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Abstract 

 

Observation protocol scores are commonly used as status measures to support inferences about 

teacher practices. When multiple observations are collected for the same teacher over the course 

of a year, some portion of a teacher’s score on each occasion may be attributable to the rater, 

lesson and time of year of the observation. All three of these are facets that can threaten the 

generalizability of teacher scores, but the role of time is easiest to overlook. A generalizability 

theory framework is used in this study to illustrate the concept of a hidden facet of measurement.  

When there are many temporally spaced observation occasions, it may be possible to support 

inferences about the growth in teaching practices over time as an alternative (or complement) to 

making inferences about status at a single point in time. This study uses longitudinal observation 

scores from the Measures of Effective Teaching project to estimate the reliability of teacher-level 

growth parameters for designs that vary in the number and spacing of observation occasions over 

a two-year span. On the basis of a subsample of teachers scored using the Danielson Framework 

for Teaching, we show that at least 8 observations over two years are needed before it would be 

possible to make distinctions in growth with a reliability coefficient of .38. 
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Introduction 

 

 Teaching is a multifaceted practice, and as such it can be very difficult to evaluate.  

Teachers are expected to establish rapport with their students, well-organized classroom routines, 

and perhaps most importantly, an environment that is conducive to learning.  With respect to 

instruction, teachers are expected to clearly communicate their learning objectives, actively 

engage their students with questioning and discussion techniques, use assessment for both 

formative and summative purposes, and find ways to make topics for instruction culturally 

relevant.  It is usually assumed that teachers who do these sorts of things well are ones who are 

likely to have the most positive impacts on student learning, and that this should be evident in 

growth on students’ standardized assessment scores.  There is, at this point, a well-established 

literature on methods devised to evaluate teachers on the basis of value-added models (Braun, 

Chudowsky, & Koenig, 2010; Chetty Friedman, & Rockoff 2014a; Chetty, Friedman, & 

Rockoff, 2014b; Everson, 2017; Hanushek & Rivkin, 2010; Harris, 2009; McCaffrey, 

Lockwood, Koretz, Louis, & Hamilton, 2003; McCaffrey, Han, & Lockwood, 2009; Rothstein, 

2010; Stacy, Guarino, & Wooldridge, 2018).  Value-added models attempt to quantify the effect 

of a teacher on her students’ academic achievement, but they represent a black box with respect 

to the specific kinds of practices that produce the effect.  In addition, even if one puts aside 

concerns about the validity and reliability of the inferences that value-added estimates can 

support (Bacher-Hicks, Chin, Kane, & Staiger, 2017; Ballou & Springer, 2015; Cohen & 

Goldhaber, 2016; Goldhaber, 2015; Goldhaber & Hansen, 2013; Sanders & Horn, 1998; Sanders, 

Saxton, & Horn, 1997), even in a best-case scenario such an approach can only be used to 

estimate these effects for subject domains in which it is feasible to develop valid assessments of 
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the knowledge, skills and abilities students are expected to develop.  For a majority of subjects 

and grade levels, these assessments are unavailable.  Even when they are, at best these 

assessments only provide information about a sample of what students may or may not have 

learned, and no information at all about so-called “non-cognitive” attributes that a healthy 

classroom environment would be expected to foster (Blazer & Kraft, 2015).   

 For these reasons, any research or evaluation that focuses on differentiating the quality of 

teachers’ classroom practices will invariably require direct observations of these practices, and 

some method for distinguishing features that make some aspects of these practices better than 

others.  A common tool for this purpose is the observation protocol (Bell, Gitomer, McCaffrey, 

Hamre, Pianta & Qi, 2012; Brabeck, 2014; Goe, Bell & Little, 2008; Pianta & Hamre, 2009).  An 

observation protocol is a set of materials given to an individual who has been asked to observe a 

unique lesson being facilitated by a teacher for a specific classroom on a specific occasion during 

the school year.  The mode of the observation may be “live” or on video, in which case there will 

be a lag between the date of the lesson and the date of the observation. The materials in the 

protocol essentially tell the individual what to pay attention to when observing the interaction 

between teacher and students.  It would be possible to use an observation protocol solely as a 

guide to recording qualitative observations.  When the protocol requires the observer to go 

beyond this, to transform these qualitative observations into a set of ordered numeric scores for 

each of some finite set of practices, the protocol becomes the instrument for a measurement 

procedure, and the observer becomes a “rater.”  The scores that result from this procedure are 

typically averaged across multiple practices, lessons, and raters, and then attached to teachers so 

that they can be compared either to one another, or to some criterion-referenced standard.  

Finally, these comparisons may be made for purposes that range from those that have generally 
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low stakes (e.g., research on teacher induction or professional development) to those that have 

generally high stakes (e.g., evaluation in the context of a system of educational accountability).   

 Establishing the validity of inferences based on observation protocol scores requires a 

multifacteted array of evidence, and studies along these lines have become more common in 

recent years.  Bell et al. (2012) provide an excellent framework, premised on Kane’s (2006) 

argument-based approach to test validation, for how such studies can be conceptualized and 

organized.  They do so by sketching out an interpretive argument for what should be in place 

before the scores from an observation protocol could be validly used to make inferences about 

teaching quality. The argument has four hierarchical components that start with the scoring of 

the observations, then move to the generalization of the scores to some unobserved target score, 

the extrapolation of the score to some behavioral domain outside of the observation, and the 

implication of score use for consequential decision-making.  Bell et al. provide examples of 

analyses that could be done to evaluate each of these components in one or more studies to build 

a comprehensive validity argument.  One of the most important of these involves an analysis of 

the generalizability of observation scores (Cohen & Goldhaber, 2016), and it is this aspect within 

the broader context of observation protocol validity that is the focus of the present paper.  

The issue of score generalization is itself a broader way to conceptualize score reliability. 

Unlike the standardized achievement test given to a student, where the principal facet of “error” 

that influences the observed score a student receives comes from the selection of test items, there 

are multiple facets that can influence the observation protocol score for a teacher that are outside 

of the control of the teacher being observed.  Prominent examples of these facets include the 

choice of rater, lesson, lesson segment for an observation, as well as the mode in which 

observations are scored.  A number of studies have used Generalizability Theory (G-Theory; 
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Cronbach, Gleser, Harinder Nanda, & Rajaratnam, 1972; Brennan, 2001) to decompose the 

variance of observation protocol scores into that which is attributable to the true differences 

between teachers of interest, and that which is attributable to the facets most central to the 

protocol scoring design (Bell et al, 2012; Casabianca, McCaffrey, Gitomer, Bell, Hamre, & 

Pianta, 2013; Charalambous, Kyriakides, Tsangaridou & Kyriakides, 2017; Hill, Charalambous, 

& Kraft, 2012; Ho & Kane, 2013; Mashburn, Meyer, Allen, & Pianta, 2013).  However, in all of 

these studies, it can be argued that there is an important “hidden” facet to the measurement 

procedure involved in the scoring of a classroom observation. This facet is the occasion, or more 

specifically, the temporal location of the observation within the academic school year.  As a facet 

of a measurement procedure in a typical G-Theory context, the occasion of observation can 

influence teacher scores by introducing a random source of variance.  A methodological problem 

comes in the estimation of this source of variance since it is usually confounded with variability 

due to differences in the lesson of instruction on different occasions.  When the problem is 

ignored, it may introduce bias into the estimate of a generalizability coefficient.  In addition, the 

occasion of measurement may also introduce bias directly into teacher observation scores.  This 

can happen if teaching practices are, in fact, getting better or worse over time.  If, for example, 

teachers improve over the course of a school year, a teacher would benefit from having more 

observations clustered near the end of the year than at the beginning.   

This latter issue was taken up in a study by Casabianca, Lockwood and McCaffrey 

(2015).  The authors use data collected longitudinally from the CLASS-S observation protocol 

(Pianta, Hamre, Haynes, Mintz, & LaParo, 2007) to develop “augmented” G-Theory models that 

allow them to separately estimate the variance components for facets such as lesson segments, 

raters, classrooms and their interactions, as well as variance components for parameters 
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associated with time trends in these scores.  These time trends are specified separately to capture 

both changes in teaching practices and changes in rater judgments about these practices.  

