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On a seasonal time scale, forecast centers of National Weather Service produce streamflow
forecasts via a method called Ensemble Streamflow Prediction (ESP). In conjunction with the
physically-based Sacramento Soil Moisture Accounting model (SAC-SMA), ESP uses historical
weather sequences for the forecasting period starting from model’s current initial conditions, to
produce ensemble streamflow. There are two major drawbacks of this method — (i) the ensembles
are limited to the length of historical record thereby producing limited variability and (ii) incorpo-
rating seasonal climate forecasts such as El Nifio Southern Oscillation (ENSO) is done by selecting
a subset of historical sequences which further reduces the variability of streamflow forecasts. The
need for alleviating these drawbacks motivates the proposed research. To this end, this research
effort has two components (i) an improved multi-site stochastic weather generator and (ii) coupling
it to the SAC-SMA model for ensemble streamflow forecasting.

We enhanced the traditional K-nearest neighbor semi-parametric stochastic weather gener-
ator (SWG). In SWG the daily precipitation state (wet or dry) is modeled as a Markov Chain
and the weather vector on a given day is simulated conditioned on the previous day’s precipitation
state and weather vector and current day’s precipitation state. A K-nearest neighbor resampling
approach is used to simulate from the conditional probability density function. Our improvements
to this stochastic generator include (i) clustering the locations into climatologically homogeneous
regions and applying the weather generator separately for each region and jointly to better capture
the spatial heterogeneity and, (ii) modifying the resampling approach to incorporate probabilis-
tic seasonal climate forecast. We tested this enhanced weather generator by applying it to daily
weather sequences at 66 locations in the San Juan River Basin. The proposed method generates a

rich variety of weather sequences capturing the distributional properties at all the locations and the
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spatial dependence. It also simulates consistent weather sequences conditioned on seasonal climate
forecasts.

The multi-site stochastic weather generator was coupled with the SAC-SMA model (WG-
ESP) within NWS’s new Community Hydrologic Prediction System (CHPS) to produce ensemble
streamflow forecast. Spring season ensemble forecasts at several lead times from Nov through Apr
for the period 1981-2010 were made from WG-ESP and the traditional ESP for the San Juan River
Basin. We show that the weather generator based ensemble produces a rich variability in the flows
including extremes and a higher skill at long lead times. Especially, skill in wet year forecast was
found to be higher than dry years.

The flexible and robust framework provides many opportunities to further improve the ESP
system in enabling increased skills at longer lead times that will be of immense help to water

resources managers.
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Chapter 1

Introduction

1.1 Background

Balancing competing demands of various water users in the western United States has proven
to be an ever-increasing challenge for water managers. Not only does the region have projected
population and economic growth, but the 2000’s drought,' climate variability, and climate change
further complicate planning and management. McCabe and Wolock (2009) (and references therein),
among others, have shown trends in warming since 1980 and general decrease in spring snowpack
throughout the western U.S. Rajagopalan et al. (2009) highlight the risk of reservoir depletion given
population growth and climate change, and suggest that flexibility be added to water management
practices. Studies referenced therein also predict that average annual flow will decline as a result
of climate change.

A majority of streamflow in the western U.S. originates from snowmelt. Whereas April 1st
snow water equivalent (SWE) as a predictor provides skillful predictions of late spring/early sum-
mer runoff, many critical management decisions are made months beforehand, even in November or
earlier. In the seven-state Colorado River Basin (CRB), the Colorado Basin River Forecast Center
(CBRFC) is the primary official provider of streamflow forecasts to water managing agencies such
as the U.S. Bureau of Reclamation and others. Currently the CBRFC and the Natural Resource
Conservation Service (NRCS) work together to create water supply outlooks in the CRB. Forecasts

are generated by each agency and subjectively combined into a joint, official-forecast (Hartmann

! http://www.usbr.gov/uc/feature/drought . html


http://www.usbr.gov/uc/feature/drought.html

et al., 2002). NRCS uses a principle components regression (PCR) technique that primarily relies
on current snowpack and proxies of soil moisture such as antecedent streamflow and autumn precip-
itation (Garen, 1992). At the seasonal time scale, CBRFC implements two techniques: Statistical
Water Supply (SWS), a regression-based method that relates observed data (e.g., snow, streamflow,
precipitation) with future streamflow, and the model-based Ensemble Streamflow Prediction (ESP).
In conjunction with a physically based watershed model, ESP relies historical meteorological data
as possible representations of the future; each historical year is then used to simulate a streamflow
trace (Day, 1985).

Ensemble forecasts have gained momentum in preference over deterministic forecasts, as prob-
abilistic forecasts have been found to be more “appropriate and articulate” (Pagano and Garen,
2005) and offer more skill and relative economic value than deterministic forecasts (Roulin, 2007;
Boucher et al., 2012). Ensemble forecasting is especially promising as the U.S. Bureau of Recla-
mation has developed the Mid-Term Operations Model (MTOM) (outlined in Grantz (2011) and
described in detail in Bracken (2011)). MTOM is an objective, ensemble-based operations model
where reservoir operations planning is engaged in a probabilistic mode. Having started running
in experimental mode in 2010, it is a upgrade of their “24-month study”, which helps anticipate
monthly inflow volumes to the major Reclamation-operated reservoirs in the Colorado Basin.

The ESP methodology has shortcomings in that the ensembles created are hindered by limited
historical data, which becomes even more limited with the addition of climatological forecasts
(forecast based on region). Improvements over ESP have been developed for short-to-medium
range (days-to-weeks) forecasting with the incorporation of ensemble weather forecasts (see Cloke
and Pappenberger (2009) for a review). As these weather forecasts come from numerical weather
models, their weather-scale reliability deteriorates after a medium-range, while their climate-scale
signals may still reduce uncertainty in ESP.

To improve upon ESP limitations, we propose the incorporation of climate-scale probabilistic
precipitation and temperature forecasts via the use of a hybrid nonparametric weather generator

to create a variety of weather sequences that are more skillful and comprehensive than those found



in a historical climatology. The approach is a multi-site, multi-variable generator based on Api-
pattanavis et al. (2007) and furhter developed as described in Chapter 2. Precipitation occurrence
is modeled with a two-state Markov chain and weather variables are selected using a k-nearest
neighbor (k-NN) resampling algorithm. The resulting weather sequences are run through a water-
shed model using the ESP framework to produce streamflow forecast ensembles (Chapter 3). This
weather generator can produce weather sequences that are unconditional or else conditioned on
climate forecasts from an arbitrary source. Unlike ESP, there is no limit to the number of traces

(i.e., size of ensemble) than can be generated to produce streamflow forecasts.

1.2 Study area and context

Our study was performed on the San Juan River Basin. With a drainage area of approxi-
mately 25,000 miles?, the San Juan River is the second largest tributary of the Colorado River and
runs a distance of 355 miles. The river flows from Colorado into New Mexico, then west to the
Colorado River and Lake Powell in Utah. Having an area near in size to West Virginia, drainage
areas are 39, 23, 20, and 17 percents in New Mexico, Colorado, Arizona, and Utah, respectively.
The San Juan river basin includes a wide range of elevations, from roughly 4000 ft before confluence
with the Colorado River, to above 14,000 ft in the San Juan Mountains. Climate zones range from
desert plateau to mountain forests. Winter snow and rain due to frontal storms and modest rains
from convective storms in summer are the main moisture input to the basin. Precipitation can vary
from above 60 inches annually in the mountain peaks, to below 10 inches in the desert plateau? .

Completed in 1962, the Navajo Reservoir dramatically altered the natural hydrograph of the
San Juan River. When filled, it occupies 15,610 acres, with a total capacity of 1.7 million acre-feet
(MaF) and an active capacity of 1.0 MaF.® Major tributaries above the dam are the Navajo,
Piedra, and Los Pinos Rivers. Of these only the Los Pinos is dammed (for agricultural purposes).

The Animas River is the major tributary below the Navajo Dam and is free flowing. A majority

2 http://www.usbr.gov/uc/wcao/rm/sjrip/
3 http://www.usbr.gov/uc/wcao/water/ps/navajo.html
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of the reservoir inflow occurs during the April-July runoff when an average of 0.66 MaF enter the
reservoir. Before damn construction, the gage at Bluff saw approximately 72% of the total annual
discharge occurring during that period (USBR, 2008).

Protecting natural ecology plays an important role in managing the San Juan. Tourism is
especially important to the basin economy as many anglers visit each year for the famous abun-
dance of rainbow trout. Fish such as the Colorado pikeminnow (Ptychocheilus lucius) and the
razorback sucker (Xyrauchen teranus) declined to endangered levels in the years after the Navajo
Reservoir was completed. Based on the recommended flows from joint research study of multiple
agencies (Holden, 1999), spring releases from the Navajo Reservoir must be a minimum of 250 cfs
and maximum controlled releases must be about 5000 cfs. Reservoir management must also take
into account other needs such as storing water for consumptive use, irrigation, flood control, and
generation of hydroelectric power. Finally, management of the San Juan River and the Navajo
Reservoir must meet agreed-upon flows as defined in the Upper Colorado River Basin Compact

and the Colorado River Compact.

1.3 Thesis outline

This thesis is written in manuscript form for the middle two chapters, which are self contained
sections in a format that is acceptable for submission to an academic journal. After this introductory
chapter, Chapter 2 describes the multisite stochastic weather generator. Then, Chapter 3 presents
the linkage of the weather generator with a physical model to produce streamflow forecasts. Chapter

4 provides overall conclusions and discussion for future work.



Chapter 2

Multisite Stochastic Weather Generation Using Cluster Analysis and K-nearest

neighbor Time Series Resampling

2.1 Introduction

Generation of synthetic weather sequences has been a topic of great interest in recent decades.
Since historical data is limited, these sequences are needed to drive process models of hydrology,
agriculture, erosion, ecology, construction delay, etc. (Wallis and Griffiths, 1997; Friend et al., 1997;
Eberle et al., 2002; Mountain and Jones, 2006; Leander et al., 2006, 2007; Caron et al., 2008), to
provide robust estimates of risks of decision variables, to enable better management of resources.
The generation is based on stochastic models fit to historic data hence commonly referred to as
stochastic weather generation. There is a rich literature on stochastic weather generators and the
traditional generators trace their origin to the Weather Generator Model (WGEN) of Richardson
(1981); Richardson and Wright (1984). In this, precipitation occurrence is modeled using Markov
chains (Richardson, 1981; Katz, 1977; Stern and Coe, 1984; Woolhiser, 1992) or as Poisson process
(Foufoula-Georgiou and Georgakakos, 1991; Furrer and Katz, 2008) and the amounts using proba-
bility density functions, such as two-parameter gamma (Katz, 1977; Buishand, 1978; Yang et al.,
2005; Furrer and Katz, 2007). Bivariate autoregressive models of first order lag are fit to model
maximum and minimum temperatures (Richardson, 1981). The models are fit for each month
to capture the seasonality. This method is also referred as parametric weather generators, given
the number of parameters of the various components. Generalized Linear Model (GLM) based

weather generators offer an alternative parametric approach to modeling daily weather (Chandler



and Wheater, 2002; Chandler, 2005; Furrer and Katz, 2007; Yang et al., 2005). In this the precipita-
tion and temperature are modeled as a series of GLMs with several covariates to capture seasonality,
lagged dependence etc. The flexible nature of GLMs enable the modeling of binary (precipitation
state) and continuous (precipitation intensity, maximum and minimum temperatures) variables
with mixed covariates. We refer the reader to Wilks and Wilby (1999) for a comprehensive review
of traditional parametric stochastic weather generators.

The above WGEN-based weather generators can be easily fit to daily weather at single
locations, but many applications, such as hydrologic, require daily weather a multiple locations
simultaneously. However, extending parametric models to multiple sites is not trivial. A major
disadvantage is that model parameters grow exponentially with number of locations and spatial
dependency also needs to be captured (Smith, 1994; Mehrotra et al., 2006). One such design (Wilks,
1998) involved a two-state, first-order Markov chain for precipitation occurrence and a mixed
exponential distribution for precipitation generation. Serially independent but spatially correlated
transformed normal variables enabled multisite generation; this was extended to additional weather
variables in Wilks (1999). Many subsequent parametric multisite rainfall generators have been
adaptations of the Wilks (1998) technique (Mehrotra et al., 2006; Brissette et al., 2007; Srikanthan
and Pegram, 2009) with further additional variations for temperature simulation (Qian et al., 2002;
Baigorria and Jones, 2010). Other multivariable methods involve disaggregating to individual
locations from a regionally developed model like a statistical downscaling model (Segond et al., 2006;
Mezghani and Hingray, 2009). Spatial models for rainfall occurrence and amounts using GLM for
individual sites and Latent Gaussian process to spatially interpolate the GLM parameters and thus
generate precipitation process in space, were developed by Kleiber et al. (2012). This approach has
the ability to incorporate maximum and minimum temperature to result in a parsimonious spatial
weather generator.

