drought 
Severity Index Colorado Region 2 (Aug – Oct Seasonal values) 

PDSI-NM-1 Palmer Drought 
Severity Index New Mexico Region 1 (Aug – Oct Seasonal values) 
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Table 8: Suite of predictors of SJRB spring streamflow for April 1st forecast. 

Positively Correlated Regions 
Negatively Correlated Regions 

 
 

Index 
Series Climate Variable 

P1 P2 N1 N2 

SAT-N1 Surface Air 
Temperature - - 

Latitude:  
35.0-52.5 
Longitude: 
237.5-262.5 
 

- 

(GPH-P1) –    
(GPH-N1) 

Geopotential Height 
at 700mb 

Latitude: 42.5-
55.0 
Longitude: 
267.5-295.0 

- 

Latitude: 
27.5-45.0 
Longitude: 
225.0-250.0 

- 

(MW-P1) - 
(MW-N1) 

Meridional Wind at 
700mb 

Latitude: 37.5-
50.0 
Longitude: 
247.5-272.5 

- 

Latitude: 35.0-
47.5 
Longitude: 
215.0-230.0 

- 

(MW-P1) – 
(MW-N2) 

Meridional Wind at 
700mb 

 

Latitude: 37.5-
50.0 
Longitude: 
247.5-272.5 

- - 

Latitude: 35.0-
70.0 
Longitude: 
290.0-315.0 

(ZW-P1) – 
(ZW-N1) 

 

Zonal Wind at 700 
mb 

Latitude: 25.0-
32.5 
Longitude: 
227.5-250.0 

- 

Latitude: 42.5-
57.5 
Longitude: 
230.0-260.0 

- 

(ZW-P1) – 
(ZW-N2) 

Zonal Wind at 700 
mb 

Latitude: 25.0-
32.5 
Longitude: 
227.5-250.0 

- - 

Latitude: 35.0-
40.0 
Longitude: 
280.0-295.0 

(SST-P1) – 
(SST-N1) 

Sea Surface 
Temperature 

Latitude: 45.0- 
51.0 
Longitude: 
190.0-210.0 

- 

Latitude: 14.0-
36.0 
Longitude: 
145.0-201.0 

- 

(SST-P2) – 
(SST-N1) 

Sea Surface 
Temperature - 

Latitude:  
-8.0 - -22.0 
Longitude: 
255.0-280.0 

Latitude: 14.0-
36.0 
Longitude: 
145.0-201.0 

- 

(SST-P2) – 
(SST-N2) 

Sea Surface 
Temperature - 

Latitude:  
-8.0 - -22.0 
Longitude: 
255.0-280.0 

- 

Latitude: 26.0-
44.0 
Longitude: 
300.0-328.0 

PDSI Palmer Drought 
Severity Index Colorado Region 2 (Aug – Oct Seasonal values) 

PC1 SWE April 1st SWE From the SJRB 
 

Following the same rule of thumb that is applied in the GRB, multimodels that are 

within 20% of the least GCV are selected. The January 1st forecast selected 21 models 

(Table 9) whereas April 1st forecast selected 11 models (Table 10). The decrease in 
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Table 9: Multimodel combinations of SJRB for January 1st forecast (presence and absence of predictors are indicated by “1” and “0”, 
respectively). 

Number of 
Predictors SAT GPH-I GPH-II MW-I MW-II ZW-I ZW-II SST-I SST-II SST-

III 
PDSI-

CO 
PDSI-
NM NINO1.2 NAO PNA SOI GCV GCV 

RATIO

2 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1.04 1.00 
2 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1.05 1.01 
2 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1.09 1.05 
2 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1.10 1.06 
2 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1.12 1.07 
3 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1.12 1.08 
2 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1.12 1.08 
2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1.13 1.08 
3 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1.13 1.08 
2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1.14 1.10 
2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1.16 1.11 
3 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1.17 1.13 
3 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1.18 1.14 
3 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1.19 1.14 
3 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1.21 1.16 
3 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1.21 1.16 
3 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1.22 1.17 
2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1.23 1.18 
3 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1.24 1.19 
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1.25 1.20 
3 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1.25 1.20 
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Table 10: Multimodel combinations of SJRB for April 1st forecast (presence and absence of predictors are indicated by “1” and “0”, 
respectively). 

Number of 
Predictors SAT GPH MW-I MW-II ZW-I ZW-II SST-I SST-III

SST-
IIII 

PDSI-
CO 

PDSI-
NM 

NINO 
1.2 

NINO 
3.0 

NINO 
3.4 NAO NOI PDO PNA SOI

PC1-
SWE GCV

GCV 
RATIO

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.68 1.00

3 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0.75 1.09

2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0.75 1.10

3 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0.77 1.13

3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0.78 1.13

2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0.78 1.15

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.78 1.15

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0.80 1.17

3 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0.80 1.17
2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0.81 1.18

2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0.82 1.19
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number of multimodels is similar to that seen in the GRB. On the January 1st forecast, 

each of the potential predictors (and models as well) provide information on future 

spring streamflow, whereas on the April 1st forecast, only SWE explains most of the 

spring streamflows dynamics and variability. Hence, fewer multimodels are selected 

for April 1st forecast compared to the January 1st forecast. In all models, the GCV 

based optimal values of K and p are found to be one, indicating that the relationship 

between the predictors and flows is linear on a broader scale. However, local function 

aspect of the method enables to capture subtle nonlinearities between variables, if 

any. 

Ensemble forecasts for both streamflow locations, issued on January 1st and April 

1st, are shown as box plots in Figures 21 and 22. The notation of box plots is same as 

explained in the results section of the GRB. The following observations are made: (1) 

Ensembles of both lead times are shifted in the right direction for almost all years. (2) 

The January 1st issued ensemble forecasts captured observations quite well even in 

the absence of snow pack. (3) The April 1st issued ensemble forecast is quite good 

compared to the January 1st forecast. These observations suggest good skill of the 

multimodel ensemble forecast framework and provide valuable information starting 

from the middle of winter. Forecast performance is also evaluated in extreme years, 

by categorizing flows into three categories: dry years (flows less than 25th percentile 

of data), wet years (flows greater than 25th percentile of data), and near normal 

(remaining) years. Box plots of the wet and dry years for both locations are shown in 

Figures 23, 24, 25, and 26. These plots suggest better performance of streamflow 

forecasts for both wet and dry years. Although forecasts do not capture actual 
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observations in terms of magnitude, the range of forecasts potentially suggests the 

extreme conditions in almost all years. Better skills are depicted by April 1st forecasts 

when compared to January 1st forecast (Table 11). These skillful observations of 

extreme conditions (wet/dry), especially on January 1st (3-months lead time), provide 

useful information for water managers and help them take better decisions to reduce 

the stress on water resources. 

3.3.3. Comparison between multimodel ensemble and current framework 

Multimodel ensemble forecasts are compared with the Colorado Basin River 

Forecast Center’s (CBRFC) forecasts, which are currently used by the U.S. Bureau of 

Reclamation (BOR) for the operations of reservoirs in the Gunnison basin. The 

CBRFC’s April to July volume forecasts at four reservoirs (i.e., Taylor Park, Blue 

Mesa, Morrow Point and Crystal – detailed in Chapter 5) of the Gunnison basin are 

considered for the comparison. The seasonal (April to July) volume forecasts are 

adjusted reservoir inflows, and closely approximate natural or unimpaired flows into 

a reservoir. The actual reservoir inflows are available for a period of 28 years from 

1978-2005 and were obtained from the BOR (P. Davidson, personal communication, 

2005). The archive of CBRFC forecasts (one single value, i.e., most probable 

forecast, for each year) for a period of 15 years spanning 1991-2005 was provided by 

the CBRFC (CBRFC scientists, personal communication, 2005). The multimodel 

ensemble forecast framework was applied to actual reservoir inflows, and then cross 

validated ensemble of reservoir inflows were forecasted on January 1st and April 1st 

(detailed in Chapter 5). These forecasts were compared with the CBRFC archive 

forecasts for the over lapping period, 1991-2005. Boxplots of ensemble inflow 
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forecasts for Blue Mesa reservoir are developed, and compared with the actual 

reservoir inflows (blue solid circle) and most probable CBRFC forecast (red solid 

circle) (Figure 27). These plots, similar to streamflow forecasts of the GRB and 

SJRB, suggest good skill of the multimodel ensemble forecast framework starting 

from early winter (e.g., shifting ensemble of forecasts in the right direction, capturing 

observations fairly well). The methods’ performance is quantified by estimating the 

correlation coefficient between actual inflows, median of ensemble of inflow 

forecasts and most probable CBRFC’s forecast. The correlation coefficient values are 

tabulated in Table 12. High correlation values suggest good performance of 

multimodel ensemble forecast and CBRFC forecast on January 1st and April 1st, 

respectively. On April 1st, both forecasts exhibited good performance (i.e., correlation 

coefficient 0.7~0.8) with a little difference in their performance, whereas on January 

1st the difference in the forecast performance is a bit higher, i.e., multimodel 

ensemble forecast (correlation coefficient 0.5~0.7) performed better than CBRFC 

forecast (correlation coefficient 0.3~0.5). 
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Figure 21: Boxplots of forecasted spring streamflow (million m3) for Animas River at 
Durango issued on (a) January 1st, and (b) April 1st. The dashed horizontal lines 
represent the 33rd, 50th and 66th percentiles of the historical flow data which are 
shown as points connected by solid line.  

 

Figure 22: Same as Figure 21 but for forecasts of all years for McElmo Creek at CO-
UT state borderline issued on (a) January 1st and (b) April 1st. 
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Figure 23: Boxplots of forecasted spring streamflow (million m3) for Animas River at 
Durango for forecast of wet years issued on (a) January 1st, and (b) April 1st. The 
dashed horizontal lines represent the 33rd, 50th and 66th percentiles of the historical 
flow data which are shown as points connected by solid line. 

 

 
Figure 24: Same as Figure 23 but for forecasts of dry years for Animas River at 
Durango issued on (a) January 1st and (b) April 1st. 
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Figure 25: Boxplots of forecasted spring streamflow (million m3) for McElmo Creek 
at CO-UT state borderline for forecast of wet years issued on (a) January 1st, and (b) 
April 1st. The dashed horizontal lines represent the 33rd, 50th and 66th percentiles of 
the historical flow data which are shown as points connected by solid line. 

 

 
Figure 26: Same as Figure 25 but for forecasts of dry years for McElmo Creek at CO-
UT state borderline issued on (a) January 1st and (b) April 1st. 
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Table 11: Ranked Probability Skill Scores of SJRB forecasts at different lead times 
using ‘Climate and PDSI” predictors and using ‘Climate, PDSI and SWE’ 
information. 

River Animas River at Durango McElmo Creek near CO- UT 
Border Line 

Climate + PDSI Climate + 
PDSI + SWE

Climate + 
PDSI 

Climate + 
PDSI + SWE 

Jan 1st Apr 1st Jan 1st Apr 1st 
All Years 0.67 0.71 0.47 0.61 
Wet Years 0.90 0.98 0.82 0.96 
Dry Years 0.53 0.61 0.72 0.91 
 

 

Figure 27: Comparison between multimodel ensemble streamflow forecast with 
CBRFC most probable forecast, for Blue Mesa reservoir inflows (a) January 1st 
forecast; (b) April 1st forecast. Boxplots corresponds to multimodel ensemble 
forecast; blue and red circles correspond to actual and most probable CBRFC 
forecast. 
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Table 12: Correlation coefficients among actual observations, median of multimodel 
ensemble forecast and CBRFC's most probable forecast for two different lead times. 

