
GUI Robots: Using Off-the-Shelf Robots as Tangible Input
and Output Devices for Unmodified GUI Applications

Darren Guinness, Daniel Szafir, and Shaun K. Kane

University of Colorado Boulder

Boulder, CO, USA

{darren.guinness, daniel.szafir, shaun.kane}@colorado.edu

ABSTRACT

Traditional GUI applications provide limited support for

tangible interaction, as most applications are not

programmed to support tangible input, and most input

devices do not provide haptic feedback. To address this

limitation, we introduce GUI Robots, a software framework

that enables developers to repurpose off-the-shelf robots as

tangible input and haptic output devices, and to connect them

to unmodified desktop applications. We introduce the GUI

Robots framework and present several proof-of-concept

applications, including a haptic scroll wheel, force feedback

game controllers, a 3D mouse, and a self-driving notification

robot. To evaluate whether GUI Robots can be used to

prototype tangible interfaces for existing applications, we

conducted a user study in which developers created

customized tangible interfaces for two applications. Study

participants were able to create tangible user interfaces for

these applications in less than an hour. GUI Robots allows

developers to easily extend applications with tangible input

and haptic output.

Author Keywords

Tangible user interfaces; human-robot interaction; graphical

user interfaces; end-user programming; tactile feedback.

ACM Classification Keywords

H.5.2. User interfaces: Input devices and strategies.

INTRODUCTION

Modern desktop applications often provide rich visual and

audio experiences, supported by developments in high-

resolution displays and high quality stereo audio. However,

existing applications provide little support for tangible

interaction or haptic feedback. Thus, the advantages of

tangible interaction [13] remain unavailable in most desktop

applications.

The lack of tangible input and haptic feedback in desktop

GUI applications is due to several factors. First, most

applications are designed to support traditional input devices

such as keyboards, mice, and touchpads, and these devices

typically do not provide haptic feedback. While some input

devices do provide force feedback, such as the Apple Magic

Trackpad and some gaming mice, most applications do not

support the advanced haptic features of these devices.

Tangible interaction is also supported by some specialty

input devices such as 3D mice and haptic game controllers,

but these devices are mostly used by professional 3D

designers and gamers, respectively, and are not used by most

mainstream computer users. Second, adding haptic feedback

to applications typically requires that developers add new

features to their code, and few developers do so.

In this work, we explore opportunities for bringing tangible

input and haptic output to desktop GUI applications by

addressing these two challenges. First, we address the lack

of tangible input devices by repurposing an existing

technology, that of educational and toy robots such as

Sphero, Wonder Workshop’s Dash, and Parrot’s AR Drone.

These robots are inexpensive (often less than $100 USD) and

support connecting to PCs via Bluetooth and Wi-Fi. Most

importantly, these robots contain sensors such as

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions
from Permissions@acm.org.

DIS 2017, June 10-14, 2017, Edinburgh, United Kingdom

Copyright is held by the owner/author(s). Publication
rights licensed to ACM.

ACM 978-1-4503-4922-2/17/06…$15.00

DOI: http://dx.doi.org/10.1145/3064663.3064706

Figure 1. Using an off-the-shelf robot (Ollie) as a tangible

input/output device for a 3D modeling application (Blender).

Our system dynamically pairs the robot with the on-screen

model: manipulating the robot moves the model; changing the

model on screen causes mirrored movements in the robot.

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/3064663.3064706

accelerometers and gyroscopes that enable them to be

repurposed as input devices, and actuators that can be used

to provide haptic feedback. Second, we address the lack of

software support for tangible input and haptic output by

enabling our tangible input devices to be paired with existing

applications without changing the underlying code, through

a combination of input event emulation, GUI automation,

and custom application APIs.

Contributions

In this paper, we introduce the GUI Robots framework,

which enables developers to add tangible input and haptic

output to existing applications using off-the-shelf robot

platforms. We introduce several proof-of-concept

applications in which desktop GUI applications are

augmented using robots as tangible input devices. Finally,

we demonstrate that our framework enables developers to

add tangible input and haptic output to existing applications

through a user study in which 12 developers used our

framework to create a tangible game controller and a tangible

video editing tool. The contributions of this paper are:

1. The GUI Robots framework, which enables developers

to author tangible input and haptic output behaviors

using robots, and to attach these behaviors to existing

applications;

2. Demonstrating the use off-the-shelf robots as an

affordable and accessible approach to providing tangible

input and haptic output;

3. Demonstrating how input event emulation and GUI

automation can be used add haptic interaction to existing

applications;

4. Proof-of-concept applications for extending GUI

applications with tangible interaction;

5. Insights from a user study in which 12 developers used

the GUI Robots framework to create their own tangible

interactions for an existing video game and video editor.