Nonparametric weather generators are an attractive alternative. Being data-driven, they can
capture deviations from standard probability distributions, as well as nonlinearities between vari-

ables. Past methods include kernel density estimators (Rajagopalan et al., 1997; Harrold et al.,



2003; Mehrotra and Sharma, 2007) and k-nearest neighbor (K-NN) bootstrapping (Brandsma and
Buishand, 1998; Rajagopalan and Lall, 1999; Buishand and Brandsma, 2001; Yates et al., 2003;
Beersma and Buishand, 2003; Sharif and Burn, 2007). The K-NN approach is increasing in popu-
larity due to its ease of implementation and effectiveness. In this, k-nearest neighbors are identified
to the weather vector on a current day ‘¢’, from the historical data. Then one of these days is
resampled using a weight metric that gives most weight to the nearest neighbor and least to the
farthest. The uniformly distributed random number then resamples from these weighted days, sim-
ulating weather on day ‘¢t 4+ 1’. This is akin to simulating from the conditional probability density
function (PDF) f(x; | ©;—1) with the PDF estimated locally in phase space. This method was first
introduced by Lall and Sharma (1996) and adopted for weather generation by Rajagopalan and
Lall (1999) and applied to different situations such as generating weather sequences conditioned on
climate change projections, for hydrologic forecasting etc. This approach was modified by Apipat-
tanavis et al. (2007) to a hybrid nonparametric model, where precipitation occurrence is modeled
with a two-state Markov chain and weather variables are selected using a K-NN resampling algo-
rithm. They also extended this to simulating weather sequences at multiple locations by applying
the K-NN bootstrap weather generator on the daily average weather time series over these loca-
tions. In this domain-aggregated, ‘da’, approach, the weather at all the locations is simulated by
resampling from the historical record at all locations on the same day, thereby maintaining spatial
correlations. Apipattanavis et al. (2007) demonstrated this with application to four locations in a
climatologically homogeneous region in northern Argentina.

Our motivation in this research comes from the need to generate daily weather sequences
at a large number of locations sprinkled over a heterogeneous watershed, to subsequently drive a
hydrologic modeling system to produce streamflow forecasts. The methodology of Apipattanavis
et al. (2007), based on resampling from a spatially averaged daily weather time series, may not
adequately capture the spatial nonhomogeneity. We propose a new adaptation to this approach
where the sites are (i) first clustered into homogeneous sub-regions based on historical seasonal

precipitation (or any other suite of attributes); (ii) a Markov chain is fit to cluster-averaged pre-



cipitation time series over the joint two-state, three-cluster (22 = 8 state) system to capture the
spatial correlation in the precipitation occurrence between the clusters; (iii) the K-NN bootstrap
is then applied to generate daily weather sequences conditioned on the precipitation state, for each
cluster. Thus, generating daily weather sequences at all the desired locations.

This weather generator has an additional feature where it can serve as a downscaling link
between probabilistic climate forecasts and hydrologic modeling. We investigate the proposed
methodology in the context of large-scale seasonal precipitation forecasts. With this option, the
conditioned generated weather sequences reflect prediction of wet or dry climate, which will then
result in wet or dry streamflow forecasts.

The paper is organized as follows. The application region and context are described along
with the data sets. The methodology is then described with the implementation. After present-
ing the results, we conclude with discussion of the methodology and potential applications and

improvements.

2.2 Study Region, Application Context and Data

With a drainage area of approximately 25,000 sq. miles, the San Juan River is the second
largest tributary of the Colorado River. Its area, nearly that of West Virginia, is approximately
split between New Mexico (39%), Colorado (23%), Arizona (20%), and Utah (17%). The San Juan
river basin includes a wide range of elevations, from roughly 4000-14,000 ft above sea level, and
climate zones, including desert and forest. DJF snow and rain due to frontal storms and modest
rains from convective storms in summer are the main moisture input to the basin. Precipitation
can vary from above 60 inches annually in the mountain peaks, to below 10 inches in the desert
plateau! . Prior to construction of the Navajo Dam, flows were snowmelt dominated, but with

reservoir operations, MAM runoff is stored and released during summer and later months (Holden,

1999).

! http://www.usbr.gov/uc/wcao/rm/sjrip/


http://www.usbr.gov/uc/wcao/rm/sjrip/

Figure 2.1: San Juan Watershed: the four corners of Utah, Colorado, New Mexico, and Arizona is

just above the center of the figure

The Colorado Basin River Forecasting Center (CBRFC) provides ensemble seasonal stream-
flow forecasts at several lead times at multiple locations on the San Juan River. They use the
historic daily weather sequences to drive a physically based watershed model (Sacramento Soil
Moisture model, SAC-SMA). This generates as many ensemble members for the current forecast
season as the number of times the season appears in the historical record (Day, 1985). The historic
weather sequence thus provides a very limited set of ensembles. Ensembles are further reduced
when a seasonal forecast condition (e.g. “wet”) is imposed. Our proposed stochastic weather gen-
erator aims to solve this problem by simulating a rich variety of weather sequences over the study
domain.

The CBRFC divides the San Juan river basin in to 24 sub-basins (Figure 3.4) which are

further divided by elevation bands into two to three zones each, resulting in a total of 66 spatial
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zones, or subcatchments. Based on observed historical data at weather stations scattered across
the basin, the CBRFC has created mean areal precipitation (MAP) and mean areal temperature
(MAT) for each zone (NWSRFS, NWSRFS) at 6-hourly time steps. These start in October of 1980
through September of 2010. From the 29 complete years, we calculate daily precipitation totals as
well as daily minimum and maximum temperatures which serve as inputs to our stochastic weather
generator. We generate 100 ensemble members of daily weather sequences for all 66 zones over the
29 year period. These weather ensembles will be applied in future studies to drive a watershed
model and to robustly estimate streamflow probabilities at various points in the basin as well as
management risks. In this study, we evaluate our weather generator approach against the observed,

seasonal statistics of daily MAP and MAT timeseries.

2.3 Methodology

2.3.1 Cluster Analysis

To parse spatial inhomogeneity of weather over our domain, we employ K-means cluster
analysis (Everitt, 1979)), with clustering on seasonal precipitation totals. The objective is to
classify M = 66 points in N = 29 years dimensions into k£ clusters such that the within sum of
squares (WSS) over all clusters is minimized without over-fitting the clustering (i.e., using too high
a k).

The Hartigan-Wong approach algorithm is employed (Hartigan and Wong, 1979). Because
initial centroids are selected at random, clustering is repeated a 50 times to investigate uncertainty
in WSS for each choice of k. Our ‘kink plot’ (Figure 2.2) shows WWS and its 50% (boxes) and
90% (whiskers) uncertainty over 50 clustering trials as a function of k, the number of clusters. The
kink, or decrease in the reduction of WSS with increasing number of clusters, indicates the optimal

number of clusters (e.g. Hastie et al. (2009)).
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2.3.2 Spatial Precipitation Occurrence Model

The domain-aggregate (‘da’) weather generation approach of Apipattanavis et al. (2007)

13

models temporal precipitation occurrence via a 2-state Markov chain with states “wet” and “dry.”
The region is wet (dry) if its domain average precipitation is above (below) 0.1 inches. The 22
elements (pdd, Paws Pwds Pww) Of the transition probability matrix (TPM) are estimated using maxi-
mum likelihood. In the domain aggregate approach, Markov transition probabilities are calculated
on domain averaged weather at each time step. We compute the Markov transition probabilities
for each month separately within each season.

Described in the following section, the Markov modeled state conditions selection of a his-
torical weather observation under K-NN resampling. The problem with this method is that daily
precipitation and temperature over multiple locations become more heterogeneous as the domain
size grows. The use of domain average precipitation becomes inappropriate for estimating the
domain-wide precipitation state and thus for both calculation of state transition probabilities and
for selecting nearest neighbors from the historical record. Domain-averaged weather is also used in
the K-NN resampling scheme described below. By clustering simulations by total seasonal precip-
itation within the domain, we aim to resolve the large-scale, spatial heterogeneity problem of the
‘da’ approach.

After identifying k clusters based on seasonal precipitation totals within the spatial domain,
the simplest approach is to directly model the clusters individually and independently using the
‘da’ approach in each cluster separately. We term this approach ‘ca’ for cluster-aggregate. Because
our application is hydrologic response, with future consideration of the basin outlet, ‘ca’ has the
obvious shortcoming that the upstream weather inputs are not coordinated.

We explore two solutions to this problem. First, in order to coordinate (or correlate) basin-
wide response, we propose generating the precipitation state over the full domain as in the ‘da’
approach and then using this global state within each cluster to condition selection of observed

weather from the within-cluster historical record. Deemed ‘caShared’, this approach may suffer
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from the obvious deficiency that gross heterogeneities over the domain at the cluster level will not
be appropriately modeled. For example, if it tends to rain in one cluster while others are dry, then
this situation will be undersimulated.

Second, we take a more nuanced approach to the problem of spatial coordination of cluster
states by modeling Markov transition probabilities between all possible states of the three cluster
system. If N, is number of precipitation states and k the number of clusters, then say for k = 3

clusters there are 8 possible states.
Nf = 8 = ddd, ddw, dwd, dww, wdd, wdw, wwd, www (2.1)

We term this approach ‘caJoint’. The probability of transitioning to any joint state can be com-
puted using cluster-average precipitation and the established threshold of 0.1 inches to determine
“wet”. Calculating the joint transition probability begins with cluster-average precipitation and
the previous, two-state threshold of 0.1 inches to distinguish wet from dry. We compute the Markov
transition probabilities for each month separately based on the historical transitions between the
resulting 8 states of the system. For our simple, k-cluster system, the transition probability matrix
is 8 x 8 when k& = 3 (though all transitions may not actually occur in the data). Note that even for
a two state, four cluster system the number of distinct transition probabilities is already 16 x 16.
One may employ any number of states and clusters, but the complexity can rapidly increase when

modeling the joint states of the system as proposed here.

2.3.3 K-NN Resampling

For all of the above approaches (‘da’, ‘ca’, ‘caShared’, and ‘caJoint’), daily weather sequences
at all locations are generated using the algorithm of Apipattanavis et al. (2007). The basic idea
is, for a given day t, to sample areal-averaged weather vectors from the conditional PDF, f(z; |
DOY, xy—1,5;-1,S), of areal-averaged weather vectors, x;, given the day of year, DOY, yesterday’s
simulated weather, x;_1, yesterday’s precipitation state, S;_1, and today’s precipitation state, S;.

Once an areal-averaged weather vector is selected, the actual observed weather on that same day
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at each location in the region is used in the simulation. The cluster-based approaches have three

regions, and so three potentially different days will be selected from the record, corresponding to

each region, to simulate the locations in each.

Given an initial area-average weather vector, the historical areal-average weather vectors,

and the previously generated sequence of areal-averaged precipitation states for some area, the

following algorithm applies to all approaches (‘da’ and cluster based):

(1)

A 7-day window centered on the day of year for time ¢ in the simulated sequence filters out

the remainder of the historical record (| DOY).

Days within this window with matching, areal-averaged state transitions to simulated day

t — 1 are extracted (| S;—1,St).

Each areal-averaged weather variable within the selected days is scaled by the reciprocal
of its historical standard deviation on day ¢ — 1 to provide equal weight over all variables

in the next step.

Euclidean distances are calculated between all candidate weather vectors over the region

and the previously simulated weather vector on day ¢ — 1.

The most similar (closest) weather vectors are limited to a neighborhood of size K = V' N,

where N is the length of the dataset (Lall and Sharma, 1996).

These K nearest neighbors are assigned a probability using a discrete decreasing kernel

p(i) = k;l/j

23:1 1/j

(Lall and Sharma, 1996; Rajagopalan and Lall, 1999), where p(i) is the probability that

(2.2)

the ith neighbor will be selected, thus giving the kth neighbor the lowest probability.
A neighbor (i.e., a historical day) is randomly resampled according to these weights.

Its successive day in the historical record is selected as the weather on day ¢t and represents

all locations in the modeled area.
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This algorithm is repeated for each day in the desired simulation period. Table 2.1 demon-

strates the selection of nearest neighbors for a window centered on December 9th.

2.3.3.1 Conditional Resampling

Synthetic weather sequences are often required that are consistent with large-scale, seasonal
climate forecasts. We incorporate the seasonal precipitation forecasts issued by the International
Research Institute for Climate and Society? into our methodology. These give the probability of
each seasonal precipitation tercile, above:normal:below (ANB). The approaches of Apipattanavis
et al. (2007) and Yates et al. (2003) to conditional resampling based on climate forecasts is to
modify the weights in step 6 of the K-NN resampling algorithm. Because we found this approach

to only mildly modify the outcome, we propose a new strategy here.

(1) Calculate seasonal precipitation totals in each year and associate it with each day in a given

season.

(2) Follow the K-NN algorithm through step 2: find all historical days in the 7-day moving

window which match the simulated transitions, which we will call T.

(3) Now the neighborhood of size K = v/N is no longer determined by euclidean distances

(replacing steps 3 through 5).
(4) Then for a wet (dry) ANB

(a) Sort the matching days, T', based on decreasing (increasing) seasonal totals.
(b) The nearest (farthest) neighbors are A x K of head (tail) of T
(¢) The farthest (nearest) neighbors are B x K of tail (head) of T

(d) What remains is filled by N x K/2 on either side of the median seasonal total of T'.

(5) Resume step 6 from the algorithm above.

2 http://iri.columbia.edu/climate/forecast/net_asmt/


http://iri.columbia.edu/climate/forecast/net_asmt/
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This method ensures preferential treatment of seasons that have desirable characteristics.
Since daily precipitation intensities are not necessarily sorted in order of highest or lowest, resam-
pling is not too severely modified and a variety of weather scenarios is still maintained. Table
2.2 demonstrates how the K neighbors are determined for an ANB of 65:25:10. With K = 14,
0.65 x K =9, thus the neighborhood from 1 to 9 is filled from the 9 highest totals according to the
sorted T. As 0.1 x K =1, the last member of the neighborhood is filled by the day corresponding
to the lowest value in sorted 7T'. The remaining values are filled by days falling on either side of
the median. In the unconditional simulation example (Table 2.1), the weather on December 12,
2007 was determined as the 8th nearest neighbor. For the wet simulation (Table 2.2), it became
the nearest neighbor because of its corresponding seasonal totals, and thus is more likely to be

sampled.