Jan 1st Forecast April 1st Forecast Lead Time 
Reservoir Multimodel

forecast CBRFC forecast Multimodel
forecast CBRFC forecast

Taylor Park 0.554 0.357 0.660 0.832 
Blue Mesa 0.625 0.446 0.749 0.862 
Morrow Point 0.693 0.338 0.744 0.792 
Crystal 0.700 0.505 0.726 0.848 

3.4. Summary and Discussions  

 A multimodel ensemble framework to forecast streamflows at several locations 

simultaneously is presented. The framework has four main steps. (1) Principal 

Component Analysis is performed on the spatial streamflows to identify the dominant 

modes of variability. (2) Large scale ocean-atmospheric predictors are identified for 

the dominant modes. (3) Objective criterion, Generalized Cross Validation (GCV) is 

used to select a suite of candidate models. (4) Ensembles of forecast of the dominant 

modes and consequently the spatial flows are issued from the candidate models. The 

forecast model is based on the LWP approach that is data driven. Application of this 

framework to the GRB showed skilful long lead forecasts. Furthermore, the 

multimodel ensemble forecast including large-scale climate features and SWE 

rendered better performance in terms of skill and reliability of uncertainty estimates 

than the single best model counterpart or a model with only the SWE information. 

 Also, an interesting land-surface effect on the streamflows is observed: when the 

fall season is dry and following winter is wet, then the spring streamflows tend to be 

relatively lower compared to what would be expected from a wet winter. Therefore, 

the soil moisture information of the preceding fall was included as a potential 
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predictor, which improved the forecasts. This is corroborated by the presence of PDSI 

in several of the leading candidate models (see Table 4, 9, and 10). 

Other factors such as vegetation feedbacks on the spring melt (e.g., Wang et al., 

2005) together with soil moisture effects (i.e., quantified by the PDSI), snow pack 

ripening, spring (daily) wind patterns, air temperature, relative humidity, melt 

patterns in association with topography and shading factors (Lundquist and Flint, 

2005), and cloud cover need to be investigated to better understand the streamflow 

mechanism and incorporated in the framework to potentially improve the forecast 

skill. Objective methods for selecting the multimodels, combining their ensembles 

and dealing with multi-collinearity of the predictors are some of the aspects of the 

modeling approach that need detailed investigation. Other nonlinear time series 

approaches that reconstruct the dynamics of the underlying process from observations 

for prediction (see e.g., Porporato and Ridolfi, 1997, 2001; Regonda et al., 2005b; 

Sivakumar et al. 2002; Tamea et al., 2005) also offer interesting alternatives for 

consideration, although, they require a large number of data observations. 

Having a skillful forecast of the upcoming spring flows during early winter when 

the snow information is incomplete is of significant importance to water managers in 

their planning and operation. In this regard, a decision support model of the GRB is 

driven with ensemble of streamflow forecasts and resulted ensemble of decision 

variables is evaluated. This is presented in the chapter 5. 
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CHAPTER 4 

A NEW METHOD TO PRODUCE CATEGORICAL STREAMFLOW 

FORECASTS 

Often water managers require categorical streamflow forecast. That is, they would 

like to know the probability of streamflow in a defined category. This information can 

be obtained from the ensembles as described in the Chapter 3. Alternatively, a 

simpler approach based on logistic regression can be devised to obtain the categorical 

forecasts directly. In this chapter, a new framework for multi-site categorical forecast 

is developed and applied to streamflows in the Gunnison River Basin (GRB). This is 

a complementary approach to the multimodel ensemble forecast framework described 

earlier. 

4.1. Introduction 

Streamflow forecasts are provided in two forms according to the water manger’s 

need - categorical (probabilities of wet or dry conditions) and volume (monthly or 

seasonal streamflows) flow forecasts. A categorical streamflow forecast provides the 

probability of occurrence of a particular event, e.g., the chance of having higher 

streamflow. A volume flow forecast provides the amount of streamflows e.g., on 

daily, monthly, or seasonal time scales. 

Two approaches are used to forecast streamflow: physical- and statistical- models. 

In physical models, a hydrologic model is run using station data up to the start of the 

forecast to estimate the basin conditions (e.g., snowpack, soil moisture), and is then 

run into the future, with an “ensemble” of weather/climate forecasts, to produce 



 73  

ensemble forecasts of streamflow (e.g., Day, 1985; Clark and Hay, 2004). The 

ensemble of weather/climate forecasts comprise a finite number of individual 

realizations of precipitation and temperature over the next several weeks or several 

seasons, which, when used as input to the hydrologic model, produce the same 

number of future realizations of streamflow. Categorical forecasts can be produced by 

counting the number of individual ensemble members that are above a pre-defined 

threshold. Statistical models on the other hand use empirical relations to forecast 

streamflow (Garen, 1992). For example, snow water equivalent on April 1st may be 

used in a regression model to predict streamflow averaged over the months April 

through September. Uncertainty in the statistical models can be estimated easily (e.g., 

using the standard deviation of the regression residuals), and ensemble forecasts can 

be produced by sampling from the distribution of regression residuals (Grantz et al., 

2005; Regonda et al., 2006). Now, as with the physical models, categorical 

probabilities from the regression models can be computed from ensemble forecasts. 

Also, there are statistical methods (e.g., discriminant analysis) that directly estimate 

categorical forecasts for specific thresholds but require strong distributional 

assumptions, which when not satisfied, often the case with real data sets, require 

indirect resampling of errors.  

Piechota et al. (1998) developed a categorical forecast framework based on linear 

discriminant analysis (LDA). This approach has two main steps. First, probability 

density functions (PDFs) of a given predictor (e.g., the Southern Oscillation Index) 

were estimated for three subsets of streamflow data (below-normal, normal, and 

above normal), and the categorical forecast was estimated using Bayes rule 
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Here ( )Pr |iQ X  is the probability of streamflow (Q ) in the i-th category, given the 

predictor X ; ip  is the prior probability of the i-th category (i.e., the fraction of 

observations in the i-th category); and ( )if x  is the probability of the predictor 

variable computed using data from only the i-th category. Piechota et al. (1998) 

estimated the PDFs in equation 4.1 using non-parametric kernel density estimation 

(Lall, 1995). This first step is hence very similar to contingency table analysis (e.g., 

estimating the joint probability of X  and Q  for different categories of X  andQ ), 

except the probability of X , ( )if x , is allowed to vary within each of the k categories 

of Q . The second step in the Piechota et al. (1998) method is extension to multiple 

predictor variables. Multiple variables ),...,( 1 nXX  were included by assigning 

weights to each potential predictor variable, hence 
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in which iw  are the weights assigned to each predictor variable. The weights were 

determined by minimizing the error in historical forecasts. 

The Piechota et al. (1998) approach is attractive in that it provides a direct method 

to produce categorical streamflow forecasts. However, the method is somewhat 

cumbersome in that it requires both kernel density methods for estimating the PDF 

for each forecast category for use in equation 4.1, as well as optimization methods for 
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identifying the weights for use in equation 4.2. Together equations 4.1 and 4.2 are 

similar to logistic regression 
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where ),...,( 0 nββ  are regression coefficients obtained by a maximum likelihood 

procedure. Logistic regression offers potential improvements over LDA as it fits a 

function throughout the data and hence does not rely on the likely noisy ratio of 

probabilities in the LDA approach. Further, logistic regression is included in many 

statistical software packages. 

Apart from the Piechota et al. (1998) studies, almost all of the current methods 

used to generate categorical streamflow forecasts are somewhat indirect. The purpose 

of this study is two-fold. First, develop a simple and direct method to produce 

categorical streamflow forecasts at multiple locations. Second, compare the direct 

forecasting methods against indirect ensemble-based methods. The main intention is 

that new method to be complementary to the multimodel ensemble forecasting 

technique that is developed in Regonda et al. (2006) and, also an attractive alternative 

to the methods of Piechota et al. (1998). 

The proposed framework and its application to the six key streamflow locations 

(Figure 2) in the GRB are described in the following sections. These locations are 

along the main reservoir system in the basin, and also points of release of water that 

satisfy various basin needs (e.g., agriculture, municipal, and transbasin diversions). 
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4.2. Methodology  

The proposed integrated framework has the following three components: (i) Use 

Principal Component Analysis (PCA) to identify the leading modes of spatial 

variability in regional streamflow – these modes are also known as the leading 

principal components (PCs); (ii) Assess relationships between the leading streamflow 

PCs and global ocean and atmospheric variables to identify potential predictors; and 

(iii) Use logistic regression to issue categorical streamflow forecasts. Results from 

Regonda et al. (2006) are used for components (i) and (ii), while the logistic 

regression framework is developed in this study. Categorical forecasts are evaluated 

using the Brier skill score. 

This method was applied to six streamflow locations in the GRB and, categorical 

spring streamflow forecasts were issued on the 1st of each month from December (i.e., 

4 month lead-time) through April 1st in a cross-validated mode, in which all data from 

a given year is dropped from the forecasting framework while predicting in that year. 

The methodology along with the data and the application is described below. 

4.2.1. Data 

The daily discharges at the six streamflow locations for the period 1949-2004 

were obtained from the U.S. Geological Survey (USGS) [http://water.usgs.gov/]. As 

expected, the streamflows exhibited a snow driven annual hydrograph (Figure 3), 

which has spring snow melt (April – July) resulting in the major contribution (greater 

than 70 percent) of annual flows. Hence, spring seasonal flows (averaged flow during 

April – July) are considered in this analysis, and developed spring streamflow time 

series for each of the six locations. 
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Snow Water Equivalent (SWE) data were obtained from Natural Resource 

Conservation Service (NRCS). The SWE measurements are taken around the 

beginning of each month, and records of February, March and April are considered, 

respectively, at 10, 14, and 14 locations in the basin. 

Monthly global ocean and atmospheric variables such as Sea Surface 

Temperatures, Geopotential Height, Zonal Wind, and Meridional Wind, and Palmer 

Drought Severity Index (an index of soil moisture) were obtained from the Climate 

Diagnostic Center website (http://www.cdc.noaa.gov). 

4.2.2. Forecast Method 

4.2.2.1. Step 1: Principal Component Analysis (PCA) 

PCA decomposes the space-time multivariate data set (time series of streamflows 

at six locations of the GRB) into orthogonal space (eigen vectors) and time (principal 

components) patterns using eigen-decomposition (see e.g., Von Storch and Zwiers, 

1999). The space-time patterns are ordered according to the percentage of data 

variance explained (i.e., the first space-time pattern explains most of the data 

variance), and the leading PCs, corresponding to the space-time patterns that explain 

most of the data variance, are selected. 