RELATED WORK

Tangible User Interfaces in HCI

Our work draws inspiration from the visions of tangible

computing brought forth by Sutherland [27], and by projects

such as metaDESK [28], MagicDesk [25], and the Actuated

Workbench [23]. These projects, and those that have

followed (e.g., [11,29,30]), demonstrate how tangible

interaction can improve user engagement and can support

more natural interactions in 3D space. While these projects

have demonstrated the benefits of tangible interaction, they

have typically taken the form of self-contained systems. Our

goal in this work is to extend the benefits of tangible user

interfaces to a broad range of mainstream PC applications.

Other research has explored how traditional PC applications

can be augmented through the use of specialized haptic

devices. Miller and Zeleznik [20] explored adding haptic

feedback to GUI applications using the Phantom haptic

controller. Several projects have explored the creation of

haptic mice that can provide haptic output while interacting

with a GUI [1,4]. Bonfire [15] and Portico [3] used computer

vision to support tangible interactions around a laptop and

tablet, respectively. TeslaTouch [7] and TPad [21] provided

haptic feedback for touch screen applications by augmenting

the touch screen hardware with electrovibration and

ultrasonic actuators, respectively. Our work extends prior

work in this area by supporting haptic interactions via novel

devices (off-the-shelf consumer robots), and by providing

support for adding tangible input and haptic output to

existing desktop applications.

Robots as Tangible User Interfaces

Robotic devices offer great potential for use in tangible

computing, as they feature an embodied physical form, and

can support a variety of physical input and output modes.

Several projects have explored the use of robots to display

information. Jacobsson et al. [14] created a series of shape-

changing displays using an array of educational robots,

allowing users to control the display by moving or shaking

robots. Alonso-Mora et al. [2] created a dynamic display

made up of a swarm of color changing robots, in which each

robot could move and change color to represent pixels in a

source image or animation. Robert et al. [26] developed a

system that supported interaction with game characters, in

which robots representing characters could be controlled

with a joystick. BitDrones [12] used flying quadcopter

drones with attached LEDs and displays to represent

information in 3D, and enabled users to physically move the

drones to interact with the display. These projects used

mobile robots as physical manifestations of an image,

animation, or game, and did not fully explore the input

capabilities of the robots, as we do here.

Other projects have explored the use of robots to provide

tangible input for applications on touch screens. TouchBugs

[22] and Tangible Bots [24] used custom robots to provide

tangible interaction on touch screen-based tabletops. Users

could directly interact with the robots, which passed this

interaction data to the underlying application, and the robots

could move themselves across the tabletop to present various

input configurations. Our work extends this general approach

by using robots to control desktop GUI applications, but

leverages off-the-shelf robots rather than custom-made

robots, and instruments existing applications in addition to

supporting new applications.

Zooids [17] introduced the concept of swarm user interfaces,

in which a collection of wheeled robots moved in

coordination to create a tangible user interface that could be

manipulated by the user. Zooids can be used to represent data

on a table surface, or can enable interactive drawing. Both

Zooids and GUI Robots allow control of applications by

physically manipulating robots. However, our GUI Robots

framework complements Zooids by exploring ways to

instrument existing user interfaces with tangible robots.

Furthermore, while Zooids make use of custom robots and

an augmented workspace, our approach focuses on

leveraging off-the-shelf robots in an uninstrumented

environment, potentially lowering barriers to use.

End-User Robot Programming

Several prior projects have explored end-user-friendly

approaches to programming robotic behaviors. Phybots [16]

is a software toolkit that enables users to program robots to

perform activities around the home. Bartneck et al. [6]

developed tools to enable users to create shape displays using

robots. In contrast to these prior toolkits, the GUI Robots API

allows developers to specify the robot’s behaviors from the

user’s perspective, enabling developers to easily detect

gestures performed on and around a robot, and to author

haptic interactions for handheld robots. By allowing

developers to specify behaviors from a user-centric

interaction perspective, rather than a robot-centric

perspective, the GUI Robots framework may allow

developers to more easily integrate tangible input and haptic

output into their applications.

GUI ROBOTS

The primary contribution of this work is GUI Robots, a

software framework that supports pairing off-the-shelf

robots with PCs, authoring tangible input and haptic output

behaviors using these robots, and pairing these robots with

unmodified GUI applications. The following section

describes the various components of this framework.

