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The Colorado River system recently experienced the worst five year drought in 

100 years of measured streamflows. The vast network of reservoirs that sustain and 

fuel development were drawn below 50% of system capacity to historic lows. The dry 

period also impacted water quality, increasing salinity concentration as a result of low 

flows. Paleo reconstructions of streamflow in the basin indicate that such dry spells 

are not uncommon. Interestingly, a compact to share water resources among the basin 

states, developed during wet periods of the early 1920s, is under stress as the states 

confront economic growth under limited water resources.  

Given these factors, the key question for this research is how to plan for effective 

and sustainable management of water resources in the basin? This requires two key 

components, (i) a robust framework to generate realistic basin wide streamflow and 

associated salinity scenarios and (ii) a decision support model to evaluate operating 

policy alternatives for efficient management and sustainability of water resources in 

the basin. To achieve this, three inter-related modules were developed including. (i) A 

stochastic nonparametric model for basin wide streamflow generation based on 

historic observations conditioned on paleo reconstructed streamflow. This new model 

is data driven and improves considerably upon traditional approaches, besides being 

simple, robust and flexible. A nonhomogeneous Markov Chain based approach to 
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combine hydrologic state information (i.e., wet or dry) from the paleo streamflow and 

flow magnitude from the historic data is a novel method to combine the strengths of 

these two different data sets. Together, these constitute a significant methodological 

contribution from this research. (ii) A basin wide stochastic model for generating 

salinity scenarios extending the nonparametric flow model for salinity simulation. 

(iii) A realistic decision model of the basin that evaluates policy alternatives under 

various flow and salinity scenarios. 

This comprehensive framework provides the ability to generate scenarios of basin 

wide streamflows and salinity that are statistically consistent, realistic and also 

incorporate paleo information. These scenarios are used in a long-term planning 

model of the Colorado River Basin to evaluate two alternate reservoir operation 

policies on various system risk and reliability estimates. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation 
Over the past recent years, the western United Stated has been reeling under a 

severe dry spell. The Colorado River basin experienced the most severe five-year 

drought in the observed record from 2000-2004. While this region is generally 

semiarid and is no stranger to dry periods, the recent dry spell coupled with 

increasing population, economic growth, and competing water demands is having a 

decisive impact on the socio economic well being of the region. The vast networks of 

reservoirs that sustain and fuel development are at alarmingly historic lows not seen 

since their filling periods (Fulp, 2005), thereby threatening development. The dry 

period is also having an impact on the water quality; low flows in the streams can 

lead to increased concentration of salinity, thus degradation of water quality. 

Furthermore, compacts and decrees to share water resources among the western states 

developed during the wet periods of the early 1920s and 1930s, are especially under 

stress, as the states confront growth under limited water resources (Kuhn, 2005). 

Though increased flows in 2005 brought some relief, it remains to be seen if the relief 

will persist.  

There is increasing evidence that the year to year variations in the western United 

States hydro-climate are driven by large scale climate features (e.g., ENSO, PDO, 

AMO, etc.). Hoerling and Kumar (2003), from climate model simulations, show 

tantalizing evidence that the dry spell could be a result of cooler than normal tropical 

Eastern Pacific and warmer than normal tropical Western Pacific (a La Nina pattern) 
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and Indian oceans. This long break from the El Nino active period of 1980s and 

1990s could be a strong factor for the dry spell. Adding to these woes are recent 

indications that the annual cycle in precipitation is shifting earlier in the year for the 

western United States, perhaps caused by global climate change. In particular, the 

spring warmth has been occurring earlier, coupled with decreased winter snow pack. 

This precipitates a reduced inflow into the rivers, as a majority of them are driven by 

snowmelt (Regonda et al., 2005; Mote, 2003; Cayan et al., 2001). 

Further studies have examined trends in soil moisture, runoff, and drought 

characteristics over the United States and found increasing trends for moisture and 

runoff and decreasing drought trends across much of the country (Andreadis and 

Lettenmaier, 2006). In this study, the exception that stood out was in the interior West 

and Southwest where trends indicated a significant increase in drought duration and 

severity.   

Given the high stakes, the Bureau of Reclamation (Reclamation), the federal 

agency charged with managing water resources in the Colorado River system, is 

confronted with three immediate questions for efficient water resources planning and 

management: 

1. How unusual is the current dry spell? 

2. How can we simulate stream flow scenarios that are consistent with the 

current dry spell and other realistic future conditions? 

3. What is the impact of these conditions on salinity?  

Answering the first question will place the current dry period in context; the 

second seeks to provide a robust framework that can incorporate such information in 
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generating realistic streamflow scenarios, which will drive planning and management 

models; the third addresses the sensitivity of salinity levels to drought conditions in 

the basin, a key variable in maintaining the water quality standards in the Colorado 

River system. 

1.2 State of present modeling methods 
With these pressures in the Colorado River basin, water managers are dependant 

on basin scale models to understand the impact of natural flow variability on key 

decision variables relating to both streamflow and salinity concentration. Reclamation 

uses a long-term planning model termed the Colorado River Simulation System 

(CRSS) (DOI, 1987). Streamflow scenarios, typically, obtained from stochastic 

models, drive the CRSS allowing basin managers to understand the impact of 

operational policies on various aspects of the system, both in terms of salinity and 

water quantity. Alternative policies can also be compared and risk and reliability 

estimates of the system can be evaluated, all of which is useful in long-term planning 

and management. Clearly, the stochastic model needs to generate realistic and 

statistically consistent scenarios for effective management. Realistic scenarios include 

flows within or just beyond the range of flow magnitudes in the observed record. 

Where, statistically consistent scenarios share similar distributional properties with 

the observed record.  

Currently, Reclamation depends on the index sequential method (ISM) (Ouarda et 

al., 1997) to generate stochastic hydrologic scenarios or traces. This stochastic 

method entails a sequential block bootstrap of the observed data where the block size 

is determined by the simulation or planning horizon. Bootstrapping is one of several 

data resampling techniques described by Efron (1982). Essentially, the ISM loops 
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through the historic data sequentially picking a block of flows from the observed 

record so no new sequences (i.e., wet and dry periods) are generated and thus, limited 

variability arise in the simulations. This is a severe limitation of the ISM especially 

when using it to answer the research questions posed earlier. Scenarios of salinity are 

also modeled using the ISM and suffer from similar drawbacks. Clearly, an improved, 

robust, and flexible method is required. 

Recent paleo reconstructions of streamflow for the pre-observed period, from 

tree-ring chronologies (Woodhouse et al., 2006) show droughts of greater magnitude 

and duration occurring periodically, indicating that the recent drought is not unusual 

in the basin. Clearly, the rich information provided by paleo reconstructions should be 

incorporated in any stochastic streamflow models to enable the generation of a 

realistic variety of plausible flow scenarios for robust planning and management of 

water resources in the basin. However, the magnitudes of reconstructed streamflows 

vary widely due to the reconstruction methodology (Woodhouse et al., 2006). This 

apparent weakness of the paleo reconstructed flow data has made their use in a water 

resources planning context contentious, despite their availability for many decades.  

Despite these apparent weaknesses, few argue about the duration and frequency of 

dry and wet (i.e., the hydrologic state) periods from the reconstructions. Due to these 

short comings of the paleo reconstructions, typically this rich information is not used 

in planning and management for the Colorado River. A creative methodology is 

required to combine the observed and paleo data to take full advantage of the insights 

from the paleo data. 
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1.3 Outline of this study 
  Given the research questions and, the limitations and inadequacies of the 

existing efforts, a new integrated framework is needed. This thesis develops such a 

framework (shown in Figure 1-1) with four key components. Each of these 

components are described in Chapters 2 through 5, with a summary of conclusions 

and recommendations for future extensions of this research outlined in Chapter 6. A 

brief outline of the various chapters is presented below. 

 
Figure 1-1 Flowchart of study. 

In Chapter 2 a stochastic nonparametric space-time disaggregation method is 

developed. This generates statistically consistent monthly streamflow scenarios 

across all the locations in the Colorado River Basin from annual streamflows at a 

single aggregate site. This nonparametric method is simple, flexible and improves 

upon the traditional alternatives; furthermore, the framework provides the basin 

stakeholders with a method they can easily understand, a critical requirement for its 

use in practice. The method also generates streamflow magnitudes and sequences not 

seen in the past and can be used in short and long-term planning. This is presented in 

a peer reviewed journal article accepted for publication in Water Resources Research 

(Prairie et al., 2006b).  
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Chapter 3 extends the space-time disaggregation framework from the previous 

chapter to develop a basin wide salinity scenario generation model. Salinity 

management is important from the water quality standpoint but also with respect to 

treaty agreements with Mexico (Colorado River Basin Salinity Control Forum, 2005). 

Salinity is strongly linked with the streamflow magnitude, i.e., increased streamflow 

generally leads to increased salt mass but less concentration due to dilution; the 

opposite occurs during low streamflows. This relationship was used by Prairie et al. 

(2005) in a regression framework to estimate salinity at a single site based on the 

streamflow. Combining this single-site salinity estimation model with the space-time 

streamflow disaggregation from Chapter 2, a new basin wide salinity generation 

framework is developed. This generates monthly salinity scenarios at all the locations 

in the Colorado streamflow network simultaneously, preserving the spatial-temporal 

statistical properties of the observed salinity and also the streamflow-salinity 

relationship at individual locations.   

As mentioned in the previous section, paleo reconstructed streamflows on the 

Colorado River, based on tree-rings, indicate periodic occurrence of longer and 

severe droughts, suggesting that the recent unprecedented drought in the Colorado 

basin is not unusual (Woodhouse et al. 2006). The magnitudes of paleo reconstructed 

streamflows are less reliable, especially during extreme years inhibiting their direct 

use in water management and planning (Woodhouse and Brown, 2001). However, the 

information on the hydrologic state (wet or dry) is very reliable.  Thus, the question 

then is how to combine the long paleo reconstructed streamflow information of lesser 

reliability with the shorter but reliable observed data to develop a framework for 
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streamflow simulation? This is addressed in Chapter 4, where a new and innovative 

methodology is developed. In this methodology, the paleo reconstructed streamflows 

are used in a nonhomogeneous Markov Chain model to generate a hydrologic state 

consistent with the paleo reconstruction and a nonparametric conditional bootstrap 

method is used to generate the streamflow magnitude from the observed record 

conditioned on the generated hydrologic state. This methodology combines the 

strengths of both of the data sets in an effective manner, producing robust and 

realistic hydrologic sequences.  

The stochastic flow and salt scenarios simulated from the methodologies 

developed in the previous three chapters are used in Chapter 5 as inputs in 

Reclamation’s long-term policy model, CRSS. The impact of two different reservoir 

operating policies on the various components of the Colorado River’s water resources 

system are evaluated for different hydrologic scenarios. Reliability estimates of 

various system components are also estimated; thus, providing a robust basis for 

sustainable water resources planning and management in the basin. 

Chapter 6 summarizes the key findings and contributions from the four 

components of the proposed research framework and recommends potential future 

extensions of this research.  

 

 

   7



 

CHAPTER 2  

A STOCHASTIC NONPARAMETRIC TECHNIQUE FOR SPACE-TIME 

DISAGGREGATION OF STREAMFLOWS  

2.1 Introduction 
Synthetic simulation of streamflow sequences is used in a variety of applications 

including reservoir operation and for evaluating water supply reliability. Multiple 

reservoirs and stream sections are often considered in a system’s operation plan. For 

this purpose, streamflows generated at different sites need to be consistent. This 

implies, that the flow at a downstream gauge is the sum of tributary flows; the annual 

flow is the sum of monthly flows; the monthly fraction of flows in wet/dry years are 

representative; and the dependencies of flows between the sites have to be 

reproduced. To this end, the disaggregation problem can be thought of as simulation 

from the conditional probability density function (PDF) )( ZXf , where X  is a vector 

of disaggregated (e.g., monthly) flows and Z is the aggregate (e.g., annual) flows and 

other terms (e.g., the first months correlation with the last month of the previous 

year), subject to the condition that the disaggregated flows add up to the aggregate 

flows, which is the additivity property. Often a simpler approach has been used 

consisting of fitting a model of the form: 

 εBAZX +=  (1) 

Where Z is usually taken to be just the annual flow and A  and B  are matrices of 

the model parameters that are estimated to ensure the additivity property and ε  is the 

stochastic term. Notice that the above form is that of a linear regression which has a 

rich developmental history; consequently, the main assumption is that the stochastic 
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term and hence the data ( X and Z ) are assumed to be normally distributed. To 

achieve this, the data are typically transformed to a normal distribution by appropriate 

transforms before the model is fit. The simulation proceeds as follows: (i) An 

aggregate streamflow is generated from an appropriate linear or nonlinear model or 

equivalent dataset. (ii) The simulated aggregate flow is then disaggregated using the 

above model. The simulated flows are back transformed to the original space. This 

linear stochastic framework for streamflow disaggregation was first developed by 

Valencia and Schaake (1973) and subsequently modified and improved by several 

others (Mejia and Rousselle, 1976; Lane, 1979; Salas et al., 1980; Stedinger and 

Vogel, 1984; Stedinger et al., 1985; Salas, 1985; Santos and Salas, 1992).  

Since these models are fit in the transformed space the additivity of the 

disaggregated flows to the aggregate flows in the original space after back 

transformation is not guaranteed. Hence, several adjustments have to be made (e.g., 

Lane, 1982; Stedinger and Vogel, 1984; Grygier and Stedinger, 1988). Furthermore, 

the model is designed to reproduce the statistics in the transformed space but 

reproduction is not guaranteed in the original space.  

Alternate approaches to disaggregation (Tao and Delleur, 1976; Todini, 1980; 

Koutsoyiannis, 1992; Koutsoyiannis and Manetas, 1996; Koutsoyiannis, 2001) allow 

representation of non-Gaussian data directly in the disaggregation scheme to avoid 

the need for data transformation. These techniques can incorporate the skewness from 

the historic data into the stochastic term (Tao and Delleur, 1976; Todini, 1980, 

Koutsoyiannis, 1999). Koutsoyiannis (2001) provides a stepwise disaggregation 

scheme that incorporates an adjustment procedure that preserves the additivity 

   9



 

property and certain higher order statistics. These methods are iterative in nature and 

thus, computationally intensive besides requiring assumptions of linearity.  

Recent advances in nonparametric methods (see Lall (1995) for an overview of 

nonparametric methods and their applications to hydroclimatic data) provide an 

attractive alternative to linear parametric methods. Unlike the linear approach where a 

single linear model is fit to the entire data, the nonparametric methods involve local 

functional fitting. The function is fit to a small number of neighbors at each point. 

This approach has the ability to capture any arbitrary features (nonlinearities, non-

normal, etc.) exhibited by the data. Nonparametric methods have been applied to a 

variety of hydroclimate modeling questions including stochastic daily weather 

generation (Rajagopalan and Lall, 1999; Yates et al., 2003), streamflow simulation 

(Sharma et al., 1997; Lall and Sharma, 1996; Prairie et al., 2006a), streamflow 

forecasting (Grantz et al., 2005, Singhrattna et al., 2005) and for flood frequency 

estimation (Moon and Lall, 1994) to mention a few.  

Kernel estimator based nonparametric streamflow simulation at a single site was 

developed by Sharma et al. (1997) where they also demonstrate its advantage over 

traditional linear models. Sharma and O’Neil (2002) improved on this to capture the 

interannual dependence. However, kernel methods can be inefficient in higher 

dimensions (e.g., space-time disaggregation) as noted by Sharma and O’Neil (2002) 

and as such, difficult to implement in multivariate problems such as space-time 

disaggregation in a network. Lall and Sharma (1996) developed a K-nearest neighbor 

(K-NN) bootstrap approach to time series modeling and applied it to streamflow 

simulation. Being a bootstrap method values not observed in the historic data will not 
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be generated in the simulations. To address this, a modified version of the K-NN 

bootstrap was developed by Prairie et al. (2005, 2006a) and this was further used in 

streamflow forecasting (Grantz et al., 2005; Singhrattna et al., 2005).  Semi-

parametric approaches that combine the traditional linear modeling and bootstrap 

methods for streamflow simulation have also been developed (Souza Filho and Lall, 

2003; Srinivas and Srinvasan, 2001).  

Tarboton et al. (1998) developed a kernel based approach (an extension of their 

single site methodology in Sharma et al. (1997)) for temporal (i.e., annual to monthly) 

streamflow disaggregation. Kumar et al. (2000) adopted K-NN bootstrap techniques 

in conjunction with an optimization scheme for spatial and temporal disaggregation 

of monthly streamflows to daily flows. They indicate that disaggregating monthly 

flow to daily involves a higher dimensional problem that cannot always be well 

represented by traditional parametric disaggregation techniques. Additionally, daily 

flows typically display nonlinear flow dynamics that are not adequately modeled with 

traditional techniques. The optimization framework allows for increased flexibility in 

specifying the functional relationships the disaggregation scheme needs to preserve 

but at a great computational cost. Srinivas and Srinivasan (2005) developed a semi-

parametric disaggregation method for a multi-site model they termed as Hybrid 

Moving block bootstrap Multi-site model (HMM). In this approach a parametric 

model (such as a linear auto regressive model) is fit to the data and the residuals from 

this model are resampled by block bootstrapping (the nonparametric component). 

