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Rebecca Smith (M.S., Civil, Environmental, and Architectural Engineering)  

Many Objective Analysis to Optimize Pumping and Releases in a Multi -Reservoir  

Water Supply Network 

 

Thesis directed by Professor Joseph Kasprzyk  

 

Past research has proven the utility of using multiobjective evolutionary algorithms (MOEAs) to 

optimize complex water management problems with many conflicting performance objectives. This 

study expands on the multiobjective optimization methodology by embedding a sophisticated 

RiverWare model in the algorithm search loop. The main challenges beyond linking the algorithm and 

model were due to the model’s long simulation time and the complexity of the model. Addressing the 

simulation time necessitated several creative approaches to ensure efficient but thorough algorithm 

search and intelligent representation of hydrologic variability. Successfully addressing these issues 

confirms that advanced detailed operations models for civil infrastructure and water management can 

be used in MOEA-based multiobjective optimization. 

 The complexity of the Tarrant Regional Water District (TRWD) model offered additional 

challenges through which this study was able to gain further insight into the MOEA-assisted 

multiobjective optimization methodology. Initial objectives focused on system-wide reduction in 

pumping. Through the failure of the initial objectives to account for the performance of individual 

reservoirs, this study recognized that conflicts exist between objectives not only at a sub-system scale 

but also between system components and the broader system-wide objectives. Additionally, the 

incorporation of this information into a second problem formulation, which provided further system 

insights, confirmed that iterative problem definition is crucial to the decision making process. 

 The results obtained with this complex model suggest the need for further refinement of 

problem formulation, but also provided valuable information to TRWD. The implications of climate 
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forecasting and initial conditions within their model have a significant impact on the performance of 

suggested management alternatives, and may contribute to ambiguity in the relationships between the 

decisions made to balance and supplement reservoirs and the performance outcomes. This knowledge 

may inform TRWD’s approach to optimization and decision making in the future and proves the value of 

the intermediate outcomes in multiobjective optimization. 
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Chapter 1 Introduction 

Human works such as reservoirs, diversion channels, and water transfer schemes have 

facilitated the ability to move water to people. Many cities in the Western United States have taken 

advantage of this and created attractive destinations for an urbanizing population (U.S. Census Bureau 

2012), but it is becoming increasingly difficult to meet growing demands in dry climates (Jacobs 2011; 

World Water Assessment Programme 2009). Traditionally, new supply sources were seen as the primary 

means to meet increasing water demands.  However, to incorporate additional supply requires energy 

(for pumping or desalination) and/or infrastructure (e.g. new reservoirs or pipelines). Infrastructure is 

expensive and can take years to build, not to mention potentially be hydrologically impractical (Gleick 

2003; Lund 2012), and the cost of energy has been increasing since the 1970s (World Water Assessment 

Programme 2009), contributing to the ever growing need for creative management solutions in the 

region and beyond (Gober 2013). Adding to the challenges are the as yet unclear implications of climate 

change; in the new reality of nonstationarity, wherein the past is not a reliable predictor of future 

hydrologic conditions (Milly et al. 2008), utilities are pressed to characterize the limitations of their 

current operations and find innovative ways to address deficits. 

The circumstances facing the Tarrant Regional Water District (TRWD) are a perfect example of 

the confluence of these major challenges. TRWD supplies raw water to water treatment plants in the 

North Central region of Texas. The region has faced dry conditions in seven of the last 10 years (Blaylock 

2014a), indicating the possibility that “dry” is the new “average”. Nonstationarity notwithstanding, the 

entire state of Texas has been in a drought of record since 2011 (Texas Water Development Board 

2014a). TRWD owns several reservoirs in the East Texas climate zone, which exhibits relatively stable 

hydrologic inflows, but the large population centers served by the utility are located 50 miles or more 

west of the reliable water sources and up 400 feet of elevation. The energy required to move water to 
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these demands currently constitutes over 99% of TRWD’s annual expenses, and the combination of 

drought and population growth in these areas has motivated the pursuit of additional supply and 

improved operations. TRWD has begun construction of a new pipeline to shore up supply, but 

substantial completion of the infrastructure is not expected before 2020. In the meantime, TRWD faces 

the challenge common to many utilities in the western United States (Western States Water Council 

2012)- they must do what they can to improve the efficiency of their existing storage and delivery 

system under the combined stresses of increasing demands and less reliable supply. 

As is the case for an increasing number of water utilities, modeling plays a major role in helping 

TRWD plan and make decisions. With the advancements in river and watershed management models in 

the last 15 years, the models are now able to provide managers a systematic way to explore “what if” 

hydrologic and demand scenarios and thoroughly vet management alternatives (J. W. Labadie and Baldo 

2000; Matrosov, Harou, and Loucks 2011; Yates et al. 2005; Zagona et al. 2001). TRWD models its 

system in RiverWare, a generalized, detailed operational modeling platform (Zagona et al. 2001). 

RiverWare is often used with a graphical user interface (GUI), in which users can point and click to 

modify their system and visualize system outputs.  The model also operates in so-called batch mode, 

where thousands of simulations can occur without invoking the GUI.  Two examples of how TRWD uses 

its model are short- and long-term pumping and storage planning using stochastic hydrology and 

demands and development of climate forecasting functionality within the model.  

The level of customization now available in models lends itself to very accurate representations 

of infrastructure dynamics and operational policies, creating the opportunity to use these models to 

speak for the actual physical system in suggesting new management alternatives. The historic approach 

to making water management decisions is for a limited number of options to be developed, tested, and 

evaluated based on an aggregated cost function (Harou et al. 2009), creating a situation where a “least 

bad” option is adopted. If instead, managers were able to enumerate their various performance goals 
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and “ask” the system how it could best meet each individual goal while simultaneously considering all 

objectives, the potential of the system (and the shortcomings) could be much better understood, and a 

more informed management decision could be made.  

To be able to take advantage of management models as described above, it is necessary to be 

able to efficiently suggest and evaluate many alternatives. Multiobjective evolutionary algorithms 

(MOEAs) are well suited for this task because simulation models can be embedded within their search 

(Nicklow et al. 2010; Reed et al. 2013) . The MOEA automatically suggests alternatives, feeds them to 

the simulation model, and evaluates each alternative based on model outputs (system response). The 

ability of MOEAs to solve a variety of complex water management problems has been proven in past 

research, of which a few examples follow. In Kasprzyk et al. (2009) an MOEA was used in a 

multiobjective optimization analysis of tradeoffs associated with incorporating various levels of water 

market activity to manage urban water supply risks in Texas. In Mortazavi et al. (2012), researchers 

employed multiobjective optimization to characterize short- and long-term drought security options for 

Sydney, Australia, in light of the conflicting objectives of water security, economic costs, and 

environmental factors. Finally, Giuliani et al. (2014) featured MOEA-based many objective optimization 

in a framework designed to improve individual reservoir operation by replacing traditional rule curves 

with algorithm-assisted policy recommendations that incorporated many objectives and uncertainty. 

Not only is MOEA optimization capable of finding creative solutions to water management 

problems with many conflicting objectives, it also lends itself to a process called “constructive decision 

aiding.”  In constructive decision aiding, problem formulations and system representations are not 

static, but instead evolve as information about the problem (system) is gained through results 

(Woodruff, Reed, and Simpson 2013; Zeleny 1989). The incorporation of iterative problem formulation 

to refine multiobjective optimization results is an example of the concept that decision making can best 

be supported through multiple problem reformulations as new information is discovered and 
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incorporated. The benefits of this strategy were recently shown in the context of MOEA-optimized 

groundwater remediation when the initial problem formulation (set of goals and limitations) did not 

fully account for the creative, yet impractical, ways the algorithm would find to remediate the aquifer. 

By examining the shortcomings of initial results, more information about the remediation process was 

obtained and a better problem formulation developed that produced high quality, feasible results 

(Piscopo, Kasprzyk, and Neupauer 2014).  The TRWD problem is an appropriate testbed through which 

to demonstrate constructive decision aiding because of its high number of complex interactions 

between different system components, and the conflicting management goals identified by the utility.  

The study presented in this thesis builds on Piscopo et al. by including the preferences and feedback of 

real decision makers within the TRWD system throughout the research. 

The following document presents research which combined a powerful RiverWare model, 

MOEA-assisted multiobjective optimization, and close collaboration with a water utility to improve the 

management of an existing complex water storage and distribution system. A preliminary version of the 

decision making framework was presented at the American Geophysical Union Fall Meeting 2013 (Smith 

et al. 2013), and some results were presented at the Environmental Water Resources Institute congress 

in Spring 2014 (Smith et al. 2014).  Results in this thesis will be developed into a journal article with a 

target submission date of Fall 2014.  The thesis is organized as follows: a Case Study in chapter 2 will 

introduce the geographical region, infrastructure, operations, and model for the TRWD utility; chapter 3, 

“Methods”, will describe the details of the multiobjective problem formulations, provide background on 

MOEAs, and explain the mechanics of how the algorithm and simulation were linked; the Results and 

analysis of results are presented in chapter 4; finally, chapter 5 features a discussion of findings, future 

work, and conclusions. 
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Chapter 2 Case Study 

2.1 Tarrant Regional Water District 

This research was performed with the cooperation of the Tarrant Regional Water District 

(TRWD), a water utility located in the Trinity River Basin in North Central Texas, USA. As of 2011, Texas 

has been experiencing its most severe drought on record, and the past 24 months have been classified 

as “severely dry” for much of the Trinity River Basin (Texas Water Development Board 2014b). In 

addition to dry conditions, the state is expected to increase its population 33% between 2010 and 2030, 

with TRWD’s regional population increase over 37% in the same time span (Texas Water Development 

Board 2014a).  

TRWD is a raw water supplier to 30 water treatment plants which span 11 counties. It is the 

second largest water utility in Texas and provides water to over 1.8 million people, including those in the 

densely populated cities of Fort Worth and Arlington. The region served by TRWD lies mostly in the 

North Central Climate Division, with the exception of one reservoir which lies in the East Texas Climate 

Division. The North Central Division is generally more dry and variable while the East Texas Division has 

more reliable reservoir inflows (Texas Water Development Board 2014b), a dynamic that has major 

operational implications for the management of TRWD’s system. Due to the relative abundance of water 

on the eastern end of the system and insufficiency in the west, TRWD is constantly pumping water from 

east to west, which includes up to 400 feet of elevation gain. This pumping requires a considerable 

amount of energy: 300 million kWh in 2012 at a cost of $17.6 million (99.5% of the annual expenditures) 

(Deloitte & Touche, LLP 2013).  

As a large purchaser of power, the pricing scheme for the utility is complex and dictates that 

they buy blocks of electricity months in advance, use what they buy or try to sell it on a spot market, and 

minimize any large variation in energy use lest they incur penalties from the power provider. These 

conditions mean that it is sometimes less expensive to pump more water than is demanded, and the 
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extremely dry conditions of late have set the stage for dramatic  increases in pumping even when it’s 

not required (Blaylock 2013). 

Though TRWD is able to meet all of its customer demands currently, the utility has determined 

that additional water sources will be necessary to accommodate the projected demand growth. Several 

projects are in different stages of exploration, permitting, or design, but the first of these new supplies 

will not be available until at least 2020 (Tarrant Regional Water District 2013a). In the meantime, TRWD 

is actively pursuing methods of operating their current system to increase efficiency (TRC/Brandes 2009) 

while maintaining reliable service, an end to which this research contributes. 

2.2 TRWD Infrastructure 

TRWD owns four reservoirs: Bridgeport and Eagle Mountain at the extreme northwest end of 

the system, and Cedar Creek and Richland Chambers in the east.  Note that while only Cedar Creek is 

technically within the East Texas Division, Richland Chambers is very close to the border and exhibits the 

stability of that climate zone. The utility has operational control over these reservoirs, meaning they 

make decisions about pool elevations and release times and rates. TRWD has contracts to store and use 

water from three reservoirs: Worth, Benbrook, and Arlington, all of which are owned by other entities 

and experience the variability associated with North Central Climate Division. These integrate into the 

TRWD system operations by way of specifications of how much they can store and release per year, how 

much supply they can access, and what pool elevations must be maintained. 

To facilitate the east-to-west supplementation, TRWD currently has over 150 miles of pipeline 

connecting its reservoirs. The latest expansion of the pipeline added the Eagle Mountain Connection 

(EMC) in 2008, which linked the Eagle Mountain reservoir with the two eastern reservoirs, Cedar Creek 

and Richland Chambers. Refer to Figure 2.1 for a schematic of the major existing TRWD infrastructure. 
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Figure 2.1 Map of the major existing infrastructure in TRWD’s system (Tarrant Regional Water District 
2013b). 