Table 2.1: K-nearest neighbors for ordinal day of December 9th: unconditional simulation

year month day p tmin tmax seq state trans total

1 2000 12 9 012 -3.63 236 7278 w w2d 6.58
2 1996 12 11 039 -1.20 3.58 5820 w w2d 8.80
3 1991 12 11 071 -7.10 1.05 3995 w w2d 5.37
4 1997 12 8 0.38 -6.76 -0.85 6182 w w2d 5.02
5 1993 12 12 044 -6.49 0.02 4726 w w2d 4.91
6 1996 12 7 014 -989 346 5816 w w2d 8.80
7 1998 12 6 0.15 -11.62 -4.44 6545 w w2d 3.08
8 2007 12 11 037 -7.12 -1.18 9835 w w2d  14.77
9 2006 12 11 024 -811 -0.17 9470 w w2d 5.19
10 2003 12 8 030 -5.75 091 8372 w w2d 6.71
11 1982 12 9 051 -441 284 708 w w2d 6.33
12 1982 12 11 0.11 -394 1.00 710 w w2d 6.33
13 1985 12 10 0.21 -14.11 -4.86 1804 w w2d 4.29

14 1984 12 8§ 043 -7.64 311 1437 w w2d 7.76
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Table 2.2: Same as Table 2.1, but for wet simulation with ANB of 65:25:10

year month day p tmin tmax seq state trans total

1 2007 12 11 037 -7.12 -1.18 9835 w w2d  14.77
2 1996 12 7 014 -989 346 5816 w w2d 8.80
3 1996 12 11 0.39 -1.20 3.58 5820 w w2d 8.80
4 2008 12 8 026 -3.05 1.79 10197 w w2d 8.68
5 1984 12 8 043 -7.64 3.11 1437 w w2d 7.76
6 1994 12 6 0.88 -251 206 508 w w2d 7.00
7 2003 12 8 030 -575 091 8372 w w2d 6.71
8 1986 12 6 0.70 -3.75 3.06 2165 w w2d 6.68
9 2000 12 9 0.12 -3.63 236 7278 w w2d 6.58
10 1982 12 9 051 -441 284 708 w w2d 6.33
11 1982 12 11 0.11 -394 1.00 710 w w2d 6.33
12 2009 12 8 0.83 -13.20 -3.25 10562 w w2d 6.28
13 1991 12 11 071 -710 1.05 3995 w w2d 5.37

2.4 Results

Cluster analysis was performed on seasonal precipitation totals, separately for each three
month season, Dec-Feb (DJF), Mar-May (MAM), Jun-Aug (JJA) and Sep—Nov (SON). Based on
the kink plot for DJF (Figure 2.2) three clusters were chosen to be the optimal number, similarly
for other seasons. Boxplots of elevations of the locations falling in each cluster are shown in Figures
2.3 and 2.4 — it can be seen that the clusters fall quite well along the elevations. In that, all the
high elevation locations are together in cluster ‘a’; the middle elevations in cluster ‘b’ and the lower
in ‘c’. This is consistent in that the DJF precipitation has a distinct elevation signal, with higher

elevation regions receiving more snow and vice-versa. This is found to be the case in all the seasons



18

except for summer where the precipitation is less organized by elevation, as would be the case with
convective nature of precipitation in this season. The number of locations in each cluster in each
season is shown in Table 2.3. The spatial state simulation and K-NN resampling are applied to

locations in each cluster to generate daily weather sequences.

Clustering with 50 reps at each K
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Figure 2.2: Uncertainty in the within sum of squares (WSS) as a function of kth for 50 independent
clusterings of total seasonal precipitation over 66 stations in 29 years.
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2.4.1 Clusters

Classification of ‘a’, ‘b’; or ‘¢’ correspond to cluster groupings with highest, middle, and
lowest median elevations, respectively in each season. Assignment of subcatchments within groups
will change with each analysis due to the heuristic nature of the algorithm. However, as very little

change in WSS is seen in Figure 2.2 for k = 3, the results are assumed as stable.

Table 2.3: Number of stations falling within each cluster

DJF 17 26 23

MAM 19 25 22

JJA 22 22 22

SON 17 26 23

Boxplots in Figures 2.3a and 2.4a depict elevations of subcatchment centroids organized by
cluster groups. Though clustering was performed on precipitation, this shows there is a heavy
correlation with elevation as well. DJF is more organized by elevation while summer has more
influence from spatial proximity. Figures 2.3b and 2.4b show cluster ‘a’ predominantly falls within
forested, mountainous areas while ‘c’ falls in low-lying arid regions. Cluster ‘b’ has a mix of
characteristics from the other two groups. Cluster medians change appreciable with season. Cluster
‘c’ is the most stable of the groupings—its member population remains relatively consistent between
the seasons and its median elevation stays near 6500 ft. Conversely ‘a’ and ‘b’ have more variable
member numbers and the median elevations can change up to 1000 ft between seasons.

Figure 2.5 displays between-cluster correlations in the observed record and illuminates the
motivation behind the ‘caShared’ and ‘caJoint’ methodologies. From these figures it is evident that
each cluster cannot be assumed as independent from others, thus they should not be simulated

independently, as in the ‘ca’ approach shown below.
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2.4.2 Unconditional Simulation

We first evaluate characteristics of the four methodologies against the observed statistics of
the seasonal precipitation. Figure 2.6 compares probability density functions (PDF) of basin total
seasonal precipitation for the four methods along with the historical PDF. With a lack of inter-
cluster dependency in the ‘ca’ method, its PDF tends towards the mean with a thin tail behavior
in all seasons. In DJF and MAM, the other three methods are similar to each other and closer to
the historical distribution. All four seasons reinforce the conclusion drawn from Figure 2.5 that
independence cannot be assumed between clusters.

Figure 2.7 shows simulated versus observed average number of wet day occurrences per season.
It is evident that forcing the same precipitation state across the clusters in the ‘caShared’ method
oversimulates the number of wet days in the lower elevation clusters and undersimulates in the
higher elevation for all seasons. Thus ‘caShared’ does not appear like a viable option. The other
three methods are near-similar in their performance and have R? values of 0.99 with the observed.

Figure 2.8 divides Figure 2.6 into within-cluster total seasonal precipitation, showing the
PDF's of seasonal precipitation for each cluster. The cluster division, ‘ca’ now has a strong perfor-
mance as it simulates each cluster independently thus reproducing individual cluster distributions,
whereas it performed poorly on the basin-wide precipitation (Figure 2.6). The ‘caShared’ method
seems to oversimulate in the lower elevation clusters (b and c¢) and undersimulates in the high
elevation cluster (a), similar to the behavior in Figure 2.7. With the exception of summer, ‘da’ and
‘caJoint’ exhibit good performances in terms of capturing the observed PDF.

Figure 2.9 shows the PDF of correlation between simulated and observed seasonal precipi-
tation and temperature between the clusters. The historical PDF aligns almost exactly with ‘da’
because this method produces simultaneous simulation of all locations, hence their correlations. As
emphasized above, ‘ca’ behaves poorly because each cluster is simulated independently of the other,
so the between-cluster correlations are not captured. Here, ‘caShared’ does well because between

cluster correlation is enhanced by having a shared state, but we have established the side effects
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of this assumption in within-cluster simulation. While ‘caJoint’ is performing better than ‘ca’, the
between-cluster correlations are still poorly represented.

Figure 2.10 shows the root mean square error (RMSE) of seasonal precipitation over all
simulations for ‘da’ and ‘caJoint’ for the three variables. Except for SON, ‘caJoint’ shows smaller
RMSE and less variability (tighter boxes) compared to ‘da’, suggesting that it better captures the
observed variability. Conversely, ‘da’ has lower errors for temperature and lower median RMSE,
again excepting SON. This is not unexpected as temperature was not included in the clustering
process.

Lag-1 daily autocorrelation of the observed and simulated at all locations for all the methods
and variables are shown in Figure 2.11. A best fit line for each method is shown along a 1:1 line.
Lag-1 autocorrelations are notoriously difficult to simulate with nonparametric weather generators
(Buishand and Brandsma, 2001; Yates et al., 2003; Apipattanavis et al., 2007). All methods, as
evident from their lines of regression, suffer from notable under-simulation.

We now compare simulated and historical statistics at three sites (i.e., subcatchments) in
the domain for purposes of assessing single-site behavior. The representative sites are: drgc2hu
(upper zone near Durango, CO and Animas River), pidc2hl (lower zone near Piedra River and
Arboles, CO), and bffulll (lower zone near San Juan River and Bluff, UT)? . Drgc2hu has the
highest elevation in the basin, pidc2hl the median, and bffulll the lowest. Each falls within the
same cluster (a, b, and ¢, respectively) for all four seasons.

Differences between simulated and observed values for basic distributional statistics are shown
in Figures 2.12, 2.13, and 2.14 for the three variables. The vertical black lines mark zero around
which the simulations should ideally be centered. Both methods capture the basic statistics of
precipitation (Figure 2.12) quite well, but there is a tendency to slightly undersimulate the mean
and standard deviation, especially for ‘da’. This reduction in the simulated variance, known as

overdispersion, is a common phenomenon in weather generation unless additional measures are

3 NWSRFS handler id: first five characters are the sub-basin name, sixth character describes whether or not it is
a headwater basin and seventh denotes elevation zone
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taken to provoke variability (Kim et al., 2012). Unusually, ‘caJoint’ over-simulates mean and
standard deviation for fall, while ‘da’ over-simulates for bffulll DJF. In general, ‘da’ performs
better in capturing the temperature distributions (Figures 2.13 and 2.14).

Figures 2.15 and 2.16 demonstrate the cumulative distribution function (CDF') of temperature
spells below and above selected thresholds, for the three locations and for winter and summer,
respectively. Both methods perform similarly but ‘caJoint’ appears to be slightly closer to the
observed CDF. The first order Markov chain has noticeable effect on the probabilities — smaller
spell lengths are simulated with much higher probability than what happened historically. A higher

order Markov chain might help in improving this.
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2.4.3 Conditional Simulation

We chose two representative, somewhat strong, probabilistic climate forecast for the purposes
of demonstration—dry simulation refers to ANB forecast of 10:25:65 and wet of 65:25:10. Figures
2.17, 2.18, 2.19, and 2.20 show the CDF's of seasonal precipitation for the three clusters and three
forecast cases (dry, normal, wet), along with that of the observed. For DJF (Figure 2.17), the
non-‘caShared’ methods perform well in that the CDF's shift in the appropriate direction relative
to the observed for the three forecast cases. However, the CDF's show bias at the lower and higher
precipitation values. The wet simulation CDF has a much more noticeable shift than the dry,
though at the extremes the probabilities are only slightly different than historical. MAM (Figure
2.18) and SON (Figure 2.20) have similar patterns to DJF, though in SON the normal simulation
no longer has a dry bias for high totals. The ‘caShared’ has a wet bias in all cases, especially for
the lower elevation cluster. This is largely due to the fact that the precipitation state is shared
and dominated by wet locations in the higher elevation cluster. For these three seasons across all
clusters, it appears ‘da’ would be best for wet simulations and ‘caJoint’ for dry. In the following
section, more detailed examination is given to the behavior seen here.

To understand the shifts in probability of exceedance we chose two thresholds, 50th and 75th
percentiles of the seasonal total precipitation, and computed the exceedance probabilities and are
shown as boxplots in Figures 2.21, 2.22, 2.23, and 2.24 for the four seasons, three forecast cases
and clusters. The motivation behind this statistic is that shifts in precipitation risk will translate
to shifts in hydrologic risk. The red triangles denote climatological exceedance probabilities. For
example, one would desire higher probabilities of exceeding a threshold for a wet simulation. Figure
2.21a (DJF) shows changes in boxplots with respect to historical for exceedances above the 50th
percentile—in dry cases the boxplots are shifted lower indicating a lower probability of exceedance
and vice-versa for wet case. Both methods show consistent shifts but for normal case the ‘caJoint’
does better. Similar to the earlier CDF's, ‘da’ has a stronger shift for wet and ‘caJoint’ for dry.

Similar observations can be noted for the other three seasons (Figures 2.22-2.24). The ‘da’ seems
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to shift the probabilities strongly for wet simulations and caJoint for the dry, with JJA being the
main exception. This is consistent with what we noticed in the unconditional case as well. in that,
‘da’ being the average of the entire domain is driven more by wet locations located mainly in the
upper elevation cluster, while ‘caJoint’ attempts to separate the inhomogeneities in precipitation

state, allowing the dry areas to be modeled as dry and the wet areas as wet.
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2.5 Summary and Discussion

We developed a multisite and multivariable stochastic weather and demonstrated its appli-
cation to the San Juan Basin. Four multisite methods were investigated: the standard domain-
aggregate method, ‘da’; where weather is simulated (resampled) across all locations simultaneously,
and three clustering-based approaches (‘ca’, ‘caShared’, and ‘caJoint’). Clustering was performed
on seasonal precipitation totals for the four seasons (DJF, MAM, JJA, SON). The 66 subcatchments
of the San Juan were then divided into three groupings based on efficient minimization (‘kink’) of
within sum of squares. The first approach, called cluster-aggregate (‘ca’), applies the ‘da’ method
to each cluster independently. Second, ‘caShared’, calculates the precipitation state as ‘da’ but
then forces the same precipitation state for all clusters. The third method, ‘caJoint’, considers the
precipitation state with each cluster and coordinates all possible states of the three cluster system
using Markov transition probabilities.