This method is able to incorporate the strengths of both parametric and nonparametric 

models but still requires multiple steps.  
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In practical terms, there is a need for a robust, simple and parsimonious approach 

for space-time streamflow disaggregation that can capture the features exhibited by 

the data. To this end, here we develop a K-NN based disaggregation framework. The 

proposed framework and the algorithm are first described followed by its application 

to four streamflow sites on the Upper Colorado River basin, concluding with a 

summary and discussion of applications and the future direction for this research.    

2.2 K-Nearest Neighbor Based Disaggregation Framework  
The framework follows the work of Tarboton et al. (1998) except that the kernel 

based density estimation is replaced with a K-nearest neighbor approach. We describe 

the framework and the implementation algorithm for the case of a temporal (annual to 

monthly) disaggregation and the same steps follow for spatial disaggregation. As an 

example, consider X  to be a 12=d  dimensional monthly flow vector where Z  is 

the annual flow. As mentioned earlier, the disaggregation problem amounts to 

simulation from the conditional PDF )( ZXf  with the constraint that the 

disaggregated flows sum up to the aggregate flow.  The conditional PDF can be 

written as 

 ∫= dXZXfZXfZXf ),(/),()(  (2) 

The numerator in the above equation requires the estimation of a 1+d  

dimensional joint density function . However, due to the additivity 

requirement all the mass of the this joint PDF is situated on the dimensional 

hyperplane defined by 

),( ZXf

−d

 ZXXX d =+++ L21  (3) 

   12



 

Thus, for a particular value of Z  (the aggregate annual flow) the conditional PDF 

can be visualized geometrically as the probability density on a dimensional 

hyperplane slice through the 

1−d

−d dimensional density . The conditional PDF can 

be specified through a rotation of the vector 

)(Xf

X  into a new vector Y  whose last 

coordinate is aligned perpendicular to the hyperplane defined by (3).  Tarboton et al. 

(1998) describe this in detail and illustrate this point very well in their Figure 1. The 

conditional PDF is constructed in the rotated space ( )( ZYf ) and the simulation is 

also done in this rotated space before back rotation. In the Tarboton et al. (1998) 

framework kernel density estimators are used to construct this conditional PDF and 

subsequently for simulation. As mentioned earlier, the kernel methods are known to 

be inefficient and cumbersome to implement in higher dimensions. This limits their 

ability to extend the approach to space and time disaggregation. 

We depart from the Tarboton et al. (1998) framework here and instead develop a 

K-NN based bootstrap approach to construct and simulate from the conditional PDF 

( )( ZYf ). The methodology is described in the algorithm below.   

2.3 The Algorithm 
The steps involved in the algorithm are as follows: 

1. The historic data of monthly flows are oriented in X such that seasons are 

across rows and years are across columns. X is rotated into Y by the rotation 

matrix R where, 

 Y = RX (4) 

The procedure for obtaining the rotation matrix is described in detail in the 

appendix of Tarboton et al. (1998), here we summarize from their description. 
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The rotation matrix is developed from a standard basis (basis vectors aligned with 

the coordinate axes) which is orthonormal but does not have a basis vector 

perpendicular to the conditioning plane defined by (3). One of the standard basis 

vectors is replaced by a vector perpendicular to the conditioning plane. 

Operationally this entails starting with an identity matrix and replacing the last 

row with d/1 . The basis set is then no longer orthonormal. The Gram Schmidt 

orthonormalization procedure is applied to the remaining 1 standard basis 

vectors to obtain an orthonormal basis that now includes a vector perpendicular to 

the conditioning plane. The resulting R matrix is orthonormal and has the 

property RT = R-1. Further, note R is only a function of the dimension . 

−d

d

The last row of the matrix Y is ZdZYd ′== / . The first  components of 

the vector Y  can be denoted as U  and the last component is 

1−d

Z ′ , i.e., ),( ZUY ′= . 

Hence, the simulation involves re-sampling from the conditional PDF ( )( ZUf ′ ) 

2. An aggregate flow (i.e., annual flow)  is generated from an appropriate 

model fitted to the annual flow data. This could be a traditional auto regressive 

model (Salas, 1985) or a K-NN bootstrap approach (Lall and Sharma, 1996) or a 

kernel density estimator based method (Sharma et al., 1997) or a modified K-NN 

bootstrap (Prairie et al., 2005, 2006a) or a block bootstrap resampling (Vogel and 

Shallcross, 1996). Here we used the modified K-NN (Prairie et al., 2006a).  

∗z

If a simple K-NN based approach is applied the annual flows will be resampled 

from the historic data only generating values seen in the historic record. To 

generate annual values not seen before either the kernel density estimator, the 

modified K-NN, or a traditional parametric model can be implemented. 
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3. K nearest neighbors (corresponding to K historic years) of the generated 

dzzsim /' ∗=  are identified. The nearest neighbors are obtained by computing 

the distance between the generated and the historic'
simz Z ′ . The neighbors are 

assigned weights based on the function 

 
∑
=

= K

1

1
1)(

i i
k

kW  where k = 1,2,..K (5) 

This weight function gives more weight to the nearest neighbors and less to the 

farthest neighbors. For further discussion on the choice of the weight function 

readers are referred to Lall and Sharma (1996). 

The number of nearest neighbors, K is based on the heuristic scheme N=K  

where  equals the sample size (Lall and Sharma, 1996), following the 

asymptotic arguments of Fukunaga (1990). Objective criteria such as Generalized 

Cross Validation (GCV) can also be used. The above heuristic scheme has 

performed well in a variety of applications (Lall and Sharma, 1996; Rajagopalan 

and Lall 1999; Yates et al., 2003).  

N

Using these weights as a probability metric, one of the neighbors is resampled. 

Suppose the selected neighbor corresponds to year j of the historic record. 

4. The corresponding vector *Y  is created as 

  (6)  ),( '*
simj zUY =

5. The final step is the back rotation to the original space 

  (7) 
** YRx T=

*x  is the vector of disaggregated (i.e., monthly) flows that will sum to . ∗z
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Steps 2 though 5 are repeated to generate ensembles of monthly streamflows. The 

same steps can be used for spatial disaggregation, in which case the matrix X 

represents the spatial streamflows and Z  represents the spatial aggregate flow. 

 Even though we resample historic data, steps 4 and 5 enable the simulation of 

monthly values not seen in the historic record and can also generate negative values. 

However, in our application here the negative values simulated were extremely small 

in number - less than 0.4% of the simulated values for all gauges were negative.  

2.3.1 Numerical Example 
To further explain the algorithm described above a simple numerical example is 

presented. In this example we assume two variables (say two seasons) and they sum 

to the aggregate flows. The X matrix (seasonal flows) and the vector Z (aggregate 

flows) are given as 

 X  (8) ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

1791
454

,
1206232
585222

Z

The rotation matrix R is obtained as described in step 1 of algorithm resulting in  

 R  (9) ⎥
⎦

⎤
⎢
⎣

⎡ −
=

7071068.07071068.0
7071068.07071068.0

The rotated matrix Y is computed as 

 Y = RX ⎥  (10) 
⎦

⎤
⎢
⎣

⎡ −−
=

1266321
4397

Note that the last row of Y is equal to dZ /  (here ). Suppose the 

simulated aggregate flow is , then 

2=d

736=simz 520
2

736' ==simz . Based on the 
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resampling method described in step 3 of the algorithm above, suppose that we chose 

the second year then the vector  

 [ ]520439),( '
1,2

* −== simzuY  (11) 

The disaggregated vector  is obtained as simx

  (12) ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡−
⎥
⎦

⎤
⎢
⎣

⎡
−

==
679
57

520
439

7071068.07071068.0
7071068.07071068.0*

T
T

sim YRx

Note the additivity property  ∑ = simsim zx   is satisfied. 

2.3.2 Model Evaluation 
The performance of the K-NN space-time disaggregation approach is evaluated 

by applying it to four streamflow locations on the Upper Colorado River basin shown 

in Figure 2-1. These gauges are Colorado River near Cisco, Utah (site 1); Green River 

at Green River, Utah (site 2); San Juan River near Bluff, Utah (site 3); and Colorado 

River at Lees Ferry, Arizona (site 4).  
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Site 1
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37° 

Site 3
Site 4

32° 

109°  
Figure 2-1 Streamflow locations within the Upper Colorado River basin. 

Monthly natural streamflows at these locations are available for the 98 year period 

spanning 1906 – 2003. Naturalized streamflows are computed by removing 

anthropogenic impacts (i.e., reservoir regulation, consumptive water use, etc.) from 

the recorded historic flows1.  

The disaggregation schematic is shown in Figure 2-2. In this, we begin with an 

annual streamflow at an index gauge which is temporally disaggregated to twelve 

monthly flows. The monthly flows are then disaggregated to flows at the spatial 

locations. Thus, the disaggregation algorithm is applied twice, first for the temporal 

and second for the spatial disaggregation. The index gauge is an imaginary gauge 

                                                 
1 The natural flow data and additional reports describing these data are available at 
http://www.usbr.gov/lc/region/g4000/NaturalFlow/index.html. 

114° 
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whose monthly flows are created as the sum of the monthly flows at all the four 

locations. The annual flow at the index gauge was generated from the modified K-NN 

lag-1 approach (Prairie et al., 2005, 2006b). Using the space-time disaggregation 

approach we made 500 simulations each of 98 years length. The following statistics 

are calculated from the simulations and compared with those from the historic data to 

evaluate the performance of the proposed approach. 

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

temporal disaggregation 
 

annual to monthly 
at index gauge spatial disaggregation 

 

monthly index gauge 
to monthly gauge

1

2

3

4

 
Figure 2-2 Schematic of space-time disaggregation. 

 
2.4 Performance Statistics 

These performance statistics include monthly and annual (i) mean, (ii) standard 

deviation, (iii) coefficient of skew, (iv) maximum, (v) minimum, (vi) backward lag-1 

autocorrelation of the flows at the four locations, (vii) Probability Density Functions 

(PDF), (viii) correlation of flows between the locations, (ix) surplus and drought 
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statistics. Comparisons with a standard parametric alternative (Salas et al., 1980) are 

also provided. 

2.5 Results 
The results are displayed as boxplots where the box represents the interquartile 

range and whiskers extend to the 5th and 95th percentile of the simulations (note this is 

different from the standard boxplot definition). The statistics of the historic data are 

represented as a triangle connected by a solid line. Performance on a given statistic is 

judged as good when the historic value falls within the interquartile range of the 

boxplots, while increased variability is indicated by a wider boxplot. 

The mean was well reproduced at all sites and therefore not include in the 

Figures.  Performance statistics of Green River at Green River, Utah are shown in 

Figure 2-3.  
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Figure 2-3 Boxplots of monthly and annual statistics for flow at Green River at Green River, 

Utah. The box represents the interquartile range, and whiskers extend to the 5th and 95th 
percentile of the simulations. The statistics of the historic data are represented as a triangle. 

The standard deviation and skews are well preserved for most all the months and 

at the annual time step. The low flow months January and February skews are slightly 

under represented. The Lag-1 autocorrelations are also well simulated though 

February is slightly over correlated. However, the correlation between the first month 

of a year and the last month of the preceding year is not preserved. At the index gauge 

the temporal disaggregation does not incorporate this dependence; therefore, it is not 

captured in the simulations at the spatial locations. In this basin the flows are largely 

snow-melt driven and thus, the first (Jan) and last (Dec) months of the calendar year 

are part of the low flow season (accounting for about 4% on the annual flow); hence, 

capturing their correlation was not essential. However, we deemed it important to 

   21



 

capture the correlations in the remaining months especially during the high flow 

months, which are well preserved. Kumar et al. (2000) resolved this issue with their 

optimization framework but at a computation cost. Linear adjustment procedures 

have also been developed to capture the first month’s correlation with the last month 

of the preceding year (Grygier and Stedinger, 1988; Lane and Frevert, 1990; 

Koutsoyiannus and Manetas. 1996 and; Koutsoyiannus, 2001). But they all involve 

estimating several additional parameters and can impact reproduction of other 

statistics.  

The maximum and minimum flow statistics are also reasonably well simulated for 

most of the months. Extrapolation beyond the maximum historic flow occurs more 

extensively for some months (Jan, Feb, Aug-Sep, Nov), while other months (Mar-Jul, 

Oct, Dec) display limited to no extrapolation. A very small number (0.4%) of 

negative numbers were generated, mostly in low flow months, and had no significant 

impact on statistics. Similar results were obtained for the flows at Colorado River 

near Lees Ferry, Arizona (Figure 2-4) and also at the remaining two locations (figures 

not shown).  
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Figure 2-4 Same as Figure 3 but for flows at Colorado River at Lees Ferry, Arizona. 

The spatial cross correlation between the monthly flows at Colorado River at Lees 

Ferry, Arizona (Site 4, the downstream location) and the other three gauges are 

shown in Figure 2-5. The cross correlations are very well captured during the spring 

months (the high flow season) and also during other months. There is a slight under 

simulation of the cross correlations during the low flow months of Jan-Mar and Nov-

Dec.  
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Figure 2-5 Boxplots of monthly and annual cross correlation between 

 the streamflows at the four locations. 

Figure 2-6 displays the temporal cross correlation of the monthly and annual 

flows at several lags for the Colorado River at Lees Ferry, Arizona (Site 4). These 

statistics are also very well simulated. 

 
Figure 2-6 Temporal cross correlation pairs for streamflows at Colorado River at Lees Ferry, 
Arizona. The x-axis sequence is 1-2, 1-3 ···, 1-12, 1-A, 2-3, 2-4 ···, 2-12, 2-A, 3-4 ··· Months are 

numbered according to calendar year and ‘A’ represents annual. 
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As described earlier, one of the advantages of nonparametric methods is the 

ability to capture any arbitrary PDF structure. To test this we estimated the PDF from 

the simulations and compared them with those of the observed data. Figure 2-7 

presents the PDF for June flows at San Juan River near Bluff, Utah. The PDF of the 

historic data is shown by the solid line and the boxes and whiskers are those of the 

simulations. The simulations capture the non-normal feature of the historic PDF very 

well. Nonparametric kernel density estimators are used to compute the PDF (Bowman 

and Azzalini, 1997).  Similar performance was seen with PDFs from other months 

and locations. 

 
Figure 2-7 Boxplots of PDF of June flows from San Juan River near Bluff, Utah. 

To evaluate the performance of the disaggregation approach in capturing longer 

temporal properties we calculated surplus and drought statistics which include the 

longest surplus (LS), the longest drought (LD), the maximum surplus (MS) and the 

maximum deficit (MD) based on the long-term mean as the threshold for drought. 

These statistics for the flows at Colorado River at Lees Ferry, are shown in Figure 2-
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8. The LS statistics exactly reproduces the historic data. The LD statistic in captured 

within the inter-quartile range of the simulations though tends to be under 

represented. The MS is again captured within the inter-quartile range of the 

simulations and well represented. While the MD statistic shows the greatest 

variability of the all these statistics, though captured within the inter-quartile range 

the MD tends to be under represented. The simulations generate droughts that are 

longer in length and greater in magnitude than those in the observed record, though 

these are only generated for less that 25% of the simulations. 

 
Figure 2-8 Boxplots of surplus and drought statistics for Colorado River at Lees Ferry, Arizona. 

 

2.6 Comparison with a parametric model 
We compared the simulations from the K-NN space-time disaggregation approach 

developed in this research to a traditional parametric model (of the form in equation 

1) developed by Mejia and Rousselle (1976) and Salas et al. (1980). The parametric 

disaggregation models are designed to capture all the basic statistics, but as described 
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earlier, they have difficulty in capturing non-normal PDF structure and also the 

coefficient of skewness. These two statistics depend upon the appropriate 

transformations used to transform the data to a normal distribution. The 

transformations applied for the parametric model all passed a skewness test for 

normality, i.e., the transformed data had a coefficient of skew close to zero. Figures 

2- 9 and 2-10 displays the PDF of May flows and the monthly and annual coefficient 

of skew for the Colorado River at Lees Ferry, Arizona. The historic PDF displays a 

clear bimodal feature which is extremely well preserved by the K-NN disaggregation 

model (Figure 2-9), while the parametric model (Figure 2-10) is unable to capture this 

feature instead reproducing a normal structure. Similar results are seen with the 

coefficient of skewness that is well represented by the non-parametric model but not 

by the parametric model. It should be noted that even though the transformations 

were effective the parametric model was fitted to the transformed data and hence, 

does not guarantee the reproduction of the statistics in the original space.   

  
Figure 2-9 Boxplots from nonparametric disaggregation model of PDF (left column) of May 

flows and monthly and annual coefficient of skew (right column) from Colorado River at Lees 
Ferry, Arizona. 
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Figure 2-10 Boxplots from parametric disaggregation model of PDF (left column) of May flows 
and monthly and annual coefficient of skew (right column) from Colorado River at Lees Ferry, 

Arizona. 

2.7 Summary and Discussion 
We have presented a simple, robust, and parsimonious framework for space-time 

simulation of streamflows on a large river network. We adapted the Tarboton et al. 

(1998) framework but used a K-NN approach to construct and simulate from the 

conditional PDF. The model captures all the distributional properties and the spatial 

dependence of the flows at all the locations.  Simulating space-time flow scenarios 

conditioned upon large-scale climate information (e.g., El Nino Southern Oscillation, 

etc.) for seasonal forecasts can be easily achieved.  