PCA on the spring streamflows at the six locations of the GRB resulted in the first 

PC explaining 87 percent of the variance, and the remaining five explained 13 percent 

of the variance. Clearly, the first PC is the leading mode and furthermore, it had 

uniform Eigen loadings (not shown) and high correlation (>= 0.8) with all the six 

streamflows. This indicates that the leading PC is a robust indicator of basin-wide 

streamflow variability. 

http://www.cdc.noaa.gov/
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4.2.2.2. Step 2: Predictor Selection 

Since the leading PC captures most of the data variance of the spring streamflows, 

predictors are searched by finding the correlation of the leading PC with large-scale 

ocean and atmospheric variables across several regions of the world, from preceding 

seasons. The regions with strong correlations are identified, and predictors are created 

by averaging the value of the variables from these regions. This is done for each lead 

time. For example, January 1st forecast considers the large scale ocean-atmospheric 

variables of November-December season, and similarly April 1st forecast considers 

the November-March season, etc. In addition, the first PC of the monthly SWE and 

the average Palmer Drought Index (PDSI) from the GRB region of the antecedent fall 

were also added to the suite of predictors. The variability of SWE in the basin is quite 

homogeneous, as can be seen by the fact that the first PC of SWE captures over 70% 

of the variance in all the months (i.e., 73%, 70%, and 70% variances are explained by 

February 1st, March 1st , and April 1st SWEs, respectively) furthermore, the first PC of 

SWE is highly correlated (correlation coefficient > 0.70) with the first PC of the 

spring streamflows (i.e., 0.72, 0.76, and 0.84 respectively for February 1st, March 1st , 

and April 1st SWEs) – hence, the first PC of SWE is a good predictor. The PDSI was 

included because drier conditions in the antecedent fall lead to an increased 

infiltration in the following spring when the snow starts to melt, and thus, reducing 

the spring streamflows. The details on the diagnostics and selection of the predictors 

are provided in the ‘GRB results’ section. 

 From the suite of predictors identified from the climate diagnostics, Regonda et 

al. (2006) developed several regression models for the first streamflow PC using a 
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nonparametric local polynomial framework, for each lead time. Each of the 

regression models consists of a different subset of predictors, and is used to issue 

ensemble forecasts of the first PC. Since many models have similar skill, it is difficult 

to identify a single ‘best’ model. Consequently, Regonda et al. (2006) combines 

predictions from multiple regression models to obtain multimodel ensemble forecast 

of the first streamflow PC, and subsequently back-transforms the multimodel 

ensemble forecast to all the six locations in the basin, simultaneously. Categorical 

forecasts are then issued from the multimodel ensemble forecast. 

In this study the goal is to develop and demonstrate the utility of a logistic 

regression based framework for categorical forecasting. For simplicity at each lead 

time the ‘best’ predictor set identified by Regonda et al. (2006) (i.e., predictors of the 

model with the lowest error) is used to produce ensemble streamflow forecasts and 

the corresponding categorical probabilities. That is, the multimodel forecasts are not 

used. The same combination of predictors from the single best local polynomial 

model is then used as explanatory variables in the logistic regression model to 

estimate categorical forecast probabilities directly. These predictor sets are described 

in Table 13 for different lead times. A more formal approach would be to identify the 

‘best’ subset of predictors using the logistic regression. 

4.2.2.3. Step 3: Categorical Forecast Framework - Logistic Regression 

As described earlier, the goal of this study is to develop a framework that issues 

categorical forecasts of streamflows. To this end, probabilities corresponding to 

events of different threshold values need to be estimated. This consists of the 

following steps: 
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(i) A threshold value, say the 20th percentile, is chosen for the first PC. 

(ii) The first PC time series is reduced to a binary (1 if the PC value exceeds the 

threshold, 0 otherwise) series. 

(iii) Logistic regression is employed (Hosmer and Lemeshow, 1989) to obtain the 

threshold probabilities. This method was outlined in the Introduction but is 

repeated here for completeness: 
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where Plogit is the probability of the event of interest (e.g., PC value exceeding 

the 20th percentile) and (β1,β2, ..., βn) are regression coefficients for each of 

the predictor variables (X1,X2,…,Xn). Correspondingly, the probability of non-

exceedance of the threshold value is (1-Plogit). The regression coefficients are 

obtained via maximum likelihood estimation procedure (for details see, 

Hosmer and Lemeshow, 1989). The library ‘glm’ in the free software R 

(http://www.r-project.org) is used. 

(iv) Typically, PCA tends to change the distribution of the original variables to 

normal distribution. Thus, if the distribution of the original variables is non-

normal then this transformation can lead to incorrect categorical probabilities. 

Kolmogorov-Smirnov (KS) test is performed on spring season streamflows at 

each location to test the normality of the distribution. In addition, the 

distributional difference between the first PC and each of the streamflows is 

also tested. All the spring flows, except Taylor River, were found to be 

normally distributed also, the distribution of all the seasonal streamflows were 

found to be as that of the first PC, at 95% confidence level. These tests 

http://www.r-project.org/
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suggest that the PC analysis retained the distributional properties of the 

original data consequently, the rank probability as well.  Furthermore, the first 

PC was found to be highly positively correlated with the streamflows in the 

basin and explains 87% of the variance. These diagnostics indicate that one 

can translate the probabilistic forecast of the PC directly to the streamflows at 

all the six locations. Thus, the Plogit value obtained from equation 4.4 (step iii, 

above) for a given threshold (say the 20th percentile of the PC value) is 

interpreted as the probabilistic forecast of same threshold (i.e., 20th percentile) 

exceedance of the streamflows. 

(v) Steps (i) through (iv) are repeated for several thresholds. 

This framework is applied in a cross-validated mode to obtain the probabilistic 

streamflow forecasts for all the years at the six locations for different lead times. 

An alternative approach would be to fit logistic regression models to each 

individual streamflow gage in the GRB. The PCA step in Regonda et al. (2006) has 

important advantages, as it preserves the spatial correlation structure over the basin 

when forecasts of the PC are disaggregated to individual stream gages. In the logistic 

regression model developed in this paper, the probability for the PC is distributed 

uniformly over the basin, hence the capabilities for spatial disaggregation in the 

original Regonda et al. (2006) method are lost. Nevertheless, use of the PC has other 

advantages, as it filters the data and reduces noise in the predictand variable. 

Moreover, use of the PC for logistic regression provides scope to compare the logistic 

regression approach with the original Regonda et al. (2006) method. 
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Table 13: Best predictor set for the Logistic Regression at different lead times. 

 

 

 

 

SSTDec1 is the averaged Sea Surface Temperature anomalies difference between 
(14.3o N-41.0o N – 71.2o W-39.4o W) and (42.9o N-52.4o N – 176.2o E-150.0o W) for 
December 1st; between (21.9o N-42.9o N – 60.0o W-30.0o W) and (23.8o S-10.5o S – 
110.6o W-78.8o W) is SSTMar1 for March 1st. ZW Jan1 is the averaged zonal wind 
difference between (50.0o N-60.0o N – 125.0o W-100.0o W) and (60.0o N-65.0o N – 
155.0o W-142.5o W) for January 1st. PDSI is August -October Palmer Drought 
Severity Index of preceding year averaged over climate division 2 (which includes the 
GRB) of Colorado; SWE Feb1 corresponds to the first PC of snow water equivalent in 
the basin on February 1st – similarly, SWE Mar1 and SWE Apr1. 

4.2.3. Forecast Evaluation 

 The performance of the categorical probabilistic forecasts issued from the logistic 

regression framework is evaluated using the Brier Skill Score (BSS). This is a widely 

used measure to verify categorical probabilistic forecasts (Wilks, 1995). The BSS is 

computed for each threshold and is defined as (Wilks, 1995): 
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December 1st 1 SSTDec1  -NA- 
 January 1st  2 ZW Jan1 PDSI 
 February 1st  1 SWE Feb1 -NA- 
 March 1st  2 SWE Mar1 SSTMar1 
 April 1st  1 SWE Apr1 -NA- 
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where pi refers to the forecast probabilities for a given threshold value (i.e., either 

estimated from equation 4.4 or from the ‘best model’ ensemble); oi refers to the 

outcomes; oi is one if the observed flow exceeds the threshold volumes, and zero 

otherwise; N is number of forecasts, in this case the number of years. Replacing pi 

with climatological probability in equation 4.6 results in the BSclim – for example, the 

climatological probability of 20th percentile exceedance will be 0.8. The BSS values 

range from negative infinity to 1; negative values of BSS indicate forecast 

performance worse than climatology, and positive values indicate forecast 

performance better than climatology. A BSS of “0” implies that the forecast accuracy 

is the same as that for climatological forecasts. In contrast, a BSS of 1 can only occur 

for perfect forecasts. 

4.3. Results 

Skill score, i.e., the cross-validated BSS are estimated for the categorical 

streamflow forecasts issued from the logistic regression framework developed in this 

paper and also from the ‘best model’ ensemble of Regonda et al. (2006), at all the six 

locations and at different lead times. Figure 28 displays the BSS values for the 

forecasts issued on January 1st and April 1st. It can be seen that the BSS values from 

both the approaches are greater than climatology – suggesting skillful long-lead 

forecasts. Forecasts issued on April 1st show better performance relative to those 

issued on January 1st. This increase in performance with a decrease in lead time is to 

be expected; on April 1st almost all of the seasonal snow is present on the ground in 

the basin thus, providing accurate information of the resulting streamflow from the 

melt. Lower forecast performance is observed at higher threshold values at both lead 
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times. This is because of fewer (rare) events, which results in fewer data points 

making the logistic regression unstable (Bradley et al, 2003; Clark and Slater, 2006). 

The skill from both methods is comparable. However, the logistic regression 

framework can directly provide the categorical forecast at less computation cost 

which makes it quite attractive. 

 

Figure 28: BSS of forecasts from the logistic regression (LR) framework (circles) and 
the ‘‘best model’’ (BM) ensemble of Regonda et al. [2006] (triangles), issued on 1 
January (open circles and open triangles) and 1 April (solid circles and solid 
triangles) at the six locations in the GRB. Exceedance percentiles and BSS are plotted 
on x and y axes, respectively. 
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4.4. Summary 

The developed framework is a simple and direct method to produce probabilistic 

categorical streamflow forecasts. In this, the categorical forecasts of the leading mode 

(or principal component) of the spatial streamflow at different thresholds is estimated 

via logistic regression. Large-scale climate features are used to obtain the predictors, 

and used in the logistic regression. These categorical forecasts are then uniformly 

transferred to the corresponding categorical forecast of streamflows at all the 

locations. The framework was applied to categorical forecasts of the April-June 

(spring) streamflows in the GRB at several month lead times starting from December 

1st. The forecasts exhibited significant skill even at long lead times. Furthermore, the 

skills were comparable or better in some cases to those obtained from a ‘best model’ 

nonparametric regression based forecasts of Regonda et al. (2006). Also skill scores 

from the multimodel ensemble forecasts of Regonda et al. (2006) are estimated and 

comparable results were observed.  Both these approaches are complimentary and 

serve different purposes – the logistic regression method will be useful if a quick 

categorical forecast is required, while the ensemble approach can provide the entire 

probability density function of the streamflows that can be used to drive decision 

support models. 

The framework developed in this research is flexible and simple to implement. It 

works very well if the leading mode captures most of the data variance, and has 

uniform Eigen loadings and high correlations with all the basin streamflows – such as 

the case in the application to the GRB is demonstrated. If there are more than one 

leading PC that capture a significant part of the spatial variance, then this framework 
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can be applied to all the significant leading PCs and the estimated categorical 

forecasts from each of the PCs optimally combined following Rajagopalan et al. 

