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DIF VARIANCE 2

Abstract

When contextual features of test-taking environments di�erentially a�ect item responding

for di�erent test-takers and these features vary across test administrations, they may cause

di�erential item functioning (DIF) that varies across test administrations. Because many

common DIF detection methods ignore potential DIF variance, this paper proposes the use

of random coe�cient hierarchical logistic regression (RC-HLR) models to test for both

uniform DIF and DIF variance simultaneously. A simulation study and real data analysis are

used to demonstrate and evaluate the proposed RC-HLR model. Results show the RC-HLR

model can detect uniform DIF and DIF variance more accurately than standard logistic

regression DIF models in terms of bias and Type I error rates.

Keywords: di�erential item functioning; validity; multilevel models; logistic regression
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Using Hierarchical Logistic Regression to Study DIF and DIF Variance in Multilevel Data

Di�erential item functioning (DIF; Holland & Thayer, 1988; Holland & Wainer, 1993)

is a psychometric framework for studying potential item and test bias based on patterns in

item responses. DIF analyses are widely used both in the test development and validation

processes. An item is said to show DIF if there are systematic di�erences in the likelihood of

answering an item correctly between two or more groups of test-takers, after matching the

groups on the construct being measured by the test. While DIF can be analyzed for tests

measuring a wide range of constructs, the construct being measured is often referred to as

“ability” for shorthand. DIF is problematic because, depending upon the cause of the DIF, it

may invalidate proposed test score interpretations for some test-takers. During test

development, DIF analyses can be used to flag problematic items and to test assumptions of

parameter invariance necessary for the use of item response theory for test scaling and

equating (Hambleton, Swaminathan, & Rogers, 1991). More recently, Zumbo et al. (2015)

described how DIF analyses can be used to study features of the test-taking context that

a�ect item responding, and hence contribute to our understanding of score meaning. In all

cases, DIF analyses provide an important source of validity evidence both to ensure

appropriate test score inferences and test fairness (AERA, APA, & NCME, 2014).

Although large-scale tests are intended to be administered under standardized

conditions, certain test-taking conditions can vary across specific administrations of a test.

Here the term test administration refers to a single instance in which a group of test-takers

completes a test form that will also be taken by other test-takers at other times or locations.

Features of the testing situation in any specific administration of the test, such as the size of

the testing room, the instructions provided by the test proctor, the demographic make-up of

other test-takers, or test preparation activities can vary, even when the test content and

format remain constant. When item response data from multiple administrations of a test

form are collected, there is a hierarchical or multilevel structure to the data, with test-takers
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nested within test administrations. The ecological model of item responding described by

Zumbo et al. (2015) highlights the fact that features of the test administration environment,

and other ecological variables, could systematically a�ect item responses.

If the source of DIF for a particular test item depends on aspects of the testing

situation that vary across administrations, then many common DIF methods may prove

inadequate for detecting and understanding the resulting DIF. Stereotype threat (Steele,

1997), for example, provides one theoretical framework for understanding how and why DIF

might vary across test administrations. Stereotype threat refers to “the social-psychological

threat that arises when one is in a situation or doing something for which a negative

stereotype about one’s group applies” (Steele, 1997, p. 614). Prior studies have documented

that aspects of the testing situation such as framing a test as evaluative of one’s ability

(Steele & Aronson, 1995; Steele, Spencer, & Aronson, 2002) or varying the demographic

make-up of other test-takers (Inzlicht & Ben-Zeev, 2000, 2003) can induce stereotype threat

and subsequently reduce test performance for stereotyped groups. Stereotype threat is thus a

phenomenon that could, in theory, cause DIF between stereotyped and non-stereotyped

groups during some test administrations, but not others. When an item displays DIF that

varies across test administrations, it will be referred to here as “DIF variance.”

Applying models that ignore DIF variance could be problematic for a number of

reasons. First, a model estimating a single DIF statistic will be mis-specified, potentially

resulting in biased parameter estimates or incorrect statistical significance tests. Second,

ignoring heterogeneity in DIF across test administrations could mask important patterns in

item responses, making it di�cult to identify the true source of the DIF, a commonly

encountered problem in practice (Ango�, 1993). Third, framing DIF as a phenomenon that

potentially varies across test administrations highlights the multilevel nature of most test

score data; even if there is no DIF variance, the multilevel nature of the data can still be

modeled appropriately and should lead to more accurately estimated standard errors (e.g.,
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French & Finch, 2010; Jin, Myers, & Ahn, 2014).

To address these concerns, this paper describes how hierarchical logistic regression

(HLR; Hox, 2010) models can be used to quantify and study DIF variance. The next section

provides background on the concept of DIF variance and the subsequent sections describe

how HLR models can be used to extend the standard logistic regression (LR) DIF models to

study DIF variance. A computer simulation evaluating the e�cacy of the HLR model for

detecting DIF variance is then described, and an illustrative real data example demonstrates

how the HLR model can be applied to study DIF between male and female students taking

the same mathematics test at di�erent schools. The final sections summarize results and

discuss potential directions for future work.

Background

Historically, DIF detection methods have been used primarily for test and item

development, and as a reaction to public concerns over test bias such as the widely discussed

Golden Rule case (Anrig, 1987). Zumbo (2007) describes three broad generations in the

development and use of DIF methodology. The first generation focused on studying “item

bias” and was characterized by introducing the initial conceptual distinctions between item

bias, item impact, and DIF. The second generation was characterized by acceptance of these

terms and development of statistical methods to identify DIF, including contingency table

methods such as the Mantel-Haenszel method (Holland & Thayer, 1988), standardized

di�erence method (Dorans & Kulick, 1986), logistic regression (Swaminathan & Rogers,

1990), latent variable models such as item response theory (Meredith, 1993; Millsap, 2011),

and multidimensionality models such as SIBTEST (Shealy & Stout, 1993).

The third (and current) generation is characterized by an expanding array of purposes

for which DIF analyses might be used, such as better understanding examinees’ item
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response processes (Zumbo, 2007). Drawing on the work of Bronfenbrenner and others,

Zumbo et al. (2015) and Zumbo and Gelin (2005) describe an ecological model of item

responding intended to help guide third generation DIF analyses. This ecological model of

item responding seeks to orient researchers’ focus towards “sociological, structural,

community, and contextual variables, as well as psychological and cognitive factors, as

explanatory sources of item responding and hence of DIF” (Zumbo et al., 2015, p. 139). The

ecological model of item responding acknowledges the possibility that factors in the testing

situation might systematically a�ect individual test-takers’ item responses, and that these

e�ects may di�er for di�erent groups of test-takers.

The third generation of DIF can be “characterized as conceiving of DIF as occurring

because of some characteristic of the test item and/or testing situation that is not relevant

to the underlying ability of interest (and hence the test purpose)” (Zumbo, 2007, p. 229,

emphasis original). The key turn here is a consideration of the testing situation as a

potential source or moderator of DIF, in addition to consideration of item and test-taker

characteristics. Millsap (2011) makes a similar point, noting that a focus only on individual

di�erences as sources of bias may “blind investigators to other explanations, such as those

that are environmental, situational, or social in origin” (p. 55). Similar to the example of

stereotype threat above, Millsap provides the example of a researcher administering a

measure of racial prejudice, noting that the race of the researcher administering the survey

may a�ect participants’ responses and the e�ects could di�er across di�erent populations of

participants. As another example, researchers often test for DIF between English language

learners (ELL) and native English speakers; if some schools coach ELL students on strategies

for interpreting complex or ambiguous wordings on test items, DIF variance could

potentially arise across schools if this coaching reduces or eliminates DIF.

In these examples, DIF is a�ected by one or more features of the testing situation and

can be conceptualized as a form of moderated DIF (Zumbo et al., 2015). When DIF is



DIF VARIANCE 7

moderated by features of the testing situation that vary across administrations, this can lead

to DIF variance. Identifying features of a testing situation that can explain variance in DIF

could lead to a better understanding of the mechanism of the DIF, and help to more fully

explain observed variation in item responses. The presence of DIF variance provides evidence

that a feature of the testing situation may be moderating the observed DIF, although it

could also indicate a case in which the DIF is mediated by a third variable that varies

systematically across test administrations. This paper focuses on a method for identifying

the presence of DIF variance, which would be conducted prior to studies attempting to

identify variables that can explain the variance in the DIF. More specifically, the next two

sections describe how the LR DIF detection framework can be extended to quantify and test

for potential DIF variance. The proposed method is then tested with a simulation and

illustrated with a real data analysis.