A few limitations exist in the proposed nonparametric disaggregation approach, 

which should to be considered. An obvious limitation was the inability to capture the 

correlation between the first month of one year and the last month of the previous 

year. As presented, the proposed approach only solved for the monthly flows 

conditioned on the dependence structure for the current year. Incorporating the last 

months flow in the conditional function could be explored to remedy this limitation in 

scenarios where preserving this correlation is essential.  Another, limitation in the 
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proposed approach can arise if extreme values are of interest. Extrapolation beyond 

observed monthly flows is limited in comparison with parametric counterparts. This 

limitation needs to be considered on a case by case basis. With the proposed approach 

this limitation can be addressed with the choice of a proper annual flow model. An 

annual simulation model that generates more extreme annual flows will in turn 

generate more extreme monthly values.  

The proposed approach involved a two step process in which the temporal 

disaggregation was first performed followed by the spatial disaggregation.  The work 

of Kumar et al (2000) considers a simultaneous space-time disaggregation based on 

the K-NN method in an optimization framework, albeit with significant 

computational effort. For the annual to monthly disaggregation, an approach that 

blends elements of the method presented here with the optimization approach of 

Kumar et al. (2000) may provide a means to perform a simultaneous disaggregation. 

Efforts are under way to integrate this framework with a basin wide salinity 

model (Prairie et al., 2005) to generate salinity ensembles. Additionally, tree-ring 

reconstructions of past annual streamflows at Lees Ferry will be incorporated into this 

approach to simulate (i.e., reconstruct) monthly streamflows at all the locations in the 

Upper Colorado River basin that may include extreme events addressing the second 

aforementioned limitation. Together these projects will enable the evaluation of 

various policy strategies in the basin. 
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CHAPTER 3  

A BASIN WIDE STOCHASTIC SALINITY MODEL 

To simulate salinity as well as streamflow the salinity data must be correlated with 

the generated streamflow. Next we present our proposed method to generate salinity 

using components of the work presented in Chapter 2 and applying these to salinity 

generation. We also present an extension of a single site salinity model presented in 

Prairie et al. (2005) to multi-site for use throughout a river basin network. 

3.1 Motivation and Background 
Many rivers experience high salinity resulting from natural and anthropogenic 

sources, more so in the western United States and in the Colorado River basin. This 

impacts water quality and hence, is closely monitored. The salinity is closely linked 

with streamflow quantity in that, a higher flow brings with it more salinity but also 

provides substantial dilution to reduce the salt concentration and vice-versa during 

low flow regimes (DOI, 2003b). In the Colorado River basin, enactment of the 

Federal Water Pollution Control Act Amendments of 1972 led to the development of 

fixed numeric criteria for salinity levels at three key locations on the Lower Colorado 

River (DOI, 2003b). This coupled with year-to-year variability of streamflows and 

operating policy of reservoirs place unique constraints on salinity monitoring and 

mitigation and also on the management of reservoirs and usability of water for 

irrigation in the basin.  

To evaluate policy options for water quantity and quality, Reclamation developed 

a basin wide decision support model for streamflows and salinity, named, the 

Colorado River System Simulation (CRSS) (DOI, 1987). In this model the river basin 
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is represented by 29 gauges spread throughout the basin, which are also observed 

gauges, along with operating rules and policies that represent the “Law of the River” 

(Nathanson, 1978). Basin scale decision support models, such as the CRSS, are 

typically employed to understand the complex interaction between water resources 

operating policy, planned strategies for salinity mitigation, and to evaluate impacts of 

water management policy options on salinity in the river system. These models 

require statistically consistent basin wide scenarios of streamflow and salinity, which 

are generated from stochastic models.  

There is a rich history of stochastic models for generating basin wide streamflows 

that reproduce the statistical properties of the observed data. There are several linear 

time series models (Valencia and Schaake, 1973; Mejia and Rousselle, 1976; Lane, 

1979; Salas et al., 1980; Stedinger and Vogel, 1984; Stedinger et al., 1985; Salas, 

1985; Santos and Salas, 1992; Koutsoyiannis and Manetas, 1996; Koutsoyiannis, 

2001) that have been developed over the years and are used widely. These models, 

however, can only capture linear relationships and thus, are somewhat limited in their 

abilities. Nonparametric methods, on the other hand, offer an attractive alternative 

with their simplicity, assumption free nature, ability to capture any arbitrary 

functional features (i.e., linear, nonlinear, Gaussian or non Gaussian) and portability 

across sites.  There have been interesting advances in nonparametric time series 

models for streamflow simulation (Tarboton et al., 1998; Kumar et al., 2000; Srinivas 

and Srinivasan, 2005). More recently, we developed a robust nonparametric space-

time streamflow simulation model (Prairie et al., 2006b) and applied it successfully to 

the Colorado River basin.  
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There is very little literature on stochastic generation of basin wide salinity. 

Malone et al. (1979) developed a linear deterministic model for characterizing and 

modeling salinity in the Colorado River basin, they subsequently added a stochastic 

component. The stochastic component was developed with the generation of moment 

equations technique (Schweppe, 1973). This technique has equations to describe the 

mean and variance but is limited as these are the only statistics guaranteed to be 

preserved by the model. Additionally, the model assumes a linear structure. Mass 

balance models for estimating salinity were developed by Wurbs and Karama (1995) 

and Wurbs et al. (1995), which could be coupled with a stochastic streamflow 

generator. Prairie et al. (2005) developed a nonparametric statistical model for 

simulating salt scenarios consistent with streamflows at a single location. In this, a 

nonparametric regression based on a local polynomial approach (Loader, 1999) is 

developed for the salt mass using the streamflow. This regression is used in 

conjunction with streamflows from a stochastic simulation model to generate salinity 

scenarios. The nonparametric model performed extremely well in being able to 

simulate the observed salinity at the Glenwood Springs gauge on the Colorado River 

and improved upon the USGS developed method (Mueller and Osen, 1988).  

Clearly their does not exist a basin wide stochastic model for generating 

streamflow and salinity scenarios that can capture the spatial and temporal statistics 

of the observed salt and flow data. As noted above, such a model is crucial for 

evaluating various management policy options for effective planning, which 

motivates the present study. To this end, our recent developments of a stochastic 

nonparametric basin wide streamflow generation model (Prairie et al., 2006b) and 
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nonparametric single-site salinity model (Prairie et al., 2005), provides a unique 

opportunity to integrate these two into a basin wide salinity and flow generation 

framework. This forms the basis of the proposed research.  

The chapter is organized as follows. The basin wide salinity generation 

framework is described along with two alternate approaches for salinity and flow 

generation. This is followed by their application to data from four locations in the 

Upper Colorado River Basin. Results from the application with a discussion and 

summary of our findings conclude the chapter. 

3.2 Basin wide Salinity Generation Framework 
As mentioned above the framework uses the stochastic nonparametric single-site 

salinity model and the basin wide streamflow generation model. Therefore, we first 

present these two models in brief for the benefit of the readers and refer to the 

respective papers for details, followed by the basin wide salinity generation 

framework. 

3.2.1 Single Site Salinity Model 
The single site salinity model presented in Prairie et al. (2005) uses a 

nonparametric regression method based on local polynomial estimation, which 

describes the variability of salt mass as a function of flow. The model is defined as:  

 errorstreamflowfSaltmass += )(  (1) 

The main feature is that the function f is estimated locally (Loader, 1999). The 

implementation steps are as follows. 

i. At any value of the streamflow, say x*, K-nearest neighbors (K-NN) are 

identified from the observations. 
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ii. To the K-NN a polynomial of order p is fit.  

iii. The fitted polynomial is then used to estimate the salt mass corresponding 

to the streamflow x*. 
  

The number of nearest neighbors (K) and the order of polynomial p are estimated 

for the observed data using objective criteria, Generalized Cross Validation (GCV). 

The local estimation of the function f provides the capability to capture any 

arbitrary features (linear or nonlinear) that might be present in the data; besides, this 

obviates making any assumptions as to the underlying form of the function f (linear in 

the case of traditional linear regression approach). For details on the methodology and 

its development for salinity modeling we refer the readers to Prairie et al. (2005). The 

local polynomial approach above also provides estimates of uncertainty assuming the 

errors to be Normally distributed (Loader, 1999) using regression theory. Prairie et al. 

(2005) suggested resampling of residuals within the neighborhood of x* and adding 

them to the mean estimate from step (iii), as a way to obtain asymmetric confidence 

intervals and also better characterization of the error structure. As mentioned above, 

this approach was applied successfully in salt modeling at the Glenwood Springs 

gauge on the Colorado River.  

3.2.2 Basin wide Streamflow Simulation Model 
A stochastic nonparametric space-time disaggregation model for simulating 

streamflows simultaneously across the river basin was developed in Prairie et al. 

(2006b). In this, the streamflows are first generated at a downstream aggregate gauge 

which is then disaggregated to all the upstream locations, thus, preserving the 

summability, and spatial and temporal dependencies. The simulation is performed 
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from the conditional probability density function )( ZXf  where in the case of 

temporal disaggregation X  represents the seasonal or monthly (disaggregate) flows 

and Z  is an annual (aggregate) of the seasonal or monthly flows. For spatial 

disaggregation X represents the flows at several spatial locations and Z denotes the 

flow at the aggregate location.   The steps involved in performing the disaggregation 

are as follows: 

1. The historic data of monthly flows X is rotated into Y by the rotation matrix R 

where, 

 Y = RX (2) 

The procedure for obtaining the rotation matrix is described in detail in the 

appendix of Tarboton et al. (1998) and summarized in Prairie et al. (2006b) The R 

matrix is orthonormal and has the property  RT = R-1. The last column of the 

matrix Y is ZdZYd ′== / . The first 1−d  components of the vector Y  can be 

denoted as U  and the last component is Z ′ , i.e., . Hence, the 

simulation involves re-sampling from the conditional PDF (

),( ZUY ′=

)( ZUf ′ ) 

2. An aggregate flow (i.e., annual flow)  is generated from an appropriate 

model fitted to the annual flow data. This could be a traditional auto regressive 

model (Salas, 1985) or a K-NN bootstrap approach (Lall and Sharma, 1996) or a 

kernel density estimator based method (Sharma et al., 1997) or a modified K-NN 

bootstrap (Prairie et al., 2006a) or a block bootstrap resampling (Vogel and 

Shallcross, 1996). Here we used modified K-NN. 

∗z
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3. K nearest neighbors (corresponding to K historic years) of the generated 

dzzsim /' ∗=  are identified. The nearest neighbors are obtained by computing 

the distance between the generated and the historic'
simz Z ′ . The neighbors are 

assigned weights based on the function 

 
∑
=

= K

i i
k

kW

1

1
1)(  where k = 1,2,..K (3) 

This weight function gives more weight to the nearest neighbor and less to the 

farthest neighbors. Using these weights as a probability metric, one of the 

neighbors is resampled. Suppose the selected neighbor corresponds to year j of 

the historic record. 

The number of nearest neighbors, K is based on the prescriptive choice of square-

root of all possible candidates (i.e., NK = ) (Lall and Sharma, 1996; 

Rajagopalan and Lall 1999; Yates et al., 2003) following the asymptotic 

arguments of Fukunaga (1990). Objective criteria such as Generalized Cross 

Validation (Lall and Sharma, 1996) can also be used but the above heuristic 

scheme was found to perform quite well in a variety of applications (see the above 

references). 

4. The corresponding vector *Y  is created as 

  (4)  ),(* zUY j ′=

5. The final step is to rotate back to the original space 

  (5) 
** YRx T=

*x  is the vector of disaggregated (i.e., monthly) flows that will sum to . ∗z
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Steps 2 though 5 are repeated to generate ensembles of monthly streamflows. The 

same steps are followed for spatial disaggregation, in which case the matrix X 

represents the spatial streamflows and Z  represents the spatial aggregate flow. 

Even though we resample historic data in the rotation space, steps 4 and 5 (back 

rotation) enable the simulation of values not seen in the historic record and also 

negative values. However, the negative values simulated are few in number. This 

approach was developed and applied for simulating streamflows at four gauges on the 

Colorado River basin to show the capability of the model in capturing all the 

distributional, dependence and non-Gaussian properties exhibited by the data (Prairie 

et al., 2006b).  

3.2.3 Basin wide Salinity Generation  
 The above described basin wide streamflow generation model and the single site 

salinity model are combined to develop a basin wide flow and salt simulation 

framework. Under this framework we present two approaches to generating basin 

wide salinity. For ease of presentation, the description of the approaches below 

assumes that salinity is to be generated at annual and monthly time scales at four 

locations on a river basin. The same methodology carries over to any number of 

locations that might be present.  

3.2.3.1 Approach I 

The schematic of this approach is shown in Figure 3-1a. First an index (or spatial 

aggregate) site is created; this can be an imaginary downstream gauge whose values 

of salinity or flows are the sum of values of all the upstream gauges; or a downstream 

gauge whose values are an aggregation of the gauges above. Here we create an 
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imaginary index gauge that has the monthly flow and salinity values as the 

aggregation of the four gauge values upstream. The steps are as follows: 

i. An annual flow value is generated at the index gauge using a modified K-

NN lag-1 model (Prairie et al., 2006a). A traditional Auto Regressive (AR-

1) model or any other approach can instead be used.  

ii. A corresponding annual salinity is generated from the single-site salinity 

model. 

iii. The annual salinity is then disaggregated to monthly values at the index 

gauge and subsequently, each monthly is disaggregated to four spatial 

locations; thus, obtaining all the monthly salinity values at all the four 

locations. 

iv. Repeat steps (i) through (iii) to generate ensembles of salinity. 

 
Step (iii) is also applied to the annual flow value generated in (i) to obtain the 

spatial and temporal flows at all the gauges. 
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Figure 3-1 a) Schematic of space-time disaggregation with single regression. b) Schematic of 

space-time disaggregation with four regressions. 

This approach preserves the summability of the salinity values at the annual and 

monthly time scale, i.e., for each month the salinity value at the index gauge will 

equal the sum of values at the four gauges and the same is true at the annual time 

scale. Spatial correlation of salinity between the gauges will also be preserved as the 

index gauge salt is disaggregated in space and time. In addition all the distributional 

properties of the salt at each gauge will be well captured. However, the correlation 

between salt and flows at any gauge are not guaranteed to be preserved. This is due to 

the fact that the salt and flows are disaggregated separately. 
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3.2.3.2 Approach II 

It is well known that flow and salt are significantly related and in the context of 

policy evaluation and management joint ensembles of both flows and salinity are 

required. This implies that the generated ensembles have to capture the flow and salt 

relationship presented in the data at least annually, the time scale for salinity 

monitoring. To achieve this, a modified approach is proposed whose schematic is 

shown in Figure 3-1b.  The steps are as follows: 

i. An annual flow value is generated at the index gauge.  

ii. This is disaggregated to annual flows at the four gauges using the 

disaggregation model. 

iii. A corresponding annual salinity is generated from the single-site salinity 

model separately at each gauge. 

iv. The annual salinity is then disaggregated to monthly values individually at 

each gauge; thus, obtaining all the monthly salinity values at all the four 

locations. 

v. Repeat steps (i) through (iv) to generate ensembles of salt scenarios. 

 
As in the first approach, the annual flow at the index gauge can be disaggregated 

in space and time to obtain the monthly flows at all the gauges. 

Clearly, this approach preserves the annual flow and salt correlation at each 

gauge, as the salt is generated from the flow annually using the appropriate 

nonparametric flow and salt relationship at each gauge. The distributional properties 

of salt at each gauge will also be preserved. The spatial correlation of salinity 

between the gauges is not designed to be captured because the salinity is generated 
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independently at each gauge based on the streamflow, which is generated 

simultaneously at all the locations. However, much of the spatial dependence in 

salinity will be captured via the flows.   

While we presented two alternate approaches several other variations are possible 

within this framework, depending on the requirements of each application. The 

performance of the presented approaches in capturing a suite of statistical properties 

is evaluated in the following sections.  

3.3 Application and Model Evaluation 
The basin wide salinity generation framework described above was again applied 

to the four gauges on the Upper Colorado River basin shown in Figure 2-1. These 

locations include the Colorado River near Cisco, Utah (site 1); Green River at Green 

River, Utah (site 2); San Juan River near Bluff, Utah (site 3); and Colorado River at 

Lees Ferry, Arizona (site 4). Monthly natural streamflows and salt data at these 

locations are available for the 33 year period spanning 1971 to 2003. The natural flow 

and salt data are computed by removing anthropogenic influences (e.g., reservoir 

regulation, consumptive water use, salt loading from agriculture, or salt removed with 

exports) for both flow and salt from observed gauge records.  The natural flows are 

calculated from the observed streamflows at the gauges. Likewise, the natural salt is 

also calculated from the observed gauge salinity2. For ease of presentation these data 

are referred to as, historic flow and salt values, henceforth. 

The annual flow at the index site is generated from the modified K-NN approach 

(Prairie et al., 2006a). We generated 500 simulations of flow and salt each of 33 years 

                                                 
2 Further information on the natural flow and salt data and computation techniques can be obtained at 
http://www.usbr.gov/lc/region/g4000/NaturalFlow/index.html. 
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length. Salt is computed with the single site salinity model. The local polynomial for 

each salinity model is presented in Figure 3-2 (solid line) along with the historic flow 

and salt values (open circles).  

 
Figure 3-2 Annual regressions of natural flow versus salt at four sites. 