Connecting PC Applications with Robots

The GUI Robots framework is a Node.js library that can be

used on all major desktop computing platforms. Connections

between the PC and robots use the robots’ integrated

Bluetooth or Wi-Fi connectivity.

The GUI Robots framework uses a plug-in architecture to

enable connections to a variety of robot platforms.

Developers can add support for additional robots by

connecting to the robot via Cylon, Node.js, or WebSockets,

and by implementing the core interactions of the GUI Robots

framework via the robot’s native API. In general, the GUI

Robots framework should be capable of supporting most

robots with Bluetooth or Wi-Fi connectivity, as long as the

robot’s native API offers the ability to track the robot’s

motion and to control the robot’s movement. A robot’s

specific capabilities as an input device depend on the size,

shape, and movement characteristics provided by the robot

itself, so not all GUI Robots can support all forms of

interaction. For example, only flying robots such as the AR

Drone can lift themselves off of the ground, and only robots

that provide back-drivable motors (i.e., robots in which a

user can physically manipulate the motor’s position) can

provide haptic resistance while being moved by the user.

To date, we have tested our framework with four robot

platforms: Sphero and Ollie (from Sphero, Inc.), Wonder

Workshop’s Dash, and Parrot’s AR Drone. The present work

has primarily used the Sphero and Ollie robots, as these

robots provide a variety of sensors and actuators in a

handheld form factor (Figure 2). Sphero is a spherical robot

containing a self-balancing platform with two independently

driven wheels, a 3-axis accelerometer, a gyroscope, a

controllable RGB LED, and a Bluetooth radio. Ollie is a

cylindrical robot that features a similar self-balancing

mechanism, but uses wheels placed directly on the surface

rather than rolling inside a ball. Because Ollie’s wheels

directly touch the surface, while Sphero’s wheels are encased

in a ball, Ollie can provide some forms of haptic feedback

that Sphero cannot., such as pushing against the user’s hand

to provide friction while the user moves the robot. Both

Sphero and Ollie were originally intended as educational

toys, and cost approximately $100 USD each.

Figure 2. Sphero (left) and Ollie (right) robots.

Our framework uses the Sphero and Cylon.js APIs to control

the Sphero and Ollie robots. While the Sphero API provides

limited support for connecting the robot to a PC and reading

the device sensors, the GUI Robots framework provides

many additional features, including the ability to track user

input events, author haptic behaviors, and connect to a

variety of existing PC applications.

Recognizing User Input

GUI Robots facilitate user input by being directly

manipulated and moved by the user, such as by physically

moving the robot, rotating the robot, or whacking the robot,

similar to prior motion-control-based systems. Sensor data is

streamed from the robot to the PC. Developers can track the

robot’s raw sensor values, but they can also author

interactions using event handlers for gestures such as

onWhack and onMoveLeft.

The GUI Robots framework uses heuristic gesture

recognizers to convert the robot’s raw sensor data into input

events. Many consumer-grade robots, including the robots

we have tested with our prototype, use a gyroscope to track

the orientation of the robot, and use an accelerometer to track

movement through space (Sphero and Ollie also provide

limited, but relatively inaccurate, odometry through the

motors’ back-EMF signal). While a gyroscope can provide

reasonably accurate data about a robot’s orientation, most

accelerometers provide much less accurate data about a

robot’s movement and position. Because most

accelerometers cannot provide accurate odometry data, the

current version of our framework does not support directly

tracking a robot’s position. The accuracy of information

about a robot’s position is limited by the robot’s sensors, and

cannot be significantly improved without adding additional

sensors to a robot or augmenting the workspace with an

overhead camera. We carefully considered these trade-offs

during the design of our system, and decided that there was

value in exploring the possibilities of interacting with

unaltered off-the-shelf robots in an uninstrumented

workspace. Thus, the current GUI Robots framework uses

orientation-based events such as onRotateRight and

movement-based events such as onMoveLeft, and does not

fully support tracking a robot’s position.

User input such as touching, tapping, and picking up a robot

is currently detected via the gyroscope and accelerometer, as

none of the robots we investigated supported capacitive

touch input. However, by combining the limited sensors

available in these consumer-grade robots, our framework

allows developers to track a robot’s rotation and movement,

and to detect touch input from the user.

Haptic Output

GUI Robots support a variety of types of haptic feedback. By

oscillating the motor, a robot can provide traditional force

feedback methods such as haptic bumps and vibration.

However, our framework also leverages the robots’ ability to

move themselves to provide additional forms of haptic

feedback that are not found in many existing haptic devices.

