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Abstract 

Learning progressions describe how students typically develop understanding of key 

concepts and are promising tools that teachers can use to create and to interpret 

assessments. This study proposes a learning progression for fractions, which are a 

foundational concept in mathematics. We suggest that there are five increasingly 

sophisticated ways to interpret fractions: as a part-whole relationship, as a quotient, as a 

measurement, as a ratio/rate, or as an operator. We argue that these five interpretations 

form a coherent learning progression that has great potential to facilitate formative 

assessment of student learning. We provide both theoretical and empirical support for this 

learning progression through the examination of mathematics content standards and 

curricular lesson orderings. We leverage the common vertical scale of a large-scale 

standardized mathematics assessment to demonstrate that items associated with more 

sophisticated interpretations of fractions are more difficult than are those at the earlier 

stages of our progression.  

Keywords: formative assessment; mathematics education; learning progression; construct map; 

vertical scale 
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For some time now, learning progressions (LPs), which are descriptions of the 

developmental path that students are likely to take when learning the concepts in a given domain 

(Clements & Sarama, 2004), have been viewed as a promising means of coordinating three 

elements that are critical to student learning: curriculum, instruction and assessment (Clements & 

Sarama, 2004; Lobato & Walters, 2017). By emphasizing the “big picture” ideas within a 

subject, these trajectories provide an organizing structure that makes explicit connections 

between what might otherwise be viewed as long lists of discrete knowledge and skills. Learning 

trajectories, as the name implies, shift emphasis away from a model of teaching and learning in 

which a unit of content is taught, and students either demonstrate mastery of the content through 

their performance on assessment tasks, in which case they move on, or they do not, in which case 

the next steps are seldom well articulated. Instead, focus is placed on the different ways that 

students understand an important idea, and how this understanding, with the right support, is 

expected to become more sophisticated over time.  

Ideally, a learning progression can help teachers and students alike to notice the aspects 

of reasoning that a student uses to solve mathematical problems and to determine whether that 

reasoning might be productive in one context, but not in another. Engaging in this type of 

formative assessment of students’ understanding is a crucial part of teachers’ efforts to connect 

the curricular standards and the instructional activities related to an LP. Formative assessment 

can take many forms, from listening to students’ conversations while they work on instructional 

tasks to periodically administering more formal assessments. Teachers typically engage in a 

range of these practices, but more and more school districts are using large-scale, predominately 
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multiple-choice  tests for this purpose1. The i-Ready Diagnostic, for example, provides a list of 

“can-do’s and next steps” based on each student’s assessment scores that are meant to help 

teachers tailor instruction to meet students’ individual needs. While all instances of formative 

assessment, including these large-scale assessments, present opportunities for both providing 

feedback to students and adjusting instruction, the more immediate the adjustment, the stronger 

the impact on student learning is likely to be. There may, therefore, be a disconnect between the 

kinds of local, teacher- and researcher-developed assessments that are most frequently used in 

the development and validation of LPs (e.g., Arieli‐Attali & Cayton‐Hodges, 2014; Wilkins & 

Norton, 2018; Wright, 2014; Yulia et al., 2019), and the large-scale interim and summative 

assessments that are commonly used by teachers in K-12 public school settings in the United 

States. The former tend to allow for more immediate and iterative feedback during the learning 

process, while the latter are typically only administered a few times a year after learning has 

occurred. 

In this paper we address this disconnect by using the results from a widely used 

commercial assessment, Curriculum Associates’ i-Ready Diagnostic, to support an LP for 

fractions. We present compelling empirical evidence to support the validity of this LP by taking 

advantage of i-Ready’s vertical scale, which allows us to compare the difficulties of items 

designed for students in different grade levels. By using the vertical scale to investigate the 

relative difficulties of items that are more and less mathematically sophisticated, according to the 

LP, we provide an example where an LP can provide a productive structure for making sense of 

results of an externally mandated assessment. We note up front that although the research 

 
1 Three of the commercial assessments commonly purchased by U.S. school districts for this purpose are the MAP 

Growth Assessments (NWEA), i-Ready Diagnostic assessments (Curriculum Associates) and Star Assessments 

(Renaissance Learning).  
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presented in this study did occur within the context of a collaboration with Curriculum 

Associates that was intended to contribute to their ongoing efforts to improve upon their 

assessment and curricular products, our research team was given full autonomy in the 

development and validation efforts related to an LP for fractions.   

In what follows, we begin by situating our study within the curriculum and assessment 

context of the i-Ready Learning and i-Ready Diagnostic products that Curriculum Associates 

provides to school districts in the United States. We motivate our specific focus on an LP for the 

understanding of fractions, and then provide a summary of the results from our review of pre-

existing fraction LPs. We then introduce an LP that takes a slightly larger scope and grain-size 

than do the LPs found in the pre-existing mathematics education literature. Our intention in using 

this grain-size is to provide teachers with a handful of large categories that they can hold in their 

minds more effectively than a series of hyper-specific standards. Furthermore, it is easy to get 

bogged down in specifics and to focus on individual skills rather than on the concepts that 

underly those skills. Our intension in this work is to encourage teachers to focus on the big ideas 

that make up students’ understandings of fractions rather than thinking of fractions as a list of 

facts and skills to be memorized and reproduced. Since our large LP levels span several grades, 

and multiple grades have standards associated with each level, we expect that this large-grained 

LP could also allow teachers to have cross-grade-level discussions using common language (e.g., 

Suh & Seshaiyer, 2015). We characterize the qualitative distinctions between the levels of the LP 

and illustrate each level with an exemplar item. We then turn to evidence of empirical support 

for the LP using data from the i-Ready Diagnostic assessment. We show that the levels of our LP 

are associated with both the difficulty of items across the i-Ready Diagnostic assessment’s 

vertical scale, and with the curricular ordering of lessons that have been coded according to each 
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LP level. We conclude with a discussion about how the LP can be used to support formative 

inferences about student learning in classroom contexts that feature a combination of locally 

developed and externally mandated assessments. 

The Curriculum and Assessment Context 

 

The i-Ready Diagnostic assessment comprises two grade-specific standardized tests in 

reading and mathematics that are intended to be administered during the fall, the winter and the 

spring of each academic school year. Students take each test on a digital interface, and tests are 

designed to be adaptive such that each new multiple-choice item to which a student is exposed 

depends upon whether they answered prior items correctly. The mathematics test for students in 

grades K-12 consists of up to 66 items, and the content of these items is organized into four 

strands: Algebra, Geometry, Measurement, and Number and Operations. The test was developed 

to serve the following four purposes (Curriculum Associates, 2018, p. 8): 

1. Establish a metric that will allow for an accurate assessment of student knowledge that can 

be monitored over a period of time to gauge student improvement.  

2. Accurately assess student knowledge for different content strands within each subject.  

3. Provide information on what skills students are likely to have mastered and likely need to 

work on next.  

4. Link the assessment results to instructional advice and student placement decisions about 

Curriculum Associates’ i-Ready Instruction curricula and print products.  

A distinguishing feature of Curriculum Associates’ approach to working with school districts is 

that it seeks to bundle its i-Ready Diagnostic assessment with curricular resources that teachers 

can use as part of their efforts to facilitate student learning. These resources come in two forms: 
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i-Ready Learning, a library of online instructional modules, and Ready Learning, a series of 

grade-specific printed books containing instructional lessons.  

Curricular priorities: The importance of fractions 

The reasoning skills that students typically develop with regard to fraction operations and 

equality in grades three through six help to build a sense of mathematical structure that facilitates 

the learning of more formal algebraic concepts later on (Common Core State Standards 

Initiative, 2010; Empson et al., 2011). In particular, students need to understand conceptually 

what fractions are and how they interact with one another (Byrnes & Wasik, 1991), which 

largely involves seeing fractions as real number values that can be placed at a unique point on a 

number line (Hansen et al., 2015; Siegler et al., 2011) and developing proportional reasoning and 

visualization skills (Hansen et al., 2015). There is also empirical evidence that students with a 

solid understanding of fractions are more likely to be successful in future mathematics 

coursework in middle school and beyond (Bailey et al., 2012; Booth & Newton, 2012; Siegler et 

al., 2012; Torbeyns et al., 2015).  