To evaluate the performance of this salinity generation framework, a suite of 

statistics, listed below, is computed for simulations from each approach and select 

results are presented as boxplots along with the corresponding statistic from the 

observed values. Only limited statistics of the flow are presented as the flow statistics 

at these gauges have been extensively presented and studied in Prairie et al., (2006b). 
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3.3.1 Performance Statistics 
The performance statistics include the monthly and annual (i) mean, (ii) standard 

deviation, (iii) coefficient of skew, (iv) maximum, (v) minimum, and (vi) lag-1 

autocorrelation of the flows at the four sites. Annual and monthly (i) correlation 

between flow and salt, (ii) probability density function (PDF) of the annual flow and 

salinity at the locations, and (iii) cross correlation of salt between the four sites.  

 Although we compute monthly statistics, we focus on the annual statistics as it 

is the time scale for salinity monitoring and mitigation planning in the basin. 

3.4 Results 
The results are displayed as boxplots where the box represents the interquartile 

range and whiskers extend to the 5th and 95th percentile of the simulations. The 

statistics of the historic values are represented as a triangle. Performance on a given 

statistic is judged as good when the historic value falls within the interquartile range 

(IQR) of the boxplots, while increased variability is indicated by a wider boxplot. 

The PDFs of annual flow at all sites (Figure 3-3) are preserved within the IQR 

except for site 3. Site 3 was well preserved when the entire available record for flow 

(1906-2003) were used, as in Prairie et al. (2006b). Because flow and salt data are 

only available back to 1971 we could not included the earlier set of flows. Limiting 

the sample size reduced the ability to capture the observed statistics within the IQR. 

Extending the available salt data may improve preservation of site 3. Still, the 

observed statistic is captured within the whiskers.  

   43



 

 

 
Figure 3-3 Probability density functions for annual flow. 

The annual correlations between flow and salt at the four sites are shown in 

Figure 3-4. The left side results are from approach 1 - one single annual flow versus 

salt regression; while the right side results are from approach 2 - four annual flow 

versus salt regressions representing each site. The correlation between annual flow 

and salt generated from approach 1, left side, are under represented at the three 

upstream sites though the farthest downstream site, site 4, is preserved the best. 

Results from approach 2, right side, display an improvement in the natural flow and 

salt correlation; this is because, in this approach, the salt is generated from the 

individual site flow and salt regressions. Overall the flow and salt correlations are 
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better captured from the second approach, as expected. Site 3 is slightly over-

correlated which may result from the limited sample size discussed earlier. 

 
Figure 3-4 Correlation coefficient for annual flow and salt from single annual regression (left) 

compared with four annual regressions (right). 

Figures 3-5 and 3-6 display annual salt PDFs for all sites from approaches 1 and 

2, respectively. Approach 2 is more capable of fully preserving the observed PDF at 

each site though site 3 is not fully captured because the annual flow PDF (Figure 3-3) 

was not fully captured.  
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Figure 3-5 Probability density functions for annual salt mass from single annual regression. 
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Figure 3-6 Probability density functions for annual salt mass from four annual regressions. 

Figure 3-7 displays the spatial cross correlation among the four sites for approach 

1 (left side) and approach 2 (right side). Both the methods are able to preserve the 

annual cross correlation among sites. But the first approach is able to better preserve 

the monthly spatial cross correlation since the salt values are simulated from a space-

time disaggregation of the salinity at the index gauge. 
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Figure 3-7 Single annual regression (left) compared with four annual regressions (right). 

Basic performance statistics for approach 2 are shown in Figure 3-8. Both 

methods (approach 1 not shown) perform well in preserving the lower order statistics. 

Generally, almost all of the monthly statistics are well preserved within the IQR with 

a couple exceptions. Considering that the annual salt at each gauge is simulated from 

the flow-salt nonparametric regression and subsequently disaggregated to monthly 

values, this result was not guaranteed.  The Lag-1 correlation for the January of the 

current year with December of the previous year is not explicitly preserved with the 

disaggregation algorithm and therefore, not well captured by either approach. For site 

4 the maximum and minimum of the monthly salt simulations generally do not 

exceed the historic maximum or go below the historic minimum values. This results 
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mainly from a smaller K-NN size. With increased K the variability in the generated 

values from the annual natural flow generation can be increased though at a cost of 

reduced performance in other basic statistics. Negative values can be obtained since 

the historic salt mass is a computed value. This represents salt removed from the river 

system. 

 
Figure 3-8 Boxplots of monthly and annual basic statistics for total salt load at site 4. Salt load 

modeled from four annual regressions i.e., approach 2. 

An exceedance probability plot of violating a proposed threshold is presented in 

Figure 3-9 from simulations generated using approach 2. For comparison we 

generated flows from a parametric disaggregation method using an ARMA(1,0) 

(Salas, 1985) to model the index gauge. The disaggregated flows were then used to 

generate natural salt at each of the four sites with the site’s respective regression. The 
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flows from the nonparametric method capture the observed exceedance probability 

well within the IQR while the parametric framework captures the observed at the 

limits of the IQR. This results because the nonparametric disaggregation method is 

able to fully capture the annual flow (Figure 3-3) and salt mass (Figure 3-6) PDF at 

site 4 while the parametric disaggregation method can only reproduce a Gaussian 

PDF of flow and resulting salt mass at site 4 (Figure 3-10).     

  
Figure 3-9 Exceedance plots for a salinity threshold of 225mg/L. 

  

  

Figure 3-10 Probability density function for annual flow (left) generated from parametric 
disaggregation and the associated annual salt mass (right) from the flow-salt regression at site 4. 
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3.5 Summary and Discussion 
We developed a framework to simulate basin wide salinity scenarios 

simultaneously that preserves the spatial and temporal statistics. This framework 

combines the nonparametric space-time disaggregation model (Prairie et al., 2006a) 

for basin wide flow generation and a local polynomial regression based approach 

(Prairie et al., 2005) for salt estimation given a streamflow value. Within this 

framework two approaches were presented. 

The first approach coupled flow and salt through a single regression of annual salt 

as a function of flow at an index site. Once the natural salt was determined from the 

regression the annual natural salt at the index site was first spatially disaggregated to 

4 sites then these annual values were temporally disaggregated from annual to 

monthly values.  

In the second approach the annual flow at the index gauge was first spatially 

disaggregated to the 4 individual sites. Annual salt was then simulated at the four 

locations based on their respective annual flow-salt nonparametric regression. The 

last step disaggregated the annual salt values at each site to monthly values, 

completing the process. 

We demonstrated that approach 1 was better at preserving the spatial cross 

correlation across the 4 sites and could capture most of the flow and salt correlation at 

each site, but not entirely. Approach 2 was not able to capture the spatial cross 

correlation as well, but was superior at capturing both the correlation between flow 

and salt at the annual and monthly temporal scales. Both approaches were able to 

capture lower order statistics such as the mean, standard deviation, coefficient of 
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skew, lag 1 correlation, maximum, and minimum well but framework 2 was slightly 

better. 

The choice of one of the approaches will depend on each application. If the 

preservation of the spatial cross correlation is most important then approach 1 would 

be best suited and if, capturing the flow-salt correlation is desired then the second 

approach may be best to implement.  

Numeric salinity criteria for the Colorado River Basin require the maintenance of 

specified average annual salinity levels at three key points in the Lower Colorado 

River. With the need to model the relationship between flow and salt as accurately as 

possible we deemed the need to capture the correlation between annual flow and salt 

to be most important for our application in the CRSS; hence, we recommend 

approach 2 for this purpose. 

Paleo reconstructed flows can also be used in this framework to generate salinity 

scenarios conditioned on paleo reconstructed flows. This provides a richer variety of 

flow and salt scenarios that will be of great value in developing reservoir operational 

policies and salinity mitigation strategies. 

There is increasing evidence of the influence of large-scale climate features on the 

streamflow variability in western United States. Generating flow and salt scenarios 

conditioned on large-scale climate information can be a daunting task with traditional 

methods. The framework developed here provides an attractive and simpler, yet 

robust alternative. 
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CHAPTER 4  

A STOCHASTIC NONPARAMETRIC APPROACH FOR  

STREAMFLOW GENERATION COMBINING OBSERVED  

AND PALEO RECONSTRUCTED DATA 

Observed streamflow records are frequently short in length for many locations. In the 

Colorado River Basin a record of 100 years is a blessing to most water managers 

though even this longer observed record can be inadequate for understanding the 

probability and magnitude of both drought and surplus characteristic in a river basin. 

Paleo reconstructed streamflow records can extend the understanding of observed 

past records five-fold leading to enhanced understanding of long-term basin flow 

characteristic. In this Chapter we present a nouvelle approach to condition synthetic 

streamflow generation on paleo reconstruction system state (i.e., wet or dry states).   

4.1 Introduction 
Effective long-term planning and management of water resources requires (i) a 

tool that can generate all plausible streamflow scenarios and (ii) a decision model to 

evaluate policy alternatives. Stochastic models are typically built on observed 

streamflow data, which are then used to generate flow scenarios that capture the 

statistics of the observed data.  There is a rich literature on models to simulate basin 

wide flows in a linear (Valencia and Schaake, 1973; Mejia and Rousselle, 1976; Tao 

and Delleur, 1976; Lane, 1979; Salas et al., 1980; Todini, 1980; Stedinger and Vogel, 

1984; Salas, 1985; Stedinger et al., 1985; Koutsoyiannis, 1992; Santos and Salas, 

1992; Koutsoyiannis and Manetas, 1996; Koutsoyiannis, 2001) or nonlinear 

(Tarboton et al., 1998; Kumar et al., 2000; Sharma and O’Neil, 2002; Srinivas and 
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Srinivasan, 2005) framework. Observed data is usually limited in time and thus, the 

simulations have a limited variability; more so in the magnitude and frequency of the 

extremes, which are crucial for robust long-term planning. This was underscored on 

the Colorado River basin during the recent severe and sustained drought. The basin 

experienced the worst drought on record from 2000-2004. Though this drought was 

unprecedented in the observed record (1906-2004), paleo reconstructions of 

streamflow from tree-ring chronologies have shown droughts of greater magnitude 

and duration. A recent paleo reconstructed streamflow for the period 1490-1997, on 

the Colorado River at Lees Ferry, AZ, a key gauge on the River (Woodhouse et al., 

2006), is shown in Figure 4-1 along with the observed flows. It is evident that the 

recent drought is unprecedented during the observed period but the reconstructed 

streamflows prior to 1906 show severe droughts of 5 years length at least four times 

over the approximate 500 year period, indicating that the recent drought is not 

unusual.  

 
Figure 4-1 Five-year running means for historic and reconstructed streamflow. 

Clearly, the rich information provided by paleo reconstructed streamflows has to 

be incorporated in stochastic streamflow models to enable the generation of a realistic 

variety of plausible flow scenarios. However, the magnitudes of streamflow 

reconstructions have a high degree of uncertainty due to the reconstruction 

methodology. Typically, a regression model is fit to the observed streamflow with a 
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suite of tree-ring observations as the predictors. This fitted model is then used to 

estimate streamflows in the pre-observed period using the tree-ring observations 

(Meko et al., 1995). The key assumptions that can be difficult to validate are (i) the 

tree-ring and streamflow relationship is assumed to be linear and stationary, (ii) the 

suite of tree-ring predictors in the regression model are also assumed to be stationary. 

Consequently, the reconstructed streamflows can be sensitive to the fitted model as 

demonstrated by Hidalgo et al. (2000). This apparent weakness of the paleo 

reconstructed flow data have made their use in a water resources planning context 

contentious, despite the availability of paleo reconstructed data for many decades.  

Despite these apparent weaknesses, few argue about the duration and frequency of 

dry and wet (i.e., the hydrologic state) periods from the reconstructions. The key 

question is how to combine the long paleo reconstructed streamflow information of 

lesser reliability with the shorter but reliable observed data to develop a framework 

for simulation of streamflow scenarios?  

To address this question we propose a new framework in which the hydrologic 

state (i.e., wet or dry) is modeled using the paleo reconstructed data and the flow 

magnitudes derived from the observed data. Specifically, a nonhomogeneous Markov 

Chain model (Rajagopalan et al., 1996) is built on the paleo data that is then used to 

simulate the hydrologic state. The flow magnitudes are then generated conditioned on 

the simulated hydrologic state using a K-nearest neighbor (K-NN) conditional time 

series bootstrap (Lall and Sharma, 1996); thereby, using the strengths of both of these 

data sets. The framework is described in detail in the following sections.  
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The chapter is organized as follows. The data sets used are first described in detail 

followed by a description of the proposed framework and its implementation 

algorithm. Next the framework is applied to the Lees Ferry, AZ streamflow gauge on 

the Colorado River where both, paleo reconstructions and observed streamflow data 

are available and a suite of statistics is evaluated. Summary of the results and the 

potential applications for basin wide water resources planning are described, 

concluding the chapter. 

4.2 Data Sets 
As mentioned earlier, two data sets (i) paleo reconstructed streamflow and (ii) 

observed flows, are used in this study. These are described in detail below. 

4.2.1 Natural Streamflow  
The natural streamflow data for the Colorado River Basin are developed by 

Reclamation and updated regularly. Naturalized streamflows are computed by 

removing anthropogenic impacts (i.e., reservoir regulation, consumptive water use, 

etc.) from the recorded historic flows3. Prairie and Callejo (2005) present a detailed 

description of methods and data used for the computation of natural flows in the 

Colorado River Basin. For this study the annual water year (Sep-Oct) natural 

streamflow at Lees Ferry, AZ for the period 1906-2004 are used. 

4.2.2 Paleo Reconstructed Streamflow 
The latest annual water year streamflow reconstructions at the Lees Ferry, AZ 

gauge, by Woodhouse et al. (2006) for the period 1490-1997 are used in this study. 

These are streamflows reconstructed from tree-ring information. Tree-ring widths are 

                                                 
3 The natural flow data and additional reports describing these data are available at 
http://www.usbr.gov/lc/region/g4000/NaturalFlow/index.html. 
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influenced by climate and available soil moisture and thus, are good integrators of the 

weather fluctuations; just as streamflow is a watershed integration of hydrologic and 

climatologic processes. Consequently, the tree-ring widths are well correlated with 

annual runoff. A series of trees are cored at multiple locations, chosen such that the 

tree species have annual rings sensitive to moisture availability. Selecting the species 

and the location is very important for this effort (Meko et al., 1995). Two core 

samples are taken from each tree for cross dating and the ring widths are measured, 

obtaining the chronology of tree-ring widths. The attractive aspect of tree-ring based 

reconstructions, unlike other paleo proxy data, is trees that put on annual rings have 

natural dating, with the outer ring corresponding to the current year and the 

subsequent inner rings to past years. A standard series of techniques (Stokes and 

Smiley, 1968; Swetnam et al., 1985) are employed to process the ring width series. 

Typically, the series is first detrended to remove the effects of reduced ring width 

with aging. Next, the ring width series from various cores at a single location are 

combined to develop a site chronology (Cook et al., 1990).  The site chronology is 

related to observed streamflow during the overlap period; typically, a multiple linear 

regression model is fit (Weisberg, 1985). For the Colorado River at Lees Ferry, AZ, 

gauge the regression model developed by Woodhouse et al. (2006) using all the 

available pool of chronologies (30 in total), explains approximately 84% of the 

annual variance of the observed streamflow, which is very good. The fitted regression 

model is then used to estimate the streamflow during the pre-observation period when 

tree-ring information is available; thus, obtaining the reconstructed streamflow series. 
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  Proxy data, such as tree-ring information, are no substitute for actual 

observations and therefore are not without fault. Especially, during high streamflow 

flow periods it is known that the tree-ring widths are influenced by variables other 

than moisture availability; thus, degrading their ability in accurately representing high 

flow years (Woodhouse and Brown, 2001).  Further, different datasets and techniques 

to process tree-ring information can result in substantial differences in the 

reconstructed flows (Hidalgo et al., 2000). This can be seen in Figure 4-2, where four 

different streamflow reconstructions at the Lees Ferry, AZ gauge are shown, 

including the earliest reconstruction of Stockton and Jacoby (1976); later 

reconstructions by Hidalgo et al. (2000); that of Hirschboeck and Meko (2005) as part 

of the Salt River Project and, the most recent reconstruction by Woodhouse et al. 

(2006).  

 
Figure 4-2 Five-year running means for recent and previous streamflow reconstructions at Lees 

Ferry. 

Each reconstruction used a different set of tree-ring chronologies and different 

processing methods. Of particular interest is the increased severity of drought and 

reduced overall mean displayed by the Hidalgo reconstruction. Unfortunately, the 

variability among the reconstructions have not helped instill confidence in use of 

these data by policy makers and water managers in the Colorado River Basin, even 

with growing interest in wanting to use them. Despite the differences, all the 

reconstructions agree on wet and dry years exhibiting decreasing and increasing 
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streamflows during the dry and wet years, respectively. This is shown in Figure 4-3 

where it is evident that the wet and dry periods (as defined with respect to the median 

streamflow of the observed period as the threshold) are consistent across the four 

reconstructions. This offered the potential to use the paleo reconstructed streamflows 

to model the hydrologic state (i.e., wet or dry) of the system and use the observed 

data for the flow magnitude. This forms the basis of our proposed framework.  

 
Figure 4-3 Five-year running means streamflow state for historic and reconstructed. 