Force Feedback

While our robots did not feature a dedicated vibration motor,

GUI Robots can provide traditional force feedback by

pulsing the device’s motor and moving the robot while in the

user’s grasp. For example, a robot can quickly toggle its

motors back and forth in each direction to create a haptic

bump, and can increase the intensity of these motor

movements to support varying levels of vibration.

This vibrational feedback, when combined with tracking the

robot’s movement, provides the additional capability of

rendering haptic feedback within a specific area. For

example, a robot might detect that it is being moved forward,

and render a series of haptic vibrations while being moved,

creating the sensation of a haptic texture on the surface

beneath the robot.

Constrained Movement and Isometric Behavior

As GUI Robots are able to move themselves on a surface,

they can provide additional haptic interactions by restricting

or controlling their own movement. For example, a GUI

Robot could be programmed such that it could be rotated in

a clockwise direction, but not counterclockwise. As a user

attempts to rotate the robot counterclockwise, the robot could

resist that movement by actuating its motors to rotate

clockwise. Although the user may be able to overpower the

robot, the robot could still provide force feedback while

being turned, and could rotate back to its preferred position

once the user let go of the robot. Likewise, the robot could

be programmed to move horizontally relative to the user’s

workspace, but not vertically, or could provide varying levels

of resistance based on the direction being moved.

These haptic behaviors could be used to represent more

complex tangible interactions. For example, an Ollie robot

could represent the throttle in a flight simulation game. The

robot could be programmed to support movement along the

vertical axis only, matching the affordances of a physical

throttle control. Additionally, the robot could provide greater

resistance when being pushed forward than when being

pushed backward, emulating the throttle’s physical

resistance while increasing speed. This constrained

movement behavior is currently best supported by the Ollie

robot, as it can easily push back against the user. Because the

Sphero is encased in a ball, it cannot directly push back while

being moved, although it can vibrate to provide force

feedback, and can move itself back into its preferred position

after being released.

In addition to constraining their own movement, GUI Robots

can be programmed to represent isometric behavior. For

example, if the robot detects being moved to the left, it can

drive itself back toward its original position after it is

released, emulating an isometric input device. While the

positioning accuracy of our existing robots makes it difficult

for the robot to return exactly to its origin, in practice we

have found that small movements back toward the origin can

demonstrate isometric behavior when the robot is used in a

small space, such as on a desk surface.

Movement and Positioning

GUI Robots can move themselves independently to achieve

a variety of objectives. For example, a robot can be driven in

a specific pattern as a form of output, such as by drawing out

a circle on the desk surface. This feature can be used to

provide non-visual haptic output on the desktop. GUI Robots

can also be programmed to move between pre-specified

locations. For example, a user might store their GUI Robot

in the corner of their desk. When the user activates a GUI

Robot-enabled application, the robot could nudge itself from

the corner toward the center of the desk to indicate that it is

ready to be used.

Guiding the User via Dynamic Affordances

GUI Robots can leverage their movement capabilities to

physically guide the user. For example, a user could place

their hand on top of the robot, and the robot could drive itself

in a specific direction or pattern, providing an additional

dimension of haptic feedback. This mechanism could also be

used to inform the user about how a tangible user interface

works via a dynamic affordance [18]. For example, a map

application might allow the user to zoom in and out by

rotating the map, and roll the device forward to adjust the

angle of the map view. These gestures might be difficult to

discover for a novice user, but a GUI Robot could teach these

gestures to a user by rotating slightly while simultaneously

zooming the map on-screen, demonstrating how the

movement of the robot maps to an action within the

application.

Mirroring Virtual Objects

GUI Robots can use their ability to position and orient

themselves in order to “mirror” the status of an on-screen

object. For example, a GUI Robot could be paired with a

model in a 3D modeling application such as Blender (Figure

1). In this scenario, the user can move and rotate the robot to

move and rotate the on-screen object. These movements

could also be mirrored back from the on-screen application,

so that if the on-screen model rotates, the GUI Robot could

rotate itself to match (where permitted by gravity). This

capability could be used to monitor information in an

application, such as by tracking the movement of an

opponent in an online game, or could be used to support

collaborative tangible interactions with a remote colleague.

Connecting GUI Robots to Desktop Applications

A core feature of the GUI Robots framework is the ability to

extend existing applications with tangible input and haptic

output without needing to create a new application or alter a

program’s code. The GUI Robots framework supports three

methods for connecting tangible robots to existing

applications: emulating keyboard and mouse input, tracking

and controlling UI elements with Sikuli [31], and using

application APIs.