 Given the foundational nature of fractions understanding, we developed a learning 

progression for fractions that is meant to help students, teachers, and parents track student 

growth in this domain. During the development process, we reviewed existing LPs and the 

broader literature around students’ understandings of fractions as well as the Common Core State 

Standards for Mathematics (CCSS-M) and the curricular focus and ordering of the fractions-

related content in the i-Ready curriculum.  
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A review of pre-existing learning trajectories for fractions 

It is evident from the order of clusters of standards in the CCSS-M that students should 

be exposed to increasingly more sophisticated uses of fractions as they move through grades 

three through six (CCSSI, 2010). The first cluster of fractions-related standards (3.NF.1-3) 

appears in third grade and has to do with understanding fractions as numbers, including 

equipartitioning to form a unit fraction, representing fractions on a number line, and 

understanding equivalent fractions. Next, in fourth grade, students are expected to extend their 

understanding of equivalence (4.NF.1-2), apply their existing understandings of operations to 

fractions with common denominators (4.NF.3-4), and learn the connections between fraction and 

decimal notation (4.NF.5-6). Fifth grade introduces additive operations on fractions with 

different denominators (5.NF.1-2) and multiplicative operations with fractions (5.NF.3-7). The 

bulk of fraction learning articulated in the CCSS-M ends in sixth grade, in which students refine 

their understandings of multiplication and division with fractions (6.NS.1) and learn about ratios 

and rates (6.RP.1-3). While the standards serve as a good curricular reference, and were designed 

with learning theories in mind, they have not been adopted by all states, and countries other than 

the United States may certainly have different ideas about curricular and developmental 

ordering.  

Over the past decade, there have been four notable developments of LPs for fractions that 

complement the implicit LP implied by the CCSS-M: Arieli‐Attali & Cayton‐Hodges (2014), 

Wilkins & Norton (2018), Wright (2014), and Yulia et al. (2019). Other important related 

research can be found in Confrey’s extensive work on equipartioning (e.g., Confrey, Maloney, & 

Corley, 2014) and proportions (Confrey et al., 2019) and Nizar’s work on fraction division 

(Nizar et al., 2017). We do not focus on these as a motivation for the LP we introduce in the 
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following section because they tend to focus on student ideas as they relate to fractions at a much 

finer grain size, whereas our goal was to propose an LP that takes a high-level view of fraction 

learning that spans multiple grades during elementary and early middle school. 

Arieli‐Attali and Cayton‐Hodges (2014) developed an LP for Grades 3-5 mathematics as 

part of the Cognitively Based Assessment of, for, and as Learning (CBAL®) research initiative 

run by Educational Testing Service (ETS) in an attempt to expand upon the Grades 6-8 work 

they had already developed in response to the release of the CCSS-M (Bennett, 2010). They 

began by reviewing the available literature on cognitive science and mathematics education and 

consulting with internal and external panels of experts in mathematics education and cognitive 

psychology. They then collected evidence in support of their hypothesized LP using 

semistructured cognitive interviews in which 14 students in grades three through five and two 

teachers, all from the United States, were asked to complete a series of tasks that were designed 

to provide evidence of reasoning about rational numbers. Their LP begins with (1) understanding 

fractional units followed by (2) fractions as numbers. They then shift to (3) additive structure and 

(4) multiplicative structure.  

Around the same time, Wright (2014) developed a learning progression based upon 

movement through four of Kieren’s (1980, 1976) five ways to conceptualize fractions: as a rate 

or a ratio, as a quotient, as an operator, or as a measure. Wright used case studies of six 12- and 

13-year-old students in New Zealand, analyzing their progress through each conceptualization 

using a combination of cognitive interviews and quantitative analysis in which Wright claimed to 

have identified patterns in students’ responses to relevant test items (though he did not specify 

how this was accomplished). Wright used the collected evidence to develop a matrix in which 

students move through levels of sophistication within each of the four selected ways to 
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conceptualize fractions. In Wright’s LP, students move through different levels of each 

conceptualization starting with (1) unit forming, followed by (2) unit coordinating, (3) 

equivalence, and (4) comparison. As we will describe in the following section, we take the four 

fraction conceptualizations to be part of our LP, and we argue that the four levels Wright 

presents actually map onto those conceptualizations. 

Wilkins and Norton (2018) published another fractions LP in which they proposed a 

hierarchy among the fraction schemes that Steffe and Olive (2010) put forward in their 

foundational book on children’s development of fraction understandings. Wilkins and Norton 

developed a test with items designed to measure each of the schemes of interest (four items per 

scheme) and administered the test to 300 students in grades five through eight from the United 

States and China. Their first level indicates that students should be able to (1) produce fractions 

by disembedding parts of a divided whole. Next, students should be able to (2) iterate a unit 

fraction in order to recreate the whole and use this process to determine the size of that unit 

fraction. Their next level involves students (3) using equipartitioning and iteration to recreate a 

whole from a proper fraction. Finally, students should (4) recreate a whole from an improper 

fraction using the same method described in level (3). These authors did not cite either of the 

earlier LPs as a motivation for their work. As support for this LP, the authors cited earlier work 

presenting quantitative analyses of responses to their scheme-based fractions test. For example, 

Wilkins and Norton (2011) provided several analyses supporting an earlier version of the LP. 

The authors used the gamma statistic (Goodman & Kruskal, 1954) and visual inspection of 2x2 

contingency tables to investigate the pairwise ordering of their schemes into LP levels2.  

 
2 For each adjacent scheme (corresponding approximately to a level of their 2018 LP), the authors examined 

correlations among scheme-specific sum scores (over four dichotomous items). In replications such as Norton et al. 

(2018), the authors again computed gamma statistics to establish ordering among LP levels that closely resemble 

those in Wilkins and Norton (2018). 
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The final LP that we identified was produced by Yulia and colleagues (2019). They 

reviewed the extant literature to develop a hypothetical LP and associated tasks, which they 

checked with teachers participating in their study, then revised as needed. Validation of this LP 

consisted of classroom observations and task-focused cognitive interviews with 25 students in 

Indonesia. Their LP order is (1) fractions as a part-whole relationship, (2) determining fractional 

equivalence, (3) comparing fractional values, and (4) operating with fractions. 

The four LPs described above each provide valuable conjectures regarding the paths that 

students tend to take when learning about fractions. However, each LP features either a level or 

developmental conceptualization of fractions that is unique to that study. For example, the 

concepts of ratios and rates are only included in Wright’s (2014) work, and even then, they are 

treated as their own distinct construct through which students move rather than as an ordered 

level within a larger fractions construct. Furthermore, two of the LPs used qualitative methods 

with fairly small samples in local contexts (Arieli‐Attali & Cayton‐Hodges, 2014; Yulia et al., 

2019). It is also an open question whether the order implied by these pre-existing LPs has been 

sufficiently validated. For example, the LP by Wright (2014) used a small sample of only six 

students in one classroom and was unclear in describing how the patterns in test scores were 

identified. The LP by Wilkins & Norton (2018) had a larger and more geographically-diverse 

sample, but the assessment they used only contained four items for each of the four schemes that 

they investigated.  
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A New Learning Progression for Understanding Fractions 

 

 

 The preexisting LPs described above tended to have fairly fine-grained levels and/or did 

not span the full range of concepts that students would be exposed to in curricula aligned to 

CCSS-M (CCSSI, 2010) or that are similar in nature to what can be found in the Ready 

curriculum. Similarly, the feedback that is presently provided about assessment results through 

the i-Ready system is based upon fine-grained claims about student’s proficiency with individual 

standards. As our intention was to design a big-picture LP that could serve as a guiding 

framework for teachers across multiple grades when making instructional decisions, we used the 

larger fractions literature to help us synthesize and consolidate the levels of existing LPs and the 

i-Ready claims about what students should know and be able to do to form an LP with five broad 

levels that represent different ways that students can conceptualize fractions.  