 
4.3 Proposed Framework 

As mentioned above, the proposed framework combines the paleo reconstructed 

streamflows with the observed data in developing a framework for simulating robust 

streamflow scenarios for use in water resources management. The paleo reconstructed 

data is used to model the hydrologic state of the system. The median of the observed 

flows is considered the threshold to define periods as wet, if flow is greater than this 

   59



 

threshold, and dry, if flow is less than this threshold. From Figure 4-2 and 4-3 it can 

be seen that there are epochs of enhanced wet and dry periods and therefore, the 

propensity (i.e., the probability) of being in these states longer. Since, the state 

transition is varying through time a nonhomogeneous Markov Chain modeling 

approach is required. The streamflow magnitudes are then simulated from the 

conditional probability density function, using a nonparametric K-nearest neighbor 

bootstrap approach. The proposed framework is shown in Figure 4-4. The 

descriptions of these two components of the framework along with background 

information are provided below.  

 
Figure 4-4 Modeling framework description. 

4.3.1 Modeling the Hydrologic State 
As mentioned above, Markov chains are the approach of choice for modeling the 

discrete state (wet or dry) transitions of the hydrologic state.  Markov chains have 

been extensively used to model daily precipitation occurrence (Gabriel and Neuman, 

1962; Todorovic and Woolhiser, 1975; Smith and Schreiber, 1974; Salas, 1985 and 

references within). Typically, for a two-state (wet, dry) first order (i.e., state transition 
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at the next time step depends on the current state), the transition probabilities are 

directly estimated from the data by counting the proportion of transitions to a wet 

year from a dry year, , and the probability of a wet year followed by a dry year, 

. The probability of a dry year followed by a dry year can be obtained 

as  likewise, the probability of a wet year followed by a wet year 

as . The transition probabilities can be readily used to simulate the 

hydrologic states and consequently, their frequencies. If these transition probabilities 

are assumed to be stationary and calculated from the entire data then it is a stationary 

Markov Chain. But here (Figure 4-2 and 4-3) the frequencies of wet and dry periods 

are varying (i.e., nonstationary) over time and hence, stationary transition 

probabilities are inadequate.    

dwP

wdP

dwdd PP −= 1

wdww PP −= 1

The nonstationarity can be addressed in several ways. A moving window of some 

time steps can be selected and the transition probabilities estimated for each time 

window and repeated by moving forward every time step. Resulting in transition 

probability estimates for each year, based on state observations present in the window 

length, this is a simple approach. Hidden Markov models are gaining popularity, in 

these the underlying epochal (or regime) changes are modeled probabilistically and 

the transition probabilities are then conditionally estimated based on the epoch. These 

models have been applied to precipitation, climate and streamflow data (see e.g., 

Zucchini and Guttorp, 1991; MacDonald and Zucchini, 1997; Lu and L.M. Berliner, 

1999; Thyer and Kuczera, 2000, 2003a,b; Akıntuğ and Rasmussen, 2005). These 

Markov models require extensive fitting and calibration which can limit their use in 

operational studies. Another approach to deal with nonstationarity is the 

W
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nonhomogeneous Markov models (Hughes and Guttorp, 1994; Hughes et al., 1999; 

Bellone et al., 2000; Lambert et al., 2003). For example, Fourier series were fit to 

model the changing transition probability with season for precipitation (Woolhiser 

and Pegram, 1979; Roldan and Woolhiser, 1982; Feyerherm and Bark, 1965).  

Nonparametric alternatives (e.g., Rajagopalan et al., 1996; Mehrotra et al., 2004; 

Mehrotra and Sharma, 2005) offer a more general approach in which the transition 

probability at any time t  is estimated as a weighted average of the transitions within a 

window of size H centered on t . The window size H  is obtained from objective 

criteria. Here we used the nonparametric nonhomogeneous Markov Model (NHM) 

developed by Rajagopalan et al., (1996). The development was for daily precipitation, 

which is adapted here for modeling the streamflow states described below.  

The streamflow state occurrence process is illustrated in Figure 4-5. From this 

process four different aspects of the process can be extracted.  

 
Figure 4-5 State occurrence process. 

These include (1) the year indices for the nd dry years; (2) the year 

indices for wet years; (3) the year indices for 

years on which the transition from dry to wet occurs; and (4) the year indices 

for years on which the transition from wet to dry occurs. The 

transition probabilities,  and  for a given year are estimated by a discrete 

nonparametric kernel estimator given in Rajagopalan et al. (1996) as: 
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where, = the kernel function; = the kernel bandwidth; t = year of interest. 

The discrete Quadratic Kernel function developed by Rajagopalan and Lall (1995) is 

used, which is given as:  

)(K )(h

 1for)1(
)41(

3)( 2
2 ≤−

−
= xx
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where 
)(

)(

h
tt

x
−

= measures the distance for event  from the year of interest t  

within the bandwidth , where  is an integer. The weights from the Kernel 

function are positive and sum to unity. It can be seen that the estimates of transition 

probabilities at any year  are based only on the transitions within a window 

)(t

)(h )(h

t )(ht −  to 

. )(ht +

The transition probability estimators (1) and (2) are fully defined once the 

bandwidth  is determined for each. An objective method based on a least square 

cross validation (LSCV) procedure (Scott, 1992) is used to select the optimal 

bandwidth that was also used by Rajagopalan et al., (1996) given as: 

)(h
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where = the number of observations ( or ); = the estimate of 

the transition probability (  or ) at year t  dropping the information on year t . 

The 1 in (4) results from an assumption that the prior probability of transition is 1 for 

the years on which a transition has occurred. The minimizer of the LSCV is selected 

as the optimal bandwidth. The bandwidths  and  are objectively determined 

and subsequently used in the estimators (1) and (2) to estimate the transition 

probabilities for each year.  
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 Best Markov Chain model orders are generally selected as the minimizers of 

AIC criteria (Gates and Tong, 1976). For the Lees Ferry paleo reconstructed data we 

found the two state first order to be optimal. 

4.3.2 Modeling the Flow Magnitudes 
The streamflow magnitudes, as mentioned earlier, are modeled based on the 

observed data and conditioned upon the hydrologic state.  This model can be 

described as the conditional probability density function (PDF): 

 ),,( 11 −− tttt xSSxf  (5) 

where the flow at the current time txt =  conditioned on the current system state = 

, previous system state = , and previous flow = . tS 1−tS 1−tx

Simulation from this conditional PDF is achieved by a K-NN bootstrap method 

(Lall and Sharma, 1996; Rajagopalan and Lall, 1999). K-NN are identified in the 

observed data of the current feature vector [ ]11 ,, −− ttt xSS . One of the neighbors is 

selected, based on a metric that gives highest probability to the nearest neighbor and 
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lowest to the farthest. The corresponding streamflow of the selected neighbor is the 

simulated value for the current time. 

This is a unique case where the feature vector includes discrete and continuous 

variables. Therefore, determination of the feature vector is split into two steps. The 

observed data is first split into the lag and state combination. For this example a lag 

one two state (wet and dry) system 4 categories are defined. In the second step, a 

given  combination defines a category from which the K neighbors are 

identified and one neighbor  is resampled as mentioned above, and the next year 

 from the observed record is chosen.   

tt SS ,1−

1−tx

tx

In this work K is based on the number of neighbor in each category, as the limited 

observed data limit K. The number of nearest neighbors can also be based on the 

heuristic scheme N=K  where  equals the sample size (Lall and Sharma, 1996), 

following the asymptotic arguments of Fukunaga (1990). Objective criteria such as 

Generalized Cross Validation (GCV) can also be used. 

N

4.3.2.1 Implementation Algorithm 

The complete framework combines the two models. The simulation proceeds as 

follows. First a simulation horizon is identified, this is application dependent, suppose 

a 30-year horizon is chosen.  

1. Randomly resample a block of 30-years from the paleo reconstructed 

streamflows, say 1651-1680.  

2.  Generate flow states where )(tS 30,...,2,1=t  using the transition 

probabilities of the resampled years from step 1 above.  
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3. Generate flow magnitudes for each )(tx 30...,,2,1=t  from the conditional 

PDF ),,( 11 −− tttt xSSxf  using the K-NN bootstrap approach described in the 

previous section.  

4. Repeat steps 2 through 3 to obtain as many simulations as required.  
 
4.4 Model Evaluation 

The proposed framework is applied to the paleo reconstructed streamflows (1490-

1997) and observed natural flows (1906-2003) at Lees Ferry, AZ on the Colorado 

River.  

A suite of basic statistics are computed including the annual (i) mean, (ii) standard 

deviation, (iii) coefficient of skew, (iv) maximum, (v) minimum, and (vi) lag-1 

autocorrelation. Surplus and drought statistics include the longest surplus (LS), 

longest drought (LD), maximum surplus (MS) volume, maximum deficit (MD) 

volume, average length surplus (avgLS), average length drought (avgLD), average 

surplus (avgS), and deficit (avgD) volume. Surplus (drought) is defined as values 

above (below) a threshold, here the median of the observed record. Figure 4-6 

describes the computation of these surplus and drought statistics based on the 

threshold.  
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Figure 4-6 Definition of surplus and drought statistics. 

The results are displayed as boxplots where the box represents the interquartile 

range and whiskers extend to the 5th and 95th percentile of the simulations and outliers 

are shown as points beyond the whiskers. The statistics of the observed data are 

represented as a triangle and paleo reconstructed data are represented as a circle. 

Performance on a given statistic is judged as good when the observed statistic falls 

within the interquartile range of the boxplots, while increased variability is indicated 

by a wider boxplot. 

4.5 Results 
To demonstrate the capability of the framework to capture the statistics of the 

observed period we did the following. The framework was applied using paleo data 

from the 92 year overlap with the observed period of 1906-1997, and 500 simulations 

were made each 98 years long. The statistics of the observed data should be well 

captured in this set up. The boxplots of the various basic statistics are shown in Figure 

4-7. It can be seen that all the basic statistics are preserved well except the lag 1 
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correlation, which is slightly under simulated. The maximum and minimum are 

bounded by the observed record as expected since the K-NN bootstrap approach 

resamples only the observed data. 

 
Figure 4-7 Basic statistics based on reconstruction subset 1906-1997 TP. 

Boxplots of surplus and drought statistics are shown in Figure 4-8 along with the 

corresponding values from the observed record represented as a triangle and from the 

reconstructed record for the same as a circle.  The boxplots over simulate LS and LD 

with the median of the surplus slightly higher than the drought. This is consistent with 

the fact that the observed period is generally wet compared to prior epochs. Other 

drought and surplus statistics were captured quite well by the simulations except 

MAXD. The framework is not designed to capture all the drought statistics, given 

this, the performance is quite good.  
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Figure 4-8 Drought statistics based on reconstruction subset 1906-1997 TP. 

We next apply the framework to the entire paleo reconstructed streamflows and 

the observed data. Only the drought and surplus statistics are presented and discussed, 

as they are of interest.  The simulations generated higher LS and LD and larger MS 

and MD statistics compared to that of the observed record (Figure 4-9) and also to 

those seen in Figure 4-8. The transition probabilities of the entire paleo reconstruction 

allow generation of a greater variety of drought and surplus lengths than those from 

the overlapping period (Figure 4-8).  
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Figure 4-9 Drought statistics based on full reconstruction 1490-1997 TP. 

In the Colorado River Basin the critical sequence of concern is a series of 

droughts connected over 12 years with surplus years interspersed. Such sequences are 

not represented in the drought statistics described above. Furthermore, the drought 

and surplus statistics estimated above are based on a pre-selected threshold (here it is 

the median streamflow of the observed period). Thus, the results are sensitive to this 

selected threshold. To avoid this, a better approach is to determine the required 

storage for a given streamflow sequence to meet various demand levels. This 

incorporates the effect of multiple linked droughts, thus is more realistic in 

representing critical droughts. The algorithm, termed the sequent peak algorithm 

(Loucks et al. 1981) used for this purpose is given as: 

  (6) 
⎩
⎨
⎧ −+

= −
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Where is the storage at time step , is the demand or yield,  is the 

streamflow from a sequence at time i , and  is the storage capacity. This is also 

widely used for designing reservoir capacities.  

iS i d iy

cS

The algorithm is run for various demand (yield) levels with the historic flow 

(triangle) and each trace of the 500 simulations (boxplots) shown in Figure 4-10. 

 
Figure 4-10 Sequent peak results based on full reconstruction TP. 

 Consider the boxplot corresponding to the demand of 16.5 MAF. It can be 

observed that to reliably meet this demand based on the historic inflow sequence a 

storage capacity of 325 MAF (triangle) is required. The boxplot indicates the 

variability in the required storage capacity based on 500 traces simulated from the 

combined framework.  The boxplot, plotted as a PDF (Figure 4-11a) or a cumulative 

distribution function (CDF) (Figure 4-11b), can easily be used to find the reliability. 

For example, a demand of 16.5 MAF cannot reliability be met 99% of the time for a 

storage capacity of 60 MAF (the approximate current storage capacity of the 
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Colorado River basin). The reliability is the area under the PDF curve below 60MAF 

which is 1 - area of the hatched region in Figure 4-11a, or ( )01.099.01 =−  as read 

from the CDF. The reliability of alternate storage capacities can be found from Figure 

4-11a or 4-11b in a similar manner. 

 

b) a) 

Figure 4-11 a) PDF and b) CDF for 16.5 MAF demand boxplot from Figure 4-10. 

The sequent peak method assumes that the demand level is constant through time 

and must be met in all years. However, in real operations this is not the case. As a 

result the reliability estimates obtained above tend to be too simplistic and 

conservative and provides only a coarse representation of the actual system reliability. 

Therefore, we urge caution in using these results to read policy implications. To fully 

appreciate the actual operations of the water resources in a river basin a decision 

support system that incorporates variable demand schedules, proper topographic 

layout for river system reservoir, diversion points, and operating policies must be 

used. This will help provide realistic estimates of reliability for the various decision 

components of the system.  
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4.6 Summary and Discussion 
 A nonparametric stochastic framework for streamflow simulation combining, the 

long paleo reconstructed streamflow information of lesser reliability with the shorter 

but reliable observed data was developed. The framework has two components (i) a 

nonhomogeneous Markov Chain model developed on the paleo data that is then used 

to simulate the hydrologic state and (ii) a K-nearest neighbor (K-NN) time series 

bootstrap to simulate the streamflow magnitude from the observed data conditioned 

on the hydrologic state and the previous flow magnitude.  This new and unique 

framework combines the respective strengths of the two data sets. Furthermore, it is 

data driven, robust and parsimonious. The framework was applied to paleo 

reconstructed streamflow and observed data for the Lees Ferry, AZ, streamflow 

gauge on the Colorado River. The simulations showed the ability to capture all the 

distributional statistics of the observed period and also generate a rich variety of wet 

and dry sequences that will greatly benefit the sustainable management of water 

resources in the basin. Currently the threshold used to determine system state as well 

as drought and surplus statistics is based on the median of the observed flow. This 

threshold can be modified or more states could be included as required on a case by 

case basis. 

The annual streamflow generated at Lees Ferry, AZ from this approach can be 

spatially and temporally disaggregated (Prairie et al., 2006) obtaining monthly flow 

scenarios at all the gauges in the basin. Such scenarios are used in a basin wide 

decision model in Chapter 5 and help determine realistic estimations for risk and 

reliability of various decision components in the water resources system, facilitating 

effective long-term planning. The developed framework will enable the water 
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resources planners to use the rich insights available from the paleo reconstructions by 

alleviating its short comings; constituting a major contribution from this research. 
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CHAPTER 5  

FRAMEWORK APPLICATION IN THE COLORADO RIVER 

SIMULATION SYSTEM DECISION SUPPORT SYSTEM  

Understanding the impact of reservoir operation policies to probable future 

streamflow scenarios is critical for effective sustainable water resources planning and 

management. This culminates the research components of Chapters 2 through 4 in a 

water management context. To achieve this, the stochastic streamflow simulation 

tools are integrated with the Colorado River Simulation System (CRSS), a decision 

model for the water resources management in the Colorado River Basin (CRB), thus 

developing a Decision Support System (DSS).  Impact of policy alternatives on 

various components of the CRB water resources systems are evaluated under 

different streamflow scenarios. The integrated DSS framework, data sets, and 

operating policies considered are described in detail below, followed by results. 

5.1 Introduction 
In the previous chapters, stochastic nonparametric methods were developed to 

generate statistically consistent and richly varied streamflow and salinity scenarios 

that could also incorporate paleo reconstructed streamflow information. Statistically 

consistent scenarios display similar distributional properties with the observed record. 

While, richly varied scenarios include both flow magnitudes and sequences that are 

plausible by differ from those in the observed record. These stochastic methods were 

demonstrated by application to four key gauges in the upper Colorado River Basin. 

This work is extended to the entire Colorado basin of twenty-nine locations (Figure 5-

1) on the stream network, required to drive the decision model.  
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The chapter is organized as follows. The observed streamflow data and three 

synthetic streamflow scenarios along with their corresponding salinity scenarios are 

first described followed by an overview of the decision model, CRSS. Then the 

normal reservoir operating policy focusing on Lakes Powell and Mead and an 

alternate operating policy that was developed from recent work completed by Jerla 

(2005) are described. The impact of these policies on the risk of shortages to water 

delivery obligations is investigated under three streamflow scenarios.  