Logistic Regression DIF Model

LR provides an e�ective method for DIF detection and has the practical advantage

that, as a member of the generalized linear model family (Agresti, 2013), it can be extended

in numerous ways (Zumbo, 1999). To introduce the LR DIF model, assume a test consists of

items scored dichotomously as 1 if answered correctly and 0 otherwise. The LR DIF model

tests whether item performance for one group of test-takers, usually referred to as the “focal”

group (often a particular racial or ethnic minority group, or another relevant group of

interest), di�ers statistically from that of a “reference” group of test-takers, after matching

the two groups on ability. The LR model for detecting DIF in a single item can be

formulated as (Swaminathan & Rogers, 1990; Zumbo, 1999):

ln
A

Pr[Y
i

= 1]
1 ≠ Pr[Y

i

= 1]

B

= —0 + —1xi

+ —2gi

+ —3(xi

◊ g
i

), (1)
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where ln() is the natural logarithm, Pr[Y
i

= 1] is the probability that examinee i correctly

responds to the target item, x
i

is a measure of ability for examinee i, and g
i

is a binary

indicator equal to 1 if examinee i is a member of the focal group and 0 if a member of the

reference group. In a DIF analysis, this model is fit separately for each item. Item subscripts

are removed for clarity of notation. The matching variable x
i

is most often a total score

calculated as the sum of the number of items answered correctly, including the studied item.

In Equation 1, —1 is similar to an item discrimination parameter, while —2 represents a

constant di�erence in item di�culty (i.e., the log-odds of a correct response) between

reference and focal groups, after conditioning on ability. A non-zero value of —2 indicates the

presence of “uniform” DIF because the di�culty of the item di�ers across matched groups by

a constant (i.e., “uniform”) amount. A nonzero value of —3 indicates that the di�erence in

item di�culty between groups changes linearly across the ability distribution and is often

referred to as “nonuniform” DIF (Swaminathan & Rogers, 1990). Note that although a

non-zero —3 term implies heterogeneity of DIF across the ability distribution, the e�ect is

assumed to be fixed across test administrations and hence it does not imply the form of

heterogeneity across test administrations that would be due to DIF variance.

In this paper I consider extensions of the reduced LR model used to test for uniform

DIF that excludes the —3 term:

ln
A

Pr[Y
i

= 1]
1 ≠ Pr[Y

i

= 1]

B

= —0 + —1xi

+ —2gi

. (2)

Testing for DIF proceeds by estimating the parameters of this model for each item separately

(usually using maximum likelihood estimation). Items with statistically significant —2

coe�cients are flagged for DIF.1 In practice, DIF is often assessed using the full model in

Equation 1. The nonuniform DIF term is excluded from the model here to simplify the

current exposition and for consistency with prior studies using HLR DIF models, but the
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framework could be extended to incorporate the nonuniform DIF term in future research.

Hierarchical Logistic Regression DIF Model

When there is a relevant multilevel structure in the data, HLR DIF models that

explicitly incorporate this multilevel structure are recommended (French & Finch, 2010).

Administering a common test form to test-takers at di�erent times or locations creates a

multilevel structure in the data. In the case of state achievement testing, for example, the

same statewide achievement test is administered separately at each school. Each school

would be considered a separate test administration. In the multilevel modeling framework,

these groupings are often referred to as “clusters;” in this case, test-takers would be the level

1 units “nested” within test administrations or “clusters.” Here I assume that the clusters are

observed groupings in the data set and that the same test form was taken by test-takers

across all clusters. The appropriate level of aggregation could vary depending upon the

research questions and hypotheses. For example if one believes that relevant features of the

testing situation vary across the actual rooms in which tests are administered, then each

room could represent a cluster. On the other hand, if one believes there are factors at the

level of the school building (or higher levels of aggregation) that moderate DIF for all

students within that unit, then each of these higher level units would represent a cluster. In

the remainder of the paper, the terms test administration and cluster will be used

interchangeably to refer to the groupings in the dataset across which DIF varies.

Random Coe�cient HLR Model

To quantify potential DIF variance, let there be a set of j = 1, 2, . . . , J clusters

representing J di�erent administrations of the same test. The LR DIF model in Equation 2

can be extended to a 2-level HLR model for each item (again, item subscripts are not shown)

with level 1 equation
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ln
A

Pr[Y
ij

= 1]
1 ≠ Pr[Y

ij

= 1]

B

= —0j

+ —1j

x
ij

+ —2j

g
ij

, (3)

where Pr[Y
ij

= 1] is the probability that student i in cluster j responds correctly to the

studied item, and level 2 equations

—0j

= “00 + u0j

—1j

= “10 + u1j

—2j

= “20 + u2j

,

(4)

where the u•j

are multivariate normal random e�ects with mean 0 and covariance matrix

T =

S

WWWWWWU

·00

·10 ·11

·20 ·21 ·22

T

XXXXXXV
. (5)

This is the same DIF model presented in Equation 2, but the coe�cients are modeled as

random variables that are normally distributed across clusters. This is the most general form

of what will be referred to here as the random coe�cient HLR (RC-HLR) model. In the

simulations and analyses below, further constraints are placed on the T matrix.

The “10 term represents the average item discrimination across clusters, the “00 term

represents the average di�culty of the item for reference group members across clusters, and

the “20 term represents the average uniform DIF across clusters. The ·00 term quantifies the

variance in cluster-specific item di�culty and is similar to the item di�culty variance term

introduced by Prowker and Camilli (2007). The ·11 term quantifies the variance in

cluster-specific item discrimination. The parameter of most interest when studying DIF

variance is ·22, the variance of the cluster-specific uniform DIF coe�cients. The
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cluster-specific deviations from the average DIF, the u2j

terms, represent the di�erence in

performance between focal and reference groups in cluster j, relative to the average

di�erence between focal and reference groups captured by “20. It is possible to constrain one

or more of the terms in T to 0, which constrains the associated coe�cients to be constant

across groups. Constraining all elements of T to 0, for example, results in a model equivalent

to the standard LR DIF model.

Conceptually, the RC-HLR model is similar to fitting separate LR DIF models within

each cluster in a first stage of analysis, and then analyzing the estimated uniform DIF

coe�cients in a second stage of analysis (e.g., to estimate the variance among the

coe�cients). There are a number of potential advantages to using the RC-HLR model rather

than the two-stage approach. First, in many cases the cluster sample sizes may be small,

thus making estimation of separate —2 statistics computationally di�cult or very imprecise.

By modeling the DIF coe�cients as random variables rather than estimating them separately,

the model is more parsimonious and leverages information from all clusters simultaneously.

Subsequent analyses can use Empirical Bayes (EB) or related techniques to obtain predicted

—2j

coe�cients for each cluster that shrink imprecisely estimated DIF coe�cients towards the

overall average. Second, the HLR framework provides a natural way to extend the analyses

by incorporating cluster-level covariates to study potential correlates or moderators of DIF

across clusters. Chen and Zumbo (2017) used an ordinal HLR model to study country-level

variation in DIF between male and female respondents on a reading attitude scale. Using a

cumulative, ordinal HLR model, Chen and Zumbo found evidence that the magnitude of the

gender DIF across countries was related to (i.e., moderated by) two indices measuring the

level of development and gender inequality across countries. Although Chen and Zumbo

included random e�ects in the model, the analysis and interpretation focused only on the

average DIF coe�cient estimates rather than identifying and explaining DIF variance.