Kieren (1976, 1980) identified five main ways to conceptualize fractions: as representing 

a part-whole relationship, as a quotient, as a measurement/number, as an operator, and as a ratio 

or a rate. Each of these conceptualizations has been acknowledged as playing an important role 

in building students’ understanding of how fractions can be used in various problem settings and 

have been cited in the development of other fractions LPs. To our knowledge, however, they 

have not been used as the central elements in forming such a progression without some amount 

of alteration. The five conceptualizations are often referred to as “sub-constructs” (e.g., Kieren, 

1980; Norton & Boyce, 2013; Thompson & Saldanha, 2003; Wright, 2014), which implies that 

they are interrelated, but distinct, parts of some overall construct of fractions knowledge 

(Charalambous & Pitta-Pantazi, 2007), which could explain the lack of consensus in the 

literature about what exactly each conceptualization entails and the ways they interrelate. We use 

findings from the larger fractions literature to argue that these five conceptualizations do in fact 
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form a coherent learning progression—that they can be viewed as ordered levels of a single 

construct and that the level of sophistication with which a student can understand fractions and 

use this understanding to solve mathematical problems increases from one conceptualization to 

the next. The levels of the expected progression through this construct (from lowest to highest) 

are described in the following subsections and are also summarized in Table A-1 in the 

Appendix. 

Level 1: Fractions as parts of a whole 

The conceptualization that has historically been used to introduce students to fractions is 

the part-whole conception in which a whole is partitioned into equal parts and some of those 

parts are mentally disembedded (Moss, 2005; Steffe & Olive, 2010). This can take the form of 

one object being split into multiple parts, as in an area model in which a pizza, for instance, is cut 

into equal slices. Alternatively, it may consist of a set of objects, some fraction of which are 

specified (e.g., if there are three people sitting at a table set for four, then three-fourths of the 

seats are occupied). This conceptualization is representative of the first level in three of the four 

existing LPs that we identified (Arieli‐Attali & Cayton‐Hodges, 2014; Wilkins & Norton, 2018; 

Yulia et al., 2019). Figure 1 is an example of a set model. In this item, there are five smiley  
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Figure 1. Example of a part-whole item 

 

faces, and the students are asked to identify which fraction of the whole set is shaded. In this 

case, two of the five faces are shaded, so a student with a part-whole understanding of fractions 

would give 
2

5
 as their answer. This example represents one out of a family of possible items that 

could be created using different shapes shaded in different combinations to represent different 

fractional values.  

This conceptualization is the first step in our learning progression, as it has typically been 

considered to be the foundation for the subsequent conceptualizations we introduce (Behr et al., 

1983; Charalambous & Pitta-Pantazi, 2007). Many in the mathematics education community 

have since come to see the part-whole view of fractions as a subset of the ratio conceptualization 

(e.g., Wright, 2014), and the CCSS-M (CCSSI, 2010) does not explicitly include standards 

relating to factions as parts of a whole, with the focus shifting to equipartioning and iteration 

(Confrey, Maloney, & Corley, 2014). We chose to include this level in our LP, however, because 

this is often the beginning of students’ informal understandings of fractions (Mack, 1993). This 

conception also tends to be the easiest for students to grasp since it is the closest to the whole 

number context that they are accustomed to working in (e.g., students begin developing number 
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sense by counting wholes) (Moss, 2005). Students working within a part-whole framework may 

maintain their natural number context and apply the counting strategies that have served them 

well in other situations (Post et al., 1993).  

The part-whole conception of fractions is insufficient on its own for students to develop a 

complete understanding of fractions and the ways that they may be used (Hackenberg & Lee, 

2015; Post et al., 1993; Steffe & Olive, 2010). In particular, students who can identify both the 

total and the specified number of pieces in a fraction may not fully comprehend that all of the 

pieces must be equal or that the all of the original whole must be used when creating fractional 

pieces (P. H. Wilson et al., 2012). These errors are demonstrated in Figure 2, which shows 

responses to an assessment task in which incorrect attempts have been made at creating four 

equal groups from eight counters. Additionally, although students with this level of 

understanding may be able to compare fractions with the same denominator because they 

understand, for example, that 
4

5
 means that there are more pieces of the same whole than there are 

in 
2

5
, they may not be able to compare fractions with different denominators because they may 

not yet realize that the magnitude of the denominator is related to the size of each piece (Steffe & 

Olive, 2010; Wilson et al., 2012).  

The natural number context associated with the part-whole conceptualization may inhibit 

students’ abilities to see fractions as numbers in and of themselves. Students who only see 

fractions as representing a number of parts may, for example, place 
3

4
 at three out of four on a 

number line rather than three-fourths of the way between zero and one (Kerslake, 1986). 

Additionally, they may have difficulty recognizing that two fractions can have equivalent 

numerical values even if they appear different on the surface, which may result in errors such as 
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Figure 2. Examples of inaccurate attempts at fair sharing 

 

claiming that 
10

15
>

2

3
 because 10 > 2 and 15 > 3 (Hart et al., 1981). These applications of 

natural-number logic may lead to difficulties adding and subtracting fractions, even those with 

the same denominator, if students overgeneralize traditional operation procedures (e.g., adding 

across both the numerators and the denominators) (Newton, 2008; Post et al., 1993; Wu, 2001). 

In order to move past these obstacles, students must be able to view fractions as representing an 

equipartitioning process in which a whole is divided into equal parts. 

Level 2: Fractions as quotients 

 The next conceptualization that students need to develop is the often “forgotten notion” 

(Clarke, 2011) that a fraction is a quotient such that 
𝑎

𝑏
 represents the division of 𝑎 by 𝑏. The key 

to this stage of understanding is the ability to engage in equipartitioning and the creation of “fair 

shares” (Confrey, Maloney, & Corley, 2014; Confrey, Maloney, Nguyen, et al., 2014; Wilson et 

al., 2012). In fair sharing, the number of individual units to be shared (𝑎) is divided by the 

number of shares that are needed (𝑏) such that the size of each share is 
𝑎

𝑏
 (𝑎-𝑏ths) of one unit 

(Empson et al., 2006). The foundational example of this process is taking one unit and dividing it 
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into 𝑏 parts such that each share is 
1

𝑏
 (1-𝑏th) of the original. This process may then be expanded 

to include compound units (Steffe & Olive, 2010). This conceptualization is represented by level 

(2) in the LP produced by Wilkins and Norton (2018) and by levels (1) and (2) in Wright’s 

(2014) LP. 

The concept of fair sharing is exemplified by the item shown in Figure 3. In this item, 

three friends are equally sharing two chocolate bars. A student with an understanding of the 

quotient conceptualization will be able to fairly share these chocolate bars so that each person in 

the problem receives two-thirds of a bar. This partitioning is often accomplished by either  

 

 

Figure 3. Example of a quotient item 

 

breaking each bar into thirds and “dealing” out pieces until they have all be used (everyone gets 

one-third of the first bar and then one-third of the second bar) or by dividing the number of bars 

(two) by the number of people (three) to arrive at the answer that each person receives two-thirds 

of a bar (Wilson et al., 2012). This is only one example of a problem that requires the quotient 

understanding of fractions, and the number and the type of objects to be shared and the number 

of shares needed can be varied to create new items. This particular example requires students to 

take fractional parts of multiple objects that constitute a composite unit (Steffe & Olive, 2010), 

which will be more difficult than if they were to share just one item or if the total number of 



17 

 

objects were a multiple of the number of shares needed, as in the coin-sharing problem described 

in the following paragraph. 

The three key features of equipartitioning are creating the correct number of groups, 

creating groups of the same size, and exhausting the original whole (P. H. Wilson et al., 2012). 