(2002). Other potential improvements could include optimally combining categorical 

forecasts from multimodels and also using the nonparametric logistic regression 

(Loader, 1999) method. 
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CHAPTER 5 

DECISION SUPPORT SYSTEM FOR GUNNISON RIVER BASIN 

FORECASTS 

This chapter develops an experimental decision support system (DSS) for the 

water resources management of the Gunnison River Basin (GRB). The DSS consists 

of a RiverWare model of the GRB along with multimodel ensemble forecast 

framework. The streamflow forecast framework, described in Chapter 3 generates an 

ensemble of streamflows which drive the solution of the model. The result is an 

ensemble of outputs that can be represented as a probability distribution function 

conditioned on the forecast for modeled various decision variables. 

5.1. Introduction 

In Chapters 3 and 4, I have accomplished improved forecasts of spring runoff 

volume starting from early winter, in the absence of snow information, especially the 

January 1st forecast which gives a four month lead time. Similar good skills in 

forecasted decision variables at the four month lead time would provide significant 

information to water managers and assist in their planning operations. To evaluate 

this kind of benefits in conjunction with streamflow forecasts, the DSS model is run 

with January 1st and April 1st streamflow forecasts, and the skills of forecasted 

decision variables are evaluated. Compared to April 1st forecasts, streamflows of 

January 1st forecasts have less skill, but use only climate information and forecast at 

longer lead time (i.e., four months). Although the DSS model with April 1st forecasts 

is expected to perform better than January 1st forecasts, improvements in the 
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forecasted decision variables due to climate information will have its own significant 

implications from water management perspective. The key aim of this study is to 

investigate the transferability of the skills in the streamflow forecasts to the water 

resources decision variables. A background on the water issues and management 

policies are first presented to provide good understanding of basin features and 

operational policies that are incorporated into the DSS model. Then, the DSS and its 

development are described, followed by the evaluation method and the results. 

5.2. Water Issues and Management Policies 

Water issues in the GRB are a microcosm of those in the state of Colorado and the 

entire Colorado River Basin. Water managers and policy makers of the region pay 

much attention to the following issues: trans-basin diversions; interstate obligations, 

including the Colorado Compact and the potential for the upper basin states to fully 

develop their compact allotments; changes in water allocation and uses; salinity 

control and other water quality problems; and ecosystem sustainability efforts, 

including releases for the endangered fish recovery programs, stream and lake 

protection, and the Black Canyon National Park (BCNP) preservation (Ray, 2004). In 

addition to the above issues, water in the GRB is mainly utilized for irrigation, 

municipal and industrial demands, hydropower generation, and in preservation of 

endangered fish habitat. 

To meet the different and often conflicting water demands efficiently under 

varying hydrologic conditions (described in the Chapter 1), water development 

projects have been constructed and management policies have been formulated. 

Among them, reservoir management plays a key role in dampening the effects of 
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year-to-year variability of stream inflows and providing reliable water supplies for 

various purposes in accordance with policies.  

The U.S Bureau of Reclamation (BOR) operates the reservoirs according to a set 

of rules that are developed to meet the basin objectives. They forecast operations 

using a 24-month projection that is updated frequently by incorporating the available 

inflow forecasts along with basin water users’ interests. In this basin, agriculture is 

the primary consumer of water; it uses most of the spring runoff as summer releases. 

However, another major concern of the water managers is to find the releases of 

spring and summer flows from the reservoirs that can also satisfy the needs of 

ecosystem sustainability efforts and maximize the hydropower generation. 

In this study, I develop a DSS of the GRB in which physical and structural basin 

features are integrated with operational policies, and then use this DSS to analyze the 

efficacy of the operations with the benefits of improved streamflow forecasts. 

5.3. The RiverWare Model 

In the GRB, operational planning of water resources is carried out with 

RiverWare, a generalized river basin modeling tool (Zagona et al., 2001) that is 

widely used in the river basins of the western US, owing to its versatility and ability 

to interface with other models. Its’ applications – long-term planning to short-term 

operations on the Colorado River, daily operations at Hoover Dam, forecasting and 

water supply assessment on Yakima River, water accounting in the Truckee River 

basin, optimized daily scheduling operations of reservoirs at TVA – suggest 

RiverWare flexibility with variety of application in diverse set of hydrologic basins 

(e.g., Zagona et al., 2001; Magee and Goranflo, 2002; Wheeler, et al., 2002). In 
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addition, RiverWare has the ability to model reservoir operations in an optimal 

manner on different time scales (e.g., 1 hour, 1day, 1 month) (e.g., Eschenbach et al., 

2001; Emmert , 2005; Zagona et al., 2006). 

 RiverWare provides a construction kit in which the physical water system and 

structural components (i.e., rivers, reservoirs, diversion canals, water consumers, 

power generators, etc.) of the basin are represented by objects. The objects contain 

the data and the physical process algorithms for the components. The basin 

operational polices are embodied into rules written in the RiverWare policy language. 

The rules, collectively known as a rule set, approximate the real-time decisions made 

by water managers. Streamflows, along with the operational criteria, drive this model; 

results are values of the decision variables (e.g., storage levels and releases for fish, 

hydropower generation, recreation, reserved water rights, etc.). RiverWare has a 

“point and click” user interface and includes various visualization features. It has 

three different solution approaches: (i) pure simulation, in which user supplies inputs 

such as reservoir storage, pool elevation, and releases, and the simulation solves for 

the unknowns (solves an exactly specified problem); (ii) rulebased simulation, in 

which logical operational rules drive the simulation; and (iii) optimization, in which 

the system is globally optimized according to operational constraints and objectives 

provided by the user. 

For operational forecasting, the BOR uses a combination of rulebased simulation 

and pure simulation, doing if-then scenarios to meet the operational policy 

requirements. In this work, I use rulebased simulation, implementing the operational 

policies into logic that can be applied consistently in the numerous model runs. 
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This work uses a RiverWare model of the GRB (Figure 29) developed by the 

BOR for the 24-Month Study. I developed a rule set that describes the operating 

policies as specified by the BOR (P. Davidson, personal communication, 2005). 

Whereas the 24-Month Study model is a monthly model that forecasts operations for 

two years, this study uses a model that forecasts for only one year. Details about the 

model follow. 

The model includes the three reservoirs (Blue Mesa, Morrow Point, and Crystal) 

of the Aspinall Unit, and Taylor Park reservoir. Of these, Taylor Park is a storage 

reservoir and the other three are power reservoirs – capable of generating 

hydropower. Reservoir objects are represented as triangle-shaped icons, and are 

capable of modeling the physical processes of the reservoir, (e.g., mass balance, 

evaporation, hydropower). Data pertaining to operational policies (e.g., fish releases, 

guide curves, demand schedules) reside on ‘data objects’, symbolized as rectangular-

shaped icons. Reach objects perform the river reach simulation including routing 

water from one reservoir to another, accounting for local inflows, diversions, and 

return flows. The Water User object (represented by an icon with a tap symbol) 

models water demands and consumptive use, as well as the generation of return 

flows. Here I provide only a limited description of the RiverWare objects; the 

RiverWare manual (http://cadswes.colorado.edu) gives detailed information on the 

functioning of these objects. 
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Figure 29: RiverWare workspace showing 24-month study model of the Gunnison 
River Basin. 

The operational polices are expressed in logical rules, that have an if-then logical 

structure. The if part of the logic examines the values of variables such as inflows, 

storages, demands, and current date; the then clause sets values of decision variables 

in the model according to the state of the system. The prioritized rules form a rule set. 

The main goals of the rule set (or policies) in the GRB model are to provide 

sufficient water for irrigation demands, fish releases, hydropower and, importantly, to 

avoid spilling. Water releases to meet downstream demands and fish releases are 

implemented at the downstream end of the Aspinall unit, i.e., as releases from Crystal 

reservoir. However, firm and non-firm hydropower is generated by all three of the 

reservoirs’ power plants and spill must be avoided on all of them. In rules, March 
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through September is considered the irrigation season, whereas October through 

February of the following year is treated as winter season. Part of the irrigation 

season, April through July, is known as the filling period, during which time reservoir 

releases are managed to allow the reservoirs to fill by the end of July. 

5.3.1. Taylor Park Reservoir Operations 

Taylor Park is mainly a storage reservoir and does not generate hydropower. The 

reservoir’s inflows/outflows are small in magnitude compared to Blue Mesa’s 

inflows/outflows. The releases are made in compliance with the following rules. (1) 

At any time, reservoir elevation is neither allowed to go below its suggested lower 

elevation (9270 feet) nor allowed to exceed its’ maximum elevation (9328 feet). (2) 

Reservoir releases meet downstream demands in accordance with the season. (3) In 

April, i.e., during the filling period, the elevations are not allowed to exceed 9305 feet 

in order to protect fish. 

5.3.2. Blue Mesa Reservoir Operations 

Blue Mesa Reservoir with its large storage capacity plays a key role in many 

operations of the Aspinall Unit. Although Blue Mesa is the upstream reservoir, its 

operating criteria address the flow requirements downstream of Crystal because 

Morrow Point and Crystal are not large enough to have significant operating 

flexibility. Thus, its releases are controlled mainly to meet downstream fish flows all 

year and irrigation releases in summer. Since hydropower is also a primary objective 

of the Aspinall Unit, Blue Mesa’s releases are intended to maximize hydropower 

generation and avoid spilling both at Blue Mesa itself and at the two downstream 
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reservoirs. “No spill” is one of the chief goals of the water management, meaning 

putting the release through turbines instead of the spillway, so as not to lose the 

opportunity to generate hydropower, thus improving the effective use of water.  

To meet these requirements, the following rules are developed. (1) The minimum 

releases during the irrigation season are the summation of diversion requirements at 

the Gunnison tunnel and 300 cfs required for fish downstream of the tunnel diversion. 

(2) Maximum releases are to generate more hydropower and are constrained to avoid 

non-utilization of water (i.e., spilling or controlled bypassing of water) at any of the 

reservoirs of the Aspinall Unit. (3) The storage target from April through the end of 

July (known as the filling period) is to fill the reservoir to 7516.4 feet (3 feet below 

spillway). (4) From mid-October through mid-November, the reservoir releases are 

reduced to minimize down stream river flows for spawning of fish. (5) Throughout 

the winter, reservoir releases, hence downstream river levels should remain relatively 

constant in order to protect the fish eggs. If a change is warranted then it is to be as 

consistent as possible; for instance, if an increase in streamflows is needed, it should 

be such that the increased flows persist during the winter months through the spring 

runoff months. Decreases should be later in summer going into fall and winter. (6) 

The water elevation should not exceed 7490 feet by the end of December – this 

eliminates icing problems and protects fish eggs from dying. (7) At any time, water 

levels in the reservoir should not drop below the active capacity. (8) In meeting the 

above requirements, the releases are estimated accounting for intervening flows at 

Morrow Point and Crystal reservoirs. 
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5.3.3. Morrow Point Reservoir and Crystal Reservoir Operations 

Although both reservoirs are power generation reservoirs, they have small storage 

capacities. Unlike Blue Mesa which has large storage and power generation capacity, 

these reservoirs have a single main purpose of generating maximum hydropower. In 

this regard, the following rules are developed. (1) At all times of year, to the extent 

possible, reservoir elevations are maintained at the maximum elevation in order to 

maintain head for hydropower generation. (2) Spills are avoided, but since there is not 

much storage flexibility, this is accomplished by modifying releases from upstream 

reservoirs.  

The above rule set with its sequence of execution is presented in Figure 30. The 

methodology for driving the model with streamflow forecasts and the results are 

presented in the following sections. 

5.4. Methodology 

5.4.1. Multimodel Ensemble Forecast Framework 

In the DSS, the GRB model is run in rulebased simulation mode, driven by an 

ensemble of streamflow scenarios from the multimodel ensemble forecast framework. 

