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Multi‐Decadal Stochastic Streamflow Projections and Application to Water Resources Decision 

Making in the Colorado River Basin 

Thesis directed by Dr. Edith Zagona 

Effective water resources planning and management requires skillful decisions on multi-

year or decadal timeframes. In basins such as the Colorado River Basin (CRB), streamflow is not 

stationary but exhibits variability that reflects teleconnections with large scale climate indices 

such as Atlantic Multi-decadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). This 

research addresses this problem with four main contributions: It develops a stochastic streamflow 

simulation model and decadal scale streamflow projections based on these climate indices, 

compares this with other models recently developed, identifies and quantifies periods of 

unpredictability, and demonstrates the value of adding decadal scale projections to existing 

decision criteria in the CRB Supply and Demand Study (Basin Study).  

The novel WKNN model identifies and reconstructs dominant signals in the AMO and 

PDO using wavelet analysis, simulates each using block K-nearest neighbor (K-NN) bootstrap, 

then simulates the streamflow using a K-NN bootstrap conditioned on the simulated climate 

forcings. Traditional methods develop similar models on the flow timeseries and have limited 

skill in projections. Here, the climate indices are modeled and streamflow generated 

conditionally, exploiting the skill in climate indices.   Our WKNN model is compared with other 

recently developed methods – Conditional Hidden Markov Model and the enhanced wavelet 

autoregressive model – with respect to skill of projections over a range of lead times. 

To understand and quantify the time-varying predictability of streamflow, we recover the 

underlying dynamics using a nonlinear dynamical system based approach.  Time varying 
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predictability is assessed by quantifying the divergence of trajectories in the phase space with 

time, using Local Lyapunov Exponents (LLE). Ensembles of projections from a current time are 

generated by block resampling trajectories from the K-nearest neighbors of the current vector in 

the phase space. 

 Decadal scale WKNN projections and time varying predictabilities indicated by LLE are 

demonstrated to enhance existing decision criteria in the CRB Study that identify system 

vulnerability and invoke options and strategies to increase water availability or reduce demand 

through conservation or efficiency.  Based on projections being wet, dry or unpredictable, 

improved decisions may reduce cost or reduce shortage and are illustrated by tradeoff curves of 

risk of shortage vs. cost.  
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1 Introduction 

1.1 Background and Research Objective 

Modeling and simulation of streamflow timeseries is vital for any water resources planning 

and management [Loucks & van Beek, 2005]. Hydrological timeseries are characterized in terms 

of seasonality, trends, intermittency, and randomness [Salas, 1980]. Modeling hydrologic 

timeseries has a wide range of applications: generation of synthetic hydrological scenarios, 

determining the likelihood of extremes, forecasting, gap filling, trend analysis, etc. Stochastic 

timeseries modeling in water resources planning and management is a key ingredient of robust 

water resources planning [Walker et al., 2003; Lempert and Collins, 2007; Lempert and Groves, 

2010]. In the context of robust water resources plannng, timeseries models have been developed 

to i) generate ensembles of synthetic sequences that reflect the statistical characteristics of the 

observed record to portray the range of possible hydrologic scenarios and ii) predict (project) 

timeseries sequences on inter-annual to multi-decadal time scales for skillful planning and 

management [Salas, 1980]. Stationary timeseries models such as Auto Regressive Moving 

Average (ARMA) models assume parameters such as mean and auto correlation function of the 

timeseries do not change through time [Salas, 1980] and are the staple of traditional modeling 

approaches. Often streamflow timeseries exhibit a change in the mean and variance of the 

streamflow; the Colorado River flow at Lees Ferry (Figure 1.2) is a good example. This change 

in mean and variance with time in this research is referred as the non-stationary characteristic. 

The Colorado River water apportionment made in the early 1900s between the upper and lower 

basins was made during the “wet” epoch of Lees Ferry streamflow [The Colorado River 

Compact, 1922]. As this apportionment assumes higher average flows (a Lees Ferry mean flow 

of ~18MAF), meeting this demand during times of normal flow and dry epochs is a challenge. 
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Had the nonstationarity of the Colorado River flow been known during the early 1900s, adaptive 

decisions could have been made – e.g., to apportion the river flow based on water availability 

rather than fixed volume [The Colorado River Compact, 1922; Minutes and Records of the 

Colorado River Commission, 1922].  To this end, ability to model nonstationarity is crucial for 

efficient water resources planning decisions [United States Department of the Interior, 2001]. 

Recent wavelet spectral based methods offer attractive alternatives for modeling nonstationarity 

and also nonlinearity [Kwon et al., 2007; Nowak et al.,, 2011].  

Water resources planning and management in any river basin are directly or indirectly 

related to human activity, the environment, institutional policies and regulations and cultures. 

Beneficial use of the available water depends on its timing and magnitude along with the 

physical infrastructure (such as dams) used to manage it [Gupta et al., 2011].  Particular water 

resources management decisions are made to meet the specified objectives of the river basin 

system such as water supply, flood control, power generation, navigation, recreation, 

environmental services, etc., subject to constraints such as policies and physical conditions. 

Long term (multi-decades to century scale) plans for the physical infrastructure and 

operating policies of a basin should be made with consideration of the long term variability of 

hydrology and demands such that risks and reliabilities can be quantified [Hallegatte, 2009; Yohe 

et al., 2004]. For short term (seasonal) decision making, e.g., decisions about reservoir releases 

on daily or seasonal timescales, a wide range of forecasting techniques are in use that rely on 

information about current and forecasted weather/climate conditions and may also rely in part on 

timeseries models, to determine operations that best meet system objectives [Raff et al., 2013].  

Between long and short term is multi-year to decadal scale decisions to implement changes that 

would take effect over several years and could benefit from projections based on understanding 
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of multi-year to decadal scale variability [Nowak, 2011]. This is an area that has recently gained 

traction among hydro climate scientists based on insights that relate streamflow variability at 

seasonal to multi-decadal time scales to climate forcings such as the El Nino Southern 

Oscillation (ENSO) [Ropelewski and Halpert., 1986, 1989; McCabe and Dettinger, 1999; 

Rajagopalan et al., 2000], the Pacific Decadal Oscillation (PDO) [Latif and Barnett, 1994; 

Hidalgo, 2004; McCabe et al., 2007], and the Atlantic Multi-decadal Oscillation (AMO) 

[Enfield, 2001; Tootle et al., 2005; Timilsena et al., 2009]. Furthermore, these forcings are 

nonstationary and thus impart nonstationarity to the variability of precipitation and flow – this 

has been identified for Colorado River flows [e.g., Nowak et al., 2012]  

Water managers in the Colorado River Basin (CRB) anticipate increasing water demands 

in the coming decades [Reclamation, 2012]. This, along with the recent decade long dry spell 

and future drying from a warmer climate in the basin, leaves users at risk of unmet demands in 

the future. Under such circumstances, mid-term decisions may be considered either to increase 

the water availability through infrastructure development, transfers, etc., or to reduce demands 

through conservation and other options to use the available water more efficiently. The Bureau 

of Reclamation (Reclamation) recently undertook a major study, the Colorado River Basin 

Supply and Demand Study (henceforth referred as the Basin Study) to project future 

supply/demand imbalances in the CRB; in this they developed a decision making framework to 

explore the possibility of implementing options and strategies when the system shows signs of 

being vulnerable to the risk of not meeting demands [Reclamation, 2012]. The Basin Study 

decision algorithm identifies vulnerable states – when shortage is anticipated – using indictors 

such as streamflow and reservoir pool elevations based on the current and past states of the 

system. To mitigate the vulnerable states, options and strategies, which either increase the basin 
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water supply through infrastructure development or decrease demand through conservation, are 

identified for implementation. Since options and strategies always incur costs, effective decisions 

depend on accurate identification of vulnerable states so that appropriate options and strategies 

are implemented when needed but unnecessary costs are avoided.  

This research seeks to improve decisions at the multi-year to decadal time scales by 

incorporating skillful projections of flow into the decision algorithm.  Although we base this 

research on the CRB, the techniques and results can potentially be applied to other basins in the 

world. An important premise is that the flow variability exhibits periodicity at these time scales 

that provide a basis for skillful projections; recent literature on the CRB affirms this (Nowak et 

al., 2011; Bracken et al., 2014).  Streamflow timeseries exhibit sustained multiyear (or decade 

long) wet and dry epochs determined from some threshold (such as mean and median of the 

timeseries). The early 1920s wet flow (sustained high flow based on the reference mean flow of 

15 MAF) of the Colorado River flow and the recent drought in the southwestern US are good 

examples. In this research such variability is referred to as the nonstationarity characteristic Read 

and Vogel [2015]. 

1.2 Flow Characteristics of CRB and Role of Large Scale Climate Indices 

The Lees Ferry flow gauge is a key station that divides the CRB into upper and lower 

basins used in operating policies (Figure 1.1). Located downstream of Lake Powell, the Lees 

Ferry station represents about 90% of the Colorado River flow [Rajagopalan et al., 2009]. 
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Figure 1.1 The Colorado River Basin and the basin states including Mexico. The green and 
purple dots are the natural flow nodes of the upper and lower Colorado River basins, respectively 
(adapted from Nowak [2011]) 

By removing anthropogenic effects such as regulation and diversions, the naturalized flow 

is regularly updated by Reclamation [Prairie and Callejo, 2005]. As can be seen in Figure 1.2, 

the annual variability of the naturalized Lees Ferry streamflow is very high with epochs of wet 

periods in the early 1900s and mid-1980s. To understand the long term variability, the Lees 

Ferry streamflow is reconstructed based on tree- ring chronologies [Woodhouse et al. 2006], 

The Lees Ferry gauge 
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which show similar inter annual variability and a rich history of the non-stationary characteristics 

of the streamflow.    

 

Figure 1.2: Timeseries plot of the naturalized streamflow at Lees Ferry (1906 – 2012) in the 
CRB. The horizontal lines show the mean flow values of the wet epochs (in in the early 1900s 
and mid 1980s with) and flow sequences for the rest of the time period with mean values of 18.2 
MAF and 13.2 MAF respectively (Adapted from Bracken et al.,2014) 

  Large scale Sea Surface Temperature (SST) anomalies corresponding to large climate 

forcings defined earlier – AMO, PDO and ENSO – have been studied extensively to understand 

their connections with precipitation and streamflow over the United Sates (US) [Ropelewski and 

Halpert, 1986; Redmond et al., 1991; Dracup and Kahya, 1994; Latiff and Barnett, 1994; 

Rajagopalan et al., 2000; Thomson et al., 2003; Hidalgo, 2004; McCabe et al., 2007]. ENSO 

refers to the warm and cool phases of the El Nino and La Nina events in the tropical pacific, 

respectively, and is characterized by SST-based indices which are average of SST anomalies 

over different regions of central and eastern equatorial Pacific. The index, NINO3 (bounded by 

90°W-150°W and 5°S- 5°N) is widely used to study the effects of ENSO on the hydro 

climatology of the US. During El Nino events, for example, the subtropical jet stream  is 
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intensified bringing more moisture to the southwestern US, and vice versa during La Nina 

[Redmond et al., 1991; Timilsena et al., 2009; Dracup and Kahya, 1994; Thomson et al., 2003].  

ENSO has strong correlations with the surface climate of northwestern and southeastern parts of 

the United States [Ropelewski and Halpert, 1986]. However, it has a poor signal in the CRB 

[Hidalgo and Dracup, 2003; Kahya and Dracup, 1993; McCabe and Dettinger, 2002; Grantz et 

al., 2005; Regonda et al., 2006].  

The recent drought since 2000 in the CRB fuels most of the recent research to describe the 

variability of the Colorado River flow through the observation of the PDO. PDO is defined as the 

first principal component of the northern pacific SST anomalies pole ward of 20o N [Zhang et 

al., 1997; Mantua et al, 1997] and typically shows  ~50 years ~ 70 years of periodicity 

[MacDonald and Case, 2006; Minobe, 1997] and persists in the warm and cool phases in the 

range of 15 years-25 years [Chao, 2000]. There is strong evidence that the PDO has influence on 

the hydro climatology of the western US including the CRB at decadal time scales [McCabe et 

al., 2004, 2007, 2008]. The warm phases of PDO with increased SST in the northern Pacific 

correlates with increased flow in the central and western US and vice versa when it is cold 

[Tootle et al., 2005; Hidalgo, 2004; Timilsena et al., 2009].   

AMO is the variability of the SST in the North Atlantic Ocean (0 to 70o N) with a period 

ranging from 60 to 80 years. The periodicity of the AMO index [Enfield et al., 2001] compared 

to the PDO and ENSO, is the longest.  The teleconnection of the AMO index with streamflow 

across the United States [Enfield et al., 2001] and with the upper CRB at decadal and multi 

decadal timescales [McCabe et al. 1999, 2007; Hidalgo, 2004; Nowak et al. 2012] are well 

demonstrated. Nowak et al. [2012] showed the correlation of the low frequency variability of the 

Lees Ferry streamflow with the dominant frequency of the AMO index. In this, the Lees Ferry 
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streamflow tends to show increased flow with the warm phases of AMO and vice versa. 

Understanding the influence of climate indices (AMO and PDO) on the variability of the 

streamflow (for example the Lees ferry flow in the upper CRB), a stochastic streamflow 

simulation and projection model is developed conditioned on the variability of climate indices.   

1.3 Stochastic Timeseries Models 

The Auto Regressive (AR) models, a special case of ARMA models, have been the 

traditional approach of choice [Thomas and Fiering 1962; Salas, 1980] for the simulation of 

annual and seasonal streamflow. In this modeling framework, the process at a current time is 

modeled as a linear function of the process at previous time steps which captures the mean of the 

process, plus a noise or residual term which is normally distributed. Thus, normality of the 

process is a strong requirement. Flow series are rarely normal and in such cases the data is 

transformed before the AR model is fitted. This model has the ability to reproduce statistical 

characteristics of the streamflow such as mean, variance, skewness and lag correlations. If 

relationship with past values is nonlinear and data is not normally distributed, these models 

perform poorly. The introduction of non-parametric stochastic timeseries modeling approaches 

like the kernel density estimators [Sharma et al., 1997] and K- Nearest neighbor (K-NN) time 

series bootstrap [Lall and Sharma, 1996; Lall 1995; Rajagopalan et al., 2010] have to a large 

extent  addressed the above drawbacks of linear AR models. 

However, the nonparametric models cannot capture nonstationarity in spectral 

characteristics, an indicator of multi-decadal variability. These features are important for 

producing wet and dry spell characteristics and multi-year variability. Recent timeseries 

modeling approaches demonstrated on hydrologic series using Hidden Markov Model (HMM) 
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[e.g., Bracken et al., 2014]  and the wavelet spectrum based auto regressive models (WARM) 

[e.g., Kwon et al., 2007, Nowak et al., 2011] are significant additions to hydrologic timeseries 

simulation and prediction repertoire. In the HMM modeling approach, the observations are 

assumed to be a realization from hidden state sequences with a Transition Probability Matrix 

(TPM) and each state with its unique probability distribution [Zucchini & MacDonald, 2009; Ibe 

2009]. The number of hidden states and the associated distribution parameters are estimated 

using objective methods such as the Expectation Maximization (EM) algorithm [Zucchini & 

MacDonald, 2009., 2009, Bracken net al., 2014]. The HMM model uses the Markov chain for 

simulation. In this, the TPM is used recursively to simulate the next n time steps based on the 

current state. This recursive use brings the TPM it into a constant matrix after say n time steps. 

Simulating beyond the nth time step will produce a constant value, limiting the HMM 

simulations to the nth timestep. A timeseries for example with 2 hidden states ( 2 by 2 TPM) 

simulates shorter time steps compared to a timeseries of 3 hidden states ( 3 by 3 TPM).  

Therefore, nonstationary features of a timeseries can be better captured few years using the 

HMM model relative to ARMA models but are limited in their ability to capture multidecadal 

variability. However, they can be augmented with climate information to model multidecadal 

features well, as shown by Bracken et al., [2014]. The WARM modelling approach [Kwon et al., 

2007] decomposes the timeseries into significant orthogonal periodic (or ‘signal’) components 

using wavelets and the residual is ‘noise’ [Torrence and Compo, 1998]. The significant 

components are modeled separately, as they are orthogonal, by AR models, and the noise, which 

is mostly White, is modeled as a Normal distribution. Simulation and prediction are obtained by 

adding the signal components from their respective AR models and the noise.  This modelling 
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approach has been shown to skillfully reproduce the distributional properties -mean, variance, 

skewness and lag 1 correlation and also stationary spectral characteristics [Kwon et al., 2007]. 

To capture nonstationarity in the spectrum, which is important for capturing long wet and 

dry epochs, Nowak et al. [2011] proposed an enhancement to the WARM by making the signal 

components stationary by normalizing them with the Scaled Average Wavelet Power (SAWP). 

This approach captures all the features of WARM and the time varying spectral characteristics – 

as shown for the CRB flows by Nowak et al., [2012]. 

The timeseries models described above (AR, WARM and HMM) are applied directly to 

the streamflow. Given the strong teleconnection of the large scale climate forcings of AMO and 

PDO with the CRB flows, this research seeks to find a new approach to incorporate these 

forcings in the stochastic streamflow simulation and projection approach. As mentioned earlier, 

based on the literature, it is becoming increasing clear that periodic and nonstationary 

characteristics of climate forcings translate into the teleconnected streamflow. Thus, we propose 

a new approach to simulate the climate forcings first and consequently simulate streamflow. For 

this, the wavelet based block bootstrap model, or Wavelet K- nearest neighbor (WKNN, 

Erkyihun et al., 2015) is proposed to simulate the signal of the climate forcings using wavelets 

and block bootstrap and, conditionally simulate the streamflow using KNN bootstrap. Details of 

this of this new method are presented in Chapter 2.  

A complementary novel approach using HMM is also proposed as an alternative 

simulation and projection model. In this, the climate forcings are modeled and simulated from 

HMM and the streamflow are conditionally simulated, as above. The performance of the three 

stochastic timeseries simulation and projection models – WARM [Kwon et al., 2007], WKNN 

[Erkyihun et al., 2015] and conditional HMM – are evaluated with respect to their ability to 



11 
 

capture the nonstationarity features of the streamflow. The projection skills of the models for 

lead times ranging from one to twenty years are evaluated; their results serve as a guide to 

identify appropriate simulation/projection modelling techniques for use in decision making 

purposes. These are described and presented in Chapter 3. 

1.4 Streamflow Predictability and Simulation  

Streamflow processes are realizations of nonlinear dynamical systems with coupled 

components – large scale climate forcings, precipitation, temperature, land surface properties of 

the watershed etc. - thus, the predictability of the streamflow varies over time. Stochastic time 

series models are not capable of reconstructing epochal behavior of predictability which strongly 

influences the simulation skill. Nonlinear dynamical systems based time series modeling 

approach provides ways to reconstruct the underlying dynamics of the system via reconstruction 

of phase space from the observed time series [Kennel et al., 1992; Abarbanel and Lall, 1996]. 

Utilizing the reconstructed phase space, the time varying predictability of the timeseries can be 

determined through Local Lyapunov Exponents (LLE) [Abarbanel et al., 1992; Bailey et al., 

1995; Guégan and Leroux, et al., 2011]. Applying this to CRB streamflow interesting epochal 

variations of predictability are identified. Furthermore, time series projections based on the phase 

space show that the skill varies with the epochal predictability [Rajagopalan et al., 2015]. The 

application of this nonlinear dynamical modeling approach is demonstrated on the Lees Ferry 

streamflow and the results are presented in Chapter 4 along with the details of the method and its 

potential applications in water resources management. 
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1.5 Enhanced Decision Framework with Decadal Projections for the CRB 

The Basin Study 1 recently conducted by Reclamation, was made to understand the 

possible future supply-demand imbalances over the 50 year planning period and also to identify 

possible ways to alleviate the future risks of shortage through scenario analysis. The scenarios 

are developed by considering the future demand, supply, legal, technical, climate change and 

environmental conditions of the Basin, simulated in the long term planning model, the Colorado 

River Simulation System (CRSS).  CRSS is a complex object oriented model implemented using 

the RiverWare modeling tool at monthly time scale [Zagona et al., 2001]. “It simulates the 

operation of the major Colorado River system reservoirs and generates information regarding the 

future state of the system such as: reservoir storage volume, reservoir water levels, and release 

from dams, diversions and return flows” [Reclamation, 2012].  The study identified a 

comprehensive list of options and strategies to alleviate possible shortfalls which can be broadly 

categorized into options that increase the basins water supply through infrastructure 

development, and strategies that reduce demand through conservation and those increasing the 

efficiency of existing system through operational modifications.  

A decision making framework was developed that simulates the operations of the CRB for 

a wide range of hydrologic scenarios, and implements appropriate options and strategies based 

on the values of signposts. Signposts are indicators of vulnerability to shortage; they are typically 

a combination of current and recent past flow magnitudes and pool elevations. If for example, 

the Lake Mead pool elevation falls below a predefined level and the average Lees Ferry 10 years 

running flow volume (mean) is below a given threshold, vulnerability will be detected and the 

                                                            
1 http://www.usbr.gov/lc/region/programs/crbstudy/finalreport/) 
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signpost informs the system to implement appropriate options and strategies to address this risk 

of shortage. Currently the decisions to implement options and strategies are made entirely based 

on the risk indicators at the current state of the system or in the past. This research proposes that 

better decisions can be made if skillful projections of future flow conditions were considered. 

For example, if vulnerability is detected, but a wet future flow condition is projected, that would 

mitigate the demand supply imbalance and the unnecessary cost of implementing an option 

would be avoided.   

This research seeks to develop an approach to integrate the decadal scale streamflow 

projections with the decision making framework. The proposed approach will be tested first on a 

single historic data set to compare the performance of the decision with and without the 

projections with respect to resulting shortages and to the cost of implemented options and 

strategies. Then, an ensemble of future hydrologic scenarios will be generated using the 

appropriate timeseries model, and the decisions will be compared with the existing decision 

model to demonstrate improvements over the range of possible hydrologic scenarios.  

1.6 Summary of Research Objectives  

The overall goal of this research is to develop techniques to improve water resources 

planning decisions by incorporating skillful streamflow projections at decadal timescales on the 

CRB. The specific objectives of this research are listed below.  

 To develop a stochastic streamflow simulation and projection model using large scale 

climate indicators which is capable of reproducing the non-Gaussian and nonstationarity 

characteristics of streamflow. 
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 To compare recently developed timeseries simulation models (Conditional HMM, 

WARM and WKNN), and investigate the suitability of these models for streamflow 

projection at different lead-times. This will help provide guidance in selecting the 

appropriate models for planning and management of water resources. 

 To understand and quantify the time varying predictability of the CRB flow. Thus, 

identify predictable and less predictable epochs and incorporate the epochal streamflow 

projections with their predictability skill.  

 To integrate the flow projections and the epochal predictability within an existing 

decision making framework to demonstrate the potential value of using decadal scale 

projections. 

1.7 Outline of Thesis Chapters 

This dissertation consists of six chapters. This introduction is followed by four chapters 

presented in a format suitable for submission to academic journals. Chapter six summarizes and 

concludes the dissertation with remarks for future work. An overview of the last five chapters are 

briefly presented as follows. 

Chapter 2 develops the WKNN, the new conditional timeseries simulation/projection 

model that utilizes the strong teleconnection of large climate indices with streamflow. This 

modelling approach is a three-step process: (i) identify and reconstruct dominant signals in the 

climate indices with established teleconnections to streamflow using wavelet analysis [Torrence 

and Compo. 1998; Kwon et al., 2007; Nowak et al., 2011], (ii) simulate each climate signal using 

a block K-NN bootstrap [Efron and Tibishirani, 1993] and, (iii) simulate the streamflow using a 

K-NN bootstrap [Lall and Sharma, 1996] conditioned on the simulated climate forcings. The 
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application of this model is demonstrated by using the Lees Ferry streamflow and the large scale 

climate indices, AMO and PDO. Depending the decadal scale projection skill, this modeling 

approach will be used to improve the baseline decision making framework. Chapter 2 has been 

submitted to Water Resources Research and is in revision. 

Chapter 3 seeks to identify the suitability of the WKNN model and recently developed 

timeseries simulation models the Conditional Hidden Markov Model (CHMM) and the WARM 

[Kwon et al., 2007] for simulation and projection at inter annual, decadal and multi-decadal time 

scales. The comparison is mainly to identify the relative performances of the models in 

simulation and more on the performances of the three models in projection at different projection 

lead times. For example, for decadal scale planning, the model that performs well both in 

simulation and projection at decadal scale is appropriate. This chapter is in preparation for 

submission to an academic journal.  