Emulating keyboard and mouse input: Many applications

can be controlled simply by spoofing keyboard and mouse

events. The GUI Robots framework can control an existing

application by entering a sequence of keys or controlling the

mouse cursor. This mouse emulation approach can be used

to operate UI elements with a fixed location, such as clicking

the Windows Start Button. More complex mouse interactions

are possible using Sikuli, as described below. The haptic

controller for Windows Movie Maker, described in the user

study section of this paper, relies primarily on sending

keyboard shortcuts to control the application.

Tracking UI elements with Sikuli: In many situations, a

developer might wish to pair a robot with a specific GUI

control. However, it can be difficult to automate interaction

with an existing user interface, as many applications do not

provide scriptable access to their GUI. Our framework

provides the capability to locate specific UI elements on

screen using computer vision, and to control them via

keyboard and mouse events. Our framework uses Sikuli [31],

which enables developers to capture a screenshot of an on-

screen item, search for that item on screen, and interact with

that item via emulated keyboard and mouse events.

This method can be used to instrument a variety of user

interfaces across OS platforms, on the web, and even in

games. For example, our Angry Birds controller, described

in the next section, was created by tracking the on-screen bird

image. When the user drags the robot backwards to simulate

pulling back the slingshot, our application finds the bird on

screen, clicks the mouse button, and drags the mouse down

and to the left to pull back the slingshot.

Using application APIs: In some cases, a developer may

wish to add features beyond what is possible through input

emulation or Sikuli. If an application provides a public

automation API, this API can be used to connect the

application to the GUI Robots framework. For example, our

3D Mouse application is implemented using Blender’s API,

which provides precise information about the position and

orientation of the on-screen 3D model. Similarly, the Haptic

Web Browser Control uses a Chrome extension to read

content on the current web page and to provide haptic

feedback based on the page content.

GUI Robots Developer API

All input and output functions are exposed via a JavaScript

API (Table 1). This API abstracts the connections to each

robot, and offers a unified set of commands across robots,

although not every robot supports every command. Where

possible, commands are presented from the perspective of

the user, rather than from the perspective of the robot, to

simplify the development of tangible user interfaces. For

example, the “move left” event uses the user’s definition of

left in their workspace, rather than the robot’s left side. The

API also allows access to a robot’s low-level sensor data,

enabling developers to create more advanced forms of input

and output. The GUI Robots API also provides support for

emulating keyboard and mouse events, and for tracking and

interacting with GUI controls. A user evaluation of the API

is presented later in this paper.

PROOF-OF-CONCEPT APPLICATIONS

Here we present several example applications, developed by

our research team, that demonstrate the capabilities of our

framework to extend existing GUI applications with tangible

input and actuated haptic output.

Orientation and Movement Input Events Output Commands GUI Automation

getRotation onWhack doBump findImageOnScreen(imgName)

constrainRotation(dir) onDoubleWhack doShake startTrackingImage(imgName)

constrainMovement(dir) onShake showColor(c) stopTrackingImage(imgName)

onAccelerate(x,y,z) onSpin(dir) drive(dir) onImageFound(imgName, x, y)

onRotate(roll,pitch,yaw) onMove(direction) constrainRotation(dir) onMouseEvent(event)

 onPickUp constrainMovement(dir) onKeyEvent(event)

 onPutDown doMouseEvent(event)

 doKeyboardEvent(event)

Table 1. Overview of GUI Robots API commands. Our API supports tracking orientation and movement events; receiving input

events on the robot; providing haptic and visual output; and automating interaction with the GUI.

Haptic Web Browser Control

We developed a plug-in for the Google Chrome browser that

allows users to navigate web sites using a tangible robot

controller. This plug-in also provides haptic feedback based

on page content, demonstrating the capability of GUI Robots

to provide both tangible input and haptic output (Figure 3).

Figure 3. Haptic Web Browser Control enables the user to

scroll a web page by rotating or rolling the robot, and provides

haptic feedback based on the page content.

Using this application, the user can scroll through the current

web page by spinning the robot or rolling the robot up and

down. The robot can also be used as an isometric controller,

so that moving the robot backwards (i.e., toward the user)

will cause the web page to scroll downward continuously

until the user moves it forward once again. Future versions

of this application could support additional interactions using

the robot’s additional degrees of freedom. For example,

rolling the robot forward and back could control scrolling,

while twisting left and right could zoom in and out.

This application also supports dynamic haptic output based

on the web page being viewed. Currently, the plug-in tracks

top-level headers on the current web page (i.e., h1 tags), and

causes a haptic bump each time such a header scrolls into the

current view. This feature allows the user to quickly scroll

through a web page and to receive some haptic feedback

about the structure of the page content. A stronger haptic

bump is provided when the user scrolls past the top or bottom

of the web page.