Casabianca et al. find that while these main effect trends are responsible for a fairly small 

proportion of observed score variance, they can still introduce a significant source of bias.  

Somewhat counterintuitively, teaching practice scores showed evidence of a small linear decline 

over time. In contrast, rater judgments showed evidence of a “burn-in” trend in which raters 

generally provide higher scores at the outset, but then rapidly adjust downward and largely 

stabilize.  Though both trends were significant, the impact of the time trend on raters tended to 

be two to three times as large as the general impact of time on the practices being rated.   

The present paper can be regarded as a companion piece to the work by Casabianca et al. 

with two main purposes.  The first purpose is to explain the concept of a hidden facet using the 

context of a measurement procedure defined within a G-Theory framework.  In our experience 

both researchers and practitioners involved with the design, scoring and interpretation of teacher 

observations are seldom familiar with the idea of a multifaceted measurement procedure, and 

even when this has been introduced, it does not include a discussion about the concept of a 

hidden facet.  The second purpose is to use data from the Measures of Effective Teaching (MET) 

project, which has almost twice as many teacher observations over a two-year span, to specify a 

simpler version of Casabianca et al.’s augmented G-Theory model: a two-level HLM with 

observation scores repeated at the first level, and teachers at the second.  Under certain 

conditions, this model could be used to generate teacher-specific estimates of growth in 

observation scores.  We focus attention on the reliability of these estimates, and on the design 

principles that would need to be in place to maximize reliability. 
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There are five sections that follow.  First, we introduce a conceptual framework premised 

on G-Theory to show why an occasion of measurement, if it is ignored or viewed as 

exchangeable, has the potential to introduce bias into estimates of the reliability of an 

observation protocol score.  Next, instead of ignoring the occasion facet, we suggest an approach 

for modeling it longitudinally as a repeated measure over time.  Within this new context there are 

now two different ways to conceptualize reliability, one that focuses on the reliability of score 

levels, and another that focuses on the reliability of score growth.  In the third section, we 

describe the empirical data that we use to estimate and compare the reliability of score levels and 

score growth from the Danielson Framework for Teaching (FFT; Danielson, 2013).  These data, 

which comes from the aforementioned MET project, are not ideal as a means of disentangling 

the variability in score levels attributable to occasions from the variability attributable to lessons 

and raters at a single point in time.  However, because they include up to 16 observations of 

unique lessons from individual teachers over two academic school years, they provide for a proof 

of concept for the estimation and interpretation of score growth. In the fourth section, we present 

our results from fitting two longitudinal models with data that differ in the way that unique 

occasions of time are conceptualized. We conclude with a discussion of these results and the 

implications of our findings for the use of observation protocols to evaluate growth in teacher 

practices. 

 

The Generalizability of Observation Protocol Scores with Occasion as a Hidden Facet 

 

G-Theory is an extension of Classical Test Theory (Lord & Novick, 1968) in which a 

person’s observed score on a measurement procedure is characterized as a linear model in the 
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general form 𝑌 = 𝑇 + 𝜀 where the term 𝑇 is the “true score,” or alternatively the “universe 

score” one would observe if it were possible to compute an expected value for 𝑌 taken over one 

or more design facets that can vary over unique hypothetical replications of the measurement 

procedure. In Classical Test Theory, focus is placed on a single facet of measurement in a testing 

scenario (the item), and the computation of the reliability coefficient 
𝜎2(𝑇)

𝜎2(𝑇)+𝜎2(𝜀)
. G-Theory 

differs from Classical Test Theory in that it allows for the specification of multiple design facets 

that contribute to measurement error, and this leads to a decomposition of the term 𝜎2(𝜀) with 

respect to these different facets.  Hence while G-Theory is still a linear model, it unpacks the 

undifferentiated term 𝜀 in Classical Test Theory into multiple independent random effects. 

Consider the conventional context of a standardized achievement test taken by a student 

as an example of a measurement procedure. When the test consists entirely of selected responses 

to items that are all objectively scored, the key design facet is the choice and number of items 

that comprise any given testing event. If one can plausibly assume that the items on a test event 

represent a random sample of n items from a defined population of N items, then what we wish 

to estimate is the sampling variance of a student’s test score associated with the random selection 

of n items.  If data has been collected such that it is defensible to regard students and items as 

random samples from their respective populations, one can proceed to estimate a 

Generalizability Coefficient (𝐸𝜌2), which we write below using notation that is more general 

than the classical expression for reliability: 

𝐸𝜌2 = 𝜎2(𝜏)

𝜎2(𝜏)+𝜎2(𝛿)
 .     (1) 

In Equation 1, 𝜎2(𝜏) represents variance in scores across the object of measurement (but now 

described as “universe score variance”), and 𝜎2(𝛿) represents variance in observed scores 
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attributable to measurement error (i.e., variance due to all design facets that interact with the 

object of measurement). The scenario in which a standardized achievement test is taken by 

students can be expressed as the simplest possible measurement procedure and data collection 

design, p x i, where the object of measurement (p) is crossed with a single facet of measurement, 

items (i).  

In contrast to a conventional standardized test, an observation protocol is a multifaceted 

measurement procedure. In addition to the “items” on which ratings are to be provided, other 

possible facets of an observation protocol could include the choice of rater to score the 

observation (r), the lesson being observed (l), the segment of the lesson being observed for 

scoring (s), the occasion on which the observation is being conducted (o), and even the format of 

the observation (i.e., live or recorded on video) (f). To simplify matters in what follows, we will 

assume that the lesson being observed and the segment of the lesson being observed are the same 

thing, that the format facet is fixed for any hypothetical protocol, and that while there are 

multiple items within a protocol, these are no other items that would be admissible as 

replacements from some larger population of items. This means that whenever an observation 

protocol is used to conduct observations for some sample of teachers (p), the same N items are 

always used, the observation always lasts for the same amount of time at the same point in the 

lesson, and that all observations are either conducted live or viewed in a recorded format. This 

leaves us with raters, lessons, and occasions as facets for which it would be possible to 

conceptualize populations of raters, lessons, and occasions that would all constitute 

exchangeable conditions for a hypothetical replication of the measurement procedure. In a G-

Theory framework, the raters (r), lessons (l), and occasions (o) are all regarded as random 

samples from populations R, L, and O.  It is because of the intent to generalize scores across the 
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combination of these different facet populations that a G-Theorist would refer to 𝜎2(𝜏) as 

“universe” score variance instead of just “true” score variance, 𝜎2(𝑇).  

As an example of an ideal design of a generalizability study, administrative staff from a 

school district might meet over the summer to establish an admissible population of teachers that 

would be eligible to be observed teaching a class during the coming school year. The district 

would also need to establish admissible populations of raters, lessons, and occasions eligible for 

use in any given observation. In the resulting study, teachers might be stratified by school, grade 

level, and subject area specialization. Random samples would be drawn, first by school, and then 

by grade level and subject matter specialization within school.  This might result in, say, six 

samples of 20 teachers in elementary, middle, and high school with subject area specializations 

in math or English Language Arts (for a total of 120 unique teachers). Teachers in each of these 

six samples would be videotaped teaching two different lessons on the same day on three 

different occasions during the school year. These observations would each be scored by three 

different raters. In this design, unique lessons are nested within occasions, unique occasions are 

nested within teacher, and both facets of measurement (lessons, occasions) are crossed with 

raters and the fixed items on the protocol for a l:o:p x r x I  design. This idealized design is given 

a visual representation with the Venn Diagram in Figure 1. The circle for the item facet is 

denoted with a dashed line to indicate that it is a fixed facet. Analysis of variance techniques 

could be used to partition the total observed variance across teachers into true differences among 

teachers and different sources of measurement error. This could be used to estimate the 

Generalizability Coefficient shown in Equation 2.  