Multiple statistics proved inadequacies of the ‘ca’ method as the complete independence
assumption proved detrimental to between-cluster behavior. With ‘caShared’, within-cluster at-
tributes suffered with the forced precipitation state calculated at the domain level. The ‘caJoint’
method was competitive with ‘da’ in certain situations. The ‘caJoint’ approach is most applicable
in winter when spatial variance of precipitation is most reduced and precipitation has more spatial
structure. In summer, ‘caJoint’ is worse than ‘da’ as there is little spatial precipitation structure
and clustering reduces spatial variance much less than in winter. Both approaches can be considered
viable options and may be dependent on the desired use of simulations. For instance, ‘da’ performs
better for capturing distributional statistics of climatology, but ‘caJoint’ is better for temperature
spells. All the statistics investigated have important roles in hydrologic modeling.

In addition, we modified the k-NN resampling component to allow for probabilistic sea-
sonal forecasts. The proposed conditional methodology adds preferential treatment to seasons with
desirable characteristics and will tend towards resampling days with low-frequency patterns. Un-

conditional simulations should be used for seasons where variability is not expected. Some figures
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of seasonal precipitation totals displayed a tendency towards underprediction of tail values and
overprediction of low-end values. The ‘da’ method proved the best at capturing heavy tails of dis-
tributions and would be the most suitable for pairing with a wet climate forecast-based simulation.
On the other end, ‘caJoint’ appears to be the most appropriate for dry climate forecast pairing,
excepting summer.

A complete comparison between ‘da’ and ‘caJoint’ would involve juxtaposing their results
after linkage with a physical model to produce streamflow as they could have significant differences
in forecasting streamflow. Currently, the NWS’s ESP is limited by sequences that have only
occurred in climatology. With the ‘da’ method, the entire basin is forced to behave the same
due to the simultaneously resampling. The ‘caJoint’ approach offers more heterogeneity, but it can
only be speculated as to whether this would offer an increase or decrease (or no change) in skill.

As for future modification, clustering can be performed in different ways. For example,
daily could be the temporal scale instead of seasonal and if scaled, temperature or 500 mb heights
could be added to the clustering matrix. For this watershed, elevation was heavily correlated with
precipitation, where lower elevations corresponded to arid regions and higher to mountains. In
other regions, say if precipitation had more of a spatial correlation, then may need more careful
distinction of whether precipitation is frozen or liquid (Mezghani and Hingray, 2009). Such a
distinction would be aided by the inclusion of temperature in the clustering matrix. Furthermore,
cluster analysis was performed after post-processing of observed point values into areal-averaged
values. This smoothing of likely heterogeneous station data may inadvertently promote ‘da’ as
satisfactory over a clustering approach.

There is also likely a relationship between the joint state of the three cluster system and the
magnitude of the precipitation in each cluster. This conditional probability could be introduced to
further nudge correlation between clusters as well as simulation of extreme events on a basin wide
scale.

It is also possible the ad hoc assignment of 3 clusters for each season may not be appropriate.

Cluster analysis provides a means for dividing stations into natural groupings. If there are k* “true”
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groupings, then for k£ < k* the algorithm will not allocate observations in the same naturally
occurring group to different estimated clusters. For k > k*, one of the “true” groups must be
partitioned into subgroups (Hastie et al., 2009). If clustering were to employed on an operational
scale, an method would be needed to minimize consequences of subjectivity. The Gap statistic
automates locating the “kink” by finding the largest gap between two curves: expected and observed
log of dissimilarity within each cluster (Tibshirani et al., 2001). Given the variable behavior of the
elevation boxplots in Figures 2.3a and 2.4a and calculated statistics, ‘¢’ possibly could be a “true”
group while ‘a’ and ‘b’ is the result of unnecessary splitting.

A common criticism of k-NN resampling is that values not seen in history are not produced.
Leader & Buishand 2009 developed k-NN method that produces values beyond the range of history.
AR1 processes yield residuals associated with historical observations, which can then be resampled.
(Sharif and Burn, 2007) allows K-NN resampling with perturbation of the historic data via the
addition of a random component to the individual resampled data points. Furrer and Katz (2008)
have some interesting discussion on hybrid weather generators where an extreme value distribution
can be incorporated to improve tail behavior. This would prove challenging for multiple sites, but
parameters could possibly be estimated using the smoothing and interpolation methods presented

in Kleiber et al. (2012).



Chapter 3

Advancing Ensemble Streamflow Prediction with Stochastic Meteorological

Forcings for Hydrologic Modeling

3.1 Introduction

The National Oceanic and Atmospheric Administration (NOAA) National Weather Service
(NWS) provides river forecasts to support the protection of life and property during flood events,
enhancement of economic interests associated with water and climate, and basic hydrologic infor-
mation ranging from economic to environmental needs. These services are accomplished through
13 U.S. River Forecast Centers (RFCs), where forecast services are modernized by the Advanced
Hydrologic Prediction System (AHPS) program. In the seven-state Colorado River Basin (CRB),
the Colorado Basin River Forecast Center (CBRFC) is the primary official provider of streamflow
forecasts to the U.S. Bureau of Reclamation and others. Currently the CBRFC and the Natural
Resource Conservation Service (NRCS) work together to create seasonal water supply outlooks in
the CRB. Forecasts are generated by each agency and subjectively combined into a joint, official-
forecast (Hartmann et al., 2002). NRCS uses a principle components regression (PCR) technique
that primarily relies on current snowpack and proxies of soil moisture such as antecedent stream-
flow and autumn precipitation (Garen, 1992). At the seasonal time scale, CBRFC implements
two techniques: Statistical Water Supply (SWS), a regression-based method that relates observed
data (e.g., snow, streamflow, precipitation) with future streamflow, and the model-based Ensemble
Streamflow Prediction (ESP). In conJunection with a physically based watershed model, ESP relies

historical meteorological data as possible representations of the future; each historical year is then
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used to simulate a streamflow trace (Day, 1985).

The structure of the AHPS program streamlines the issuance of 30- to 90-day probabilistic
hydrologic forecasts. An official forecast describes a probability distribution using the 10th, 50th,
and 90th percentiles. Ensemble forecasts have gained momentum in preference over determinis-
tic forecasts, as probabilistic forecasts have been found to be more “appropriate and articulate”
(Pagano and Garen, 2005) and offer more skill and relative economic value than deterministic
forecasts (Roulin, 2007; Boucher et al., 2012). Ensemble forecasting is especially promising as the
U.S. Bureau of Reclamation has developed the Mid-Term Operations Model (MTOM) (outlined in
Grantz (2011)). MTOM is an objective, ensemble-based operations model where reservoir opera-
tions planning is engaged in a probabilistic mode. Having started running in experimental mode in
2010, it is a upgrade of their “24-month study”, which helps anticipate monthly inflow volumes to
the major Reclamation-operated reservoirs in the Colorado Basin. More robust operations man-
agement and planning not only aids Reclamation, but can further affect water and energy utilities
such as Denver Water or PacificCorps (Werner, 2011b).

Being largely snowmelt-driven, western U.S.streamflow forecasts have a particular predicament—
the most skillful predictions come from April 1st snow water equivalent (SWE) but many critical
management decisions are made months beforehand during fall and early winter. Promising work
has been developed for forecasting at long lead times before snowpack has accumulated. Statistical
forecast models (Grantz et al., 2005, 2007; Regonda et al., 2006; Bracken et al., 2010) have shown
skill improvement for early winter forecasting using large scale climate predictors. Despite evidence
that large-scale climate variability have important consequences to western hydroclimatology, such
information is only used minimally in operational forecasts (Hartmann et al., 2002) or there is
no structured framework for incorporating such climate information into water-resources decision
making on a basin scale (Grantz et al., 2007).

As ESP is already embedded in the NWS architecture, modifying rather than replacing
ESP has been of great interest in recent years and a variety of techniques have been developed.

Variations included calibrating models linked to ESP based on observed flow errors (Wood and



52

Schaake, 2007), or a reverse-ESP with an ensemble of initial conditions (Wood and Lettenmaier,
2008). Incorporating climate signals allows for weighting of ensemble members, ranging from using
Nino-3.4 indices (Werner et al., 2004) to including multiple indices (Najafi et al., 2012). However,
ESP methodology has shortcomings in that the ensembles created are hindered by limited historical
data, which becomes even more limited with the addition of climatological forecasts. Improvements
over ESP have been developed for short-to-medium (days-to-weeks) range forecasting with the use
of ensemble weather forecasts (see Cloke and Pappenberger (2009) for a review). As these weather
forecasts come from numerical weather models, reliability deteriorates after a medium-range, while
their climate-scale signals may still reduce uncertainty in ESP. Thus ESP still has the advantage
of providing uncertainty in long-range (monthly-to-seasonal) future climate.

We propose applying a weather generator as a downscaling link between climate forecasts and
NWS models, thus preserving hydrology-relevant structures of inputs. This weather generator is a
hybrid nonparametric statistical model that will create a rich variety of weather sequences beyond
that found in climatology. This is a multi-site, multi-variable generator based on Apipattanavis
et al. (2007) and developed in Chapter 2. Precipitation occurrence is modeled with a two-state
Markov chain and weather variables are selected using a k-nearest neighbor (k-NN) resampling
algorithm. Then, these weather sequences can be run through the watershed model using the ESP
framework. Nonparametric methods lend themselves well to hydrologic modeling as corresponding
sub-daily timesteps are associated with resampled days. Additionally, this model does not require
extensive parameter estimation and is thus easily adapted to different watersheds (see Chapter 2
for summary of inflexibility with parametric weather generator models). Preferential resampling
can also be performed based on seasonal climatological forecasts. Apipattanavis et al. (2010)
successfully implemented their weather generator with a crop model to simulate yields. They
assessed likely outcomes and production risks for seasonal forecasts of dry and wet climate. While
linking downscaling models with hydrologic models requires a weather generation step, this linkage
is still in a development process. Weather generator-produced streamflow has been developed for

watersheds in various countries (Canada, France, England, Belgium, Korea, Iran) (Mountain and
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Jones, 2006; Leander et al., 2006; Leander and Buishand, 2009; Khalili et al., 2011; Eum et al.,
2010; Khazaei et al., 2011), but none for the CRB. This study goes beyond the cited work as a) our
methodology produces streamflow forecasts rather than only simulations and b) their work was on
very small watersheds that are dwarfed by those found in the CRB.

The paper is organized as follows. Section 3.2 outlines current and proposed methodology.
Section 3.3 describes the application region and dataset. Section 3.4 presents and compares weather
generator-based forecasts with those from regular ESP. Section 3.5 concludes with summary and

discussion.

3.2 Proposed Framework

3.2.1 Current Methodology

Forecasters currently use components of the NWS River Forecast System (RFS), including
the temperature-index snow model, Snow17 (Anderson, 1973) and the conceptual Sacramento Soil
Moisture Accounting (SAC-SMA) (Burnash et al., 1973) model to simulate streamflow. The model
creates flow by distributing moisture through a soil mantle divided into two zones (upper and lower),
each with tension and free water components (Burnash et al., 1973; Burnash, 1995). Tension water
consists of water so tightly bound to soil molecules that it can only be removed via evapotran-
spiration. Free water is not bound to soil particles and can freely move amidst the upper and
lower zones. About twenty parameters determine direct runoff, surface runoff, interflow, and base
flow in and between these zones. Figure 3.1 summarizes the moisture model. Calibration includes
historical rainfall, temperature, and streamflow, where parameters are tweaked such that model
output matches observed historical streamflow (Larson, 2002). The SNOW-17 model (Anderson,
1973) simulates snow accumulation and melt, and additional routing algorithms (e.g., Lag and K,
Muskingum) distribute streamflow through the channel network. These models are calibrated to
reproduce observed daily flow flow over historical period (in this case, 1981-2010).

The motivation for ESP derives from attempting to capture a more physical basis for esti-
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mating future hydrology. ESP assumes historical meteorological data are representative of possible
future conditions, and uses historic sequences as input to the hydrologic models. Using SAC-SMA
within the ESP framework produces an ensemble of deterministic predictions by using current con-
ditions generated by the snow and soil moisture models to define catchment states at the start of
the forecast. After initializing forecasts with these model states, distinct hydrologic traces can be
generated using meteorological inputs from each year of the historical record. The ensemble prod-
uct is a range of streamflow values with an associated probability. Since ESP is not a stochastic
model, only model forcings uncertainties are captured in the probabilities. The ESP representa-
tion of forecast uncertainty is problematic due to ignoring model calibration and data, which leads
to the tendency to produce overconfident forecasts with narrow forecast distributions (Wood and
Schaake, 2007).

Recently, the NWS forecast system has been updated to be contained within the Community
Hydrologic Prediction System (CHPS) software infrastructure. CHPS is the NWS implementation
of Deltares’s Flood Early Warning System (FEWS). Figure 3.2 simplifies the ESP progression
which occurs inside CHPS. Climatological weather sequences serve a dual role in forcing the model
to produce watershed states (e.g., snow depth, soil moisture, etc) that initialize each forecast, and
serving as meteorological input ensembles during the forecast period. For example, for forecasting
the 2004 runoff season on March 1st, 2004, the model is forced with 6-hourly 2004 historical weather

up to March 1st. Then, however many N years in the forcing record will provide N traces.
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3.2.2 Proposed Improvement

Figure 3.3 outlines the change in ESP with weather generator results; model states will
remain determined by climatology (i.e., forcing record) but the traces themselves come from weather
generator ensembles. In the example from earlier, a forecast starting March 1st, 2004 will still
be initialized by 2004 conditions, but the weather sequences are no longer restricted by the n
years of the historic record. As the weather sequences are formatted similarly to climatology, this
methodology offers ease of implementation over pre- and post-processing methods for ESP ensemble

members. In later sections, these results will be referred to as ‘WG ESP’.