2.3 Operations Overview 

Bridgeport, Eagle Mountain, and Worth reservoirs are the only reservoirs in the TRWD system 

that are hydrologically connected by the West Fork Trinity River, and TRWD balances the levels in these 

lakes in the context of the fact that only Eagle Mountain is connected to the pipeline that distributes 

water from East Texas throughout the system. TRWD is the operators of Lake Worth, and is 

contractually obligated to keep its storage level at or above 590 feet above Mean Sea Level (MSL).  

Use of Benbrook and Arlington reservoirs allows TRWD to meet the demands of customers in 

the vicinities of those lakes, and they are constantly supplied water from Richland Chambers and Cedar 

Creek to do so. Throughout the year, TRWD tries to meet specific target elevations for both Benbrook 
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and Arlington to ensure the maintenance of various contractual stipulations that accompany the rights 

to use the reservoirs. Because there is only one pipeline that moves water from the East Texas 

reservoirs to the rest of the system, and the EMC is a recent extension that connects Benbrook and 

Eagle Mountain, there are times when Eagle Mountain is cut off from the supplementation because 

Benbrook is pumping to the east. This occurs during approximately six months of the year when either 

one of the East Texas pumps is down for maintenance or the Rolling Hills water treatment plant requires 

extra water which is contractually required to come from Benbrook.  

The pumps that are responsible for moving water from Richland Chambers and Cedar Creek are 

limited to six possible sets of pump rates that correspond to the most energy efficient way of operating 

them. Demand on the water from these reservoirs is calculated monthly and monthly pumping rates are 

correspondingly set to whichever of these six settings will completely meet that demand. This often 

means that more water than demanded is pumped west, and the “excess” is divided among three 

“terminal storage” reservoirs- Eagle Mountain, Benbrook, and Arlington based on the available room 

and the priority of each reservoir. 

2.4 TRWD Model 

To facilitate long- and short-term planning and exploration of new management policies, TRWD 

uses RiverWare to model its system. RiverWare is a generalized river basin modeling tool that is capable 

of modeling any river basin via features including object-orientation, in-model representation of a wide 

range of physical processes, multiple solvers, and a language to customize operating policy. RiverWare’s 

graphical interface facilitates modeling and communication of system properties, and because the 

software provides the framework for modeling any physical system, utilities and organizations can build 

upon their existing models over time instead of starting from scratch when there are significant 

infrastructure or operations changes (Zagona et al. 2001).  TRWD’s RiverWare model is a detailed, 
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realistic depiction of their system implemented in RiverWare, hereafter referred to as the TRWD model.  

A screenshot of the TRWD model is shown in Figure 2.2. 

 

Figure 2.2 Screenshot of the TRWD RiverWare model in simulation view. 

The TRWD model uses both Accounting and Rule Based Simulation at a daily timestep to mimic 

the utility’s operational policies, relying on over 400 custom rules and functions to precisely execute 

their system management. These rules iteratively evaluate reservoir levels, contractual requirements, 

pump settings, forecasted climate state, and individual accounts’ demands each month to determine 

the necessary daily releases and pump settings to meet 100% of the customer demands. Each reservoir 

has multiple accounts, or “pots” of water from which the various water treatment plants’ demands are 

met so that a detailed balance of water ownership and delivery can be maintained. This functionality 

and organization adds another layer of complexity to the model and system operations; for example, the 

Westside Water Treatment Plant demands can only legally be met by Eagle Mountain, except when the 

Eagle Mountain Connection is delivering water from East Texas to supplement Eagle Mountain, and then 

Westside’s demands may be met from Lake Benbrook, but only from a specific account that is 

contractually limited to delivering 72,500 acre-feet or less per year. The model has evolved over the past 

decade as new contracts, policies, and infrastructure have been added, with Hydros Engineering, Inc. 

providing modeling consulting and support.  
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One of the most substantial policy advancements within the model was the inclusion of the 

climate forecasting functionality, which the consulting firm AMEC studied and implemented in 2010 

(AMEC 2010). It relies on rules which reference transition probabilities developed from historical data to 

forecast what the next month’s climate state will be (dry, average, or wet), and references 

corresponding table values which attempt to accommodate the projected state. This functionality will 

bear on the policy variables, presented in Table 3.1Error! Reference source not found. in the following 

chapter, and is described in detail in Section 4.5. 

For planning purposes, TRWD runs its model from one to three years, and does so using 

stochastic hydrology and demands developed by the engineering firm Hydros. Note that the TRWD 

RiverWare model uses operational rules to run the water resources system, instead of prescribing 

narrowly-defined water releases as decision variables.  Therefore, TRWD’s operations are benefited by 

the use of a suite of stochastic reservoir inflows and customer demands in order to provide a type of 

“stress test” for their operational rules.  The stochastic hydrologic traces created by Hydros are designed 

to capture a full range of possible hydrologic conditions from the historical record.  The utility may run 

up to 100 traces comprised of hydrologic inflows and evaporation rates for each reservoir as well as a 

timeseries of ratios that alter the water treatment plants’ demands.  

The traces were produced using the aforementioned transition probabilities based on reservoir 

inflows from the historic period spanning 1941-2008. The inflows were derived by performing a mass 

balance using a combination of observed monthly streamflow data, inflow records maintained by TRWD, 

and precipitation and temperature readings from the National Oceanic and Atmospheric Administration. 

By referencing the transition probabilities, a Markov-chain method was used to produce 100 sequences 

of dry, average, and wet states.  In other words, the stochastic hydrology assumes that hydrologic 

conditions are fully described by one of three climate states, and transition probabilities were also 

generated to model how the system changes from one state to another.  After the sequences were 
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generated, they were used to resample daily data one month at a time from the historic period spanning 

1980 to 2008 (AMEC 2010). For example, if the sequence of monthly states calls for a dry January that 

was preceded by an average December, the month of daily inflows from a dry January that followed an 

average December is randomly sampled from the historic data. These sequences and resampling can be 

regenerated depending on the chosen starting month and initial climate state of the simulation. For this 

study, the sequences are all generated using a dry October initialization and the simulation is run for 

one year. 
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Chapter 3 Methods 

This chapter describes the methods and tools used in the study. First, there is a detailed description of 

the components of the problem formulation- decision variables (values that a decision maker can 

modify), objectives (performance metrics), and constraints (limits on acceptable performance). Next 

there is a section about the algorithm, the Borg MOEA. Finally, the software link, and Borg 

parameterization, and hydrologic ensemble selection are described. 

3.1 Policy Variables 

This section will begin discussing the many objective decision making framework that was 

created in this research for the TRWD system.  The optimization problem formulation requires decision 

variables, or policy values that TRWD can change to alter system performance.  It should be noted that 

in much optimization literature the term “decision variables” refers to physical actions taken by decision 

makers, such as specific volumes of water to transfer in a given scenario (Watkins Jr. and McKinney 

1997) but for this study the term reflects values within the model that affect how model operational 

policies are carried out. For this reason, the term “decision variables” will be exchanged for the more 

accurate descriptor, “policy variables”. When choosing policy variables for the system, a significant goal 

of this research is to select variables, and therefore management policies, that are actually feasible for 

TRWD to implement.  As such, the policy variables in Table 3.1 below correspond to operational 

variables within the model that TRWD confirmed as values that they are able to adjust unilaterally, 

accompanied by the upper and lower limits within which TRWD is comfortable operating1. The Baseline 

values are those currently in use by TRWD, and the performance to which this study will compare its 

results. The variables are all values found in four different model tables that the custom-written rules 

                                                           
1 Note that the upper and lower ranges of the variables in table Table 3.1 reflect ranges within which 

TRWD is comfortable operating.  Decision variables within MOEA analysis also require upper and lower bounds, 
and these bounds are reflective of what the management policies result in after a series of decision variable 
transformations have been made. 
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refer to in order to carry out operating policy.  The functional roles of these variables within the model 

are explained in the next section. 

Table 3.1 List of 24 policy variables, their physical limits, what they correspond to in the system, and 
whether they are must be in ascending or descending order to properly operate. 

Decision 
Variable 

Lower 
Limit 

Upper 
Limit 

Baseline 
Values Description 

Ascending/ 
Descending 

Bridgeport to Eagle Mountain Balancing 

emzone1 644.1 648.1 644.1 Eagle Mtn pool elevation (ft) Ascending 

emzone2 644.1 648.1 644.1 Eagle Mtn pool elevation (ft) Ascending 

emzone3 644.1 648.1 648.1 Eagle Mtn pool elevation (ft) Ascending 

bpzone1 811 836 821 Bridgeport pool elevation (ft) Ascending 

bpzone2 811 836 826 Bridgeport pool elevation (ft) Ascending 

bpzone3 811 836 836 Bridgeport pool elevation (ft) Ascending 

East Texas to Eagle Mountain Supplementation 

emtrigdry1 641.1 648.1 643.1 Eagle Mtn pool elevation (ft) Ascending 

emtrigdry2 641.1 648.1 645.1 Eagle Mtn pool elevation (ft) Ascending 

emtrigdry3 641.1 648.1 647.1 Eagle Mtn pool elevation (ft) Ascending 

emtrigav1 641.1 648.1 641.1 Eagle Mtn pool elevation (ft) Ascending 

emtrigav2 641.1 648.1 643.1 Eagle Mtn pool elevation (ft) Ascending 

emtrigav3 641.1 648.1 645.1 Eagle Mtn pool elevation (ft) Ascending 

emtrigwet1 641.1 648.1 641.1 Eagle Mtn pool elevation (ft) Ascending 

emtrigwet2 641.1 648.1 643.1 Eagle Mtn pool elevation (ft) Ascending 

emtrigwet3 641.1 648.1 645.1 Eagle Mtn pool elevation (ft) Ascending 

emcrate1 0 200 150 EMC pumping rate (mgd) Descending 

emcrate2 0 200 100 EMC pumping rate (mgd) Descending 

emcrate3 0 200 75 EMC pumping rate (mgd) Descending 

Eagle Mountain to Worth Balancing 

worthlev1 590 594 590 Worth pool elevation (ft) Ascending 

worthlev2 590 594 591 Worth pool elevation (ft) Ascending 

worthlev3 590 594 591.5 Worth pool elevation (ft) Ascending 

worthlev4 590 594 592 Worth pool elevation (ft) Ascending 

worthlev5 590 594 593 Worth pool elevation (ft) Ascending 

worthlev6 590 594 593 Worth pool elevation (ft) Ascending 

 

3.1.1 Bridgeport to Eagle Mountain Balancing (emzones & bpzones) 

Bridgeport and Eagle Mountain reservoirs balance using three elevation zones.  Model rules 

governing Bridgeport to Eagle Mountain releases dictate that whatever zone Bridgeport is in, it must 

release enough water to either put Eagle Mountain in the same zone (if Eagle Mountain is in a lower 

zone) or the next zone up. Consider two scenarios: 1) if Bridgeport is in zone 2 and Eagle Mountain is in 
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zone 1, Bridgeport will release the volume necessary to put Eagle Mountain into zone 2; 2) if Bridgeport 

is in zone 2 and Eagle Mountain is also in zone 2, Bridgeport will release the volume necessary to put 

Eagle Mountain in zone 3. The policy variables used to optimize this dynamic are the elevations in both 

reservoirs that delimit the three zones. 

3.1.2 East Texas to Eagle Mountain Supplementation (emtrigs & emcrates) 

Eagle Mountain reservoir gets supplemented by the East Texas reservoirs via the EMC. The way 

the EMC pumping rate is determined is by either a prediction and distribution of above-average user 

demands (the model rules allow the system to foresee whether the combined demand of Holly and 

Eagle Mountain water treatment plants will exceed 100,000 acre-feet), or by a table which associates a 

demand pumping rate with three different Eagle Mountain reservoir elevation triggers. The model rules 

compare the current Eagle Mountain elevation with values in one of three columns in the 

Configuration.Eagle Mountain Trigger Levels table2. The column referenced corresponds to the model’s 

predicted climate state- dry, average, or wet. For any current elevation, the policy sets the demand to 

be the pumping rate associated with the next highest elevation trigger level.  Consider this scenario: the 

elevation of Eagle Mountain is 642 ft, which falls between two trigger levels, 641 and 643; the model will 

set the EMC demand as the pumping rate associated with the 643 trigger level, and this demand is lower 

than the demand associated with 641, because, logically, the higher the elevation of Eagle Mountain 

reservoir, the less supplementation it needs from East Texas reservoirs. The policy variables used to 

optimize this dynamic are the Eagle Mountain elevation triggers in all three climate states and the 

corresponding EMC pumping rates. 