In developing this ability, students become familiar with the idea that each “share” is one equal 

piece of the whole, such that if 24 coins were shared among three people, each person would 

receive eight coins, and they would each have 
1

3
 of the total number of coins (P. H. Wilson et al., 

2012). As Steffe & Olive (1993) point out, students may also begin to realize that a unit fraction 

can be iterated to recreate the whole, such that if, for example, someone joined together five 

equally-size pieces, then each piece is 
1

5
 of the resultant whole. The examples Steffe & Olive 

provide, respectively, demonstrate Kieren’s (1993) distinction between what he calls partitive 

division and quotative division. While they are both examples of equipartitioning, in partitive 

division, the focus is on the size of each share, whereas in quotative division, the interest is in the 

number of shares of a given size. These examples also demonstrate students’ abilities to unitize, 

or to conceive of a group of objects (or a partition) as a single unit. In order to understand the 

connection between these sharing tasks and fractions, students need to view the 24 coins as both 

24 individual coins, and one complete set that can be broken up into equally-sized groups.  

In creating fair shares between varying numbers of groups, students also come to 

understand that the more groups that are made from the same whole, the smaller each individual 

group will be (Cramer et al., 2008; Wilson et al., 2012). This may allow them to begin to make 

sense of comparisons of fractions with the same numerator and different denominators, because 

they come to recognize that if there are the same number of pieces, but each piece is relatively 

smaller, then the overall amount will be less. Students with these understandings, however, may 
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have not yet fully internalized that a fraction represents not only two related whole number 

values (the numerator and the denominator) but also a numerical value that can be placed at a 

unique location on the number line (Van Hoof et al., 2018).  

Level 3: Fractions as measurements 

 The third level in our learning progression aligns with the conception of fractions as 

measurements, which focuses on the magnitude of a fractional value and is closely associated 

with additive reasoning (Behr et al., 1983). The ability to view a fraction as representing one 

value rather than as simply a comparison between two values, or even as two unrelated values 

(see Hecht & Vagi, 2010; Ni & Zhou, 2005; Stafylidou & Vosniadou, 2004), allows students to 

locate a fractional value correctly on a number line (Kerslake, 1986; Siegler et al., 2011; Siegler 

& Lortie-Forgues, 2015). This is closely associated with the decimal representation of fractions, 

which requires understanding fractions as quotients because carrying out the division of a by b, 

either by hand or with a calculator, will produce a decimal that is equivalent to 
𝑎

𝑏
. The 

understanding of unit fractions that students develop as part of the quotient interpretation help 

them to understand that the relative size of one quantity compared to another is determined by 

the number of times the first fits into the second (Wilkins & Norton, 2018). They may now be 

able to use a unit fraction to create a composite fraction beyond simply recreating the whole 

(Marshall, 1993), such as in Figure 4. In this item, the student needs to recognize that the 

distance between zero and 
1

4
 is iterated three times to produce the desired fraction 

3

4
. Other 

number line items may ask for different fractional values or provide labels for different values. 

Additionally, the “fair sharing” concept developed in the quotient interpretation may help 

students place fractions on number lines even if they are not provided with helpful benchmark 
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values and need to create their own (Moss & Case, 1999). If a student, for example, were asked 

to locate 
3

8
 on the number line shown in Figure 4, they would need to split the areas between the 

one-fourth markings in half to create eights. 

A measurement conception of fractions is most important when students need to compare 

relative magnitudes of fractions with unlike numerators and denominators, usually in a context 

where they need to determine whether one fractional value is greater than, less than, or equal to 

another (Steffe & Olive, 2010). If a student does not see a fraction as representing a specific, 

orderable value, then they will have difficulty making sense of a request to make these  

 

 

Figure 4. Example of a measurement item 

 

comparisons. They will also have trouble realizing that fractions can be split such that there are 

infinitely many fractional values that sit between any two fractions on a number line (Lamon, 

1999). Furthermore, the ability to recognize and to generate equivalent fractions is an essential 

prerequisite for adding and subtracting fractions with unlike denominators (Cramer et al., 2008; 

Wright, 2014). Because the measurement conception covers a fair amount of ground, it is 

represented by multiple levels in each of the LPs we identified: levels (2) and (3) in Arieli-Attali 

and Cayton-Hodges (2014), levels (3) and (4) in Wilkins and Norton (2018), Levels (3) and (4) 

in Wright (2014), and levels (2) and (3) in Yulia and colleagues (2019). 
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Students need an accurate mental number line (Griffin, 2004; Hamdan & Gunderson, 

2017) and a sense of how quantities combine to form new quantities (Jordan et al., 2007) in order 

to develop fraction addition skills (Keijzer & Terwel, 2003). Having a sense of magnitude and 

additive properties allows students to reject implausible answers and the procedures that they 

used to obtain them (Booth & Siegler, 2008; Hiebert & Lefevre, 1986; Siegler et al., 2011). 

Understanding magnitude and number lines is also essential for comprehending the meaning of 

improper fractions. If a student were to only make use of a part-whole conception, it would make 

no sense to have more pieces than there are meant to be in the whole unit (Stafylidou & 

Vosniadou, 2004). The ability to iterate units, however, can be extended so that students add 

more unit fractions than there are in the original whole. An example of this may be to extend the 

number line in Figure 4 and to ask the student to locate 
5

4
 by iterating the 

1

4
 distance five times. 

Students who have internalized the part-whole conception of fractions may be able to apply a 

procedure in which they successfully multiply a fraction by another fraction that is equivalent to 

one in order to manufacture common denominators for the sake of addition and subtraction. 

Without a measurement conception of fractions, however, they may have not yet developed the 

multiplicative understandings that are required for proportional reasoning. 

Level 4: Fractions as ratios and rates 

A ratio conception of fractions is generally difficult to place in a learning progression 

because there are several ways that ratios can be interpreted (Clark et al., 2003), and they 

incorporate aspects of many of the other interpretations (Wright, 2014). The foundational 

understanding of a ratio is a comparison of two quantities, whether it be part-whole or part-part. 

This means that ratios are often lumped together with the part-whole conceptualization because 
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they also allow for the use of natural number reasoning, as Kieren (1980) points out in noting 

that these two conceptualizations are strongly connected. Moss and Case (1999) even suggested 

that students begin learning about rational numbers by way of percentages rather than the 

traditional fraction notation, bringing the ratio interpretation to the very start of a learning 

progression. Other researchers (e.g., Clark et al., 2003; Lovell & Butterworth, 1966; Noelting, 

1980; Sowder et al., 1998), however, have argued that ratios are far more than set-set 

comparisons; they are the basis for multiplicative and proportional reasoning, which are essential 

precursors to understanding algebraic concepts such as linear relationships (Clark et al., 2003).  

The main difference between the part-whole and the ratio interpretation of fractions is the 

covariance-invariance property, which states that the two quantities involved in a ratio vary 

together such that if both values are multiplied by the same nonzero value, the value of the ratio 

does not change (Charalambous & Pitta-Pantazi, 2007). This concept clearly builds upon the 

equivalent-fractions aspect of the measurement conceptualization and can now be applied to 

ratios in other formats, such as with 1: 3 = (1 × 4): (3 × 4) = 4: 12. Although some researchers 

have placed equivalence in the realm of ratios rather than measurement for this reason (e.g., Behr 

et al., 1983), we argue that equivalence is more closely connected to magnitude concepts and is a 

prerequisite for understanding the unit rates and proportions involved in the ratio interpretation. 

None of the LPs that we identified in the research literature had a level for ratios and rates, 

though Wright ( 2014) did include ratios and rates as a sub-construct of fractions through which 

students would gain increasingly sophisticated understanding. 