[ Stochastic |
Model Weather
Parameters Generator
(P & T)

4 N\ 4 + N\
Model N Hydrologic Trace
States Generation

G 1 J G )

Y
Climatology Probabalistic
(P & T) Streamflow Forecast

Figure 3.3: ESP flow chart with weather generator input

3.2.2.1 Weather Generation

We refer to Chapter 2 for a detailed explanation of the weather generator. To summarize,
for a given day t, to sample areal-averaged weather vectors from the conditional PDF, f(x; |

DOY, xy—1,5;-1,S), of areal-averaged weather vectors, z;, given the day of year, DOY, yesterday’s
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simulated weather, x;_1, yesterday’s precipitation state, S;_1 and today’s precipitation state. Then,
k-NN resampling occurs based on this conditional PDF. Regarding the multisite methods explored
in Chapter 2, we chose to first proceed with the ‘da’ method. Of the three cluster based methods
explored, only ‘caJoint’ proved competitive to ‘da’ on a basin-wide scale. The ‘da’ method is also
the simplest to implement computationally.

Synthetic weather sequences are often required that are consistent with large-scale, seasonal
climate forecasts. We incorporate the seasonal precipitation forecasts issued by the International
Research Institute for Climate and Society! into our methodology. These forecasts are expressed as
the probability of each seasonal precipitation tercile, above:normal:below (ANB). Then, the k-NN

resampling will undergo preferential resampling based on these probabilities.

3.3 Application Region and Data

3.3.1 Basin Characteristics

With a drainage area of approximately 25,000 miles?, the San Juan River is the second largest
tributary of the Colorado River and runs a distance of 355 miles. Having an area near in size to
West Virginia, drainage areas are about 39, 23, 20, and 17 percents in New Mexico, Colorado,
Arizona, and Utah, respectively. The San Juan river basin includes a wide range of elevations,
from roughly 4000-14,000 ft above sea level, and climate zones, including desert and forest. Winter
snow and rain due to frontal storms and modest rains from convective storms in summer are the
main moisture input to the basin. Precipitation can vary from above 60 inches annually in the
mountain peaks, to below 10 inches in the desert plateau? .

The San Juan Basin contains the Navajo Reservoir, which when filled occupies 15,610 acres,
with a total capacity of 1.7 million acre-feet (MaF) and an active capacity of 1.0 MaF.? Major
tributaries above the dam are the Navajo, Piedra, and Los Pinos Rivers. Of these only the Los Pinos

is dammed (for agricultural purposes). The Animas River is the major tributary below the Navajo

! http://iri.columbia.edu/climate/forecast/net_asmt/
2 http://www.usbr.gov/uc/wcao/rm/sjrip/
3 http://www.usbr.gov/uc/wcao/water/ps/navajo.html


http://iri.columbia.edu/climate/forecast/net_asmt/
http://www.usbr.gov/uc/wcao/rm/sjrip/
http://www.usbr.gov/uc/wcao/water/ps/navajo.html
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Dam and is free flowing. A majority of the reservoir inflow occurs during the April-July runoff
when an average of 0.66 MaF enter the reservoir (USBR, 2008). Operations of the reservoir have
been heavily influenced in the past decade by recommended flow for endangered fish populations
(Holden, 1999), and the basin overall is managed through a complex set of federal and state laws

and river compacts.



Figure 3.4: San Juan Watershed
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3.3.2 Data
3.3.2.1 Weather Variables

The CBRFC divides the San Juan river basin in to 24 sub-basins (Figure 3.4) which are further
divided by elevation bands into two to three zones each, resulting in a total of 66 spatial zones. Based
on observed historical data at weather stations scattered across the basin, the CBRFC has created
mean areal precipitation (MAP) and mean areal temperature (MAT) for each zone (NWSRFS,
NWSREFS) at 6-hourly time steps. These start in October of 1980 through September of 2010.
From the 29 complete years, we calculate daily precipitation totals as well as daily minimum and
maximum temperatures which serve as inputs to our stochastic weather generator. As the weather
generator samples daily values, daily precipitation was defined as the sum of the four values per
day, and minimum and maximum temperatures were defined as the minimum and maximum,
respectively. After running daily weather generation, the corresponding 6-hourly MAP and MAT

are pulled from the daily index for input into the hydrologic model.

3.3.2.2 Streamflow

Historical monthly streamflow values were extracted from
http://wateroutlook.nwrfc.noaa.gov/. Four representative gages were selected for analysis.
BFFU1 (near Bluff, UT) is the last gage on the main stem of the San Juan before entering the
Colorado River. DRGC2 (on Animas River, near Durango, CO) is a headwater gage in the San Juan
mountains. NVRNG is the gage upstream of the Navajo Reservoir. FRMN5 (near Farmington, NM)
is on the San Juan downstream of the Animas confluence. Their locations are displayed in Table
3.1. Figure 3.5 has historical volumes for April-July runoff season for these gages. Of the four,
only DRGC2 has not been adjusted to account for human activities (no need being a headwater

region).? These gages exhibit high yearly variability with respect to their averages and also appear

4 Monthly values have Standard Hydrometeorological Exchange Format (SHEF) codes corresponding to the type
of data. DRGC2 is QCMRZZZ (collected flow), BFFU1 and FRMN5 are QCMPAZZ (adjusted monthly streamflow,
likely from QADJUST program), and NVRN5 is QCMPBZZ (adjusted monthly streamflow, external agency provided
or calculation). Further details concerning SHEF can be found here: http://www.nws.noaa.gov/directives/sym/


http://wateroutlook.nwrfc.noaa.gov/
http://www.nws.noaa.gov/directives/sym/pd01009044curr.pdf
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correlated with each other.

Table 3.1: Characteristics of representative locations (gages)

Gage Lat Long Elevation (ft)
BFFU1 37.1469 -109.8642 4048
FRMNb5 36.7228 -108.2250 5230
NVRN5 36.8244 -107.5919 LY
DRGC2 37.2792 -107.8797 6502

3.4 Results

As described in Section 3.2.1, hydrologic state information is needed before running ESP.
As our study regenerates historical forecasts from 1981-2010 (a practice termed “reforecasting”), a
retrospective continuous historical simulation (“hindcasting”) is performed to generate watershed
initial conditions (states) that can be used to initialize the reforecast ensembles. To evaluate the
performance of the synthetic climatological forcings from a hydrologic simulation perspective, the
reforecast process was run both for ordinary ESP (as described in Figure 3.2) and for the WG ESP.
In contrast to other techniques where only preceding years are used for each year (Bracken et al.,
2010), the entire period of record was used as traces for each year (i.e. 1984 and later years are still
used as traces for the 1984 reforecast). Both keeping and leaving out the forecast year is explored
later. Typically in operational forecasting, model states can be subject to manual adjustments to
reflect current observations or short-term forecasts. Additionally, short term weather forecasts (1
5 day quantitative precipitation forecast (QPF) and 1-10 temperature forecasts) are occasionally
used. Records of these adjustments do not exist for the entire period of study, and are thus not
included in our reforecasts (as established in Franz et al. (2003)).

The period of interest in the RFC runoff forecasts, termed ‘water-supply forecasts’, is the late

pd01009044curr.pdf
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spring and summer (particularly April-July) with issuance at monthly intervals from November 1
to April 1. April to July period runoff forecasts are displayed below while April to May and June
to July sub-seasons appear in Appendix A. Unconditional forecast results (i.e., using climatology)
were generated for the entire 1981-2010 period, and conditional forecasts were generated for one
wet and one dry year. In addition to the verification described below, other measures of analysis

include examining distributional statistics.

3.4.1 Forecast Skill Evaluation

We assessed the ensemble forecasts using a suite of performance metrics. The following

techniques are as defined by Wilks (1995).

3.4.1.1 Rank Probability Skill Score

Ranked probability skill score (RPSS) evaluates model skill in capturing categorical proba-
bilities relative to climatology. As generating ensemble forecasts can be described as a PDF, RPSS
is an appropriate skill measure by its evaluation in probabilistic terms. Forecasts are divided into
multiple categories — here we chose three (terciles, with boundaries at 33rd percentile and 66th
percentile). The categorical probability forecast is obtained as the proportion of ensemble mem-
bers falling in each category. The climatology forecast is the proportion of historical observations
falling in each category; as we are using terciles, the climatological probability is one third. Flows
are divided into k& (here 3) categories for which the proportion of ensembles falling in each cate-
gory constitutes the forecast probability in a given year, (p1,p2,...,px). The vector (di,da, ..., dx)
designates whether the observation falls in the kth category (d = 1) or not (d = 0). The rank

probability score (RPS) is defined as:

2
k 7 7
RPS=> " [[> pi—> 4 (3.1)
i=1 j=1 Jj=1

Then, RPSS is:
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__RPS(forecast)
RPS(climatology)

RPSS =1 (3.2)

RPSS ranges from negative infinity to one. Negative values denote a forecast accuracy worse

than climatology; likewise positive is better than climatology and one is a perfect score.

3.4.1.2 Reliability Diagram

Reliability diagrams graphically represent the performance of probability forecasts, consisting

of a plot of observed relative frequency, o;, as a function of forecast probability, y;. Reliability can

be though of as how well the a priori predicted probability forecast of an event coincides with the a

posteriori observed frequency of the event. Curve of reliability diagrams conveys what the observed

frequency was each time a given probability was forecasted and ideally lies along a 1:1 diagonal.

Plot construction is as follows:

(1)

(2)

(4)

Decide discrete number, I, of forecast values y; (i.e., bins)

Let N; be the number of times each forecast y; is used in the collection of forecasts being
verified. The total number of forecast/event pairs is the sum of these subsample sizes (i.e.,

bin the data):

n=> N (3.3)

For each subsample delineated by the I allowable forecast values there is a relative frequency
of occurrence of the forecast system. Computing the observed subsample relative frequency
is,

1
0; = NZ Z Ok (3.4)

kEN;

where o, = 1 if the event occurs for the kth forecast/event pair and o = 0 otherwise (i.e.,

computing conditional frequency in each bin).

Plot observed frequency o; versus forecast probability y;
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These plots are sensitive to the length of the observed record. Typically bin sizes are split by
deciles, but as the record size of 30 years is small for this type of metric, bin size was increased to
tercile. Reliability is ascertained by predicted probabilities agreeing with the observed frequencies.
If the plotted values (0; as a function of y;) fall above the 1:1 line left of y = 0.5 and below
to the right, it is considered an overconfident model. The opposite would be an underconfident
model. Horizontal trends mean minimal resolution. Points falling entirely above or below indicate
underforecasting and overforecasting bias, respectively. Erratic points can signify lack of skill or

limitations of small sample size. Missing points mean it was a forecast of a rare event.

3.4.1.3 Significance Testing

The two metrics above are applied to each ESP technique separately, thus the results must be
juxtaposed to allow for comparison. Significance testing allows for a more quantitative comparison
of the two methods. In the case of testing two samples of forecast volumes, if the underlying
distribution can be assumed as Gaussian, then significance can be tested with a Student’s t test
(referred to as ‘t test” henceforth). As there is no prior knowledge of the sample means, this would
require a two-sided test where the null hypothesis is that the true difference in means is zero. In
the event normality cannot be assumed, the nonparametric version is the Wilcoxon-Mann-Whitney
rank-sum test. The motivation behind this technique is that outliers that would adversely affect
the t test would have little or no influence. The nonparametric analog of mean is location, which is
a function of rank within n observations. Therefore, the null hypothesis is that both samples have
the same location.

Both tests are two-sided, assume unequal variance, and a test level, «, of 5% is applied. Both
are also unpaired as WG ESP is a larger sample size than ESP by several factors (depending on
the type of simulation, as clarified in later sections). A p-value of 0.05 or lower indicates rejection

of the null hypothesis with 95% confidence.
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3.4.2 Unconditional Forecasts

The first part of the evaluation was a simple visual comparison between reforecasts using ESP
with observed climatology (denoted ‘ESP’) and those using ESP with the unconditional weather
generator output (‘WG ESP’). Examples are shown for BFFU1 in Figure 3.6 and DRGC2 in Figure
3.7. ESP comprises 30 traces (based on observed 6-hour precipitation and temperature sequences
from 1981-2010) whereas WG ESP comprises 90 traces that are synthetically generated based on
the statistical characteristics of the ESP climatology. In Figures 3.6 and 3.7, the red points show
the observed refer to actual historical runoff volumes. Though only two gages are shown, two

general characteristics from the visual comparisons emerge:

(1) For both methods (ESP and WG ESP) the boxplots tend to become tighter as initializa-
tion dates progress from November 1 to April 1. This streamflow prediction phenomenon
is well-known in the western U.S., where the seasonality of the hydrologic cycle causes
initial watershed conditions (snow and soil moisture) to dominate the forecast signal as the

seasonal snow accumulation peak and dry summer season approach.

(2) At longer lead times, WG ESP produces more interannual variability in forecast anomalies

and wider forecast spread, hence greater extremes.

These two characteristics will prove a reoccurring theme in the following results. This second
characteristic becomes especially pertinent in the discussion of forecast reliability.