3.1.3 Eagle Mountain to Worth Balancing (worthlevs) 

The releases from Eagle Mountain to Worth are dependent on the combined percent full of 

Bridgeport and Eagle Mountain, or West Fork percent full (WF%Full). The model contains a table, 

                                                           
2 Italicized table names here refer to names used within the TRWD RiverWare model. 
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Configuration.Worth Maintenance Level, that associates a Worth elevation with a WF%Full. As an 

example, if the combined elevations of Bridgeport and Eagle Mountain produce a WF%Full value of 73%, 

Eagle Mountain will release the volume of water necessary to bring Worth from its current elevation (if 

it is lower) to the elevation associated with the WF%Full equal to 70%. The policy variables used to 

optimize the releases from Eagle Mountain to Worth are the Worth elevations in the table. 

3.2 Model Variables vs. Algorithm Variables 

As demonstrated in the previous section, values for elevation zones and triggers within this 

formulation often need to be generated in an ascending or descending fashion for consistency.  This 

requirement provides a challenge to typical MOEA implementation, since decision variables within the 

optimization are often considered independent.  To ensure that the format of the zone, trigger level, 

and pump rate variables maintains the necessary ascending or descending structure of the 

corresponding model tables, it was necessary to use a range of (0, 1) for the algorithm variables and 

transform those values into model input values, as was demonstrated in previous work (Zeff et al. 2014).  

The relationships are described below: 

Equation 3.1 

𝒎𝒐𝒅𝒆𝒍 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆 = (𝒖𝒑𝒑𝒆𝒓 𝒍𝒊𝒎𝒊𝒕 − 𝒍𝒐𝒘𝒆𝒓𝒍𝒊𝒎𝒊𝒕) ∗ 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆(𝒔) + 𝒍𝒐𝒘𝒆𝒓 𝒍𝒊𝒎𝒊𝒕 

 

Using emzones as an example, which are ascending in the Configuration.Eagle Mountain Zone 

Delineators model table, the following transformations result if the algorithm variables for emzone1, 

emzone2, emzone3 are 0.3, 0.5, and 0.7, respectively: 

𝑒𝑚𝑧𝑜𝑛𝑒1 = (648.1 − 644.1) ∗ (0.3 ∗ 0.5 ∗ 0.7) + 644.1 = 644.5 𝑓𝑡 

𝑒𝑚𝑧𝑜𝑛𝑒2 = (648.1 − 644.1) ∗ (0.5 ∗ 0.7) + 644.1 = 645.5 𝑓𝑡 

𝑒𝑚𝑧𝑜𝑛𝑒3 = (648.1 − 644.1) ∗ (0.7) + 644.1 = 646.9 𝑓𝑡 
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3.3 Objectives, Problem Formulation 1 

The problem formulation for the MOEA requires defined objectives that quantify the system 

performance.  In this section, we discuss the set of objectives chosen for the initial problem formulation.  

These initial four objectives were developed through multiple consultations with both TRWD and 

Hydros, who between them have expertise in the management of the system as well as the 

development and structure of the model. Based on these conversations, it was clear that TRWD’s most 

prominent concerns for the operation of their existing infrastructure centered on timing and volume of 

pumping from East Texas, and the initial objectives reflect those broad concerns. Though the water from 

East Texas meets demands throughout the system, this study focuses on the question “Can the 

interactions between the three westernmost reservoirs be optimized to improve the efficiency and 

stability of pumped supplementation?” The goal of multiobjective optimization is to optimize a vector-

valued objective function, 𝐅(𝐱), with multiple constituent objective functions.  𝐱 is the vector of policy 

variables (see Section 3.1) and Ω is the space of feasible policy variables, as defined in the following 

equations:  

Equation 3.2 

𝐅(𝐱) = (𝑒𝑚𝑐50, 𝑝𝑢𝑚𝑝211, 𝑠𝑝𝑖𝑙𝑙, 𝑝𝑢𝑚𝑝𝑣𝑎𝑟) 

∀x ∈ Ω 

Equation 3.3 

𝐱 = (𝑒𝑚𝑧𝑜𝑛𝑒1, 𝑒𝑚𝑧𝑜𝑛𝑒2, 𝑒𝑚𝑧𝑜𝑛𝑒3,  

𝑏𝑝𝑧𝑜𝑛𝑒1, 𝑏𝑝𝑧𝑜𝑛𝑒2, 𝑏𝑝𝑧𝑜𝑛𝑒3,  

𝑒𝑚𝑡𝑟𝑖𝑔𝑑𝑟𝑦1, 𝑒𝑚𝑡𝑟𝑖𝑔𝑑𝑟𝑦2, 𝑒𝑚𝑡𝑟𝑖𝑔𝑑𝑟𝑦3,  

𝑒𝑚𝑡𝑟𝑖𝑔𝑎𝑣1, 𝑒𝑚𝑡𝑟𝑖𝑔𝑎𝑣2, 𝑒𝑚𝑡𝑟𝑖𝑔𝑎𝑣3,  

𝑒𝑚𝑡𝑟𝑖𝑔𝑤𝑒𝑡1, 𝑒𝑚𝑡𝑟𝑖𝑔𝑤𝑒𝑡2, 𝑒𝑚𝑡𝑟𝑖𝑔𝑤𝑒𝑡3,  

𝑒𝑚𝑐𝑟𝑎𝑡𝑒1, 𝑒𝑚𝑐𝑟𝑎𝑡𝑒2, 𝑒𝑚𝑐𝑟𝑎𝑡𝑒3,  

𝑤𝑜𝑟𝑡ℎ𝑙𝑒𝑣1, 𝑤𝑜𝑟𝑡ℎ𝑙𝑒𝑣2, 𝑤𝑜𝑟𝑡ℎ𝑙𝑒𝑣3, 𝑤𝑜𝑟𝑡ℎ𝑙𝑒𝑣4, 𝑤𝑜𝑟𝑡ℎ𝑙𝑒𝑣5, 𝑤𝑜𝑟𝑡ℎ𝑙𝑒𝑣6) 
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The first objective, emc50, tracks the percentage of time over the simulated year that the 

pumping rate in the EMC is greater than 50 million gallons per day (mgd). Below, the expectation 

notation, E[ ]𝑡, is used to denote average objective value over the ensemble of 𝑡 hydrologic traces, 

and 𝑑 indicates number of days simulated. EM Outlet Demand Tap.Inflow is the slot, or value, on the 

pipeline object within the model that corresponds to the rate of supplementation requested by the 

Eagle Mountain reservoir. 

Equation 3.4 

Minimize: 𝑒𝑚𝑐50(𝐱) = E [∑ (
𝐸𝑀 𝑂𝑢𝑡𝑙𝑒𝑡 𝐷𝑒𝑚𝑎𝑛𝑑 𝑇𝑎𝑝.𝐼𝑛𝑓𝑙𝑜𝑤 1 > 50 𝑚𝑔𝑑

𝑑
)𝑑

𝑖=1 ]
𝑡
 

Utilizing thresholds to quantify performance over time is common in water resources 

management, where information about frequency of failure (or reliability) is often more meaningful 

than the information that is conveyed by the mean or variance of performance (Hashimoto, Stedinger, 

and Loucks 1982). For this system, flow through the EMC is the most energy-intensive supplementation 

since the water has to travel a further distance than when it is delivered to the other reservoirs, and it is 

desirable to minimize the volume of water pumped that far. Additionally, this objective would be highly 

responsive to the effects of the re-balancing of the three westernmost reservoirs through alterations in 

the policy variables. 

The second objective, pump211, is another reliability objective that tracks the percentage of 

time that the total East Texas pumping rate is greater than 211 mgd. The 211 mgd threshold reflects the 

demarcation between low and high volume pumping recognized by TRWD, and the utility would like to 

minimize the frequency of high volume pumping. Below, Richland Chambers Cedar Creek.Outflow is the 

slot within the model that corresponds to the total volume pumped from the two East Texas reservoirs 

and the notation is the same as in Equation 3.4. 

Equation 3.5 

Minimize: 𝑝𝑢𝑚𝑝211(𝐱) = E [∑ (
𝑅𝑖𝑐ℎ𝑙𝑎𝑛𝑑 𝐶ℎ𝑎𝑚𝑏𝑒𝑟𝑠 𝐶𝑒𝑑𝑎𝑟 𝐶𝑟𝑒𝑒𝑘.𝑂𝑢𝑡𝑓𝑙𝑜𝑤 > 211 𝑚𝑔𝑑

𝑑
)𝑑

𝑖=1 ]
𝑡
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While the first two objectives are direct measures of pumping, the third objective seeks to 

penalize unnecessary pumping by monitoring reservoir spills that might occur if reservoirs receive excess 

water. Specifically, objective three is to minimize the total annual rate of spill from four reservoirs: 

Bridgeport, Eagle Mountain, Worth, and Benbrook.  

Equation 3.6 

Minimize: 𝑠𝑝𝑖𝑙𝑙(𝐱) = E[∑ (𝐵𝑟𝑖𝑑𝑔𝑒𝑝𝑜𝑟𝑡. 𝑆𝑝𝑖𝑙𝑙 + 𝐸𝑎𝑔𝑙𝑒 𝑀𝑜𝑢𝑛𝑡𝑎𝑖𝑛. 𝑆𝑝𝑖𝑙𝑙 + 𝑊𝑜𝑟𝑡ℎ. 𝑆𝑝𝑖𝑙𝑙 +𝑑
𝑖=1

𝐵𝑒𝑛𝑏𝑟𝑜𝑜𝑘. 𝑆𝑝𝑖𝑙𝑙)]
𝑡
 

The final objective in the initial problem formulation is pumpvar, which seeks to minimize the 

pumping variance, or the squared deviation from mean pumping rate. As mentioned in Section 2.1, 

TRWD is required by their power provider to maintain stable energy use from day to day and month to 

month so that the electricity company can plan for their load, and failure by TRWD to do so incurs price 

penalties that are more expensive and longer lasting than the choice to pump more water (use more 

energy) than demanded in any given month. Policy Analysis.ET Pumping Daily is the model slot that 

keeps track of the daily East Texas pumping rate. 

Equation 3.7 

Minimize: 𝑝𝑢𝑚𝑝𝑣𝑎𝑟(𝐱) = E[var(𝑃𝑜𝑙𝑖𝑐𝑦 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠. 𝐸𝑇 𝑃𝑢𝑚𝑝𝑖𝑛𝑔 𝐷𝑎𝑖𝑙𝑦]𝑡 

Each evaluation of the TRWD system uses the full complexity RiverWare model.  The custom 

rules within the TRWD model ensure that 100% of demands are met and physical limitations of the 

TRWD system are respected, while the internal operations of the RiverWare software are designed to 

maintain mass balances.  Therefore, it was not necessary to specify any explicit constraints within the 

problem formulation3. 

                                                           
3 In classical operations research optimization modeling, such as linear programming, constraints are 

designed to maintain water balances and represent physical properties within systems.  However, MOEA decision 
support is a simulation-optimization technique, where constraints such as mass balance are handled within the 
simulation model’s internal logic, and not optimization constraints.  Constraints in MOEA formulations are typically 
only used to set acceptable limits on performance, so it is reasonable to have a problem without constraints. 
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3.4 Objectives, Problem Formulation 2 

The four objectives in the first problem formulation reflect performance metrics of the system 

as a whole. In analyzing results from this formulation, it was determined that while the four objectives 

were meaningful system performance measurements, they did not capture all of the dynamics that 

TRWD would be concerned about. The particulars of this outcome are discussed further in Section 4.1, 

but the ensuing additional objectives are described here. 

All three of the additional objectives are reliability objectives that keep track of the pool 

elevations of three western reservoirs: Bridgeport, Eagle Mountain, and Worth. Thresholds were set for 

each reservoir, and the frequency of meeting their respective thresholds is calculated. For these three 

objectives the average or expected value of the traces is not used, but instead the value of the 

maximum failure percentage (or worst performing trace) is evaluated by the algorithm. The Bridgeport 

threshold is 811 ft MSL based on the level below which TRWD experiences release difficulties. The Eagle 

Mountain threshold is 644.1 ft MSL, an elevation necessary for recreation considerations such as boat 

ramps and docks. The Worth threshold is 590 ft MSL which is the elevation that TRWD is legally required 

to maintain per the contract with the City of Fort Worth that allows them to use the reservoir. 