To determine the credibility of the decadal scale streamflow projections, Chapter 4 

presents a nonlinear dynamical system based time series approach to understand and recover the 

underlying dynamics and time varying predictability of CRB flows. Time varying predictability 

is determined through LLE [Abarbanel et al., 1992; Bailey et al., 1995; Guégan and Leroux, et 

al., 2011]. The phase space is the representation of the “true space” in which the dynamics 

unfolds. It is determined from the observation timeseries sequences through the process of 

embedding [Kennel et al., 1992; Abarbanel and Lall, 1996]. Timeseries projections within the 

predictable epoch are credible and can be used in water resources planning to improve the 

baseline decision making process. This chapter has been submitted to Journal of Geophysical 

Research and is in review. 
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Chapter 5 presents the integration of the decadal scale timeseries projections in the Basin 

Study decision making framework. Integration of the projections and the predictability 

information is performed in two broad steps. (i) Identification of the predictable and less 

predictable epochs through the nonlinear dynamical modeling approach as described in Chapter 

4. In the low predictable epochs the projections are not used in the decisions. (ii) Integration of 

the projections in the predictable epochs with the existing decision making framework. The 

integration is performed in such a way that the existing decision framework is informed about 

the future state of the flow through ensemble projections. The projections are then interpreted as 

wet or dry.   If dry, the decision framework is informed about the future state of the flow to 

implement options and strategies as described earlier. However, if the future flow is “wet” the 

existing decision framework is informed to suppress decisions to avoid unnecessary cost in the 

implementation of options and strategies as the future “wet” flow could satisfy the demand 

supply imbalances. The results of the enhanced decision logic are reported and compared with 

the results of the original logic with respect to cost and shortages. This Chapter is in preparation 

for submission to an academic journal.  

 Chapter 6 summarizes the methodologies implemented and provides conclusions about 

the results. It also presents recommendations for future work to expand the methodological 

frontier to better address the possible future demand supply imbalances in the planning and 

management of water resources in the CRB. 
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2 Wavelet-based Time Series Bootstrap Model for Multi-decadal Streamflow 
Simulation Using Climate Indicators  

A version of this chapter has been submitted as a paper to Water Resources Research and 

is in review. 

Abstract 

A novel model to generate stochastic streamflow projections conditioned quasi-oscillatory 

climate indices – such as the Pacific Decadal Oscillation (PDO) the Atlantic Multi-decadal 

Oscillation (AMO), and the El Nino Southern Oscillation (ENSO) is presented. Recognizing that 

each climate index has underlying band-limited components that contribute most of the energy of 

the signals, we first pursue a wavelet decomposition of the signals to identify and reconstruct 

these features from an  annually resolved, proxy based, paleo-reconstruction of each climate 

index and, the historical data covering the period from 1650-2012. A k-nearest neighbor, block 

bootstrap approach is then developed to simulate each of these climate index series, while 

preserving their time-frequency structure, and marginal distributions. Finally, given the 

simulated climate index time series, a k-nearest neighbor bootstrap is used to simulate annual 

streamflow series, conditional on the joint state space defined by the climate index for each year. 

We demonstrate this method by applying it to simulation of streamflow at Lees Ferry gauge on 

the Colorado River using indices of two large scale climate forcings: Pacific Decadal Oscillation 

(PDO) and Atlantic Multi-decadal Oscillation (AMO) which are known to modulate the 

Colorado River Basin hydrology at multi-decadal time scales. Skill in stochastic simulation of 

multi-decadal projections of flow using this approach is demonstrated.  
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2.1 Introduction  

Understanding streamflow variability and the ability to generate realistic scenarios at 

multi-decadal time scales is important for robust water resources planning and management in 

any river basin, especially in semi-arid basins such as the Colorado River Basin. It is 

increasingly evident that large scale climate forcings such as El Nino Southern Oscillation 

(ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO) 

modulate the hydroclimatology of the Western United States at multi-decadal time scales [Tootle 

et al., 2005, Timilsena et al., 2009; Enfield et al., 2001; McCabe and Dettinger, 1999, 2007 

Hidalgo, 2004; Nowak et al., 2012].  The influence of ENSO on the variability of precipitation 

and flows in western United States has been well documented [Redmond and Koch. 1991; 

Timilsena et al., 2009; Dracup and Kahya, 1994; Thomson et al., 2003]. The subtropical jet 

stream that funnels storms to this region during winter, which is the major source of moisture, is 

intensified over the southwestern US during El Nino events, bringing more rain and snow to this 

region while drying the northwestern US – vice-versa during La Nina events. This causes 

significant inter-annual variability in precipitation and stream flow. However, its direct impact 

on the Colorado Basin is weaker [e.g., Regonda et al., 2006; Grantz et al., 2005]. The PDO is a 

decadal phenomenon [McCabe et al., 2004, 2007, 2008] that has been shown to influence 

western United States hydroclimatology along with ENSO over inter-annual and multi-decadal 

time scales [Gershunov and Barnett, 1998, Rajagopalan et al., 2000].  The positive phase of 

PDO with increased sea surface temperatures over the northern Pacific is generally associated 

with increased flow in the central and western United States and the negative phase with 

decreased flow [Tootle et al., 2005; Hidalgo, 2004; Timilsena et al., 2009]. Recent research 

indicates strong connections between AMO and hydroclimatolgy over the US. The warm phase 
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of Atlantic Multi-decadal Oscillation (AMO) is known to be associated with decreased flow 

conditions over most of the United States [Enfield et al., 2001; Tootle et al., 2005; Timilsena et 

al., 2009]. AMO is also known to modulate the decadal to multi-decadal variability of flow in 

the upper Colorado River Basin [McCabe and Dettinger, 1999, 2007; Hidalgo, 2004; Nowak et 

al., 2012].  While ENSO, AMO and PDO drive western United States hydroclimatology as 

evidenced by many researchers, AMO and PDO are the dominant drivers of flows in the Upper 

Colorado River Basin at inter-annual  and decadal time scales as recently demonstrated by 

Nowak et al. [2012] and Bracken et al. [2014]. Lower Colorado Basin flows are also modulated 

by these climate forcings [Thomas, 2007]. 

 There is a rich history of traditional time series simulation techniques [Salas, 1980; Wei, 

2006] that fit linear models to the flow series. These models have done well with data where the 

hydrologic data did not exhibit long memory or nonlinear dependence, or quasi-oscillatory 

dynamics, or was not easily transformed to a Gaussian marginal distribution using the commonly 

used transforms. Nonparametric approaches were proposed to improve upon these methods to 

better reproduce nonlinear and non-Gaussian features in a Markovian context [Lall, 1995; Lall 

and Sharma, 1996; Sharma et al., 1997]. A second approach that was introduced at about the 

same time was the use of a moving block bootstrap (Vogel and Shallcross, 1996) to address non-

Markovian dependence. Subject to the choice of a block length, this method allows time series 

simulation that incorporates some long memory characteristics. However, it does not lend itself 

to conditioning on climate indices or other predictors of the time series of interest. Subsequently, 

wavelet based auto-regressive moving average methods were introduced to address the modeling 

quasi-oscillatory dynamics by Kwon et al. [2007]. Their approach was to decompose the time 

series into a small set of quasi-periodic components [Torrence and Compo, 1998] and a residual 
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time series. A traditional autoregressive moving average model is then fit to each of them 

components, including the residual process. The components are simulated and summed to 

obtain simulations of the original series. This method performed very well in capturing the 

global spectral properties, but not the nonstationarity of the spectrum. Nowak et al. [2011] 

enhanced this approach by scaling the components with their scale averaged wavelet power, a 

time varying estimate of the variance over selected scales,   before fitting the autoregressive 

models, and then rescaling the simulated components with the same. This approach captured the 

nonstationarity in the spectrum very well. Recently, Bracken et al. [2014] showed that regime-

like behavior of the Colorado River flows are forced by AMO and PDO, and   used a non-

homogeneous hidden Markov model to simulate the flow properties using these two climate 

forcings.  

 Given this background, we present a novel algorithm, WKNN that stands for wavelet-K-

nearest neighbor which integrates over some of the features developed more recently. As in 

[Kwon et al., 2007] a wavelet projection is used to decompose each climate index into a small set 

of  components, each of which explains a statistically significant fraction of the variance of the 

time series and is limited to a specific frequency band. Each component time series is then 

modeled using a k-nearest neighbor, block bootstrap method that is introduced. The goal of the 

method is to conditionally draw a block from the historical component time series given a 

current state vector. The k-nearest neighbors of the current state vector are used to provide 

samples of the conditioning distribution, distribution and a block of time series values that 

succeeds one of these k-nearest neighbors is then drawn at random, thus providing a conditional 

block bootstrap. A repeated application of this procedures allows one to develop a full time 

series with the appropriate time-frequency variability for the component time series. The 
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component time series are then summed to provide a simulation of the climate index of interest. 

Once the climate index time series are available, annual flows for each year are simulated using 

the [Lall and Sharma, 1996] k-nearest neighbor approach, conditional on the state space defined 

by that year’s simulated climate indices. Following this procedure we are able to maintain the 

time frequency structure of the climate indices, and of the conditional distribution of annual 

flows given the climate indices.  

The K-NN bootstrap approach was proposed by Lall and Sharma [1996] and applied to 

monthly streamflow simulation (i.e., lag-1 model). This method has been applied to multivariate 

stochastic weather generation [Rajagopalan and Lall, 1999; Yates et al., 2003; Caraway et al., 

2014], paleo streamflow reconstruction [Gangopadhyay et al., 2009], water quality modeling 

[Towler et al., 2009] and others. The idea of resampling blocks of B capitalizes on the fact that 

there is significant dependence in the climate signals at least of lag B that needs to be captured. 

Typical literature on block bootstrapping described in this book [Efron and Tibishirani, 1993] is 

unconditional or without the feature vector and the neighbor selected as described above. Here 

we incorporated the feature vector to better able to capture non-stationarity. The modification 

with block resampling combined with wavelet components is unique and the novel aspect of this 

research.  

 The chapter is organized as follows. The data used in this research is presented first 

followed by the methodology and its components. Model validation is described and then the 

results. The summary of the results and discussion conclude the paper.  
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2.2 Data 

The observed and paleo data of annual Colorado River streamflow and annual, climate 

indicators used are described below.  

2.2.1 Colorado River flow at Lees Ferry, AZ 

The Lees Ferry flow gauge, through which 90% of the flow in the basin passes, divides the 

Colorado River Basin into the upper and lower operational basins. Naturalized water year flow 

(sum of flows during Oct-Sep) at this gauge for the period 1906-2012 is used in this study. 

Monthly naturalized flow is computed by removing anthropogenic effects such as regulation and 

diversions. It is updated regularly by the United States Bureau of Reclamation [Prairie and 

Callejo, 2005] (http://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html). The data has 

been used for planning studies in the basin and in other research [Regonda et al., 2011; Nowak, 

2011; Miller et al., 2012]. In addition, tree ring reconstructed flows for the pre-1906 period 

covering 1490 to 1905 from Woodhouse et al. [2006] are also used in this study. The 

reconstructed data is available here: http://treeflow.info/upco/coloradoleeswoodhouse.txt. 

2.2.2 Climate Indices, AMO and PDO  

The AMO index [Enfield et al.,2001] is computed as a monthly area weighted average of 

North Atlantic (0 to 70o N) sea surface temperatures (SST), which is subsequently de-trended, 

based on  5o x 5o resolution Kaplan SST [Kaplan et al.,1998]. Values were obtained from the 

NOAA Physical Sciences data website (http://www.esrl.noaa.gov/psd/data/timeseries/AMO/) for 

the period 1856 to present. The paleo reconstruction of annual AMO for the period (1650 – 

1990) is based on reconstructions of annual sea surface temperature anomalies (SSTA) for the 

North Atlantic Ocean (0 to 70o N) from tree rings [Gray et al., 2004] and was obtained from the 
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NOAA website (ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/amo-

gray2004.txt).  

 Monthly PDO anomalies from 1900 to present are available from the University of 

Washington (http://jisao.washington.edu/pdo/PDO.latest). The annual data were taken as the 

average of the monthly (averaged over Oct-Sep, to be consistent with the flow) values in this 

analysis. The PDO is calculated as the first principal component of the Northern Pacific SST 

[Zhanget al., 1997; Mantua et al., 1997]. Annual PDO values for the period 993 – 1996, based 

on tree rings from Pinus flexilis in California and Alberta, Canada, were generated by 

MacDonald and Case [2005] and are available from the NOAA website 

(ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/pdo-macdonald2005.txt). 

In summary, we use historical and paleo-reconstructed records that cover a common period 

from 1906 - 2012, for the Colorado River flow at Lee’s Ferry, the AMO and the PDO. 

2.3 Proposed Methodology 

The methodology we propose has three broad steps:  (i) Decompose the large scale climate 

indices to obtain dominant signals in specific frequency bands that explain a statistically 

significant fraction of the signal’s variance [Torrence and Compo, 1998; Kwon et al., 2007]. (ii) 

Simulate these dominant signals independently using a new block K-nearest neighbor (K-NN) 

bootstrap approach. We refer to these two steps as wavelet KNN (WKNN); and (iii) Simulate the 

streamflow using K-NN bootstrap conditioned on the simulated climate forcings [Lall and 

Sharma, 1996] from the previous step. These steps are described below.   
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2.3.1 WKNN - Wavelet Decomposition 

The first step is to decompose the climate indices using wavelets into orthogonal quasi-

periodic components. For a detailed expose on wavelet analysis for geophysical applications we 

refer to Kumar and Foufoula-Georgiou, [1997] and Foufoula-Georgiou and Kumar [1994]. Here 

we follow the implementation procedures described in [Torrence and Compo, 1998; Kwon et al., 

2007; Nowak et al., 2011]. A brief description is provided here. 

 The continuous wavelet transform of a discrete time series for a period a and time n, is 

given by: 

௡ܹሺܽሻ ൌ 	෍ ො௝ݔ ෠߰∗൫ܽ ௝߱൯݁
௜ఠೕ௡ఋ೟

ேିଵ

௝ୀ଴

െ െ െ െ െെെെሺ1ሻ 

where ݔො௝ is the discrete Fourier transform of the original time series; ෠߰∗൫ܽ ௝߱൯	is the Fourier 

transform of the wavelet function, ߰; N is the number of data points in the original data; ߜ௧ is the 

time factor or time step (for annual data it is equal to 1) and ߱ is the angular frequency.   

The Morlet is the preferred wavelet function for its boundary properties [Torrence and Compo, 

1998] and its simplicity for time series applications. It is given by: 

߰଴ሺߟሻ ൌ ଵ/ସ݁௜ఠబఎ݁ିఎିߨ	
మ/ଶ െ െ െ െ െെെെെ ሺ2ሻ 

where ߱଴ and ߟ are the non- dimensional frequency and time parameters respectively [Torrence 

and Compo, 1998] . Since we use the Morlet wavelet, ߱଴ = 5 is chosen [Kumar and Foufoula-

Georgiou, 1997]. 

The wavelet spectrum represents the power at a period a and time t. In the wavelet 

literature the period a referred as scale. We refer to this as a period in the context of the quasi-
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oscillatory modes of the time series used in this research.   Averaging this across time provides 

the global wavelet spectrum. Tests of the statistical significance of the power at a given scale are 

typically based on a null hypothesis of a white or red noise process [Torrence and Compo, 1998]. 

Here, we used white noise for the null hypothesis. The global and nonstationary spectra of AMO 

and PDO are shown in Figures 2.1 and 2.2, respectively. Figures 2.1 (a) and 2.1(b) show the 

wavelet spectra of AMO for the observational and paleo periods, respectively. The white noise 

based confidence levels are shown for the global spectrum. Significant power can be seen in the 

32 – 128 year period and longer for the paleo record. For the PDO (Figure 2.2), the multi-decadal 

band of 8 – 32 year period is dominant in recent decades in the observational period and 

sustained throughout the paleo period. The variation of PDO over a broad range of timescales is 

consistent with Steinman et al., [2015]. For the longer periods, the data is limited and thus, as 

indicated by the cone of influence, claims of significance of the power are not supported.  
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Figure 2.1:  (a) Wavelet spectra of historic AMO and (b) Wavelet spectra of the historic and 
paleo AMO. Local power spectrum is on the left; the blue color demonstrates the lower power 
spectra and the red color the higher, and the dotted line is the cone of influence.  The right hand 
side plot is the global power spectrum with 90% and 95% confidence level from white noise.  
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Figure 2.2 (a) Wavelet spectra of historic PDO and (b) Wavelet spectra of the historic and paleo 
PDO. Local power spectrum is on the left; the blue color demonstrates the lower power spectra 
and the red color the higher, and the dotted line is the cone of influence.  The right hand side plot 
is the global power spectrum with 90% and 95% confidence level from white noise.  
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A component signal representing a frequency band where statistically significant power is 

identified, is obtained as: 

ᇱ௡ݔ ൌ
௧ߜ௝ߜ

ଵ/ଶ

ఋ߰଴ሺ0ሻܥ
෍

ܴ൛ ௡ܹሺ ௝ܽሻൟ

௝ܽ
ଵ/ଶ

௝మ

௝ୀ௝భ

െ െ െ െ െെെെെ ሺ3ሻ 

where  ܥఋ	and ߜ௝ are reconstruction and scale factors respectively. ߰଴ሺ0ሻ ൌ  ଵ/ସ  is the factorିߨ

that removes the energy scaling for Morlet wavelet function; R denotes the real part of the wave; 

and ݏ௝ is the scale.  The ݆ଵ and ݆ଶ are the lower and upper limits of the frequency range over 

which the average is computed. For example, in the case of PDO this would correspond to the 8 

and 32 year periods, for ݆ଵ and݆ଶ.  

2.3.2 WKNN - Simulating the Climate Signal using Block Bootstrap 

The steps are described below for simulating a sequence of a component signal of a 

climate index: 

(i) For each reconstructed component signal, the characteristic period, തܲ,	 is identified, 

as:   തܲ ൌ ௝భା௝మ
ଶ

   where ݆ଵ	ܽ݊݀	݆ଶ are upper and lower periods of the reconstructed 

signal.  Then a block size, B, is computed which is half of	 തܲ.  

(ii) For a given time t, a ‘feature vector’ of length B is created 

,௧ݔ] ,௧ିଵݔ … ;	௧ି஻ݔ  and K nearest neighbors of this	ሿ݈ܽ݊݃݅ݏ	݁ݐ݈ܽ݉݅ܿ	݄݁ݐ	ݏ݅	௧ݔ	݁ݎ݄݁ݓ

feature vector based on Euclidean distance, are identified in the full record of the 

reconstructed component time series.   

(iii)  One of the k-nearest neighbors is randomly selected using a probability metric 

described by [Lall and Sharma, 1996], that is based on a likelihood function that is 
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based on the Euclidean distance of each neighbor from the current vector.  The 

resulting probability of choosing the ith  neighbor is given as: 

௜ܹ ൌ

1
݅

∑ 1݅

	; 	݅	 ൌ 1,2, . . , ܭ െ െ െ െ െെെ ሺ5ሻ 

(iv)  Suppose the neighbor j is selected which corresponds to a calendar time T. A 

sequence of time series values for a block of length B that follows –i.e., 

,ାଵ்ݔ ,ାଶ்ݔ … ,  ା஻ then constitutes the simulated values for the succeding B time்ݔ

steps T+1, T+2,..., T+B.  

(v) The simulated block becomes the new feature vector and steps (ii) through (iv) are 

repeated to simulate the signal for time steps t+B+1, t+B+2, .., t+2B  

 The above steps are repeated to generate a sequence of any desired length B time 

steps at a time. Lall and Sharma [1996] proposed a heuristic choice for K as,  ܭ ൌ

	√ܰ  where N is the number of data points. 

 The initial block is selected randomly from the nearest neighbors of the first block 

of the climate signals.  The above steps are applied to simulate sequences of all the 

reconstructed component signals. These simulated sequences of component signals are 

added to obtain the sequence of total signal. This is done for each climate index 

separately – i.e., AMO and PDO thus resulting in a sequence of simulated climate signal 

vector for each time, Yt = [AMOt, PDOt,]. 
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2.3.3 Streamflow Simulation - Conditioned on Climate Signals 

For each year conditioned on the simulated vector of signal of the climate indices, the 

streamflow needs to be simulated. This can be viewed as simulation from the conditional 

probability density function: f(flowt | Yt) where the vector Yt =  [AMOt, PDOt,] is the vector of 

signals of climate indices at time t, as described in the previous section.  The K-nearest neighbors 

of Yt are found from the historical data and one of neighbors (i.e., a historical year) is selected 

using the k-nn probability metric in equation 5. The streamflow of the selected year becomes the 

simulated flow for time t. This is repeated for each year with the simulated climate index vector 

to generate an ensemble of streamflow sequences. 

2.3.4 WKNN Projection of the Climate Signals and conditional streamflow projection 

The simulation algorithm presented in section 2.3.2 can be used in a streamflow 

projection application. Climate signals are projected and flow is resampled as follows.  

(i) Current block of size B of the climate signals are used as a reference to identify the 

nearest neighbors from the past.  

(ii)   Sequences of climate signals of the desired projection window are resamples 

following the identified nearest neighbors from the past. The resamples sequences are 

projections.  

(iii) Streamflow that corresponds to the projected climate signals is the streamflow 

projection.  
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2.4 Model Validation  

We applied the methods of the previous section to simulate Lees Ferry streamflow using 

the two climate indices, AMO and PDO. We tested the model in two modes: (i) ability to 

simulate the primary statistics of the series and, (ii) the ability to simulate multi-decadal 

projections. 

Since the climate indices are simulated based on low frequency components, the block 

bootstrap has relatively fewer blocks to select from when simulating for the historic period 

(1906-2012) using historic data. To demonstrate that this is not an issue, we simulated one of the 

climate indices, PDO, using WKNN with the entire record (paleo and historic) for the period 

longer historic period 1650 – 2012 and computed a suite of distributional and spectral statistics 

for comparison.  

Then we applied it to the observed streamflow 1906 – 2012 (107 years), wherein WKNN 

was applied to generate 500 ensembles of the two climate signals, each of length 107 years. For 

each simulated climate signal vector, using K-NN resampling, streamflow values are generated. 

This validation approach is typical of any stochastic time series models – wherein the models are 

fitted to the data and simulations are made from them. A suite of distributional statistics of the 

simulated flow sequences is computed from the simulations – mean, variance, lag-1 

autocorrelation, probability density functions (PDFs) and wavelet spectrum – and compared with 

those of the historical observational record. Wavelet spectrum is computed for the median flow 

of the simulations (i.e. median of ensemble of simulations at each time step) for comparison with 

the wavelet spectrum of the historic data. This demonstrates the ability of the method to capture 

the statistics and nonstationarity in the variability of the time series. To demonstrate the practical 

utility we compute deficit and excess statistics and compare them with the observations. We 
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point out that these aspects of performance of the flow simulations are solely dependent on the 

model’s capabilities as they are not incorporated in the model. 

To demonstrate the utility of the method in multi-decadal projections we apply the 

methodology and simulate streamflow sequences for 20 years at a time. This time horizon is 

chosen for its importance in near term planning and management decisions [United States 

Department of the interior, 2001].  

This is done as follows: suppose we wish to simulate flow sequences for 20 years starting 

in 1906. We use pre-1906 data to fit the WKNN model and starting with 1905, simulate 500 

ensembles of climate signals for the 20-year period 1906-1925. Conditioned on the simulated 

vector of climate signals, the streamflow is generated via K-NN bootstrap, also using pre-1906 

data – therefore, making the projections truly blind. This is repeated for all the years in 1906-

2012 thus, from each year a 20-year projection is made. We show the boxplot of ensembles of 

projected 20-year mean along with the 20-year mean flow of the natural flow. As mentioned 

earlier, skillful multi-decadal projections are potentially useful for water resources planning on 

the river system. 

2.5 Results 

We applied the WKNN approach directly to the Lees Ferry flows and generated 

simulations for the observational period. In this the component signals of the flows were 

generated using block bootstrap and subsequently the noise component was added to obtain the 

complete flow variance. As expected, the simulations could not capture the nonstationarity in the 

spectrum and poorly on other statistics (figures not shown). This is mainly due to the fact we 

have to add the noise in order to get the full flow variance. Simulating streamflow from signals 
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of large scale climate forcings seems to perform skillfully. Furthermore, this model can be 

combined with simulations of climate forcings from global climate models to exploit the 

teleconnections. Below we describe results from our proposed model.  

2.5.1 Climate Index Simulation  

The component signals of AMO are based on the period ranges of 23 - 27 years and 40-90 

years [Figure 2.1]; while those of PDO are based on 20 – 27 years and 40-90 years [Figure 2.2]. 