The results of the model runs (one run for each forecast trace) are an ensemble of 

values of various decision variables.  

The multimodel ensemble forecast method described in the Chapter 3 issues 

spring snowmelt runoff volume forecasts at various lead times. However, the DSS 

model requires monthly streamflows as it operates on a monthly time scale. Hence,
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 Taylor Park Reservoir 
1. Solve Taylor Park releases for all months meeting following rules. 
2. At any time, reservoir elevation is neither allowed to go below its suggested lower

elevation (9270 feet) nor is allowed to exceed its’ maximum elevation (9328 feet). 
3. In April, i.e., during filling period, water elevations are not allowed to go beyond

9305 feet in order to protect fish. 
 

 Blue Mesa Reservoir 
4. Estimate demands, i.e., tunnel diversion releases + fish releases – intervening flows at 

MP and CR. 
5. During irrigation season (March – September), reservoir releases are made such that 

(a) mainly it allows reservoir filling during filling period, i.e., fills reservoir by end of
July; and (b) downstream demands are satisfied, and more hydropower is generated,
avoiding spilling at the same time. 

6. For winter season (October – February), compute demands and available water for 
each month of winter starting from current month to end of winter, and then estimate
reservoir outflows so as to (a) maintain minimum fish releases during October and
November, (b) bring BM elevation down to 7490 feet or lower by end of December; 
and (c) maintain consistency in river levels throughout rest of the winter.  

 
 Morrow Point Reservoir 
7. Estimate releases as per rule curve, which maintains reservoir at its maximum

elevation. 
8. If reservoir spills, then modify Blue Mesa Reservoir releases, which is the only 

controllable source of reservoir inflows. 
 
 Crystal Reservoir 
9. Similar to Morrow Point Reservoir, reservoir outflows are calculated as per rule curve

to maintaining reservoir at its full capacity. 
10. In case of spilling, reservoir releases from both Blue Mesa and Morrow Point are 

modified to avoid/reduce spill. 
 

Additionally, at any time, reservoir releases at all the above locations are within the 
threshold of designed values such as minimum and maximum releases and maintaining 
elevation grater than inactive capacity.  

Figure 30: Rules for operations of the reservoirs in the Gunnison River Basin. 

 
the forecasted spring streamflows volumes have to be disaggregated into monthly 

flows. A simple disaggregation algorithm is proposed as follows. 

1. For a given seasonal streamflow forecast, identify K historical years that have 

seasonal streamflow volumes similar to this forecast flow (i.e., K nearest 
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neighbors). K is chosen by the heuristic approach, i.e., square root of observations 

(Lall and Sharma, 1996) and has been found to work quite well. 

2. The K-nearest neighbors are weighted with highest weight assigned to the nearest 

neighbor (volume that matches most closely) and least to the farthest. 

3. Based on these weights one of the years is selected (Lall and Sharma, 1996). 

4. The monthly distribution of the volume in this selected year is applied to the 

forecast flow, thus obtaining disaggregated monthly flows corresponding to the 

seasonal volume forecast. 

The decision model forecasts operations for an entire year, so inflows for the 

remaining months of the year must be forecast as well. After the monthly 

disaggregation described above, the flow forecast framework adds the non-spring 

monthly flows of the resampled year to the forecast, thus forming a streamflow 

scenario for the entire year. For the April 1st forecast, the DSS runs from April 

through March of the following year. In this case, the non-spring monthly flows of 

the resampled year and the flows of January through March of the following year is 

selected, in conjunction with the disaggregated monthly flows. 

5.4.2. Test Case 

The DSS model requires as inputs the accumulated intervening monthly 

streamflows at each of the four reservoirs and the monthly demands, for twelve 

months. Also, the model needs initial conditions, i.e., storage at the initial time of the 

run at each of the reservoirs. These inputs, along with the rule set, drive the DSS 

model simulation for the subsequent 12 months, solving for all decision variables to 

meet the objectives (e.g., irrigation demands, fish flows, recreational releases, 
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reservoir outflows, storage levels, hydropower, etc.). Each model run uses a 12-month 

streamflow trace as input and results in a 12-month trace of each of the decision 

variables. 

The DSS ensemble streamflow forecast framework generates an ensemble of 

forecasts for each year of the (1978-2004) period – separately for the January 1st and 

April 1st forecasts. When run through the model, this results in an ensemble of 

forecasted decision variables. The model is then run with the observed streamflows to 

obtain ‘simulated observed’ values of the decision variables. The forecast skills are 

computed against these ‘simulated observed’ values. The skill scores, RPSS (defined 

and described in the Chapter 3), are computed for the six key decision variables (i.e., 

inflows, outflows, storage, power, spill, demands). Unlike two downstream 

reservoirs, i.e., Morrow Point and Crystal, inflows at first two upstream reservoirs 

(i.e., Taylor Park and Blue Mesa) are not treated as decision variables; because 

inflows at first two upstream reservoirs are direct streamflows into reservoir, whereas 

inflows at two downstream reservoirs are sum of direct streamflows into that 

reservoir and outflows from the upstream reservoirs, which is a decision variable. In 

Blue Mesa reservoir inflows, contribution of Taylor Park outflows is small compared 

to direct streamflows into Blue Mesa reservoir. Three equal categories are used for 

the RPSS computation. The skills are computed for the spring (April-July) and winter 

(September-December) seasons. For example, spring season storage skill provides 

information about reliability/risk in maintaining the required storage at the end of 

spring season which has important implications to water releases of the following 

seasons. 
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The RPSS estimation of the decision variables differs from the method that 

described in Chapter 3, especially in climatological probabilities of the decision 

variables. The method is as follows. (1) The DSS is first run with the historical flows 

obtaining the values of the decision variables for each month and consequently, 

season. From this, the threshold boundaries i.e., the 33rd and 66th percentiles, of the 

decision variables are obtained. (2) For each year, the DSS is run with climatological 

streamflows – all the historical streamflows excluding the flow in the year under 

consideration, i.e., cross-validated model. This results in “climatological” ensembles 

of decision variables for each year and proportion of ensembles in each category was 

estimated – obtaining the climatological probabilities for each year. (3) Lastly, the 

DSS is driven with the streamflow forecast ensembles to obtain the forecast 

categorical probabilities for each year. These probability estimates are used in the 

RPSS computation. For each decision variable, the RPSS is calculated for each year 

and the median value is reported. In order to evaluate the forecast performance for 

extreme hydrologic conditions, decision variables are sorted into two categories – wet 

years (flow values greater than 75th percentile) and dry years (flow values less than 

25th percentile) – and the median value of RPSS of corresponding years is reported. 

To investigate the benefit of streamflow forecasts that were made with and 

without snow information, the DSS model is run separately for the January 1st and 

April 1st streamflow forecasts. The ‘simulated observed’ decision variables vary 

between these two runs because reservoir initial conditions differ, i.e., reservoir 

conditions in December of the previous year act as initial conditions for January 1st 

DSS run, whereas conditions in March are for April 1st DSS run. The skills in the 
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decision variables are calculated for two different DSS runs, at four reservoirs, and 

are described below. 

5.5. Results 

The twelve monthly streamflows forming a flow scenario are used to drive a 

model simulation, resulting in values for the various decision variables obtained for 

each year at two lead times (January 1st and April 1st). 

5.5.1. Data 

In this study, accumulated intervening streamflows and storage at four reservoirs, 

and demands are used. The data was obtained from the BOR for the period 1979-

2004 (P. Davidson, personal communication, 2005). 

5.5.2. Streamflow Characteristics 

Intervening streamflows at the four reservoir locations are the inflow points of the 

model. Annual hydrographs of these locations suggest spring snow melt flows (Figure 

31). Ensemble forecast of spring runoff volume at the four locations are generated 

using the multimodel ensemble approach described in Chapter 3. The first (leading) 

principal component (PC) explains almost all of the data variance (93%) and its Eigen 

loadings are of the same sign and magnitude (Figure 32). The first PC was found to 

be highly correlated (0.99) with the first PC of the six streamflow locations of the 

GRB used in Chapter 3. As a result, the predictors identified in Chapter 3 (Table 4) 

can be used for the four streamflow locations here. As expected, the ensemble of 

spring flow forecasts exhibit good skills at April 1st and January 1st forecast lead 

times – which can be seen in the Ranked Probability Skill Scores (RPSS) (Figure 33, 
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Table 14). The RPSS scores are based on a three equi-probability flow categories 

defined at the tercile boundaries. The climatological probability of each category is 

1/3. The description of this skill score and the equations for computation are detailed 

in Chapter 3 (equations 3.5 and 3.6). 

(a) (b)

(c) (d)

 

Figure 31: Annual average hydrograph of four reservoir locations of the Gunnison 
Decision Support System (a) Taylor Park Reservoir, (b) Blue Mesa Reservoir, (c) 
Morrow Point Reservoir, and (d) Crystal Reservoir. 
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(a) 

(b) 

(c) 

 

Figure 32: (a) Percentage variance explained by the four principal components (PCs), 
(b) time series of the first PC, and (c) eigen loadings of the first PC at the four 
reservoir locations. 

 
Figure 33: Box plots of spring streamflow (KAF) at Blue Mesa Reservoir issued on 
(a) January 1st and (b) April 1st. The dashed horizontal lines represent the 33rd, 50th, 
and 66th percentiles of the historical flow data, which are shown as solid circles. 



 103  

Table 14: Ranked Probability Skill Scores of Spring Streamflows Forecasts at 
Different Lead Times Using Climate and PDSI Predictors and Using Climate, PDSI, 
and SWE information. 

Reservoir Climate + PDSI 
(January 1st) 

Climate + PDSI + SWE
(April  1st) 

Taylor Park 
All Years 0.44 0.62 
Wet Years 0.74 0.87 
Dry Years -0.18 0.55 

Blue Mesa 
All Years 0.53 0.71 
Wet Years 0.65 0.86 
Dry Years 0.44 0.91 

Morrow Point 
All Years 0.47 0.80 
Wet Years 0.95 0.96 
Dry Years 0.47 0.89 

Crystal 
All Years 0.49 0.83 
Wet Years 0.94 0.97 
Dry Years 0.44 0.91 

 

The disaggregation method described in the previous section was applied to 

obtain the ensembles of forecasted spring monthly flows and also the non-spring 

monthly flows. Boxplots of basic distributional statistics (mean, standard deviation, 

skew, minimum and maximum flow, and lag-1 monthly correlation) of the forecasts 

for each month are generated and then compared with the historical values. These are 

shown in Figure 34 for the Blue Mesa reservoir inflows for the January 1st (left 

column) and April 1st forecasts (right column). It is seen that the statistics are 

generally well captured (i.e., historical value is within the box) but more so for the 

high flow spring season. The standard deviation is slightly under-simulated by the 

disaggregation method. This is expected, as the disaggregation approach is too simple 

and does not explicitly model these statistics. Nonparametric methods such as those
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 (a)

(b)

(c)

(d)

(e)

(f)

 

Figure 34: Boxplot of statistics for Blue Mesa Reservoir (a) mean, (b) standard 
deviation, (c) skew coefficient, (d) lag-1 correlation coefficient, (e) maximum flow 
and, (f) minimum flow. Left and right columns correspond to January 1st and April 
1st forecasts. 
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developed by Prairie et al. (2006b) would help address these. Qualitatively, similar 

results were obtained for other reservoirs inflows (figures are not shown). 