Equation 3.8 

Maximize: 𝑏𝑟𝑖𝑑𝑔𝑒𝑝𝑜𝑟𝑡 − 𝑟𝑒𝑙(𝐱) = 1 − max
𝑡

[∑ (
𝐵𝑟𝑖𝑑𝑔𝑒𝑝𝑜𝑟𝑡.𝑃𝑜𝑜𝑙 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 < 811 𝑓𝑡

𝑑
)𝑑

𝑖=1 ]  

Equation 3.9 

Maximize: 𝑒𝑎𝑔𝑙𝑒𝑚𝑡𝑛 − 𝑟𝑒𝑙(𝐱) = 1 − max
𝑡

[∑ (
𝐸𝑎𝑔𝑙𝑒 𝑀𝑜𝑢𝑛𝑡𝑎𝑖𝑛.𝑃𝑜𝑜𝑙 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 < 644.1 𝑓𝑡

𝑑
)𝑑

𝑖=1 ] 

Equation 3.10 

Maximize: 𝑤𝑜𝑟𝑡ℎ − 𝑟𝑒𝑙 (𝐱) = 1 − max
𝑡

[∑ (
𝑊𝑜𝑟𝑡ℎ.𝑃𝑜𝑜𝑙 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 < 590 𝑓𝑡

𝑑
)𝑑

𝑖=1 ] 
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Table 3.2 summarizes all seven objectives with short descriptions and what formulation it was 

used in. Additionally, it highlights what factors affect each objective’s performance. Note the distinction 

between the first four objectives, which are the result of several contributing factors, and the three 

reservoir reliability objectives, which measure the performance of specific objects within the system. 

 

Table 3.2 List of all objectives, a short description of their purpose, the problem formulation they 
were used in, and what system elements affect them. 

Objective Description Formulation Affected By 

emc50 
Minimize % of time pump rate 
through EMC is > 50 mgd 

1 & 2 
EM elevations, Holly WTP + EM WTP 
demands, demands of other objects to the 
east, East Texas pumping capacity 

pump211 
Minimize % of time ET pumping is 
“high volume”, i.e. rate > 211 mgd 

1 & 2 
All demands from all objects in between 
East Texas and Benbrook, pool elevations 
of Benbrook & Arlington, EMC demand 

spill 
Minimize annual rate of spill from 
BP, EM, Worth, Benbrook 

1 & 2 Elevations of the 4 reservoirs 

pumpvar 
Minimize the variance of the ET 
pumping volume 

1 & 2 
All demands from all objects in between 
East Texas and Benbrook, pool elevations 
of Benbrook & Arlington, EMC demand 

bridgeport-rel 
Maximize % of time BP elevation is 
at least 811 ft 

2 Bridgeport elevation 

eaglemtn-rel 
Maximize % of time EM elevation 
is at least 644.1 ft 

2 Eagle Mountain elevation 

worth-rel 
Maximize % of time Worth 
elevation is at least 590 ft 

2 Worth elevation 

 

3.5 Multiobjective Evolutionary Algorithms 

Because water resources systems serve many purposes and have to consider many aspects of 

performance that often conflict, multiobjective evolutionary algorithms (MOEAs) are useful tools for 

quantifying the tradeoffs between objectives. The algorithms employ the concept of Pareto optimality 

(or non-domination) to compare the performance of solutions across multiple objectives. A solution is 

Pareto optimal if no other solution exhibits improvement in any objective without sacrificing 

performance in another objective. The algorithms are “evolutionary” because the process of defining an 

approximation to the Pareto-optimal set produces new generations of solutions to evaluate based on 
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the traits of previous well-performing solutions (Deb 2001; Coello, Lamont, and Veldhuizen 2007; 

Nicklow et al. 2010; Reed et al. 2013).  

The MOEA used for this research is a state-of-the-art algorithm called Borg (Hadka and Reed 

2013). It is actually a combination of six separate search operators in a framework that uniquely 

incorporates several features introduced by other MOEAs to improve the search of complex solution 

spaces associated with many-objective (more than 3 objectives) problems. Descriptions of the key 

features follow. 

Borg evaluates objective performance based on a concept called epsilon-dominance, first 

developed by Laumanns et al (2002), that allows users of the algorithm to select a resolution for each 

objective that defines significant performance improvement. This is especially useful in multiobjective 

problems since the units and sensitivities of each objective are often very different. The value chosen for 

epsilon tells the algorithm how much improvement must be achieved in any given objective before a 

solution is considered better than another. Intelligent definition of epsilons helps ensure diversity of 

solutions, and effectively limits the size of the archive. Building on this concept, Borg employs epsilon-

progress, a condition that requires the algorithm to maintain a minimum amount of search progress to 

prevent a restart, which triggers an overhaul of the solution population to revive search if stagnation 

occurs. Restarts can also be triggered if at any time in the search process the population-to-archive ratio 

is not within an acceptable range, a modification of a feature called adaptive population sizing 

introduced by Kollat and Reed in their epsilon Non-Dominated Sorting Algorithm II (ɛ-NSGAII) (2006). 

As mentioned above, Borg uses six different recombination operators, to vary the traits of good 

solutions in the formation of new alternatives. With each successive generation, Borg learns which 

operators perform well on a particular problem, and auto-adapts its focus to those operators, giving 

them more opportunity to produce offspring (though Borg does not ever stop using any operators 

completely). This adaptive discovery of key recombination operators is extremely important in that it 
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makes Borg applicable to many different kinds of problems without any prior knowledge about the 

characteristics of the solution space (Hadka and Reed 2013). In tests against other algorithms Borg 

performed well on challenging problems (Hadka, Reed, and Simpson 2012), and its use in several recent 

studies (Kasprzyk et al. 2009; Kasprzyk et al. 2012; Piscopo, Kasprzyk, and Neupauer 2014; Zeff et al. 

2014; Giuliani et al. 2014) recommends it for use in this research. 

3.6 Computational Experiment 

The sophistication of RiverWare and the complexity of the TRWD model have motivated the 

need to find ways to minimize computational load in order to speed up optimization time. In the past, 

multiobjective optimization research with MOEAS has been performed using tens of thousands of 

simulation iterations, made possible thanks to models that evaluated in a matter of seconds or less, e.g. 

Kasprzyk et al. (2009). The time necessary to complete the optimization- that is, the number of 

evaluations multiplied by the time required for each simulation- was further reduced by the use of 

massively parallel supercomputing, allowing the user to develop tradeoff sets in short amounts of time 

(often in several hours). The sections below describe the computational challenges and the steps taken 

to address them. 

3.6.1 Simulation Time 

The TRWD model is set up to very intricately reflect the actual dynamics of the TRWD 

infrastructure and operations, a fact that encourages confidence in the very precise system information 

it provides. This introduces a challenge, however, for MOEA optimization, which relies on several 

thousand iterations of a simulation that takes about 80 seconds to complete.  

The time necessary to run a one year simulation at a daily timestep was diagnosed by task: a full 

cycle of opening the model, simulating the year, and closing the model takes 79 seconds on a computer 

with 32 gb of RAM and 12 cores operating at 2.6 ghz, 77 of which are actual simulation run time. This 

means that the vast majority of the time is consumed simply due to the approximately 200 rules that 
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fire every month, and to substantially decrease the model simulation time would require a modeling 

overhaul (both infeasible and contrary to the goal of using their existing, “legacy” model). Because 

TRWD makes its short-term operational plans (the type this study aims to address) based on the model 

using a daily timestep, and runs each simulation for one, two, or three years, this research would be less 

valuable and less illustrative if it did not use the model comparatively. 

3.6.2 Hydrology 

To ensure that the results of the optimization are not tailored to one specific timeseries of 

hydrologic inflows, but rather are optimal in a range of plausible scenarios, the evaluation of each set of 

policy variables is based on their performance over an ensemble of hydrologic traces. A set of 100 

stochastic traces was provided by Hydros (the development of which is described in Section 2.4), and 

from those, three separate ensembles were chosen.  

Without the option to significantly reduce model simulation time, it became necessary to limit 

the amount of hydrologic variability included in the study. Note that this document refers to stochastic 

hydrologic traces, but each “trace” is actually made up of hydrologic inflows for seven reservoirs, 

evaporation rates for nine surface water bodies (the seven reservoirs plus two wetlands areas), and a 

demand ratio that adjusts the historical average demand for every water customer to match the 

simulated hydrologic conditions. Per Laura Blaylock (Blaylock 2014b), TRWD operates its system to 

manage under dry conditions, but the utility does want to be able to take advantage of large inflows 

when they occur. Furthermore, examining the results of optimization in the context of dry or wet 

hydrology facilitates analysis of what variables are most important in a given climate. To this end, it was 

determined that separate optimizations would be performed for two scenarios– one that tended to 

have more dry hydrology and one that had a larger amount of wet hydrology. However, recall that the 

climate states within the model’s internal forecasting change from season to season.  Therefore it is 

difficult to classify a long-term “wet” hydrological signal from the climate forecasting alone.  To alleviate 
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this issue, we created a new classification system for the long-term hydrology that is named “stressed” 

for hydrologic inflows that tend to be drier, and “surplus” for when there is more water available in the 

system. The method of classifying the traces follows below. 

Classifying the stochastic hydrologic traces into dry, average, or wet based on inflows is not 

straightforward; total annual inflows for the entire system do not necessarily characterize the aspects of 

climate that most significantly impact the operation of this system. Considering the total annual inflows 

for just the West Fork (Bridgeport and Eagle Mountain) reservoirs is more  pertinent to the controlling 

factors, but does not account for the timing of the inflows- a large event can skew an otherwise very dry 

year. In light of these challenges, the idea of characterizing the stochastic flows by how much they 

stressed the system as it is now operated emerged.  In other words, we would use the state variables 

(storages) within the system instead of statistics of the hydrologic inflows. Per TRWD hydrologist Laura 

Blaylock (Blaylock 2014a), the fullness of the West Fork (WF%Full) is an important metric for the 

operation of their system: the model judges whether the system is in drought based on this value, and 

the releases from Eagle Mountain to Worth are based on this value. So, rather than make assumptions 

about how significant any particular hydrologic statistic is for the management of the system, 

characterizing hydrologic traces based on how little water is in the West Fork at the end of the year 

reflects the system’s ability to maintain pool elevations in Bridgeport and Eagle Mountain in response to 

hydrology. Thus three ensembles of traces were chosen based on system response: stressed, surplus, 

and random. 

A one year daily simulation was run for each of the 100 traces using the baseline solution 

(TRWD’s current management scheme) and the timeseries of WF%Full output for each simulation. The 

plot of these 100 timeseries is represented by the solid lines in Figure 3.1.  This model output was 

compared to the actual historical WF%Full for each year from 1980 to 2012, represented by the black 

dotted lines. The WF%Full at the end of each year spans the same range for model output and historic 
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data. Based on this evaluation, the 100 traces were classified by the final simulated WF%Full value, since 

it reasonable to assume that a set of hydrologic conditions that yielded low storage values for the West 

Fork reservoirs would be considered “stressful” to the TRWD system.  

An important consideration when performing water resources modeling is the condition of the 

state variables (e.g. system storage) at the beginning of the model run.  Our work is based on the state 

of the system at the time the model was provided to us in October of 2013, so every simulation begins 

with the West Fork at about 53% full (informally, this means the system is very stressed at the beginning 

of the model run). Though the historic data show that the system starts in a wide range of WF%Full 

states, the range of modeled final states is similar to the range of historically observed final states.  In 

other words, even with a low initial value of West Fork storage, it is possible for the West Fork to fill 

over the course of the modeled year. The fact that the simulation begins with depleted West Fork 

reservoir levels means that the system will be required to send significant East Texas supplementation in 

order to ensure that the western reservoirs do not drop below acceptable storage thresholds very early 

into the simulated year. This makes it more “difficult” for the system to perform well in the objectives 

used for this optimization, but such challenging conditions are a major concern for TRWD and occur 

frequently. 
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Figure 3.1 Plot of the combined percentage full of the Bridgeport and Eagle Mountain reservoirs (also 
known as West Fork Percent Full or WF%Fulll) for 100 stochastic simulations (color) and the observed 
from 1980-2013 (black dotted). 

  The definitions of stressed and surplus traces are based on determining that an average ending 

system state is anything within approximately one standard deviation, or 17.4%, of the mean (73.2%) of 

the 100 traces’ final WF%Full values, resulting in a range of 55% to 90% full on the last simulated day. 