The higher period ranges are outside the cone of influence, more so during the observational 

period, but they are within for most part during the paleo period. Furthermore, the relationship 

between these indices and Lees Ferry flow in these general period bands has been shown by 

others [Nowak et al., 2011; Switanek and Troch, 2011]. The spectral power of the climate indices 

shows temporal variability (Figures 2.1 and 2.2) as mentioned above, indicative of 

nonstationarity which also induces quasi-periodicity. The nonstationarity in the flows will be 

described later.   Our objective here is to simulate the flow conditioned on these signals and to 

the extent they are significant we exploit their quasi-periodic behavior and links to flow.  

As mentioned, in order to test the performance of the WKNN model in simulating the 

climate indices, we first demonstrated on the simulations of the climate index, PDO, for the 

longer historic period 1650 – 2012 using both the paleo and observed data. Simulating the longer 

period (1650 – 2012) allows for a rich variety of blocks to be resampled. The component signals 

are simulated using the block bootstrap approach described in the methodology section and the 

residuals are simulated using a lag-1 K-NN bootstrap [Lall and Sharma, 1996], for consistency. 

However, a standard lag-1 auto regressive model (AR1) was also be used and the results were 

quite similar. Thus simulated PDO sequences were used to compute a suite of statistics and 

compared with that from the longer period.  We show results from simulations of PDO as the 
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performance of simulations from AMO is similar.  Figure 2.3 shows the boxplots of basic 

distributional statistics – mean, variance, skew and lag-1 autocorrelation of simulated PDO with 

the historic values shown as red dots.  It can be seen that the simulations capture the observed 

statistics within the inter-quartile range, except for variance and lag-1 autocorrelation which are 

under simulated. However, the actual difference between the historic value and the median of the 

simulations are quite small ~0.2 for variance and ~0.09 for lag-1 autocorrelation.  

 

Figure 2.3 Boxplots of basic distributional statistics from the PDO simulations, red dot is the 
corresponding value of the longer historical period (1650 – 2012).  
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Figure 2.4 shows the simulated and historical PDF, which also is seen to be captured quite 

well, with the simulated PDF being more symmetric. 

 

Figure 2.4 Probability Density Functions of simulated PDO simulation shown as boxplots, the 
blue line is the median PDF and the red is from the historical data. 

The wavelet spectrum of the historical data and the median spectrum from the simulations 

are shown in Figures 2.5 a and b, the global spectra are on the side of these panels.  
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Figure 2.5 (a) Power spectrum of longer historic PDO anomaly (1650 -2012) – local spectrum on 
the left and global on the right, (b)  Same as (a) but median spectrum  of PDO from the WKNN 
simulations  

It can be seen that the local and global spectra are very well simulated. All four spectral 

peaks in the historic period (Figure 2.5a) are captured well in the simulations (Figure 2.5b). 

Furthermore, the nonstationarity in the spectrum – the 32-64 year band being active during 1650-

1750 and then during 1950-present (Figure 2.5a) is well captured in the simulations (Figure 
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2.5b). Similarly the 16-32 year band which is active during 1750-1900 and weaker in recent 

decades is also well captured by the simulations.  These results demonstrate the capability of 

WKNN in simulating distribution and nonstationary features of the signal of climate indices – 

which are important to generate sustained wet/dry sequences of the flows.  

2.5.2 Lees Ferry Streamflow Simulations 

We used the WKNN to simulate PDO and AMO for the historical period (1906-2012) and 

conditionally simulate the streamflow. Figure 2.6 shows the boxplots of distributional statistics 

from flow simulations along with the historical values. It can be seen that the simulations 

reproduce very well the basic statistics - mean, variance skew and lag-1 autocorrelation. We note 

that the lag-1 correlation in the streamflow is entirely simulated from the climate indices – 

considering this, the simulations are quite good.  

 

Figure 2.6  Boxplots of basic distributional statistics from the Lees Ferry flow simulations, red 
dot is the corresponding value of the historical data (19066 – 2012). 

The boxplots of the PDF (Figure 2.7) from the simulations also capture the historical PDF 

very well indicating that the shape of the distribution and consequently the cumulative 

distribution function is also reproduced.  
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Figure 2.7 Probability Density Functions of simulated Lees Ferry flow shown as boxplots, the 
blue line is the median PDF and the red is from the historical data. 

We calculated the excess and deficit statistics based on the median annual flow of the 

historical period (1906-2012), 14.52 Million Acre Feet (MAF).  Excess is defined as the 

magnitude of flow in excess of the median and deficit the magnitude less than the median.  We 

computed the total, maximum and minimum magnitude of the excess and deficit sequences to 

assess the ability of the simulation in capturing these spell quantities. The boxplots of these 

statistics from the simulations are shown in Figure 2.8 along with the corresponding values from 

the historical sequence as red dots. It can be seen that the deficit and excess statistics are 

asymmetric with lower values for the deficit and higher for the excess indicative of how well 

they are reproduced by the simulations. 
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Figure 2.8  Boxplots of Deficit and excess statistics from the simulations along with the 
corresponding values based on historical series shown as red dots.  

To further assess the performance of the simulations in capturing wet and dry sequences 

which are crucial for water resources management, we computed storage statistics using the 

sequent peak algorithm [Loucks and Van Beek, 2005]. In this, for a given flow sequence and a 

selected demand (or yield) to be met the required reservoir storage is computed. Thus, storage-

yield curve is obtained for several demand scenarios. The effect of critical droughts is captured 

in this approach. Figure 2.9 shows the boxplots of storage for different demand levels from the 

simulations along with that from the historical flow sequence. It can be seen that the storage 

from the historical flow sequence (red dots) is very well captured within the boxes, indicating 

that the simulations are able to reproduce the stretches of wet and dry sequences that are 

important in the storage calculations and, in facilitating robust long term planning. 
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Figure 2.9  Boxplots of storage for several demand values based on the simulations overlaid by 
the storage from the historical flows shown as red dots 

The spectrum of the median flows from the simulations and that of the historic flows are 

shown in Figure 2.10. The nonstationarity in the spectrum – especially the power in the 8-16 year 

period in recent decades is very well captured by the simulations. The global spectrum (figures 

on the right in both the panels) too is simulated well although the amplitude of the median peaks 

is smaller. The fact that the nonstationarity in the flow spectrum is captured purely from the 

climate indices is remarkable. We point out that the simulation methodology is not designed to 

reproduce the spectrum or distributional properties of the flows as the flows are simulated as a 

consequence from the climate indicators. The median of all the spectra for each time and period 

was found to be similar to the spectrum of the median flows from the simulations described in 

Figure 2.10. 
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Figure 2.10 Power spectra of the Lees Ferry flow (a) from the median of the simulations (b) 
historic flow - local spectrum on the left and global on the right. 

The decadal (8-16 year period) variability, however, is not significant in the climate 

indices (Figure 2.1(a) and Figure 2.2(a)), but it is clear in recent decades in the spectrum of PDO 

(Figure 2.2a).   
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The coherence of Lees Ferry flow with AMO and PDO (Figure 2.11a and b) clearly show 

the multi-decadal (32-100 year) association with AMO and PDO (Figure 2.11a and b) and 

association at the 8-16 year period in recent decades with PDO (Figure 2.11b). The  significant 

coherence of Lees Ferry flow with PDO in the 8-16 year period as shown in Figure 2.11(b) in 

recent years suggest the modulating effect of  PDO on the Colorado River flow at decadal time 

scales.  

 

Figure 2.11  (a) Coherence plots of the Lees Ferry flow with AMO; (b) is same as (a) but the 
coherence of the Lees Ferry flow with PDO; (c) timeseries plot of the Lees Ferry flow.   

Simulations were made for the full length of paleo data (1560 – 1905) and the statistics 

were compared with that of the paleo data. The performance was similar to that from the historic 

data described above.  
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We generated ensembles of 20 year projections for each year starting from 1890 using the 

methodology as described above. The ensembles of projected 20-year mean flows are shown as 

boxplots and the 20-year mean flow from history is shown as solid line (Figure 2.12).  

 

Figure 2.12  Timeseries plots of the Projections. The box plots are the 20 year mean projections 
and red line is the 20 year mean observed flow at Lees Ferry. The 20 year mean observed flow 
(red) stops in 1991 (the 1991-2010 mean flow) and the 20 year mean projections continue until 
the end of 2010.   

It can be seen that the ensembles reproduce the observed temporal characteristic of the 20-

year mean flows very well. However, the high flows during the early part of the record (1906 – 

1920) are under simulated. This is due to the fact that the flow simulation is based on 

bootstrapping past flows and for this period, the flows are large relative to pre-1906 flows which 

do not have sustained period of high flows. Another reason is that the high flow periods in the 

past should coincide with the climate forcings, else the neighbors selected based on climate 

variables will not correspond well with high flows for resampling. The sustained wet period of 



44 
 

1906-1920 has good coherence with the AMO and PDO anomalies in the 64 year period band 

(Figure 2.11). The 20 year projections of climate indices for the 1906 -1920 epoch are resampled 

mostly from ~1840 (64 years back from 1906) which is the nearest neighbor to the climate 

indices at the start of 1906. Thus, the flows are also simulated largely from this period, which is 

relatively lower. We note that methodology is able to capture well the high flow period of 1980s 

as simulation during this period is able to resample high flow values from the 1906-1920 period. 

The projections perform very well from 1920-1960, where we don’t have extreme wet periods 

sustained periods. The 1980s wet period is captured by the projections as well. This wet period is 

not sustained for longer period as in the early 1900s and resampling was possible from the past 

paleo data as well as from the early 1900s wet period. 

2.6 Summary and discussion  

As the anthropogenic climate change discussion has become mainstream, the climate 

sensitivity of hydrologic time series has evinced considerable interest. By and large, the dynamic 

range of hydroclimatic variation over the last millennium in places such as Colorado, appears to 

be much larger than the relatively modest, yet uncertain projections from a chain a coupled 

models of the ocean-atmosphere and hydrology. Specifically, the physics based models do not 

adequately reproduce the inter-annual, decadal and multi-decadal variations that are in evidence 

from tree rings, and the associated reconstructions of hydrology of the region. As a result, water 

managers seek methods by which storage needed to meet demand and correspondingly the 

potential reliability and resilience of existing projects relative to these climate variations, can be 

assessed. This is the context for the methods developed and exemplified in this paper.  
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The causal framework for low frequency variations in regional streamflow suggests that these 

variations are derived from like variations in large scale climate phenomena, such as the AMO 

and the PDO. Consequently, the need to develop long term, stochastic simulations of those 

indices emerged as a first step in developing an approach for low frequency simulations of the 

streamflow, and led to the strategy presented here. The WKNN method developed was applied in 

this manner, and also directly to the 106 years of Colorado River flows at Lees Ferry (figures not 

shown). The direct application led to performance considerably poorer than the application 

following the climate causal framework, suggesting that using the paleo-proxies for the climate 

indices and then conditioning the streamflow on the simulated indices is superior to a direct 

attempt to model low frequency variability in the streamflow series. This is very interesting since 

the AMO, PDO, ENSO and NAO have seen significant efforts at paleo-reconstruction and 

collectively influence hydrology over much of N America and parts of Europe and Asia. 

Developing a library of the simulations of these indices may then allow local investigators the 

ability to use the appropriate indices to conditionally simulate streamflow with the proper low 

frequency character. 

In future work, we plan to explore the application to other settings, and to extend our prior 

work on multivariate simulation [Lall et al., 2015] to this setting as well.  
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3 A Comparison of Wavelet and Hidden Markov Based Stochastic Simulation and 
Projection Methods on the Colorado River Streamflow 

A version of this chapter has been submitted for publication as a journal paper. 

Abstract 

Linear timeseries models have been the mainstay for stochastic streamflow simulation. 

Recently, wavelet and Hidden Markov based modeling approaches were developed to better 

capture nonstationarity and non-gaussian characteristics present in the streamflow, which the 

linear models cannot. This paper presents a comparison of three recently developed timeseries 

models: Wavelet-based Auto Regressive (WARM), Hidden Markov Model (HMM) and 

Wavelet-based Time Series Bootstrap Model (WKNN). The first method is applied directly on 

the streamflow, while the other two methods incorporate large scale climate forcings – Atlantic 

Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). The use of climate 

forcings with HMM for streamflow simulation is a new methodological contribution. The 

comparisons are made on the performance skill in a simulation and projection modes using the 

Lees Ferry flow timeseries in the Colorado River Basin (CRB). The three methods are generally 

very good in capturing all the distributional statistics and non-stationary features present in the 

historic data in a simulation mode. For short term projections (1 ~ 3 years) the HMM seems to 

perform slightly better than the other two methods, which will be immense use in short term (1-2 

years) operations and planning of water resources systems on the River. For longer term 

projections (~20years) WKNN performs much better, which can be very useful in water 

resources planning.  
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3.1 Introduction 

Water resources management in any river basin aims to plan for potential long term 

supply-demand imbalances through investment in infrastructure and implementation of policies 

that govern the use of the water and the operations of the human controlled system.  Resilient 

plans can address periodic imbalances due to hydrologic variability through temporary measures 

such as M&I conservation or fallowing agricultural land and are especially effective when the 

need for these measures can be anticipated in advance [Grantz et al., 2007; Regonda et al., 

2011].  Additionally, sustainable water resources systems must be able to adapt to uncertain 

future changing demands and supplies due to, e.g., demographics and climate change. Thus, 

effective management requires an understanding of projected hydrologic variability at timescales 

that range from seasonal to multi-decadal.  Stochastic streamflow simulation has been useful as a 

planning tool by providing ensembles of future hydrologic sequences that can be input to 

stochastic simulation models to evaluate the performance and reliability of system designs, 

policies and operational decisions [Loucks and Vanbeek, 2005,  chp 7].  

Typically, time series models are fitted to the historic streamflow data and then used to 

simulate ensembles of flow sequences which have the same statistical properties as the historic. 

Linear time domain models [Wei, 2006], also called parametric models, have been the staple of 

stochastic streamflow simulation [Salas, 1980].  These models assume stationarity of 

autocorrelation in the time series, data to be normally distributed, and a linear relationship of the 

autocorrelation – which tend to be restrictive as these assumptions are hard to satisfy in 

streamflow data. Non-parametric [Lall, 1995] timeseries simulation models have been proposed 

to improve upon these drawbacks mainly based on kernel density estimators [Lall and Sharma, 

1996; Rajagopalan and Lall, 1998; Sharma et al., 1997]. None of these time domain methods 
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can capture the spectral properties present in the observation series, especially nonstationarity in 

the spectra. These features are important for capturing the wet and dry sequences that are crucial 

for water resources management and planning at short and long time scales [United States 

Department of the Interior, 2001].  

Wavelet based timeseries simulation models, an attractive alternative for modeling the 

spectral characteristics, have been gaining popularity since the first Wavelet Auto Regressive 

Model (WARM) was introduced by Kwon et al. [2007] and later enhanced by Nowak et al. 

[2011].  The WARM approach fits autoregressive (AR) models to the wavelet filtered signal 

components of the timeseries with the residual or noise modeled as white noise, i.e., normal 

distribution. For details of wavelet analysis, the reader is referred to [Torrence and Compo, 

1998; Kwon et al., 2007; Nowak et al., 2011].The fitted AR models can be used to make short 

and long term projections (1 ~ 20 years). However, for simulation of historic series the 

stationarity assumption of AR models limits their ability to capture nonstationarity in the spectra.  

To improve the simulation, Nowak et al. [2011] enhanced the WARM model by normalizing the 

signal components by their respective Scaled Average Wavelet Power (SAWP) [Torrence and 

Compo, 1998] prior to fitting an AR model, thereby making them stationary. The enhanced 

WARM model was applied to the CRB at Lees Ferry and shown to faithfully reproduce the non-

stationary spectral characteristics of the streamflow [Nowak et al., 2011].  

The hydroclimatology of Western United States is increasingly known to be modulated by 

Atlantic Multi-decadal Oscillation (AMO), Pacific Decadal Oscillation (PDO) and El Nino 

Southern Oscillation (ENSO) [Tootle et al., 2005, Timilsena et al., 2009; Enfield et al., 2001; 

McCabe et al., 1999; McCabe et al., 2007; Hidalgo, 2004; Nowak et al., 2012] at multi-decadal 

time scales. Recent research [Nowak et al., 2012; Bracken et al., 2014; Switanek and Troch, 
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2011] indicates the upper CRB specifically has teleconnections strongly with AMO and PDO 

and weakly with ENSO.  Incorporating this understanding in a WARM framework, the authors 

recently developed a wavelet based K-Nearest Neighbor (WKNN) conditional streamflow 

simulation model [Erkyihun et al., 2015]. In this, the wavelet derived signal components of the 

climate forcings are generated with a block-K-NN (BKNN) resampling approach replacing the 

AR part of WARM ( Figure  2 ). The BKNN has the ability to capture nonlinearity and non-

Normal features thereby alleviating these drawbacks of AR models. Then the stream flow is 

conditionally resampled based on the nearest neighbors of the thus generated climate forcings. 

This method was also applied to the CRB flows and was shown to capture the historic features of 

the flow very well and also provide good projections especially at longer time scales.  

Hidden Markov Models (HMM) [Zuccuni & MacDonald , 2009] have also been proposed 

recently for time series simulation. The observed time series is modeled as a realization from 

hidden states, with each state characterized by a probability density function (PDF). The number 

of hidden states, their transition probabilities from one state to another (i.e., the Markov part) and 

the parameters of the state PDFs are obtained using objective criteria [Zuccuni & MacDonald , 

2009]. Simulation proceeds by first simulating the state from the transition probability and then 

sampling a value from the respective state PDF. Recently, Bracken et al. [2014] developed an 

HMM streamflow simulation model with a slight modification to modeling the state transition 

probabilities using large scale climate indices of AMO and PDO.  Applying this to the CRB 

flows, the model showed very good performance in capturing the characteristics of the 

streamflow including non-stationary spectral features.  In this research the authors modified the 

HMM streamflow simulation method [Bracken et al., 2014] by applying the HMM to the climate 

indices AMO and PDO to simulate them separately, and simulating the streamflow conditionally 
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via K-NN resampling, similar to WKNN.  The modification is made in such a way that the 

performance of the HMM model can be compared with the WKNN model under the same 

conditions. 

The objective of this research is to formally compare the three recently developed methods 

(WARM, WKNN and HMM) which have demonstrated skill for stochastic streamflow 

simulation. The projection skills of the three models for different projection windows is analyzed 

to identify appropriate model for water resources planning and management. This is motivated 

by the need for robust stochastic simulation and projection of streamflow at short and long time 

scales for effective water resources planning and management [Vera et al., 2010; United States 

Department of the interior, 2001].  

This paper is organized as follows. First the data used for comparison followed by brief 

descriptions of the models  simulation and projection approaches. Comparisons of the models 

results are then presented to demonstrate the performance of the simulation and also to identify 

suitable model based on their projection skill at different projection windows at short and longer 

time scales. Summary of the results and discussion section concludes the paper.  

3.2 Data 

The observed and paleo data of Colorado River streamflow and large scale climate 

indicators used in this research are described below.  

3.2.1 Colorado River flow at Lees Ferry, AZ 

The Lees Ferry flow gauge divides the CRB into the upper and lower operational basins, 

through which 90% of the Colorado River flows. The United States Bureau of Reclamation 

(Reclamation) regularly updates the monthly neutralized flow of this gauge by removing 
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anthropogenic effects such as regulation and diversions [Prairie and Callejo, 2005]. The 

naturalized monthly data from 1906 to 2012 can be obtained from the Reclamation website: 

http://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html 

The annual naturalized flow of the Lees Ferry flow, derived from the monthly data from 

1906 to 2012, is used in this study. In addition, tree ring reconstructed flows for the pre-1906 

period covering 1490 to 1905 from Woodhouse et al. [2006] are used in this study 

(http://treeflow.info/upco/coloradoleeswoodhouse.txt). 

3.2.2 Climate Indices AMO and PDO  

The AMO index[Enfield et al.,2001] is computed as a monthly area weighted average of 

North Atlantic (0 to 70o N) sea surface temperatures (SST), which is subsequently de-trended, 

based on  5o x 5o resolution Kaplan SST [Kaplan et al.,1998]. It is updated regularly by the 

national Oceanic & Atmospheric Administration (NOAA) at monthly time scale. The monthly 

data from 1856 to present is available at NOAA website: 

http://www.esrl.noaa.gov/psd/data/timeseries/AMO/. The paleo reconstruction of annual 

AMO[Gray et al., 2004] for the period (1650 – 1990) is based on reconstructions of annual sea 

surface temperature anomalies (SSTA) for the North Atlantic Ocean (0 to 70o N) from tree rings 

and was obtained from the NOAA website: 

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/amo-gray2004.txt.  

Monthly PDO anomalies from 1900 to present are available from the University of 

Washington: http://jisao.washington.edu/pdo/PDO.latest. It is calculated as the first principal 

component of the Northern Pacific SST [Zhang et al., 1997; Mantua et al., 1997]. The annual 

data were taken as the average of the monthly values in this analysis. The paleo annual PDO 

values for the period 993 – 1996, are based on tree rings from Pinus flexilis in California and 
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Alberta, Canada [MacDonald and Case, 2005] and are available from the NOAA website:  

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/pdo-macdonald2005.txt.  

3.3 Model description 

Below a brief description of the three models along with the steps for simulation and 

projection modes. In a simulation mode, the aim is to generate ensemble of sequences, each 

ensemble the same length as the historic data and compare a suite of statistical characteristics – 

distributional, correlation and spectral to understand the performance. In a projection mode, the 

aim is to generate an ensemble of sequences of desired length from a specified point in time.   

3.3.1 Hidden Markov model 

The basic principle behind the HMM model is to represent the observed time series as a 

realization from non-observable (hidden) Markov process, ܵ௧ (t=1,2,3,…,T) with a transition 

probability matrix and appropriate state specific PDFs [Zuccuni & MacDonald, 2009, Ibe, 2009; 

Bracken et al., 2014]. The general form of HM model (from Zuccuni & MacDonald , 2009; 

Bracken et al., 2014) shown in the schematic in Figure 3.1 and can be represented as: 

Pr൫ܵ௧หࡿ
ሺ௧ିଵሻ൯ ൌ Prሺܵ௧|ܵ௧ିଵሻ , ݐ ൌ 2,3, … , ܶ െ െ െ െ െ ሺ1ሻ 

Pr൫ܺ௧หࢄ
ሺ௧ିଵሻ, ௧൯ࡿ ൌ Prሺܺ௧|ܵ௧ሻ , ݐ ∈ Գ െ െ െ െെെെ	ሺ2ሻ 

Where:  ܺ௧ is the observed sequence; S is the hidden state and ܵ௧ is the hidden state sequence	

௝௞ߛ ൌ Prሺ ௜ܵାଵ ൌ ݇ ∣ ௜ܵ ൌ ݆ሻ 

߁ ൌ ൥
ଵଵߛ ⋯ ଵ௠ߛ
⋮ ⋱ ⋮

௠ଵߛ ⋯ ௠௠ߛ

൩ 

Where:  ߁ is the transition probability matrix of the hidden state sequence. 
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Figure 3.1 Basic HMM model adopted from Zuccuni and MacDonald, 2009. 

The HMM approach seeks to recover the hidden states sequences from the observation 

sequences through optimal number of hidden states (݉), state transition probabilities (߁) and 

probability distribution parametersሺߤ௞, ;௞ߪ 	݇ ൌ 1,2, … ,݉ሻ; where ߤ௞	&	ߪ௞ are the mean and 

standard deviation of probability distribution of state ݇    The optimal model parameters are 

determined through iterative process called the Baum-Welch algorithm, a special case of 

Expectation Maximization (EM) procedure [see Ibe, 2009; Zuccuni & MacDonald, 2009].  

The authors modified the application of HMM from Bracken et al. [2014] in that the 

HMM was applied to the climate indices, AMO and PDO, which is used to simulate them and 

conditionally generate the streamflows via K-nearest neighbor bootstrap. The optimal states, 

transition probabilities and the state PDF parameters are listed in Table 3-1  
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Table 3-1 Hidden Markov model parameters 

 Γ ߜ ߪ ߤ ݉ 

Lees Ferry flow  

2 

 

ሾ17.9, 13.22ሿ 

 

ሾ3.75,3.79ሿ 

 

ሾ1,0ሿ 

 

 

ቂ0.92 0.08
0.02 0.98

ቃ 

 

AMO  

2 

 

ሾെ0.82,0.76ሿ 

 

ሾ0.62,0.61ሿ 

 

[1,0] 

 

 

ቂ0.96 0.04
0.02 0.98

ቃ 

 

 

PDO 

 

3 

 

ሾ0.92, െ0.87,0.23

 

ሾ0.89,0.65,0.29

 

ሾ0,0,1ሿ 

 

൥
0.77 0.00 0.23
0.00 0.89 0.11
0.21 0.17 0.62

൩ 

 

 

Simulation 

The simulation steps are as follows: 

(i) The fitted HMM of PDO, as mentioned above, provides a best estimated sequence of 

states for each year of the historical data. Using this state sequence, a value is generated 

from the corresponding state PDF, thus generating a sequence of PDO for the same 

length as the historic data.  This is repeated to generate an ensemble of 107 sequences 

each of the same length as the historic data. 