Biases were estimated for the ensembles of disaggregated streamflows for all 

months of forecasts issued on January 1st and April 1st. These were within 5% of the 

observed median and not systematic. Also, reliability of disaggregated monthly flows 

was verified by performing Kolmogorov-Smirnov (KS) test. The estimated high p-

values imply the reliability of ensembles of disaggregated flows derived from both 

January 1st and April 1st forecasts. These results indicate that the disaggregation 

methodology was performing reasonably well. 

5.5.3. Decision Variables 

5.5.3.1. Taylor Park Reservoir 

The RPSS of the inflow, outflow and storage at this reservoir are shown in Figure 

35. Recall that Taylor Park reservoir is primarily for storage – hence, only two 

decision variables. The reservoir rule set allows most of the inflows to go through as 

outflows if the reservoir elevation does not go below the specified value. Typically, 

reservoir inflows satisfy this elevation criterion at the first time step and 

subsequently, the inflows are released as outflows. Reservoir outflows are equal to 

inflows for both forecasted and climatolgical streamflows in almost all years. 

Therefore, both inflows and outflows exhibited approximately similar skill score in 

most of the months and in two seasons (Figure 35). Substantial skill scores are 

observed in all the variables for the spring season, more so for the April 1st forecasts – 

suggesting that the ensemble streamflow forecasts provide useful information for 

decision making. The skills in the following winter are lower as the flow ensembles 
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during this season are not based on large scale climate and are so far in the future that 

they are not skillful. In winter, typically streamflows are low in magnitude and 

maintain reservoir at lower elevations. Both forecasted and climatological 

streamflows are able to maintain the reservoir at a lower elevation during several 

months other than spring season. Therefore ‘undefined’ skill score values are 

observed for reservoir storage in non-spring months, e.g., winter storage skill (Figure 

35b). 

 

Figure 35: Ranked Probability Skill Scores of decision variables of Taylor Park 
correspond to (a) spring (April through July) season and (b) winter (September 
though December) season. Circles, rectangles, and triangles represent all years, wet 
years, and dry year. 

5.5.3.2. Blue Mesa Reservoir 

Skill scores of six decision variables for each month and for the two seasons 

(spring and winter) are computed (Figures 36 and 37). The following observations 

can be made from these figures: (1) positive skill scores are observed in all the 

decision variables, for most of the months and for both the seasons. Also, for few 

months other than spring season, negative skill scores are seen e.g., skill score of 
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storage and demands in few months of winter season; (2) Skills during the spring 

months are much higher than during other (e.g., Figures 37a and 37b); (3) in spring, 

skill scores of all decision variables are approximately equal to the skill of inflows 

whereas in winter, decision variables’ skill is higher than skill of inflows (inflows into 

this reservoir is sum of forecasted intervening flows and the DSS derived Taylor Park 

outflows); (4) increased skills are observed for decision variables with April 1st 

streamflow forecasts compared to January 1st, more so during dry years. Overall, 

these observations highlight the utility of ensemble streamflow forecasts in providing 

skilful long lead forecasts of the decision variables, which can be of immense use in 

water resources management and planning decisions. 

Skills in the hydropower generation (Figure 37), which has a nonlinear relation 

with release and water elevation, are also high. This is quite significant as 

hydropower generation is one of the main objectives of the GRB water resources 

system. 

Typically, the reservoir spills during spring due to large quantity of inflows, while 

in all other months spill is zero. Both the January 1st and April 1st forecasts of the 

spring runoff approximate the actual streamflows magnitudes better than climatology 

and hence exhibit high skill scores. During other months neither forecasted nor 

climatological nor actual streamflows result in spills, so the skills are undefined 

[Figures 36 and 37b]. Similar observations are made from high storage skills during 

spring months, except in June, in which undefined skill scores are observed, because 

all streamflow scenarios were able to maintain the reservoir at its full capacity as per 

the rule set (Figure 36). (See rule 3 of Blue Mesa Reservoir.) Positive skill scores of
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Figure 36: Ranked Probability Skill Scores of decision variables of Blue Mesa Reservoir for all months. First two left and last two 
right columns refer January 1st and April 1st issued forecasts respectively. Circles, rectangles, and triangles represent all years, wet 
years, and dry years respectively. 
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Figure 37: RPSS of decision variables of Blue Mesa Reservoir correspond to (a) 
spring (April through July) season and (b) winter (September though December) 
season. Circles, rectangles, and triangles represent all years, wet years, and dry year. 

demand indicate the ability of forecasted streamflows to meet the ‘simulated 

observed’ demands as compared to the climatological streamflows. 

 To illustrate the performance of the forecasts in the extreme years, probability 

density functions (PDFs) of the ensembles of decision variables are shown for a 

representative dry year, 1981, and a wet year of 1985 (Figures 38 and 39). It can be 

seen that the PDF of the decision variables are shifted to the left of the climatological 

PDF in the dry year (Figure 38) and to the right in the wet year (Figure 39) – more so 

for the April 1st forecasts. Furthermore, the forecast PDF capture the ‘simulated 

observed’ values (shown as solid vertical lines) quite well. This has significant 

implications for water management. For example, if a lower storage is predicted well 

in advance, management strategies can be adopted to mitigate the impact of low 

streamflows ahead of time. Also, forecasts provide valuable information in making 

more revenue in terms of power generation; for the wet year 1985, January 1st 

forecasts suggested hydropower of 225 MW which approximates ‘simulated 
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observed’ hydropower, i.e., 250 MW, whereas expected hydropower from 

climatological forecasts is, 162 MW, far below than ‘simulated observed’ (Figure 39). 

 

Figure 38: Probability Density Function (PDF) of decision variables of Blue Mesa 
Reservoir for year 1981 (dry year). Decision variables derived from forecasted and 
climatological streamflows are indicated with solid lines and dashed lines 
respectively. Solid vertical lines correspond to decision variables derived from actual 
streamflows. Black and blue lines correspond to the DSS that run on January 1st and 
April 1st respectively. 

 

 

Figure 39: Same as Figure 38, but for year 1985 (wet year). 
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Similar significant skills and observations were made for Morrow Point reservoir 

(Figure 40) and Crystal reservoirs (Figure 41). 

 

Figure 40: RPSS of decision variables of Morrow Point Reservoir correspond to (a) 
spring (April through July) season and (b) winter (September though December) 
season. Circles, rectangles, and triangles represent all years, wet years, and dry year. 

 

 
Figure 41: Same as Figure 40, but for Crystal Reservoir. 
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5.6. Summary and Discussion 

In this chapter, the ensemble streamflow forecast method was integrated with the 

GRB model to form a DSS to generate ensembles of decision variables. The skills in 

the streamflow forecasts identified in the Chapter 3 seem to transfer quite well to the 

decision variables, as seen by their skilful forecasts. 

Positive skill score of decision variables highlights the influence of forecasted 

streamflows compared to the climatological streamflows in driving the model. The 

better performance of decision variables especially with January 1st forecasts, which 

uses only climate information, provides four month lead time allowing water 

managers to modify/make better decisions in spring season. The lower performance 

of streamflow forecasts is not linearly transformed onto decision variables, i.e., in 

several months, a few decision variables derived from both January 1st and April 1st 

forecasts exhibited approximately similar performance (Figure 36). Also, the 

nonlinear transferability skill is observed between streamflow forecasts and decision 

variables, i.e., negative skill of streamflow forecasts resulted in positive skill of 

decision variables, and vice versa. However, there are few variables which are not 

influenced by skill in streamflows, for example, filling the Blue Mesa reservoir by 

July end, maintaining reservoir elevation at its maximum in Morrow Point and 

Crystal reservoirs. All three different streamflow scenarios (i.e., actual, forecasted, 

climatological) met the above criteria resulting the same value of decision variable, 

and consequently undefined skill scores. This suggests ‘carry over storage’ influence 

and less influence of streamflow magnitudes on the decision variables. 
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There have been few attempts at evaluating the streamflow forecast skills in a 

decision making context. Hamlet et al. (2002) shown the influence of long-lead 

streamflow forecast in terms of better management of releases and increased power 

production on the Columbia River Basin. Grantz et al. (2006) investigated the 

streamflow forecast skill on a simplistic decision framework on the Truckee and 

Carson River basins but not a full fledged realistic DSS. In this regard, the research 

presented in this chapter makes a unique and significant contribution. Significant long 

lead skills in the decision variables offers great promise for improved water 

management planning and decision making – especially in the GRB which is water 

stressed. The approach can be easily transferred to other basins and thus, it is a 

generalized framework. 

 As mentioned, this is a first step at developing an integrated streamflow forecast-

to-DSS framework and further developments are required. Nonparametric 

disaggregation methods (Prairie et al., 2006b) need to be used for better 

representation of the monthly streamflows. Although, most of the key decision rules 

have been included in the development of the DSS, other operational rules need to be 

included in the DSS to make it more realistic. Further evaluation of the approach with 

actual decisions that were made would provide realistic insights. Also, driving the 

DSS model under optimization mode and evaluating skill scores in monetary terms 

provides information on the value that added to the economy. 
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CHAPTER 6 

A NEW FRAMEWORK TO SIMULATE STREAMFLOW SCENARIOS ON 

LONG TIME SCALES 

In this chapter, a novel approach is developed to simulate streamflow scenarios on 

long time scales (decadal or longer) combining the observational and paleo 

reconstructed streamflows. This approach provides the ability to generate a richer 

variety of drought and flood scenarios than those in the observational record. Such 

variety will be of great use to water managers for long-term planning and 

development of basin water resources. 

6.1. Introduction 

 Long-term planning and development of water resources require information on 

plausible hydrologic variability, especially on extreme wet and drought conditions. 

Traditionally, stochastic time series models are fit to observational data which are 

then used to generate synthetic streamflow scenarios that retain the statistical 

properties of the observed flows. Several methods using parametric and more 

recently, nonparametric methods, have been developed over the years, for single site 

(Bras and Iturbe, 1985; Salas, 1985) and multi-site basin-wide (Valencia and 

Schaake, 1973; Salas, 1985; Santos and Salas, 1982, Tarboton et al., 1998; 

Koutosyiannis, 2001; Sharma and O’Neil, 2002; Prairie et al., 2006b) streamflow 

simulation. The main drawback of this approach is that, long sequences of wet or dry 

years beyond those in the observed data are rarely or not at all simulated, thereby, 

offering very limited flow variability. Past (paleo) reconstruction of streamflows 
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using tree rings provide flow variability over several centuries before the 

observational record. These reconstructions have been performed widely on the 

western US river basins, more so recently, after the long severe drought during 2000-

2005 (Woodhouse et al., 2006). For example, paleo streamflow reconstructions at 

Lees Ferry gauge on the Colorado River (Cook et al., 2004) reveal a fairly regular 

occurrence of droughts of five years or longer, yet during the observational period 

(1900-2005) there has been only one occurrence of such an event – suggesting to the 

contrary that long droughts are rare event. Also, Stockton and Jacoby (1976) 

reconstructed annual streamflows at Lees Ferry on the Colorado River for the period 

of 1520-1961, and observed persistent below average and above average flow 

conditions in the late decades of 16th century and in the early decades if 20th century, 

respectively. The late 16th century flows were much drier than the recent dry spell. 