Thus, a stressed trace is any trace which has a final WF%Full value below 55% and a surplus trace is one 

that has a final WF%Full value above 90%. From these subsets of traces, 10 stressed and 10 surplus were 

randomly chosen and used for all stressed and surplus optimization simulations, respectively. The 

random ensemble is made up of 10 traces chosen randomly from the full 100. The resulting ensembles 

are plotted in Figure 3.2. Plots (a) and (b) are the timeseries of WF%Full for each trace, and below (c and 

d) are the West Fork inflows for each trace. The WF%Full stressed and surplus distinctions appear to be 

a reasonable way to characterize the dry conditions that are a high priority for TRWD and the large 

inflows that also need to be accounted for. 
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Figure 3.2 (a) West Fork % Full for the 10 traces in the stressed and surplus ensembles; (b) West Fork 
% Full for the 10 traces in the random ensemble; (c) West Fork inflows for the 10 traces in the stressed 
and surplus ensembles; (d) West Fork inflows for the 10 traces in the random ensemble. 

3.6.3 Embedding RiverWare 

Borg can be implemented in two ways: by embedding a simulation model within the search loop 

or by a loose coupling wherein the simulation and the algorithm execute separately but communicate 

via a standard input/output pipe. In this study, the TRWD RiverWare model is embedded within the Borg 

search loop via a “wrapper” executable written in C. The wrapper feeds solutions generated by Borg to 

RiverWare and objective output from RiverWare back to Borg (see Figure 3.3). This process takes 

advantage of several RiverWare features, perhaps the most important of which is concurrent Multiple 

Run Management (MRM); RiverWare is able to direct multiple simulations, or “runs”, of the same model 

concurrently and distribute them across multiple processors through the MRM. This allowed simulations 

for all 10 hydrologic traces to be run simultaneously from just one instance of RiverWare. By using a 12-

core Windows machine, the time required for 10 simulations was approximately equal to the time 

required for a single run since each run was completed by its own processor. Each trace was loaded 
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from a set of text files called by an input DMI (data management interface) because, though RiverWare 

users commonly take advantage of the Excel input and output compatibility, the ability to reference 

individual text files instead of one (or 10) Excel files prevented competition between processors for file 

access.  

 

Figure 3.3 Depiction of the MOEA search loop with embedded simulation model. 

Another convenient feature of RiverWare is the option to run it in “Batch Mode”, wherein the 

full version of a model is accessed from the command line without opening the user interface. The 

concurrent MRM and all input and output DMIs can be called from a batch script, so full simulations are 

executed as computationally efficiently as possible. 

3.6.4 Borg Parameterization 

For every problem formulation, decision variable ranges and objective epsilons (as well as 

information about constraints, if applicable) must be specified for Borg to operate. Decision variable 

ranges put bounds on the values Borg will suggest and reflect the feasible limits of operational policy 

variables within the model. All policy variables in this study were given a range of [0, 1] to account for 
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ascending and descending requirements, and the variables are transformed before being imported into 

RiverWare. The transformations are described in Section 3.2.  

 Each objective must have a corresponding epsilon precision so that algorithm can evaluate 

when significant improvement in objective function values has been achieved. To ensure meaningful 

optimization results, an epsilon value should be chosen with an understanding of how the values within 

an objective can vary (Laumanns 2002; Kasprzyk et al. 2009). For three of the four reliability objectives, 

emc50, bridgeport-rel, eaglemtn-rel, and worth-rel, the epsilon was set to approximately the change 

that would occur for each additional day of surpassing or failing to meet the respective thresholds, or 

0.003. The fourth reliability objective, pump211, had an epsilon of 0.08, an approximation of 1/12. 

Because the East Texas pumping rates are only set once per month, any performance improvement can 

only be achieved at this increment due to TRWD operational policies. 

Choosing the epsilons for spill and pumpvar required a more creative approach. To determine 

the range and variation of possible values for the objectives, objective outputs for all 100 of the 

stochastic traces (using the baseline values for policy variables) were examined. Because each of the 

optimization runs for this research were using the average over 10 traces to calculate these two 

objectives, the output from the 100 traces was randomly split into 10 sets of 10 values, and the mean of 

each set was taken. Characterizing these 10 means for each objective provided the basis for choosing a 

value of 5000 for both epsilons.  This approach is similar to that of Kasprzyk et al. (2012), which used 

multiple evaluations of a noisy objective function to choose suitable epsilon values. 

For all Borg parameters, default values were used (Hadka, Reed, and Simpson 2012; Reed et al. 

2013), with two exceptions. Both changes were made to account for the long simulation time. The first 

change was to initial population size, which was reduced from 100 to 10 so that the evolutionary search 

would commence more quickly. The second change addressed the time between stagnation checks. 

Recall from Section 3.5 that Borg periodically checks to make sure that a reasonable amount of search 
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progress is being made, and if stagnation is detected, a restart is triggered. The frequency of the checks 

is determined by a variable called “windowSize”, with a default value of every 200 function evaluations, 

or simulation runs. Because of the extreme increase in model simulation time for this study it was 

deemed impractical to complete 200 function evaluations between assessments of search progress. In 

order to increase algorithm responsiveness to potential stagnation, a windowSize of 50 was chosen.   

3.6.5 Choosing an Appropriate Search Duration 

In order to find a high-quality approximation of the Pareto optimal set, MOEA search typically 

takes hundreds, or thousands of function evaluations.  The TRWD model’s long simulation time 

necessitated conservation of computing time through an efficient (but sufficient) number of function 

evaluations on top of the selection of the number of stochastic traces used in each evaluation. After 

implementing all of the time-saving RiverWare options available, the total time required for each 

iteration of 1) generating values of policy variables, 2) invoking RiverWare, 3) running 10 concurrent 

simulations, and 4) returning objective output to Borg, was 105 seconds, which translates to about 800 

function evaluations per day. Because prior diagnostic studies have shown Borg to efficiently and 

consistently converge (Reed et al. 2013; Hadka, Reed, and Simpson 2012), limiting function evaluations 

was not seen as very risky to the optimization outcomes. 

To determine just how few function evaluations could be used, the optimization archive (the 

current set of non-dominated solutions) output was evaluated periodically throughout initial 

optimization runs via an animation function available in AeroVis (visualization software used in this and 

several other MOEA studies) (Kollat and Reed 2007). The ability to watch the search evolve essentially in 

real-time (Kollat and Reed 2006) allowed for a confident decision to limit each round of optimization to 

3000 function evaluations. There were situations where the algorithm happened to be repopulating 

after a restart and not writing the archive file for several dozen to several hundred evaluations past 

3000; in such cases, the final archive is the result of more evaluations, but 3000 (taking about four days 
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on a 12 core computer, running at 2.6 ghz with 32 gb of RAM) was determined to be the minimum. To 

be sure that no regions of the solution space were being missed due to limited function evaluations, 

several rounds were allowed to run for over 7000 evaluations, and while there was some added 

diversity for the extra evaluations, no substantial improvements were achieved. 
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Chapter 4 Results 

This chapter presents analysis of the results of two different multiobjective optimization 

problem formulations as well as the results from an exploration of robustness between dry, wet, and 

hybrid optimization solutions in varied hydrologic conditions. Multiple ways of visualizing results are 

shown, including using RiverWare to provide in depth information about particular solutions, and 

analysis of the impacts of various policy variables are explored. The organization follows the learning 

process experienced by the researchers: initial results; determination of necessary adjustments to the 

set of objectives; results from the reformulation; exploration of how the policy variables impacted 

system performance; and finally, analysis of interactions between policy variables, model factors, and 

hydrologic ensembles.   

4.1 Results: Problem Formulation 1  

Problem formulation 1 evaluated solution performance based on four objectives: frequency of 

large supplementation to Eagle Mountain (emc50), frequency of high-volume East Texas pumping 

(pump211), spill, and East Texas pumping variance (pumpvar). The two plots in Figure 4.1 show the 

results of the optimization in three dimensions, or objectives; because the hydrology was so dry, spill 

was negligible to zero for all solutions.  For both plots, pumpvar is represented by the x axis, emc50 is on 

the y axis, and pump211 is in color.  
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Figure 4.1 (a) The three solutions resulting from the initial stressed optimization plotted in three 
dimensions: emc50 on the y-axis, pumpvar on the x-axis, pump211 in color; (b) the three stressed 
solutions plotted along with the performance of TRWD’s current operations using the same 
orientation as (a). Borg Sol.1 and Baseline labeled. 

Close inspection of plot (a) reveals that the ranges for all three objectives are very small: emc50 

total range is 0.001, pumpvar total range is about 1721 (very small for squared values), and the range for 

pump211 is 0.024. The ideal solution would be dark blue, located in the bottom left corner, and the 

absence of this solution indicates that there are tradeoffs between objectives. Recall that for a solution 

to be nondominated, its performance in one objective cannot improve without degradation in another 

objective.  While each of the three solutions generated by the Borg MOEA is nondominated in one of the 

three objectives, a central goal of multiobjective optimization is to gain information from a maximally 

diverse set of alternatives (Brill et al. 1990), and three solutions with qualitatively equivalent 

performance does not fulfill this goal.  In other words, each of these solutions has low demand on the 

Eagle Mountain Connection (emc50), with a moderate amount of pumping variance, low spill, and a 

moderate amount of high volume pumping (pump211).  They represent, qualitatively, only one way to 

manage the TRWD system. 
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The goal of formulation 1 was to improve the management of the system relative to current 

management practices, hereafter referred to as the baseline strategy.  To highlight just how similar the 

three solutions from the optimization run are, refer to plot (b) of Figure 4.1, which plots the three 

solutions from the optimization run on the same axes as the objectives from the baseline solution.  Note 

that pump211 still plots color; because the baseline has a much higher pump211 than the optimization 

solutions, it is shown in red in the plot. The plotting ranges have increased drastically to accommodate 

the baseline solution. Plot b illustrates that though the algorithm did in fact find solutions that 

outperformed current operations based on the objectives it was given, the solutions are not diverse. 

This outcome suggests in several ways that the problem formulation was insufficient: lack of diversity 

and volume of solutions is indicative that the chosen objectives did not conflict very strongly, and such 

extreme improvement over baseline implied that either TRWD had a baseline management strategy that 

was far from optimal in all objectives, or the objectives were not representative of some important 

system metrics that their operating policy implicitly considers. 

To get more information about the solutions produced by the four objective stressed 

optimization run, they were loaded back into the TRWD model. Here, the value of optimizing using a 

complex RiverWare model is very clear: analysts and decision makers can run the simulation using the 

solutions suggested by Borg and explore detailed system performance beyond what was monitored via 

objectives. For decision makers, especially, it is incredibly informative to be able to visualize the 

implications of various alternatives using model output that they are familiar with (John W. Labadie 

2004). Additionally, this capability greatly facilitates iterative problem formulation, which has been 

shown to increase the effectiveness of optimization in multiple studies (Kasprzyk et al. 2009; Kasprzyk et 

al. 2012; Woodruff, Reed, and Simpson 2013; Piscopo, Kasprzyk, and Neupauer 2014). Indeed, the 

complex, legacy model and the iterative problem formulation framework are crucial to this research; 

analysis of the solutions from the first problem formulation using RiverWare revealed that the 
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improvements in pumping-related objectives were gained by sacrificing storage in the western 

reservoirs, as demonstrated by Figure 4.2. 

 

Figure 4.2 Plot of the Bridgeport reservoir’s pool elevation throughout the year for all 10 stressed 
traces under baseline operations (red) and using Borg Sol.1 (see Figure 4.1) policy variables (blue). 

The pool elevation in the westernmost reservoir, Bridgeport, is plotted for all 10 stressed traces, 

with the baseline solution in red and the Borg solution in blue. By the end of the simulated year, the 

Borg solution has drained Bridgeport by four to seven feet compared to the baseline management 

strategy, depending on the trace, which places the entire western end of the system in a critical 

position. If Bridgeport is struggling to increase its pool elevation, it will not have water available to 

release to Eagle Mountain and causing repercussions for both the elevations of and balancing between 

Eagle Mountain and Worth. Adding reliability objectives for each of these three reservoirs would make 

the problem formulation more representative of TRWD’s management considerations (the pool 

elevations of these reservoirs are legally and operationally critical) and quantify the tradeoffs inherent in 

balancing the reservoirs as well as provide a more nuanced set of criteria for the algorithm to optimize. 