As noted above, DIF variance could also arise if the DIF is mediated by an
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individual-level variable that di�ers systematically across clusters, or if the mediation varies

across clusters. Cheng, Shao, and Lathrop (2016) describe the use of multiple-indicator,

multiple-causes (MIMIC) models to study mediated DIF, with a focus on individual-level

characteristics that may partially or completely mediate, and hence explain, an observed DIF

e�ect between focal and reference groups. The RC-HLR model complements the mediated

DIF framework by focusing on variation in the DIF e�ect across test administrations. Once

DIF variance is identified, a mediated DIF MIMIC model could be used to understand the

DIF, but as with standard LR DIF models, individual-level covariates could also be included

directly in the RC-HLR model. Whether to focus on cluster-level covariates or

individual-level covariates that can explain DIF variance would depend primarily on which

research questions were of most interest to the researcher.

Random Intercept HLR Model and Multilevel DIF

French and Finch (2010) recommended using a random intercept HLR (RI-HLR)

model in place of the standard LR DIF model when test-takers are clustered within groups.

The RI-HLR is a constrained version of the RC-HLR model that constrains all elements of T,

except ·00, to 0. Use of the RI-HLR model was motivated by a desire to improve the accuracy

of estimated standard errors used to test for uniform DIF, under the assumption that the

estimated standard errors in a LR DIF model would be too small if the clustering of test

takers was not modeled appropriately, and lead to inflated Type I error rates. Using Monte

Carlo simulations, French and Finch found that the LR and the RI-HLR models performed

similarly when the grouping variable, g, varied within clusters; statistical power for the LR

and RI-HLR models was nearly identical and Type I error rates remained at the nominal

level for both models. When g varied between clusters (rather than within clusters), however,

the LR DIF model had inflated Type I error rates that became higher as the sample size and

intraclass correlation coe�cient (ICC) of item responses increased. The RI-HLR model
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maintained Type I error rates at their nominal levels under these conditions. A subsequent

study (Jin et al., 2014) found similar results, although with lower (but still inflated) Type I

error rates for the LR model in conditions with a grouping variable that varied only between

clusters. The di�erence in results was attributed to di�erences in the data generation

methodology used in each simulation. Specifically, French and Finch manipulated the ICC of

individual item responses, while Jin et al. manipulated the ICC of ◊ (the ability measured by

the test), claiming that this was a more realistic representation of anticipated applications.

As described in Jin et al. (2014), the advantage of the RI-HLR DIF model relative to

the LR DIF model is likely to depend primarily on fl
y

, the ICC of each item response, rather

than fl
◊

, the ICC of ability. Here, fl
y

= ·00/(·00 + ‡2) is the unconditional ICC of the studied

item, where ·00 is the intercept variance for an HLR model with only an intercept (no x or g)

and ‡2 = fi2/3, the variance of the standard logistic distribution (Goldstein, Brown, &

Rasbash, 2002). The most relevant term impacting the LR DIF model is the conditional ICC

of the studied item, fl
y|x,g

= · ú
00/(· ú

00 + ‡2), where · ú
00 is the intercept variance from the

RI-HLR model including x and g. When x and g explain nearly all of the between-cluster

variance in item responses (meaning fl
y|x,g

is near 0), the standard LR and HLR models

should perform similarly. As fl
y|x,g

increases, the RI-HLR model should outperform the

standard LR model. Although these prior studies found that the LR DIF model worked well

when g was a within-cluster variable, neither study considered the case in which the

magnitude of the within-cluster e�ect of g (DIF) varied across clusters. When there is DIF

variance and the e�ect of g varies across clusters, this will tend to further increase fl
y|x,g

,

potentially causing the standard LR DIF model to yield incorrect results. Adding variance to

the e�ect of g causes the RI-HLR model to also be mis-specified and hence may cause the

RI-HLR model to also yield incorrect results despite accounting for the clustering of

test-takers.

This paper focuses on analyses with an observed, within-cluster g (i.e., an
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individual-level characteristic) because these are the types of group variables most frequently

used in DIF analyses for large-scale assessments. When interest instead focuses on DIF due

to a grouping variable that varies only between clusters, sometimes referred to as “cluster

bias” (Jak, Oort, & Dolan, 2013), this would not result in the form of DIF variance

described here. The papers by French and Finch (2010) and Jin et al. (2014) suggest that

RI-HLR models provide one e�ective way to identify these DIF e�ects. See Jak, Oort, and

Dolan (2014) or Jak et al. (2013) for a factor analytic approach to detecting cluster bias.

Alternative HLR DIF Models

Other applications of HLR models for DIF analysis (e.g., Cheong, 2006; Cheong &

Kamata, 2013; De Boeck et al., 2011; Kamata, 2001; Swanson, Clauser, Case, Nungester, &

Featherman, 2002) each di�er in fundamental ways from the RC-HLR model described here.

Using HLR, referred to as a hierarchical generalized linear model (HGLM), to fit an item

response theory (IRT) model (Cheong, 2006; De Boeck et al., 2011) treats item responses as

nested within test-takers and can be used to estimate the equivalent of a Rasch or

1-parameter logistic IRT model. This model has been used to study the e�ect of test context

on DIF in prior analyses (Cheong, 2006), but treating DIF as a fixed rather than a random

variable. The HGLM IRT model requires that a 1PL model fits the data and can face

complexities in model identification when it is used to detect DIF (J.-H. Chen, Chen, & Shih,

2014; Cheong & Kamata, 2013). Swanson et al. (2002) proposed using HLR models to study

variation in DIF across items within a test, rather than within items across clusters. In the

model proposed by Swanson et al., level 1 represents individual examinees while level 2

represents items, allowing researchers to study the relationship between DIF magnitude and

item features, while still assuming that each item has a single, stable DIF coe�cient. The

RC-HLR model described here can be used to study a distinct set of conceptual questions

relative to these prior uses of HLR models.
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Purpose of the Current Study

Use of the RC-HLR model to study DIF variance raises a number of practical

challenges. Unlike linear multilevel models, closed-form solutions for calculating the

likelihood are not available for HLR models, and estimation relies on approximations of the

(log) likelihood (Bolker et al., 2009; Pinheiro & Chao, 2006). Testing the null hypothesis

H0 : ·22 = 0 is complex, and commonly carried out using an approximate likelihood ratio ‰2

test (De Boeck et al., 2011). Use of the RC-HLR DIF model will likely encounter these

issues in a number of ways. Although RC-HLR models should perform well with large

sample sizes, researchers may be working with smaller sample sizes where quality of the

estimates may depend on specific features of the data, such as the level of ICC among item

responses or true ability. Finally, as with other LR DIF models (e.g., DeMars, 2010), the

RC-HLR model is inherently mis-specified in the sense that x, the matching variable,

contains measurement error.

Prior simulation studies have evaluated the performance of RI-HLR and RC-HLR

models (e.g., Austin, 2010; Callens & Croux, 2005; Kim, Choi, & Emery, 2013; Moineddin,

Matheson, & Glazier, 2007; Paccagnella, 2011; Schoeneberger, 2016), although not in the

context of DIF. As Schoeneberger points out, di�erences in model specification, software,

and estimation methods makes it di�cult to draw generalizable conclusions across studies.

This makes it di�cult to predict how adequately the RC-HLR model will perform in

conditions specific to a DIF analysis. In addition, none of these prior studies included

conditions in which the covariates contained measurement error, nor did they appear to

evaluate the performance of approximate ‰2 tests used to test the statistical significance of

the variance components.

The purpose of this study was two-fold. First, using Monte Carlo simulations, to

evaluate how accurately the RC-HLR model can detect uniform DIF and DIF variance
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across a range of conditions. The focus was on bias, Type I error rates, and statistical power

when estimating the RC-HLR model using a widely available routine in the R software

package (R Core Team, 2017). Second, using a real data analysis, to illustrate how the

model can be applied and interpreted. The real data analysis also provides insights regarding

plausible magnitudes of DIF variance researchers might expect to encounter in practice.