 

Insert Figure 1 about here 
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𝐸𝜌2 =

𝜎2(𝑝)+𝜎2(𝑝𝑖)/𝑁𝑖

(𝜎2(𝑝)+𝜎2(𝑝𝑖)

𝑁𝑖
)+(

𝜎2(𝑝𝑟)

𝑛𝑟
+𝜎2(𝑜:𝑝)

𝑛𝑜
+𝜎2(𝑖𝑜:𝑝)

𝑁𝑖𝑛𝑜
+𝜎2(𝑙:𝑜:𝑝)

𝑛𝑙𝑛𝑜
+𝜎2(𝑝𝑟𝑖)

𝑁𝑖𝑛𝑟
+𝜎2(𝑖𝑙:𝑜:𝑝)

𝑁𝑖𝑛𝑙𝑛
𝑜

+𝜎2(𝑖𝑟𝑙:𝑜:𝑝,𝑒)

𝑁𝑖𝑛𝑟𝑛𝑙𝑛𝑜
+𝜎2(𝑟𝑖:𝑜𝑝)

𝑁𝑖𝑛𝑟𝑛𝑜
+𝜎2(𝑟:𝑜𝑝)

𝑛𝑟𝑛𝑜
+𝜎2(𝑟𝑙𝑜:𝑝)

𝑛𝑟𝑛𝑙𝑛𝑜
)

  

(2) 

 

Comparing the expression in Equation 2 to the more general expression in Equation 1, note that 

𝜎2(𝜏) = 𝜎2(𝑝) + 𝜎2(𝑝𝑖)/𝑁𝑖, which indicates that universe score variance is driven not just by 

true variance among teachers, but by the interaction of teachers with the particular set of items 

that raters use to score teachers according to guidelines of the observation protocol.  The latter is 

not a source of measurement error because it is fixed, which is why 𝜎2(𝑝𝑖) is divided by Ni 

(representing the population size) rather than ni (representing the sample size). Continuing with a 

comparison to Equation 1, note that the term 𝜎2(𝛿) has been decomposed into 10 different 

source of measurement error through the interactions of lessons, occasions, items and raters with 

the object of measurement, teachers. Each of these can be seen visually as a specific intersection 

between the four circles shown in Figure 1. With this equation and estimated variance 

components from the study in hand, one could settle upon an optimal design for the observation 

protocol with respect to the number of raters, lessons and occasions one would need to observe 

in order to minimize these different sources of measurement error and thereby maximize the 

generalizability of the observation protocol scores.  

In practice, outside of the work by Casabianca et al. (2015), there has been no study of 

which we are aware that has attempted to disentangle the variance in observation protocol scores 

attributable to lessons from the variance uniquely attributable to occasions. Instead, it is more 
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common to see a l:p x r x I design with lessons nested in teachers crossed by raters and fixed 

items. For example, using unique data from a supplementary study conducted for the MET 

project, Ho & Kane (2013) illustrate three scenarios consisting of different combinations of 

lessons and raters (with the time spent doing the observation held constant).  In a design scenario 

with two lessons, each observed and scored by a different rater, the predicted generalizability 

coefficient would .59.  In a design with four lessons with three unique raters, the coefficient 

would increase to .69. In these designs, occasions are fully confounded with lessons and vice-

versa. As a result, even the relatively low generalizability coefficients estimated by Ho & Kane 

may well be overestimated as a result of bias caused by “hidden” occasion facets (Brennan, 

2001). These facets exist conceptually as a potential source of measurement error, even if they 

have not been estimated empirically. That is, in reality both a lesson facet and an occasion facet 

are nested within teachers, but only the variance associated with their interaction can be 

estimated.  

This concept is illustrated by the Venn Diagram in Figure 2.  The four distinct, shaded 

areas within Figure 2 represent specific sources of observed score variance that cannot be 

distinguished from universe score variance. Among these shaded areas, going clockwise from 

left to right, 𝑜: 𝑝 represents variance in a teacher’s score due to choice of occasion (e.g., some 

teachers will look better or worse on a Monday relative to a Wednesday, or on cold day relative 

to a warm day, etc.); 𝑟 𝑥 𝑜: 𝑝 represents variance due to the specific rater or raters observing a 

given teacher on a given occasion (e.g., some raters may be harsher or more generous at certain 

times of the school year); 𝑟 𝑥 𝐼 𝑥 𝑜: 𝑝 represents variance due to the specific rater or raters 

observing a given teacher on a given occasion with this specific set of protocol items (e.g., the 

severity of raters can depend on both the mixture of occasion and the specific things they are 
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asked to observe about teachers on that occasion); and 𝐼 𝑥 𝑜: 𝑝 represents variance due to an 

occasion that is specific to the fixed set of items on the protocol (e.g., student-teacher 

interactions, a common element on observation protocol scores, might be different during times 

such as the week before a major holiday break).  

 

Insert Figure 2 about here 

 

Under an l:p x r x I design, the Generalizability Coefficient takes on the specific form in 

Equation 3 

𝐸𝜌2 =

𝜎2(𝑝)+𝜎2(𝑝𝑖)

𝑁𝑖
+{

𝜎2(𝑜:𝑝)

𝑛𝑜
+𝜎2(𝑖𝑜:𝑝)

𝑁𝑖𝑛𝑜
}

(𝜎2(𝑝)+𝜎2(𝑝𝑖)

𝑁𝑖
+{

𝜎2(𝑜:𝑝)

𝑛𝑜
+𝜎2(𝑖𝑜:𝑝)

𝑁𝑖𝑛𝑜
})+({

𝜎2(𝑝𝑟)+𝜎2(𝑟:𝑜𝑝)

𝑛𝑟
}+{

𝜎2(𝑝𝑟𝑖)+𝜎2(𝑟𝑖:𝑜𝑝)

𝑁𝑖𝑛𝑟
}+𝜎2(𝑖𝑙:𝑜:𝑝)

𝑁𝑖𝑛𝑙
+𝜎2(𝑙:𝑜:𝑝)

𝑛𝑙
+𝜎2(𝑟𝑙𝑜:𝑝)

𝑛𝑟𝑛𝑙
+𝜎2(𝑖𝑟𝑙:𝑜:𝑝,𝑒)

𝑁𝑖𝑛𝑟𝑛𝑙
)

 

(3) 

 

A first key distinction between Equations 2 and 3 is the shift in the location of the 

variance components 
𝜎2(𝑜:𝑝)

𝑛𝑜
and 

𝜎2(𝑖𝑜:𝑝)

𝑁𝑖𝑛𝑜
 (shown in brackets in both the numerator and within the 

first term in parentheses in the denominator) from representing components that contribute to 

specific sources of measurement error (i.e.,  𝜎2(𝛿) in Equation 1) to representing sources that 

now contribute to universe score variance (i.e., 𝜎2(𝜏) in Equation 1).  The intuition here is that 

there is variability in the different scores given to teachers each time a new lesson is observed 

that is not due to the lesson, but due to the occasion on which the lesson is being observed.  If 

some teachers happen, by chance, to be more “on” or “off” on some days, weeks or months of 
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the year irrespective of the lesson they happen to be teaching, this will result in variability in 

scores that will be mistakenly attributed to true differences among teachers.   