 
Figure 5-1 Colorado River Basin DSS input sites. 
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5.2 Streamflow data development 
Observed natural flows through out the Colorado River Basin are available for 29 

locations listed in Table 5-1. These include 21 sites in the upper Colorado River 

Basin and 8 locations in the lower Colorado River Basin. The Upper and Lower Basin 

are delineated in Figure 5-1. 

Table 5-1 Natural flow locations required in CRSS. 

Site 
No. Gauge Number Gauge Name 

1 09211200 Green River below Fontenelle Reservoir, Wyoming 
2 09217000 Green River near Green River, Wyoming 
3 09234500 Green River near Greendale, Utah 
4 09251000 Yampa River near Maybell, Colorado 
5 09260000 Little Snake River near Lily, Colorado 
6 09302000 Duchesne River near Randlett, Utah 
7 09306500 White River near Watson, Utah 
8 09315000 Green River at Green River, Utah 
9 09328500 San Rafael River near Green River, Utah 
10 09072500 Colorado River near Glenwood Springs, Colorado 
11 09095500 Colorado River near Cameo, Colorado 
12 09109000 Taylor River below Taylor Park Reservoir, Colorado 
13 09124700 Gunnison River below Blue Mesa Reservoir, Colorado 
14 09127800 Gunnison River at Crystal Reservoir 
15 09152500 Gunnison River near Grand Junction, Colorado 
16 09180000 Dolores River near Cisco, Utah 
17 09180500 Colorado River near Cisco, Utah 
18 09355500 San Juan River near Archuleta, New Mexico 
19 09379500 San Juan River near Bluff, Utah 
20 09380000 Colorado River at Lees Ferry, Arizona 
21 09382000 Paria River At Lees Ferry, Arizona 
22 09402000 Little Colorado River Near Cameron, Arizona 
23 09402500 Colorado River Near Grand Canyon, Arizona 
24 09415000 Virgin R At Littlefield, Arizona 
25 09421500 Colorado River Below Hoover Dam, AZ-NV 
26 09423000 Colorado River Below Davis Dam, AZ-NV 
27 09426000 Bill Williams River Below Alamo Dam, Arizona 
28 09427520 Colorado River Below Parker Dam, AZ-CA 
29 09429490 Colorado River Above Imperial Dam, AZ-CA 
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Monthly natural streamflows at these locations are available for the 99 year period 

spanning 1906 – 2004. Naturalized streamflows are computed by removing 

anthropogenic impacts (i.e., reservoir regulation, consumptive water use, exports, 

etc.) from the recorded historic flows4.  

Streamflow scenarios from three stochastic methods were developed for use as 

input to CRSS. A simulation horizon of 53 years was selected projecting operation 

out to 2060. The first method used the index sequential method (ISM) (Ouarda et al., 

1997). This method entails a sequential block bootstrap of the observed data, where 

the block size is determined by the simulation horizon. The ISM cycles through each 

year in the historic record generating 99 traces assuming that the record wraps around 

at the end (i.e., 2003, 1906, 1907, etc.). Each trace will only consist of flow 

magnitudes and sequences that have occurred in the observed record, with the 

exception of new sequences being generated as a result of the wrap. These drawbacks 

limit ISM’s ability to model the variability of the streamflow and thus, possible future 

flow magnitudes and sequences. This method is easy to implement, understandable, 

and widely used by Reclamation on the Colorado River. 

To address these drawbacks, a stochastic nonparametric space-time 

disaggregation method was developed in Chapter 2 and applied to four key gauges in 

Upper Colorado River. This was extended to the entire basin, the schematic of which 

is shown in Figure 5-2. The annual flows at Lees Ferry, AZ (site 20) are generated 

with the modified K-NN technique (Prairie et al. 2006a), which are then 

                                                 
4 The natural flow data and additional reports describing these data are available at 
http://www.usbr.gov/lc/region/g4000/NaturalFlow/index.html. 
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disaggregated to intervening monthly flows through out the Upper Basin stream 

gauge sites 1-20 excluding site 3. 

An issue at site 3 arises because the flow magnitudes at this site are much smaller 

than the remaining Upper Basin sites. When site 3 was initially included in the 

complete Upper Basin disaggregation the standard deviation was inflated. To address 

this issue site 4 is first modeled as the sum of flows at both sites 3 and 4. A second 

disaggregation is applied to the flows at site 4 to determine flows at site 3 subject to 

constraints: (i) if the simulated flow at site 4 is positive than it is disaggregated 

between sites 3 and 4 using a climatological monthly proportion (average), (ii) else, if 

site 4 is zero or negative then site 3 is set to zero and site 4 remains zero or the 

negative value.  

Index gauge 
Site 20 

Colorado River at Glenwood Springs, Colorado 
Colorado River near Cameo, Colorado 

San Juan River near Bluff, Utah 
Colorado River near Lees Ferry, Arizona 

1

2

3

4

5

6

7

8

9

10

11

12

1

2

4

17

18

19

20

1

2

3

4

17

18

19

20

temporal disaggregation 
annual to monthly at 
index gauge 

spatial disaggregation 
monthly index gauge 
to monthly gauge 

3

4

 
Figure 5-2 Disaggregation scheme. 

Flows for the 9 gauges below site 20 are resampled from the observed natural 

flows based on the year that was chosen during step 3 (K-NN resampling) of the 
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temporal disaggregation algorithm, presented in Section 2.3. For example, if year 

1954 was the year chosen in the temporal disaggregation during step 3 then the 

associated monthly flows for each of the 9 lower sites are resampled from 1954 

observed natural flows. This method ensures the lower sites are both temporally and 

spatially correlated with each other and the upper sites. The lower sites 21-29 

contribute significantly less flow (8% of the total calendar year flow) than the upper 

sites; therefore, resampling the direct observed natural flows does not adversely affect 

our ability to model unique and probable flows in the basin as a whole.  

The third method was the combination approach developed in Chapter 4, 

combining the strengths of the paleo reconstructed streamflows and the observed data 

at the index gauge (site 20), where both the paleo reconstructions and observed data 

are available. Using this method and the disaggregation approach described above 

basin wide flow scenarios are generated based on the paleo reconstructed flows. 

  The three stochastic hydrologic scenarios are identified as (1) ISM, (2) K-NN no 

conditioning (KNN-NC), and (3) K-NN paleo conditioned (KNN-PC) 

5.3 Salinity data development 
Natural salinity data is available for 24 gauge locations listed in Table 5-2. The 

remaining 5 locations that have an associated natural flow but do not have salinity 

data are set to zero in CRSS. Natural salt is computed by removing anthropogenic 

influences (upstream reservoir regulation, salt loading from agriculture return flows, 

and salt removed with exports) effecting salt from observed historic data.   
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Table 5-2 Historic salt data available at selected sites. 

Site 
No. 

Gauge Number Gauge Name 

2 09217000 Green River near Green River, Wyoming 
3 09234500 Green River near Greendale, Utah 
4 09251000 Yampa River near Maybell, Colorado 
6 09302000 Duchesne River near Randlett, Utah 
7 09306500 White River near Watson, Utah 
8 09315000 Green River at Green River, Utah 
9 09328500 San Rafael River near Green River, Utah 
10 09072500 Colorado River near Glenwood Springs, Colorado 
11 09095500 Colorado River near Cameo, Colorado 
15 09152500 Gunnison River near Grand Junction, Colorado 
16 09180000 Dolores River near Cisco, Utah 
17 09180500 Colorado River near Cisco, Utah 
18 09355500 San Juan River near Archuleta, New Mexico 
19 09379500 San Juan River near Bluff, Utah 
20 09380000 Colorado River at Lees Ferry, Arizona 
21 09382000 Paria River At Lees Ferry, Arizona 
22 09402000 Little Colorado River Near Cameron, Arizona 
23 09402500 Colorado River Near Grand Canyon, Arizona 
24 09415000 Virgin R At Littlefield, Arizona 
25 09421500 Colorado River Below Hoover Dam, AZ-NV 
26 09423000 Colorado River Below Davis Dam, AZ-NV 
28 09427520 Colorado River Below Parker Dam, AZ-CA 
29 09429490 Colorado River Above Imperial Dam, AZ-CA 
 

Salinity for the ISM hydrology was generated from monthly local polynomial 

regressions at each site, the current method used by Reclamation. The remaining two 

K-NN based hydrologies were develop from the methods presented in Chapter 4. 

Approach 2 (shown in Figure 3-1b), that uses an annual local polynomial 

regressions of salt based on flow at each of the 15 sites above and including site 20, 

where natural salt data are available, was extended to the entire Upper Basin. Natural 

salt data is available from 1971-1995 throughout the basin and thus, this is the 

timeframe used to develop the regressions. For gauges below site 20 the historic year 

used for the lower sites streamflow as a result of resampling is also used for the salt 
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data. This ensures the consistency between flow and salinity generated in the lower 

sites.   

5.4 Overview of the Colorado River decision support system  
The Colorado River is managed by Reclamation in consultations with basin 

stakeholders. To help Reclamation and stakeholders evaluate and assess various 

operational policies under probable future hydrologies, the long-term planning model, 

CRSS is crucial. The model resides in the generalized river basin modeling software 

RiverWare (Zagona et al. 2001). This software includes a rule language that allows 

one to define reservoir operation policies and apply these polices in “what if” 

scenarios to better understand their impacts in a complex reservoir network. Such 

rules have been developed to represent the “Laws of the River”, which govern the 

operation of reservoirs throughout the Colorado River Basin. Detailed descriptions of 

the design and implementation of these rules are described in Jerla (2005). Here 

attention is focused on the two largest reservoirs in the Colorado River system, Lakes 

Powell and Mead. In particular, the study focuses on these reservoirs in relation to 

development of operational criteria that govern their operation during low reservoir 

elevations. 

5.4.1 General policy overview 
Two alternate policy scenarios were analyzed for the three hydrology and salinity 

scenarios making a total of six combinations. The two policy scenarios include 

present reservoir operation for Lakes Powell and Mead, termed normal operation and 

an operation introduced in Jerla (2005), termed Balance Contents C2 operation, 

which is similar to the “reverse operation” first presented in the Severe and Sustained 

Drought (SSD) study performed by Harding, et al. (1995).  
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Normal operations at Lakes Powell and Mead consist of a series of prioritized 

objectives, which reservoir operations attempt to meet. At Powell the annual release 

is determined as follows. 

• Make a minimum object release of 8.23 MAF over the water year. 

• Release additional water when; 

o the end-of-water-year (EOWY) forecasted storage at Powell is greater 

than at Mead AND 

o the storage in the Upper Basin reservoirs is greater than 602(a) 

storage5, in order to balance or “equalize” the storages by the EOWY. 

• Release additional water if the reservoir is nearly full to avoid future spills. 

At Mead the annual release is determined as follows. 

• Set releases to meet downstream demands. 

• Release additional water when prescribed by the flood control procedures.  

C2 operation differs from normal operation in that the objective in C2 operation is 

to maintain Powell and Mead at equivalent storages, when possible throughout a 

broad range of Powell’s operation. No power protection is provided for Powell. 

During C2 operations equalization releases are made from Powell when the 

forecasted EOWY storage at Powell is higher than the forecasted EOWY storage at 

Mead. However, when the forecasted EOWY storage at Powell results in an elevation 

below minimum power pool (3490 ft msl) the monthly releases revert to meeting the 

                                                 
5 The 602(a) storage quantity is the storage in the Upper Basin necessary to assure Lower Basin 
delivery obligations can be met without impairing consumptive use in the Upper Basin. The Interim 
602(a) Storage Guideline, in effect through 2016, established that Lake Powell's elevation must be 
above 3,630 feet msl (which corresponds to storage of approximately 14.85 maf) for equalization 
releases to occur. 
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minimum objective annual release of 8.23 MAF. Operations at Powell and Mead are 

depicted in Table 5-3. 

Table 5-3 Operational Diagram for Lake Powell and Mead. 

 

Detailed descriptions of both these policies along with explanations of all 

variables in these two policies are available in Jerla (2005). 

5.4.2 Model setup 
The model setup in CRSS is quite similar to that performed in Jerla (2005) though 

this study is performed at a monthly time step in CRSS rather than in the CRSSLite 
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model, developed in Jerla (2005). CRSSLite is a simplified annual time step model 

designed to screen multiple operation policies rapidly before running these policies in 

CRSS, which requires more run time and additional input data.  

The CRSS model was updated to reflect current conditions in the Colorado River 

basin. Initial conditions for reservoir elevation (see Table 5-4) were set to the 

projected end of December 2007 elevations based on Reclamation’s mid-term 

operations model (the 24 month study) used to project reservoir operations 

throughout the current and next operating years.  

Table 5-4 Reservoir initial conditions from August 24 month study. 

Reservoir name December 2007 project pool elevation 
(ft msl) 

Fontenelle 6486.29 
Flaming Gorge 6029.67 

Taylor Park 9308.32 
Blue Mesa 7489.99 

Morrow Point 7153.73 
Crystal 6753.04 

Starvation6 255000 (acre-ft storage) 
Navajo 6080.33 
Powell 3614.80 
Mead 1116.53 

Mohave 638.71 
Havasu 445.80 

 

Additionally, the Upper Basin depletions are consistent with the Surplus Interim 

Agreement Environmental Impact Statement (DOI, 2002) and the Lower Basin is 

consistent with the Water Delivery Agreement (DOI, 2003a). 

One reservoir operational change recently incorporated in the official CRSS is 

also included in this research. At water surface elevations below 3440 feet Powell’s 

                                                 
6 Represents a conglomeration of 8 smaller reservoirs (DOI, 1987). 
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outlet works cannot physically release the minimum objective release of 8.23 MAF as 

a result of reduced head above the outlet works. The relation between pool elevation 

and the maximum possible release from Powell (Figure 5-3) between 3370 feet (top 

of dead pool) and 3490 feet (minimum power pool) has been included in the 

operational rules for these model runs. Similar restrictions do not exist at Mead. (C. S. 

Jerla, personal communication, November, 29, 2006). 

 

Figure 5-3 Powell elevation and maximum possible release. 

Reservoir initial salinity concentrations were set based on the latest historic values 

available. These are the December 2005 values reported by the USGS with the 

exception of Davis and Parker Dam, which were assumed to be equivalent to Mead 

concentration since a December 2005 value is not available. Table 5-5 lists the initial 

concentrations assumed for each reservoir that model salinity in CRSS. 
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Table 5-5 Initial reservoir salt concentration. 

Reservoir name December 2005 historic salt concentration 
(mg/L) 

Flaming Gorge 438.10 
Starvation 716.00 

Navajo 185.30 
Powell 447.60 
Mead 644.10 

Mohave 644.10 
Havasu 644.10 

 

Additional salinity input data includes projected water quality improvement 

project (WQIP) control levels and agricultural salinity loading. Both these inputs are 

the same as those used in the recent 2005 Triennial Review of Water Quality 

Standards for Salinity Colorado River System (Colorado River Salinity Control 

Forum, 2005). 

5.4.3 Lower Basin Shortage policy 
Since much of the comparative analysis focuses on the risk of shortages to the 

Lower Division States (AZ, NV, CA) explanation of the assumed operation under 

shortage is warranted. The Secretary of the Interior as water master in the Lower 

Basin, determines the water supply available to the Lower Division States each year, 

through the development of the Annual Operating Plan (AOP). This determination is 

either normal, surplus, or shortage and results in either 7.5 MAF, greater than 7.5 

MAF, or less than 7.5 MAF of water being made available for consumptive use in 

those states, respectively. Currently, there are no specific guidelines in place to assist 

the Secretary in determining when to declare a shortage or by how much deliveries 

would be reduced. To date no shortage has been declared. Reclamation recently 

initiated efforts to adopt shortage and additional operational guidelines for Lakes 
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Powell and Mead though a National Environmental Policy Act (NEPA) process 

(Fulp, 2005). Absent specific guidelines, Reclamation has used a set of assumptions 

to allow the model to determine when the river system is in shortage, who will be 

shorted, and by how much. The assumptions used here are the same under both policy 

alternatives considered in this research and are consistent with those used by 

Reclamation in recent NEPA compliance documents (DOI, 2000). These assumptions 

are based on a two tier or level approach. At the first level, elevation 1050 ft (the 

current minimum elevation for power generation at the Hoover powerplant) is 

protected approximately 80% of the time. At the second level, elevation 1000 ft (the 

minimum elevation for operation of Southern Nevada Water Authority’s (SNWA) 

lower intake structure) is protected 100% of the time.  

Level 1 shortage is declared based a series of trigger elevations (DOI, 2002) at 

Lake Mead referred to as 80P1050 protection elevations. These protection (trigger) 

elevations are presented in Figure 5-4. 
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Figure 5-4 Mead 80P1050 protection elevations. 

 The trigger elevations increase because they are dependent upon increasing 

Upper Basin demands. With increased demands in the Upper Basin, Mead would 

expect less water from Powell equalization releases and would need to impose 
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shortages at higher levels in order to assure being above 1050 feet approximately 

80% of the time. 

If Mead’s elevation at the beginning of the year is less than the trigger elevation a 

level 1 shortage is declared and shortages are administered to both Central Arizona 

Project (CAP) and SNWA, both junior rights to California’s diversions. During level 

1 shortage, CAP total use is set to 1.0 MAF (a reduction of about 300-400 KAF, 

depending upon the scheduled use) and SNWP is reduced 4% of the total shortage 

amount. No other Lower Basin diversions receive a shortage during a first level 

shortage. 