Simulation Study

A small Monte Carlo simulation was carried out to evaluate performance of the

RC-HLR model when used to test for DIF in a single item of a 25-item test under a variety

of conditions. The manipulated factors included sample size (number of clusters and number

of test-takers per cluster), ICC of ability, mean di�erence in ability (i.e., “impact”) between

focal and reference groups, di�culty of the target item, and presence of uniform DIF and

DIF variance in the target item. For each condition, a single target item in the test was

systematically manipulated to have di�erent combinations of di�culty, DIF, and DIF

variance. Including conditions where the target item did not have true DIF or DIF variance

allowed Type I error rates to be studied in addition to statistical power. All factors were

included in a fully crossed design resulting in a total of 4 (sample size) ◊ 2 (ICC) ◊ 2

(impact) ◊ 2 (DIF) ◊ 2 (DIF Variance) ◊ 3 (item di�culty) = 192 conditions. All data

generation and analyses were conducted in R (R Core Team, 2017), relying in part on the

SimDesign package (Chalmers, 2018).2

Simulation Conditions

Sample Size. The number of clusters was set at either J = 25 or J = 100 and

sample size per cluster was set at either N = 10 or N = 40. These values were crossed

resulting in 4 conditions that represent a wide range of total sample sizes from 250 to 4,000.
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There were an equal number of focal and reference group students in each cluster for all

conditions.

Intraclass Correlation Coe�cient (ICC) of Ability. To study the impact of

heterogeneity of ability across groups, the ICC of true student ability across clusters was set

at either fl
◊

= 0.05 or fl
◊

= 0.30. These represent a range from low to high based on ICC

values estimated with real test score data (e.g., Hedges & Hedberg, 2007).

Impact. To simulate di�erences in average ability between reference and focal

groups, impact was set at either ” = 0 or ” = 1, corresponding to either no mean di�erence

or a large mean di�erence of 1 standard deviation favoring the reference group.

Target Item DIF. The target DIF item was simulated either to have no uniform

DIF or an average uniform di�erence in item di�culty of 0.6 in the logit metric, so that the

true value of “20 was either 0.0 or -0.6. The condition with 0 average uniform DIF allows

Type I error rates to be evaluated, and the condition with non-zero DIF allows the relative

power and bias of the methods to be compared. The value 0.6 was selected to be comparable

to the values used in prior HLR and LR DIF studies (e.g., French & Finch, 2010; French &

Maller, 2007; Hidalgo et al., 2014; Jin et al., 2014; Jodoin & Gierl, 2001). The target DIF

item had a discrimination of a = 1 in both groups. A DIF magnitude of

b
focal

≠ b
reference

= 0.6 in a 2PL-IRT model corresponds to an area between the item

response curves of 0.6, using Raju’s (1988) formula. Converting this to the Educational

Testing Service (ETS) � scale yields � = 2.35 ú ≠0.6 = ≠1.41, which would be classified as a

B DIF item (moderate DIF), assuming the DIF is significantly di�erent from 0 (Roussos,

Schnipke, & Pashley, 1999).

Target Item DIF Variance. The target DIF item was also manipulated to either

have constant DIF across clusters or non-zero DIF variance across clusters. The true value of

·22 was set to either 0.0 or 0.80. Because prior studies do not exist for comparison of this
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parameter, the value was chosen based on results in the real data analysis.

Target Item Di�culty. Prior studies have found that item di�culty and

discrimination parameters can a�ect the e�cacy of HLR or LR DIF detection (Jin et al.,

2014; Narayanan & Swaminathan, 1996; Rogers & Swaminathan, 1993). The target DIF

item was set to have a di�culty in the reference group of either b
r

= [≠0.75, 0.00, 0.75].

Additional Item Parameters. Item parameters for the remaining 24 non-target

DIF items were held constant and DIF-free across all conditions. These item parameters

were randomly sampled from a set of operational item parameters from a statewide 8th grade

mathematics test (Education, 2016). The items were originally scaled with a 3PL model, but

only the a and b parameters were used in this study. The randomly sampled parameters

were re-scaled to have an average di�culty of b = 0 and average discrimination of a = 1.

Data Generation

For each condition defined by a combination of the above factors, 200 replications of

data were simulated. In each replication, true ability values ◊
ij

were generated for each

simulated examinee i in cluster j. To induce an ICC of fl
◊

, random normal deviates

e
ij

≥ N (0, (1 ≠ fl
◊

)) were simulated for each examinee and combined with normally

distributed cluster random e�ects µ
j

≥ N (0, fl
◊

), so that the distribution of ◊
ij

was

standardized with a marginal mean and variance of 0 and 1. To simulate non-zero group

impact of ”, the e
ij

values were simulated with mean ”/2 for the reference group and ≠”/2

for the focal group, and the variance of e
ij

was set equal to 1 ≠ fl
◊

≠ (p
ref

ú (1 ≠ p
ref

) ú ”2),

where p
ref

is the proportion of students in the reference group (fixed to 0.5 in all conditions),

to maintain the population mean and variance of ◊
ij

at 0 and 1. This simulation procedure

amounts to randomly sampling N
j

students from each of J randomly sampled clusters in

each replication.
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Item responses were simulated based on a 2PL-IRT model (Embretson & Reise, 2000).

The probability that examinee i in cluster j answers item k correctly, denoted p
ijk

,

conditional on ◊
ij

, item discrimination a
k

, item di�culty b
k

, and cluster-specific DIF

(“20k

+ u2jk

), and group membership indicator g
ij

(g
ij

= 1 for focal group and 0 for reference

group) is

p
ijk

= exp (a
k

ú (◊
ij

≠ b
k

≠ g
ij

ú [“20k

+ u2jk

]))
1 + exp (a

k

ú (◊
ij

≠ b
k

≠ g
ij

ú [“20k

+ u2jk

])) . (6)

Item responses y
ijk

for each examinee and each item were simulated by generating an

independent uniform variable z
ijk

on the interval [0, 1] and setting

y
ijk

=

Y
___]

___[

1, if z
ijk

< p
ijk

0, if z
ijk

Ø p
ijk

. (7)

Model Specificaion and Estimation

For each replication of each condition, the target DIF item was tested for significant

average uniform DIF and DIF variance. Three models were used to test for average DIF: the

standard LR DIF model, the RI-HLR model with no random coe�cients, and the RC-HLR

model with ·00 and ·22 freely estimated and all other elements of T constrained to 0. A

Wald statistic based on the estimated standard error was used to test the null hypothesis of

no DIF for each of these three models. The LR DIF models were estimated using the glm()

function in R while the RI-HLR and RC-HLR models were estimated using the glmer()

function in the lme4 package (Bates, Mächler, Bolker, & Walker, 2015), using the Laplace

approximation to the likelihood. The standardized total score across all items, centered at

the grand mean, was used as the matching variable in all models. The group indicator was

set to 0 for members of the reference group and 1 for members of the focal group.
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The RC-HLR model was also used to test for DIF variance in the target item. To test

the null hypothesis that DIF variance was 0, H0 : ·22 = 0, an approximate likelihood ratio

test was used. This test was constructed by fitting both the RC-HLR model and the reduced

RI-HLR model that constrains ·22 = 0. Letting LL0 be the approximate log-likelihood of the

reduced model and LL1 be the approximate log-likelihood of the full model, an

asymptotically ‰2 statistic can be constructed as � = ≠2 ln (LL0/LL1). This statistic can be

compared to a 50:50 mixture of a ‰2 distribution with 0 and 1 degrees of freedom to adjust

for the fact that the null hypothesis value of 0 for ·22 is on the boundary of the parameter

space, because it is required that ·22 Ø 0 (De Boeck et al., 2011).

If either the LR, RI-HLR, or RC-HLR model failed to converge in a given replication, a

new sample of data was generated.3 This was repeated as necessary to achieve 200

replications for which all three models converged in each condition so that all models could

be compared in each condition. The number of attempted replications needed in order to

obtain 200 replications with convergence of all three models was recorded to indicate

conditions for which convergence may be problematic in practice. The nominal Type I error

rate was set at – = 0.05 for all tests. If the true proportion of Type I errors is p = 0.05, then

observed Type I error rates with a sample size of n = 200 should be within

±2
Ò

p(1 ≠ p)/n ¥ 0.03 approximately 95% of the time. Type I error rates were considered

acceptable if the observed Type I error rate remained at or below 0.08. This is also similar

to the recommendation of Bradley (1978) that a statistical test be considered robust if it

maintains Type I error rates within ±0.5 ú –, where – is the nominal –-level.