(ii) Repeat step (i) for AMO to generate an ensemble of 107 sequences each of the same 

length as the historic data 
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(iii) For each simulated AMO, PDO pair, xt at time t, K nearest neighbors are identified 

from the historical pairs using Euclidian distance. The nearest neighbor is given the 

highest weight and the farthest the least using a weight function that decays as 1/i, i = 

1,2,..,K. A neighbor is selected (i.e., bootstrapped) using this weight function and the 

corresponding streamflow is the simulated for time t. This is repeated for all times. The 

heuristic choice of number of neighbors ܭ ൌ	√݊   was proposed by Lall and Sharma 

[1996]. This K-NN bootstrap method has been used widely for streamflow simulation 

[Prairie et al., 2006; Grantz et al., 2005], weather generators [Rajagopalan and Lall, 

1999; Yates et al., 2003; Caraway et al., 2014] and recently with wavelets, WKNN 

method [Erkyihun et al., 2015] compared here. 

Projection 

The projection steps starting from time t are as follows: 

(i) Based on the states of PDO at current and past times along with the transition 

probability matrix, a state of PDO is generated for time t+1.  From the generated PDO 

state, a value is sampled from the corresponding state PDF at time t+1. This is repeated 

for the desired projection length: t+2, t+3,... , t+n. 

(ii) Step (i) is repeated for AMO 

(iii) For each simulated AMO, PDO pair, using K-NN bootstrap method described in the 

simulation section above, streamflow projection is generated. 

(iv) The above steps are repeated several times to generate an ensemble of streamflow 

sequence, each of the desired projection length. 
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3.3.2 Wavelet Auto Regressive Model (WARM) 

The WARM [Kwon et.al, 2007] dwells on the signal component of the time series so that 

classical Auto Regressive (AR) model fit can be applied skillfully. The signal component of the 

timeseries is identified by the 90 % - 95% significant test using the white noise as a null 

hypothesis. The identified significant component between periods	݆ଵ and ݆ଶ is extracted from the 

original timeseries using the wavelet timeseries reconstruction function (Equation 3). This 

reconstructed component is also known as the signal component of the timeseries. Depending on 

the nonstationarity characteristics of the timeseries at different frequencies, there can exist more 

than one signal component in the timeseries. With this, more signal reconstructions are 

performed. The residual has no structure or lag auto correlation, thus is regarded as the “noise” 

component of the timeseries. The reconstructed signal components are relatively “smooth” and 

“periodic” when compared with the original timeseries (see Figure 3.2).   Adding the signal and 

noise components altogether, by design, forms the original timeseries. Details of wavelet 

technique can be found in Torrence and Compo [1998]; Kwon et al., [2007]; Nowak et al. 

[2011]. 

Reconstruction of the original time series, shown in the Figure 3.2 schematic, over a set of 

periods  ݆ଵ and ݆ଶ can be obtained as: 

ᇱ௡ݔ ൌ
௧ߜ௝ߜ

ଵ/ଶ

ఋ߰଴ሺ0ሻܥ
෍

ܴ൛ ௡ܹሺ ௝ܽሻൟ

௝ܽ
ଵ/ଶ

௝మ

௝ୀ௝భ

െ െ െ െ െെെെെ ሺ3ሻ 

Where  ܥఋ	 is reconstruction factor, ߜ௝ߜ௧  are scale and time factors respectively. ߰଴ሺ0ሻ ൌ   ଵ/ସିߨ

Is the factor that removes the energy scaling for Morlet wavelet function, R denotes the real part 

of the wave and ௝ܽ is the scale.  ݆ଵ and ݆ଶ are the lower and upper periods that brackets the desired 

periods.  
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This method has the ability to reproduce the distributional statistics, but fails to reproduce 

the non-stationary characteristics of the timeseries, as the AR model is stationary by design. 

Figure 3.2 represents the logical representation of the WARM method. For details the reader is 

referred to Kwon, et al. [2007] and Nowak et al., [2011]. 

 

Figure 3.2  The WARM model adapted from Kwon et al. [2007]. 

To capture the nonstationarity in the timeseries better, Nowak et al. [2011] introduced an 

enhancement for WARM.  The enhancement is mainly improving the skill of the AR model on 

the signals.  In this modification, the variance of each of the signals was first calculated as Scaled 

Averaged Wavelet Power (SAWP) (Equation 4).  The SAWP, i.e., the variance of the time series 

within the selected periods, is given by: 
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ഥܹ௡
ଶ
	ൌ 	

௧ߜ௝ߜ
ఋܥ

෍
ห ௡ܹሺ ௝ܽሻห

ଶ

௝ܽ

௝మ

௝ୀ௝భ

െ െ െ െ െ െെെെെሺ4ሻ 

 Where  ܥఋ	 is reconstruction factor and  ߜ௝ߜ௧ are scale and time factors respectively.  

The signal component are then normalized by the SAWP to create “stationary” signal so 

that AR model fit is even more skillful. This is accomplished by dividing the reconstructed 

component (Equation 3) by SAWP (Equation 4).  The normalized components are then subjected 

to the AR model to generate realizations in simulation mode. The realizations of each of the 

components are then back standardized by the respective SAWP to bring back the 

nonstationarity in each component.  

Simulation 

The WARM is applied directly on the Lees Ferry streamflow time series. The simulation 

follows the schematic presented in Figure 3.2 and the steps are described as follows 

(i) Wavelet timeseries reconstruction is performed to obtain the signal component(s). 

(ii) For each of the reconstructed signal components, AR model fit is performed. 

(iii) Based on the fitted AR model in (ii) stochastic realization is generated for each component. 

(iv)  The residual component is represented by generating values from normal distribution 

using the mean and variance of the residual “noise” component of the timeseries.  

(v) The generated realizations of the signals and noise components are summed to get the 

realization of the original timeseries.  

(vi) The above steps are repeated several times as desired to get the simulation ensemble. 

The WARM method as demonstrated by previous studies [Nowak et al., 2011] fails to 

capture the spectral and non-gaussian characteristics of the Lees Ferry streamflow. For this, the 
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authors also applied the WARM model on the climate indices for conditional simulation of the 

Lees ferry flow following the steps presented in the HMM description above. 

Projection 

The WARM projection proceeds as follows: 

(i) Wavelet timeseries reconstruction and AR model fit of the signal component is 

performed for the timeseries up to the current time, t.  

(ii) Based on the AR model parameters in (i), the signal component is projected for to 

generate values at time steps t+1, t=2, …, t+n. 

(iii) Step (ii) is repeated for all the signal components. 

(iv)  The residual component is generated from normal distribution as described in the 

simulation section for times t+1, t=2, …, t+n. 

(v) The projected values of the signal and noise components are aggregated to get the 

projection of the timeseries.  

(vi)  Steps i-v are repeated as many times as desired to get projection ensembles. 

3.3.3 Wavelet Based K-NN (WKNN) model 

The WKNN model as described in Chapter 2 has a similar structure as the conditional 

WARM. What makes the WKNN different is that the signals of the timeseries components are 

modelled using the block bootstrap method rather than the AR model [Erkyihun et al., 2015]. For 

details of the block bootstrap method, refer [Efron and Tibishirani, 1993]. The WKNN is applied 

to the climate indices AMO and PDO simulating them separately. The streamflow is 

conditionally resampled based on the simulated AMO and PDO – using K-NN bootstrap 
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described in simulation step (iii) in the HMM section above. Brief description of the method is 

presented here. 

Simulation  

The timeseries is first decomposed into dominant signal and noise components [Torrence 

and Compo, 1998; Kwon et al., 2007]. The dominant signals are then simulated using a block K-

nearest neighbor (K-NN) bootstrap approach [Efron and Tibishirani, 1993; Lall and Sharma, 

1996] described as follows 

(vi) For each reconstructed component signal (Equation 4), the characteristic period, തܲ,	 is 

identified, which is the mean of periods included in the reconstruction:   തܲ ൌ ௝భା௝మ
ଶ

   

where ݆ଵ	ܽ݊݀	݆ଶ are upper and lower periods of the reconstructed signal.  Then a 

block size, B, is computed which is half of	 തܲ.  

(vii) For a given time t, a ‘feature vector’ of length B is created 

,௧ݔ] ,௧ିଵݔ … ;	௧ି஻ାଵݔ  and K nearest neighbors of this	ሿ݈ܽ݊݃݅ݏ	݁ݐ݈ܽ݉݅ܿ	݄݁ݐ	ݏ݅	௧ݔ	݁ݎ݄݁ݓ

feature vector are identified based on Euclidean distance, from the reconstructed 

signal.  

(viii)  One of the neighbors is selected using a weight function which weights the nearest 

neighbor the most and the farthest the least. The weight function is given as: 

௜ܹ ൌ

1
݅

∑ 1݅

	; 	i	 ൌ 1,2, . . , ܭ െ െ െ െ െെെ ሺ5ሻ 

(ix)  Suppose the neighbor j is selected which corresponds to time T. A block B of 

successive reconstructed signal values –ie., ்ݔାଵ, ,ାଶ்ݔ … ,  ା஻ forms the simulated்ݔ

values for B time steps t+1, t+2, .., t+B.  
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(x) The simulated block becomes the feature vector and following steps (ii) through (iv) 

will simulate the signal for time steps t+B+1, t+B+2, .., t+2B. 

 The above steps are repeated to generate a sequence of any desired length B time 

steps at a time. Lall and Sharma [1996] proposed a heuristic approach for K as ܭ ൌ

	√݊,  where n is the number of data points. 

The above steps are applied to simulate sequences of all the reconstructed component 

signals. Thus simulated sequences of component signals are added to obtain the sequence of a 

timeseries. 

Projection 

The projection algorithm is the same as the simulation. Unlike the simulation mode, the 

projections are generated considering data only from the past. The WKNN projection is 

performed following the steps presented below.  

1. Wavelet decomposition to identify the signal and noise components of the climate 

indices. 

2. Fit a block KNN model and then predict the climate signals for the desired lead time. 

3. The projected climate signals form a feature vector using which nearest neighbors are 

identified from the past data in the climate signals space and one of the nearest neighbors 

are selected.  

4. The flow that corresponds to the selected neighbor is resampled. The resampled flow is 

the projected flow that correspond to the time with climate signals feature vector. 
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3.4 Model Comparisons   

The models are compared in the simulation and projection modes. For the simulation 

mode, from each model 500 ensembles of streamflow are generated, each of length 107 years 

(same as the historic data). A suite of statistics – mean, variance, skewness and lag-1 

autocorrelation – are computed for each ensemble and displayed as boxplots along with the 

corresponding value from the historic flows. This is done for all of the three models. The historic 

value falling within the box (i.e., interquartile range) indicates the ability of the model to capture 

the statistics. PDFs from the simulations are also plotted as boxplots along with the PDF of the 

historic data. To demonstrate the ability of the methods to capture nonstationary spectral features 

and, consequently, the wet and dry epochs, which are important for water resources systems 

management, median wavelet spectrum of the ensembles from each model is shown with the 

spectrum of historic data. Wavelet spectrum is computed for each ensemble member and the 

median value of the spectrum for each period and time is computed, thus providing the median 

spectrum from the ensembles. 

For projection mode, blind projections of flows are made for a 20-year period starting 

from each and average flow for several lead times are computed and compared with that of the 

historic values. For example, starting in year 1906, the HMM model is fitted on data pre-1906 

and the projection method described earlier is applied to make 1, 3, 5, 10, 15 and 20-year 

projections. This is repeated for all the years in the period 1891-2012 and for all the models. The 

ensembles are displayed and the skills are determined using correlation coefficient. 

 

 



63 
 

3.5 Results 

3.5.1 Simulation  

Streamflow simulations were generated using HMM, WARM, conditional WARM and 

WKNN models as described in the previous section. As a complement to WARM, just for 

simulation mode, the authors included conditional WARM which is same as WKNN except the 

block bootstrap approach for simulating the climate forcings AMO and PDO is replaced with AR 

models. The suite of distributional statistics is computed and compared with that of the historic. 

The boxplots of distributional statistics – mean, variance, skew and lag 1 auto correlation – from 

the simulations and that of the historic flows as dots are shown in Figure 3.3. The observed 

values are within the interquartile ranges of the boxplots indicating that all the three models 

exhibit good performance in capturing the distributional statistics in the simulations. The only 

exception is the under simulation of lag 1 autocorrelation by the HMM and to a slight extent by 

WARM simulations. The HMM does not explicitly model the autocorrelation in the time series 

unlike the wavelet based models, most of the autocorrelation is captured by the transition 

probabilities of the Markov chain – also observed by Bracken et al. [2014]. 
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Figure 3.3 : Boxplots of distributional statistics – mean, variance, skew and lag-1 autocorrelation 
from the three models, with the corresponding historical values shown as red dots and red dashed 
line. A conditional WAREM simulation model is also applied to see the relative performance of 
the model 

The PDFs of the simulations and the observed flow are compared by generating boxplots 

of the PDFs from the simulations overlain by the PDF of the observed data shown in Figure 3.4. 

The median PDF of the simulations (blue) captures very well the PDF of the historic flow (red) 

from all the three models except the WARM model The WARM simulates from AR models 

which assumes Normal distribution, as mentioned in the previous section – hence, it has 

difficulty capturing the historic flow PDF which is non-Normal with positive skew Figures 3 and 
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4 show that all the three models are very good in simulating the PDF and distributional statistics 

in a simulation mode. 

 

Figure 3.4: PDFs of simulations from (a) HMM, (b) conditional WARM, (c) WARM and (d) 
WKNN models. The median of the PDF from the simulations is in blue and that of the historic is 
in red.    

In order to investigate the capability of the models to capture spectral features, wavelet 

spectra were computed for the median of the simulations of each method and the wavelet spectra 

of the historic flows are shown in Figure 3.5. The models reproduce the wavelet spectra very 

well including the decadal (8 -16 year) variability in the recent decades. The conditional wavelet 

based methods (Figures 5b and d) perform better than HMM in reproducing the recent decadal 

spectral features. As expected the WARM approach (Figure 3.5c) smooths the power in the 
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decadal band making it more stationary. The WARM approach generates the streamflow 

component signals using stationary AR model – hence the nonstationarity in the decadal band is 

not reproduced. As mentioned, the conditional WARM simulates the climate forcings using AR 

models and then conditionally the streamflow, which is quite similar to WKNN, shows similar 

performance. As indicated before, the HMM captures nonstationarity purely from the Markov 

transition of the states of the climate forcings and that the spectral features are not directly 

modeled, unlike the wavelet based methods. Considering this the HMM performance is 

remarkable.  

 

Figure 3.5: Wavelet power spectra from the median of the simulations of (a) HMM, (b) 
Conditional WARM, (c) WARM and (d) WKNN models. The dashed line is the cone of 
influence indicating the region beyond which the inference is limited by data. The wavelet 
spectrum of the historic flow is in panel (e). 
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From the above results it is clear that all the three conditional stochastic streamflow 

simulation models are very good at capturing the distributional and nonstationary spectral 

features in a simulation mode. The methods together offer a robust alternative to traditional 

linear time series methods. \ 

3.5.2 Projection 

Following the projection algorithms described in the model description section, the HMM, 

WARM and WKNN models are used to generate projections of Lees Ferry streamflow for the 

period 1891 – 2012. The projections are made for a 20-year period starting from each year and 

the mean of the projections at several lead times (1, 3, 5, 8, 10, 15 and 20 years) are computed 

and compared against the corresponding mean values from the historic flows. The standard R2 is 

computed for each lead time and each model. Boxplots of the projections along with the 

corresponding historic values are also shown for selected lead times for visual comparison.   

Figure 3.6 shows the boxplots of projections of 20-year mean flow from the three methods 

for the 1891-2012 period. It can be seen that the projections from HMM and WARM (Figures 

3.6 a and b) do not capture the historical 20-year mean (shown in red). The simulations from 

WKNN (Figure 3.6 c) track that historical series very well, compared to HMM and WARM, 

especially from ~1925. Interestingly, all the methods perform poorly in the 1891 – 1925 period. 

The authors have two explanations for this – (i) this is one of the sustained wet epochs of Lees 

Ferry streamflow in the entire paleo and observed period and, (ii) this period is the interface of 

the paleo and historic period. For WKNN and HMM there are no analogs to this wet period 

hence the projected ensembles are lower than the historic (Figure 3.6c). Similarly for WARM 

which fits an AR model to the paleo data during this period for projections and hence cannot 

generate high flows. 
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Figure 3.6 Boxplots of the 20 year mean projections of Lees Ferry flow from (a) HMM, (b) 
WARM and (c) WKNN. The 20 year mean of the historic flows are shown as red line.  

Figures 7 and 8 show the boxplot of projections of two lead times 10-year and 5-year 

mean flow, from the three methods for the 1981-2012 period, respectively. It can be seen that 

projections from HMM better capture the historic mean for both these lead times (Figures 7a and 

8a) compared to WARM and WKNN (Figures 7b,c and 8b,c). The projections from HMM and 

WARM capture the wet epoch of early 20th century better at this shorter time scale and they also 

perform better at 1 and 3-years (Figures not shown). It seems to suggest that WKNN has a better 

performance at longer lead time, while HMM is better at shorter lead times and WARM is in 

between. This is corroborated by the skill measure R2 in Figure 3.9. The authors can see that 

WKNN has the highest skill at long lead time ~20-year while HMM has higher skill ~5-10 years. 
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Figure 3.7  Same as Figure 3.6 but for 10-year mean projections 

 

Figure 3.8 Same as Figure 3. 6 but for 5-year mean projections 
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Figure 3.9  R2 values, a skill measure, of mean flow projections at various lead times (in years) 
from the three methods  

The R2 values at 1-year lead time are low for all the models, but they increase for HMM 

with high ~5-year lead time, and longer for WKNN. The authors offer plausible reasoning for 

this counter intuitive behavior. The low skill at 1-year is mainly due to boundary issues with 

WARM and WKNN. These two methods use the wavelet component values of the climate 

forcings at the boundary, the estimates of which in the boundary are known to have high 

variability [Torrence and Compo, 1998], to then project the future 20-year period using AR or 

block bootstrap influencing the projections at shorter time. This high variability leads to reduced 

R2 in 1-2 year lead time. However, at longer lead times, since the wavelet components simulate 

the quasi-periodic behavior well, at longer lead times this translates into skillful projection of 

climate forcings and consequently, projections of streamflow – thus, the higher skill at longer 

lead time.  At 1-3 year time scales a higher R2 is achieved only with simulating the historic flow 
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accurately. But at longer time scales the skills are based on the mean flow (5-year mean, 10-year 

mean, 20-year mean etc.) and this averaging reduces the variability and increases the R2.  

3.6 Summary and Discussion  

The authors compared three recently developed timeseries simulation models: HMM, 

WARM and WKNN on the flow time series at Lees Ferry gauge on the Colorado River. All three 

models perform well in capturing the distributional statistics and PDF and the nonstationary 

spectral features were better captured by HMM and WKNN.  The nonstationary spectral features 

were better captured by WKNN and HMM compared to WARM. The authors implemented the 

HMM in a new approach than what was applied in Bracken et al., [2014]. In that, here, the 

HMM was applied to the climate indices and the flow is generated conditionally. While Bracken 

et al., [2014] applied the HMM on the streamflow directly. 

The models were applied to blind projection and the skill estimated on the average flow at 

several lead times from 1 to 20 years.  The authors found that WKNN showed good skill at 

longer lead times (~15-20 years) and HMM at shorter (~1-5years) and WARM was in between. 

WKNN, with its ability to simulate quasi-periodicities in the climate forcings by the wavelets, 

combined with the ability to capture nonlinearities by the block bootstrap, enables long lead 

projection skill. None of the models, were capable of reproducing the wet epoch in the early 

1900s. This is largely due to the fact that the conditional resampling approach for streamflow in 

these methods does not have analog prolonged wet periods in the paleo record to draw from. The 

HMM and WARM models show a better performance of capturing the early 1900s at shorter 

lead times that will be useful in short term planning. 

Colorado River streamflow exhibits significant multidecadal variability [Nowak et al., 

2012] that enable skillful projections. The combination of paleo and historic data provides for a 
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rich variety of scenarios. The WKNN has been used in conjunction with a decision model on the 

Colorado River and demonstrated to provide improved decision making guidance (Erkyihun et 

al, 2015). The model comparison effort in this paper, provides insights into the stochastic 

methods available for short and long time scale simulation. The authors hope this will spawn 

efforts to enhance these methods. 

The performance of the projections are determined by using data from the past as there is 

no future reference streamflow to compare the projections with. The nonlinear dynamical based 

ensemble simulation technique (Chapter 4) provides ways to recover the dynamics and time 

varying predictability of streamflow to identify the credibility of the projections to be used for 

water resources planning and management.  
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4 A Nonlinear Dynamical Systems based Modeling Approach for Stochastic Simulation 
of Stream flow and Understanding Predictability 

A version of this chapter has been submitted as a journal paper 

Abstract 

We propose a time series modeling approach based on nonlinear dynamical systems to 

recover the underlying dynamics and predictability of streamflow and to produce projections 

with identifiable skill.  First a wavelet spectral analysis is performed on the time series to 

identify the dominant quasi-periodic bands.  The time series is then reconstructed across these 

bands and summed to obtain a signal time series.  This signal is embedded in a D-dimensional 

space with an appropriate lag τ to reconstruct the phase space in which the dynamics unfolds. 

Time varying predictability is assessed by quantifying the divergence of trajectories in the phase 

space with time, using Local Lyapunov Exponents (LLE). Ensembles of projections from a 

current time are generated by block resampling trajectories of desired projection length, from the 

K-nearest neighbors of the current vector in the phase space. This modeling approach was 

applied to the naturalized historical and paleo reconstructed streamflow at Lees Ferry gauge on 

the Colorado River which offered three interesting insights: (i) The flows exhibited significant 

epochal variations in predictability. (ii) The predictability of the flow quantified by LLE is 

strongly related to the variance of the flow signal and large scale climate. (iii) Blind projections 

of flows during high predictable epochs showed good skill in capturing the distributional and 

threshold exceedance statistics and poor performance during low predictability epochs. These 

results suggest the possibility of the use of this predictability metric as part of an adaptive and 

flexible water management approach.  
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4.1 Introduction 

With increasing demand for water, such as in the Colorado River Basin (CRB), available 

water resources have to be managed wisely to address possible supply-demand imbalances. 

Understanding the variability and predictability of the river flow and the ability to generate 

realistic flow scenarios is vital in planning and decision making in any river basin.  

Linear models or parametric time series modeling techniques have been the traditional 

staple of modeling and simulating time series, especially streamflow (e.g., Salas, 1980). 

Parametric modeling techniques such as Auto Regressive Moving Average (ARMA) model the 

time series as a sum of mean and random components, with the mean component modelled as a 

linear function of past values. Furthermore, they assume data to be normally distributed. 

Simulations from these models capture the distributional statistics such as mean, standard 

deviation and lag correlations – but do not capture non-Gaussian and non-stationary features. 

Non parametric time series models such as the K- Nearest Neighborhood (K-NN) bootstrap 

[Lall, 1995; Lall and Sharma, 1996; Rajagopalan and Lall, 1998] and kernel density based 

[Sharma et al., 1997] techniques with their local modeling feature resolve non-Gaussian features 

well but may not adequately model low frequency variability. For a review of parametric and 

nonparametric methods for hydrologic time series modeling we refer the reader to Rajagopalan 

et al. [2010]. Simulation from wavelet spectra has been proposed as a way to model the 

dominant periodicities [Kwon et al., 2007] and subsequently modified to capture nonstationarity 

[Nowak et al., 2011].  While there is a suite of time series modelling methods briefly mentioned 

above, none of them, however, models the underlying dynamics nor takes advantage of 

predictable regimes to provide skillful simulations. 
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A nonlinear dynamical systems based time series modelling approach aims to reconstruct 

the underlying dynamics and, consequently, exploit it for prediction and simulation. The phase 

space, or multidimensional space, within which the dynamics is purported to evolve, is 

reconstructed from the observed time series [Packard et al., 1980]. This invokes the 

mathematical result that a reconstructed phase space with appropriate dimension and time delay 

(thought of as de-correlation time scale) is a good proxy for the true space within which the 

unknown dynamics of the system unfolds [Takens, 1981]. The state of the system at any time 

point can be mapped on to the phase space, and using local maps [Farmer and Sidorowich, 1987] 

short term forecasts are made. Thus, the skill is related to the predictability of the current state of 

the system in the phase space unveiled through local Lyapunov exponents [Abarbanel et al., 

1992; Guégan and Leroux, et al., 2009; Kantz, 1994; Nese 1989; Wolf et al., 1985]. Forecasts 

from this approach have been shown to outperform those from traditional time series approaches 

[e.g., Casdagli et al., 1990; Grassberger et al., 1991; Tsonis, 1992; Elsner and Tsonis, 1992; 

Sangayomi et al., 1996; Regonda et al., 2005]. These methods require long time series data and 

thus have been applied widely in financial and medical applications [e.g., Kantz and Schreiber, 

1997, 1998] but limited in geophysical applications. 