 Ratios can be also thought of as rates, which are comparisons between two values with 

different units (Lamon, 1999), particularly when used in a contextualized problem. This is where 

part-part comparisons come in. Rather than comparing a certain amount of a whole unit (e.g., 
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three out of eight slices of a whole pizza), the part-part comparison allows us to specify how 

many of one type of unit there is in relation to another type of unit. If a runner completes a 10-

kilometer race in 23 minutes, then the ratio of distance to time can be written as 10 km : 23 min, 

as 
10 km

23 min
, or as “10 km to 23 min”. The fraction notation allows for familiar manipulations that 

emphasize the unit rate interpretation of ratios. In this example, if the numerator and the 

denominator are both divided by 23, we can see that the new ratio is 

10

23
 km

1 min
, which indicates that 

the runner covered an average of 10-23rds of a kilometer each minute. This understanding builds 

upon the quotient interpretation, as students must realize that there is “fair sharing” occurring 

(Confrey, Maloney, Nguyen, et al., 2014), and is a stepping stone to understanding fractions as 

operators. Additionally, rates may be seen as reflectively abstracted ratios that emphasize a 

constant multiplicative comparison (Thompson, 1994). This consistency is needed for students to 

comprehend the scaling function of fractions when they are used as operators.  

Another example is shown in Figure 5, which requires students to consider the relative 

amounts of orange and pineapple juice in a punch mixture. In this case, Jamie wants her punch to 

taste more like oranges. This can be accomplished by increasing the ratio of orange juice to  

 

 

Figure 5. Example of a ratio item 



23 

 

pineapple juice. The options presented to the students represent three ways to adjust the flavor 

profile. Option A will yield a punch that tastes the same as the original recipe because both the 

number of cups of orange juice and the number of cups of pineapple juice have been multiplied 

by two. The covariance-invariance property states that this results in an equivalent ratio. Option 

B will result in a punch that has a relatively weaker orange taste than the original because the 

number of cups of orange juice has stayed the same while more cups of pineapple juice have 

been added. The final option (C) is the correct one. This option has more cups of orange juice 

than pineapple juice, making the punch predominantly orange-based. The prompt only said that 

Jamie wanted the orange taste to be stronger than before, however, so other options that result in 

relatively more orange juice but that are still less than or equal to half of the mixture could be 

substituted into the item to increase its difficulty. One such option could be 3:4, which would 

make the mixture 43% orange juice as opposed to 40% in the original recipe. 

Since the part-whole, quotient, and measurement interpretations are all needed to fully 

make sense of fractions as ratios, we have decided to place them fourth in our progression. 

Although ratios are not introduced in the CCSS-M until the sixth grade, (CCSSI, 2010), after 

students have been exposed to concepts surrounding fraction multiplication, we argue that the 

proportional reasoning associated with ratios and rates are essential prerequisites for students to 

actually understand what that multiplication means. This is evidenced by the difficulty that 

students often have deciding whether to multiply or to divide by a rational number in a 

proportional situation (Bell et al., 1989). As Clark and colleagues (2003) stated: 

most of the time, we don’t think of an operator fraction…as a ratio, even though it is 

obviously related to a ratio in that the comparison of the resulting length to the starting 



24 

 

length is a consistent multiplicative relationship for a particular stretcher or shrinker. (pp. 

306-7) 

We, therefore, argue that students must develop an understanding of ratios before they can 

successfully view fractions as operators and use them to find a proportional value.  

Level 5: Fractions as operators 

 The operator interpretation of fractions uses ratios as multipliers to find a proportional 

amount of an original value (Behr et al., 1993; Behr et al., 1983; Kieren, 1980; Lamon, 1999). 

The fraction  
𝑎

𝑏
, acts as a function that takes an initial value, 𝑥1, and returns a value, 𝑥2, such that 

𝑎

𝑏
=

𝑥2

𝑥1
 (Lamon, 1999), which emphasizes the proportional reasoning involved. There are three 

main ways that fractions can be used as operators. First, a fraction may be interpreted as two 

consecutive actions: multiplying by the numerator and dividing by the denominator, though not 

necessarily in that order (Behr et al., 1993). This view is most closely related to the quotient and 

magnitude interpretations because multiplying a value, 𝑐, by 
𝑎

𝑏
 can be seen as dividing 𝑐 by 𝑏 to 

find a unit length and then iterating that unit 𝑎 times by multiplying. This view allows a student 

to continue using the mental framework of multiplication as repeated addition (Son & Senk, 

2010), which has zero as the identity element. The other two options were described by Behr and 

colleagues (1993) as the duplicator/partition and the stretcher/shrinker interpretations. In the 

duplicator/partition view, multiplying an operand by a fractional value results in a new value 

with a different number of units of the original size. They give the example that multiplying by 
3

4
 

would replace four units with three equally-sized units. In the stretcher/shrinker view, the 

number of units remains intact while the size varies, such that when multiplying by 
3

4
, for 
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example, if you began with a number of units of size four, you would end up with the same 

number of units of size three. The operators level of our LP is represented in two of the four 

existing LPs that we identified (level (4) in both Arieli‐Attali & Cayton‐Hodges (2014) and 

Yulia et al. (2019)) and is one of the subconstructs that students are expected to move through in 

Wright’s (2014) LP. 

 One of the key understandings that students need to master in this view is that their old 

rules of thumb for shifts in magnitude do not apply to fractions in the ways they do with whole 

numbers. Students, for example, tend to hold on to their belief that multiplying a number by 

another number will always result in a value that is larger than the original multiplicand and that 

dividing always results in a number smaller than the dividend (Alghazo & Alghazo, 2017; 

Siegler & Lortie-Forgues, 2015). This heuristic serves students well when they need to estimate 

the magnitude of an operation performed with whole numbers, but it may result in an incorrect 

estimation when fractional values are involved. This is because scaling a value with 

multiplication means creating a proportional value, where the base value is a scale-factor of one, 

which requires a significant intellectual shift away from the base value of zero that is used in 

additive reasoning schemes. To use Behr and colleagues’ terminology, the original value is 

“shrunk” if it is multiplied by a fraction less than one and is “stretched” if it is multiplied by an 

improper fraction, which is larger than one.  

 

 

Figure 6. Example of an operator item 
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Misunderstanding the direction of effects of fraction operations indicates that students 

may have simply memorized algorithms and do not yet fully understand what fraction 

multiplication and division mean conceptually. This is likely why students who have not 

mastered the operator conceptualization of fractions tend to have difficulty selecting procedures 

when solving proportion problems that are not simply presented as a symbolic missing value, 

such as 
2

7
=

6

𝑥
. Figure 6 presents one such problem. In this item, three friends are sharing the left-

over quarter of the cake such that they each get 
1

4
∗

1

3
=

1

12
 of the original whole. This item 

requires students to recognize that they need to divide the left-over quarter of the cake into three 

equal pieces, which is the same as multiplying by 
1

3
. Similar items may change the context and 

the proportions involved. A more difficult item may change the information provided such that 

the students are told that each person got 
1

12
 of the total cake and are asked how many friends 

shared the left-overs. 

 

Connections to Pre-existing Learning Progressions 

 Although the pre-existing LPs that we identified earlier have slightly different grain sizes 

and scopes, the levels, once mapped onto the levels we have just defined, do follow the same 

ordering that we have put forth. Table 1 presents the LP levels from each source and the 

fractions-related standards from the CCSS-M mapped onto our LP levels. The only ordering 

discrepancies that we see are in the CCSS-M standards. Specifically, students are exposed to 

ratios and rates for the first time in sixth grade, but they encounter some operator concepts in 

fifth grade. Additionally, there is a quotient-level standard in fifth grade although the students 

began learning measurement concepts in fourth grade. 
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 While all the existing LPs have levels that fit well within our defined levels, they are 

either missing one or more of the conceptualizations Kieren identified or are too focused on 

individual skills for our purposes.  The LP proposed by Arieli‐Attali and Cayton‐Hodges (2014) 

does have conceptually-based levels that cover the big ideas of a unit, fractions as numbers, and 

the additive and multiplicative structure of fractions, but it does not include levels that address 

the Quotient or Ratios understandings. Yulia et al.’s (2019) LP has similar levels. Wright’s 

(2014) LP also has conceptual levels (unit forming, unit coordination, equivalence, and 

comparison), but these levels only cover the Quotient and Measurement conceptualizations of 

fractions.  The last LP (Wilkins & Norton, 2018) focus heavily on individual skills rather than on 

big-picture ideas (e.g., “Reproduce a whole by partitioning and iterating a proper fraction”).
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Table 1. Mapping our LP onto existing LPs 