Results

There were two primary sets of outcomes of interest: accuracy of hypothesis tests and

point estimates for the average uniform DIF coe�cient, “20, across models, and the accuracy

of hypothesis tests and point estimates for the DIF variance term, ·22, using the RC-HLR
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model. Convergence results and patterns of item-level ICC’s (fl
y

and fl
y|x,g

) were also

recorded.

Convergence and Observed ICC’s. The standard LR model converged in all

replications. The RI-HLR model failed to converge in only 0.11 percent of replications. The

RC-HLR model failed to converge in 9.21 percent of replications. Achieving 200 replications

for which all three models converged required generating anywhere from 201 to 296 (and an

average of 218.42) total replications across conditions, with higher rates of non-convergence

for the RC-HLR model in conditions in which the target item was easy, had no true average

uniform DIF, and had non-zero DIF variance. With no DIF variance, the average

unconditional ICC’s (fl
y

) of the target item were 0.010 and 0.055 when the ICC of ability

was 0.05 and 0.30, respectively; with non-zero DIF variance, the average unconditional ICC’s

were 0.036 and 0.082, respectively. The average conditional ICC’s (fl
y|x,g

, estimated from the

RI-HLR model) were 0.007 and 0.044 for conditions without and with DIF variance,

respectively. This suggests that unconditional item ICC’s were a�ected by both DIF variance

and the ICC of ability, while the conditional ICC was a�ected primarily by the DIF variance.

Type I Error Rate of Average Uniform DIF Test. Figure 1 displays Type I

error rates for the test of average uniform DIF across all models and conditions in which the

true average uniform DIF was 0. Within each panel of Figure 1, each shaded bar represents

the observed Type I error rate for a particular model and sample size combination. Each bar

represents 200 replications and conditions in which Type I error rates were greater than 0.08

are indicated with a “*” printed above the bar. Type I error rates were primarily a�ected by

the presence of DIF variance and sample size. When there was no DIF variance, all three

models maintained accurate Type I error rates with only one exception (with J=25 clusters

of size N=10, there was one condition for which Type I error rates for the LR and RI-HLR

models were slightly inflated at 0.09).

When the studied item included DIF variance, Type I error rates could become



DIF VARIANCE 22

substantially inflated for the LR and RI-HLR models. Both models had similar Type I error

rates. Table 1 summarizes observed Type I error rates by DIF variance condition, sample

size, and model. Type I error rates were above the 0.08 cuto� in 39 out of the 48 conditions

for both the LR and RI-HLR models, and were higher in conditions with larger sample sizes.

In the largest sample size condition, Type I error rates were as high as 0.380 for the LR

model and 0.365 for the RI-HLR model. Type I error rates for the RC-HLR model were

inflated for a smaller number of conditions (7 out of the 48 conditions), but the average

Type I error rates were much lower; the highest Type I error rate for the RC-HLR model was

0.090. In the largest sample size condition, the average observed Type I error rate of the

RC-HLR model was 0.056, while it was 0.260 and 0.265 for the LR and RI-HLR models,

respectively. The ICC of ability and mean di�erence of ability did not have large e�ects on

the Type I error rates, while the di�culty of the target item had a small e�ect (Type I error

rates were slightly higher when the target item was very easy or very di�cult).

To further understand the inflated Type I error rates, the standard error ratio in each

condition was computed as the average estimated standard error divided by the observed

standard deviation of the estimated DIF coe�cient across all 200 replications. When there

was no DIF variance, the estimated standard errors were similar in magnitude to the

observed empirical standard errors for all models and all conditions. The average ratios for

the LR, RI-HLR and RC-HLR models were 0.998, 0.997, and 1.009, respectively, ranging

from a minimum of 0.906 (for the LR model) to 1.130 (for the RC-HLR model). When there

was DIF variance in the target item, the estimated standard errors remained similar to the

empirical standard errors for the RC-HLR model, although they were slightly too small. The

average standard error ratio across all conditions with DIF variance for the RC-HLR model

was 0.977 (Min=0.872, Max=1.130). For the LR and RI-HLR models, the standard errors

were substantially underestimated, particularly with larger sample sizes. The average

standard error ratio for the LR model was 0.797 (Min=0.621, Max=0.984) and for the

RI-HLR model was 0.791 (Min=0.613, Max=0.966). This indicates substantial
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underestimation of the sampling error in the average uniform DIF coe�cient, a widely

recognized problem in models that do not adequately account for clustering in multilevel

data (e.g.; Hox, 2010).

Power of Average Uniform DIF Test. The test of average uniform DIF was

considered accurate and su�ciently powered if: a) Type I error rates for the same condition

(without average DIF) were not inflated, and b) observed power achieved a level of 0.80 or

greater. Table 2 summarizes the mean, median, minimum, and maximum statistical power

by DIF variance condition and model. The values N0, N1, and N2 represent, respectively,

the total number of conditions summarized in each row, the number of conditions with

observed power greater than 0.80, and the number of conditions with observed power greater

than 0.80 and Type I error rates less than or equal to 0.08. With no DIF variance in the

target item, all models performed similarly and statistical power was above 0.80 for all but

the smallest sample size condition (J=25 and N=10), for which power reached a minimum of

0.405 for the RC-HLR model and 0.425 for the LR and RI-HLR models.

Figure 2 shows the statistical power for the test of average uniform DIF for all

conditions with true DIF variance. As in Figure 1, conditions for which Type I error rates

were inflated above 0.08 are indicated with a “*” printed above the bar and should be

interpreted cautiously. Figure 2 shows that statistical power was similar for all three models

and varied primarily as a function of sample size. Ignoring incorrect Type I error rates,

Table 2 shows that power was slightly lower for all three models relative to conditions with

no DIF variance, and average power for the RC-HLR model was slightly lower than power

for the LR and RI-HLR models. Although the LR and RI-HLR models had observed

statistical power greater than 0.80 in 30 of the 48 conditions with DIF variance, relative to

25 such conditions for the RC-HLR model, the LR and RI-HLR model only correctly

controlled Type I error rates in three of these conditions. The RC-HLR model, however,

maintained correct Type I error rates and had high power in 22 of the 48 conditions. For the
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two conditions with equal total sample size of 1000, power for the RC-HLR model tended to

be greater with in the conditions with more clusters (J=100 and N=10) rather than more

students per cluster (J=25 and N=40).

Bias of Average DIF Estimate. Figure 3 summarizes the bias in estimated DIF

coe�cients across DIF conditions, target item di�culty, and model. Each boxplot

summarizes the bias in estimated DIF for 16 di�erent conditions for a single model. Each

column presents results for a di�erent model, while the rows indicate di�erent combinations

of average DIF and DIF variance. All models yielded nearly unbiased estimates of average

uniform DIF when there was no DIF variance. When there was DIF variance, the RC-HLR

model continued to produce nearly unbiased estimates of average uniform DIF, while there

was systematic bias in the average uniform DIF estimates produced by the LR and RI-HLR

models. The bias for the LR and RI-HLR models varied primarily as a function of the target

item di�culty and average uniform DIF. Due to the coding of focal and reference groups,

positive bias indicates overestimating the relative advantage for the focal group while

negative bias indicates overestimating the relative advantage for the reference group. When

there was no true average uniform DIF, the LR and RI-HLR models had negative bias when

the target item was easy and positive bias when the target item was di�cult. When true

average DIF was present, the relative pattern of the bias was similar, but shifted upwards,

with almost no bias when the target item was easy, and larger positive bias when the target

item was di�cult. Because the true average DIF was -0.6 in these conditions, the LR and

RI-HLR models tended to underestimate the magnitude of the DIF favoring the reference

group.

Type I Error Rate, Power, and Bias of DIF Variance. Figure 4 displays

significance rates (Panel A) and bias (Panel B) of the estimated DIF variance parameter ·22.