One of the early applications to geophysical time series was to model and predict the rise 

and fall of the Great Salt Lake water levels [Sangayomi et al., 1996; Lall et al., 1996; Lall et al., 

2006], forecasting an index of El Nino Southern Oscillation [Regonda et al., 2005] and recent 

hydrologic applications [Kirchner, 2009; Peterson et al., 2014].  These applications, especially 

of Great Salt Lake water levels, were made possible due to low noise and long time series 

sequences – which are ideal for nonlinear dynamical based time series modeling. For short and 
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noisy time series, smoothing is done to reduce the noise [Schreiber and Grassberger, 1991; 

Porporato and Ridolfi, 1996, 1997] and enable reconstruction of the dynamics. 

For noise reduction, wavelet analysis [Torrence and Compo, 1998] is a robust option. We 

used this to smooth the Colorado River flow to obtain the signal present in the flow series, which 

is then used in dynamics recovery. Our approach in this paper is a blend of K-NN simulation 

from the embedding of the system recovered from the wavelet reconstructed signal component of 

the time series. The embedding requires a determination of the delay time, ߬, and embedding 

dimension, ܦ, through the methods of Average Mutual Information (AMI) [Moon et al., 1995] 

and False Nearest Neighborhood (FNN) [Kennel et al., 1992; Abarbanel and Lall, 1996], 

respectively.  The K-NN simulation technique is then applied on the feature vector in the 

embedding space for the simulation. Details of the embedding and simulation algorithms are 

presented in the methodology section. 

In addition to ensemble forecasts using K-NN, we also identify time series epochs where 

we can characterize predictability as a function of time through Local Lyapunov Exponents 

(LLE) [Abarbanel et al., 1992; Bailey et al., 1995; Guégan and Leroux, et al., 2011]. This is 

similar to the approach [Lall et al., 2006; Moon et al., 2008] where local prediction error criteria 

such as local generalized cross validation and local generalized cross validation with leverage 

were introduced and validated as a measure of potential predictability accounting for the 

predictive error and predictive error accounting for asymmetry of the neighbors, respectively.  

The LLE’s assess how the separation of two initial points in the embedded space diverges or 

converges exponentially over a finite future time interval. Predictability is high when the initial 

condition is locally stable (LLE<0, or small positive), and low otherwise. The LLE thus informs 
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the use of the forecast in management. We provide an application to the Lees Ferry flow data in 

the CRB and illustrate performance for both predictable and non-predictable time epochs. 

The paper is organized as follows: It starts with a description of the data we used to 

demonstrate the application of the proposed method; this is followed by the proposed 

methodology. Then, the results are presented followed by a discussion and summary.  

4.2 Study Datasets  

Historic and Paleo data used in the study are listed in Table 1 along with links to their 

sources and are described below.  

Table 4.1: Historic and Paleo data used in the study and links to their sources. 

Data Historic  Paleo Reconstructed 
AMO  
(Climate index) 

http://www.esrl.noaa.gov/psd/dat

a/timeseries/AMO/ 

 

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/
treering/reconstructions/amo-
gray2004.txt 

PDO 
(Climate index) 

http://jisao.washington.edu/pdo/
PDO.latest 

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/

treering/reconstructions/pdo-

macdonald2005.txt 

 
Lees Ferry  
(Streamflow) 

http://www.usbr.gov/lc/region/g

4000/NaturalFlow/current.html 

 

http://treeflow.info/upco/coloradolees

woodhouse.txt 

 

The primary data set is the streamflow at the Lees Ferry gauge on the CRB. This is an important 

gauge on the river through which 85-90% of the flow in the basin passes. Naturalized flow 

developed by removing anthropogenic reservoir effects (regulation and consumptive use) is 

maintained by U.S. Bureau of Reclamation [Prairie and Callejo, 2005] and is available for the 

historic period 1906 to 2012.  Paleo reconstructed flow [Woodhouse et al., 2006] is available for 

years 1490 to 1997.   
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The Atlantic Multidecadal Oscillation (AMO) and the Pacific Decadal Oscillation (PDO) 

have been shown to influence the low frequency variability of the Colorado River flow [e.g., 

Nowak et al., 2012; Bracken et al., 2014]. We use these two climate indices to understand the 

predictability of the Lee’s Ferry flow. The AMO index [Enfiel et.al., 2001] is computed as a 

monthly area weighted average of North Atlantic (0 to 70o N) sea surface temperatures (SST), 

which is subsequently de-trended based on  5o x 5o resolution Kaplan SST [Kaplan et.al.,1998]. 

Values were accessed from the NOAA Physical Sciences data website for the period 1856 to 

present. The paleo reconstruction of annual AMO for the period 1650 to 1990, based on 

reconstructions of annual sea surface temperature anomalies for the North Atlantic Ocean (0 to 

70o N) from tree rings [Gray et al., 2004], was obtained from the NOAA website. Monthly PDO 

anomalies from 1900 to present are available from University of Washington. The annual data 

were taken as the average of the monthly values in this analysis. The PDO is calculated as the 

first principal component of the Northern Pacific SST [Zhang et al., 1997; Mantua et al., 1997]. 

Annual PDO values for the period 993 to 1996, based on tree rings from Pinus flexilis in 

California and Alberta, Canada, were generated by MacDonald and Case [2005] and are 

available from the NOAA website.  

4.3 Modeling Approach   

Unlike traditional stochastic methods that consider the observed process to be a 

combination of a mean (i.e., signal) and a random component, the nonlinear dynamical approach 

considers the observed time series as realizations of a dynamical system. Since the dynamical 

system is unknown, its recovery from the time series involves reconstructing the phase space 

from observations. Theoretical results [e.g., Takens, 1981; Packard et al., 1980] suggest a 

geometrical correspondence between appropriately reconstructed phase space from the 
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observations and the true space in which the unknown dynamics unfolds. The geometry of the 

reconstructed space can provide insights into predictability, and local maps in the embedded 

space can be developed for skillful prediction and simulation. 

4.3.1 Embedding  

A D dimensional embedding can be developed from the observed time series ݔሺtሻ, t ൌ

1, 2, . . , N	using a time delay of	߬.  The D-dimensional vector of the time series can be written as: 

ሻ࢚ሺ࢟ ൌ ,ሻݐሺݔ ݐሺݔ ൅ ߬ሻ, … , ݐሺݔ ൅ ሺܦ െ 1ሻ߬ሻ; ݐ								 ൌ 1, . . , ܰ	 െ ሺܦ െ 1ሻ߬ െ െ െ െ െ ሺ4‐1ሻ 

The two parameters D and ߬, are estimated from the observed data using the procedure 

described in the forthcoming paragraphs. Real data sets are noisy (with dynamical and 

measurement errors). Therefore, estimates of the parameters can be unreliable [Schreiber and 

Kantz, 1996] leading to phase space which has poor skill in forecast and simulation.  Smoothing 

can reduce the noise [Schreiber and Grassberger, 1991; Porporato and Ridolfi, 1996, 1997], but 

if not done properly it can alter the underlying dynamics [Sivakumar et al., 1999b]. Here we 

propose to first smooth the streamflow data using wavelets to obtain the signal present in the 

flow series and estimate D and τ  for the signal.  

Wavelet methods are widely used to decompose time series into signal and noise.  An accessible 

description of these methods is provided by Torrence and Compo [1998]. Past application of wavelets to 

Lees Ferry streamflow can be found in Nowak et al. [2011]. The signal extraction from the time series 

involves four steps: (i) compute the wavelet spectrum of the time series,ݔሺݐሻ; (ii) identify spectral bands 

where the global variation meets a statistical significance test of being different from the background 

noise; (iii) reconstruct or project the time series on to each of the bands that is significant; and (iv) sum 

each of the reconstructed series to recover the signal. The Morlet is the preferred wavelet function for its 

boundary properties and its simplicity for discrete time series applications. We used this wavelet to 

decompose the streamflow timeseries and for signal extraction. This approach has been applied to 
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modeling and simulating the Colorado River flow series [Nowak et al., 2011] and for rainfall and 

temperature in Florida [Kwon et al., 2007]. We refer the reader to these papers and the review paper by 

Torrence and Compo [1998] for details on wavelet analysis. The main steps in obtaining the 

reconstructed signal is described below. Suppose the frequency band of interest is defined as the interval 

{j1, j2}, then the reconstructed time series within this band is obtained as: 

ܺᇱ௧ ൌ
௧ߜ௝ߜ

ଵ/ଶ

ఋ߰଴ሺ0ሻܥ
	෍

ܴሼ ௧ܹ൫ ௝ܵ൯ሽ

௝ܵ
ଵ/ଶ

௝మ

௝ୀ௝భ

െ െ െ െ െെെ ሺ4‐2ሻ 

where  ܥఋ	 is a reconstruction factor, and ߜ௝	and	ߜ௧  are the scale averaging coefficient and time 

factors respectively. ߰଴ሺ0ሻ ൌ  ଵ/ସ  is the factor that removes the energy scaling, both specificିߨ

to  the Morlet wavelet function. R{ . ሽ	 denotes the real part of W, the wavelet transform of the 

data , and ௝ܵ is the scale;  ݆ଵ and ݆ଶ are the lower and upper scales, respectively. The temporal 

variance of the reconstructed band is quantified by the Scaled Averaged Wavelet Power (SAWP) 

and is given by: 

ഥܹ௧
ଶ
ൌ
௧ߜ௝ߜ
ఋܥ

	෍
ห ௧ܹሺ ௝ܵሻห

ଶ

௝ܵ

௝మ

௝ୀ௝భ

െ െ െ െ െ െെെെ ሺ4‐3ሻ 

Reconstruction is done for all the significant bands using the above procedure and they are 

summed to obtain the signal of the original time series. Similarly, the temporal variances are summed to 

obtain the SAWP of the signal. 

The delay time τ represents the average length of the memory in the system, also be considered as 

the de-correlation time scale. This can be estimated from mutual information (MI) at various lags using 

two dimensional histograms [Fraser and Swinney, 1986] or kernel density estimators [Moon et al., 1995]. 

This is tantamount to computing the nonlinear autocorrelation of a time series at various lags.   The AMI 

at a lag m, is estimated as:  
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௠ܫ ൌ ෍ ܲሺݔሺ݇ሻ, ሺ݇ݔ ൅ ݉ሻ݈݃݋ଶ ቈ
ܲሺݔሺ݇ሻ, ሺ݇ݔ ൅ ݉ሻሻ

ܲ൫ݔሺ݇ሻ൯ܲሺݔሺ݇ ൅ ݉ሻሻ
቉

ேି௠	

௞ୀଵ

െ െ െ െ െെെ ሺ4‐4ሻ 

 

Where: P(ݔሺ݇ሻ, ሺ݇ݔ ൅݉ሻሻ	is the joint probability density function and ܲ൫ݔሺ݇ሻ൯, ܲሺݔሺ݇ ൅

݉ሻ	are the marginal probability density functions, estimated using kernel density estimators, and 

N is the number of observations. If τ is too small, components in a delay vector are nearly 

identical, such that adding new components does not provide new information. On the other 

hand, if τ is too large, successive components are totally unrelated. Popular choices for τ include 

the first zero crossing of the autocorrelation function and the first minimum of mutual 

information function [Fraser and Swinney, 1986]. The average MI is computed for various lags, 

and the time delay τ is chosen as the lag of the first minimum of the AMI [Abarbanel and Lall, 

1996]. Typically, the effectiveness of a model is not highly sensitive to the choice of τ [Kantz 

and Schreiber, 1997] within the range of minimum AMI or zero crossing of autocorrelation.  

Two popular methods for estimating the embedding dimension, D, are: the Grassberger-

Procaccia [Grassberger and Procaccia, 1983a,b] approach (GPA), which estimates the 

dimension mostly as “fractal” or “non-integer,” and the False Nearest Neighbor (FNN) method 

[Kennel et al., 1992], which computes an integer dimension suitable for embedding. Here, we 

apply the FNN technique. In this approach the time series ݔሺݐሻ, ݐ ൌ 1, . . , ܰ  is successively 

embedded in a D0 dimensional space.  For each vector at a current level of embedding, k-nearest 

neighbors are identified. Then a check is done as to how many of these nearest neighbors are still 

nearest neighbors as the embedding dimension is increased. Those that fail to be neighbors are 

called false neighbors. For each D0, the fraction of false neighbors is computed: 

 



82 
 

ݎ ൌ
ห࢟௜ାଵ െ ௝ାଵห࢟

ฮ࢟௜ െ ௝ฮ࢟
	; ݎ ൑ ௧ݎ െ െ െ െ െെെെെ ሺ4‐5ሻ 

 

Where ࢟௜ and	࢟௝ are vectors in dimension D0 and ࢟௜ାଵ 	and	࢟௝ାଵ	are the corresponding vectors 

in dimension D0+1. If the ratio ݎ ൐  is a threshold [Kennel et al., 1992; Kantz and	௧ݎ ௧, whereݎ

Schreiber, 1997], then D0 is increased and the computation is repeated until the ratio condition is 

met or D0 exceeds a reasonable value, in which case the conclusion is that the time series may 

not correspond to a low dimensional dynamical system. 

4.3.2 Predictability - Local Lyapunov Exponents 

Predictability of the signal is quantified using Lyapunov exponentsሺߣሻ. A Lyapunov 

exponent measures the rate at which the initial separation of two points in the phase space ሺ࢟ߜ଴ሻ 

grows or shrinks after n time steps. A Local Lyapunov Exponent (LLE) may be computed over a 

finite time starting from any point in the time series, which corresponds to a vector in the 

embedded space. LLE considers the evolution forward from nearby points in the embedded 

space to estimate the divergence or convergence of trajectories in the embedded space 

corresponding to that initial condition. The LLE,		ߣௗሺ࢟,  ሻ,  can be computed for each point y inܮ

the phase space and for any corresponding time step, for a finite evolution period, L, and for each 

dimension d (d = 1,..D). Thus, LLE can be obtained for each L and d. For details on the 

calculations we refer the readers to [Abarbanel et al., 1992, 1993; Bailey et al., 1995; Abarbanel 

and Lall; 1996; Oseledec, 1968 and Wolf, et al., 1985]. Negative values of the exponents indicate 

convergence of the trajectories towards a locally stable point and thus good predictability, while 

positive values indicate divergence of trajectories and less predictability. The maximum value of 

the exponents among all dimensions will provide the predictability limit. 
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4.3.3 Ensemble Simulation 

The simulation involves identifying nearest neighbors in the phase space of the signal and 

resampling a flow trajectory. The implementation at any time t proceeds as follows: 

(i) Construct the phase space of the flow signal using the embedding dimension and 

delay obtained from the methods described above.  

(ii) For the time t, the feature vector, y(t), that represents the current state of the system in 

the embedded phase space is selected. 

(iii)  K-nearest neighbors (K-NN) of the feature vector in the embedded phase space are 

selected. Weights are assigned to the neighbors using a weight function that gives 

highest weight to the nearest K neighbors and least to the farthest [Lall and Sharma, 

1996]. A heuristic value of K =√ܰ is shown to work well.  

(iv) One of the nearest neighbors is selected using the weights. Suppose the selected 

neighbor in the phase space corresponds to a point in time, j. 

(v) The sequence or trajectory of the actual flow from time j to j+M, where M is the 

desired length of simulation, is selected to be the simulated flow sequence. This can 

then be thought of as a conditional block bootstrap [Efron and Tibishirani, 1993].  

(vi) This process is repeated 500 times to produce ensembles of trajectories (i.e., 

projections) of length M. Note that this is a blind simulation technique in that only 

data prior to time t are used in the simulation. 

Steps v and vi differ from the traditional procedure where a local map (e.g., local polynomial), 

fitted between the K-NN of the phase space vectors and their one step ahead  successors, is used to 

provide a one-step forecast of the time series [e.g., Farmer and Sidorowich, 1987; Casdagli et al., 1990; 

Grassberger et al., 1991;  Tsonis, 1992; Sangayomi and Lall, 1996; Lall et al., 1996, 2006; Salas., 1980; 

Wei, 2006 and Regonda et al., 2005; Asefa et al., 2005]. They allow a multi-step forecast while preserving 
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the trajectory continuity as well as accounting for the spread across trajectories. This overcomes the 

problem associated with numerical diffusion that is often associated with iterated one step ahead 

forecasts.  

4.4 Results 

The nonlinear dynamics system identification, predictability and simulation are 

demonstrated on the flow at Lees Ferry in the CRB. Wavelet analysis of the long paleo 

reconstructed Lees Ferry flow was performed and time varying and global spectra are shown in 

Figure 4.1.  

 

Figure 4.1: Wavelet spectra of paleo reconstructed and observed Lees Ferry flow. The time 
varying spectrum is in the top left and the global spectrum in top right. Periods that are 
significant at 90-95% confidence level are indicated. Signal time series obtained as the 
summation of band filtered components is shown in the bottom. 

Four spectral bands are found to have variation that is significantly different from 

background noise at the 95% confidence level: 57 ~ 87 years; 34 ~ 47 years, 19 ~ 29 years and 7 

~ 14 years.  Furthermore, these spectral bands exhibit interesting temporal modulation, for 
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example, the 57 ~ 87 years and 34 ~ 47 years bands are dominant during 1500 to 1650 and post 

1850; the 19 ~ 29 years band is present mainly during 1650 to 1850; and the decadal band of 7 ~ 

14 years waxes and wanes throughout the length of the record with a strong presence in recent 

decades. By summing the information in these bands together, we are recovering the joint 

variation across different organized sources of information that have a low frequency character, 

and drop the higher frequency phenomena. The question, then, is whether this low frequency 

kernel modeled using nonlinear dynamics is able to provide insights into the low frequency 

evolution of the system into the future, i.e., given that we used signals with periods from 7 to 87 

years, does the modeling approach presented here inform the evolution of the mean flow and/or 

its variance over the next decade or two? This is what we explore in this section.  

The AMI computed at various lags using the kernel density based estimators [Moon et al., 

1995] is shown in Figure 4.2a. The first minimum is at lag 3 but we found a lag of 2 to be good 

at reconstructing the phase space (discussed later) – thus, we selected a time delay τ of 2 years 

(Figure 4.2a). As mentioned earlier the model is generally insensitive to the choice of τ within 

this range of low AMI [Fraser and Swinney, 1986]. To identify the best embedding dimension, 

D, the percentages of false nearest neighbors were computed for various embedding dimensions 

and the selected D is shown in Figure 4.2b. The FNN is almost zero for dimension of 3 and zero 

for 4. We tried both and found no significant difference in the simulation skill and Lyapunov 

exponents, so we chose D of 3 to be parsimonious.   
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Figure 4.2: (a) Average Mutual Information of the signal time series of Lees Ferry flow, 
corresponding to various lag time (in years).  (b) Percentage of False Nearest Neighbors 
corresponding to various embedding dimensions of the signal time series of Lees Ferry flow. 

Local Lyapunov exponents of the Lees Ferry flow signal for various time steps or scales 

(referred as L) are shown in Figure 4.3. Note that the exponents remain constant after L of 16 

years.   The average exponents corresponding to a large L, say 64 years, are the global Lyapunov 

exponents – which are 0.27, -0.03 and -0.53, respectively, in the three dimensions. Here 	ߣଵ> 0, 

which is an indicator of chaos and the first dimension (or direction), inhibits predictability; 
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 >ଷߣ	 ,close to 0 tells us that this system can be modeled by a set of differential equations; and	ଶߣ	

0 suggests the third dimension provides predictability.  

 

Figure 4.3: Average Local Lyapunov exponents of the Lees Ferry flow signal for the three 
dimensions evaluated at various time steps or scale (also referred to as L). 

The predictability is dictated by the highest Lyapunov exponent, as that leads to 

divergence of trajectories and, consequently, reduced predictability [Abarbanel and Lall, 1996]. 

The average global Lyapunov exponent over the three dimensions for the entire phase space is -

0.1, indicating that the system is conservative.  The value of the largest exponent 	ߣଵ= 0.27 = 

1/3.7 in units of year-1 suggests that on an average the errors along the orbit or initial conditions 

grow as exp[t/3.7], so that after around 4 years or so, the predictability drops rapidly [Abarbanel 
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and Lall, 1996]. However, this predictability varies substantially over time or over parts of the 

phase space. To understand this, the time varying LLE for a 20-year period (each value plotted is 

the average of a following 20-year period) for the three dimensions are shown in Figure 4.4a and 

their average is shown in Figure 4.4b. During epochs when the LLE of the first dimension – 

which is generally positive and inhibits long lead predictability – is lower, the overall 

predictability of the system is enhanced. For example, consider the period 1820-1839 when the 

average LLE is most negative – during this period 	ߣଵvaries in the range of 0.05, which indicates 

a predictability of ~20 years. At other epochs the predictability varies from 1 to 20 years.  For 

ease of demonstration we use the time varying average LLE (Figure 4.4b) in selecting high and 

low predictability epochs for simulation. The selected 20-year high predictable epochs are 1731-

1750 and 1820-1839, and a couple of low predictability epochs selected are 1681-1700 and 

1841-1860.    

The temporal variability of predictability is seen from the time varying average LLE 

(Figure 4.4b) – along with the temporal variability of the signal variance, SAWP, of the Lees 

Ferry flow signal. There are distinct epochs where the average exponent is close to zero, 

indicative of reduced predictability, and where the average exponent is highly negative 

suggesting good predictability. Furthermore, the LLEs track the signal SAWP very well – 

indicating that reduced predictability epochs coincide with increased signal variance and that 

good predictability epochs are consistent with reduced signal variance, which are quite intuitive. 

That the predictability of the Lees Ferry flow system waxes and wanes over time and is 

consistent with the variability of the signal is very interesting and has significant implications for 

water resources management.  

 



89 
 

 

Figure 4.4: Average Local Lyapunov exponents at each year with a time step of 20 years (a) for 
the three dimensions and (b) for the Lees Ferry flow signal (black) and the 20-year SAWP of the 
flow signal (red). The value of the exponent at each year corresponds to the average of following 
20-year period - similarly for the SAWP. The selected epochs of high predictability 1731- 1750, 
1820-1839 and 1926-1945 are shown as blue dots and the low predictability epochs 1681-1700, 
1841-1860 and 1970-1989 as red dots. 

The embedding in the three dimensions is displayed in Figure 4.5. The attractor is in the 

form of a scroll with the trajectories at the center representing the low frequencies, and the outer 

strands are period excursions at even lower frequencies. This is similar to that seen in Abarbanel 

and Lall, [1996] for the dynamics of the Great Salt Lake levels.  To understand the evolution of 

these epochs in the phase space, the trajectories of these epochs are plotted on the attractor and 

are shown in Figure 4.5.  
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Figure 4.5: Trajectories of epochs shown in the phase space - high predictable epochs 1788-1807 
(red) and (b) 1820-1839 (green); low predictable epochs 1681-1700 (blue) and 1841-1860 (cyan) 
and, 20th century epochs 1926-1945 (magenta) and 1970-1989 (yellow). 

An interesting observation emerges in that the low predictable epochs (1681-1700; 1841-

1860 and 1970-1989) have their trajectories excursing to the outer parts of the attractor while, the 

trajectories of high predictable epochs (1788-1807; 1820-1839 and 1926-1945) tend to stay 

within the inner parts of the attractor. However, the trajectory of the high predictable epoch 1820 

-1839 does an excursion to the outer reaches of the attractor. This is because the system 

transitions immediately to one of the lowest predictable epoch of 1841-1860, thus the later part 

of the 1820-1830 epoch is already in transition to being low predictable.  These trajectories seem 

to suggest that the outer portions of the attractor are less predictable and thus unstable while the 
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inner parts provide higher predictability. This highlights the ability of the nonlinear dynamical 

systems based approach described and demonstrated above to capitalize on the regime dynamics 

for skillful projections, unlike traditional time series methods.    