Such knowledge of hydrologic variability might have resulted in a different Colorado 

River Compact, which was developed with limited hydrologic information and during 

the wetter conditions of the early 20th century, unlike the current compact which over 

appropriated the water in the basin. With increased water demands and the propensity 

of severe sustained droughts in the Upper Colorado River Basin (UCRB) 

(Woodhouse et al., 2006), water resources management, planning and development 

becomes extremely challenging. 

 Clearly, limited historical observations are not capable of providing a detailed 

understanding of the hydrologic variability in the basin, and longer paleo 

reconstructions have to be used. This leads to the question - how to combine paleo 

reconstructions with observational data to generate streamflow scenarios? In this 
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chapter, a new and novel framework is developed and applied to data from the 

Gunnison River Basin (GRB). A brief description of paleo streamflow 

reconstructions is provided followed by the description of the proposed methodology 

and the results of application. 

6.2. Paleo streamflow reconstructions 

 For streamflows reconstruction, tree ring sites are carefully selected where the 

same hydroclimate processes, mainly precipitation and evapotranspiration control 

both processes, i.e., variability in streamflows and variations in the tree ring widths 

(Meko et al., 1995). Tree ring based climate reconstructions are attractive because, 

trees put on annual rings with the outer corresponding to the current year and the 

innermost to the earliest, thus, providing a clear chronology. Furthermore, they are 

best suited for reconstruction of integrated variables such as streamflows as the tree 

growth is a result of integration of climatological, physiological and biological factors 

(Meko et al., 1995). In the UCRB, a set of 62 locations were identified meeting the 

above criteria and considered as potential proxy indicators of hydrologic conditions 

(Woodhouse et al., 2006). At each site, fifteen or more trees are typically sampled 

from which tree ring cores were obtained, cross dated and measured using standard 

dendrochronological techniques (Stokes and Smiley, 1968; Swetnam et al., 1985). 

Measured series are standardized and combined into a single site tree ring index 

(Cook et al., 1990). These indices are also corrected for geometric bias and 

‘whitened’ to remove the serial correlation which is partly attributed to biological 

factors (Fritts, 1976). Thus, developed tree ring indices are related to the 

corresponding observational streamflow during the overlapping period. Typically, 
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linear regression is fitted on the contemporary overlapping period to describe the 

streamflows based on the tree ring index. The fitted regression is then used to 

estimate (i.e. reconstruct) streamflows during the pre-observational period based on 

the tree ring index – there are several variations to this basic methodology (see 

Woodhouse et al., 2006 and references therein). 

Since the reconstructed streamflows during the pre-observational period are based 

on the fitted regression model, the variance of the reconstructions is substantially 

smaller than that of the observational record. Furthermore, the reconstructions can 

vary quite a bit depending on the reconstruction method selected – this was seen in 

the reconstruction of the Lees Ferry streamflows from different methods (Stockton 

and Jacoby, 1976; Hidalgo et al., 2000; Woodhouse et al., 2006). But all the 

reconstructions agree on the ‘wet’ or ‘dry’ state of the system. Given this, the water 

managers are discomforted at using the magnitude of streamflows from these 

reconstructions for planning studies, but would use the ‘state’ information (i.e., wet or 

dry). This motivates the need for a model that uses the ‘state’ information from the 

paleo reconstructions and the magnitude from the observational record for simulating 

streamflow scenarios, which is described below.  

6.3. Proposed Approach 

 The proposed approach has two main components. (1) Generating the state of the 

system (i.e., wet or dry). (2) Conditionally generating a streamflow magnitude from 

the observed data. This can be thought of as simulating from the conditional 

probability density function (PDF) 

      f (Xt / St, St-1, Xt-1) 
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where Xt is the current flow, St is the current state, Xt-1 is the previous flow, and 

St-1 is the previous state.  

 

The approach proceeds as follows: 

1. A threshold value is selected to define the state (wet or dry) of the system. 

Typically, annual mean or median of the observed flows is chosen as the 

threshold. 

2. The paleo streamflow time series is reduced to a binary (1 if the streamflows 

exceeds the threshold, 0 otherwise) series. 

Suppose a streamflow scenario of 30 years is desired, 

3. A consecutive block of 30 years is selected from the binary series of the paleo 

record. This is also known as ‘block bootstrap’ (Vogel and Shallcross, 1996).  

4. For each year, ‘t’, K number of historical years that are closest to the current 

‘feature vector’ consisting of the current state (St), previous state (St-1) and 

previous flow (Xt-1) are selected.  

5. The selected K-nearest years are weighted, with maximum weight to the 

nearest year and minimum to the farthest. 

6. From the weights, which is a probability metric, one of the years is resampled. 

The streamflow corresponding to the selected year becomes the simulated 

flow value for year ‘t’. 

Steps 4 through 6 are repeated for all the 30-years; thus, it results a streamflow 

scenario. 
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Steps 4 through 6 are the standard K-NN time series resampling developed by 

Lall and Sharma (1996) and subsequently, used for multivariate weather generation 

by Rajagopalan and Lall (1999) and Yates et al., (2003) and others. 

If longer length of flow sequence is desired (say 90 years) then several shorter 

blocks are bootstrapped (e.g., 3 blocks of 30 years) and joined to obtain a sequence of 

system state of the desired length. This enables a richer variety of as opposed to a 

single block of 90 years. The flow magnitudes are simulated using the above 

described K-nearest neighbor resampling approach.  

6.4. Application 

 The above methodology was applied to the annual streamflows of the GRB. The 

Gunnison River near Grand Junction, Colorado, is selected for this study as 

streamflows at this location represent the total flows of the GRB and furthermore, 

paleo reconstruction streamflows were also available at this site. The paleo 

reconstructed streamflows are for the 429 year period of 1569-1997, obtained from 

the National Climate Data Center, NOAA (C. Woodhouse, personal communication, 

2006). Natural streamflow were provided by the U.S. Bureau of Reclamation for a 

period of 98 years spanning 1906-2003 (J. Prairie, personal communication, 2006). 

The time series of the paleo and natural streamflows are shown in Figure 42. A close 

correspondence (correlation coefficient of 0.87) can be seen between the two data sets 

during the recent overlap period. 

 Five hundred simulations each of 98 years long were simulated from the 

framework described in the previous section. Similar number of simulations were 

generated from a lag-1 K-Nearest Neighbor time series resampling approach 
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(henceforth referred to as KNN1) based on the only natural flow data, for 

comparison. Essentially, this uses steps 4 through 6 but the feature vector is only the 

flow from the previous year. This was successfully developed and applied to data 

from Weber River neat Oakley, Utah, by Lall and Sharma (1996). A suite of 

distributional and drought statistics were computed for each simulation and presented 

as boxplots along with the statistics of the observed data. The results are described 

below. 
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Figure 42: Time series of Paleo reconstructed streamflows (blue line) and natural 
streamflow estimates (red line) are shown. Mean of the natural streamflow estimates 
is plotted with thick solid line. 

 6.5. Results 

6.5.1. Performance Statistics 

Distributional (mean, standard deviation, skew, minimum and maximum flow, 

and lag-1 monthly correlation), drought (longest drought, maximum drought) and 
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surplus (longest surplus and maximum surplus) statistics are calculated for each 

simulation of the ensemble. The Longest Drought (LD) is the maximum number of 

consecutive years in which flows are below a threshold values; the Maximum 

Drought (MD) is the maximum amount of water during a drought, vice versa for the 

surplus statistics – Largest Surplus (LS) and Maximum Surplus (MS). Probability 

density functions (PDF) of the streamflow magnitudes from the simulations are also 

computed. The ensembles of statistics are presented as boxplots, along with the 

corresponding statistics from the paleo reconstructed streamflows (solid circles) and 

natural streamflow (solid triangles). 

Further, system risk (reliability) is assessed by a sequent peak algorithm, which 

provides the storage required for various levels of firm yield. 

 As expected the simulations from KNN1 capture all the basic statistics very well.  

The simulations from the proposed method showed slight over simulation of the mean 

and variance (Figures 43a and b). This is because the paleo reconstructions are on 

average wetter than the observational period – as can be seen from the information in 

Table 15. The PDFs are also shifted slightly to the right (i.e., wetter) relative to the 

observed record (Figure 44). The other statistics are reasonably well captured. 

Table 15: Probabilities of wet and dry conditions for paleo reconstructed streamflows 
and natural streamflow estimates. Wet years, if flow is greater than mean of natural 
flows, and vice versa for dry years. 

 Paleo reconstructed streamflows
(1569-1997) 

Natural Flows 
(1906-2003) 

 Number of Years Probability Number of Years Probability 

Wet Years 221 0.52 47 0.48 

Dry Years 208 0.48 51 0.52 
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 (a) (b) 

(c) (d) 

(e) (f) 

 

Figure 43: Boxplots of statistics of streamflow scenarios derived from KNN1 (left 
column) and proposed methods (right column). Solid triangles and solid circles 
correspond to the statistics computed for natural streamflow estimates and paleo 
reconstructed streamflows, respectively. Statistics are (a) mean, (b) standard 
deviation, (c) skew, (d) lag-1 correlation coefficient, (e) maximum, and (f) minimum. 

 
 (a) (b) 

 
Figure 44: Probability Density Function of annual streamflows generated from (a) 
traditional KNN method, and (b) KNN conditioned on paleo streamflows. Blue line 
corresponds to the natural streamflow estimates. 
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Boxplots of average drought and surplus statistics are shown in Figure 45. Paleo 

reconstructed streamflows shown slightly higher average LS values (solid circles) 

whereas, natural streamflows exhibited high average LD values (solid triangles). The 

KNN1 simulations overestimated the average LD statistics and slightly 

underestimated average LS statistics (Figure 45a), because natural streamflows 

exhibited more dry events (Table 15). While the simulations using the paleo 

reconstructions captured both statistics well but underestimated average LD statistics 

(Figure 45b). However, both methods captured average drought and surplus volume 

(i.e., MD and MS) of water (Figures 45c and 45d). The drought and surplus statistics 

are based on a threshold of mean annual natural flows. As such they vary 

significantly depending on the threshold. A better approach to demonstrate this would 

be by a storage-yield curve obtained from the sequent peak algorithm. 

 (a) (b) (c) (d)

 

Figure 45: Boxplots of drought statistics (a) KNN1 – LS and LD, (b) proposed 
method – LS and LD, (c) KNN1 – MS and MD, and (d) proposed method – MS and 
MD. 



 124  

6.5.2. Sequent Peak Algorithm 

The sequent peak algorithm determines the storage required for a desired yield for 

a given flow sequence (Viessman and Welty, 1985). It solves a water balance 

equation and calculates the storage required at each time step; the maximum of the 

storage values is the required storage for the desired yield to be met at all times with 

the particular flow sequence. The storage values are obtained for all the flow 

scenarios and for several yield values. The same is repeated on the natural flow 

sequence. They are then displayed as boxplots (Figure 46). The sequent peak 

algorithm is mathematically described as follows. 

Where,  

At lower yields, simulations from both KNN1 and the proposed approach, suggest 

a small storage. However, as the yield increases, KNN1 simulations indicate the need 

for higher storage (Figure 46a) than those from including paleo reconstructions 

(Figure 46b). This is consistent with earlier results in that, the KNN1 based on the 

natural flow, which has lower average flows, would require larger storage. While the 

paleo reconstructions had on an average wetter conditions (Table 15) and therefore, 

consistent with lower storage requirements. 
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(a) (b)

 

Figure 46: Boxplot of Yield-Storage of simulations from (a) Traditional KNN 
approach (b) KNN conditioned on paleo streamflows approach. 