The left portion of Panel A displays Type I error rates while the right portion displays

statistical power. Because results varied primarily as a function of sample size, each boxplot
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summarizes the results for 48 conditions of the indicated sample size and DIF variance

condition. Type I error rates (displayed in the left portion of Panel A) were always

maintained at or very close to the nominal level of 0.05 (indicated by the horizontal dashed

line); the highest observed Type I error rate was 0.055. The test of DIF variance tended to

be conservative, with an overall average Type I error rate of 0.017. Statistical power (shown

in the right portion of Panel A) was low in the smallest sample size conditions (Mean=0.305,

Min=0.215, Max=0.375), but generally above 0.80 for all other sample size conditions.

Unlike the test for average DIF, for equal total sample sizes of 1000, power was higher in

conditions with larger within-cluster sample sizes (J=25, N=40) than for conditions with a

larger number of clusters (J=100, N=10).

Regarding accuracy of the DIF variance estimates, the left portion of Panel B shows

there was positive bias in the estimated DIF variance for conditions in which the true DIF

variance was 0. This was not an unexpected result, and occurs because the estimated DIF

variance must be greater than or equal to 0. The positive bias decreased as sample size

increased. The right side of Panel B shows bias when the true DIF variance was 0.80, and

indicates there was negative bias in the estimated DIF variance that decreased as sample size

increased. In the smallest sample size condition, the average bias was -0.133, meaning the

DIF variance was underestimated by approximately 16.6%. As with statistical power, for

equal total sample sizes of 1000, more accurate estimates of the DIF variance were obtained

in conditions that had larger within-cluster sample sizes rather than larger numbers of

clusters. Decreasing bias as within-cluster sample size increases is consistent with with prior

results for variance components estimated in HLR models using the Laplace approximation

(e.g., Joe, 2008). In the largest sample size conditions, average bias was -0.038, or

approximately 4.7% of the true value.
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Real Data Example

Data and Methods

To demonstrate application of the RC-HLR DIF model to real data, a DIF analysis

was conducted using data from a high school mathematics test. The data are based on

responses to a 27-item mathematics test form administered to a national sample of 10th

graders as part of the Education Longitudinal Study of 2002 (Ingels et al., 2004). All items

were scored dichotomously as correct/incorrect. The sample of all students completing the

test was reduced to students who had non-missing data for student gender (male or female)

and school identifiers, completed the full in-person questionnaires and achievement tests on

the scheduled testing date, answered at least half of the questions on the test form, and had

at least 10 students at their school complete the test form. Due to these sample restrictions,

this sample is not necessarily representative of the national 10th grade population of

students. Data were obtained from a restricted-use data license provided by the National

Center for Education Statistics (NCES), and all sample sizes are rounded to the nearest 10

to comply with NCES reporting requirements.

The final sample included data for 850 students (470 male and 380 female) across 70

schools. Male students answered slightly more questions correctly (Mean=12.5, SD=4.5)

than female students (Mean=11.4, SD=4.0). The ICC of observed total scores across schools

was approximately 0.126. The average unconditional ICC of the items responses was

fl̄
y

= 0.077 and the average conditional ICC was fl̄
y|x,g

= 0.066 (see Table 3 for all values).

These values are similar to those observed in the simulated item responses with DIF variance

above and those reported by Jin et al. (2014) when generating data from a 2PL IRT model

with a non-zero ICC of true ability. This suggests there may be some benefit to the use of

HLR DIF models over LR DIF models for these data.

Average uniform DIF between male and female students was tested for each item using
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the same procedures for the LR, RI-HLR, and RC-HLR models as described above in the

simulations. DIF variance was estimated with the RC-HLR model. The matching variable

was the observed total score (centered at the grand mean and scaled to have a standard

deviation of 1) and the grouping variable was a binary indicator for student gender equal to

1 if a student was female and 0 if a student was male. The hypothesis tests were carried out

with a nominal – = 0.05.

Results

Table 3 displays the estimated DIF coe�cients for the LR, RI-HLR and RC-HLR

models, the estimated DIF variance based on the RC-HLR model, the unconditional and

conditional ICC for each item, and the overall proportion correct for each item. Significant

average uniform DIF coe�cients and DIF variance estimates are indicated with a “*”.

Results are sorted based on the magnitude of the estimated LR uniform DIF coe�cient to

facilitate interpretation. Negative DIF estimates indicate items that favor male students,

while positive estimates indicate items that favor female students. The RC-HLR model did

not converge for 4 items. For three of the items (items 3, 15, and 22) the estimated DIF

variance at the final iteration was very close to 0, and the results for these items are based

only on the LR and RI-HLR model that constrains DIF variance to 0 (i.e., these items are

assumed to have no DIF variance). The fourth item (item 10) was re-estimated using an

RC-HLR model that allowed a non-zero covariance between random intercepts and random

DIF coe�cients.

Using the LR model, 10 of the 27 items would be flagged as potentially having DIF.

Using the RI-HLR and RC-HLR models, seven and five items were flagged, respectively, and

these were subsets of the original 10 flagged items. The direction of DIF was the same across

all three models, and the absolute magnitude of the DIF estimates tended to be similar or

slightly larger for the RC-HLR model. Of the five items flagged for DIF by the RC-HLR
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model, two were also flagged as having significant DIF variance. Four additional items not

flagged for average DIF by the RC-HLR model (including one not flagged for average DIF by

any model) were also flagged for significant DIF variance. The items flagged for DIF

variance had a range of proportion correct values from 0.244 (item 11) to 0.789 (item 1).

With a nominal – = 0.05, one would expect to flag only 1-2 items (out of 27) for DIF or DIF

variance by chance.

These results suggest there may be heterogeneity in the observed DIF for six of the

items in this test. Specifically, half of the 10 items that would be flagged by a standard LR

DIF analysis as having uniform DIF, and one additional item not flagged by the LR model,

displayed evidence of DIF variance that requires further consideration. Item 11, for example,

had an estimated DIF coe�cient of -1.084 (using the RC-HLR estimate), but the estimated

standard deviation of DIF across schools was 0.977 =
Ô

0.955. If the DIF coe�cients are

normally distributed (an assumption of the RC-HLR model), then approximately 15% of

schools would be expected to have uniform DIF one standard deviation or more below the

estimated value of -1.084, corresponding to a DIF coe�cient of -2.061, a very large DIF

estimate. On the other hand, approximately 15% of schools would be expected to have DIF

coe�cients one standard deviation or more above the mean value, corresponding to -0.107, a

negligible amount of DIF. The logistic regression DIF coe�cient can be converted to the

ETS � scale by calculating �̂ = 2.35 ú —̂2 (Monahan, McHorney, Stump, & Perkins, 2007);

note this expression is the negative of that used by Monahan et al. due to a di�erence in

coding the focal and reference groups. The results suggest that across di�erent schools this

item could have either small (category A) or large (category C) DIF. These represent

extremes from very unequal to not substantially di�erent performance, and indicate that

summarizing the item DIF with a single average statistic may not adequately capture the

patterns in item responding.

These results also display patterns consistent with the simulation results. The greater
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number of items flagged for DIF with the LR and RI-HLR models is consistent with the

inflated Type I error rates and these may represent false positives. The items flagged for

both average DIF and DIF variance by the RC-HLR model (items 1 and 11) had larger

absolute average uniform DIF estimates from the RC-HLR model than from the LR or

RI-HLR models. Finally, the Pearson correlations between estimated DIF variance

(excluding items for which DIF variance was constrained to be 0) and fl
y

and fl
y|x,g

across

items were 0.612 and 0.622, respectively. This further suggests that the magnitude of fl
y

and

fl
y|x,g

may be good initial indicators of DIF variance.

In practice researchers would need to decide which set of model estimates to interpret.