A second key distinction between Equations 2 and 3 is that the terms 
𝜎2(𝑟:𝑜𝑝)

𝑛𝑟𝑛𝑜
and

𝜎2(𝑟𝑖:𝑜𝑝)

𝑁𝑖𝑛𝑟𝑛𝑜
 

are now confounded within the respective sources of error variance, 
𝜎2(𝑝𝑟)

𝑛𝑟
 and 

𝜎2(𝑝𝑟𝑖)

𝑁𝑖𝑛𝑟
.  In 

Equation 2, the combined sources of error variance were {
𝜎2(𝑝𝑟)

𝑛𝑟
+ 𝜎2(𝑟:𝑜𝑝)

𝑛𝑟𝑛𝑜
} and 

{
𝜎2(𝑝𝑟𝑖)

𝑁𝑖𝑛𝑟
 +  

𝜎2(𝑟𝑖:𝑜𝑝)

𝑁𝑖𝑛𝑟𝑛𝑜
}. Compare these two terms from Equation 2 to the compatible terms in 

brackets within the set of parentheses of the Equation 3 denominator: 

{
𝜎2(𝑝𝑟)+𝜎2(𝑟:𝑜𝑝)

𝑛𝑟
} and {

𝜎2(𝑝𝑟𝑖)+𝜎2(𝑟𝑖:𝑜𝑝)

𝑁𝑖𝑛𝑟
}.  In both Equations 2 and 3, 𝜎2(𝑟: 𝑜𝑝) and 𝜎2(𝑟𝑖: 𝑜𝑝) 

represent sources contributing to error variance that interacts with the rater facet (some raters 

tend to be more severe or lenient with the teachers they observe on certain occasions, irrespective 

of the lesson they are observing).  But because they are hidden facets in Equation 3, error 

variance can only be reduced by dividing, respectively, by the 𝑛𝑟 (the total number of raters), 

and 𝑁𝑖𝑛𝑟 (the product of the fixed number of items and total number of raters) as opposed to 

dividing a portion of the variance by 𝑛𝑜𝑛𝑟 and 𝑁𝑖𝑛𝑟𝑛𝑜 respectively. 

 Unless the increase to true teacher variance by the addition of  
𝜎2(𝑜:𝑝)

𝑛𝑜
and 

𝜎2(𝑖𝑜:𝑝)

𝑁𝑖𝑛𝑜
 to the 

numerator when going from Equation 2 to 3 is perfectly offset by the inflation in error variance 

caused by replacing {
𝜎2(𝑝𝑟)

𝑛𝑟
+

𝜎2(𝑟:𝑜𝑝)

𝑛𝑟𝑛𝑜
} and {

𝜎2(𝑝𝑟𝑖)

𝑁𝑖𝑛𝑟
 +  

𝜎2(𝑟𝑖:𝑜𝑝)

𝑁𝑖𝑛𝑟𝑛𝑜
} with 

{
𝜎2(𝑝𝑟)+𝜎2(𝑟:𝑜𝑝)

𝑛𝑟
} and {

𝜎2(𝑝𝑟𝑖)+𝜎2(𝑟𝑖:𝑜𝑝)

𝑁𝑖𝑛𝑟
} in the denominator, the presence of the hidden occasion 

facet is likely to bias estimates of reliability based on Equation 3.  If the relative increase to the 

numerator is larger than the relative increase to the denominator, then estimates of reliability will 



 

 

16 

be biased upwards.  Now, from a theoretical point of view, it may seem hard to imagine that the 

terms {
𝜎2(𝑜:𝑝)

𝑛𝑜
+

𝜎2(𝑖𝑜:𝑝)

𝑁𝑖𝑛𝑜
} will be especially large, in which case the bias to 𝐸𝜌2 may be 

negligible, but this is also an empirical issue that remains mostly unexplored. 

The ideal way to gain empirical insights into this issue would be to design a study in 

which the variance attributable to occasions and lessons can be disentangled. As in the 

hypothetical example at the outset of this section, such a study would require, at a minimum, 

samples of teachers able to teach multiple distinct lessons within and across multiple occasions. 

However, it is also possible that at least some of the variability in scores on a given occasion is 

something that is not random but instead caused by true differences in the growth in teaching 

practices over time.  If this is the case, then the application of a conventional G-Theory model 

for variance decomposition would fail to properly parameterize this trend.  The approach taken 

by Casabianca et al (2015) represents something of a compromise.  On the one hand, their data 

collection design does not allow for the estimation of all unique variance components associated 

with an occasion facet. On the other hand, through the specification of an augmented G-Theory 

model, they are able to at least distinguish, at any given point in time, between true variability 

among teachers and the variability induced by a main effect for growth in teaching practices.   

An interesting idea that the augmented G-Theory model approach raises is the possibility 

of focusing attention not just on the status of teacher scores at a single point in time (or averaged 

across multiple points in time), but instead making inferences about teacher-specific growth 

trends over time.  This was not attempted in the Casabianca et al. study in part because no 

teacher had more than a total of four observations available.  In the present study, we take 

advantage of the availability of data for teachers who typically have seven to eight observations 

over a two year span.  Though our data does not include a design with multiple raters per 
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observation, (making it impossible for us to apply the same augmented G-Theory model as in the 

Casabianca et al. study) we show how issues of observation protocol score generalizability can 

still be examined in the context of a simple instantiation of an augmented linear model, one that 

will be both familiar to many and easy to implement: a two-level HLM. 

 

Methods 

 

Let 𝑌𝑡𝑝 represent the observation protocol score of teacher 𝑝 on time occasion 𝑡 after 

scores have been averaged across the unique items (or dimensions) of the protocol.  The scores 

could be based on judgments from a single rater on that occasion, or from multiple raters1.  If 

they are based on multiple ratings, these would also be averaged.  In other words, the score 𝑌𝑡𝑝 is 

an average over two facets of the measurement procedure, items and raters. One could choose to 

model and decompose 𝑌𝑡𝑝 as a function of the time variable X using the simple HLM below. 

𝑌𝑡𝑝 = 𝜋0𝑝 + 𝜋1𝑝(𝑋𝑡𝑝) + 𝜀𝑡𝑝     (4a) 

𝜋0𝑝 = 𝛽00 + 𝑟0𝑝      (4b) 

𝜋1𝑝 = 𝛽10 + 𝑟1𝑝      (4c) 

where 𝜀𝑡𝑝~𝑁(0, 𝜎𝜀
2), 𝑟0𝑝~𝑁(0, 𝜎0

2), and 𝑟1𝑝~𝑁(0, 𝜎1
2). It is assumed here that 𝜀𝑡𝑝 is 

independent of  𝑟0𝑝 and 𝑟1𝑝, but that 𝑟0𝑝 and 𝑟1𝑝 come from a bivariate normal distribution with 

an unknown covariance, 𝜎01. When expressed as a single equation by substituting Equations 4b 

                                                 

 

1 A complication arises when the temporal occasion of the rating is distinct from the temporal occasion of the lesson 

being observed. In the data that we ultimately use from the MET project this was in fact the case, but only the time 

of the actual lesson was available to us, so we are essentially ignoring this complication.  See Casabianca et al. 

(2015) for details of an approach when both time of lesson and time of rating are available. 
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and 4c into 4a, this model can be viewed as an instance of the augmented G-Theory model 

described by Casabianca et al. (2015, p. 321, Eqn 2).  Here, the total variance in observation 

scores across teachers and occasions, 𝜎2(𝑌𝑡𝑝), is being decomposed into the error variance 

across teachers within any given occasion, 𝜎𝜀
2, the universe score variance within an occasion, 

𝜎0
2, and the true variance in the growth of scores across occasions, 𝜎1

2.   

 There are two teacher-level parameters in this model. The first parameter is 𝜋0𝑝, which 

represents the observation score for a teacher when the time variable is 0. This will typically be 

designated as either the first observation score in a sequence or some other designated point in 

the time interval under consideration. The second parameter is 𝜋1𝑝, which represents the slope of 

a teacher-specific score trajectory. For both of these parameters it is possible to estimate 

“reliability” coefficients2  

𝜌(𝜋0𝑝) =
𝜎0

2

𝜎0
2+𝜎𝜀

2 , and    (5) 

𝜌(𝜋1𝑝) =
𝜎1

2

𝜎1
2+𝜎𝜀

2/𝑆𝑆𝑇𝑝
 ,   (6) 

where 𝑆𝑆𝑇𝑝  stands for “sum of squared time” and is computed as ∑ (𝑋𝑡𝑝 − �̅�𝑝)
2𝑇

𝑡=1 .   