4.2 Results: Problem Formulation 2, stressed & surplus 

A fundamental aspect of successful multiobjective optimization is an intelligent problem 

formulation which can require several iterations (Piscopo, Kasprzyk, and Neupauer 2014). Indeed, the 

iterative process results from the learning inherent in multiobjective optimization, through which 
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decision makers can identify exactly what their performance priorities have been in the past and 

evaluate their importance going forward (Hitch 1960; Liebman 1976; Zeleny 1989). Problem Formulation 

2 adds three reliability objectives to track the pool elevations of reservoirs Bridgeport, Eagle Mountain, 

and Worth, to the four objectives from the initial formulation. The volume and diversity of results 

increased dramatically, providing valuable information about performance tradeoffs inherent in 

managing the system. 

The plot in Figure 4.3 (a) shows the results from both stressed and surplus optimization runs in 

six dimensions (spill was again omitted, though it does factor into the results of the surplus 

optimization). The reservoir reliabilities are on the x-, y-, and z-axes; pump211 is again on color; the 

orientation of the cones reflects the performance in emc50 (pointing straight down is best, straight up is 

worst); large cone size means large pumpvar and small size means less variance. The ideal solution 

would be small, blue, pointed down, in the left corner. The most obvious information conveyed by plot 

(a) is how dramatically the hydrology affects system performance: the solutions from the 10 stressed 

traces are all in high volume pumping more than 60% of the time (yellow to red) and spatially shifted 

away from the ideal reservoir reliability corner by 20-50% as compared with the surplus solutions. Note 

that the stressed results have many solutions with low pumping variance (i.e. they are plotted with a 

small size); because of the scarcity of water in the system, there is not much opportunity for reducing 

the East Texas pumping rate, so though the pumping rate is high, the variability is low. 
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Figure 4.3 (a) plot of results of stressed and surplus solutions in six dimensions: bridgeport-rel, 
eaglemtn-rel, and worh-rel on spatial axes, pump211 in color, emc50 conveyed by cone orientation, 
and pumpvar conveyed by cone size; (b) plot of baseline performances for both stressed and surplus 
ensembles (opaque, boxed cones) against transparent optimized solutions. 

Plot (a) also reveals objective tradeoffs, which result from conflicting priorities, most clearly 

illustrated in the dry results. The curved front located at the “back” of the dry results populates a 

tradeoff between eaglemtn-rel and Bridgeport-rel: improved performance in Eagle Mountain reliability 

cannot be achieved without lowering Bridgeport reliability. Similarly, the separate region of small yellow 

cones in the dry results illustrate that attaining greater than 20% reliability in worth-rel is only achieved 

in solutions where eaglemtn-rel is 0% (meaning Eagle Mountain reservoir never meets the 644.1 ft 

threshold).  

Plot (b) is the same results oriented in the same way as plot (a), but with the baseline solutions 

shown with opaque cones and the Borg solutions plotted transparently.  This was done to easily 

facilitate evaluation of the baseline solutions. The two boxed, opaque cones are the six-objective 

representations of how current operational policies compare to the optimization results. In the case of 

the surplus optimization, Borg found solutions that exhibit performance improvements over the 

baseline in every objective: cones that are smaller (less pumping variance), have colors that are toward 
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blue on the color spectrum (lower frequency of high-volume pumping) and pointed down (infrequent 

large EMC supplementation) positioned closer to the ideal left corner of the reservoir reliabilities exist 

within the optimization results.  

Evaluating the baseline performance in the stressed results in Figure 4.3 plot (b), the only 

objective that did not get vastly improved upon was bridgeport-rel; the baseline achieves almost 100% 

reliability for Bridgeport pool elevation. However, within the optimization results, comparable 

bridgeport-rel performance can be achieved with better performance in emc50, pump211, and pumpvar 

with no degradation in eaglemtn-rel or worth-rel. Below, the results of the results from the stressed and 

surplus optimizations will be discussed separately. 

4.3 Results: Problem Formulation 2, surplus 

In Figure 4.4, the results of just the surplus optimization are presented in the same format as the 

above combined results (note different objective ranges); the optimal point would be small, dark blue, 

and located in the leftmost corner. The surplus optimization was performed to determine how the 

system performance and policy variables change when the West Fork has abundant water supply, which 

is guaranteed through the use of the surplus ensemble traces (refer to Section 3.6.2). The large red and 

green cones at the left edge plotted below show that surplus hydrology makes it possible to achieve very 

high reliability in Bridgeport and Eagle Mountain (impossible in the stressed ensemble results), but at 

the cost of increased high-volume pumping, greater pumping variability, and poor Worth reliability. 

Better performance in worth-rel requires sacrifices in both bridgeport-rel and eaglemtn-rel, but can 

combine with improvements in emc50, pump211, and pumpvar.  



39 
 

 

Figure 4.4 Plot of the results of the optimization using the surplus hydrologic ensemble in six 
dimensions: bridgeport-rel, eaglemtn-rel, and worh-rel on spatial axes, pump211 in color, emc50 
conveyed by cone orientation, and pumpvar conveyed by cone size (spill is not plotted). 

4.4 Results: Problem Formulation 2, stressed 

Here, more detailed analysis of the stressed results is presented, including alternate 

visualization and comparison of specific solutions. The stressed results were obtained by optimizing with 

the stressed ensemble traces, or the traces which proved very dry for the West Fork (refer to Section 

3.6.2). The stressed ensemble corresponds to the climate conditions that are of growing concern to 

TRWD, and for which it is focused on improving its system management. 

4.4.1 Objective Performance 

Figure 4.5, below, presents AeroVis plots of the stressed solutions in exactly the same scheme as 

the combination stressed and surplus plots, but the ranges for the objectives have changed. A small, 

dark blue cone pointed down in the left corner is still the ideal solution. Note that the stressed and 
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surplus results exhibit basically the same shape because the reliability conflicts between the three 

western reservoirs are present regardless of hydrology. This is intuitive because they are hydrologically 

linked; that is, the three reservoirs essentially must share their limited natural inflows, and the shortfall 

between their supplies and demands can only be met by supplementing Eagle Mountain, the middle 

reservoir in the series. The value in visualizing the tradeoffs present in these diverse results, however, is 

that TRWD can make an informed choice about how much performance to sacrifice in one reservoir to 

gain reliability in another. Other conflicts between objectives that were seen in the surplus results are 

present in the stressed results as well: good performance in the emc50 is associated with worse 

eaglemtn-rel; higher frequency of pump211 corresponds to better bridgeport-rel. 
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Figure 4.5 Plot of the results of the optimization using the stressed hydrologic ensemble in six 
dimensions: bridgeport-rel, eaglemtn-rel, and worh-rel on spatial axes, pump211 in color, emc50 
conveyed by cone orientation, and pumpvar conveyed by cone size (spill was not relevant for this 
hydrology). Transparent cones are solutions that violate the pump211 threshold of 65%, while opaque 
cones exhibit high-volume pumping less than 65% of the year. Three labeled solutions are 
representative of different reservoir priorities: Sol.150 has the best worth-rel but poor bridgeport-rel 
and eaglemtn-rel; Sol.87 is the solution that has the highest eaglemtn-rel while meeting the pump211 
condition but poor bridgeport-rel and worth-rel performance; Sol.77 has the highest possible 
bridgport-rel, poor eaglemtn-rel, and medium worth-rel. 

In Figure 4.5, transparency is used to visualize a threshold on the pump211 objective. If TRWD 

was interested in focusing on results that required high-volume pumping less than 65% of the year, the 

opaque cones meet that condition. Within the opaque solutions, there are those which have good 

performance in each of the three reservoir reliabilities: solution 1504, marked in blue, achieves good 

                                                           
4 Here, the number of the solution refers to the index of the solution in AeroVis’s database. The ability to 

reference specific solutions facilitates visualizing the results in a variety of ways, including importing them into 
RiverWare to examine state variables. This approach to naming solutions will be used throughout the rest of this 
document. 
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worth-rel at the expense of both eaglemtn-rel and bridgeport-rel; solution 87, with the red marker, 

performs better in eaglmtn-rel but poorly in both bridgeport-rel and worth-rel; solution 77, in green, has 

the best possible bridgeport-rel performance but mediocre worth-rel and the worst possible eaglemtn-

rel performance. The precise values associated with each of these three results’ performance are shown 

in Table 4.1 below. 

Another way to directly compare the objective performance of these three marked solutions is 

with a parallel plot, a technique shown to be useful for viewing data in many dimensions (Inselberg 

1985; Wegman 1990). Figure 4.6 shows the performance of solutions 150, 87, 150, and 77 in blue, red, 

and green, respectively, along with the baseline (dashed black) against the full archive of solutions in 

grey. As compared to the previous plots, each solution is not a point but rather a line, where the vertical 

position on each of the columns represents the objective function value.  Because of the way the 

objectives are arranged, the optimal solution would be a line straight across the bottom of the plot. 

 

Figure 4.6 Parallel plot showing 7-objective performance of all stressed solutions (grey) with 
prominent comparison of the baseline, Sol.150, Sol.87, and Sol.77 solutions. 



43 
 

Parallel coordinate plots facilitate the comparison of all objectives simultaneously, to show the 

relative strengths and weaknesses of these solutions. Solution 150 outperforms the other three in all 

but two objectives- Bridgeport and Eagle Mountain reliabilities. Solution 87 performs very well in every 

objective except bridgeport-rel and eaglemtn-rel, notably outperforming the other selected solutions in 

worth-rel. Solution 77 performs equivalently to the baseline in all of the reservoir reliabilities, but with 

far better performance in the three other relevant objectives.  In other words, solution 77 had better 

quantitative performance on the pumping objectives (emc50, pump211, pumpvar) suggesting that the 

optimization approach could improve upon the current baseline management.  However, further study 

would have to be undertaken in order to determine, qualitatively, whether solution 77’s management 

strategies were appropriate for all aspects of the TRWD performance.  

More light can be shed on these solutions by examining system components in RiverWare. 

Figure 4.7 is the Eagle Mountain pool elevation over the course of the year simulation. Blue, red, green, 

and black lines represent solutions 150, 87, 77, and baseline, as in the parallel plot above. When the 

storage reliability objectives were added in Formulation 2, an elevation threshold needed to be set in 

order to transform the timeseries of storage into a single quantitative objective for optimization.  

However, it is difficult to do this because there are usually multiple targets of interest to managers.  For 

Eagle Mountain, we optimized using the recreation threshold of 644.1 ft, marked by a solid line in the 

plot. The dashed line at 641.1 ft is the lowest elevation TRWD would tolerate for Eagle Mountain.  
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Figure 4.7 Plot of Eagle Mountain reservoir’s pool elevation under baseline, Sol.150, Sol.87, and Sol.77 
management for all 10 stressed traces relative to recreation and minimum thresholds. 

Solution 77 has Eagle Mountain reliability (with respect to the recreation objective) of 0%, but 

observing the timeseries, the solution puts Eagle Mountain in an unacceptable state very quickly for 

almost all of the 10 traces. Examining the other solutions, we find that solutions’ performance in a 

reliability objective is not a straightforward predictor of its performance in other metrics; solution 150, 

like 77, has 0% reliability for Eagle Mountain, but never fails to meet the 641.1 ft minimum. In fact, 

solution 150 outperforms solution 87 (which has an eaglemtn-rel of 43%) which falls below the 641.1 ft 

threshold in one of the traces, as does the baseline in five traces. 

4.4.2 Connecting Policy Variables and Objective Performance 

Because each decision variable is in fact a management decision, analyzing the values of policy 

variables in the context of objective performance can offer insights into how the system responds to the 

optimized decisions. Table 4.1 presents the 24 decision variable values that comprise each of the three 

solutions marked in Figure 4.5, along with the Baseline values, and objective values for each. The 

following paragraphs will go through the logic behind some insights that were obtained from examining 

how policy variables affect objectives.  
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Table 4.1 Values for all objectives and policy variables for Sol.150, Sol.87, Sol.77, and baseline. 

 

Solution 77 has the best performance in bridgeport-rel (it meets the threshold 93% of the time) 

but unacceptable performance in eaglemtn-rel (it never meets the threshold). In comparison, solution 

87 has a much higher Eagle Mountain reliability of 43% and a relatively high Bridgeport reliability of 
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72%. The values for the three emzones, which tell Bridgeport how much water to release relative to the 

bpzones, are not vastly different, but the values for the bpzone1 and bpzone2 are much higher in 

solution 77. This means that the balance of water between the two reservoirs heavily favors Bridgeport.  