The Cumulative Distribution Function (CDF) of the storage values at a given 

yield along with the existing storage information can provide a rough estimate of the 

risk of not meeting the yield requirements – e.g., at an yield of 2500 KAF, if 33,686 

KAF is the existing storage, then the CDF of the storage derived from KNN1 and 

proposed approach would suggest a risk of about 0.55 and 0.30, respectively (Figure 

47). 

The sequent peak approach meets all of the yield and therefore, the risk estimates 

tend to be very conservative. For estimates of system reliability and risk of various 

components of the management in the basin, the flow scenarios have to be input 

through a decision support model. 

6.6. Summary 

 A new and novel approach was presented, in which the strong aspects (i.e., the 

state representation) of paleo reconstructed flows and the observational flows (i.e., 

magnitude) are combined. In this approach, blocks of paleo reconstructed flows are 
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0.7 

0.45 

 

Figure 47: The CDF of the storage values, derived from KNN1 (blue line) and 
proposed methods (red line), conditioned on yield of 2500 KAF. The vertical line 
corresponds to the storage value derived from natural streamflows. 

bootstrapped and the state information (i.e., wet or dry) of each year in the block is 

selected. The flow magnitudes are then generated from the observational data keeping 

the year to year (i.e., lag-1) correlation. This combined approach has the ability to 

generate a rich variety of streamflow scenarios and more importantly sequences of 

wet and dry conditions which are key to water resources system operation. The paleo 

reconstructions were wetter than average compared to the observational record. As a 

result, the combined approach generated wetter sequences on average. 

This approach is nonparametric, simple and robust. However, it has a few 

drawbacks that can be improved – listed below. 
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(1) If longer lengths of scenarios are required, e.g., 90 years, then blocks of 90 years 

have to be resampled from the paleo record. This would greatly reduce the variety of 

the sequence. 

(2) Flow magnitudes are generated by bootstrapping the observational record, so no 

new flows can be generated. 

The first can be addressed by a non-homogeneous Markov Chain model 

(Rajagopalan et al., 1996). In this, the state sequence is modeled as a lag-1 Markov 

Chain whose transition probabilities vary each year. The transition probabilities are 

nonparametrically estimated for each year using a Kernel estimator (Lall et al., 1996; 

Rajagopalan et al., 1996). The simulation now involves using the transition 

probabilities to generate the state of the system (wet or dry) rather than using the 

actual state information of the paleo data. This enables the generation of a much 

richer variety of state sequences addressing the drawback in (1). For generating 

magnitudes of flows not seen, traditional parametric methods can be used (Salas, 

1985) or a local polynomial based modification of the KNN1 (Prairie et al., 2006a) 

can be used. Nonetheless, the approach developed in this chapter provides a firm start 

point. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

7.1. Summary 

 This research developed an integrated climate diagnostics-to-decision support 

system framework and applied to the Gunnison River Basin (GRB). It has two major 

components. (1) Development of a statistical ensemble streamflow forecasting 

framework. (2) Development of a decision support system and evaluation of skills in 

decision variables. In addition, a novel approach to simulate streamflow scenarios on 

long time scales (decadal or longer) combining the observational and paleo 

reconstructed streamflows, was developed. The presented research demonstrates the 

utility of ensemble streamflow forecasts in a realistic decision making context, and 

this makes a unique and major contribution. This generalized framework can be 

easily transferred to other basins.  

Conclusions on the each major component of the research are presented below 

followed by suggestions for future extensions. 

7.2. Conclusions 

7.2.1. Multimodel ensemble forecast framework 

The framework has four main steps. (1) Principal Component Analysis is 

performed on the spatial streamflows to identify the dominant modes of variability. 

(2) Large scale ocean-atmospheric predictors are identified for the dominant modes. 

(3) Objective criterion, Generalized Cross Validation (GCV) is used to select a suite 
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of candidate models. (4) Ensembles of forecast of the dominant modes and 

consequently the spatial flows are issued from the candidate models. The forecast 

model is based on the locally weighted polynomial approach that is data driven. 

Application of this framework to the GRB showed skilful long lead forecasts. 

Furthermore, the multimodel ensemble forecast including large-scale climate features 

and Snow water equivalent (SWE) rendered better performance in terms of skill and 

reliability of uncertainty estimates than the single best model counterpart or a model 

with only the SWE information. 

 Also, an interesting land-surface effect on the streamflows is observed: when the 

fall season is dry and following winter is wet, then the spring streamflows tend to be 

relatively lower compared to what would be expected from a wet winter. Therefore, 

the soil moisture information of the preceding fall was included as a potential 

predictor, which improved the forecasts. This is corroborated by the presence of 

Palmer Drought Severity Index (PDSI) in several of the leading candidate models. 

Having a skillful forecast of the upcoming spring flows during early winter when 

the snow information is incomplete is of significant importance to water managers in 

their planning and operation. In this regard, a decision support model of the GRB is 

driven with ensemble of streamflow forecasts and resulted ensemble of decision 

variables is evaluated. 

7.2.2. Categorical Streamflow Forecast Framework 

The developed framework is a simple and direct method to produce probabilistic 

categorical streamflow forecasts. In this, the categorical forecasts of the leading mode 

(or principal component) of the spatial streamflow at different thresholds is estimated 
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via logistic regression. Large-scale climate features are used to obtain the predictors, 

and used in the logistic regression. These categorical forecasts are then uniformly 

transferred to the corresponding categorical forecast of streamflows at all the 

locations. The framework was applied to categorical forecasts of the April-June 

(spring) streamflows in the GRB at several month lead times starting from December 

1st. The forecasts exhibited significant skill even at long lead times. Furthermore, the 

skills were comparable or better in some cases to those obtained from a ‘best model’ 

nonparametric regression based forecasts of multimodel ensemble forecast 

framework. Also skill scores from the multimodel ensemble forecasts are estimated 

and comparable results were observed. Both these approaches are complimentary and 

serve different purposes – the logistic regression method will be useful if a quick 

categorical forecast is required, while the ensemble approach can provide the entire 

probability density function of the streamflows that can be used to drive decision 

support models. 

The framework developed in this research is flexible and simple to implement. It 

works very well if the leading mode captures most of the data variance, and has 

uniform Eigen loadings and high correlations with all the basin streamflows – such as 

the case in the application to the GRB is demonstrated. If there are more than one 

leading PC that capture a significant part of the spatial variance, then this framework 

can be applied to all the significant leading PCs and the estimated categorical 

forecasts from each of the PCs optimally combined following Rajagopalan et al. 

(2002). 
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7.2.3. Decision Support System 

The multimodel ensemble streamflow forecast method was integrated with a 

decision support model of the GRB to form a Decision Support System (DSS) to 

generate ensembles of decision variables. The skills in the streamflow forecasts seem 

to transfer quite well to the decision variables, as seen by their skilful forecasts. 

Positive skill score of decision variables highlights the influence of forecasted 

streamflows compared to the climatological streamflows in driving the model. The 

better performance of decision variables especially with January 1st forecasts, which 

uses only climate information, provides four month lead time allowing water 

managers to modify/make better decisions in spring season. The lower performance 

of streamflow forecasts is not linearly transformed onto decision variables, i.e., in 

several months, a few decision variables derived from both January 1st and April 1st 

forecasts exhibited approximately similar performance. Also, the nonlinear 

transferability skill is observed between streamflow forecasts and decision variables, 

i.e., negative skill of streamflow forecasts resulted in positive skill of decision 

variables, and vice versa. However, there are few variables which are not influenced 

by skill in streamflows, for example, filling the Blue Mesa reservoir by July end, 

maintaining reservoir elevation at its maximum in Morrow Point and Crystal 

reservoirs. All three different streamflow scenarios (i.e., actual, forecasted, 

climatological) met the above criteria resulting the same value of decision variable, 

and consequently undefined skill scores. This suggests ‘carry over storage’ influence 

and less influence of streamflow magnitudes on the decision variables. 
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There have been few attempts at evaluating the streamflow forecast skills in a 

decision making context. Hamlet et al. (2002) shown the influence of long-lead 

streamflow forecast in terms of better management of releases and increased power 

production on the Columbia River Basin. Grantz et al. (2006) investigated the 

streamflow forecast skill on a simplistic decision framework on the Truckee and 

Carson River basins. This research demonstrates the utility of ensemble streamflow 

forecasts in a full fledged decision making context.  

7.2.4. Streamflow Scenarios for Long-term Planning 

A new and novel approach was presented, in which the strong aspects (i.e., the 

state representation) of paleo reconstructed flows and the observational flows (i.e., 

magnitude) are combined. In this approach, blocks of paleo reconstructed flows are 

bootstrapped and the state information (i.e., wet or dry) of each year in the block is 

selected. The flow magnitudes are then generated from the observational data keeping 

the year to year (i.e., lag-1) correlation. This combined approach has the ability to 

generate a rich variety of streamflow scenarios and more importantly sequences of 

wet and dry conditions which are key to water resources system operation. The paleo 

reconstructions were wetter than average compared to the observational record. As a 

result, the combined approach generated wetter sequences on average. 
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7.3. Future Work 

There are several areas of the proposed research that can be significantly 

improved, which are listed below. 

1. Role of vegetation feedbacks on the spring melt (e.g., Wang et al., 2005) together 

with soil moisture effects (i.e., quantified by the PDSI), snow pack ripening, 

spring (daily) wind patterns, air temperature, relative humidity, melt patterns in 

association with topography and shading factors (Lundquist and Flint, 2005), and 

cloud cover need to be investigated to better understand the streamflow 

mechanism. This can provide additional skilful predictors for multimodel 

streamflow forecast. 

2. Improved objective criteria for selecting the multimodels, combining their 

ensemble forecasts and dealing with multicollinearity need to be developed. The 

methods developed are quasi-objective. 

3. Application of the nonparametric logistic regression (Loader, 1999) and optimal 

ways (Rajagopalan et al., 2002) to combine to categorical forecasts from 

multimodels need to be explored to improve the categorical streamflow forecasts. 

4. The decision model in RiverWare requires monthly streamflows. A simple 

disaggregation method is proposed and implemented for the disaggregation of 

seasonal streamflow forecast to monthly flows. Robust nonparametric 

disaggregation methods recently developed (Prairie et al., 2006b) should be used 

for better representation of the monthly forecasts. 
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5. Although most of the key decision rules of the water resources management in the 

GRB have been included in the development of the DSS, other operational rules 

could be included in the DSS to make it more realistic. 

6. The block bootstrap approach to resample paleo reconstructions to generate 

system state (wet or dry) was used. However, if longer lengths of scenarios are 

required, e.g., 90 years, then blocks of 90 years have to be resampled from the 

paleo record. This would greatly reduce the variety of the sequence. To address 

this, the state transitions for each year have to modeled as a nonhomogeneous 

Markov chain with the transition probabilities estimated from kernel estimators 

(Lall et al., 1996; Rajagopalan et al., 1996). The transition probabilities can be 

used to generate the sequence of states, which now will produce a much richer 

variety. 

7. The streamflow simulation on long-time scales using the paleo data involves 

bootstrapping observational flow record. As a result flows not seen in the 

historical record are not generated. Traditional parametric methods can be used 

(Salas, 1985) or local polynomial based modification of the KNN1 (Prairie et al., 

2006) can also be used. Nonetheless, the approach developed in this research 

provides a firm start point. 
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