The reliability term 𝜌(𝜋0𝑝) in Equation 5 is identical to the basic generalizability 

coefficient introduced in Equation 1, with 𝜎0
2 = 𝜎2(𝜏) and 𝜎𝜀

2= 𝜎2(𝛿). It provides an indication 

                                                 

 

2 We put reliability in quotes because, on the one hand, they are referred to in this way by Raudenbush & Bryk 

(2002) and these terms can be found as output when using HLM software.  However, the term in Equation 5, 

𝜌(𝜋0𝑝), is better understood a generalizability coefficient in keeping with the G-Theory framework previously 

introduced. The sense in which 𝜌(𝜋1𝑝) is a reliability coefficient in a classical sense of the term can also be called 

into question in the sense that is does not derive from the assumptions underlying Equation 1. The terminology is 

tricky and there is no one solution.  In what follows we refer to estimates of both 𝜌(𝜋0𝑝) and 𝜌(𝜋1𝑝) as reliability 

coefficients without the quotes, but in each case they simply represent the proportion of the variance in observed 

score levels and score growth that can be attributed to real differences between teachers.  
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of the degree to which the scores on an observation protocol are generalizable over the particular 

sample of raters the single lesson that was used in computing the average score Y for subject p on 

occasion t.  It is instructive to contrast the estimate for 𝜌(𝜋0𝑝) that would result from a combined 

model based on equations 4a-4c  

𝑌𝑡𝑝 = 𝛽00 + 𝛽10𝑋𝑡𝑝 + 𝛽10𝑟1𝑝 + 𝑟0𝑝 + 𝜀𝑡𝑝 (7) 

to an unconditional model of repeated measurements model of the form 

𝑌𝑡𝑝 = 𝛽00 + 𝑟0𝑝 + 𝜀𝑡𝑝.   (8) 

The difference between the combined model shown in equations 7 and 8 is the inclusion or 

exclusion of a linear time trend (𝛽10𝑋𝑡𝑝) and error component (𝑟1𝑝).  If both 𝛽10 and 𝜎1
2 (the 

variance component associated with 𝑟1𝑝) are significant, their exclusion will have an effect on 

𝜌(𝜋0𝑝) similar to that of the hidden occasion facet described in the previous section.  So, 

although the HLM shown in equation 4a-4c and equation 7 is a fairly simple example of an 

augmented G-Theory model, and does not provide for the same design insights one could glean 

from a fully augmented G-Theory model as in Casabianca et al (2015), it does represent a 

potential improvement over the estimate of reliability one would generate if the only observable 

facets were lessons and occasions, and the two were confounded. 

In contrast to the reliability term 𝜌(𝜋0𝑝), although the term 𝜌(𝜋1𝑝) in Equation 6 is also 

similar in structure to the Generalizability Coefficient in Equation 1, the underlying parameter in 

question is now growth in scores over time rather than level of scores at one point in time. The 

reliability of teacher growth estimates will be a function of three terms, the true variability in 

teacher growth, 𝜎1
2, the extent of measurement error in the scoring of teachers on each occasion 

𝜎2(𝛿), and both the number and the spacing of distinct occasions when teachers are observed, 

summarized by 𝑆𝑆𝑇𝑝 . If all teachers are observed for the same number of occasions, with the 
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same spacing between occasions, then 𝑆𝑆𝑇𝑝  is a constant. When the number of occasions and 

spacing can both vary there is no single reliability coefficient for growth; rather, there is a unique 

estimate of reliability for each unique observation pattern, where each observation pattern can be 

conceptualized as a unique measurement design.  

Gain scores based on the computation of score differences across two equally spaced 

time occasions, 𝑌1 and 𝑌2, represent a special case of the HLM characterized by equation 7. 

When only two time points are observed for each teacher, then 𝑆𝑆𝑇 = 0.5, and 𝜌(𝜋1𝑝) =
𝜎1

2

𝜎1
2+2𝜎𝜀

2. 

Further intuition behind the factors that influence the resulting reliability of the slope parameter 

(note that with two time points the slope is just the difference between time points) can be 

appreciated by comparing Equation 6 to the equivalent3 classical expression for the reliability of 

a difference score (Lord, 1956; Rogosa, Brandt, & Zimowski, 1982; Willett, 1989)  

𝜌(𝜋1𝑝) = 𝜌(D) =
𝜎𝑌1

2 𝜌(𝑌1)+𝜎𝑌2
2 𝜌(𝑌2)−2𝜎𝑌1𝜎𝑌2𝜌(𝑌1𝑌2)

𝜎𝑌1
2 +𝜎𝑌2

2 −2𝜎𝑌1𝜎𝑌2𝜌(𝑌1𝑌2)
       (9) 

where 

• 𝜌(𝐷) is the reliability of a difference or gain score, 

• 𝜎𝑌1

2 , 𝜎𝑌2

2  are the variances of the observed scores at time 1 and time 2 respectively, 

• 𝜌(𝑌1𝑌2) is the correlation between the observed time 1 and time 2 scores, and 

• 𝜌(𝑌1), 𝜌(𝑌2) are the reliabilities of the time 1 and time 2 scores. 

Inspection of equation 9 indicates that the reliability of a gain score depends primarily upon two 

things, the reliability of scores at each time point, and the correlation of these scores across the 

                                                 

 

3 To verify this equivalence, note the assumptions under a linear error model that 𝑌1 = 𝑡1 + 𝜖1 , 𝑌2 = 𝑡2 + 𝜖2,  𝜖1 

and 𝜖2 are independent, 𝜎2(𝑌) = 𝜎2(𝑡) + 𝜎2(𝜖) and 𝑐𝑜𝑣(𝑌1, 𝑌2) = 𝑐𝑜𝑣(𝑡1, 𝑡2).  It follows that in equation 6,  𝜎1
2 =

𝑐𝑜𝑣(𝑡2 − 𝑡1) = 𝜎𝑡1
2 + 𝜎𝑡2

2 − 2𝑐𝑜𝑣(𝑡1, 𝑡2). 
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two time points. The reliability of the gain score is inversely related to the correlation of the 

scores across occasions; as the correlation increases from -1 to 1, the reliability decreases.  On 

the other hand, all else equal, the reliability of the gain score is always enhanced when the two 

scores used to compute a gain score are themselves reliable. 

 

Choosing an Admissible Unit of Time 

 

From the discussion in the preceding pages, it follows that an important decision point in 

any empirical investigation into the reliability of both the status and growth of teacher scores 

from an observation protocol is to come to some decision about the smallest admissible unit for 

temporal occasion (t). In the present study, we consider two different cases, one in which the 

smallest unit for t represents a week (i.e., small grain size), and another where the smallest unit 

for t represents a year (i.e., large grain size). When the smallest admissible unit of time is a year, 

any observations within that year will be averaged.  This means that only two observations are 

possible, so only a gain score can be modeled. This choice brings to light some interesting 

tradeoffs when considered relative to Equations 9.   

• If unique occasions are defined with respect to a small grain size, one has the opportunity 

to maximize the size of 𝑆𝑆𝑇𝑝 , but this will typically come at the expense of greater 

measurement error on each occasion because the score on each occasion will typically 

come from a single lesson (i.e., scores are not being averaged over multiple lessons).  

• If unique occasions are defined with respect to a large grain size for the time unit, one is 

treating different lessons observed within that unit of time as exchangeable observations 

that can be averaged. This averaging will decrease measurement error due to the choice 
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of lesson, and this results in scores per aggregated occasion that will be more 

generalizable. However, some portion of this increased generalizability may be an 

illusion because now occasions within each year represent a hidden facet.  Also, there 

will be fewer occasions available to model growth over time. 

It is therefore somewhat of an open empirical question whether and when it is better to estimate 

teacher growth across many occasions with less precise measures, or across few occasions with 

more precise (though possibly biased) measures .   