LP Level CCSS-M (2010) A-A & C-H (2014) Wright (2014) W & N (2018) Yulia et al. (2019) 

Operator 6.NS.1 

5.NF.4-7 

(4) Multiplicative 

structure 

  (4) Operations of 

fractions 

Ratio 6.RP.1-3     

Measurement 5.NF.1-2 

4.NF.1-6 

3.NF.2-3 

(3) Additive 

structure 

(2) Fraction as 

number 

(4) Comparison 

(3) Equivalence 

(4) Reproduce a 

whole by 

partitioning and 

iterating an 

improper fraction 

(3) Reproduce a 

whole by 

partitioning and 

iterating a proper 

fraction 

(3) Comparing 

fractions 

(2) Determining 

fractions with the 

same values 

Quotient 5.NF.3 

3.NF.1 

 (2) Unit coordination 

(1) Unit forming 

(2) Use iteration to 

determine the 

fractional size of a 

unit fraction 

 

Part-Whole  (1) Fractional unit  (1) Produce any 

proper fraction by 

disembedding 

parts from the 

whole 

(1) Fraction as a 

part-whole 

relationship 
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Situating our learning progression 

 The learning progression that we have defined uses a combination of the “cognitive 

levels” and “disciplinary logic and curricular coherence” approaches to LP design, as described 

by Lobato and Walters (2017). Our approach is cognitive in the sense that we identify a series of 

increasingly sophisticated conceptions and in the conjecture that students develop these more 

sophisticated conceptions about fractions over time. This type of LP typically uses cross-

sectional data across several grade levels to help validate this conjecture, which is also the 

approach we take in our use of the i-Ready Diagnostic assessment data. Our approach is also 

based upon disciplinary logic and curricular coherence in that it was “informed by research 

versus being the product of research” (emphasis in original, Lobato & Walters, 2017, p. 87). The 

five conceptualizations of fractions described in the proceeding sections reflect current 

understandings of how students learn about fractions over the span of several grades and are 

highly aligned with the curricular ordering of the CCSS-M. 

 In addition to detailing approaches to the development of LPs, Lobato and Walters also 

describe common methods of validation. We use a construct map approach (M. Wilson, 2004; 

see Table A-1 in the Appendix) in which we attempt to use the results from an item response 

theory model—specifically, the Rasch model (Rasch, 1960)—to support claims about which 

types of items students are more or less likely to answer correctly. In this approach, we 

investigate the extent to which students with stronger overall mathematics performance on the i-

Ready Diagnostic assessment will be more likely to correctly answer items that invoke a more 

advanced conceptualization of fractions. In our LP, the five levels that we have identified are 

ordered to reflect increasingly sophisticated levels of conceptual understanding, which should be 

evident when the difficulty estimates of items written to correspond to each level are compared. 
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We model a student’s conceptual understanding of fractions as a location on a latent continuum 

that is assumed to remain relatively stable as a student is completing assessment items on any 

given occasion, and argue that a person’s location on this continuum can be inferred (with some 

amount of measurement error) through an analysis of their pattern of item responses.  

 

Validation Approach 

 

 In order to empirically test our hypothesized learning progression, we examined the 

relationship between our ordering of the levels of fractional knowledge described in the previous 

sections and the difficulty estimates of the i-Ready Diagnostic items associated with each level. 

Two key features of the i-Ready Diagnostic assessment system allowed us to make these 

comparisons: the vertical scale on which the items written for students at different grade levels 

have been calibrated and the “claims” that Curriculum Associates uses to designate the content 

each item is meant to assess.  

The vertical scale 

When different items are administered to students in different grades, their difficulty 

cannot be compared directly with proportions of correct responses, or even with the result of 

calibrating separate measurement models, because the groups of students being compared are at 

different levels of development in mathematics. Yet, in order to empirically validate this learning 

progression, which spans several grade levels, we needed to determine the difficulty of items that 

were developed for students in different grades in an absolute sense. The i-Ready vertical scale 

facilitates such comparisons. The i-Ready Diagnostic uses Item Response Theory to determine 

student scores and item difficulties such that a student with a scale score of 350, for example, 
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would have a 50% chance of giving a correct answer to an item with a difficulty rating of 350.   

More specifically, Curriculum Associates uses a vertical scale in which scores from assessments 

administered to non-equivalent groups of examinees, such as students in different grades, are 

placed onto a single scale so that, for example, a third grader and a fourth grader with the same 

numeric score on the i-Ready Diagnostic are interpreted as having demonstrated the same level 

of absolute proficiency despite having taken different diagnostic test items (for an overview of 

vertical scaling, see Tong & Kolen, 2010). For the i-Ready tests, this was done by 

administering common items across grade levels, and then using the information about student 

performance on these items to establish a “vertical” scale across grades. Comparisons based 

upon these vertically-scaled item difficulties form the basis of the empirical support outlined 

below. Without vertical scaling, it would not be possible to compare items that appear in 

successive grades by the amount that they differ in their difficulty. 

Curricular ordering and associated item difficulties 

The instructional sequence plays a critical role in any learning progression (Confrey, 

Maloney, & Corley, 2014). In mathematics, ideas tend to build upon themselves, and fractions 

concepts are no exception. While this does not necessarily mean that students must have 

completely mastered all previous concepts and procedures before moving on to more complex 

topics, it does imply that later-learned topics are likely to be more sophisticated and more 

complex than are those that are learned earlier (Confrey, Maloney, & Corley, 2014). Tasks that 

reflect these later concepts are, therefore, likely to be more difficult. In order to confirm this 

empirically, we began by inspecting the relationship between the grade-level ordering of the 

fractions-related lessons in the Ready curriculum, which is highly aligned with the CCSS-M, and 
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the estimated difficulties of the i-Ready Diagnostic items that assess the content covered in those 

lessons.  

 Content experts at Curriculum Associates coded the items in the i-Ready Diagnostic 

assessment system according to the specific content knowledge and skills that students are 

presumed to require to accurately complete the problem. Curriculum Associates refers to these 

codes as anchor claims. We identified 406 fractions items associated with 107 anchor claims. 

The first and third authors independently coded each anchor claim based on which of the five 

fraction conceptualizations from our LP would be most important to understand in order to 

correctly answer an item in that group. Initial agreement was very high, with matches on 101 of 

the 107 (94%) anchor claims, and we discussed the six mis-matched anchor claims until we 

agreed upon a code for each. We had access to the actual bank of items used in the i-Ready 

Diagnostic and confirmed that the items faithfully represented the associated anchor claim.  

If our hypothesized learning progression holds, then we would expect to see students 

being exposed to the less complex conceptualizations in the curriculum associated with lower 

grades and moving through the levels in the order we have specified as they advance into upper 

grades. We examined the lessons in the Ready curriculum and recorded the lesson in which 

students first encountered each anchor claim (see Table 2 for illustrative examples). We then 

labeled the 32  
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Table 2. Illustrative anchor claims and associated Ready Lessons3 

LP Level i-Ready Claim Associated Ready Lesson # of Items 

5. Operator Student represents the division of two fractions as a division expression or 

equation when a verbal description or model is provided, or as a 

multiplication expression or equation when a division expression or 

equation is provided. 

6.7 Divide with Fractions 5 

 Student multiplies or represents the multiplication of a fraction less than 

1 by a fraction less than 1 or a whole number, presented without a real-

world context and/or with the aid of a visual model.  

5.13 Understand 

Products of Fractions 

14 

 

Ratio Student expresses a ratio presented in the form a:b, a/b, described 

verbally, or represented on a visual model in a different form 

6.1 Ratios 7 

Measurement Student adds and subtracts fractions and mixed numbers with like 

denominators) without composing or decomposing wholes or uses visual 

models to represent these problems. 