Based on the simulation results and empirical analyses, a two-step modeling approach could

be used. First, the full RC-HLR model would be used to test for significant DIF variance. If

there is evidence of DIF variance, then results from the RC-HLR model should be used. If

there is no evidence of DIF variance, then researchers must select between either the RI-HLR

or LR DIF models. The simulations above and prior studies (French & Finch, 2010; Jin et

al., 2014) suggest that when there is no DIF variance and the DIF grouping variable is a

within-cluster variable, both the RI-HLR and LR DIF models should yield accurate

parameter estimates and hypothesis tests. The results in Table 3 indicate that the LR model

flags two items (21 and 14) for DIF that the RI-HLR model would not flag and that do not

show DIF variance. This result is consistent with the concern that the LR model may

underestimate the standard errors of the DIF coe�cient when there is a multilevel structure

in the data. Hence the RI-HLR model is likely the more appropriate (and also more

conservative) model to interpret when there is no evidence of DIF variance, but there is a

relevant multilevel data structure. As discussed below, future research should also investigate

potential e�ect size criteria that could be included to complement the significance tests used

to identify and interpret DIF.
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Discussion

This paper described how RC-HLR models can be used to quantify and test for DIF

variance, an indicator that item DIF varies across test administrations. A simulation study

was used to evaluate how well the RC-HLR model works for this purpose across a range of

conditions, and an empirical example was used to demonstrate the use and interpretation of

HLR models for this purpose. The simulation results suggest the RC-HLR model is a

promising approach to further our understanding of DIF and the empirical analyses found

evidence of variance in the DIF between male and female students across schools, indicating

a potential avenue for future investigation.

The simulations documented that when the average uniform DIF was 0 but there was

nonzero DIF within some clusters, Type I error rates for the standard LR or RI-HLR models

could become substantially inflated. The inflated Type I error rates tended to increase with

sample size, particularly as the within-cluster sample size increased. The RC-HLR model

substantially reduced these false positive rates and generally maintained Type I error rates at

their nominal levels. For the DIF conditions studied here, the RC-HLR model had statistical

power that was only slightly lower than the power observed for the LR and RI-HLR models.

These results suggest that when there is DIF variance, the RC-HLR model trades a slight

reduction in statistical power for a substantial increase in the number of conditions with

both adequate power and correctly controlled Type I error rates. When there was no DIF

variance, all three models had very similar Type I error and statistical power rates.

The inflated Type I error rates in this study are di�cult to compare to prior DIF

simulations, which did not include DIF variance. The within-cluster group condition used by

French and Finch (2010) and Jin et al. (2014) were similar to the conditions in this

simulation without DIF variance, and hence the finding of correct Type I error rates across

all models replicates earlier studies. The lack of e�ect of the ICC of ability on Type I error
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rates was likely because after conditioning on x and g, there is little remaining

between-cluster variation in item responses (e.g., Jin et al., 2014). The conditions with DIF

variance di�er fundamentally from both the within-cluster and between-cluster conditions

used in earlier studies, in which the DIF was modeled as a constant e�ect of g. When the

magnitude of the DIF varies across clusters, conditioning on a fixed g alone cannot correctly

account for the structure of the data, and as a result even the RI-HLR models can have

inflated Type I error rates. Finally, although it was anticipated that mean di�erences in

ability might a�ect Type I error rates, this was not found. The lack of e�ect of mean

di�erences in ability is consistent with prior studies in which there was only a single DIF

item on a test (e.g., Hidalgo et al., 2014).

One could argue that in cases with zero average uniform DIF but non-zero DIF

variance, flagging an item as having DIF is not a false positive, because in some

administrations (clusters) the magnitude of the DIF is non-zero. In these cases, however,

researchers would falsely conclude from using an LR or RI-HLR model that the overall e�ect

of the DIF was unidirectional and would fail to identify the heterogeneity in the DIF across

administrations. If an item has characteristics that lead to heterogeneity in DIF across

administrations, but researchers are searching for an item characteristic that could explain a

consistent unidirectional DIF magnitude, this could be an additional reason for the common

occurrence of finding significant DIF that has no clear cause or explanation (Ango�, 1993).

In addition to incorrectly flagging items as having non-zero average uniform DIF,

failing to model the DIF variance can also lead point estimates of DIF to be inaccurate. In

the simulation, DIF favoring the reference group was underestimated for di�cult items and

overestimated for easier items when there was DIF variance. To gain intuition into this

result, consider a very di�cult test item. If there is true DIF variance in this item across

administrations, the proportion of focal group students answering the item correctly in

administrations with positive DIF (favoring the focal group) will tend to be relatively higher,
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and in some cases this increase could be substantial. In administrations with negative DIF

(favoring the reference group) the proportion of focal group students answering the item

correctly will decrease, but if the item is already very di�cult the magnitude of the decrease

is bounded within a smaller range. On average, di�cult items will tend to look relatively

easier for the focal group, while the opposite phenomenon can occur for easier items.

Finally, the simulations documented that the approximate likelihood ratio test used for

DIF variance had adequate power for moderate to large sample sizes and should yield point

estimates of the variance accurate enough to support further study. As expected, estimates

of DIF variance were slightly positively biased when the true DIF variance was 0, but

estimates were flagged as statistically significant at or below the nominal – level. Although

there was negative bias in estimated variances when the true variance was non-zero, the

relative magnitude of the bias was small and decreased as sample size increased (particularly

within-cluster sample size), consistent with prior simulation studies evaluating HLR models

estimated using a Laplace approximation (e.g., Austin, 2010; Joe, 2008; Paccagnella, 2011;

Schoeneberger, 2016).

The empirical data analysis provided evidence of DIF variance in the studied items and

indicated that the LR and RI-HLR models may be incorrectly flagging items for average DIF

or inaccurately estimating the magnitude of the DIF. An important next step would entail

following up the DIF analyses to better understand whether there are relevant features of the

school contexts, such as instructional practices or features of the test-taking session, that can

explain the variation in DIF coe�cients. There are a few approaches that could be used for

such analyses. First, one could systematically search for common characteristics among the

items displaying significant DIF variance to better understand which types of items are

displaying DIF variance. Second, the RC-HLR model could be extended to include

cluster-level covariates to determine whether these covariates are correlated with the

magnitude of the DIF coe�cient in each cluster. This latter option represents a more
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confirmatory approach to studying DIF variance. While these analyses would not necessarily

allow for causal inferences about DIF, they could provide suggestive evidence for potential

cluster-level moderators of DIF. The RC-HLR model, and the LR framework for DIF more

generally, also allow one to include additional covariates at the cluster or individual level,

and coould potentially be used to explore DIF mediators as well (Cheng et al., 2016).

Limitations

As with any simulation study there are important limitations and next steps to

highlight. These include model estimation techniques, use of e�ect sizes for flagging items,

generalizability of the simulation conditions, and extensions of the RC-HLR framework. In

the simulation, the covariance term between the random intercept and random DIF

coe�cient were constrained to 0 (to match the data generating procedure), but convergence

problems remained for some conditions and in the real data analysis. It thus may be worth

evaluating alternative model specifications and estimation algorithms. This could include

comparing the results to other software packages or to the use of Bayesian estimation

frameworks that incorporate prior distributions, and which may overcome some of the small

sample problems encountered.

Incorporating e�ect sizes into the criteria for flagging DIF items would be a useful

extension that could potentially mitigate inflated false positive results and avoid overreliance

on significance tests. This study did not use an e�ect size criteria because there is little

consensus about the optimal e�ect size criteria to use even in standard LR DIF models (e.g.,

French & Maller, 2007; Hidalgo et al., 2014; Jodoin & Gierl, 2001; Zumbo, 1999). Use of an

e�ect size criteria for flagging practically significant DIF variance will require further study

regarding the typical amount of DIF variance found in practice. The use of a purification

strategy to purify the matching score prior to flagging items is another factor that could be

investigated. Although the simulation conditions were carefully selected to include scenarios
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that could be commonly encountered (and were similar to the real data conditions),

evaluation of additional factors, including a wider range of sample sizes, DIF variance

magnitudes, uniform DIF magnitudes, and proportion of DIF items would help to inform

future use of the RC-HLR model. These additional conditions were not included in this

study in order to maintain focus and a manageable number of results. Finally, extensions to

the RC-HLR model could be explored, including the use of random coe�cients on the

discrimination paramters and the inclusion of nonuniform DIF coe�cients.

The real data analysis provided an example of the RC-HLR applied in practice and

suggested that there may be scenarios in which DIF variance is a relevant concern. Future

analyses could focus both on evaluating whether there is evidence of DIF variance in

additional settings and on determining which (if any) cluster-level variables may be able to

explain this DIF variance. The correlation between DIF variance and the item ICC’s

suggests that estimating the unconditional and conditional ICC’s may be a good initial

indicator of DIF variance that researchers can use when planning a DIF analysis.