An interesting question is: what is the source of this predictability? Recent studies show 

the association between AMO and PDO in modulating the variability of Lees Ferry flow [e.g., 

Nowak et al., 2012; Bracken et al., 2014]. As an initial rudimentary effort to answering this 

question we relate the variability of the climate indices to Lees Ferry flow predictability. The 

SAWP of the signal of the climate indices, computed in the same manner as that of the flow, is 

shown along with the average LLEs (Figures 4.6 a,b,c). The variability of PDO and AMO seem 

to be out of phase with the predictability  in that a higher variance of climate signal leads to high 

negative values and, consequently, higher predictability. This is clarified in Figure 4.6c which 

shows the average LLE along with the sum of the SAWP of signals of both of the climate 

drivers. The climate system is more predictable when the drivers have higher variability [e.g., 

Kirtman and Schopf, 1998] – which then imparts predictability to regional hydrology. We 

recognize that the linkage between variability in climate drivers and flow predictability is 

suggestive but not quantitatively sound. This would require detailed analysis of the predictability 

of the climate drivers and also the use of climate models to understand the mechanisms that 

translate predictability from large scale climate to the flow. However, this linkage between 

climate drivers and Colorado River flow signal is quite interesting; suggesting that the epochal 

natural of the predictability of Lees Ferry flow is orchestrated by the variability in large scale 

climate. 
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Figure 4.6: (a) Same as Figure 4.4 but with SAWP of the PDO signal (red). (b) Same as (a) but 
with SAWP of the AMO signal (red). (c) Same as (a) but with sum of SAWP of AMO and PDO 
signals (red). 

We tested the epochal nature of the projection skills on four selected 20-year epochs 

mentioned above - high predictability epochs of –1731-1750 and 1820-1839 – and low 

predictability epochs of – 1681-1700 and 1841-1860. Blind projections were made for these 20-

year periods using the block bootstrap method described in the previous section. The probability 

density functions (PDF) of the flow simulations are shown as grey along with their median PDF 

and that of the historic flows for the four epochs in Figure 4.7. The top panels (Figures 4.7a,b) 

show the PDFs of high predictability epochs and it can be seen that the projections capture the 

PDF of the historic very well. The PDFs of the projections from lower predictability epochs 
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(bottom panel, Figures 4.7c,d) misestimate the historic PDF. A Kolmogrov-Smirnov test 

suggested that the simulated and historical distributions of the high predictable epochs are 

indistinguishable and not the case for low predictable epochs.  

 

Figure 4.7: Probability Density Functions (PDFs) of flow projection ensembles (grey), their 
median (blue) and that of historic flows (red) for the high predictability epochs (a) 1731-1750 
and (b) 1820-1839; and low predictability epochs (c) 1681-1700 and (d) 1841-1860. 

 
The projection ensembles and the historic flows are shown in Figure 4.8 in which it can be 

seen that during the predictable epochs (top panels, Figures 4.8a,b) the median of the ensembles 

(horizontal line in the boxes) tracks the variability of the historic flows (red line) quite well, but 

not well during the epochs with lower predictability (bottom panels, Figures 4.8c,d).  



94 
 

 

Figure 4.8: Projection ensembles (boxplot), median (blue) and the historic flows (red) for the 
high predictability epochs (a) 1731-1750 and (b) 1820-1839; and low predictability epochs (c) 
1681-1700 and (d) 1841-1860. 

An important utility of these projections is for use in multidecadal water resources 

planning and management. To this end, the ability to capture aspects of sustained wet and dry 

periods is crucial. Threshold crossing statistics of deficit and excess are computed for each 

ensemble based on the threshold of 15MAF (the long term average flow of the modern period) 

and are: total excess and deficit about this threshold, and maximum and minimum surplus and 

deficit over the 20-year horizon. These are shown as boxplots along with the corresponding 

values from the historic flows as red dots. Figure 4.9 shows the excess (top panels) and deficit 

(bottom panels) statistics for the high predictability epochs. The historic values (dots) of all 
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statistics are well captured by the simulations within the interquartile box of the simulations, and 

the excess and deficit minimum are over simulated. This indicates that excursions about the 

thresholds, which are higher order statistics, are also simulated very well, that could be of 

significant use in long term water resources planning.  

 

Figure 4.9: Boxplots of surplus and deficit statistics from flow projections for high predictability 
epochs 1731-1750 and 1820-1839 - (a) total surplus, (b) maximum and (c) minimum surplus 
from the projections. The values from the historic flows are show as red dots. Boxplots of deficit 
statistics - (d) total deficit, (e) maximum and (f) minimum deficit. 

In comparison, the low predictability epochs show poor performance of the excess and 

deficit statistics (Figure 4.10), with most of the historic values outside the interquartile box of the 
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simulations. These results suggest that the predictability of the system dynamics permeates 

through all aspects of the system statistics.  

 

Figure 4.10: Same as Figure 4.9 but for low predictability epochs 1681-1700 and 1841-1860. 

To further assess the performance of the simulations in capturing wet and dry sequences 

which are crucial for water resources management, we also computed storage statistics using the 

sequent peak algorithm [Loucks and Van Beek, 2005]. The results are consistent with the 

performance of deficit and excess statistics in that they are well captured in predictable epochs 

and poorly in low predictable epochs (figures not shown). 
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The basin has experienced several impactful events starting in the early 20th century -  

especially the water sharing agreements among Basin States in the early part of 20th century and 

the recent ongoing drought in the Western US and in the basin for over a decade. Interestingly, 

the Lyapunov exponents are quite negative during early 20th century indicative of high 

predictability and the recent decades of drought have low predictability (as the exponent values 

are closer to zero). To highlight these further, projections were made for two epochs from the last 

century (1926-1945 and 1970-1989) for which the PDFs are shown in Figure 4.11.  

 

Figure 4.11: Probability Density Functions (PDFs) of flow projection ensembles (grey), their 
median (blue) and that of historic flows (red) for (a) early 20th century epoch 1926-1945 and (b) 
recent epoch 1970-1989.  
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Consistent with high predictability of the early part of 20th century, the projections capture 

the historic PDF very well. However, the PDFs of flow projections for the recent decades deviate 

significantly from the historic PDF, consistent with low predictability. The historic flow 

variability (red) falls within the interquartile range of the ensembles in most of the years, while 

in the later epoch (Figure 4.12b) the historic flow is outside the interquartile range for most of 

the years, conspicuously so during the high flow period of 1982-1986.   

 

Figure 4.12: Projection ensembles (boxplot), median (blue) and the historic flows (red) for (a) 
early 20th century epoch 1926-1945 and (b) recent epoch 1970-1989. 
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4.5 Summary and Discussion 

A novel approach to stochastic time series simulation is proposed, which is based on 

reconstructing the phase space in which the dynamics of the time series unfolds. The approach 

also provides insights into epochal variability of predictability of the time series. The phase 

space reconstruction requires embedding the time series in appropriately estimated D dimensions 

with a time delay of ߬. Theory suggests that this maps to the true phase space in which the 

underlying dynamics unfolds enabling to take advantage of the system predictability to provide 

skillful projections and forecasts. Estimation of the two parameters D and ߬ from data with noise 

which includes geophysical time series are often unreliable and smoothing is suggested. We 

proposed obtaining the signal time series by wavelet filtering the original time series within 

significant frequency bands identified from wavelet spectral analysis. Thus the reconstructed 

phase space is that of the signal component of the time series. Lyapunov exponents measure the 

rate of divergence of trajectories in the reconstructed phase space providing an estimate of 

predictability – higher positive values indicating rapid divergence and thus lower predictability 

and vice-versa. The exponents can be computed locally in the phase space to provide temporal 

variability of predictability. Projections from a time point t involves (i) mapping the current state 

(or feature vector) of the system on to the reconstructed phase space, (ii) identifying K-nearest 

neighbors of the current feature vector and (iii) resampling one of them with a weight function – 

which corresponds a time j, and, (iv) a M-time step sequence (or trajectory) of original time 

series from the period j to j+M forms the simulated M-step projection. Identifying the neighbors 

in the phase space of the smoothed series and resampling the original time series is a new 
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approach to stochastic time series simulation. This is repeated to generate ensembles.  Using data 

prior to time t enables blind projections, which is implemented here.  

We applied this modeling approach to the long paleo reconstructed flow at Lees Ferry 

gauge, an important location on the Colorado River which represents 85-90% of its flow. Four 

dominant period bands in the 7 year to 57 year range were identified from the wavelet spectrum 

analysis; filtering the flow series in these bands provided the signal time series. The 

reconstructed phase space showed an inner and outer scroll indicative of lower and higher period 

variations. The global Lyapunov exponents were negative suggesting that the signal in the flow 

series is generally predictable. However, the local Lyapunov exponents showed significant 

epochal variations – with some epochs exhibiting high predictability (negative exponent values) 

and some low predictability (exponent values close to zero). The early part of 20th century when 

the Colorado River compact agreements were negotiated was a high predictable epoch and the 

recent decades with the prolonged and unprecedented drought in observed record has low 

predictability. The predictability coincides with the temporal variability of the signal variance – 

suggesting that periods of high signal variance impedes predictability and vice-versa. 

Furthermore, the temporal variability of the signal variance of large scale climate indices AMO 

and PDO also coincide with the temporal variability of the flow signal Lyapunov exponents – 

indicating that large scale climate features modulate flow predictability. Blind projections of 

stream flows during high predictable epochs show good skill and capture all the distributional, 

drought and surplus statistics, while the low predictability epochs had poor performance on these 

measures. 
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The time varying predictability of the streamflow offers interesting insight into the system. 

It suggests that low predictability epochs are an inherent part of the dynamics of the system and 

resistant to any improvements in modeling efforts – statistical or physical. 

 This also provokes the tantalizing idea that perhaps water resources management should adapt in 

a flexible manner to these predictability epochs. The local Lyapunov Exponents could be 

modeled as a time series and projections of low predictability epochs and high predictability 

epochs could trigger appropriate management and planning responses. This study opens new 

opportunities to perceive hydrologic predictability and consequently water management.  
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5 Application of Decadal Scale Projections Based on Large Scale Climate Indices to 
Decision Making in the Colorado River Basin 

Abstract  

Effective water resources planning and management requires skillful decisions on multi-

year or decadal timeframes. In basins such as the Colorado River Basin (CRB), streamflow is not 

stationary but exhibits variability that reflects teleconnections with large scale climate indices 

such as Atlantic Multi-decadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). The 

Wavelet K-Nearest Neighbor (WKNN) model, a stochastic streamflow simulation and projection 

model developed as part of this research (see Chapter 2), identifies and reconstructs dominant 

quasi-periodic signals in the AMO and PDO using wavelet analysis, simulates each using block 

K-Nearest Neighbor (K-NN) bootstrap, then simulates the streamflow using a K-NN bootstrap 

conditioned on the simulated climate forcings, and has been demonstrated to produce skillful 

decadal scale projections of streamflow in the CRB. The Bureau of Reclamation’s 2012 

Colorado River Basin Supply and Demand Study (Basin Study) used scenarios to explore the use 

of options and strategies such as infrastructure development, conservation and efficiency 

improvements to address supply-demand imbalances. Each year in the simulated scenarios, 

decision criteria such as reservoir elevations and average flows over recent years were applied to 

determine system vulnerability and the need to implement options and strategies to mitigate 

future shortages. This chapter describes the addition of the WKNN generated decadal scale flow 

projections to the decision criteria. In addition, periods of poor predictability are identified by 

using a nonlinear dynamical system based approach to recover the underlying dynamics. Time 

varying predictability is assessed by quantifying the divergence of trajectories in the phase space 
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with time, using Local Lyapunov Exponents (LLE).  Skillful decadal scale streamflow 

projections within the high predictable time epochs are used to indicate future flow conditions 

and improve decisions. An ensemble of projections is considered to be wet or dry based whether 

or not the mean exceeds some reference threshold and that information is used to constrain the 

decisions.  Based on projections being wet, dry or unpredictable, improved decisions are shown 

to reduce cost or reduce shortage and are illustrated by tradeoff curves of risk of shortage vs. 

cost.  

5.1 Introduction 

Decisions in water resources planning and management are crucial to satisfy the 

multipurpose and conflicting uses of water in any river basin.  The interaction of the available 

water with human activity and the environment is so complex that any particular action taken 

could have serious consequences in the interconnected system [Gupta et al., 2011]. A good 

understanding and representation of the system in a decision model along with the rules and 

regulations provides a platform for the evaluation of alternatives [Hashimoto et al., 1982; Loucks 

and van Beek., 2005]. The use of stochastic timeseries models can provide a range of plausible 

flow scenarios that can be used to study and understand the system’s response and to answer 

“what if” questions through scenario analysis [Loucks and van Beek, 2005] for the robustness of 

the decisions. Robust Decision Making is an approach to show the ability of the decision model 

to perform sufficiently well under the range of plausible futures [Lempert 2002a; Lempert and 

Groves 2010; Means et al., 2010; Groves et al., 2013; Groves et al., 2015; Lempert 2002a;Hall 

et al., 2012]. This approach is a platform to evaluate and prioritize alternatives in terms of 

potential opportunities and risks under varying future flow conditions [Wagener et al., 2006; 

Reclamation, 2012; Groves et al., 2013]. In this, scenarios generated as a combination of future 
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plausible flows and demands provide the extent of future risks so that appropriate decisions can 

be made for mitigation. Decisions made to mitigate risks such as supply-demand imbalances at a 

given year are triggered by vulnerability indicators generated from the past state of the system 

[Reclamation, 2012; Groves et al., 2013]. This approach ignores the future state of the flow.  

Incorporating the future flow conditions in the decision framework [Groves et al., 2008] 

conditions or modifies the level of risk (supply-demand imbalances) determined from the past 

state of the system. Streamflow magnitudes can sustain as low flows for multiple years or 

decades, for example, the recent drought in the south western US [Barnett et al., 2008] and 

change over time to high sustained flows. Such sustained variability of the streamflow in this 

paper is referred as the nonstationarity characteristic of streamflow. The nonstationarity 

characteristics of the streamflow at the internal to decadal scale are, influenced by the natural 

climate variations such as SST [Murphy et al., 2010].  

Previous research [Cook et al., 2004; Meko et al., 2007] show that sustained droughts in the 

past can happen at the same magnitude and duration sometime in the future.  

5.1.1 Streamflow simulation and projection 

Long term (multi-decades to century scale) plans for the physical infrastructure and 

operating policies of a basin should be made with consideration of the long term variability of 

hydrology and demands such that risks and reliabilities can be quantified [Hallegatte, 2009; Yohe 

et al., 2004]. For short term (seasonal) decision making, e.g., decisions about reservoir releases 

on daily or seasonal timescales, a wide range of forecasting techniques are in use that rely on 

information about current and forecasted weather/climate conditions and may also rely in part on 

timeseries models, to determine operations that best meet system objectives [Raff et al., 2013].  

Between long and short term is multi-year to decadal scale decisions to implement changes that 
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would take effect over several years and could benefit from projections based on understanding 

of multi-year to decadal scale variability [Nowak, 2011; United States Department of the 

Interior, 2001]. The sustained flow variability triggered the need for decadal scale planning and 

management of water resources [Vera et al., 2010; Meehl et al., 2009] and develop techniques to 

project the streamflow magnitude at decadal scale skillfully [Switanek and Troch, 2011]. The 

importance of decadal scale variability for planning and management of water resources for 

example in the CRB is recognized [United States bureau of the Interior, 2001]. This is an area 

that has recently gained traction among hydro climate scientists based on insights that relate 

streamflow variability at seasonal to multi-decadal time scales to climate forcings such as the El 

Nino Southern Oscillation (ENSO) [Ropelewski and Halpert., 1986, 1989; McCabe and 

Dettinger, 1999; Rajagopalan et al., 2000], the Pacific Decadal Oscillation (PDO) [Latif and 

Barnett, 1994; Hidalgo, 2004; McCabe et al., 2007], and the Atlantic Multi-decadal Oscillation 

(AMO) [Enfield, 2001; Tootle et al., 2005; Timilsena et al., 2009]. Furthermore, these forcings 

are nonstationary and thus impart nonstationarity to the variability of precipitation and flow – 

this has been identified for Colorado River flows [e.g., Nowak et al., 2012].  

The WKNN simulation and projection model [Chapter 2] proved its suitability for 

simulation and projection of streamflow at decadal and multi decadal time scales. It 

simulates/projects streamflow sequences conditionally based on the variability of large scale 

climate indices. Similar studies suggest that the future flow conditions can be reasonably 

estimated using available tools and the choice of appropriate forcing [Hughes, 2015]. Climate 

indices such as ENSO, AMO and PDO are known to influence precipitation in the central and 

western United States. ENSO is known to have weak signal in the upper CRB [Regonda et al., 

2006; Grantz et al., 2005], AMO and PDO signals, which have strong teleconnection with the 
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Colorado River flow,  are used  to conditionally simulate the naturalized flow at Lees Ferry. This 

modeling approach can be applied to any river basin where there exists a strong teleconnection 

of streamflow with climate indices such as Sea Surface Temperature (SST) anomalies. 

5.1.2 Epochs of Predictability 

Effective use of projections of future flow in water resources planning and management 

decisions depends on the skill of the projections. Because the natural processes underlying the 

variability of streamflow are not completely understood and include some degree of chaos, it is 

useful to quantify the time-varying predictability of streamflow projections using a nonlinear 

dynamical modeling approach [Chapter 4]. In this the underlying dynamics can be recovered 

[Kennel et al., 1992; Abarbanel and Lall, 1996] and the time varying predictability of the 

projections can be determined through the Local Lyapunov Exponent (LLE) [Abarbanel et al., 

1992; Bailey et al., 1995; Guégan and Leroux, et al., 2011].  In Chapter 4 we applied this method 

in the CRB and demonstrated its suitability in identifying the predictable and non-predictable 

time epochs.  In this phase of the research, the time varying predictability of the projections is 

used as a guide to using the projections in decision making. The projections are considered 

feasible and used in decision making in the predictable time epochs; otherwise, decisions are 

made without the projections. 

5.1.3 The Colorado River Basin Supply and Demand Study 

The CRB stakeholders anticipate increasing water demands in the basin in the coming 

decades [Reclamation, 2012]. This, along with the recent decade long dry spell and future drying 

from a warmer climate in the basin, leaves users at risk of unmet demands in the future. Under 

such circumstances, mid-term decisions may be considered either to increase the water 

availability through infrastructure development, transfers, etc., or to reduce demands through 
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conservation and other options to use the available water more efficiently. Reclamation recently 

undertook a major study, the Colorado River Basin Supply and Demand Study (Basin Study) to 

project future supply/demand imbalances in the CRB; in this they developed a decision making 

framework to explore the possibility of implementing options and strategies when the system 

shows signs of being vulnerable to the risk of not meeting demands2.  For such decisions that 

take effect at decadal and multi-decadal time scales, the suitability of skillful decadal scale 

projections provided by the WKNN model should be considered.  

The Basin Study simulated a range of supply-demand scenarios and explored the use of 

options and strategies such as infrastructure development, conservation and efficiency 

improvements to address anticipated supply-demand imbalances.  The Colorado River 

Simulation System (CRSS) was used to simulate the rivers, reservoirs, diversions, return flows 

and operations, and determine the performance of the system in response to varying supplies and 

demands, both with and without the options and strategies to address supply-demand imbalances. 

CRSS is a monthly timestep, object oriented model capable of simulating the complex “law of 

the river” of the CRB [Reclamation, 2012], developed in the RiverWare modeling environment 

[Zagona et al., 2001].   

CRSS simulates each scenario to determine critical conditions of the system, indicating 

vulnerability with respect to impending shortage. Vulnerability is detected when combinations of 

metrics such as reservoir pool elevation and streamflow magnitudes - fall short of specified 

thresholds. Decisions are made each year of the simulation based on the values of the signposts 

as to whether or not to implement options and strategies to mitigate the risk of shortage 

                                                            
2 http://www.usbr.gov/lc/region/programs/crbstudy/finalreport/ 



108 
 

[Reclamation, 2012]. The decisions made to implement options and strategies are entirely based 

on the information from the current and past state of the system.  

We propose to further inform the decisions with streamflow projection information generated by 

the WKNN model.  

5.1.4 Study Objective  

This final part of the research seeks to answer the question: Can the skill of the decisions 

in the Basin Study be improved by the use of decadal scale streamflow projection information 

based on the WKNN model, i.e., sensitive to variability driven by the large scale climate indices, 

PDO and AMO, along with information regarding the time varying predictability metric 

provided the LLE of the nonlinear dynamical model? To answer this question, we develop a 

technique for enhancing the Basin Study decision framework by incorporating the projections 

and the time varying predictability of the streamflow. We evaluate the skill of the integrated 

decision framework with respect to the costs of the options and strategies and the risk of system 

shortage.  

5.1.5 Summary of approach 

The time varying predictability of the streamflow is first determined for each year of the 

projections as the LLE to identify periods of non-predictability so that projections only within 

the predictable period can be used to influence the decision. An analysis of the skills of various 

projection window lengths is undertaken and the best is selected. The decision framework is 

modified to incorporate the projections:  At the end of each simulation year, an ensemble of 

streamflow projections of the selected length is generated using the WKNN model which uses 

information about the climate signals in the current and previous years; the future flow is deemed 

likely to be either wet or dry relative to the long term mean of the Lees Ferry flow. A detailed 
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analysis of this determination and the effects of a range of wet/dry thresholds are presented. The 

existing decision logic of whether or not to implement options and strategies, and which to 

implement, is then conditioned on the wet or dry projection using two different logical 

approaches that either constrain or complement the decisions.  The two approaches are 

compared.  The skill of the enhanced decision framework is evaluated with respect to costs of 

implementing the options and strategies and system shortages, and a tradeoff curve is developed. 

The new decision methods are demonstrated first on a single trace of observed hydrology, then 

on an ensemble of plausible future supply scenarios. A single constant demand scenario from the 

Basin Study is used.  

The chapter is organized as follows. First the methodology of applying the stochastic 

streamflow simulation and projection is presented followed by the detailed methodology of 

generating the decision metrics from the projections and their time varying predictabilities. Then, 

two proposed approaches for integrating the projection decision metrics with the existing Basin 

Study decision framework are described. The methods are demonstrated on a single trace of 

observed streamflow data. A process for generating an ensemble of plausible future hydrologic 

scenarios using WKNN simulations is presented. The two integration approaches are applied to 

the ensemble, and the results are described.  A summary and discussion of results concludes the 

chapter. 

5.2 Methodology: Streamflow simulations and projections 

The CRSS, maintained by Reclamation, models the most important aspects of the CRB: 

the major reservoirs, hydrological inflows, demands, diversions and return flows, and operational 

rules (the Law of the River) [Reclamation, 2012] and is developed in the RiverWare modeling 

environment at monthly time step [Zagona et al., 2001].  The Colorado River upper and lower 
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basins are divided by the Lees Ferry gauge, shown by red arrow in Figure 5.1 with the locations 

of the model’s 29 hydrological input nodes: 20 in the upper basin (green dots) and 9 in the lower 

basin (purple dots). In addition to hydrology, inputs include demands and the operating policies. 

Model outputs include reservoir pool elevations and releases, diversions and deliveries, 

hydropower generation, occurrences of shortages, and other data of interest such as compliance 

with environmental flows, and salinity. The model is used extensively for long term planning 

studies such as the recent Basin Study [Reclamation, 2012], annual operating plans, and to share 

information with stakeholders.  

 

Figure 5.1: The CRB with upper and lower basin hydrological nodes used in the CRSS model 
and the location of the Les Ferry gauge and the basin states. The green dots are the upper basin 
natural flow nodes and the purple dots are the lower basin natural flow input nodes (adapted 
from Nowak [2011]) 

Lees Ferry  
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5.2.1 Simulating the future flow scenarios 

The Lees Ferry flow gauge passes about 90% of the naturalized flow. Generating plausible 

future flow scenarios is a basis for robust decision making [Groves et al., 2013]. Utilizing the 

strong teleconnection of the Lees Ferry naturalized flow with AMO and PDO, the future 

plausible streamflow scenarios are generated using the WKNN model (details in Chapter 2). The 

WKNN model is a streamflow simulation and projection model, conditioned on climate indices 

(in this case AMO and PDO), capable of representing the non-Gaussian and nonstationary 

characteristics of the Lees Ferry flow.  Its suitability for simulation and projection at decadal and 

multi decadal time scales and its relative performance in comparison with the recently developed 

timeseries models such as the Wavelet based Autoregressive Model (WARM) and Conditional 

Hidden Markov Model (CHMM) are performed. Details are presented in Chapter 3.  