A level 2 shortage is declared if the delivery reductions imposed under level 1 are 

not sufficient to protect Mead’s elevation from falling below 1000 feet. A level 2 

shortage is necessary when in January of the current year, the forecasted end-of-

calendar-year (EOCY) storage in Mead, with level 1 shortages in place, would result 

in an elevation below 1000 feet. 

When this occurs, CAP and SNWP depletions are further reduced to keep Mead at 

1000 ft. If CAP depletions are reduced to zero and further reductions are required to 

keep Mead at 1000 feet, additional shortages are imposed on California and Mexico 

equally as required to maintain Mead at 1000 feet. 

All other Lower Basin demands are provided with available storage from Mead 

even if Mead is below 1000 feet except for SNWA, which can no longer divert water 

because elevations less than 1000 feet are below the lower intake structure. 

5.5 Model Results and Analysis 
This section begins with a description of the decision variables that are compared 

followed by a description of the statistics used in the comparison. Results from the six 
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scenarios based on the three alternate future hydrologies and the two operating 

policies (ISM normal, ISM C2, KNN-NC normal, KNN-NC C2, KNN-PC normal, 

and KNN-PC C2) are compared. 

5.5.1 Presentation of results 
The modeling results are analyzed with a suite of statistics that include; 

percentiles, non-exceedance, cumulative density, and minimum values.  These 

statistics are used to explore the impact of each scenario on reservoir elevation and  

release, probability of shortage and shortage volumes, and salinity concentration. 

5.5.1.1 Percentile Statistics 

Percentile statistics are used to understand each scenarios impact on reservoir 

elevation. The 90th, 50th, and 10th percentiles are plotted and generally allow an 

understanding of a reservoirs operation under high, normal, and low conditions, 

respectively. The percentile statistic is computed for each year of the simulation 

horizon displaying the statistics variation over the simulation horizon. This statistic 

computes the value for which a specified percentage of values are equal to or below. 

For example, the 50th percentile values indicate that 50% of the values are either 

equal to or below the 50th percentile value. To compute the percentile value in each 

year the 99 traces are ranked, and an index is assigned to each ranked value. If the 

user defined percentile does not fall on an indexed value than a weighted average is 

used to determine the user defined percentile value. Percentile values are independent 

across the simulation horizon and should not be interpreted as single trace operations 

over the simulation horizon.   
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5.5.1.2 Probability of non-exceedance 

The probability of non-exceedance is computed by counting the number of times 

the values across traces did not exceed a value of interest and dividing this number by 

the total number of traces. This can be computed separately for each year in the 

simulation horizon or a user specified time period.   

5.5.1.3 Cumulative density functions 

The cumulative probability shows the probability of being at or below a given 

value. The probability is cumulative because it is the summation of the individual 

probabilities of all the values at or below a given probability. Mathematically the 

cumulative density function (CDF) is computed by integration of the probability 

density function, which provides the probability for each individual value over a 

given sample. The CDF included in these results is computed empirically. For a 

variable of interest all the values across traces and over the simulation horizon are 

ordered and the number of times a value is equal to or below a given value divided by 

the total number of values determines the cumulative probability. The computation is 

performed for each value in the set and the ordered probabilities are plotted to 

generate the empirical cumulative probability function (ECDF). 

5.5.2 Stochastic Natural Flows 
The ECDF of total natural flow for Colorado River at Lees Ferry from the three 

hydrologies is shown in Figure 5-5. The ISM hydrology shows the smallest range of 

flows while the K-NN paleo conditioned hydrology shows the largest range of flows. 

This supports previous statements that ISM hydrology exhibits reduced variability.  

The natural flows generated by the K-NN no conditioning hydrology generally show 
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an increased cumulative probability for a given flow evidenced by the ECDF for this 

hydrology being shift up in relation to either of the other two hydrology scenarios for 

a given flow. Of the other two hydrologies (ISM and K-NN paleo conditioned) the 

ISM hydrology generally displays the lowest cumulative probability for a given flow. 
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Figure 5-5 ECDF of total natural flow for Colorado River at Lees Ferry, AZ. 

Table 5-6 presents basic statistics for the observed record and the three future 

hydrologies. The basic statistics include the mean, standard deviation, coefficient of 

skewness, lag 1 autocorrelation, maximum, and minimum values. The average value 

for each statistic across all simulations is provided except for the maximum and 

minimum, for which the actual maximum or minimum are provided. Though a single 

value for each statistic is provided in Table 5-6 the three alternate future hydrologies 

generate a range of values for each statistic which are not shown in the table. The 

observed basic statistics is always captured within the range of values from each 
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future hydrology. The ISM hydrology generates the same mean, maximum, and 

minimum as the observed data since it only generates flow magnitudes and sequences 

that are represented in the observed data but has a standard deviation slightly less than 

the observed resulting of sampling error. The sampling error arises from only 

resampling a 53 year long sequence, which is a subset of the 99 observed years. The 

skew and autocorrelation are also unrepresented. The K-NN no conditioning has a 

slightly reduced mean, standard deviation, and autocorrelation. The coefficient of 

skewness is slightly increased. Similar results are seen for the K-NN paleo 

conditioned though the coefficient of skewness and autocorrelation are slightly less 

than the observed. The K-NN hydrologies are able to generate higher and lower flows 

than observed. Though the K-NN paleo conditioned hydrology resamples magnitudes 

from the observed record this is done on a water year basis, thereby allowing 

magnitudes never seen before on the calendar year basis to be generated. Both K-NN 

hydrologies can generate calendar year annual flow magnitudes and flow sequences 

not seen in the observed record. 

Table 5-6 Basic statistics for observed and three future hydrologies. 

Hydrology Mean 
(acre-ft/yr)

Standard 
deviation 

(acre-ft/yr) 
Skew r(1) Maximum 

(acre-ft/yr) 
Minimum 
(acre-ft/yr) 

observed 15,024,444 4,443,956 0.18 0.27 25,432,344 5,398,985 
ISM 15,024,444 4,404,577 0.15 0.22 25,432,344 5,398,985 

KNN-NC 14,844,457 4,357,936 0.19 0.21 25,975,260 5,219,712 
KNN-PC 14,988,921 4,399,353 0.16 0.26 26,507,364 5,094,739 

5.5.3 Reservoirs Powell and Mead elevation 
To understand changes in Powell’s storage as a result of each of the six scenarios 

we first discuss percentile plots for Powell. Figures 5-6, 5-7, and 5-8 respectively 

show the 90th, 50th, and 10th percentile plots. Each plot compares the six scenarios. At 

   93



 

the 90th percentile the six scenarios lie over each other after 2016 indicating that the 

two policy alternatives do not operate Powell differently at the higher elevations. At 

these higher elevations Powell is either in equalization or in spill avoidance 

operations and these operations are the same across the two policy alternatives. 

Before 2016 both policy alternatives for the K-NN no conditioning hydrology display 

lower 90th percentile elevations at Powell than the other scenarios. This is a result of 

relatively higher flows produced by this hydrology scenario producing a higher 

probability for spill avoidance and/or equalization releases at Powell.  
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Figure 5-6 Powell EOCY 90th percentile elevation. 

At the 50th percentile the scenarios are first split by the different reservoir 

operation policies. The normal operations tend to hold more water in Powell while the 

C2 operations tend to result in lower average storages in Powell. This results from the 

C2 policy pushing more water to Mead during average contents to balance the two 

reservoirs. The ISM hydrologies tend to produce lower elevation in Powell for both 
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alternative policies in general over the entire run. Also, it is evident that the percentile 

values tend to fluctuate much less over time than with either of the K-NN 

hydrologies. This is a factor of ISM using the same set of hydrologies for every year 

in the simulation horizon, thereby reducing the random nature of the synthetic 

hydrologies. This is a drawback of ISM, which is limited to only producing flows that 

were seen before and using the same set of flows when computing statistics over the 

traces. The K-NN hydrologies tend to dip above or below each other for each 

reservoir operating policy, a function of their improved random nature across traces. 

It is not evident that either K-NN hydrology performs different in the long run. 

During the initial years 2008-2020 the paleo conditioned hydrology result in lower 

initial Powell elevations but are higher after 2012. The reverse is seen in the non 

conditioned hydrology. This is a result of the paleo conditioned traces initially 

tending to show a propensity for drought but also have a higher probability of surplus, 

appearing after 2012, than the non conditioned hydrology. 
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Figure 5-7 50th percentile of Powell's EOCY elevation. 

At the 10th percentile marked differences between both the operating policies and 

hydrologies appear. Overall the C2 policy tends to produce lower pool elevations at 

these lower operating elevations. The ISM hydrology again shows little variation over 

time. In this plot the elevation of 3490 feet is important to the C2 operating policy as 

it triggers balancing operations to stop and Powell resumes releasing 8.23 MAF. The 

ISM hydrology barely reaches this point while the K-NN paleo conditioned 

hydrology demonstrates large dips in elevation (2027 and 2052) indicating that 

Powell is releasing 8.23 MAF and rapidly losing storage. The K-NN no conditioning 

hydrology does not display these dips as the inflows to Powell are not as reduced as 

in the paleo conditioned traces and Powell is able to better maintain storage. But we 

see that for elevation below 3490 feet there is no longer a distinction between the two 

reservoir operating policies as they are both releasing 8.23 MAF annually from 
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Powell. Though minimum elevations are not shown Lake Powell never reached dead 

storage (3370 feet) elevation for any of the six scenarios. 
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Figure 5-8 Powell EOCY 10th percentile elevation. 

Figures 5-9, 5-10, and 5-11 show Mead elevation 90th, 50th, and 10th percentile 

plots, respectively. As with Powell, Mead does not display much difference at the 90th 

percentile over the 6 scenarios because at higher elevations flood control or surplus 

operations are occurring and are nearly the same for both operating policies. There is 

a tendency for the K-NN paleo conditioned hydrologies to generate higher elevations, 

a function of the higher surplus probability in the K-NN paleo conditioned 

hydrologies. The K-NN non conditioned hydrologies tend to produce slightly lower 

elevations than either the ISM or K-NN paleo conditioned hydrologies. 
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Figure 5-9 Mead EOCY 90th percentile elevation. 

At the 50th percentile the C2 operation tends to provide more water in storage as a 

result of the balancing release from Powell. The two K-NN hydrologies perform 

similarly at these median storage volumes; though the ISM hydrologies tend to 

indicate lower storages than the K-NN hydrologies. Most likely this is a function of 

the reduced variability demonstrated in the ISM hydrologies. 
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Figure 5-10 Mead EOCY 50th percentile elevation. 

At the 10th percentile more water is stored in Mead under C2 operations, again a 

function of the help from the balancing releases from Powell. The K-NN hydrologies 

tend to produce higher storage volumes at these lower elevations than the ISM 

hydrologies. At this percentile we see Mead operations are attempting to protect 1000 

feet elevation as 10% of the simulations for all years and hydrologies under both 

operating scenarios are over 1000 feet. However, given the Lower Basin shortage 

policy implemented for these scenarios, the maximum shortage that can be applied is 

3.8-4.0 MAF, depending upon CAP’s schedule. In some cases additional shortage is 

necessary to keep Mead above 1000 feet. Additional analysis found the maximum 

shortage was applied approximately 5% of the time in any given year of the 

simulation horizon. During these times Mead can drop below 1000 feet even though 
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the maximum shortage is applied because additional shortage beyond the current 

maximum is required to keep Mead above 1000 feet. 
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Figure 5-11 Mead EOCY 10th percentile elevation. 

Figure 5-12 shows the probability of being below 1000 feet for each year of the 

simulation horizon. The ISM C2 scenario shows the lowest percentage (0%-1%) of 

years below 1000 ft. While the K-NN no conditioning C2 scenario has one year at 6% 

in 2060, but generally this scenario is more often at 3%. The ISM hydrologies tend to 

show less chance of being below 1000 ft while both K-NN hydrologies show more 

probability, a result of generating new sequences for plausible future streamflows. 

Overall C2 operations tend to show lower probability than normal operations. Though 

minimum elevations are not shown Lake Mead never reached dead storage (895 feet) 

elevation for any of the six scenarios. 
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Figure 5-12 Probability of not exceeding 1000 ft elevation at Mead. 

5.5.4 Lower Basin shortage statistics 
We next present a suite of figures describing shortage probability, shortage 

volume, and reduced reservoir releases. Figure 5-13 shows the probability of shortage 

for each year in the simulation horizon. Initially, the probability of shortage is highest 

for the K-NN paleo conditioned hydrology under normal operations, but as time 

progresses the ISM hydrologies produce the highest probability of shortage. Overall 

the normal operations display a higher probability of shortage than the C2 operations. 

The two K-NN hydrologies do not tend to show a significantly different shortage 

probability over time. 
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Figure 5-13 Probability of any shortage. 

The ECDF of shortage volume is shown in Figure 5-14. There are interesting 

probabilities which can be learned from this plot. To begin, there is a distinct line at 

about 3 MAF which is the approximate point where level 1 shortage is not sufficient 

and level 2 must be imposed. Next, the ISM hydrologies tended to generate the 

highest probability of shortage in the previous plot but we see here that those 

shortages are the smallest in magnitude. ISM hydrologies are in level 1 shortage 

about 52% of the time under normal operation and 43% of the time under C2. Both 

K-NN hydrologies begin level 1 shortage a few percentage points below ISM for their 

respective operations. Level 2 shortage begins first (22% of the time) with ISM 

hydrologies under normal operations but the maximum shortage is only 1.4 MAF. 

While ISM under C2 imposes level 2 8% of the time but the maximum shortage is 3.9 

MAF. Similar results follow for the K-NN hydrologies with the paleo conditioned 

hydrologies showing the greatest probability of level 2. 
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Figure 5-14 ECDF of shortage volume. 

5.5.5 Powell’s water year release 
Powell’s water year release is of interest to understand the probability of Powell 

not being able to meet the minimum objective release of 8.23 MAF. Figure 5-15 

shows the probability of not meeting the minimum objective years in each year of the 

simulation horizon. It is evident that the C2 policy greatly increases the chances 

Powell will not release the minimum objective release as this requirement is relaxed 

under the balancing policy for a specified range of elevations. There is not a distinct 

difference between the alternate hydrologies under the C2 operations. Under normal 

operation ISM hydrologies always meet the minimum objective release except in 

2012 and 2013. Of the K-NN hydrologies under normal operation the paleo 

conditioned hydrologies have a greater probability of not meeting the minimum 
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objective release, as result of increased probability for longer droughts when a 

drought occurs. 
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Figure 5-15 Probability of not exceeding an 8.23 MAF WY release from Powell. 

The ECDF of Powell water year release is shown in Figure 5-16. The figure 

displays multiple characteristics of both the alternate hydrologies and operating 

policies. The straight portion of the ECDF for normal operation indicates that 

between 62% and 52% of the time Powell is making at least the minimum objective 

release and that between 40% and 38% of the time the releases are higher than the 

minimum objective release. At the tails, the K-NN paleo conditioned hydrologies 

release less than 8.23 MAF 8% of the time and also produce the lowest release but 

conversely they release more the 8.23 the most at 40% of the time and produce the 

highest flows, indicative of generating a greater variety of drought and surplus 

sequences. The C2 policy generates a wide range of releases in a more gradual 

increasing trend. With the release crossing the 8.23 MAF release at about 30% 
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probability indicating that 70% of the time the release is above 8.23 MAF while 30% 

of the time the release is below 8.23 MAF. The full range of possible releases is 

similar for both policies.  
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Figure 5-16 ECDF of Powell WY release. 

To determine the probability of a reduced 10 year running sum annual water year 

release from Powell we display an ECDF of Powell 10 year running sum water year 

release (Figure 5-17) and the minimum of Powell 10 year running sum water year 

release (Figure 5-18). A line depicting 75 MAF is provided on both plots to easily 

determine when this threshold is passed. For both operation policies under ISM 

hydrologies the results never fall below the threshold. But under the K-NN 

hydrologies the paleo conditioned hydrologies fall below the threshold 7% of the time 

and the non conditioned hydrologies fall below the threshold 4% of the time. The 

paleo conditioned hydrologies generate longer drought sequences accounting for the 

increased probability and magnitude of shortage. The larger range of possible flows 
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from the K-NN hydrologies (48-170 MAF) versus ISM hydrologies (78 -130 MAF) 

displays the effect of increased variety in flow and in flow sequences. The minimum 

10 year running sum water year release from Powell is lowest with the K-NN paleo 

conditioned hydrologies under normal operations followed by C2 operations. K-NN 

non conditioned hydrologies under normal operations are followed by operations 

under C2. A 10 year running sum water year release of only 48 MAF is seen for a K-

NN paleo conditioned hydrology under normal operations in 2040 and 2058.  
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Figure 5-17 ECDF of 10 year running sum WY release from Powell. 
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Figure 5-18 Minimum 10 year running sum WY release from Powell. 

5.6 Salinity Concentration at Numeric Criteria Stations 
The Federal Water Pollution Control Act Amendments of 1972 required 

development of fixed point numeric criteria for salinity in the Colorado River Basin. 

The fixed point numeric criteria were set in 1975 at an average annual salinity 

concentration of 723 mg/L below Hoover Dam; 747 mg/L below Parker Dam; 879 

mg/L at Imperial Dam. The basin wide salinity model is evaluated at these three 

numeric criteria stations. To evaluate whether the numeric criteria are violated in any 

year over the simulation horizon the 50th percentile concentration at each station is 

compared with its respective numeric criteria.  