This haptic output capability can also be extended with site-

specific scripts. For example, the current version of this

application supports contextual feedback in Gmail: rotating

the robot causes the cursor to step through each message, and

generates a haptic bump when a starred message is selected

(similar to the effect shown in [19]).

Force Feedback Game Controller

We have developed several prototypes to support tangible

interaction with video games. These applications can support

both motion input and haptic output..

For example, we have created a custom haptic controller for

the game Angry Birds. As Angry Birds does not currently

support desktop OSes, our controller uses a web-based clone

that functions similarly to the original game. In this game,

the user aims a slingshot containing a bird, and fires the bird

toward a tower containing evil pigs. The user wins the game

by knocking over each one of the pigs.

We developed a prototype of an Angry Birds controller using

the GUI Robots framework and the Ollie robot (Figure 4). In

our adaptation of the game, the user pulls back the slingshot

by rolling the robot backwards. When this occurs, the GUI

Robots framework identifies the location of the bird using

Sikuli, clicks the bird, and drags the mouse cursor down and

to the left. Once the slingshot has been pulled back, the user

can rotate the robot to adjust the angle of the slingshot. The

user can launch the bird by rolling or whacking the robot.

Once the bird has been launched, the robot rolls forward a

few inches and shakes back and forth, adding additional

haptic feedback to the game. After a few seconds, the robot

rolls back to its original position. This application

demonstrates tangible input and haptic output, and shows

that GUI Robots can control an existing game without access

to the game’s source code.

Figure 4. GUI Robot used as a tangible game controller. The

user pulls the robot back to arm the slingshot. The robot

launches itself forward and shakes after the slingshot is fired,

adding expressive haptic output to the game experience.

We developed a similar controller for Valve’s Counter-

Strike, in which the user moves their character by rolling the

robot, turns by rotating the robot, and fires by whacking the

robot or pressing a mouse button. The robot vibrates when

the user fires. In the future, this application could be

extended to provide feedback based on specific in-game

elements, such as vibrating when the player loses a match.

More recently, we have created a prototype of a GUI Robot

Input Manager (Figure 5), which allows the user to map a

robot’s movement to keyboard and mouse events. This tool

could be used by non-programmers to create simple input

mappings between GUI Robots and existing games.

3D Mouse with Object Mirroring

Manipulating 3D objects on a 2D screen can be difficult and

cognitively demanding [10,25]. We developed a plug-in for

the 3D modeling tool Blender that enables the user to

manipulate a model in 3D space by manipulating a paired

GUI Robot (Figure 1). We used the Blender API to track the

position and orientation of the model being edited. When the

user wishes to manipulate the model, they may press a key

to link the model to the GUI Robot. Once linked, moving and

rotating the robot causes the corresponding 3D model to be

moved. This pairing between the on-screen model and the

GUI Robot is bi-directional, such that manipulating the on-

screen model with a keyboard or mouse causes the paired

robot to move and match the on-screen object (within the

constraints of the robot’s capabilities).

Figure 5. GUI Robot Input Manager allows end users to map

interactions with the robot to keyboard and mouse commands.

Currently, this plug-in enables the user to manipulate the

orientation and position of the object only; however, future

versions of our system could enable richer interactions by

further coupling the physical robot and virtual object. For

example, tapping the robot’s exterior could select a face of

the 3D model or could swap between textures on that model.

Tangible Music Controller

Tangible input devices can be especially useful in the context

of music and creative performance, enabling users to engage

physically with a creative work. We developed a tangible

music controller using the Max/MSP electronic music

package (Figure 6). This application allows the user to

control a music composition by manipulating the robot. In

our prototype, rotating the robot, lifting it into the air, and

whacking the robot each adjusted some parameter of the

composition, such as the tone or tempo. During playback of

an existing composition, the robot moves itself around the

floor and flashes the device’s LED lights in sync with the

music. A performer or even an audience member could

manipulate the music playback by blocking the robot’s

movement, or by moving the robot to a different location. In

the future, this application could be used to create interactive

multimedia performances that combine audio, visual, and

tangible information.

Rolling Desktop Notification Manager

While most of our example applications explore how GUI

Robots can be used as input devices, our framework also

provides support for producing output via actuated tangible

objects. To explore the possibilities of using a GUI Robot as

an output device, we developed a notification manager

application that allows the user to map specific notifications

to behaviors from the robot.