To demonstrate the relative performance of integrating the future state of the flow on the 

Basin Study decision framework, decadal scale projections are performed for each simulation 

time step and for each of the plausible future scenarios. The plausible future flow scenarios are 

generated using the WKNN simulation approach. In this, 1000 streamflow scenarios of annual 

Lees Ferry flow are generated for the time span 2012 to 2060. The simulation timespan is chosen 

to match with the Basin Study so that the relative decisions of the proposed integration approach 

with the existing decision framework can be evaluated. From the generated 1000 simulations, a 

representative set of 120 traces are selected as follows: 

i. First, the means of each of the generated 1000 plausible flow scenarios are computed.  

ii. The simulations are grouped into 10 categories according to their means.  

iii. From each category, representative traces are randomly sampled. 
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The selected 120 traces represent a wide range of plausible future flow scenarios. The 

mean values of the generated 1000 future plausible flow traces (blue dots) and the selected 120 

traces (red dots) are shown in Figure 5.2. 

 

Figure 5.2: The mean values of the generated plausible 100 flow scenarios (blue dots) and the 
selected representative traces (red dots). The horizontal black dashed lines demarcate categories 
from which representative traces are sampled. 

5.2.2 Spatial and temporal disaggregation of the selected traces 

Each simulation of annual Lees Ferry flows must be disaggregated spatially to the 29 

input nodes and temporally to monthly timesteps in order to be used for CRSS simulations. For 

this, the non-parametric space time disaggregation technique [Bracken et al., 2010; Nowak et al., 

2010] is applied for the 20 upper basin nodes (shown green in Figure 5.2) and temporally into 

monthly time scale. The application of the non-parametric disaggregation technique is extended 

to estimate the 9 flows at the lower basin hydrological input nodes. In this, a proposition matrix 

is first generated based on the historic data as a ratio of the Lees Ferry flow (key station) with the 
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downstream flow nodes under consideration. Then the K-Nearest Neighbors (K-NN) of the 

generated annual streamflow of the key station are identified through the weighting metric as in 

Lall and Sharma, [1996] and one of the nearest neighbors are resampled. The downstream flow 

is estimated as the multiple of the proportion vector [Bracken et al., 2010; Nowak et al., 2010] 

with the resampled streamflow or simply the downstream historical flow that correspond to the 

selected nearest neighbor.  This technique estimates the downstream flow much better in terms 

of representing the nonstationarity of the streamflow when compared with linear autoregressive 

model. The estimated downstream flows in the 9 lower basin nodes are then subjected to the 

non-parametric temporal disaggregation technique [Bracken et al., 2010; Nowak et al., 2010] to 

generate monthly flows. 

5.2.3  Selection of the best projection period 

To incorporate future streamflow projections in the decision model, we use paleo data 

with historical observed to select the projection window length with highest skill as follows: 

i. For each year from 1750 to 2012 of the timeseries of annual naturalized Lees Ferry flows, 

200 projections are performed using the WKNN modeling approach for projection 

windows ranging from 1 to 20 years.  

ii. The means and medians of the 200 projections are computed for each of the projections 

windows for each year.  

iii. Correlations of the means and medians of the projections are performed with the means 

and medians of the observed streamflow.  

iv. The projection window length with highest skill is selected to generate projections that 

will be used in the decision metrics. The projection windows and associated skills are 

shown in Figure 5.3.  
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Chapter 3 compares the performance of the three timeseries models for simulation and 

projection. The three models perform well on simulation. The performance of the projection, 

measured in terms global correlation coefficient (details of the correlation is presented in Chapter 

3) shows that the HMM tends to have higher skill than the wavelet based models (WARM and 

WKNN conditional projections) for annual and inter annual time scales. The HMM model 

appears to consistently perform better for these timescales regardless of where in time it is 

applied. This is because recursive use of TPM in the HMM projection approach results in a 

constant value after a number of estimates of the future values. This limits the projection window 

to be shorter when compared to wavelet based projection approaches. The skill of the wavelet 

based models outperforms that of the HMM based projections for longer projection periods (15- 

20 years).  The wavelet based methods are applied on the signal components of climate indices. 

These components are quasi periodic and are of low frequency with periodicities from 16 years 

to 64 years. Applying Auto Regressive (AR) and block KNN models give skillful projections at 

decadal and multi decadal timescales. Conditional simulation of the streamflow using the AMO 

and PDO signal projections exhibits better skill for longer projection windows (decadal and 

multi decadal time scales) when compared to shorter periods (less than ten years).  This is 

because the streamflow projections are conditioned by the projected low frequency climate 

signals.  These long term (50-70 years) and decadal (~ 16 years) variability characteristics of the 

climate indices are known to have strong teleconnection with the Colorado River flow (see 

Chapter 2 for details). Application of the wavelet based projection that exhibits better skill for a 

longer projection period is relevant for the CRB and chosen for projection.  

Among the wavelet based techniques, the WKNN approach performs better than the 

WARM (See Chapter 3 for details) and is used for further analysis to identify a robust projection 
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window by considering a range of projections. The 11 year projection shown in Figure 5.3 has 

the maximum correlation coefficient, indicating the best performance of the projections. This 

figure demonstrates the robustness of the 11year projection window.  

 

Figure 5.3: Correlation coefficients of the WKNN model projections with the observed flow. The 
blue dot is the maximum correlation coefficient at 11 years projection window. Each dot 
represents the median of the mean projections for different projection windows. 

5.2.4 Streamflow projections 

The WKNN streamflow projection approach with 11 year projection window is applied to 

determine 200 projections for each year of each streamflow scenario.  These annual projections 

are performed for all the 120 traces to determine the state of the projected streamflow as wet or 

dry determined as follows.  

i. The long term (observed) mean of the Lees Ferry flow is computed to be used as a reference 

value to determine the mean of the projections as wet and dry. If the projection mean is 

above this reference, it will be considered as wet and vice versa for dry [Prairie et al., 2008]. 
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The means of the 200 projections are then computed and the numbers of projections which 

fall above (wet) and below (dry) the reference value are determined. If the number of wet 

projections is greater than the number of dry projections, then the overall projection is 

considered to be wet, and vice versa for dry.  

ii. Wet projection ensembles are further classified as wet and dry depending on the severity of 

wetness. For this we introduce a Reference Percentage Threshold (RPT) - a threshold higher 

than 50% - that requires the ensemble to have a greater percentage of wet projections in order 

to be considered wet.  For example, for RPT of 75%, the ensemble would need at least 75% 

of its projections to be wet in order for the ensemble projection to be considered wet, 

otherwise it is considered dry. With increased RPT, fewer projections are classified in the 

wet category and the projection period is more likely to be dry, necessitating implementation 

of options and strategies to mitigate a shortfall.   

The dry and wet projections are represented by numeric values of 0 and 1, respectively, 

for ease of integration with the existing decision framework. For a wet projection of 75% in step 

(i), the decision metrics would be as shown in Table 5.1 for RPTs (step ii) ranging from 51% to 

100%.  

Table 5-1: Wet projections from (i) and their representation for varying RPTs from (ii) 

 

 (i) (ii ) (RPTs) 

75% 51% 52% … 75% 76% … 100% 

wet wet wet wet wet dry dry  dry 

Decision metric (2012) - 1 1 1 1 0 0 0 
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If more than 50% of the projections in the ensemble are less than the historical mean the 

ensemble is dry regardless of the RPT.  For each of the years in the planning period and for each 

of the possible futures, a decision metric Table is generated as shown in Table 1.   

5.2.5 Nonlinear dynamical model identification of predictable and less predictable epochs 
and decision metrics  

The divergence and convergence of  trajectories locally in the phase space (reconstructed 

through proper embedding) are computed for every year of the 120 traces as LLE to determine 

the time varying predictability of the traces ( details are presented in Chapter 4). This 

predictability information is used to guide decisions in the predictable and less predictable time 

epochs. To ease the integration of the predictable and less predictable time epochs in the existing 

decision making metric, the less predictable time epochs (LLE positive or negative but close to 

zero) are tagged with a numeric value of  2. The predictable time epochs however are tagged 

with the projection metrics as shown in Table 5.1:  0 or 1 for dry or wet.  Sequences of zeros and 

ones in the predictable epochs and twos in the less predictable epochs form the decision metric as 

shown in Figure 5.4. The sequence of annual projection decision metrics (dry, wet or 

unpredictable) for each scenario can be developed in advance of the CRSS decision simulations, 

based on the WKNN projections and LLEs for each year, and later used in the integration of 

these with the signpost information in the decision model.  
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Figure 5.4: Decision metrics applied to the paleo and observed data from the nonlinear 
dynamical model. Gray shaded regions are time epochs when projections would not add credible 
information to improve the existing decision making. These regions are assigned a decision 
metric value of 2, whereas decision metrics 0 or 1 (dry or wet) are used during the predictable 
epochs. 

During times when the projections are in the less predictable (gray) region, the wet/dry (1 

or 0) projection decision metrics will be replaced by a value of 2 as shown in Table 5.2.  

Table 5.2 demonstrates how the time varying predictability of the trace guides the inclusion and 

exclusion of the projections into the existing decision framework. For a given year the RPTs 

generated for a particular year (Table 1) are modified based on the time varying predictabilities 

using a numeric value of 2.  
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Table 5-2:  Typical  representation of decision metrics for a single trace from the projections and 
the nonlinear model. Columns are RPTs and rows are years. Values for each year are determined 
as shown in Table 1 and then decision metrics are updated based on the time varying 
predictability. Shaded region with a numeric value of 2 is the less predictable epoch. 

Year 51% 52% … 60% … 99% 100% 

2012 1 1 1 1 0 0 0 

2013 1 1 1 0 0 0 0 

… 1 1 1 0 0 0 0 

… 2 2 2 2 2 2 2 

… 2 2 2 2 2 2 2 

… 2 2 2 2 2 2 2 

… … … … … … … … 

... … … … … … … … 

… 1 1 0 0 0 0 0 

… 1 1 1 1 0 0 0 

2060 1 1 1 1 1 0 0 

 

5.3 Methodology: Integration of Projections in Decision Framework 

5.3.1 Existing decision model (baseline model) 

Reclamation used scenario analysis in the Basin Study to understand possible future 

supply and demand conditions and propose ways to mitigate possible shortfalls through various 

options and strategies [Groves at al., 2013; Reclamation, 2012]. CRSS simulations of the system 

performance with the various supply, demand and operations combinations were used to evaluate 

the scenarios for the possible future supply-demand imbalances. Depending on the severity of 
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shortfall, mitigation measures were applied to minimize the supply-demand gap. Indicator 

metrics – observable quantities that indicate how well the system will perform – are used to 

signal vulnerable conditions and the need for mitigation. For this, the Basin Study conducted 

“system reliability analysis” to determine the signposts that indicate the reliability of meeting 

demands. Signposts are features or combinations of features of the observable system that are 

good predictors of impending vulnerabilities. Signposts can inform the system that a vulnerable 

condition is likely to occur so that appropriate actions will be taken to mitigate the shortfall. For 

the Basin Study, Reclamation ran CRSS through thousands of plausible future scenarios 

[Reclamation, 2012] and then used cluster analysis to identify key signposts and threshold values 

to use as indicators of vulnerability. They found that a combination of Lakes Mead and Powell 

pool elevations and Lees Ferry flow are good signposts. Depending on the supply – demand 

imbalances determined from the plausible future demand and supply scenarios, appropriate 

options and strategies were identified to address the system vulnerability. The CRSS model was 

then used to evaluate the system reliability of implementing options and strategies. Table 5.3 

shows indicator metrics and their vulnerability thresholds. 

Table 5-3 Vulnerability thresholds for indicator metrics 

Indicator Metrics LNF  

(MAF) 

PPE  

(ft) 

MPE  

(ft) 

UBS  

(%) 

LBDAP  

(acfr-ft) 

Lees Ferry deficit 12.39 3490 -   

Mead Pool Elevation 13.35 - 1040   

Lower Basin shortage (2 yrs) 13.51 - 1060   

Lower Basin shortage (5 yrs) 13.51 - 1075   

Upper Basin Shortage    25  

Lower Basin Shortage Above 

Proposition 

    900,000 
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Vulnerability indicators based on reservoir elevations and Lees Ferry flow are summarized 

in Table 5.4 and shortage based vulnerabilities are shown in Table 5.5. The vulnerability 

combinations are marked “Vulnerable” in each table. 

Table 5-4: Signposts based on combination of pool elevations and streamflow magnitudes 

 
LNF < 12.39 

(MAF) 

LNF < 13.35 

(MAF) 

LNF < 13.51 

(MAF) 

LNF < 13.51 

(MAF) 

PPE < 3490 ft. Vulnerable - - - 

MPE < 1040 ft. - Vulnerable - - 

MPE < 1060 ft. - - Vulnerable - 

MPE < 1075 ft. - - - Vulnerable 

 

Table 5-5 Vulnerability based on shortage 

 UBS < 25% LBDAP  < 900,000 ( acre-ft) 

UBS Vulnerable - 

LBDAP - Vulnerable 

5.3.2 Options and strategies 

The options and strategies which are proposed to mitigate the detected vulnerabilities can 

be broadly grouped as follows; 

i. Increasing the availability of water supply through infrastructure development,  

ii. Reduce demand through conservation strategies and improved efficiency, 

iii. Modification of operational strategies. 

From a list of 150 options and strategies the Basin Study identified about 30 options and 

strategies as technically and economically feasible and grouped them into 4 portfolios, each with 

a specific adaptation strategy. The Basin Study evaluates and compares the future reliability of 
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the system with all four portfolios; in this study we consider only Portfolio A because it has most 

of the options and strategies and also incorporates the options and strategies of Portfolios B and 

C.   

During the simulation runs, when signposts are triggered, specific vulnerability can be 

mitigated by activating options from the available list in the active portfolio. For example, 

vulnerability in the year 2025 can be mitigated by options that are available in 2025 and earlier. 

The option, once implemented, remains in effect until the end of the simulation period and 

cannot be implemented again.   Suppose the next available option is in 2030 and all the options 

in and before 2025 are implemented, then any vulnerability between 2026 and 2030 cannot be 

mitigated.  

5.3.3 Integration of the decision metrics with the existing framework 

The implementation of options in the Basin Study’s decision model is entirely dependent 

on the signposts that signal potential vulnerabilities detected each year in the simulation based on 

the current state of the system. The research addresses the question of whether using skillful 

projections along with the existing signposts can further inform the decisions. A triggered 

signpost this year may not be followed by a vulnerable condition, for example, if the future 

hydrology is high (wet) enough.  

The decision metrics (wet or dry) generated from the streamflow projections and their 

time varying predictability (hereafter “projection metrics”) are proposed to be incorporated in the 

Basin Study decision logic (hereafter “baseline”) such that if the projection is wet enough, more 

water is expected into the system, thereby minimizing the anticipated supply and demand 

imbalences so that a more appropriate decision can be made. Two different integration 

approaches are considered as follows. 
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The AND approach 

In this approach, the baseline signposts are coupled with the projection metrics with 

“AND,” forming a necessary condition. To implement options the signpost is triggered AND the 

projection is dry, otherwise no option is implemented. If  a very high RPT is used, few wet 

projections will be made and decisions are similar to the baseline, whereas a low RPT will result 

in many wet projections that could potentially constrain the baseline, i.e., some options will not 

be activated. There is only one possible combination of the signposts and projection metrics that 

allows the implementation of options and strategies as shown in Table 5.6.  

Table 5-6: The AND approach decision metrics 

Signpost  Projection 
Metric 

Overall decision: Implement options 
and strategies? 
Yes No 

True 0 or 2  
True 1   
False 0   
False 1   

 

Because fewer options are implemented, especially with low RPT, there is a potential for 

higher risk of shortage than for the baseline,  but with more potential for cost savings, avoiding 

investment in unneeded options. 
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Figure 5.5: the AND integration logic 

The OR approach 

This approach allows the implementation of options if either the signpost is triggered or 

the projection metrics is dry. This approach could potentially result in more options executed 

than the baseline, especially if the RPT is high, resulting in lower risk of shortage, but higher 

costs. With low RPT, the results will be similar to the baseline. The possible combinations of the 

signposts and projection metrics for this approach are summarized in Table 5.7.  

Table 5-7: The OR integration approach decision metrics 

Signpost Projection 
Metric 

Overall decision: Implement options 
and strategies? 
Yes No 

True 0 or 2  
True 1  
False 0  
False 1   

 

The logical representation of the OR approach is presented in Figure 5.6 
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Figure 5.6: The OR integration logic 

To evaluate these two approaches across a range of RPTs, we executed the baseline model, 

then added the projection metrics and compared the results.  

5.4 Results 

The effect of the proposed decision approach is demonstrated by considering a single 

hydrology from the historic period, and then its application to the ensemble of plausible future 

scenarios is presented. 

5.4.1 Single run with observed data 

The single trace uses the observed flow for the time period from 1964 – 2012 at Lees Ferry 

(Figure 5.7), Portfolio 1 (the portfolio with the broadest range of options and strategies in the 

Basin Study), a constant demand scenario of 14.03 MAF per year (the 2060 demand level of the 

demand scenario B (slow growth) of the basin study), and the rule set that represents the current 

Law of the River.   
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Figure 5.7: The Lees Ferry annual flow timeseries from 1964 – 2012. 

The observed period hydrology is chosen to better demonstrate the decisions for the known 

hydrology in the basin. Decision metrics with RPT of 51%, 55%, 60%, 65%, 70%, 75% and 80% 

are tested for both AND & OR approaches. (It was found that RPT greater than 80% does not 

result in decisions different than RPT equal to 80%, most likely because there are no scenarios 

that are that wet.)  CRSS was executed with the projection decision metrics for each of the 7 

RPT values, for both AND & OR approaches, and one additional run for the baseline to 15 

simulation runs performed. Each uses unique decision logic and has the possibility of executing a 

different set of options. 

To evaluate the results, we plot of Mead pool elevation, as that metric has significance for 

Lower Basin shortage. Figure 5.8 demonstrates the effects of the two integration approaches. As 

expected, the AND approach limits the implementation of options resulting in lower pool 

elevations (blue) relative to the baseline pool elevation (black). The OR approach complements 

the baseline decisions resulting in higher pool elevations (red) than the baseline.   The lower 
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Mead pool elevations (blue) are with fewer options than the baseline decisions, indicating how 

severe the supply – demand imbalances can be without implementation of options for this supply 

and demand scenario. 

 

Figure 5.8: Lake Mead pool elevation from the two integration approaches. Higher pool 
elevations are associated with higher RPTs with respect to each of the integration approaches. 
The pool elevations are the December values of each year. 
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Figure 5.9 Lake Powell pool elevation from the two integration approaches. Higher pool 
elevations are associated with higher RPTs with respect to each of the integration approaches. 
The pool elevations are the December values of each year. 

 

Each of the pool elevations shown above results from the options and executed by the 

decision logic as indicated. Higher pool elevations are associated with greater numbers of 

options and vice versa for lower pool elevations.  

Shortages from the 51% RPT AND logic, the baseline and the 80%RPT OR logic are 

presented in Figure 5.10 to show the extremes and the relative shortages of the baseline options. 

The remaining solutions from the RPTs and the integration approaches are in between and for 

the interest of space they are not presented here. However, the total system shortages (cumulative 

shortages throughout the planning period) are presented separately. 



129 
 

 

Figure 5.10: Shortages of the AND logic with 51% RPT (blue), baseline (black) and from the OR 
logic (red).  . Highest shortage from the AND approach with 51% RPT (blue) as expected and 
the lowest shortage from the OR approach with 80% RPT.  

The 51% AND logic is the most restrictive in terms of allowing the implantation of options 

and strategies because the 51% projection metrics are mostly wet and the AND approach with 

wet projection is “no implementation” combination (Table 5.6). On the other hand, the OR logic 

with the highest RPT is the most allowing logic because higher RPTs are dryer and any dry 

combination in the OR logic allows implementation of options and strategies (Table 5.7). 

Therefore the magnitudes of shortages and costs range from the 51% AND logic with least 

possible cost and highest possible shortage to highest RPTs OR logic with least possible shortage 

and highest possible cost.   

The shortages from the AND 51% RPT in Figure 5.10 are the highest for most of the 

times, especially starting from the mid-1970s. This is mainly because the least number of options 
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are implemented during these periods because the implementation of options and strategies are 

suppressed by the 51% wet projection metrics. The baseline shortages (shown black in Figure 

5.10) are as low as the least possible shortages (shortages from the OR highest RPT logic- shown 

red in Figure 5.10). This implies incremental implementation of options with the OR logic is not 

reducing the shortages significantly. The options that correspond to the shortages in Figure 5.10 

are shown in Figure 5.11. As expected many more options are implemented under the OR 

approach compared with the AND & baseline approaches.  Even though the shortages don’t 

seem to be significantly different between the baseline and the OR decisions, the implemented 

options are significantly higher as shown in Figure 5.11.  

 

Figure 5.11: Options and strategies from the baseline (black), OR logic (red) and the AND logic 
(blue). The numbers indicate the option or strategy numbers implemented to address the 
vulnerabilities. The option numbers can be used to read options and strategies from Table 5.8.  
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The present costs of all the options are computed and summed to get the overall cost of the 

particular approach. The costs of options or strategies used in this analysis are taken from 

Reclamation, [2012], estimated as the cost of both investment and maintenance (see Table 5-8 

for the list of costs for a particular option or strategy).   For example, the annual costs of each of 

the options of the OR logic (shown red in Figure 5.10) are identified from Table 5.8 and then 

discounted with the rate of 7% to get the present values. The present values are then summed to 

get the total cost of all the options over the planning period. The costs for each of the 15 

simulation runs are similarly determined and their cumulative costs are shown in Figure 5.12.  

Because the higher RPT AND decisions and the lower RPT OR decisions are very close, there 

could be an overlap of curves in Figure 5.12 and Figure 5.13. 

 

Figure 5.12: Cumulative costs of options and strategies implemented based on the wet 
percentage thresholds and the two integration approaches.  
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Table 5-8: Options and strategies under portfolio 1 (Reclamation study, 2012) 

Options (Portfolio 1) 
Option 

numbers 
Year of 

availability 
Magnitude 
(Acre-ft) 

Estimated annual cost 
($/afy) 

Min Max 

AgCons-Transfer2 2 2021 200000 250 750 
AgCons-Transfer3 3 2026 200000 250 750 
M&IConservation1 18 2016 200000 500 900 
AgCons-Transfer4 4 2026 200000 250 750 
Desal-Yuma 47 2021 100000 600   
M&IConservation2 19 2021 200000 500 900 
AgCons-Transfer5 5 2026 200000 250 750 
Desal-SoCalgroundwater 37 2021 20000 750   
M&IConservation3 20 2031 200000 500 900 
M&IConservation4 21 2041 200000 500 900 
M&IConservation5 22 2051 200000 500 900 
Desal-SaltonSea1 34 2026 200000 1000   
Desal-SaltonSea2 35 2031 200000 1000   
Desal-SaltonSea3 36 2036 100000 1000   
Desal-PacificOcean-MX 33 2026 56000 1500   
Reuse-Municipal1 24 2021 200000 1500 1800 
Reuse-Municipal2 25 2031 200000 1500 1800 
Import-FrontRange-
Missouri 

23 2041 600000 1700 2300 

Reuse-Municipal3 26 2036 200000 1500 1800 
Reuse-Municipal4 27 2041 200000 1500 1800 
Reuse-Municipal5 28 2046 132000 1500 1800 
Desal-PacificOcean1 29 2031 200000 1850 2100 
Desal-PacificOcean2 30 2036 200000 1850 2100 
EnergyConservation 32 2021 160000 2000   
Local-CoalbedMethane 7 2021 100000 2000   
Reuse-Industrial 17 2021 40000 2000   
Desal-Gulf1 11 2028 200000 2100   

Desal-Gulf2 12 2033 200000 2100   
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The highest cost value is associated with higher RPT with OR approach and the smallest 

cost is associated with the lower RPT with AND approach. The highest cost of the AND 

approach is associated with the baseline cost and at the same time with the lowest RPT of the OR 

approach. 

To evaluate the relative performances of the decisions from the two integration approaches 

with the baseline, the shortages are computed similarly.  With increased investment, there is 

expected reduction in shortage as the implemented options are addressing the shortfall. The 

cumulative shortages of all planning decisions (options implemented based on the particular 

approach and decision metric) are computed to determine the overall shortages in the planning 

period and are shown in Figure 5.13.  

 

Figure 5.13: Cumulative shortages of options and strategies implemented based on the RPTs and 
the two integration approaches.  
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Shortages from the AND approach (shown in blue) show a significant variation with 

different RPTs. The highest shortage in Figure 5.13 is associated with the AND approach with 

the lowest RPT and it is also associated with the least cost in Figure 5.12. Similar to the cost, 

decisions of the AND approach with the highest RPT (> = 80%) are similar to the baseline and 

the OR approach with the lowest RPT (51%).  The OR approach however, shows little variation 

in shortage when compared with its variation in the cost. 