Figure 5-19 presents the salinity concentrations resulting from the 6 scenarios 

below Hoover Dam. The ISM scenarios develop salinity based on monthly 

regressions while the K-NN scenarios are based on approach 2 presented in Chapter 3 

(the annual regression at each site followed by temporal disaggregation of annual salt 
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to monthly).  The ISM scenarios produce the lowest concentrations with little 

difference between the two reservoir policies. This results from the fully mixed 

assumption for salinity in the reservoirs that causes little appreciable change in 

average reservoir concentration for the two policies, though Figure 5-10 did indicate 

different storage levels in Mead for the two policies. Both K-NN based hydrologies 

generated higher salinity concentration than the ISM hydrologies; though again, both 

policies perform similarly. The paleo conditioned hydrologies tend to have a higher 

salinity than the non conditioned in the initial years of the simulation but are lower in 

the final years. This is a result of lower reservoir levels in the initial year for paleo 

conditioned hydrologies but higher reservoir levels in the long run due to increased 

surpluses.  For all years and scenarios the simulations are well below the numeric 

criteria indicated at the top of the plot. 
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Figure 5-19 Salinity concentration 50th percentile below Hoover Dam. 
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 Figure 5-20 presents the salinity concentrations resulting from the 6 scenarios 

below Parker Dam. Similar results to those seen below Mead are present below 

Parker. The separation between the ISM hydrology scenarios and the K-NN scenarios 

has been reduced. With further mixing, having routed the salt through both Lake 

Mohave and Havasu, the scenarios begin to appear more similar. Again we are below 

the numeric criteria for all scenarios. 
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Figure 5-20 Salinity concentration 50th percentile below Parker Dam. 

Figure 5-21 presents the salinity concentrations resulting from the 6 scenarios at 

Imperial Dam. Similar results are seen, though after passing through most all the 

Lower Basin the difference between the two K-NN hydrologies in the final years is 

basically gone. While in the initial years the paleo conditioned flows are consistently 

exhibiting the highest salinity concentration as a result of reduced flows, having 

diverted much of the required Lower Basin demands, and therefore increasing 

concentration. We are again well below the numeric criteria for the station. 
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Figure 5-21 Salinity concentration 50th percentile at Imperial Dam. 

5.7 Summary and discussion 
Three alternate hydrologies and associated salinity and two alternate reservoir 

operating policies were developed and passed through the CRSS, the long-term 

planning model for the Colorado River Basin. The resulting model outputs were 

analyzed for several key decision variable relating to both flow and salinity 

concentration with an emphasis on variables that analyze the probability and 

magnitude of shortage. 

The ISM hydrologies represent the current stochastic streamflow inputs used in 

CRSS. These streamflows are limited to only representing both magnitudes and 

sequences of streamflow that have occurred in the past 99 years. These limitations 

result in reduced variability in model outputs and detract from a water manager’s 

ability to fully appreciate possible scenarios for streamflow that may occur in the 

future. This became painfully apparent with the onset of the recent drought (2000-
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2004) that was never considered a possibility in previous model runs because such a 

sequence of streamflows had not previously occurred in the measured record. 

Two alternate hydrologies were generated that included the ability to generate 

new monthly flow magnitudes and sequences. The first alternate hydrology depends 

on a modified K-NN lag-1 model generating stochastic streamflows that may not 

have actually occurred in the historic observed record (available form 1906-2004) but 

are statistically plausible based on the properties of the observed record. These data 

will allow basin mangers to better assess the risk of events such as shortage and 

reduced reservoir releases. 

To extend our knowledge of the risks inherent as a result of climate variability, 

with regards to reservoir operations, the second alternate hydrology was conditioned 

on system state (i.e., wet or dry) information extracted from recent paleo streamflow 

reconstructions (Woodhouse et al., 2006) completed on the Colorado River at Lees 

Ferry (available from 1490-1997). Based on the reconstructed streamflows a 

nonhomogeneous Markov chain was used to simulate future system states. These 

system states where than used to conditionally resample an annual flow from the 

observed period with a traditional K-NN model. Together the Markov model and the 

K-NN resampling generate flows that were seen in the observed record but sequenced 

based on system states seen over the entire paleo reconstruction, This allows 

generation of drought and surplus sequences and magnitude that may not have 

occurred in the recent past; for example, the drought we recently experienced. 

Addressing a shortcoming of ISM discussed in Jerla (2005) we were able to 

assess the risk of both shortage and reduced reservoir releases under normal and C2 
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or “balancing” operations with academically accepted stochastic streamflow 

generation techniques. Under normal operating conditions using the alternate 

hydrologies we found a 48% probability for any shortage as compared to a 52% 

probability with ISM. The probability of level 2 was 18% for K-NN with no 

conditioning and 17% with conditioning while ISM was 22%. Though ISM has an 

increased probability of level 2 shortage the magnitude is greatly reduced in 

comparison to both K-NN hydrologies. We also found that the K-NN non conditioned 

scenario had a 2.5% chance of shortage with a magnitude greater than 3.6 MAF while 

the paleo conditioned had a 5% chance of shortage greater than 3.6 MAF. The 

maximum shortage magnitude under ISM was only 1.45 MAF. 

Under C2 operations similar results were found but all scenarios displayed an 

approximate 8% reduction in the chance of level 1 shortage. While the probability of 

a shortage greater than 3.6 MAF had the same probability, though the ISM 

hydrologies had an increased chance of shortages as large as the two alternate 

hydrologies. This indicates that under C2 though the risk of needing level 2 is lower, 

once in level 2 the magnitudes of these shortages are similar under both operation 

alternatives. 

Analysis of the probability of reduced reservoir releases under the alternate 

hydrologies indicated that ISM hydrologies never fall below the 75 MAF threshold 

for 10 year running sum water year releases from Powell. The alternate hydrologies 

with paleo conditioning indicate a 4% chance the 10 year running sum water year 

releases from Powell could fall below 75 MAF; while generating sequences of flows 

not seen in the observed streamflows but using magnitudes seen within the observed 
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record indicates a 7% chance. These results were seen under both normal and C2 

operations. 

The new basin wide salinity model generated higher salt mass and concentration 

than simulated with the monthly flow and salt relationships. This results from a better 

representation of the flow and salt relationship at the annual time step. Poor 

regression relationships in low flow months lead to reduced salinity values in these 

months. Though even with increased values the salinity concentrations were all found 

to be well below the numeric criteria at all locations for all the flow simulations. The 

increased salinity concentration demonstrated with the new basin wide salt model 

does indicate the possibility for increased economic damages resulting from salinity. 

Clearly, the development of hydrologies that are statistically plausible but have 

not recently been observed is an essential addition to a basin manger’s tools when 

evaluating the risks to stakeholders regarding reservoir operating strategies and 

should be included in all analysis to gain an appreciation of shortage risks under 

changing hydrologies.  
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CHAPTER 6  

SUMMARY AND CONCLUSIONS 

This chapter summarizes the key findings and conclusions from each component of 

the integrated framework developed in this research, followed by suggestions for 

future extensions.   

6.1 Summary 
The Colorado River system recently experienced the worst five year drought in 

the 100 years of measured streamflows. The vast networks of reservoirs that sustain 

and fuel development were drawn below 50% of system capacities to historic lows. 

The dry period also impacted water quality, increasing salinity concentration as a 

result of low flows. Paleo reconstructions of streamflow in the basin indicate that 

such dry spells are not uncommon. Interestingly, a compact to share water resources 

among the basin states, developed during wet periods of the early 1920s, is under 

stress as the states confront economic growth under limited water resources (Kuhn, 

2005).  

Given these factors, the key question for this research was how to plan for 

effective and sustainable management of water resources in the basin? This requires 

two key components; (i) a robust framework to generate realistic future basin wide 

streamflow and associated salinity scenarios and (ii) a decision making model to 

evaluate operating policy alternatives for efficient management and sustainability of 

water resources in the basin. To achieve this, three inter-related modules were 

developed including. (i) A stochastic nonparametric model for basin wide streamflow 

generation based on historic observations combined with paleo reconstructed 
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streamflow. This new model is data driven and improves considerably upon 

traditional approaches, besides being simple, robust, and flexible. A nonhomogeneous 

Markov Chain based approach to combine hydrologic state information (i.e., wet or 

dry) from the paleo streamflow and the flow magnitude from the historic data is a 

unique and novel method to combine the strengths of these two different data sets. 

Together, these constitute a significant methodological contribution from this 

research. (ii) A basin wide stochastic model for generating salinity scenarios, 

extending the nonparametric flow model for salinity simulation. (iii) A realistic 

decision model of the basin to evaluate policy alternatives under various flow and 

salinity scenarios.  

6.2 Conclusions 

6.2.1 A Stochastic Nonparametric Technique For Space-Time 
Disaggregation Of Streamflows 

A simple, robust, and parsimonious stochastic nonparametric space-time 

framework for large river networks was developed. The framework builds on work 

presented by Tarboton et al. (1998) but adopts a K-NN approach to construct and 

resample from a conditional PDF. This generates consistent monthly streamflow 

scenarios across all the locations in the Colorado River basin from annual 

streamflows at a single aggregate site. Application of the framework to streamflows 

in the upper Colorado River basin showed faithful reproduction of the spatial and 

temporal distributional statistics of the observed flows and, also simulation of 

streamflow magnitudes and sequences not seen in the observed data, unlike the Index 

Sequential Method (ISM) widely used by Reclamation.  
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Traditional stochastic disaggregation methods have several limitations including 

(i) assumption of Normal distribution, (ii) assumption of linear relationship besides, 

being mathematically complex. As a result, they cannot capture non-Normal and 

nonlinear relationships that might be present in the data and, they are difficult for 

agencies such as Reclamation to readily adopt in practice. The presented 

disaggregation model can generate streamflow ensembles across the basin at short 

(seasonal) and long (multi-year) time scales.  

6.2.2 A Basin wide Stochastic Salinity Model 
A framework to generate stochastic salinity scenarios consistent with stochastic 

streamflow scenarios was presented. In this, annual salinity at the aggregate location 

is first generated from the annual flow, using a local polynomial regression model 

developed by Prairie et al. (2005). These are then disaggregated to salinity at all the 

spatial location using the disaggregation approach developed in Chapter 2. Other 

variations were also proposed where the salinity is generated from the local 

polynomial regression at each location separately, based on the disaggregated 

streamflows. This ensures the capture of the flow and salt relationship at each gauge, 

which is desired in the application, hence is recommended.  This methodology to 

generate basin wide salinity is a significant contribution. 

6.2.3 Stochastic Streamflow Simulation Incorporating Paleo Reconstruction 
As mentioned earlier, the Colorado River Basin experienced the worst 5 year 

drought on record during 2000-2004. But paleo reconstructions of streamflow of the 

pre-observed period, from tree-ring chronologies, show droughts of greater 

magnitude and duration indicating that the recent drought is not unusual.  Clearly, the 

   116



 

rich information provided by paleo reconstructions have to be incorporated in any 

stochastic streamflow models to enable the generation of  a realistic variety of 

plausible flow scenarios for robust planning and management of water resources in 

the basin. However, the magnitudes of reconstructed streamflow reconstructions have 

high degree of uncertainty due to the reconstruction methodology. This apparent 

weakness of the paleo reconstructed flow data has made their use in a water resources 

planning context contentious, despite their availability for many decades.  Though 

this weakness exists few argue about the duration and frequency of dry and wet (i.e., 

the hydrologic state) periods from the reconstructions.  The key question is how to 

combine the long paleo reconstructed streamflow information of lesser reliability with 

the shorter but reliable observed data to develop a framework for streamflow 

simulation? 

To address this, a nonparametric stochastic framework for streamflow simulation 

combining the long paleo reconstructed streamflow information of lesser reliability 

with the shorter but reliable observed data was developed. The framework has two 

components (i) a nonhomogeneous Markov Chain model developed on the paleo data, 

which is then used to simulate the hydrologic state, and (ii) a K-nearest neighbor (K-

NN) time series bootstrap to simulate the streamflow magnitude from the observed 

data conditioned on the hydrologic state and the previous flow magnitude.  This new 

and unique framework combines the respective strengths of the two data sets. 

Furthermore, it is data driven, robust, and parsimonious. The framework was applied 

to paleo reconstructed streamflow and observed data for the Lees Ferry, AZ, 

streamflow gauge on the Colorado River. The simulations showed the ability to 
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capture the distributional statistics of the observed period and also generate a rich 

variety of wet and dry sequences that will greatly benefit the sustainable management 

of water resources in the basin. The annual streamflow generated from Lees Ferry, 

AZ from this approach can be spatially and temporally disaggregated (Prairie et al., 

2006b) to obtain monthly flow scenarios at all the gauges in the basin, which will 

help drive a basin wide decision model and consequently, the realistic estimation of 

risk and reliability of various decision components in the water resources system. The 

developed framework will enable the water resources planners to use the rich insights 

from the paleo reconstructions by alleviating its short comings. This is the major 

contribution from this research. Extension of this method can also be used to generate 

streamflow sequences conditioned on climate change scenarios. 

6.2.4 Framework Application In The Colorado River Simulation System 
Decision Support System 

Effective planning and management for sustainable water resources in the basin 

requires evaluating the impact of operating policies on the water quantity and salinity 

in the various system components based on a rich variety of plausible streamflow 

scenarios. Three hydrologic scenarios were used from (i) the ISM, the current method 

used by Reclamation, (ii) the nonparametric space-time disaggregation framework 

developed in Chapter 2, based on the observed data and, (iii) the coupled 

methodology combining paleo reconstructed streamflows and observed data 

(developed in Chapter 4) in conjunction with the space-time disaggregation method. 

Corresponding salinity scenarios were generated from the method described in 

Chapter 3. 
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The flow and salinity scenarios were used to drive the long-term planning model 

of the water resources system in the Colorado River basin called, CRSS. Impact of 

two alternate operating policies on the quantity and quality (i.e., salinity) of the 

various subsystems, are evaluated.  The first policy was based on current operation in 

the Colorado River basin while the second represented a policy to balance the volume 

of Lake Powell and Mead over the water year to better respond to the dry conditions. 

Under normal operation the primary objective for Powell is to provide a minimum 

objective release of 8.23 MAF over the water year and Powell further is required to 

balance (equalize) with Mead during high reservoir levels. While under balancing the 

primary objective is to keep Powell and Mead balanced. This may mean relaxing the 

8.23 MAF minimum objective releases and balancing at lower reservoir levels. 

Shortage guidelines under both policies are identical and attempt to protect the Mead 

elevation of 1050 feet approximately 80% of the time under level 1 shortage and 

attempts to protect the Mead elevation of 1000 feet 100% of the time under level 2 

shortage. General reservoir response to both the alternate scenarios and policies were 

compared with an emphasis on shortage probability and volume.  

The ISM scenarios, as expected, had the least variability and sequences only from 

the observed data. Scenarios using the paleo reconstructed flows had the most 

variability across all flow regimes including longer surplus and drought lengths and 

volumes. Shortage lengths and volumes were also found to be most severe under the 

paleo conditioned scenarios. While under normal reservoir operations the shortage 

were found to occur more frequently but with reduced magnitudes in comparison with 

the balancing policy. 
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Of particular interest was the probability of releasing a 10 year running sum water 

release of less than 75 MAF from Powell. The ISM scenario indicated that the 10 year 

running sum water year release from Powell would always exceed 75 MAF in the 

next 53 years. But, flow scenarios from the two other methods indicated 4% to 7% 

probability of releases less than 75 MAF in the next 53 years.  The balancing policy 

seems to help reduce the vulnerability to flow variability. The salinity concentrations 

were all found to be well below the numeric criteria at all locations for all the flow 

simulations. Though increased salinity concentration with the new basin wide salt 

model indicates the possibility of increased economic damages. These insights are 

very helpful in devising effective management strategies for sustainable water 

resources in the Colorado River basin. 

6.3 Future Work 
Several potential extensions and applications of the research developed in this 

thesis are possible, which are listed below. 

1. Alternate models (e.g., parametric, semi-parametric) for annual flow 

generation at the aggregate gauge needs to be explored to generated a 

wider range of flows. These could then be run through the nonparametric 

disaggregation framework. Also, methods to capture inter-annual 

variability and correlation between the first month of the current year and 

the last month of the previous year have to be developed. 

2. In the nonhomogenous Markov chain model the number of hydrologic 

states are defined based on a pre-determined threshold which is a 

subjective choice. A hidden Markov chain framework would alleviate this 

subjectivity and better model regimes objectively. 
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3. Monthly salinity scenarios are generated to drive the decision model, 

despite policy evaluations at the annual time scale. Besides, the annual 

flow and salt relationships are much robust (Prairie et al., 2005). Jerla 

(2005) demonstrated that policy in the Colorado River basin can be 

adequately represented at an annual time step. Therefore, it seems 

appropriate to develop a decision support model at an annual time step, 

which would eliminate the uncertainty added by generating monthly flow 

and salinity scenarios. 

4. Other alternate policies need to be explored. Also, this can be cast as an 

optimization problem to obtain optimal policy solutions, under different 

objective functions (i.e., economic, utility etc.). 

5. Streamflow scenarios consistent with climate change projections can be 

used to investigate the policy implications under a changing climate. 
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