The next part of the analysis compares the first three moments (mean, standard deviation,
and skew) of the WG ESP vs ESP ensemble forecasts. Figures 3.8 and 3.9 show April to July runoff
moments for two of the representative gages. The three moments form the columns, while first of
month leads times (November 1st to April 1st) form the rows. Results for the other two gages in
are shown in Figures A.2 and A.3, as well as sub-seasons for the two gages displayed in this section
(Figures A.4-A.7). Forecast ensemble means were nearly equivalent, with virtually 1:1 ratios, and
standard deviations were also highly correlated. The WG ESP ensemble skews, however, do not

perform as well in reproducing the ESP statistics. WG ESP skews were almost always positive, and
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at long lead times tended to be larger than ESP skews. Occasionally ESP produces a negatively
skewed ensemble. For BFFU1, skews would better fit a linear regression for June to July than April
to May and in general for April to May this linear regression fit deteriorates as lead time decreases.
DRGC exhibits similar results, and the standard deviation of the DRGC2 WG ESP forecasts have
less agreement with ESP forecasts for April to May as well.

To compare the skill of the ensemble forecasts, yearly rank probability sum scores (RPSS) of
predicted seasonal runoff were calculated for different combinations of lead time and ESP type for
different gages, and their median and mean values are shown in Figure 3.10. As explained in Section
3.4.1.1, positive values represent skill over climatology. Unexpectedly, the median RPSS appears to
be best for both methods on March 1st, not April 1st (when snowpack is more complete), though
for average RPSS, March and April have very similar values. For medians, WG ESP outperforms
standard ESP at later lead times while WG ESP consistently outperforms ESP on average values.
Yearly RPSS differences are shown in Figure 3.11, where positive values denote improvement using
WG ESP and the reverse for negative values. Changes mostly are of small magnitudes where peaks
and valleys roughly correspond to abnormal years seen in Figure 3.5. The largest positive changes
are seen at longer lead times, and largest negative for shorter, but the latter has smaller magnitudes
of change than the former. Further investigation of RPSS can be seen in Figures A.12 and A.13.
While not a strict linear trend, there is a pattern of higher RPSS values for high flow years.

While RPSS describes overall skill, reliability plots delve into more specific behavior and
provide additional insight. Figures 3.12, 3.13, and 3.14 show reliability diagrams for the runoff
season above the 10th, 50th, and 90th percentiles. Section 3.4.1.2 explains how to interpret this
diagrams. Because of the limited historical record, bin sizes were reduced to terciles. Even with
this conservative adjustment, often there are missing points. Across q10 and 90 thresholds, WG
ESP has less missing points than standard ESP. This ties into the higher skew and increased
variability noted at the beginning of this section. For 10, both methods are most accurate for
higher probabilities, with middle probabilities being the most irregular and often lacking resolution.

Lines for 50 have more resolution than q10, as well as there being less missing values. WG ESP
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has a few occurrences of erratic behavior for mid-probabilities at late lead times. Both methods
tend to overforecast, but ESP is slightly more underconfident. Both methods in general lack skill
for q90, with a few exceptions (mostly in the lowest bin).

As outlined in Section 3.4.1.3, significance tests can indicate if two samples are statistically
different. A quantile-quantile (QQ) plot (Figure A.21) indicates normality can be assumed for
unconditional forecasts, though skewness appears in extreme values. Table 3.2 shows p-values from
a two-sided t-test. November and December (except BFFUL in December) are well below 0.05,
thus is a confident rejection of the null hypothesis that ESP and WG ESP are the same. January
and beyond have non-significant values (thus accepting the null) that become larger with each later
month. This table supports the more qualitative assessments thus far — at long leads WG ESP
produces variability unseen in ESP, but as lead times become shorter, the physical model forces

convergence to similar values.
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Figure 3.8: April to July BFFU1 WG ESP vs ESP moments
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Figure 3.9: April to July DRGC2 WG ESP vs ESP moments

Year
- 1981
- 1982
- 1983
- 1984
- 1985
+ 11986
- 1987
- 11988
+ 11989
+ 11990
« 11991
« 11992
+ 11993
- 11994
- 11995
- 11996
« 11997
. 1998
. 1999
- 2000
+ 2001
« 2002
< 2003
« 2004
- 2005
- 2006
- 2007
- 2008
< 12009
< 12010

72



Rank probability sum score

0.25+

0.20+

0.15+

0.10

0.05+

0.00

0.25+

0.20

0.15+

0.10+

0.05

0.00

0.25+

0.20

0.15

0.10

0.05

0.00

-0.05

medianRPSS

meanRPSS

1TNn449

H2O9dd

SNINES

TSNHAN

I I I I I I I I I I I I
11-01 12-01 01-01 02-01 03-01 04-01 11-01 12-01 01-01 02-01 03-01 04-01

Lead

Figure 3.10: April to July median and mean RPSS

Method
— ESP
— WG ESP

73



74

— BFFUI1L
— DRGC2H
— FRMNSL
— NVRN5L

I
Lo
19 Q

AT OOO A

dS3 pue 4S3 DM Uaamag saoualapia

RPSS differences: positive values demonstrate improvement over ESP with

Figure 3.11: Yearly

WG ESP and vice versa for negative



BFFU1 DRGC2

FRMN5

1.0
0.8
0.6
0.4
0.2 1

0.0

TO-TT

1.0
0.8
0.6
0.4
0.2 1
0.0

T0-2¢T

1.0
0.8
0.6

20.4-

L0.2

Loo-

TO-TO

gl.o—
D 0.8
o
00.6-
0.4
0.2
0.0

T0-20

1.0
0.8
0.6
0.4
0.2
0.0

T0-€0

1.0+
0.8
0.6
0.4
0.2 1

0.0

SUANECAYAVAN

AV AN E(AVANAN

TO-¥0

\ \ \ \
0.33 0.67 0.33 0.67

\ \
0.33 0.67

Forecast probability

Method
—— ESP
—— WG ESP

Figure 3.12: Reliability diagram of April to July runoff above 10th percentile

75



BFFU1

DRGC2

FRMN5

1.0
0.8
0.6
0.4
0.2 1

0.0

TO-TT

1.0
0.8
0.6
0.4
0.2 1

0.0
1.0

0.8

0.6
20.4-
L0.2

Loo-
T 10+

D 0.8
o

00.6-
0.4
0.2

0.0
1.0

0.8
0.6
0.4
0.2

0.0
1.0+

0.8
0.6
0.4
0.2 1

T0-¢T

TO-TO

T0-¢0

TO-€0

0.0

A AVAVAVAYAN
NININININT S
D S

TO-70

\ \
0.33 0.67

\ \
0.33 0.67

Forecast probability

Method
—— ESP
—— WG ESP

Figure 3.13: Reliability diagram of April to July runoff above 50th percentile

76



BFFU1 DRGC2

FRMN5

1.0
0.8
0.6
0.4
0.2 1

0.0

TO-TT

1.0
0.8
0.6
0.4
0.2 1
0.0

T0-2¢T

1.0
0.8
0.6

20.4-

L0.2

Loo-

TO-TO

gl.o—
D 0.8
o
00.6-
0.4
0.2
0.0

T0-20

1.0
0.8
0.6
0.4
0.2

0.0
1.0+

0.8
0.6
0.4
0.2 1

T0-€0

0.0

NN

SRARAR

TO-¥0

\ \ \ \
0.33 0.67 0.33 0.67

\ \
0.33 0.67

Forecast probability

Method
—— ESP
—— WG ESP

Figure 3.14: Reliability diagram of April to July runoff above 90th percentile

77



Table 3.2: P-values from two-sided t-tests of April to July runoff

Gage Lead p.value

1 BFFUIL 11-01 0.0069
2 DRGC2H 11-01 0.0002
3 FRMN5L 11-01  0.0022
4 NVRN5L 11-01 0.0014
5 BFFUIL 12-01 0.0117
6 DRGC2H 12-01 0.0005
7 FRMNS5L 12-01  0.0039
8 NVRN5L 12-01  0.0040
9 BFFUIL 01-01 0.0991
10 DRGC2H 01-01 0.1751
11 FRMNSL 01-01  0.0615
12 NVRN5L 01-01 0.0149
13 BFFUIL 02-01 0.1883
14 DRGC2H 02-01 0.0932
15 FRMNb5GL  02-01  0.1414
16 NVRN5L 02-01  0.1002
17 BFFUIL 03-01 0.6046
18 DRGC2H 03-01 0.8749
19 FRMN5L 03-01  0.6845
20 NVRN5L  03-01  0.7740
21 BFFUIL 04-01 0.6657
22 DRGC2H 04-01 0.5279
23 FRMN5L  04-01 0.6823
24 NVRN5L 04-01 0.8904
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3.4.3 Conditional Forecasts

The prior sections demonstrated that the WG ESP was able to generate weather sequences
that were sufficiently consistent with an observed meteorological climatology that they could be
used to force a hydrologic model and achieve streamflow outputs that were consistent with model
outputs driven by the original climatology. The weather generation approach provides an important
capability, that of linking climate expectations to weather data at arbitrary space and time scales,
and in particular at scales of interest for driving a hydrologic model. The remainder of this thesis
illustrates the potential translation of climate forecasts (i.e., differing from the observed climatology)
into weather inputs to a hydrology model and consequently to streamflow outputs. Due to data
processing constraints, the approach could only be applied to a few years of forecasts, thus the
results do not form the basis for a comprehensive skill assessment, but rather a demonstration that
shows the potential value of the approach in the hydrologic forecasting context.

For hydrologic simulations conditioned on climate forecasts, we selected past climate forecasts
based on observed hydrologic outcomes. Past climate forecasts were selected from the IRI website
(discussed in Section 2.3.3.1). Options for wet and dry years were limited to the late 1990’s and the
2000’s, the period covered by the IRI forecasts. Figure 3.5 was used to determine what constituted a
wet or dry year, and 2005 was selected for wet conditions and 2006 for dry. Sub-season flows (Figure
A1) for these years depict April-May being much higher than June—July for 2006. For 2005, June-
July has more of a deficit with respect to the average than April-May. The IRI probability forecasts
were rather conservative, being either 40:35:25 for the wet winter or 25:35:40 for the dry winter
(forecast and verification maps shown by Figures B.1 and B.2 in Appendix B). Additionally, these
forecasts are issued in three month segments, so overlap will occur for longer seasons. 2005 and
2006 were selected as well for having little change between different forecast periods. To start with,
the weather generator was run with these probabilities for November to March. The corresponding
changes in distributional statistics for the weather variables are shown by Figures B.3 and B.4.

Figures 3.15 and 3.16 have probability density functions (PDFs) for the two selected con-
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ditional years. We added an additional PDF where the year in particular being forecasted is not
included as a trace. In Appendix A, Figures A.28 and A.29 more clearly show the difference caused
by leaving the year out (they are Figures 3.15 and 3.16 not categorized by lead time). At long lead
times for 2005, WG ESP’s distribution falls closer to the observed value. As the lead time becomes
shorter, ESP “catches up” and all methods become aligned with observed outcomes. With 2006,
again WG ESP stands out at long lead times (DRGC2 in particular), and all methods fall closer
to the observed line at short leads. However, with a dry year there is a distinct lower bound in
predicted flow. With a wet year, a forecast can benefit by shifting the entire distribution across
a relatively larger range, but for a dry year, increased skill must come from skewing the distribu-
tion toward high probabilities of low flow values and making the upper distribution tail as thin as
possible. In 2005, by late winter the area under the PDF is evenly split by the observed value. In
2006, while the bell of the PDF becomes split, splitting of the density is more variable. Interest-
ingly, March appears to have more skillful PDFs than April. In dry years, it is not unusual for
snowpack to have started melting before April 1st, diminishing the value of SWE as a predictor as
the snowpack declines.

Figure 3.17 has RPSS for the two years. Now, unconditional WG ESP from Section 3.4.2 is
included in the event of a bias and WG ESP conditioned on climate forecasts is now referred to
as ‘condWG ESP’. The unconditional RPSS for these two years highlighted in Figures A.12 and
A .13 offer additional insight into the inherent behavior before conditioning. In 2005, cond WG ESP
consistently out-performs ESP until February, after which both have similar skill. WG ESP falls
in between the two, demonstrating that skill exists without climate conditioning. In 2006, there is
somewhat contradictory behavior compared to the wet year PDFs. The condWG ESP had closer
peaks to the observed line at long leads. Here, ESP performs better at long leads, and January
and later condWG ESPs overtake it. WG ESP tends to have the worst performance, indicating
that condWG ESP may perform better if it did not have to overcome an inherent bias. The tail
behavior in the PDF's likely plays a role in this behavior and may be the reason both methods have

worse skill than climatology for all months. Further analysis could include decomposing RPSS into
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components by delving into bias, resolution, or uncertainty.

QQ plots of the conditional years (Figures A.32 and A.35) have non-Gaussian behavior and
thus motivate non-parametric significance testing (discussed in Section 3.4.1.3). Table 3.3 shows
p-values from Wilcoxon rank sum test for the two years. Tables are quantitative summary of
what is seen in previous figures. Fall and early winter forecasting for a wet year has significant
differences between ESP and WG ESP. For the dry year, while the values are low early on, they
are not significantly low.