The costs and shortages exhibit a clear tradeoff.  The tradeoff curve is determined by 

taking the overall costs and shortages of the decisions made by the AND & OR approach with 

each approach of 7 RPT decision metrics. The baseline overall cost is also determined to 

evaluate the relative performance of the decisions. Shortage vs. cost tradeoff is shown in Figure 

5.14. As expected, with an increase in investment, the AND approach exhibits significant 

reduction of shortage from the 51% RPT to its maximum 80% RPT. The baseline is at the 

boundary between the AND & OR approach outcomes. With increased investment beyond the 

baseline, there is little reduction in shortage even if a significant increase in investment.  

The underlying assumption of incorporating flow projections in to the baseline decision 

framework is to inform the system about the future state of the flow so that the baseline supply- 

demand imbalances will be modified. The new supply- demand imbalance triggers the need for 

implementation of more numbers of options and strategies if the future flow is dry when 

compared with the imbalances are modified by the future wet flow.  The decision of 

implementing the required option or strategy from the active portfolio is, however, constrained 

by the availability of the option and/ or strategy during the need and the suitability of the 

option/strategy for the detected vulnerability.  This brings less flexibility to implement suitable 

options and strategies for the projection conditioned supply- demand imbalance. In the worst 
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case, options and strategies may not be available for implementation. This limits the efficiency of 

the projections in the decision framework to improve the baseline options both in terms of 

shortage and cost at the same time.  

 

Figure 5.14: Shortage – cost tradeoff curve. The blue dots are from the AND approach with RPT 
as labelled and the same for the OR approach with red dots. The baseline (black triangle) is 
shown at the interface between the AND & OR logic options and strategies.  
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The marginal benefit of implementing more options and strategies beyond the baseline 

options does not seem to be attractive. Moving from baseline to, for example, the 60% OR, there 

is ~ 26% increase in cost while reducing the shortage by only ~2.6%. The baseline is as close as 

the inflection point where any more investment will not bring noticeable benefit.  The ideal 

solution for this type of problem is the 0, 0 coordinate (no shortage and no cost). A point close to 

the ideal solution is preferred. For this, the Euclidean distances are computed for each of the 

points in Figure 5.14 and the closest point is selected. For this particular scenario, the AND logic 

with the 75% RPT is favored. The points shown in Figure 5.14 illustrate the relative benefits of 

the implemented options and strategies under the RPTs. The AND 75% RPT for example shows 

an increase in shortage of 11% while the cost is reduced by 33%.  

Each of the RPTs can be associated with a range of streamflow magnitudes. For the 

streamflow projections for a given year of a given hydrologic scenario, the streamflow 

magnitude that corresponds to a specific RPT is computed as the streamflow magnitude for 

which 50% of the projections are greater.  Higher percentage thresholds are associated with high 

flow magnitudes and vice versa for low RPT. This procedure is applied to each of the projections 

ensembles for each year. The scatterplot shown in Figure 15 shows the relationship of the wet 

percentage thresholds with their corresponding flow magnitudes.      
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Figure 5.15: Relationship between the PT and the Lees Ferry flow. The straight line that 
connects the dots is a linear regression model fit and the dashed lines are the linear model fit with 
+/- 0.2 MAF 

The relationship shown in Figure 15 is determined by taking 50 projections from the 

historic Lees Ferry flow (1964-2012) which can cover a wide range of RPTs. The established 

relationship can be used to estimate flow magnitude for the chosen or preferred RPT.   
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For example, for the 75% preferred solution for this flow scenario, the corresponding flow 

magnitude is: 

Flow = 75 * 0.027 + 12.895 = 14.92 MAF 

This flow magnitude can be related to the demand as follows. The preferred solution for 

the demand level of 14.03 MAF is found to be the 75% RPT. The same analysis performed for a 

constant demand level of 13.72 MAF (the middle third of the slow growth scenario) shows the 

preferred solution 70% RPT with the corresponding flow magnitude of 14.78 MAF.  

5.4.2 Multiple run with ensemble of plausible future flow scenarios 

The RPT that performs the best may vary with hydrology; without knowing the hydrology 

in advance, it is not possible to take advantage of a tradeoff curve like the one in Figure 5.14 to 

make a decision about selection of an RPT. With that in mind, we analyze an ensemble of 

plausible future hydrologic scenarios with a wide range of mean flows and look for robust 

performance across a range of RPT values.  

The AND & OR decision frameworks are applied on the 120 plausible future flow 

scenarios. The 120 traces are disaggregated both spatially and temporally so they can be used in 

the CRSS. For each of the ensembles, the time varying predictability is determined through the 

nonlinear modeling approach to identify the predictable and less predictable time epochs. The 

decision metrics are then generated with sequences of zeros, ones and twos for dry, wet and less 

predictable respectively. 

Using the constant demand of 14.03 MAF, the CRSS model simulation is performed with 

and without the projection metrics for the 120 traces. From the simulation run, the costs of 

implementing the options and strategies and the corresponding shortages are determined for the 
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three decision making approaches – the AND, OR and baseline.  Using the computed costs and 

shortages, tradeoff curves are generated for each of the traces as shown in Figure 5.16. Future 

flow scenarios with high flow magnitude tend to show smaller shortages because the supply 

demand imbalances are low. Implementing additional options and/or strategy does not seem to 

make changes. However, traces with low flow magnitudes exhibit higher shortages when 

compared to high flow traces because the supply demand imbalances are higher. For these traces, 

implementation of options and/or strategies tend to show a decrease in shortages.  

The AND approach (shown in blue) generally shows the performance of implementing 

options and / or strategies in reducing the shortage with increasing RPT when compared to the 

OR approach. This is not a surprise because the AND approach constrains the implementation of 

options and strategies (high for low RPT and less for high RPT).  Increased numbers of options 

and strategies implemented under the OR approach (shown by red line) does not reduce the 

shortage even at high RPT.  
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Figure 5.16: Tradeoff curves of the 120 ensemble simulation runs of the OR (red), AND (blue) 
and the baseline (black) 

To investigate the relative performances of the ensemble simulations, changes in shortages 

of the RPTs of the 120 traces in reference to the baseline are calculated as arithmetic difference 

between the baseline shortages and the RPTs. For example the increased shortage of the 51% 

AND RPT is calculated as baseline shortage minus the 51% AND RPT shortage.  If the RPT’s 

shortage is greater than the baseline shortage, the value is negative and represented as negative to 
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show how bad the alternative is with respect to the baseline.  The same analysis is performed for 

the cost, negative cost values indicate how bad the RPT is in reference to the baseline. This 

analysis is performed for all the 120 traces for each of the OR and AND approaches. Repeating 

the above analysis for all the 120 traces and RPTs, the results are presented in Figure 5.17. 

Regions shown by roman numerals in Figure 5.17 represent the solution spaces. Solutions in 

space I show improvements both in shortage and cost, space II is the region where reduction in 

shortage at the expense of cost (the OR solution space), space III is a dominated space in which 

both shortage and costs are increased relative to the baseline.  In Region IV, the cost is reduced 

at the expense of increased shortage (predominantly the AND solution space).  The 51% RPT 

solutions show that the OR approach has almost the same solution as the baseline (region II). 

This is because at the 51% threshold, the projection metrics are most of the time wet and the 

decisions are mainly made by the baseline logic. The 51% AND approach solutions show 

however a significant increase of shortage with a significantly reduction in cost (region IV). 

Looking at the 90% RPT solutions, the range of values seems to shift from region IV to region II. 

The question may be asked as to why the projection metrics do not have solutions in region I?   

The projection metrics are integrated in the baseline logic in such a way that the options 

and strategies are identified and triggered by the baseline logic based on the severity of 

vulnerability and the supply- demand imbalances. In the baseline logic, the numbers and 

availability of options and strategies are predetermined and are set to be available at a specific 

time. For example, vulnerability detected at the current time can be mitigated from the available 

options and strategies at the current time or from the past. The baseline logic identifies options 

and strategies based on the supply-demand imbalance and a suitable option for the vulnerability. 
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The OR and AND approaches have the potential to determine the supply-demand 

imbalances and/or the severity of vulnerability at a given time based on the projection metric.  

However, the search for appropriate options and strategies is made by the baseline logic. The 

fewer numbers of available and range of options during the time of implementing options and 

strategies tend to force the same options or strategies to be selected for different levels of supply 

demand imbalances and severity of vulnerability.  For example, the simulation being made by 

the baseline logic identifies a supply demand imbalance of 100 units of shortage at time t. The 

baseline logic search from the available options and strategies and implements the option or 

strategy that can mitigate the 100 units of shortage say with 100 units capacity and cost of 100 

units. For the same hydrology and demand conditions but with the AND approach, the supply-

demand imbalance at time t+1 is found to be say 110 units. To mitigate this level of vulnerability 

the baseline logic look for the option to address the 110 unit imbalance and implements the 

available 100 unit option, leaving it with 10 units of imbalance for the next time step.  For the 

same cost, the shortages of the AND approach will go higher by 10 units when compared with 

the baseline and so on. Therefore, the scale of available options and more range of options and 

strategies can affect the efficiency of the integration approach explained by one example. This 

being said, cluster analysis used to identify key signposts and threshold values in the baseline 

decision framework is so skillful that it leaves little room for improving decisions made by our 

model in terms of reducing both cost and shortage.   
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Figure 5.17 scatter plots showing normalized shortage-cost tradeoff for each of the RPTs from 
the 120 traces. The red triangles are solutions from the OR approach and the blue circles are 
from the AND approach. The black dot at the (0, 0) point is the baseline solution. The roman 
numerals show solution spaces (I) Improved shortage and cost (II) Improved shortage with 
increased cost, (III) Increased cost and shortage (Dominated solution) and (IV) Reduced cost but 
with increased shortage.  
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Shortages and costs are determined based on the cumulative values – indicating the overall 

costs and shortages through the entire planning period. The wide range of RPTs observed for 

high mean values in Figure 5.18 is because of the variabilities of the traces with time. Two traces 

with the same mean values can result in entirely with different shortages and costs because of 

different nonstationarity in the traces. A trace without a significant upward or downward trend is 

more likely to have less shortage and cost than the trace with a trend. Let’s take a trace with 

upward trend. In this, at the beginning there will be a higher shortage because of the low flow 

implying implementation of options and strategies and/or shortage as well as higher cost than the 

down ward trend traces because of the effect of discounting.  

 

Figure 5.18 Scatterplot of the RPTs with the 49 year means of the 120 traces  
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If the flow magnitude is low, the effect of either upward or downward trends does not 

cause a significant shift in RPTs when compared to the high mean flows. It is mainly because the 

vulnerability is detected most of the times during the simulation and more implementation of 

options and strategies leading to higher RPT.  

5.5 Conclusions  

The WKNN simulation and projection model as developed in Chapter 2  is found to be 

skillful for simulation as well as for projection of streamflow at decadal and multi decadal time 

scales. This model has been used to generate the plausible future flow scenarios for the CRB and 

project annual streamflows to incorporate in decision making. The nonlinear dynamical 

modeling as developed in Chapter 4 provides a novel approach to determine the credibility of the 

projections. In this application, it has been used as a guide to identify predictable time epochs of 

the projections  

The reference percentage threshold provides a mechanism to modulate and calibrate the 

magnitude of flow projections that potentially influence the decisions. The threshold value 

determines the implementation of options and strategies with resulting increased or decreased 

shortage/cost relative to the baseline options and strategies.  

The best performing RPTs from each trace are identified which demonstrate the most 

balanced solution between shortage and cost with values range from 51 % to 90 %. Figure 5.18 

demonstrates the general trend that lower preferred RPTs are more present in the high mean flow 

values than the low mean valued traces. From Figure 5.15 the wide range of RPTs for a given 

mean flow particularly for higher mean flows, indicates mean values do not have a direct relation 

with RPTs. This can be because of the time variability of the traces and trends. 
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The AND & OR approaches of integration of streamflow projections, along with time 

varying predictabilities, allow implementation of a range of alternative options and strategies 

unique for each RPT, whose relative benefits can be assessed with respect to the baseline options 

and strategies. In the AND approach, options and strategies can be implemented if and only if the 

projections metrics indicate a dry future and if the signposts are triggered for probably 

vulnerability; it avoids implementation of unnecessary options and can save in unnecessary 

costs. The OR approach on the other hand, allows implementation of more options and strategies 

than the baseline, potentially decreasing shortage.  

For the single trace scenario of 1964 – 2012 observed flows, the RPT that gives the most 

balanced solution between shortage and cost was identified on a tradeoff curve as 75%. 

Reducing options and strategies using the AND approach demonstrates a significant benefit of 

reducing shortages for the investment when compared to reductions of shortages with the OR 

approach. The RPT that performs the best may vary with hydrology; without knowing the 

hydrology in advance, it is not possible to take advantage of a tradeoff curve like the one in 

Figure 5.14 to make a decision about selection of an RPT. With that in mind, we analyze an 

ensemble of plausible future hydrologic scenarios with a wide range of mean flows and look for 

robust performance across a range of RPT values. 

Integration of the projections and their time varying predictabilities are made by utilizing 

the baseline logic to identify and implement from the available options and strategies. The 

severity of shortage /vulnerability informed to the baseline logic through the signposts look for 

appropriate options and strategies to implement and mitigate the vulnerability.  

The severity of vulnerability is generally modified by the projections:  it will most likely 

be higher for the AND approach with smaller RPTs because it constrains the baseline logic 
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implying the need for higher capacity options than the OR approach. Conditioning the severity of 

vulnerability by the projections provide additional information to identify and select a more 

suitable options and strategies than the baseline logic alone.  

This being said, the limited availability and time constrained options and strategies limit 

the appropriate choice of options and strategies for vulnerabilities conditioned by the projections.  

This leads to relatively similar choices of options and strategies for both the baseline and 

projection conditioned vulnerabilities making the baseline solution one of the non-dominated 

solutions on the tradeoff curve. Because of this, the baseline solution is improved through 

tradeoff – either by increasing cost to reduce shortage or reducing cost by increasing shortage. 

The shortage and costs analyzed for each of the RPTs shown in Figure 5.17 demonstrate the 

influence of the baseline logic. Scatterplots in Figure 5.17 present regions with RPTs and 

integration approaches. The top left panel of Figure 5.17 is mainly the AND approach solution 

suggesting the possible level of shortage if the decision is made by 51% RPT. The worst case 

scenario in this case is the increase in a 30MAF increase of shortage over the 50 year period, 

which is 0.6 MAF per year on average. If cost is a constraint and the 0.6MAF average annual 

shortage is acceptable, the 51% and approach is the solution.  On the other extreme, if shortage 

cannot be compromised, region II of the 90% RPT solution is suitable.   

The integration approach used in the CRB decision framework could perform better if 

more options and strategies would be available with varying costs and capacities and could be 

selected based on the severity of the vulnerability. Alternatively, instead of selecting from the 

available options, the decision algorithm could propose options and strategies with a suitable 

capacity for the detected vulnerability so that a more efficient option could be implemented. 
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However, inclusion of additional options or strategies would require additional investigation to 

determine feasibility.  
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6 Conclusions and Discussion  

6.1 Summary and Research Contributions 

A novel wavelet-based time series bootstrap simulation model is developed to generate 

streamflow simulations/projections conditioned on the signals of large scale climate indices. The 

signals determined by the wavelet technique are simulated /projected using the skillful block 

bootstrap approach to generate ensembles. The ensembles of climate signals are then used to 

conditionally simulate/project the streamflow. This modeling approach is demonstrated on the 

Lees Ferry gauge on the Colorado River by using the two climate indices: AMO and PDO to 

condition the simulation. The model reproduced all the statistical properties of the naturalized 

Lees Ferry flow including its non-Gaussian and non-stationary characteristics. Traditional 

methods develop similar models on the flow timeseries and have limited skill in projections. 

Here, the climate indices are modeled and streamflow generated conditionally, exploiting the 

skill in climate indices.   The ability to reproduce the nonstationarity characteristics of the flow 

plays a significant role in water resources management because it can determine the availability 

of water at a particular time. The WKNN model projections are suitable for water resources 

planning and management because of their projection skills at decadal and multi decadal 

timeframes 

The performance of the WKNN model relative to two other recently developed timeseries 

models  - the Hidden Markov and the Wavelet based Auto regressive models - is assessed in 

simulation and especially in projection for different projection times. This comparison is offered 

as a contribution to the community of water resources management to provide guidance in the 

suitability of these models for stochastic simulation and for projections over various timeframes. 
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The comparison is performed by using a conditional simulation approach using the Lees 

Ferry streamflow with AMO and PDO. In this, first each of the three modeling approaches is 

applied on the climate indices to generate ensembles (simulation /projection). Then the flow is 

conditionally realized based on the generated ensembles of climate indices. The WKNN and 

WARM models are applied on the signal components of each of the climate indices determined 

by wavelet function. However, the Hidden Markov Model was applied directly on the climate 

indices. In the simulation mode, the three models perform well in reproducing the distributional 

statistics (mean, variance, skew and lag 1), PDF and the wavelet spectra. The local wavelet 

spectra of the three simulations seems to reproduce the nonstationarity characteristics of the 

observed flow wavelet spectra. The PDFs of the simulations also captured the PDF of the 

observed flow implying the capabilities of the three models in reproducing the non-Gaussian 

distribution of the observed flow.  

In the projection mode, several conditional streamflow projections were performed for 

different projection periods using each of the three models.  The HMM model performed better 

for shorter lead times than the wavelet based approaches, so would be more appropriately used 

for projecting 1 to ~10 years. The WKNN model demonstrated its suitability for decadal and 

multi decadal time scales, so would be more useful in water resources planning and management 

at decadal and multi decadal time scales such as the Basin Study. The WARM projections 

showed similar skills for decadal and multi decadal time scales as the WKNN projections, but 

the WKNN projections perform slightly better.  

A novel approach to stochastic time series simulation and determining epochal 

predictability of the time series based on reconstructing the phase space through the nonlinear 

dynamical modeling approach is presented. The multivariate version of a timeseries is 
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reconstructed through embedding to create the phase space. The reconstructed phase space is a 

proxy to the true phase space in which the underlying dynamics unfolds, enabling to take 

advantage of the system predictability via the Local Lyapunov Exponents (LLE) to determine the 

epochs when projections are not credible. Application to the CRB shows a negative global LLE, 

indicating the signal in the flow timeseries is generally predictable, but showed significant 

epochal variations – with some epochs exhibiting high predictability and some low 

predictability. Blind projections of stream flows during high predictable epochs show good skill 

and capture all the distributional, drought and surplus statistics, while the low predictability 

epochs had poor performance on these measures. The time varying predictability of the 

streamflow determined as LLE, provokes the tantalizing idea that water resources management 

should adapt in a flexible manner with regard to the epochs of good and poor predictability.  

Skillful projections based on the new WKNN method and time varying predictabilities 

determined as LLE are demonstrated as additional information integrated with the decision 

making framework developed for the 2012 Colorado River Basin Supply and Demand Study 

which explores the use of options and strategies to address possible future supply-demand 

imbalances. Ensembles of 11-year projections are generated at every year of system simulations; 

these are translated into sequences of annual wet and dry depending on the percentage of 

projections in each ensemble falling above or below some reference threshold.  Threshold based 

projection metrics, together with the predictability information, are integrated with the existing 

decision framework using two approaches. (i) Constrain the decisions based on the projections: 

decisions can be implemented only if the projection metric is dry and if vulnerability is detected 

by the existing decision (“AND” approach); (ii) Complement the decisions: implement options 

and strategies if either the projections are dry or the existing signposts detect vulnerability (“OR” 
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approach). The integrated decision metrics are applied to a single observed hydrologic trace, then 

to 120 plausible futures generated using the WKNN model. The implemented options and 

strategies using the projection information are compared with those generated by the original 

logic of the Basin Study in terms of the cost of implementation and the associated shortages. The 

tradeoff between the cost and shortages for different thresholds of wet/dry illustrates the possible 

effects of integrating the projections with the baseline framework through the two integration 

approaches.   

6.2 Discussion 

For water resources planning decisions to minimize demand-supply imbalances over 

several years to decades, information about the future flow conditions through skillful 

projections could be useful. The WKNN stochastic timeseries model, which simulates and 

projects the streamflow conditioned to the large scale climate indices, was shown to be suitable 

for planning and management of water resources because of its skill. 

Incorporating the skillful decadal streamflow projections on the CRB decision framework 

is the main objective of this research. For this, two integration approaches are developed: (i) 

constraining the baseline decisions through the projections and (ii) complementing the baseline 

decisions by the projections. These two approaches have a potential to condition the supply-

demand imbalances and the severity of vulnerability of the baseline framework so that a more 

appropriate option and strategy can be implemented.  

Projection metrics determined from the skillful decadal projections and the time varying 

predictability of the streamflow utilize the baseline framework with better efficiency. The 

projections inform the baseline framework about the future flow as wet or dry through either the 
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AND approach or through the OR approach to modify the baseline vulnerabilities. The modified 

vulnerabilities are used to identify appropriate options and strategies. The AND and OR 

approaches utilize the capability of the baseline logic to identify a suitable option from the 

projection conditioned supply-demand imbalances and/or vulnerabilities. The baseline logic is 

designed to identify vulnerabilities through signposts based on the current or past conditions of 

the system. Severity of vulnerability and supply-demand imbalances are used as input to identify 

appropriate options and strategies from the active portfolio being used.  

The OR approach allows implementation of options and strategies especially if the 

projections are dry. The OR-dry combination (the most allowing) and the AND-wet combination 

(the most constraining) marks the two extremes of implementing options and strategies and at the 

same time the extremes of shortages and costs.   

Conditioning the baseline options and strategies provides wide options in terms utilizing 

the available resources in a number of ways through the RPT. The applications of these 

integration approaches for a robust water resources planning and management is demonstrated 

by presenting the relative performances of costs and shortages with respect to the baseline costs 

and shortages. Alternatives of options and strategies from the AND approach tend to increase 

shortages relative to the baseline while reducing the cost. The OR alternative on the other hand 

exhibit increasing cost with reduces shortage. For cases where shortages have a highest priority 

over cost, the OR approach with higher RPT is a solution. If the shortages can be tolerated 

because of cost constraints, the AND approach with lower RPT show a solution. However, 

improved performance both in terms of cost and shortage is not demonstrated either through the 

AND or OR approaches. One of the main reasons, as explained in Chapter 5, is related to 

availability of options and strategies that closely address the scale of vulnerability or the supply-
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demand imbalance conditioned by the projections. Similar options and strategies tend to be 

implemented despite the differences in the scale of vulnerability or the supply-demand 

imbalances of the baseline and the projection conditioned imbalances. 

6.3 Future Work 

The WKNN Streamflow time series model utilizes the block bootstrap approach to 

simulate and project the large scale climate indices. The choice of the block size has a significant 

effect on the skill of the timeseries simulations and projections. In this research, a block size of 

about half the period (B) of the signal component of the climate index was used. This block size 

is long enough to represent the periodicity and pattern of the data and it is used to identify other 

blocks of size B from the timeseries with similar patterns and periodicity. This method uses the 

block size to divide the timeseries into n numbers of blocks. For example, a timeseries with L 

years of data will have n=L/B blocks. With increased block size the numbers of blocks decrease, 

resulting in fewer blocks from which to resample, hence less variety of the simulation. 

Developing criteria for the selection of block size is a potential research area.   

Significant changes in flow regime such as the Lees Ferry flow from wet in the early 1900s 

to low flow in ~ 1935, were not captured by the conditional simulation models used in this 

research. Applying a Hidden Markov model on the timeseries to identify the flow states and then 

using the block bootstrap approach could improve the simulation changes observed in the Lees 

Ferry flow. For example, the flow could shift from state 1 to state 2 or 3. With the known state 

transition from the HM model, KNN bootstrap could be applied to identify and resample values 

from the same state from the past. This hybrid approach could benefit in capturing transitions 

observed like in the Lees Ferry flow.  
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This research demonstrated the performance of incorporating the streamflow projections in 

the CRB decision framework through the two integration approaches.  The integration approach 

has a potential to improve the performance of the baseline framework alternatives more through 

consideration of a more flexible implantation of options and strategies. Applying the integration 

of the projections could benefit on decision making frameworks other than the CRB framework. 

The integration logic has a potential to condition the demand-supply imbalances through 

constraining the implementation of options and strategies.  

The decision making approach presented in this research is demonstrated by using constant 

demand throughout the planning period. For this demand level the 75% RPT is computed to be 

the most balancing option. Developing a relationship between demand and streamflow 

magnitude and the associated preferred flow magnitudes can be used as a guide to determine the 

conditions of the system as critical, wet, or dry depending on the demand and supply levels at the 

current time.    
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