It seems the three bpzones have a much greater impact on both bridgeport-rel and eaglemtn-rel than 

the emzones in stressful hydrology. 

 Something else learned from this detailed comparison of policy variables and objectives 

concerns the system-wide impact of Eagle Mountain supplementation. Solution 87 has three very high 

emcrates (the maximum is 200 mgd), which contribute to the high Eagle Mountain reliability compared 

with the other three solutions. They also factor into the higher frequency of the EMC pumping rate 

being over 50 mgd compared with solution 150 and 77 (worse performance in emc50). However, the 

minor increase in frequency of high-volume pumping (increase in pump211) relative to the extreme 

increase in emcrates suggests that the EMC demand rates do not contribute much to the necessity of 

high-volume pumping, a useful insight for TRWD.  

In Figure 4.6, it was shown that the solutions identified by Borg had significant improvements in 

the system wide pumping objectives compared to the Baseline solution.  The decision variable values in 

Table 4.1 illuminate why these objective function differences occur. The emtrigdry values from the 

baseline solution are all around two to five feet higher than any of those in the Borg solutions. The 

emtrigdry solutions also figure prominently in the stressed optimization results, as discussed in Section 

4.5.  Higher values for emtrigdry mean that the three different supplementation levels (emcrates) are 

triggered sooner in the Borg solutions than in the Baseline.  Earlier triggering has the effect of 

maintaining a much higher level of storage in Eagle Mountain during dry seasons. The earlier triggering 

does not supplement enough to maintain the recreation elevation in the most stressful traces (refer to 

Figure 4.7) but does, on average of the stressed traces, increase the high-volume pumping, emc50, and 

pumpvar quite substantially. 
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Table 4.1 allows us to determine the sensitivity of objective function outputs to changes in the 

decision variable values.  However, RiverWare’s internal rule structure allows users to set up models in 

which triggers are turned on and off depending on climatic and hydrologic conditions.  Therefore, it is 

critically important to diagnose which climate states occurred in our hydrologic traces, to shed light on 

which policy variables are most important in times of stress versus surplus. To address this, the following 

section discusses the model’s climate forecasting procedures as well as the implications of how some 

policy variables are used by the rules.  

4.5 Impact of Climate State Forecast on Policy Variables  

The TRWD RiverWare model has climate forecasting functionality through which it tries to 

predict the climate three months at a time and plan for scarcity or surplus by adjusting some 

management variables based on the predicted climate state, which can be dry, average, or wet.  This 

variation in management is reflected in the policy variables both explicitly and implicitly, and thus the 

predicted climate state affects which policy variables are being used in the stressed and surplus 

ensembles. Recall that the selection of hydrologic ensembles (stressed vs. surplus) relied on the logic 

that certain traces caused reductions in total water availability in the West Fork reservoirs- stressful 

traces were more water scarce than either average or surplus traces (see Section 3.6.2 for more in depth 

discussion). This classification scheme based on longer term system response is different than the 

model’s internal climate state, which is based on a comparison of each month’s inflows to the dry, 

average, and wet categories developed from historic data (the same categories used to produce the 

stochastic traces described in Section 2.4). 

The forecasting is carried out quarterly, so predictions are made every October, January, April, 

and July that set the climate state for the next three months. Two custom rules are responsible for the 

predictions. The first rule determines the actual quarterly climate state from the previous three months 

by evaluating the hydrologic inflows to the West Fork and classifying them as dry, average, or wet 



48 
 

compared with historic observations. The second rule predicts the climate state of the next three 

months based on the actual climate state of the previous three (this eliminates any incorrect predictions 

propagating indefinitely). 

To make the prediction, the rule references a table of transition probabilities (also developed 

from historic data, see Table 4.2) that assigns a probability of staying in the same climate state or 

changing to another depending on which month (quarter) it is currently.  Note that in this comparison, 

the current state for comparison is the “actual” state (so the calculation works even if the forecast is 

incorrect).  Due to the particular way the rules are written, there are only two options for how a 

prediction can turn out: if the probability of remaining in the same state is greater than a 50%, it 

predicts the same state as the actual state of the previous quarter; if there is a less than 50% chance of 

remaining in the previous state, the predicted state defaults to “average” for the next three months. 

Additionally, for a previous state of “average” or wet, the rule references the transition probability from 

the previous quarter to make a prediction (though if the previous state is dry, the current quarter’s 

transition probability is used).  

Table 4.2 Table of quarterly transition probabilities developed from historic data and used by the 
TRWD model to predict climate states. 

 

Because the model is set up to always start in a dry state and the probability of “Dry to Dry” in 

October is 54.5%, the first three months will always be predicted as dry. Even if the actual climate state 

was “wet” for the October through December quarter, the probability of “Wet to Wet” in October 

(because the rule references the previous quarter’s probabilities) is only 31.8%, so the predicted climate 

state defaults to average. By inspecting the last column of Table 4.2, it shows that the only way it is 

possible for the model to predict a wet state is if the actual climate state from April through June was 
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wet, when the July prediction would reference the April “Wet to Wet” transition probability of 50%. An 

inspection of the forecasted climate states for all three sets of hydrology bears this out- even for the 

surplus traces a wet state is only predicted for the last three months of the year simulation. The 

comparison of how frequently each climate state is predicted for each set of traces is shown in Figure 

4.8. The model never predicts a wet state in the stressed traces, and the distribution of climate states in 

the random traces is a compromise between the stressed and surplus frequencies. 

 

Figure 4.8 Bar plot showing relative prominence of dry, average, and wet climate forecast states in 
stressed, surplus, and random ensembles. 

Within the 24 policy variables, nine are emtrigs that are directly related to the forecasted 

climate state. If the state is dry, the emtrigdry values are used; if the state is average, the emtrigav 

values are used; if the state is predicted by be wet, the emtrigwet values are used. If the climate is never 

forecasted to be wet, as is true for the stressed ensemble, the values of the three emtrigwet policy 

variables are never actually used by the model and therefore have no relevance to the performance.  

Another set of policy variables is implicitly affected by the hydrologic traces used for optimization: the 

optimization: the six worthlev variables are associated with particular values of West Fork fullness (see   
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Table 4.3). In the stressed ensemble, the WF%Full never went above 60% under Baseline 

management, making it unlikely to ever reference the worthlev values associated with 80-100% West 

Fork fullness. Similarly, the surplus traces never dipped below 50% in Baseline management, so 

worthlev1 is unlikely to impact the optimization of decisions under surplus conditions. 

4.6 Hybrid Solutions 

The previous sections showed optimization results for both the stressed and surplus scenarios 

considered separately.  The resulting solutions may or may not perform well in a more varied climate, 

though.  Therefore, a final investigation in this thesis is to test the robustness of selected stressed and 

surplus solutions on an ensemble of 10 traces that were chosen randomly from the set of 100 provided 

by Hydros.   Further refinement of the optimization results may be possible by combining some aspects 

of the stressed solution set with decisions from the surplus solution set to account for climate 

variability.  To provide one method for doing this, we created three “hybrid” solutions. The goal of the 

hybrid solutions is to determine whether intelligent combination of decision variable values found to be 

nondominated in the stressed and surplus conditions can produce performance improvements over 

their component solutions in the random trace ensemble.  

4.6.1 Creation of Hybrids 

To create the hybrids, solutions from the stressed and surplus optimizations were chosen and 

combined. They were chosen based on exhibiting similar performance characteristics within their 

respective solution spaces. The three stressed solutions are 150, 87, and 77, which have already been 

analyzed in depth in this chapter, and the corresponding surplus solutions are 172, 224, and 67. Side by 

side plots of the solution spaces with the marked hybrid contributors are shown in Figure 4.9.  
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Figure 4.9 (a) plot of surplus optimization results in same format as Figure 4.4 with transparent 
solutions violating a 20% pump211 threshold and opaque solutions which do fall below 20% high-
volume pumping. Marked and labeled solutions are the surplus solutions chosen as having 
corresponding performance traits to the three marked stressed solutions which were explained in 
Figure 4.5; (b) the same plot as Figure 4.5, shown for comparison of the three solutions selected from 
surplus and stressed to become hybrids. 

To choose the three surplus solutions, a process similar to the one that produced the three dry 

solutions was carried out. First, a threshold of 20% was placed on the pump211 objective to rule out 

solutions that exhibited frequent high-volume pumping.  Second, from the remaining solutions, three 

that mimicked the reservoir reliability compromises discussed in the stressed results (Section 4.4.1) 

were chosen.  The opaque solutions in plot (a) are the surplus solutions that meet the pump211 

condition. The solutions marked in blue (stressed 150 and surplus 172) will become hybrid 1, both 

having the best possible worth-rel performance and the worst eaglemtn-rel performance. Hybrid 2 is 

comprised of the solutions marked in red (stressed 87 and surplus 224), which both meet the threshold 

with improved eaglemtn-rel performance. Hybrid 3 is marked in green (stressed 77 and surplus 67), with 

both contributing solutions performing well in bridgeport-rel but poorly in eaglemtn-rel and worth-rel. 

To illustrate the logic behind creation of hybrid solutions,   
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Table 4.3 shows the values for every decision variable along with the variable’s relevance 

(impact on system operations) in either stressed, surplus, or both ensembles. The first two sets of 

variables, emzones and bpzones, dictate the releases from Bridgeport to Eagle Mountain. They are not 

subject to any alternative functioning as a result of either the model’s climate forecasting policies or 

system response to water scarcity, thus they are relevant in both dry and wet conditions. The second set 

of variables- emtrigdry, emtrigav, emtrigwet- are columns in a single table that are referenced 

depending on whether the model forecasts a dry, average, or wet climate state. The worthlev policy 

variables are the policy variables that determine how much water Eagle Mountain releases to Worth. In 

the model table, each of the elevations corresponds to a West Fork % Full value which has the effect of 

implicitly limiting the relevance of policy variables: in very dry hydrology, the West Fork is unlikely to be 

above 70% full, and when the hydrology is wet, the West Fork will be unlikely to fall below 50% full. 

Because the average climate state is more prevalent in the stressed ensemble, and the dryer, scarcer 

hydrology is of greater management concern for TRWD, the values of policy variables that are relevant 

in both ensembles are taken from the stressed solutions. 
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Table 4.3 Values for policy variables of a selected stressed solution and a selected surplus solution 
that will be combined to create Hybrid 1. Hydrologic relevance denotes whether the policy variable is 
important in stressed hydrology, surplus hydrology, or both (meaning the decision variable is 
important regardless of hydrology). 

 

4.6.2 Hybrid Results in Varied Hydrology 

A parallel plot facilitates straightforward comparisons to show the relative performance of the 

hybrids, their component solutions, and the baseline solution in the random ensemble (the 10 stochastic 

traces chose randomly from the 100 provided by Hydros). Below, Figure 4.10 plots each of the three 

hybrids as solid lines, where blue is hybrid 1 (stressed 150 and surplus 172), red is hybrid 2 (stressed 87 

and surplus 224), and green is hybrid 3 (stressed 77 and surplus 67). The stressed component solutions 
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are plotted in dots and the surplus component solutions are plotted in dash-dots. The baseline solution 

is the black dashed line. The grey lines are solutions optimized specifically to the random ensemble. An 

ideal solution would be a straight line across the bottom. 

 

Figure 4.10 The random ensemble performance of three hybrids, their component stressed and 
surplus solutions, the baseline, and the solution set optimized using the random traces. 

One observation from this plot is that the stressed component solutions and the hybrid 

solutions perform very similarly across all objectives. Since only six of the 24 decision variable values 

differ between the two solutions, this makes sense. It can be concluded, then, that the six policy 

variables that were determined to matter mostly for wetter conditions do not have very much impact 

on the performance of solutions. Referring back to Figure 4.8 that shows the prevalence of climate 

states in each of the three ensembles, and considering that every simulation begins with a WF%Full 
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value of 53% (quite far from the 80% WF%Full at which the last three worthlevs are in use), it seems 

unlikely that the surplus policy variables were used much.  

Both Worth and Eagle Mountain reliabilities show mixed results for hybrids: for eaglemtn-rel, 

hybrids 1 and 3 are outperformed by the surplus solutions, but both hybrids perform equivalently in 

worth-rel; hybrid 2 has almost equivalent eaglemtn-rel performance as its surplus component and then 

outperforms both of its components in worth-rel. There is no clear evidence that hand-picked 

combinations are especially robust in variable conditions. Though hybrid 3 does exhibit either improved 

or equivalent performance to its components in all objectives, it does not exhibit improvement in 

eaglemtn-rel, the objective that saw significant draining of the Eagle Mountain reservoir in the stressed 

ensemble (refer to Figure 4.7), so it is still gaining performance improvement at an unacceptable cost. 