Our Notification Manager prototype uses a Chrome plug-in

to capture notifications delivered via the HTML Web

Notification API, although in the future it could be extended

to support platform-specific notification APIs. The user can

specify a text pattern to listen for, and a series of robot

actions to occur if a matching notification is received (Figure

7). For example, the user can specify that the robot should

move left and then right if a notification mentioning

“Facebook” is received. The user can snooze the notification

by whacking the robot, or can pick up the robot to mute the

notification.

EVALUATING THE GUI ROBOTS FRAMEWORK

The GUI Robots framework is designed to enable the

creation of tangible user interfaces that extend existing,

uninstrumented applications. To evaluate the suitability of

the current system for creating tangible user interfaces, we

conducted a user study in which developers programmed two

Figure 7. Notification Manager application enables a user to

enter a notification pattern and specify a corresponding robot

behavior. When a notification appears that matches the

specified pattern, the robot performs the specified behaviors.

Figure 6. Ollie Robot paired to Max/MSP using the GUI

Robots framework. The robot moves and flashes its lights

based on the music. Manipulating the robot affects music

playback.

tangible user interfaces for existing applications. Each

participant took part in a single 90-minute session located in

our lab. Participants used the Ollie robot for study tasks, as

it provides the most flexibility for haptic output.

Participants

Twelve developers (9 male, 3 female, aged 22-37)

participated in the study. Participants were recruited through

university email lists and fliers placed on the university

campus. Participants were not expected to have prior

experience with programming robots, but were required to

have prior JavaScript programming experience.

Procedure

The study comprised 5 phases: (1) introduction and consent;

(2) GUI Robots framework tutorial; (3) Angry Birds task; (4)

Movie Maker task; and (5) exit survey and debrief. The entire

session lasted 90 minutes.

After completing the consent process, the participant was

introduced to the goals of the study and the GUI Robots

framework. Participants used a simplified version of the GUI

Robots API presented in Table 1. Participants were given a

copy of the framework source code, and given a cheat sheet

that briefly described each of the API functions. The

participant was given a tour of the WebStorm IDE, in which

they were to write the study code, and given a brief tutorial

on how to capture and track an image using Sikuli.

Next, participants were given 30 minutes to develop a haptic

controller for the online Angry Birds clone. Participants were

asked to first brainstorm and sketch out their solution, and

then asked to develop their solution with the remaining time.

During the programming task, a researcher observed the

participant and answered questions about JavaScript and the

APIs. Once the prototype was complete, the participant

demonstrated the application for the researcher. The

researcher then asked the participant how satisfied they were

with their solution, and whether there were any changes or

additions they would have liked to make to their prototype.

In the second task, participants were asked to make a tangible

input device for controlling Windows Movie Maker, a video

editor. This controller was expected to support the following

commands: toggling play and pause, navigating to the

previous and next clip, deleting the current clip, splitting the

current clip, and undoing the last action. In addition, we

asked developers to add haptic feedback when the video play

head reached the 1-minute mark, and when the play head

reached the end of the video. This activity followed the same

structure as the previous activity.

Finally, the participant filled out an exit questionnaire that

contained questions about each activity, and evaluated their

experience using the System Usability Scale (SUS) [8].

Figure 8 shows a participant creating a prototype that used

the Ollie robot.

FINDINGS

All participants were able to successfully produce working

versions of the haptic game controller. As we did not specify

how to design the tangible interactions, participants

developed a variety of solutions to solve this problem.

Participants used several methods to aim and fire the bird,

including rotating, moving, and whacking the robot. Some

participants added haptic output after the bird was launched.

Participants also added additional unrequested features, such

as automatically clicking the on-screen restart button after

the bird was launched, and using Sikuli to track the pigs’

tower, and using the location of the tower to automatically

aim the bird for maximum damage. Table 2 presents an

overview of the approaches used to design the haptic game

controller.

All participants also created a design for the Windows Movie

Maker controller, but not all participants were able to

implement all features in the 30-minute session. This task

required developers to map six different actions to the

movement of the robot, and sometimes participants chose

mappings that conflicted with one another, causing

slowdowns as they tested their solution. This task also

required participants to use Sikuli to identify when the video

play head was at 1 minute left, and at the end of the video, in

order to provide haptic feedback, and several participants

encountered difficulties capturing usable screenshots for

Sikuli. In these situations, participants most often created a

screenshot that was too small or too large, causing false

positives in their haptic feedback. All participants except one

(P9) were able to implement their complete solution; P9

completed the input methods, but did not finish the haptic

output features. Participants were occasionally slowed down

by connectivity errors with the PC’s Bluetooth driver, which

was corrected by a software update after the study session.