 

Data 

 

The data used in this study comes from the MET project (Bill and Melinda Gates 

Foundation, 2013). The full study includes information on 2,741 fourth- through ninth-grade 

volunteer teachers at over 300 schools in six US school districts: Charlotte-Mecklenburg, North 

Carolina; Dallas, Texas; Denver, Colorado; Hillsborough County, Florida; New York City, New 

York; and Memphis, Tennessee (Cantrell & Kane, 2013).  Data collection occurred during the 

2009-2010 and 2010-2011 school years. The MET project design required teachers to submit 

four classroom videos per subject between February and June of 2010 for Year 1, and then 

another four more videos per subject between October 2010 and June 2011 for Year 2. In total 

then, the duration for which classroom observations were available spanned about 16 months 

over two calendar years, or a little less than one and half academic school years. Excluding the 

three summer months of 2010, total duration over which observations were collected spanned 50 

weeks. Project researchers encouraged teachers to spread the video recordings over time within 

each year to ensure that the recordings were more representative of instruction than a series of 
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closely timed lessons. However, there were no constraints set on the amount of time required 

between each video occasion (Bill and Melinda Gates Foundation, 2013). Each of these videos 

received scores from multiple observation protocols, but we focus our attention on just one of 

these, the Danielson Framework for Teaching.  

 

The Danielson Framework for Teaching 

 

Observation protocols can be broadly divided into two categories: those that are subject-

specific and those that are subject-neutral. Some examples of subject-specific protocols include 

the Mathematical Quality of Instruction (MQI; Hill et al., 2008), the Reformed Teaching 

Observation Protocol (RTOP; Piburn & Sawada, 2000) for mathematics and science, the UTeach 

Observation Protocol for math and science (UTOP; Marder et al., 2012), the Protocol for 

Language Arts Teaching Observation (PLATO; Grossman, Loeb, Cohen, & Wyckoff, 2013), and 

the TEX-IN3 for literacy (Hoffman, Sailors, Duffy, & Beretvas, 2004).  These protocols were 

designed to capture information about content-specific elements of classroom practices such as 

the richness of the content as present in the lesson or the teacher’s pedagogical knowledge 

directly related to the content area. Other elements include the extent to which the teacher values 

and prioritizes a broad spectrum of material within the content area. For example, the extent to 

which the teacher includes multiple types of text in a language arts class as opposed to favoring 

only narrative text or the way a math teacher presents a concept in varied contexts as opposed to 

only one presentation of rote procedure.  

Conversely, protocols which are subject-neutral focus on more general elements of 

teaching. Examples of these include the Charlotte Danielson Framework for Teaching (FFT; 
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Danielson, 2013), the Classroom Assessment Scoring System (CLASS; Pianta, La Paro, & 

Hamre, 2006), the Sheltered Instruction Observation Protocol (SIOP, Echevarria, Vogt, & Short, 

2008), and the Marzano Observation Protocol (Marzano, 2007). Each of these protocols are 

designed to be used across subjects and include scoring elements related to teacher practices such 

as clear communication between students and teachers, positive classroom environment, and 

meaningful assessment and feedback practices.  

We use the FFT in the current study for two reasons. First, a subject-neutral protocol 

maximizes the number of potential data points for any given teacher in the MET data. Over the 

course of the MET project, teachers provided up to eight videos for each subject taught. 

Elementary teachers, who instructed the same group of students in multiple subjects, had the 

opportunity to provide up to 16 videos over the course of the two-year study: a maximum of 

eight in English Language Arts (ELA) and a maximum of eight in math. Secondary teachers 

provided a maximum of eight videos in one subject or the other. Since scores on the FFT are 

agnostic to course content, all scores, regardless of content, are available for building 

longitudinal growth trajectories. Second, there is one version of the FFT used across grades 4-9 

while the CLASS has two forms, one for grades 4-5 and another for grades 6-9. Using the FFT 

allows for inclusion of all grades in the study.  Although we use the FFT to explore the use of 

observation scores over time, the methodological issues we explore here apply to the use of 

scores from any observation protocol. 

The FFT as used in the MET project included eight dimensions divided into two 

domains. Each video in the project received a score on every dimension, and each dimension has 

its own scoring rubric with exemplars of the teacher-student interactions that would lead to a 
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score in one of four ordered categories4. The eight dimensions that are scored by raters appear in 

Table 1. Figure 3 illustrates the distribution of scores for each of the eight dimensions on the FFT 

across all occasions for the data used in this study. 

 

Insert Table 1 and Figure 3 here 

 

As evident in Figure 3, most teachers received scores of two or three for all of the 

dimensions of the FFT. Another way of considering these scores is as the average dimension-

level score per occasion. In other words, for each teacher by occasion, we calculated the average 

of all eight dimension-specific scores. The mean average dimension-level scores across all 

teachers and occasions is 2.5 and the standard deviation (SD) is 0.47. In the analysis that follows 

this section, our we use the average FFT score across all eight dimensions as our outcome of 

interest5. 

When scoring the FFT, raters viewed the first fifteen minutes of each video and then 

skipped to viewing minutes 25 through 35. After viewing both segments, raters gave one score 

per item for the video overall. Raters were randomly assigned to teachers within randomized 

blocks of classrooms within schools and only scored a single video for a given teacher in each 

year. That is, the most a single rater scored a single teacher was twice over both years of the 

study, so in each year, unique teacher observations are scored by multiple raters. However, no 

procedures ensured that a rater scored a specific teacher twice in the study over the two year 

span. Furthermore, only about 5% of videos received scores from two raters. For each video that 

                                                 

 

4 For details on the scoring criteria used in these rubrics, see Danielson, 2011. 
5 Previous studies (e.g., Hill et al., 2012; Praetorius et al, 2014) have found differences in estimates of reliability by 

different domains and dimensions of observation protocols, but this is not an issue we examine here. 
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was double-scored, one randomly selected set of scores appears in the final data set for 

estimating growth trajectories in this project. All the rest of the videos only received scores from 

one rater per protocol. Because nearly every score assigned to a given teacher came from a 

unique rater and only a very small number of the videos received scores from two raters, we 

could not decompose and estimate rater facets of variance.  This represents a significant 

limitation on the empirical portion of this study since we know from past research that raters can 

differ considerably in their scoring practices.  On the other hand, each teacher in our study is in 

fact cumulatively scored by multiple raters, and these raters were allocated to teachers at random.  

As a result, any time FFT scores are averaged across occasions (i.e., when we use year as the 

smallest admissible unit for time), we are implicitly averaging across multiple raters as well.  

 

Teacher Demographics 

 

Of the original 2,741 teachers involved in the project at large, 1,569 received FFT scores, 

but only about 953 teachers had dates associated with their videos. In addition, approximately 

half of these 953 teachers did not have values for a variable indicating their years of experience. 

This is because two of the districts participating in the MET study did not provide this 

information (Kane & Staiger, 2012). We drop cases in which there is no information regarding a 

teacher’s years of experience6. As a result, the final dataset used to conduct the analysis includes 

458 teachers who provide 3372 unique videos.  

                                                 

 

6 The data used in this study come from a prior project in which this sample restriction was imposed. 
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The information in Table 2 provides a summary of the demographic information 

available for the teachers used in the study compared to those without data about their years of 

experience as well as those without dates associated with their videos. These numbers suggest 

that the group of teachers in this study are more likely to be male and white and less likely to 

have a master’s degree or higher than the other teachers eliminated from the sample due to 

missing information. Further, about half of the teachers without information about experience 

and 40% of those without dates attached to their videos taught elementary school, while only 

about one quarter of the teachers in the current study taught elementary school. This means that 

most teachers in the study would have been required to submit only four videos per year. Thus, 

although it was possible to submit 16 videos per teacher, the average number of videos available 

per teacher is 8 due to the grade-level make-up of our teacher sample.  

 

Insert Table 2 about here 

 

Timing of Observation Protocols 

 

Since teachers in the MET project had autonomy in choosing the number and spacing of 

their video recordings, each teacher represents a different potential observation design, which has 

implications for the reliability of growth estimates. The variability in the number and spacing of 

occasions, represented by differences in the variable 𝑆𝑆𝑇𝑝, distinguishes each unique design. We 

use 𝑋𝑡𝑝 as our time variable, defined according to two different admissible units, week and year. 