4.16 Add and Subtract 

Fractions 

11 

 Student recognizes fractions equivalent to a named fraction, using a visual 

model showing two or more equivalent wholes partitioned into different 

numbers of parts (e.g., area models, fraction strips, labeled number 

lines). 

3.16 Understand 

Equivalent Fractions 

8 

Quotient Student expresses a fraction, a/b, as a division expression, a ÷ b, or a 

division expression, a ÷ b, as a fraction, a/b, where a and b are 

represented symbolically, or represented numerically with b > a. 

5.12 Fractions as 

Division 

4 

Part-Whole Student names part of a whole using a fraction (denominator of 2, 3, or 4). 

(All models show equal parts. Area is not mentioned for unit fractions.) 

3.14 Understand What a 

Fraction Is 

12 

 
3 The claims presented in this table are a sample of the claims associated with each of our LP levels. The numerical code in the Associated Ready Lesson column 

is in the format (grade).(lesson number), such that code 6.7 indicates the seventh mathematics lesson in the Ready curriculum for grade six. 
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lessons that we identified in chronological order such that the very first fractions-related lesson 

in second grade was labeled as lesson #1 and the last fractions lesson that a student would 

experience in sixth grade was lesson #32. We then analyzed the association between the lesson 

ordering and the LP levels.  

Results 

 

We find evidence that our learning progression is supported by the ordering of the 

fraction-related lessons in the Ready curriculum and by the difficulties of the items associated 

with each LP level. The scatterplot in Figure 7 shows the LP levels associated with each anchor 

claim in the order in which that content appears in the Ready lessons, with the points scaled to 

indicate the number of anchor claims covered in a given lesson. It is clear that the first fraction 

lessons to appear in the Ready curriculum were associated with the Part-Whole 

conceptualization, followed  
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Figure 7. Anchor claim LP levels by the order in which they appear in the Ready lessons 

by the Quotient, Measurement, Operator, and Ratio conceptualizations. The conceptual focus 

also shifts between the grades such that second grade is Part-Whole only and third grade 

introduces Quotient and Measurement concepts. Fourth grade is mostly Measurement and 

introduces Operator ideas. By fifth grade, students are mostly learning Operator concepts, and 

Ratios are introduced in sixth grade, with Operator ideas still strongly featured. There is an 

upward trend in the regression line shown in Figure 7, which was generated by coding the LP 

levels from 1-5 (part-whole = 1 and operator = 5). Because of the ordinal nature of our analysis, 

we used Spearman’s 𝜌 to examine the association between the LP levels and the lesson ordering 

using this numerical coding scheme. The value of 𝜌 was 0.68. This indicates a fairly strong 

relationship between the levels of fraction understanding that we have defined and the curricular 

ordering of the Ready curriculum. The correspondence would likely be even stronger if Ratios 
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were introduced sooner, as our evidence points to Ratio items being easier than Operation items 

in general despite being introduced later. 

We can see in Table 3 and Figure 8 that the difficulties of the i-Ready assessment items 

associated with anchor claims tend to increase when the conceptualizations are placed in the 

order in which they appear in our LP, with a Spearman’s 𝜌 value of 0.55. The difficulties of the 

items associated with Ratios tend to be much more dispersed relative to those of the adjacent 

Measurement and Operator conceptualizations. It is unsurprising that Ratios would have a wider  

Table 3. Descriptive statistics for the items associated with each LP level 
 Min Q1 Median Q3 Max Mean SD 

Part-Whole 328.0 398.3 419.5 433.5 489.0 418.0 33.3 

Quotient 379.0 431.3 449.5 468.0 531.0 449.3 34.1 

Measurement 415.0 457.0 467.0 481.0 524.0 469.1 21.6 

Ratio 396.0 452.8 479.0 507.0 566.0 476.3 41.0 

Operator 394.0 482.0 498.0 510.0 576.0 493.9 30.8 

 

 

Figure 8. Item difficulties by LP level 
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range of difficulties because of the Part-Whole aspects of this conceptualization, which are more 

similar to the lower-level conceptualizations. It is when the items move into the part-part rate 

ideas that the difficulties increase. This finding also aligns with previous research that has shown 

that students tend to begin building informal understandings of ratios and proportion fairly early, 

but it often takes quite a while for the formal ideas to develop (Bruner et al., 1966).  

 We ran an ANOVA to compare the means of the items in the LP level groups, and found 

that the differences in means were statistically significant [F(4, 401) = 52.27, p < .001]. We then 

used Tukey’s HSD to examine the differences in item means between each pairwise combination 

of LP levels (Table 4). While the means of the Measurement and Ratio items are too close to 

establish a statistically-significant difference, all other pairs of LP levels have statistically 

distinguishable differences between their item means. The very low-difficulty Ratio items  

 

Table 4. Pairwise differences in the item means by LP level 

  Part-Whole Quotient Measurement Ratio Operation 

Part-Whole 0 31.3*** 51.1*** 58.4*** 75.9*** 

Quotient   0 19.8** 27*** 44.6*** 

Measurement     0 7.2 24.8*** 

Ratio       0 17.6** 

Operation         0 

* p < 0.05, ** p < 0.01, *** p < 0.001 

   
associated with Part-Whole understandings likely decreased the mean of the Ratio group of items 

enough to make it indistinguishable from the Measurement mean.  Given that the Ratio level 

spans such a wide range of difficulties and is not distinguishable from other levels, we decided to 

remove it from the LP. 
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Using a Learning Progression for Formative Assessment 

 

Our analyses support the existence of a five-level, course-grained learning progression 

for fractions that, except for the Ratios conceptualization, aligns with the curricular ordering 

found in the CCSS-M (CCSSI, 2010) and in the Ready and the i-Ready curricular programs. This 

suggests that it is possible to use evidence from the large-scale diagnostic assessments that 

teachers are often required to administer to develop an LP that is consistent with existing LPs in 

the research literature that were developed using more locally developed assessments.  

LPs have the potential to serve as powerful assessment tools, as they may be used 

formatively by teachers during their informal interactions with students and in more formal 

classroom assessments that they may create (Clements et al., 2011; Clements & Sarama, 2008; 

Edgington, 2014; Furtak et al., 2014). Our intention in using a large grain-size for the LP was to 

allow teachers to more easily internalize a handful of levels that could serve as guideposts for 

monitoring their students’ progress. Teachers could use the levels of our LP to help them select 

tasks to use during instruction or on informal assessments, as we have provided sample items for 

each LP level and described how item features can be altered to increase or decrease the 

difficulty. This may involve beginning with a more straightforward task and altering task 

features as a lesson progresses to make it increasingly difficult. By using this systematic 

approach, teachers may be able to match what they hear their students saying and what they see 

in students’ written work to the “is able to” and “common errors” sections of Table A-1 in order 

to identify which levels of understanding their students currently hold and which misconceptions 

may be preventing them from moving to the next LP level. These identifications may help 

teachers target future instruction more effectively.    
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There are, however, some conditions that must be met for LPs to be used effectively. 

First, the LP must accurately represent the typical ordering that students experience when 

learning a new concept. In this study we have provided some evidence that this tends to be the 

case for the fractions LP that we have proposed. Second, teachers must be open to learning about 

the LP and how to use it in their classrooms. LPs represent a shift in thinking away from discrete 

facts and procedures and towards a coherent conceptual system, and this often requires teachers 

to “relearn” concepts, which may require substantial amounts of time and energy on their part 

(Furtak et al., 2014; Suh & Seshaiyer, 2015). Third, in order for teachers to effectively use an 

LP, it must be supported by the context in which they work. Furtak and Heredia (2014), for 

example, found that when an externally-developed LP was brought into a school, the teachers 

had a hard time determining how to use it within their school’s accountability system. Finally, 

once teachers have made sense of the LP and become committed to using it, they must 

understand how to take the formative information that they get from their students and use the 

LP to help guide future instruction (Furtak et al., 2014). It is clear that using an LP formatively to 

promote student learning may require a good deal of support in the form of training, time, and 

materials. 