Figures 3.18 (2005) and 3.19 (2006) show exceedance probabilities above the 10th, 50th,
and 90th percentiles. A forecast would be considered skillful if the exceedance probabilities are
appropriately shifted with respect to the quantiles. For instance for ql0, a wet forecast should
have probabilities above 90%, and likewise below 90% for dry. In 2005, this metric echoes the
conclusions from above where condWG ESP has the best performance, aided by the already-skillful
WG ESP. In 2006, condWG ESP mostly performs better than the ESP, with exceptions occurring
in November/December for q10 and q90. Ordinary WG ESP clearly performs the worst for q10,

but has more mixed behavior for g50 and q90.
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Table 3.3: P-values from Wilcoxon rank sum test for 2005 and 2006 April to July runoff

Gage

Lead

2005

2006

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

BFFU1L

DRGC2H
FRMNS5L
NVRN5L
BFFU1L

DRGC2H
FRMNSL
NVRN5L
BFFUI1L

DRGC2H
FRMNSL
NVRN5L
BFFUI1L

DRGC2H
FRMNSL
NVRN5L
BFFUI1L

DRGC2H
FRMN5L
NVRN5L
BFFUI1L

DRGC2H
FRMN5L

NVRN5L

11-01

11-01

11-01

11-01

12-01

12-01

12-01

12-01

01-01

01-01

01-01

01-01

02-01

02-01

02-01

02-01

03-01

03-01

03-01

03-01

04-01

04-01

04-01

04-01

0.004

0.001

0.004

0.005

0.001

0.000

0.001

0.002

0.052

0.015

0.055

0.109

0.285

0.292

0.271

0.257

0.796

0.946

0.819

0.790

0.849

0.760

0.876

0.849

0.133

0.079

0.130

0.222

0.272

0.110

0.324

0.629

0.436

0.171

0.482

0.710

0.772

0.619

0.825

0.937

0.819

0.540

0.883

0.879

0.849

0.775

0.879

0.879
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3.5 Summary and Discussion

We have developed an integrated framework which offers significant potential to enhance
streamflow forecasting. Our stochastic weather generator proves a flexible alternative to simply
using the observed meteorological climatology as the basis for ensemble traces, as is the case
with traditional ESP. This framework behaves similarly to ESP and fits well inside the NWS
architecture, but also offers the capability of expanding the ensemble size, adding stochasticity and
incorporating climate forecast conditioning. For the San Juan Basin, we performed reforecasts of
April to July runoff for 1981 to 2010 and compared traditional ESP with our proposed WG ESP.
For unconditional reforecasts, WG ESP adds higher variability and more extremes, especially at
November/December lead times. As expected, both ESP and unconditional WG ESP better predict
observed streamflow values, with lesser bias and reduced spread, as lead time shortened. This
convergence can be attributed to the increasing influence of moisture conditions in the watershed
and is noted in forecasting literature (Franz et al., 2003; Grantz et al., 2005; Wood and Lettenmaier,
2008). We also found that April 1st forecasts tended to have the best skill, but not always compared
to March 1st. Franz et al. (2003) found forecast reliability peaks at March 15th then appears to
become worse, suggesting that sub-monthly lead times would help resolve the skill fluctuations
temporally, beyond the findings of this study.

ESP has limitations in that ensemble members must be pre- or post-processed to account for
climate forecasts and despite this is still limited to the length and values of the historical record.
For unconditional reforecasts WG ESP had 90 traces, which was expanded to 150 for conditional
reforecasts, but could easily have been expanded to a larger ensemble size. When using IRI climate
forecasts to condition the weather generator, we found that the representative wet year, 2005, was
better predicted with conditional WG ESP than with ESP. Performance varied for the dry year of
2006 and differences between ESP and WG ESP were not found to be significant. The absolute
differences in flow that separate a dry year from a normal one are small than those that separate a

wet year from a normal one, thus the dry year predictions may be more difficult to predict (given
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other influences on streamflow, such as the timing and interaction of weather sequences) than wet
years. Climatology is a skillful competitor, hence the overall negative RPSS for both methods in
2006. The IRI forecast for 2006 was also very conservative. It is possible more severe ANB would
be warranted to see a true shift in the distribution. Skill in wet forecasts have more importance
management-wise, especially in arid regions, on seasonal time scales. As discussed in Grantz (2006),
operations on the Pecos River did not change between normal and dry years. However, with skillful
wet forecasts, additional runoff can be managed appropriately for uses such as agriculture, and
unwanted spills to Texas could be minimized.

Additional insights could be found from analyzing daily flow. From such a timeseries, one
could identify patterns of timing and peak for seasonal (or annual) hydrographs. Other variables
of interest include reservoir values, such as storage, or physical conditions, such as soil moisture.
As mentioned earlier, we performed forecasts using only the ‘da’ methodology for the weather
generator. FExploring forecasts derived from the ‘caJoint’ approach may offer a new variety in
hydrologic information.

Future meteorology provides the primary source of uncertainty in ESP forecasts at long lead
times (Day et al., 1992). Possible developments could include exploring the uncertainty in initial
conditions as Wood and Lettenmaier (2008) suggest a trade-off exists between initial conditions
versus improved climate forecast accuracy. Linking these two could provide an “ensembles of
ensembles”.

Conditional streamflow forecasts may require more elaborate approaches than conditioning
winter precipitation on climate forecasts. Pagano and Garen (2005), among others, suggest there
is not a predictable signal between ENSO and the CRB above Lake Powell. For example, El Nino
favors cold April-Junee conditions, thus a forecast based on snowpack alone would underestimate
observed flows. This is attributed to increased runoff efficiency during cold springs. Wood and
Werner (2011) also discuss effects of precipitation anomalies in winter and temperature anomalies
in spring. Developments for the weather generator will include conditional temperature simulations

for the purpose of modeling spring/early summer. As outlined previously, it currently performs
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preferential resampling based on ranked seasonal totals. For temperature, the same can be per-
formed for ranked seasonal temperature averages. Conditional temperature simulations may be of
particular significance as the western U.S. has seen trends in warming and early timing of peak
snowmelt since the 1980’s (see work of McCabe and Wolock (2009) and sources referenced therein).

Lastly, future work can involve the combination of multiple models to improve forecast skill. A
multi-model combination can be developed using a Bayesian framework, and could include forecasts
such as from Bracken et al. (2010). Combining statistical and physical models for streamflow

prediction may hold great promise for water resources management.



Chapter 4

Conclusion

4.1 Summary and Conclusions

The research presented in this thesis demonstrated the applicability of a stochastic weather
generation approach in producing weather sequences specific to 66 subcatchments in the San Juan
Basin. We explored four multisite resampling methods. The first, domain-aggregate (da), resamples
all locations simultaneously. The diverse nature of the basin provided a motivation for testing three
clustering-based approaches in which a clustering of subcatchments was performed on seasonal
precipitation totals for the purpose of deriving generation parameters that are responsive to spatio-
temporal climate variability. Of these, the method ‘caJoint’, compares favorably to the ‘da’ method,
which used Markov transition probabilities to model wet/dry states over the three cluster system.
Both ‘da’ and 'caJoint’ reasonably capture distributional and higher-order climatological statistics.
Testing wet and dry probabilistic 3-category above-normal-below (ANB) forecasts yielded expected
shifts in distributions.

The ‘da’-produced weather generator results were used to provide forecast weather sequences
to the hydrologic SAC-SMA model in an ESP framework within CHPS. Forecast validation involved
running reforecasts of the 1981-2010 period. We found that the WG ESP created heightened
variability at long lead times and produce more extreme values. We saw this manifest in various
measures, such as reliability plots and dissimilarity of skew between WG ESP and ESP. At shorter
lead times, we confirmed the common wisdom that initial conditions (e.g., soil moisture, snowpack)

influence forecasts more than future climatic uncertainty, causing smaller differences between WG
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ESP and ESP.

By matching IRI climate forecasts with historical flow years, we selected 2005 and 2006
as wet and dry years, respectively. The IRI forecast probabilities for precipitation were then
used to condition the weather generator. We found that assigning a conservative wet forecast
yields significant streamflow forecast skill, especially at long lead times (e.g., November/December
initializations for April-July runoff predictions). However, the conservative dry forecast did not lead
to significant improvements in skill relative to ESP. The absolute differences in flow that separate
a dry year from a normal one are small than those that separate a wet year from a normal one,
thus the dry year predictions may be more difficult to predict. Additionally, the ANB forecast may
not be strong enough to cause a significant shift in precipitation and the resulting runoff. As the
overlap between IRI forecasts and the ESP forcing record was limited to about a decade, this part
of the study was limited to a two year sample. While this is not enough to demonstrate real “skill”,
this work is promising as a downscaling link between climate forecasts and streamflow forecasts.
The weather generator can make use of any probabilistic climate forecast, thus is a general method

for use by the community.

4.2 Recommendations for Future Work

Proponents of parametric weather generators typically criticize resampling-based ones for not
producing values unseen in the sampling record. While our weather generator does not produce new
precipitation and temperature, it does produce an unconstrained variety in sequences and spells.
Leander and Buishand (2009) created a two-stage resampling algorithm to ensure that new values
could be produced and ultimately found it did not affect the range of streamflow when applied to
a hydrologic model. Extreme totals were found to be caused from a sequence of moderately large
daily precipitation values rather than one large daily event. However, it may be worth investigating
hybrid methods that integrate semi-parametric sampling methods with the use of an extreme value
distribution to extrapolate beyond historical weather ranges.

Improvement in streamflow forecasts can directly aid operational and planning decisions in de-
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cision support systems (DSSs). DSSs are crucial for systems with complex operations and multiple
objectives, which easily applies to reservoirs such as Navajo. Elsewhere, Grantz (2006) demon-
strated skillful wet forecasts can benefit operations on the Pecos River by reducing unwanted spills
to Texas. There is great potential for assessing ensemble forecast-influenced reservoir operations.
For short-term ensemble forecasts (using weather forecasts) Boucher et al. (2012) demonstrated
gains in terms of economic value, such as electricity production, reduction of spillage, and preven-
tion of inundations. Similar work for long-term forecasts holds great promise for not only the San

Juan, but watersheds within and outside of the Colorado River Basin.
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Appendix A

Additional CHPS Figures

This section contains April-May and June—July sub-season runoff figures corresponding to
their April-July counterparts in Chapter 3, as well as additional figures that were mentioned but

not displayed.

Al Unconditional

Figure A.14 has correlations between historical runoff and ensemble means and medians.
Both methods yield near-identical results. Oddly, correlations are smaller for March than for April
— opposite of the RPSS trend. In Figure A.8, median RPSS is largely negative, median negative
for long lead times. These improve considerably in Figure A.9. Figures A.12 and A.13 attempt
to discern a pattern in values of RPSS with respect to magnitude of runoff. While there is not
a strict linear trend, there appears a type of regime where once a certain magnitude is reached,
RPSS indicates higher skill for both methods. In the differences, however, there is not as strong
of a pattern. Both of these figures contain the unconditional values of the select years (2005 and
2006), contributing additional insight into the trends seen in the conditional figures. Figure A.15
shows WG ESP underforecasts at shorter lead times, but ESP tends to lack points. Figure A.16 has
WG ESP only falling in the highest bin for long leads (again ESP does not show up). For shorter
leads, but have poor resolution in the middle bin. Both methods offer skill in Figure A.17. Figure
A.18 is also mostly skillful, but sometimes lacks skill for the middle bin. Figures A.19 and A.20

have similar conclusions to 3.14, though June to July has more missing points for ESP. Comparing
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Figure A.22 with Figure A.23, the WG ESP for late runoff has more skew. Outliers in the late

runoff may be adversely affecting the test as p-values are smaller in Table A.1 than Table A.2
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Figure A.4: April to May BFFU1 WG ESP vs ESP moments
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Figure A.5: June to July BFFU1 WG ESP vs ESP moments
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Figure A.6: April to May DRGC2 WG ESP vs ESP moments
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Figure A.7: June to July DRGC2 WG ESP vs ESP moments
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Table A.1: P-values from two-sided t-tests of April to May runoff

Gage Lead p.value

1 BFFUIL 11-01 0.0068
2 DRGC2H 11-01 0.0000
3 FRMN5L 11-01  0.0006
4 NVRN5L 11-01  0.0007
5 BFFUIL 12-01 0.0304
6 DRGC2H 12-01 0.0001
7 FRMNSL 12-01  0.0046
8 NVRN5L 12-01  0.0070
9 BFFUIL 01-01 0.2486
10 DRGC2H 01-01 0.1034
11 FRMNSL 01-01  0.1066
12 NVRN5L 01-01  0.0452
13 BFFUIL 02-01 0.4928
14 DRGC2H 02-01 0.0702
15 FRMNSL 02-01  0.2983
16 NVRN5L 02-01 0.3188
17 BFFUIL 03-01 0.5253
18 DRGC2H 03-01 0.6375
19 FRMN5L  03-01 0.7315
20 NVRN5L 03-01  0.6674
21 BFFUIL 04-01 0.6889
22 DRGC2H 04-01 0.9870
23 FRMN5L  04-01 0.8013
24 NVRN5L 04-01 0.8155
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Table A.2: P-values from two-sided t-tests of June to July runoff

Gage Lead p.value

1 BFFUIL 11-01 0.0311
2 DRGC2H 11-01 0.0383
3 FRMN5SL 11-01  0.0363
4 NVRN5L 11-01 0.0173
5 BFFUIL 12-01 0.0168
6 DRGC2H 12-01 0.0299
7 FRMN5L 12-01 0.0185
8 NVRN5L 12-01  0.0097
9 BFFUIL 01-01 0.0749
10 DRGC2H 01-01 0.4747
11 FRMNSL 01-01  0.0919
12 NVRN5L 01-01 0.0154
13 BFFUIL 02-01 0.0967
14 DRGC2H 02-01 0.2585
15 FRMNb5GL  02-01  0.1165
16 NVRNSL 02-01  0.0428
17 BFFUIL 03-01 0.7657
18 DRGC2H 03-01 0.5508
19 FRMN5L 03-01  0.6961
20 NVRN5L  03-01  0.9404
21 BFFUIL 04-01 0.7031
22 DRGC2H 04-01 0.3163
23 FRMN5L  04-01 0.6236
24 NVRN5L 04-01  0.9995
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A.2 Conditional

Similar conclusions can be drawn from the sub-season PDFs as discussed in Section 3.4.3.
Figures A.28 and A.29 demonstrate that leaving out the forecasted year decreases the peak prob-
abilities. This difference is stronger for 2005 than 2006. As established in Section 3.4.3, the
nomenclature now changes for comparison purposes where ‘WG ESP’ refers to unconditional and
‘condWG ESP’ refers to conditional (for figures, not tables). Unlike 2005 RPSS for April to July
(Figure 3.17a), Figure A.30a shows ESP having some negative values (but not condWG ESP). June
to July bounces back to the April to July pattern. Conversely, ESP (but not condWG ESP) has
brief instances of positive RPSS in A.30b. The slope and values of sub-season quantiles in Figures
A.33 to A.37 may have to do with the differences in magnitudes in Figure A.1. Comparing Table
A.3 and A .4, June to July has larger p-values for both years. Figures A.38 and A.40 do not appear
to offer additional insight to their April to July counterpart. June to July 2006 (Figure A.41) shows

WG ESP having the worst performace for three gages for q10 and for all leads except Nov for q90.