When year is used, 𝑋𝑡𝑝 takes on one of two values, 0 for year 1, and 1 for year 2. The FFT score 

𝑌𝑡𝑝 associated with a year is the average of all FFT scores collected on unique occasions within 
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the year.  When week is used as the smallest admissible time unit, a value of 0 indicates the first 

week of the MET project, and values can range from 0 to 50. Weeks are numbered across both 

years of the project for which data was collected, excluding the summer in between.  

The frequency distribution of occasions across our teacher sample is displayed in Figure 

4. For most teachers, 7 or 8 observations were available (70% of the sample), and at least 4 or 

more observations were available for 91% of the sample.  The small number of teachers for 

whom only a single observation is available contribute no information toward the estimation of a 

growth parameter and associated variance component (i.e., see equation 4c), but they do 

contribute to the estimation of the variance component associated with score levels (i.e., see 

equation 4b).    

 

Insert Figure 4 about here 

 

Results 

 

HLM Parameter Estimates 

 

Table 3 presents the results from two different approaches to defining an admissible unit 

of time.  When the smallest admissible unit is a week, we call the HLM a “Growth Trajectory 

Model;” when it is a year, we call it a “Gain Score Model.”  Both models include an estimate for 

an intercept that indicates the mean FFT score in the first year of the MET project across all 

teachers (𝛽00). This estimate, which is about the same and statistically significant for both 

models, indicates that average FFT score for the first year in the Gain Score Model and for the 
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first week in the Growth Trajectory Model was about 2.5. Table 3 also provides fixed effect 

estimates for the slope (𝛽10), which represents the mean change in FFT score for the Gain Score 

Model, and the mean rate of growth per week for the Growth Trajectory Model. Again, the 

values in both models are similar at about 0.  Unlike the downward trend found for CLASS 

scores (Casabianca et al., 2015) on average, our subsample of MET project teachers shows no 

evidence of an overall trend in FFT scores, irrespective of the grain-size for an admissible unit of 

time.  

The results indicate that growth trends vary significantly among teachers, and here the 

results do differ by modeling approach.  Examination of the variance component estimates 

provided in Table 3 indicate statistically significant variation in mean FFT scores at the 

beginning of the MET project for both models, but variance in growth is only statistically 

significant in the Growth Trajectory Model, and for this model the negative correlation between 

base score and growth (−.32) is almost three times as that estimated for the Gain Score Model 

(−.13).   

Variability in the distribution of growth across teachers by model can be further 

interpreted relative to the SD of 𝜎1.  This value is .10 for the Gain Score Model and .006 for the 

Growth Trajectory Model. Under the assumption that teacher-specific growth parameters are 

normally distributed, 95% confidence intervals around these fixed effects for each model would 

be about [−.19 to .21] and [−.012 to .012] respectively. The smaller magnitude for the Growth 

Trajectory Model needs to be interpreted relative to the time span under consideration, which can 

be up to 50 weeks.  Hence the boundaries for growth under the Trajectory Model would be [50 ∗

−.012 =  −.60] to [50 ∗ .012 =  .60] which is quite a bit larger than the interval for the Gain 
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Score Model.  Next, we turn to a comparison of the reliability of score level and score growth 

parameters in the two models. 

 

Insert Table 3 about here 

 

Reliability of Gain Score and Growth Trajectory Parameters 

 

We begin by comparing the reliability/generalizability of status estimates (i.e., the 

intercept) under the Gain Score and Growth Trajectory Models. The estimated reliability for 𝛽00 

under the Gain Score Model is 𝜌(𝜋0𝑝) =
�̂�0

2

�̂�0
2+�̂�𝜀

2 = 
.07

.07+.04
 = .64.  The estimated reliability for 𝛽00 

under the Growth Trajectory Model is 𝜌(𝜋0𝑝) =
.08

.08+.14
 = .36.  The most evident explanation for 

the higher (though still fairly low in an absolute sense) reliability estimate for the Gain Score 

Model comes from the fact that the intercept for each teacher in this approach is based on the 

average of FFT scores across up to eight combined lessons and occasions and multiple distinct 

raters.  In contrast, the intercept in the Growth Trajectory Model is based on just a single lesson, 

occasion and rater for each teacher.  The difference in number of lessons over which FFT scores 

have been averaged is reflected in the much larger magnitude of estimated error variance for the 

Growth Score Model (𝜎𝜀
2 = .14) relative to the Gain Score Model (𝜎𝜀

2 = .04).  

It is interesting to note that the estimate for universe score variance in teacher status 

scores is about the same under either approach, and this does not appear to support the 

hypothesis, presented earlier, that the hidden facet of occasion would introduce a positive bias in 

the estimation of a generalizability coefficient.  Indeed, we can see this more explicitly if we 

compare the reliability of score levels under the Growth Trajectory Model to the reliability one 
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would estimate had we kept weeks as the admissible unit for time, but excluded the linear growth 

trend (recall equation 8). For this model, we find that 𝜎𝜀
2 = .15, 𝜎0

2 = .07, and 𝜌(𝜋0𝑝) = .32.  

Though it is only by a small amount in this case, exclusion of the linear time trend and variance 

component appears to bias the estimated reliability of score levels downward from .36 to .32.     

The situation changes when we compare the reliability of growth parameters across the 

two models.  For the Gain Score Model, the estimated reliability for 𝛽10 is 𝜌(𝜋1𝑝) =
�̂�1

2

�̂�1
2+2�̂�𝜀

2 = 

.01

.01+2(.04)
 = .11. The computation of a single reliability coefficient for the Growth Trajectory 

Model is more complicated since there is a unique reliability associated with each unique SST 

value.  The mean SST for the full dataset is 1113, and the SD is 596. SSTs range from 0 to 3287. 

An SST of 0 results either from a measurement design with only one occasion or a design in 

which all of the occasions occur within the same week. The average designs included about eight 

occasions with an SD of about 13 weeks between occasions. For a design associated with the 

mean SST of 1113, the estimated reliability for 𝛽10 is 𝜌(𝜋1𝑝) =
�̂�1

2

�̂�1
2+

�̂�𝜀
2

𝑆𝑆𝑇𝑝

 = 
.00004

.00004+.14/1113
 = .24.  

Although the reliability is low, perhaps unacceptably so, it tends to be twice as large for the 

Growth Trajectory Model.  When teacher growth is the parameter of interest, the MET data 

provides an empirical example where it is better to compute a slope on the basis of eight noisy 

measures over a two year period than it is to compute a gain on the basis of two measures, each 

of which are relatively more precise.  

 

Reliability of Growth Trajectories under Hypothetical Design Scenarios 

 

The mean reliability for growth across all observation designs in the MET sample is 0.24, 

which is low.  If one could fix the SST by requiring the same number of observations and 
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spacing between the observations over a full two year academic school year with 78 weeks7 

instead of 50, what could be predicted for the reliability of growth estimates under different 

design scenarios? Table 4 shows how reliability would be predicted to increase as observations 

increase from 4 to 10 over 78 weeks.  For each hypothetical observation pattern, the first and last 

observations are fixed to take place 20% and 80% of the way through the span of weeks (at the 

16th week and the 63rd week respectively).  As the number of observations increase, they are 

added symmetrically within the range between weeks 16 and 39 (year 1) and 47 and 78 (year 2).   

As observations are increased from 4 to 10 in increments of 2, the respective reliability of the 

teacher growth parameter increases from .26 to .33 to .39 and tops out at .44.  Note that these 

values are all premised on equal spacing between observations; if observations tended to be 

clustered together in a smaller range of weeks, the reliability estimates would be lower. 

 

Insert Table 4 about here 

 

The results from our analysis of MET project data suggest that given the context in which 

those observations were gathered, that even in a best case scenario with 10 observations over two 

years, only about half of the variability in growth trajectories would be attributable to “real” 

differences among teachers. The range of these best-case scenario values is still low, but it is 

perhaps worth pointing out that they are in the same ballpark as estimates of reliability and 

stability reported for the estimation of teacher effects in the context of student achievement using 

value-added models (Kane & Staiger, 2012; McCaffrey, Sass, Lockwood, & Mihaly, 2009).  