 

Conclusion 

 

 We have put forward a theoretical LP based upon Kieren’s (1976, 1980) five 

conceptualizations of fractions, which begins with viewing fractions as Part-Whole relationship 

and moves on to seeing them as Quotients that equipartition a whole into unit fractions. Next, 

students may see fractions as Measurements that represent a magnitude, which allows them to 

order fractional values and to understand the equivalent fractions that allow for the addition of 
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fractions with unlike denominators. Next, students should come to interpret fractions as 

Operators that take a value and produce a new value that is proportional to the original. This 

progression has been borne out empirically by the steadily increasing difficulty of the items 

associated with these conceptualizations in the vertical scale for the i-Ready Diagnostic exam.  

We had hypothesized a level having to do with ratios and rates, but these types of test items 

spanned a wide range of difficulties and could not be distinguished from adjacent levels. While 

researchers have used IRT with a specific sample of students and items to validate LPs in the 

past (see Lobato & Walters, 2017), our use of an existing vertical scale to investigate relative 

item difficulties across LP levels is a novel approach to this type of work.  

 Our proposed LP is meant to provide a high-level overview of the ways that students 

develop fraction understandings that teachers can use to create and interpret assessments of 

student learning. We also intend to use this LP in the reporting of i-Ready Diagnostic scores by 

mapping the difficulty ranges of each level to student scores on the vertical scale.  This way, 

teachers can use students’ scores on a required interim assessment to get an approximation of 

which level of understanding their students likely hold rather than taking extra time to create and 

administer their own more fine-grained assessment.  We wish to be clear, however, that this 

information is meant to serve as a starting point for further investigation, and Curriculum 

Associates would provide suggested follow-up activities that teachers could use for this purpose. 

The more fine-grained learning progressions that already exist in the literature (e.g., Confrey et 

al., 2019; Confrey, Maloney, & Corley, 2014; Nizar et al., 2017) may also help teachers to get a 

closer look at which aspects of a given conceptualization their students do and do not yet 

understand.  
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Prior research has found that teachers do tend to use LPs as a rough starting point and 

then use more detailed tasks to get more information (Alonzo & Elby, 2019), and this type of 

triangulation is important because “trajectories need to be interpreted stochastically not 

deterministically” (Wright, 2014, p. 651). Confrey (2019) makes this clear with her distinction 

between intra- and inter-level variation. While we expect differences in student performance 

between LP levels (inter-level variation), there is also a fair amount of variation in tasks within a 

given level (intra-level variation). We saw this represented in Figure 8, as each level had a range 

of item difficulties, and there was overlap in difficulties across levels. This means that just 

because a student misses an item associated with the quotient interpretation, that does not mean 

that they will not be able to answer a measurement item correctly.  Similarly, answering an item 

at one level correctly does not guarantee that a student will be able to answer all items at the 

level.  This is a function of relative item difficulties and the situated nature of learning, which 

makes it so that students may miss one item and then answer another item at the same LP level 

correctly if they are presented in different contexts (Alonzo & Steedle, 2008).  

Limitations and Future Directions 

 While or analyses of the Ready curriculum and the i-Ready Diagnostic items appear to 

support a four-level LP for fractions, there are some potential limitations. One possible cause for 

uncertainty in our findings is that 372 of the 406 fractions items (92%) were presented in a 

multiple-choice format. This represents a threat to the validity of our interpretations, as it is 

possible that students could use a lower-level strategy than the one we assigned because these 

items do not require students to explain the reasoning they used to arrive at an answer.  

Furthermore, the items used in the i-Ready Diagnostic were not written with these levels in 

mind.  We simply mapped the content of the items to the descriptions of the levels in our LP.  
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This means that there may be items that were classified as representing aspects of a given level 

that also included other constructs.  This could have caused construct-irrelevant variance and 

skewed the difficulties of some items. 

 Another potential concern is whether our selected grain-size is useful to teachers in the 

way we expect it to be.  Our team will be conducting interviews with teachers who use the i-

Ready Diagnostic, and we intend to ask them whether these four levels make sense to them and 

would be helpful to guide their thinking and classroom practice. 
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Appendix 

Table A-1. Fraction conceptualizations learning progression 

Interpretation Student Characteristics Item Responses 

Operator Understands that: 

• Multiplying a value by a fraction 
𝑎

𝑏
 results in a value 

that is 𝑎-𝑏ths of the original value 

• Understands the difference between multiplying and 

dividing fractions 

Is able to: 

• Use multiplication to find a portion of a value 

• Determine that multiplying a value by a fraction with 

magnitude less than 1 will result in a value with 

smaller magnitude and multiplying by an improper 

fraction will result in a value with larger magnitude, 

and vice versa for division, without performing the 

calculations 

•  Divide a value by a fraction 

Ratio Understands that: 

• Ratios may be expressed in various forms 

(
𝑎

𝑏
, 𝑎: 𝑏,  verbal description, or diagram ) 

• Ratios may represent either part-whole or part-part 

relationships 

• Ratios may represent rates 

• Equivalent ratios may be created by multiplying both 

parts by the same value 

 

May not yet understand that: 

• Multiplying a rate by a value can provide information 

about the overall situation (e.g., if a driver goes 
65 miles

hour
 for 3 hours, they have gone 

65 miles

hour
×

3 hours = 195 miles) 

• The direction of effects for fraction operations are 

not the same as they are for whole numbers 

 

Is able to: 

• Identify part-whole and part-part relationships 

• Move between the various representational forms for 

ratios and rates 

 

Common Errors: 

• Selecting the wrong operation when solving 

problems involving proportional reasoning 

• Indicating that multiplication always results in a 

larger value and that division always results in a 

smaller value 
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Measurement Understands that: 

• Fractions represent unique numerical values 

• Two fractions are equivalent if they represent the 

same numerical value 

• Fractional values can be converted to decimals or 

percentages while maintaining their numerical value 

• Improper fractions may be rewritten as mixed 

numbers and vice versa 

• Fractions with different denominators may be 

compared or added if they are put into the same units 

 

May not yet understand that: 

•  Fractions may be written as ratios and may represent 

part-part relationships or rates 

Is able to: 

• Create and identify equivalent fractions, including 

converting between improper fractions and mixed 

numbers 

• Order fractions and mixed numbers with different 

numerators and different denominators 

• Add and subtract fractions and mixed numbers with 

different denominators 

 

Common Errors: 

• Treating all ratios as part-whole 

• Treating rates as two independent values with 

different units 

Quotient Understands that: 

• Fractional parts must be equal (“fair shares”) but may 

not appear the same 

• The fraction 
𝑎

𝑏
 represents the division of 𝑎 by 𝑏 

• Unit fractions can be iterated to reproduce the 

original whole or part of the whole 

• Dividing the same whole into more parts (larger 

denominator) results in smaller unit pieces 

 

May not yet understand that: 

• A fraction has its own specific value that can be 

uniquely placed on a number line. 

• The same fractional value may be represented in 

multiple ways 

Is able to: 

• “Share” a whole between a specified number of 

groups 

• Identify unit fractions  

• Use unit fractions (
1

𝑏
) to reproduce composite 

fractions (
𝑎

𝑏
), including the whole (

𝑏

𝑏
) 

• Compare fractions with the same numerator and 

different denominators 

• Add and subtract composite fractions with the same 

denominator 

 

Common Errors: 

• Misplacing a fraction on a number line 
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• Incorrectly comparing two fractions with different 

numerators and different denominators 

• Not recognizing improper fractions as valid 

 

Part-Whole Understands that: 

• A fraction represents a specified number of parts out 

of the total number of parts 

 

May not yet understand that: 

• A whole must be partitioned equally 

• All parts of the whole must be used when 

partitioning 

Is able to: 

• Identify the number of specified and total parts in an 

area model or in a described situation. 

• Compare fractions with the same denominator and 

different numerators 

 

Common Errors: 

• Making unequal parts or fail to exhaust the whole 

when attempting an equipartitioning task 

• Treating the numerator and denominator of a fraction 

as unrelated values 
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