Conclusion

The proposed application of RC-HLR models to study DIF variance is intended to

provide researchers with a new method for quantifying and understanding heterogeneity in

item responding across test administrations. The RC-HLR model can potentially improve

test fairness by more accurately identifying and quantifying uniform DIF and by providing a

method for quantifying DIF heterogeneity. By directly modeling both the manifest DIF

grouping variable and the observed clustering of test-takers within test administrations, the

RC-HLR model provides a complement to prior HLR DIF models and to other methods for

studying DIF heterogeneity, either within manifest DIF groups (Cheng et al., 2016; e.g.,

Oliveri, Ercikan, & Zumbo, 2014) or across unobserved strata (i.e., latent classes; Oliveri,

Ercikan, Zumbo, & Lawless, 2014; Zumbo et al., 2015). The RC-HLR model provides an
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additional tool that researchers can use to articulate and evaluate a wider range of test score

interpretations, with a particular focus on identifying cases where features of the testing

situation might moderate DIF as conceptualized by the ecological model of item responding

(Zumbo et al., 2015).
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Footnotes

1There are a number of practical considerations, including whether to purify the matching variable with an

iterative procedure that removes DIF items from the calculation of x (French & Maller, 2007), whether to use

an e�ect size indicator to flag items that have both “statistically” and “practically” significant DIF (Hidalgo,

Gomez-Benito, & Zumbo, 2014; Jodoin & Gierl, 2001; Zumbo, 1999), and the exact form of statistical test

used to test H0 : —2 = 0 (Paek, 2012). Because there is not a single consensus view in the field regarding

which choices to make for these di�ering options, this paper will focus on a baseline approach that uses all
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items (including the studied item) when calculating x and bases the flagging of DIF items on the statistical

hypothesis test that —2 = 0.

2All simulation code and analysis files, including detailed tables of results for all conditions, are available

upon request from the author.

3The default glmer() tolerance was used to evaluate convergence and the algorithm was restricted to

attempt at most 5000 iterations.
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Table 1
Type I Error Rates by Model, DIF Variance, and Sample Size.

DIF Variance Sample Size Model Mean Median Min Max

No J=25, N=10 LR 0.055 0.050 0.035 0.090
RI 0.055 0.050 0.035 0.090
RC 0.050 0.048 0.030 0.080

J=100, N=10 LR 0.054 0.053 0.035 0.075
RI 0.054 0.053 0.035 0.075
RC 0.052 0.050 0.030 0.075

J=25, N=40 LR 0.053 0.053 0.035 0.075
RI 0.052 0.053 0.035 0.075
RC 0.049 0.048 0.030 0.075

J=100, N=40 LR 0.048 0.048 0.030 0.070
RI 0.048 0.048 0.030 0.070
RC 0.044 0.045 0.020 0.065

Yes J=25, N=10 LR 0.082 0.082 0.040 0.110
RI 0.085 0.082 0.045 0.110
RC 0.060 0.057 0.035 0.085

J=100, N=10 LR 0.102 0.100 0.055 0.140
RI 0.105 0.105 0.055 0.140
RC 0.051 0.050 0.030 0.085

J=25, N=40 LR 0.195 0.190 0.155 0.265
RI 0.200 0.192 0.140 0.265
RC 0.070 0.065 0.050 0.090

J=100, N=40 LR 0.260 0.258 0.140 0.380
RI 0.265 0.277 0.140 0.365
RC 0.056 0.055 0.015 0.090

Note: LR=logistic regression, RI=random intercept HLR model,
RC=random coe�cient HLR model. Each row represents 12 conditions.
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Table 2
Statistical Power by Model and DIF Variance Condition.

DIF Variance Model Mean Median Min Max N0 N1 N2

No LR 0.860 0.978 0.425 1 48 36 36
RI 0.860 0.978 0.425 1 48 36 36
RC 0.856 0.975 0.405 1 48 36 36

Yes LR 0.789 0.900 0.235 1 48 30 3
RI 0.791 0.908 0.240 1 48 30 3
RC 0.750 0.822 0.225 1 48 25 22

Note: makecell[l]LR=logistic regression, RI=random intercept HLR
model, RC=random coe�cient HLR model, N0=total number of conitions,
N1=number of conditions with power greater than 0.8, N2=number of
conditions with power greater than 0.8 and Type I error rates less than 0.08.
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Table 3
DIF Results by Item.

Item LR DIF RI DIF RC DIF DIF Variance ICC1 ICC2 Mean

11 -0.844 * -0.853 * -1.080 * 0.955 * 0.057 0.044 0.244
9 -0.795 * -0.813 * -0.813 * 0.000 0.017 0.028 0.530
20 -0.487 * -0.491 * -0.491 * 0.000 0.036 0.027 0.450
21 -0.294 * -0.288 -0.288 0.000 0.031 0.027 0.428
8 -0.293 * -0.278 -0.276 0.445 * 0.079 0.111 0.539
18 -0.247 -0.254 -0.254 0.000 0.042 0.018 0.798
2 -0.233 -0.238 -0.238 0.000 0.018 0.006 0.831
5 -0.059 -0.059 -0.058 0.014 0.000 0.000 0.565
12 -0.050 -0.034 -0.034 0.000 0.047 0.049 0.219
6 -0.033 -0.013 0.023 0.210 0.104 0.104 0.834
13 0.034 0.041 0.027 0.091 0.025 0.008 0.332
10 a 0.069 0.108 0.058 0.725 * 0.172 0.163 0.393
15 0.070 0.081 0.051 0.054 0.272
19 0.073 0.073 0.073 0.000 0.000 0.000 0.256
3 0.089 0.080 0.054 0.065 0.797
27 0.095 0.062 -0.085 0.592 0.281 0.239 0.137
22 0.143 0.139 0.080 0.069 0.461
26 0.149 0.149 0.149 0.000 0.013 0.000 0.191
17 0.158 0.156 0.156 0.000 0.059 0.040 0.295
25 0.176 0.159 0.159 0.000 0.120 0.073 0.525
4 0.202 0.224 0.229 0.036 0.060 0.095 0.639
16 0.277 0.312 0.312 0.000 0.062 0.066 0.205
14 0.347 * 0.325 0.324 0.000 0.112 0.095 0.328
7 0.350 * 0.387 * 0.350 0.450 * 0.049 0.058 0.437
23 0.432 * 0.430 * 0.338 0.488 * 0.206 0.106 0.315
24 0.506 * 0.538 * 0.538 * 0.000 0.106 0.083 0.175
1 0.539 * 0.497 * 0.708 * 1.000 * 0.195 0.159 0.789

Note: LR=logistic regression, RI=random intercept HLR model, RC=random coe�cient HLR
model. ICC1=unconditional ICC. ICC2=conditional ICC from RI-HLR model. Missing entries
indicate items for which the DIF variance was constrained to 0 to achieve convergence. a=covariance
between DIF variance and intercept variance not constrained to 0. *=p<0.05
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Figure 1 . Type 1 Error Rates by Condition and Model. The dashed line represents y=0.08.
ICC=intraclass correlation coe�cient, LR=logistic regression, RI=random intercept hierarchi-
cal logistic regression, RC=random coe�cient hierarchical logistic regression, low/med/high
indicates di�culty of target item. *=condition in which Type I error rates are greater than
0.08.
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Figure 2 . Statistical Power of Test for Average DIF by Condition and Model. The dashed line
represents y=0.80. ICC=intraclass correlation coe�cient, LR=logistic regression, RI=random
intercept hierarchical logistic regression, RC=random coe�cient hierarchical logistic regression,
low/med/high indicates di�culty of target item. *=condition in which Type I error rates are
greater than 0.08.
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Figure 4 . Significance Rates (Panel A) and Bias (Panel B) of DIF Variance Estimates by
True DIF Variance and Sample Size. Each boxplot represents 48 simulation conditions. True
DIF variance is 0.0 when Var(DIF)=no and 0.80 when Var(DIF)=with.
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