                                                 

 

7 We get an estimate of 39 weeks per academic year by adding the calendar days from September through June and 

diving by 7. 
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That is, whether a teacher growth statistic is computed on the basis of aggregating student-level 

growth estimates, or from direct estimates based on growth on observation scores, the estimates 

will have limited reliability.  But to attain an estimate of reliability close to .4 would take two 

years and eight instances of data collection in the context of an observation protocol, while an 

estimate based on value-added requires only a single data collection event annually. 

 

Discussion 

 

The role of occasions in the context of the design and use of teacher observation 

protocols is one that merits careful consideration.  The scores from observation protocols are 

often implicitly assumed to be generalizable across the different temporal occasions of the 

observations.  This hinges upon the exchangeability of the temporal occasions.  We argue here 

that an ideal study of the generalizability of scores from observation protocols would attempt to 

disentangle the variability due to choice of occasion from the variability due to choice of lesson 

observed on that occasion.  Yet even if this were to be done, if teaching practices change 

systematically over time, an analytic approach based on a conventional G-Theory variance 

decomposition would need to be modified to take these trends into account.  In this paper we 

have explored, empirically, an alternate way of conceptualizing the use of teacher observation 

protocol scores, one that is premised not so much on a desire to generalize over measurement 

occasions within a school year, but on a desire to model growth that may be occurring across 

these occasions. We contrasted two ways this could be done, one that conceptualizes the smallest 

unit of time as a year, and another where the smallest unit of time is a week.  In the latter case, 

we are building on the advice from David Rogosa and John Willett in the 1980s, who suggested 
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that one might be well-served to focus on the estimation of growth trajectories from many 

observations than from the estimation of a gain score from just two observations.  What is lost in 

precision at each time point is made up for having more information spread over time. 

Our empirical findings using the MET project data show, not surprisingly, that the 

reliability of observation protocol score levels (i.e., status) are much more reliable than score 

growth.  Score levels that were averaged across multiple lessons, occasions and raters were 

almost twice as reliable (.64 vs. .36) as those based on just a single combined lesson and 

occasion and a single rater.  In this instance it does not appear that variability due to occasion 

introduces a bias due to an inflation in the decomposed estimate of true score variance.  In 

contrast, when observation score growth is of interest, estimates that derive from treating a week 

as the smallest meaningful distinction in time were about twice as reliable (.24 vs. .11) as those 

that treated the school year as the smallest meaningful distinction.  We found that given the 

variance decomposition of the MET data, a best-case scenario for designing a system of 

observation protocols over the course of a two year span would maximize reliability at a value 

somewhat below and above .40 for a total of 8 to 10 observations.  These results allow for some 

understanding of how the choices around number of occasions as well as number of raters affects 

reliability of estimates of growth in teacher practices. Two key implications are 1) that priority 

should be given to adding observation occasions and maximizing the spacing of those occasions, 

and 2) if true growth variance is very small as appears to have been the case for the teacher 

sample in the MET project, then it will take a significant number of observations over two years 

before it makes much sense to consider making distinctions among teachers with respect to their 

growth in classroom practices. 
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These findings suggest it would be very difficult to defend the use of growth in 

observation protocol scores as a basis for high-stakes inferences or decisions about individual 

teachers are part of a system of teacher evaluation.  We say that the estimates from this study 

represent a best-case scenario because among teachers and schools participating in the MET 

project, there were no stakes associated with classroom observations and there was no personal 

relationship between teachers and raters. That is, the raters had no personal investment in the 

outcome of the observation scores, and the raters felt no pressure that their scores would be used 

to make high-stakes decisions. It is well-known that the imposition of these stakes has the 

potential to distort the process raters use to assign scores (Campbell, 1976).  The impact of this 

on the variance components that figure into estimates of reliability are unknown.   

On the other hand, it can be argued that our results are not necessarily a best case 

scenario.  To begin with, we know that rater drift can introduce bias into teacher observation 

scores (Casabianca et al., 2015), and this is not an issue we were able to examine in the empirical 

portion of this study.  Next, we have have assumed that the FFT observation protocol scores are 

not systematically higher or lower by the subject of the lesson being observed (math or ELA).  

Second, we have ignored the impact that different cohorts of students may have when they are 

used as the basis for observations collected across school years.  If these three factors could be 

either better controlled or modeled, this could possibly lead to higher estimates for the reliability 

of both score level and score growth8. 

Even if our results do represent a best case scenario, there might still be some promise to 

the use of observation protocols to model teacher growth over time, provided that one is focusing 

                                                 

 

8 We thank an anonymous reviewer for bringing these last two points to our attention. 
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on a longer term time horizon and primarily interested in comparing group averages, or only 

making distinctions among teachers in the tails on the growth distribution. For example, a 

longitudinal trajectory of observation scores could be useful in studying the efficacy of 

professional development programs or interventions for early career teachers over their first 3 to 

5 years on the job.  Ultimately however, as Bell et al., 2012 remind us, such uses will hinge upon 

more than issues of generalizability and reliability, but will depend upon establishing a more 

fully persuasive and comprehensive validity argument. 
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Figure 1.  Venn Diagram for the Ideal l:o:p x r x I Design of an Observation Protocol 
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Figure 2.  The Hidden Occasion Facets in the Realized l:p x r x I  Design 
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Figure 3. Distribution of FFT Dimension-Level scores 
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Figure 4.  Frequency Distribution of Observation Occasions Across Teachers (N=458) 
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Table 1. FFT Domains and Dimensions 

 

 

Domains Dimensions 

Classroom 

Environment 
• Creating an Environment of Respect and Rapport 

• Establishing a Culture for Learning 

• Managing Classroom Procedures 

• Managing Student Behavior 

Instruction • Communicating with Students 

• Using Questioning and Discussion Techniques 

• Engaging Students in Learning 

• Using Assessment in Instruction 

 

 

Table 2. MET Project Teacher Demographics 

 

 Dates  

Unavailable 

Experience  

Unavailable 

Analytic  

Sample 

Male 17  16  22  

White 53 53  65  

Black 36  36  25  

Masters + 27  33  23  

Elementary (Grades 4-5) 40  47  26  

Secondary (Grades 6-9) 60  53  74  

Novice 6  -- 16  

N 616 495 458 

    Note: Values in rows 1-7 are percentages, values in last row are total count. 
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Table 3.  Comparisons of HLM Results 

 

 Gain Score Model Growth Trajectory Model 

Fixed Effects Coefficient SE Coefficient SE 

Intercept 

 𝛽00 2.48 0.02 2.49 0.02 

Slope 

 𝛽10 0.01 0.02 0.0001 0.0006 

Random Effects Variance 

Component 

p-value Variance 

Component 

p-value 

Level 1: 𝑒𝑡𝑖 0.04 -- 0.14 -- 

Level 2     

Intercept: 𝑟0𝑖 0.07 <0.001 0.08 <0.001 

Slope: 𝑟1𝑖 0.01 0.08 0.00004 <0.001 

Corr (𝛽00, 𝛽10) -0.13 -0.32 

N 441* 458 
*17 teachers only provided multiple observation scores in one of the two years. These teachers 

would be included in the growth trajectory model but excluded from the gain score model because 

their scores would be collapsed to a single observation. 

 

 

Table 4. Reliability of Growth Parameters Generalizaed to Different Designs over full 2 Years 

(78 Weeks) 

 

Observations Weeks 𝑆𝑆𝑇 Reliability  

of Growth 

4 16, 32, 47, 63  1217 .258 

6 16, 24, 32, 47, 55, 63  1697.5 .327 

8 16, 20, 24, 32, 47, 51, 55, 63 2202 .386 

10 16, 20, 24, 28, 32, 47, 51, 55, 59, 63 2722.5 .438 

Note: 𝑆𝑆𝑇 stands for “sum of squared time” and is computed as ∑ (𝑋𝑡𝑝 − �̅�𝑝)
2𝑇

𝑡=1 . Reliability 

computed using Equation 6. 
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