Furthermore, the hybrids did not significantly outperform the grey solutions optimized to the random 

ensemble.  

In Bridgeport reliability, however, the hybrids uniformly outperform the surplus components. 

For the surplus-specific optimization, the increased hydrologic inflows to Bridgeport and Eagle Mountain 

resulted in relatively high emzones (that determine releases from Bridgeport and in turn necessitate less 

East Texas supplementation) which end up draining Bridgeport in a more varied climate (refer to Table 

4.1). While it was the bpzones that had the most impact on Bridgeport and Eagle Mountain reliability in 

the stressed ensemble, in a more varied climate, emzones seem to be larger factors. This insight makes 

a case for developing climate-specific operations to balance Bridgeport and Eagle Mountain, a task that 

TRWD is considering (Blaylock 2014c). 
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Chapter 5 Concluding Remarks 

This chapter highlights some main prominent points of discussion, including ways to expand the 

scope of this study and address open questions in the future, and then ends with a conclusion to 

summarize the undertaking described in the previous chapters. 

5.1 Discussion and Future Work 

Water basin planning in the United States has traditionally been done using cost-benefit 

analysis, in which there is a single utility function for the whole system or basin that quantifies the 

basin’s benefits (Harou et al. 2009). In contrast, this thesis research uses a many objective approach that 

evaluates performance based on multiple, separate objectives. Initially, the four objectives used to 

optimize were defined through system-wide performance goals- reduce pumping, reduce pumping 

variability, and monitor spill so that pumping is not done wastefully.  The initial problem formulation 

was constructed in such a manner to reflect TRWD’s goal to improve the efficiency of their entire 

system.  However, the initial results (Section 4.1), demonstrated that the initial formulation only yielded 

a small number of solutions that were qualitatively very similar.  In other words, there was essentially 

only one management solution in light of the chosen objectives. While a lack of diverse alternatives does 

not inherently mean optimization failure, it does suggest that the objectives do not conflict strongly. 

Furthermore, by performing an in-depth investigation of the three initial stressed results in RiverWare, 

we discovered that the solutions penalized individual reservoirs in ways that would have been difficult 

to predict a priori.  Similar to a theoretical discussion of the pitfalls of aggregated objective functions 

expressed in (Franssen 2005), optimizing only on system-wide objectives did not consider the distinct 

system components that could suffer if not included in performance evaluation. 

The results from the second problem formulation, which included reservoir reliability objectives, 

expanded the set of management alternatives and revealed performance conflicts not only between 

individual reservoirs, but between the individual reservoirs and the system-wide goals as well.  The new 
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problem formulation greatly expanded the number of objectives considered, from four to seven.  Our 

successful use of such a high dimensional formulation was enabled by advances in search technology, 

such as the auto-adaptive methodology of the Borg MOEA.  Recent algorithm comparisons have shown 

that the Borg algorithm performs well for up to 10 objectives (Reed et al. 2013).  Therefore, the results 

demonstrate an opportunity for water managers to expand their problem formulations in order to 

reflect the realization that priorities of individual components (reservoirs, water users, etc.) are not 

necessarily accounted for when trying to improve the performance of a system as a whole.  Innovative 

many objective formulations, such as used in this thesis, can help shed light on such issues. 

This study’s iterative process of defining objectives is an example of how MOEA-assisted 

multiobjective optimization enables constructive decision aiding (Hitch 1960; Liebman 1976; Zeleny 

1989). Constructive decision aiding is a concept in which problem formulations are discovered as part of 

the decision support process itself.  Such an approach may mean that “intermediate” problem 

formulations (such as Problem Formulation 1 in this research) are presented during the process.  While 

the results of intermediate problem formulations may be infeasible to implement as management 

strategies, they uncover implicit objectives that managers may not have been aware of, or important 

aspects of problem definition that had not been considered, and offer opportunity for revision. The 

examination of the initial results in objective space and then in model space through RiverWare plots 

revealed the importance of including reservoir levels in performance evaluation. While TRWD has 

inherently accounted for the reservoir elevations in its decisions, the need to explicitly measure their 

performance was information gained through the specific context provided by optimization results.  

Using the results of the first optimization to suggest additional objectives for the second 

problem formulation speaks to the iterative and complex nature of human decision making (Zeleny 

1989).  Similar to many other technology-assisted decision support techniques, MOEA-based decision 

support is only as good as the problem formulation that is presented to the algorithm. Because the 
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algorithm needs to be told explicitly what to measure, while humans consciously or subconsciously 

consider many goals at once, multiple iterations to discern managers’ goals may be necessary before the 

algorithm is truly able to produce solutions that accurately reflect the system’s potential for operational 

improvement.  This was echoed in a recent editorial about a real-world MOEA decision support exercise, 

in which the authors discussed that there is no substitute for human judgment within this process 

(Basdekas 2014).  After adding three reservoir reliability objectives, comparison of the optimization 

results with the baseline showed, for example, that TRWD’s current operations prioritize the elevation 

of Bridgeport at the expense of Worth and Eagle Mountain. Using an MOEA to quantify this tradeoff 

gives TRWD information about the ramifications of their current decisions and allows them to make an 

educated determination about their priorities in the future.  

Another realization aided by examination of the second round of optimization results in 

objective and model space was that measures of reservoir reliability were not sufficient to characterize 

the reservoirs’ performances.  One strategy to aid this issue is the use of reliability, resiliency, and 

vulnerability measures (Hashimoto, Stedinger, and Loucks 1982). Reliability measures how often a 

quantity falls above or below a threshold, so choice of the threshold is critically important.  Our results 

demonstrate that solutions that had equivalent reservoir reliability could have very different degrees or 

timing of failures, and vastly different storage trajectories. Accounting for resilience, or the time 

required to recover after a failure, would be an important inclusion in a third problem formulation.  

Alternatively, vulnerability objectives that measure the severity of the failure could also contribute to a 

new formulation.  Another possible way to incorporate thresholds deemed inviolable by TRWD would be 

to add elevation constraints to a future problem formulation. 

In this thesis, the issues mentioned above were explored in the context of the TRWD planning 

problem, a water resources case study that has never before been optimized in the literature. It is a 

large, multi-reservoir network with supply and demand challenges that are compounded by complex 
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electricity purchasing considerations. Balancing reservoirs, in general, and especially in light of the costs 

of pumped supplementation, is difficult; the best performance for one reservoir means depletion of 

other reservoirs and/or increased pumping. Outsourcing the production of management alternatives to 

an algorithm is useful for discovering creative solutions (Kasprzyk et al. 2009; Zeff et al. 2014) but the 

results are contingent on modeling assumptions that, in their attempts to address uncertainty, demand 

further assumptions by users and analysts.  

The complexity of the operating policy in the model translates into a relatively long simulation 

time. While this may not matter for the usual way TRWD uses the model, it limited the opportunity for 

this research to address hydrologic variability and explore the effects of initial conditions. The results 

showed that hydrology has a significant impact on objective performance, and the implications of 

varying degrees of stress or surplus on optimization results could not be adequately characterized in the 

time allotted for study. Past research suggests that evaluating management alternatives in scenarios 

that stress the system is a valuable strategy (Cui and Kuczera 2009; Kasprzyk et al. 2012), and further 

study using this model could both support those claims and provide information to TRWD about what 

conditions cause vulnerability for their system.  

Another concern for the robustness of the results is the initial conditions of the reservoirs- every 

simulation began with the West Fork at 53% full, which is a relatively low storage level to start from 

given the varying starting percentages of the historical record (see Figure 3.1).   The depleted state of 

the Bridgeport and Eagle Mountain reservoirs at the beginning of the simulation would cause them to 

be more likely to fall below the thresholds set in the objectives and necessitate more East Texas 

pumping. It’s possible that this is not a major factor in the performance of the pumping-related 

objectives (emc50, pump211, pumpvar). If the system has been drawn down to this degree by the 

previous year, it is likely that just maintaining the reservoirs up to 53% required significant pumped 

supplementation. In light of the electricity purchasing scheme, TRWD would choose to maintain a high 
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level of pumping. Essentially, the initial conditions used by this study correspond to the conditions that 

would control the objective function performance for our simulation year no matter what hydrology was 

experienced within the simulated year. Regardless, it can reasonably be stated that TRWD operates 

from both more and slightly less advantageous starting points, so it would be interesting to determine in 

future work whether operating policy should change depending on the state of the West Fork reservoirs 

at the beginning of the water year. Additional information about how adjusting the policy variables can 

improve the outlook for the longer term given stressful initial conditions could be gained by performing 

the optimization on a multi-year simulation. 

A challenge presented by complicated operating policies, like those in the TRWD model,, is that 

it creates some ambiguity about how policy variables are affecting the system. For example, the climate 

forecasting capability adds a degree of uncertainty to the already uncertain hydrology; it may incorrectly 

predict the climate state and create a disconnect between what would have been a sound operational 

decision (value for decision variable) and what the model rules dictate. This intervention suggests that in 

future work, optimizing using certain subsets of hydrology but no forecasting would be a promising way 

of populating the policy variables that are subject to change when forecasting is employed.  

There are several advantages that come with the use of this complex model, though. Labadie 

(2004) highlighted that evolutionary algorithms facilitate the ability to use trusted models within the 

search process.  Our decision support framework enables TRWD to examine its solutions using detailed 

visualizations within RiverWare.  For example, plots of reservoir elevation, views of multiple water 

accounts, time series of spill, and a suite of many output objectives (including objectives not including in 

search) facilitate iterative problem formulation. TRWD can evaluate solutions on its own terms and 

easily articulate deficiencies. Additionally, the model represents a high degree of infrastructure and 

policy complexity - no gross simplifications create doubt about how the system would really respond to 

any given alternative. The trust that TRWD has in the model to aid its short- and long-term planning 
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translates to trust in the optimization results. Finally, and perhaps most applicable to the outcomes in 

this study, because this model is a faithful representation of the actual system, all information gained 

from every step of the optimization process is useful to TRWD and will aid the utility in future decisions. 

5.2 Conclusions 

This research builds upon past studies using MOEAs to solve complex water management 

problems by embedding a sophisticated RiverWare model in the algorithm search loop and 

incorporating decision maker collaboration to assist in iterative problem formulation. The challenges 

associated with using the RiverWare model included linking the model to the algorithm and the model’s 

long simulation time. Addressing the model simulation time necessitated several creative approaches to 

ensuring efficient but sufficient search as well as intelligent incorporation of hydrologic variability. In 

addressing these issues, this research confirms that advanced, GUI-based water management models 

can be used in MOEA-driven multiobjective optimization. 

The complexity of the TRWD system, and therefore the model, offered additional challenges 

through which this study was able to gain further insight into the MOEA-assisted multiobjective 

optimization methodology. The initial set of objectives centered on system-wide reduction in pumping 

based on concerns expressed by TRWD. Through the failure of this initial set of objectives to account for 

the performance of individual reservoirs, this research confirmed that conflicts exist between objectives 

both at a sub-system scale as well as between system components and the broader system-wide 

objectives. Furthermore, the incorporation of this new information into a second problem formulation, 

which provided further system insights, exemplified the utility of iterative problem definition as crucial 

to the decision making process. 

The results obtained with this complex model suggest the need for further refinement of 

problem formulation, but also provide valuable information to TRWD. By comparing the performance of 

the baseline to that of the optimization results, this research provides context for the current 



62 
 

operations. For example, from Figure 4.6 we see that in stressed hydrologic conditions, TRWD currently 

prioritizes the elevation of Bridgeport over the elevations of both Eagle Mountain and Worth, and also 

over the pumping-related objectives. This may or may not be intentional or desirable, but with this 

evidence the utility can determine whether this reflects the true management priorities. As a result of 

this Bridgeport preference, there are several instances of Eagle Mountain’s elevation falling below the 

minimum under baseline management (per Figure 4.7), which TRWD has expressed concern about. By 

engaging with these results, TRWD is able to evaluate exactly what their operating priorities are and 

what performance metrics are inviolable at any cost. 

Finally, the implications of climate forecasting and initial conditions within their model could 

have a significant impact on the performance of suggested management alternatives, and may 

contribute to some ambiguity in the relationships between the decisions made to balance and 

supplement reservoirs and the performance outcomes. This knowledge may inform TRWD’s approach to 

optimization and decision making in the future, as well as proves the value of the intermediate 

outcomes in multiobjective optimization. 
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