BFFU1

DRGC2

FRMN5

NVRN5

i

T0-TT

f

T0-CT

A Wl
AN
AL

T

T0-T0

Probability density
o
|

TR

=

T0-20

3

N

=l

I
v

=

T0-€0

5

N\

N

X

\

A

T0-¥0

L L (N B N R R
0510152025 010.20.30.4050.6

Figure A.24: April to May PDFs for 2005 runoff with vertical line showing 2005 value

1 1 1 1
05 1.0 15 20

Seasonal total, MaF

05 10 15

Method
Climatology
ESP
ESP sans 2005
WG ESP

128



129

BFFU1 DRGC2 FRMN5 NVRN5

T0-TT

S

2 A
4

3 -
S
2 I
o
=
0 —
4
3 -
o
7 T
2 2
‘%1 - Method
c
% Climatology
207 ESP
s ESP sans 2005
83- WG ESP
[a

T0-€0

(2 ()

T0-¥0

/?E?P%?
28l il 2

a4

0 ()
07\ I I I I I I I I I I I I I I I I I
0.0 05 1.0 1.5 2.0 02 04 06 0.0 05 1.0 15 2.0 0.20.4060.81.01.2
Seasonal total, MaF

Figure A.25: June to July PDFs for 2005 runoff with vertical line showing 2005 value



Probability density

A aa

Y 720 ) el

BFFU1

DRGC2

FRMN5

NVRN5

/

T0-TT

i

T0-CT

T0-T0

T0-20

L

L

S k= IS

T0-€0

4

Wy

- f

A

T0-¥0

UL T L
0.20.40.60.81.01.21.4 0.10.15.20.28.30.35

1
0.20.

T
40.60.81.01.2

Seasonal total, MaF

1 1 1 1
0.2 04 06 0.8

Figure A.26: Same as Figure A.24, but for 2006

Method
Climatology
ESP
ESP sans 2006
WG ESP

130



BFFU1

DRGC2

FRMN5

NVRN5

T0-TT

T0-CT

il 4

T0-T0

T0-20

T0-€0

Ty rry

o

i 72l 7 il il

4

T

e

T0-¥0

T T T
0.00.20.40.60.81.01.2

I I I I I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.00.20.40.60.81.01.2
Seasonal total, MaF

1 1 1
0.2 04 06

Figure A.27: Same as Figure A.25, but for 2006

Method
Climatology
ESP
ESP sans 2006
WG ESP

131



0.6

0.4+

0.2

0.0

Tn449g

3.0

2.5

2.0

=
3
|

=
o
|

o
o1
|

o
o
|

2094dd

Method
Climatology
ESP

Probability density
&
|

o
o
|

0.4

0.2 1

0.0

ESP sans 2005
WG ESP

1.2+

1.0

0.8

0.6

0.4

0.2

0.0

SNIAN

\ \
2 3

Seasonal total, MaF

) % %
SNINYH

Figure A.28: April to July PDFs for 2005 runoff, not separated by lead time

132



Probability density

1.5+

1.0

0.5

0.0

Tn449g

2094dd

=
wn
|

[y
o
|

0.5

0.0

2.5

2.0

1.5+

1.0

0.5

SNIAN

Method
Climatology
ESP
ESP sans 2006
WG ESP

Aral

[ [
0.5 1.0 15 2.0 2.5
Seasonal total, MaF

Figure A.29: Same as Figure A.28, but for 2006



S

HZO9dd

Rank probability sum score

ISNINSES

TSNHAN

T T T T T T
11-01 12-01 01-01 02-01 03-01 04-01
Lead

(a) 2005

Method

— ESP

— condWG ESP
— WG ESP

Rank probability sum score

0.00
-0.02
-0.04
-0.06
-0.08
-0.10

Itnd49

0.0
-0.1+
-0.2
-0.3
-0.4
-0.5

HZ09da

0.05

0.00

-0.05

J<k]

1SN

0.04
0.02
0.00
-0.02
-0.04
-0.06

-0.08

1SNIAN

T
11-01

T
12-01

T T T
01-01 02-01 03-01

Lead

Figure A.30: April to May RPSS for the conditional years

(b) 2006

T
04-01

Method
—|ESP

— condWG ESP

— WG ESP

129!



0.8+
0.6
0.4+
0.2+

R e e

0.8+
0 0.6
3
» 0.4+
£
>0.24
7]

S

HZO9dd

o R e R

510

Qo

©0.8-

X06-

C

@

o 0.4+
0.2

00 === = == - mmmmmmeeeeeoooooooooo--

0.8
0.6
0.4+
0.2

ISNINSES

TSNHAN

T T T T T T
11-01 12-01 01-01 02-01 03-01 04-01
Lead

(a) 2005

Method

— ESP

— condWG ESP
— WG ESP

0.00
-0.05
-0.10
-0.15
-0.20
-0.25

Itnd49

0.00
-0.05 -
-0.10 -
-0.15-
£ -0.20
?-0.25-

score

HZ09da

Method
—|ESP

0.00
-0.05
-0.10
-0.15
-0.20
-0.25

Rank probability

— condWG ESP
— WG ESP

ISNINYS

0.00
-0.05
-0.10
-0.15
-0.20
-0.25
-0.30

1SNIAN

T
11-01

T
12-01

T T T T
01-01 02-01 03-01 04-01

Lead

Figure A.31: June to July RPSS for the conditional years

(b) 2006

qel



Quantiles

11-01

12-01

01-01

02-01

03-01

04-01

1TN449

HZO9dd

ISNINEA

SNIAN

I I I I I
2-10 1 2
Theoretical Quantiles

U
-2-10

[—
1 2

Figure A.32: April to July 2005 QQ

Method
ESP
WG ESP

9¢T



11-01

12-01

01-01

02-01

03-01

04-01

2500

2000

1500 +

1000

500+ -~

1TN449

600

500

400

300

200

HZO9dd

2000

Sample Quantiles

1500

1000

500 .

ISNINEA

1400 +
1200
1000
800
600
400

20047

SNIAN

I I I I I
2-10 1 2
Theoretical Quantiles

U
-2-10

1

1
2

Figure A.33: April to May 2005 QQ

Method
ESP
WG ESP

LET



11-01

12-01

01-01

02-01

03-01

04-01

2000

1500

1000

500

1TN449

700
600
500
400
300

2004 77

HZO9dd

2000

Sample Quantiles

1500 +

1000

500

ISNINEA

1200 +
1000
800
600

400

200 .

SNIAN

I I I I I
2-10 1 2
Theoretical Quantiles

U
-2-10

Figure A.34: June to July 2005 QQ

Method
ESP
WG ESP

8¢T



11-01

12-01

01-01

02-01

03-01

04-01

2500

2000

1500 +

1000

500 . .-~

1TN449

800
700
600
500
400 —
300

200+,

HZO9dd

2500

2000

Sample Quantiles

1500

1000 +

500 . .~

ISNINEA

1500

1000

500

SNIAN

I I I I I
2-10 1 2
Theoretical Quantiles

U
-2-10

1

1
2

Figure A.35: April to July 2006 QQ

Method
ESP
WG ESP

6€T



11-01

12-01

01-01

02-01

03-01

04-01

1400 +
1200 +
1000
800
600
400

2007

1TN449

350
300
250+
200
150

100

HZO9dd

1200 +

Sample Quantiles

1000 +
800
600
400

200 /

ISNINEA

800

600

400

200. 4

SNIAN

I I I I I
2-10 1 2
Theoretical Quantiles

R
-2-10

Figure A.36: April to May 2006 QQ

Method
ESP
WG ESP

ovl



11-01

12-01

01-01

02-01

03-01

04-01

1200 +
1000
800
600
400 —

2004 .

1TN449

500

400

300 +

200

100 .-

HZO9dd

1200
1000

Sample Quantiles

800
600
400

2004 .

ISNINEA

600

400

200

SNIAN

I I I I I
2-10 1 2
Theoretical Quantiles

T T
-2-10

Figure A.37: June to July 2006 QQ

Method
ESP
WG ESP

184!



Table A.3: P-values from Wilcoxon rank sum test for 2005 and 2006 April to May runoff

Gage

Lead

2005

2006

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

BFFU1L

DRGC2H
FRMNS5L
NVRN5L
BFFU1L

DRGC2H
FRMNSL
NVRN5L
BFFUI1L

DRGC2H
FRMNSL
NVRN5L
BFFUI1L

DRGC2H
FRMNSL
NVRN5L
BFFUI1L

DRGC2H
FRMN5L
NVRN5L
BFFUI1L

DRGC2H
FRMN5L

NVRN5L

11-01

11-01

11-01

11-01

12-01

12-01

12-01

12-01

01-01

01-01

01-01

01-01

02-01

02-01

02-01

02-01

03-01

03-01

03-01

03-01

04-01

04-01

04-01

04-01

0.002

0.001

0.002

0.002

0.001

0.001

0.001

0.001

0.054

0.011

0.049

0.111

0.189

0.220

0.196

0.205

0.476

0.491

0.479

0.508

0.925

0.804

0.986

0.887

0.150

0.146

0.200

0.227

0.211

0.224

0.288

0.454

0.409

0.384

0.447

0.678

0.781

0.781

0.892

0.922

0.971

0.840

0.931

0.683

0.879

0.775

0.925

0.971
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Table A.4: P-values from Wilcoxon rank sum test for 2005 and 2006 June to July runoff

Gage

Lead

2005

2006

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

BFFU1L

DRGC2H

FRMNS5L

NVRN5L

BFFU1L

DRGC2H

FRMNSL

NVRN5L

BFFUI1L

DRGC2H

FRMNSL

NVRN5L

BFFUI1L

DRGC2H

FRMNSL

NVRN5L

BFFUI1L

DRGC2H

FRMN5L

NVRN5L

BFFUI1L

DRGC2H

FRMN5L

NVRN5L

11-01

11-01

11-01

11-01

12-01

12-01

12-01

12-01

01-01

01-01

01-01

01-01

02-01

02-01

02-01

02-01

03-01

03-01

03-01

03-01

04-01

04-01

04-01

04-01

0.020

0.044

0.026

0.018

0.039

0.071

0.037

0.024

0.256

0.243

0.267

0.284

0.465

0.556

0.501

0.505

0.861

0.968

0.828

0.813

0.834

0.760

0.849

0.895

0.291

0.240

0.316

0.414

0.452

0.341

0.475

0.759

0.534

0.438

0.537

0.753

0.925

0.793

0.904

0.898

1.000

0.728

0.998

0.734

0.790

0.790

0.804

0.917
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Figure A.38: Shifts in 2005 exceedance probabilities (April to May)
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Figure A.40: Shifts in 2005 exceedance probabilities (June to July)
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Appendix B

IRI Forecasts and Resulting Weather Generator Output

This section displays the IRI climate forecasts used for weather generator, as well as basic

distributional statistics of the resulting weather sequences.



IRI Multi-Model Probability Forecast for Precipitation
for February-March-April 2005, Issued December 2004
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Figure B.1: 2005 IRI winter precipitation forecast

671



IRl Multi-Model Probability Forecast for Precipitation Shaded ONLY for "
for January-February-March 2006, Issued December 2005
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Figure B.2: 2006 IRI winter precipitation forecast
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Figure B.3: Distributional statistics of daily weather variables for ANB of 40:35:25
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Figure B.4: Distributional statistics of daily weather variables for ANB of 25:35:40

441



	Introduction
	Background
	Study area and context
	Thesis outline

	Multisite Stochastic Weather Generation Using Cluster Analysis and K-nearest neighbor Time Series Resampling
	Introduction
	Study Region, Application Context and Data
	Methodology
	Cluster Analysis
	Spatial Precipitation Occurrence Model
	K-NN Resampling

	Results
	Clusters
	Unconditional Simulation
	Conditional Simulation

	Summary and Discussion

	Advancing Ensemble Streamflow Prediction with Stochastic Meteorological Forcings for Hydrologic Modeling
	Introduction
	Proposed Framework
	Current Methodology
	Proposed Improvement

	Application Region and Data
	Basin Characteristics
	Data

	Results
	Forecast Skill Evaluation
	Unconditional Forecasts
	Conditional Forecasts

	Summary and Discussion

	Conclusion
	Summary and Conclusions
	Recommendations for Future Work

	 Bibliography
	Additional CHPS Figures
	Unconditional
	Conditional

	IRI Forecasts and Resulting Weather Generator Output