To get a sense of participants’ experience using the GUI

Robots framework, we asked participants to fill out the

System Usability Scale (SUS) at the end of the activity [8].

This instrument features a set of 5-point Likert responses; a

score of 70 is considered to be average [5]. Participant ratings

Figure 8. Study participant testing haptic feedback with the

Ollie robot.

ranged from 62.5 to 87.5, with a mean score of 74.1

(SD=7.76). Three developers rated the system as above 80,

and only two rated the system below the average, each at

62.5. While these scores suggest that there is room to

improve the usability of our framework, it is not surprising

that some participants found it difficult to learn a new

technology in a short amount of time. Additionally, since

participants were testing an early prototype of the system, it

seems likely that satisfaction will improve with further

testing and refinement.

Overall, we found that participants were engaged throughout

the task, and expressed interest in using this framework in

the future. Participants suggested a number of improvements

to the tool, such as providing more granular control over

gesture recognition (e.g., being able to set gesture thresholds

or disable certain gestures) and providing more precise

tracking of the robots. Participants were also interested in

augmenting the existing robots with additional components,

such as more precise positioning sensors, touch sensors and

other buttons, and proximity sensors to detect obstacles and

prevent the robot from rolling off the table.

Participants also expressed interest in using the API in their

own personal projects. When asked about how they might

use this framework in the future, P3 suggested that

“controlling web browsers could be neat (moving the robot

left and right to scroll through links, up and down to scroll

the page, e.g.)”; P4 expressed interest in using the robot as

part of Simon Says and other game; and P10 expressed

interest in using the robot to notify him of events such as the

end of a TV commercial, or when someone arrives at the

door. These comments suggest that participants were able to

consider uses of this framework beyond the study task;

participants’ suggestions also offer compelling ideas for

future applications that use the GUI Robots framework.

DISCUSSION

The GUI Robots framework enables developers to repurpose

off-the-shelf robots as tangible input and haptic output

devices, and to connect these devices to existing applications

to create new tangible user interfaces. Our framework

supports connections with a variety of robots, and is easily

extensible to add new robots. Our proof-of-concept

applications show that the current framework can be applied

to a variety of application areas, and can support the creation

of diverse interactions, including game controllers, musical

instruments, and ambient notification displays.

The goals of our user evaluation were to explore whether

participants were able to create tangible user interfaces using

our framework, to understand challenges to creating these

user interfaces, and to explore further applications of this

approach. By these metrics, our study was successful, in that

all participants were able to create tangible controllers for

two applications in a one-hour period, and demonstrated

diverse approaches to creating tangible user interfaces, even

for the same task.

We were pleased to see that participants did not create

identical solutions, and that they were able to brainstorm and

implement their own solutions to the problems. Participants

often displayed creativity when describing the solutions they

 Angry Birds Movie Maker

P# Start Distance Angle Fire Play Next/Prev Delete Split Undo Feedback

1 Whack Move back Rotate Y Move back
Spin

right

Move

fwd/back

Double

whack
Whack Pick up

doShake,

showColor

2 Accel X Accel X N/A
Move

forward
Whack

Move

fwd/back
Shake

Double

whack

Move

left

doShake,

showColor

3
Put

down
Move back Spin Pickup Whack Spin right/left

Double

whack

Pickup/

Put down
Shake

showColor,

driveLeft

4 Whack
Move

fwd/back
Spin Whack Whack Spin right/left

Pickup/

put down

Double

whack

Move

fwd
showColor

5 Whack Whack
Yaw

rotation

Double

whack
Whack

Move

fwd/back
Spin left

Double

whack

Spin

right
showColor

6
Move

back
Move back

Pitch

rotation
Move fwd

Move

fwd
Yaw rotation Shake

Double

whack

Pitch

rotate

doShake,

doBump

7 Whack
Move

fwd/back
Spin Whack Pickup

Move

right/left

Double

whack
Whack Spin left doShake

8 Whack Move left Move left
Double

whack
Whack

Move

right/left

Double

whack
Pickup Spin left

doBump,

driveBack

9
Move

fwd

Move

left/back

Move

left/back

Move left/

back
Whack N/A N/A

Image

Found
N/A doShake

10 Whack
Move

left/right

Move

fwd/back

Double

whack
Whack

Move

right/left

Double

whack
Pickup Shake

Drive

forward

11
Move

right
Shake Shake Shake Whack

Move

fwd/back

Double

whack
Pickup

Put

down
showColor

12 Pick Up Move left Move left Whack Whack Spin right/left
Double

whack
Pickup Shake doShake

Table 2. Study participants’ input and output mappings for the two study tasks.

came up with. One participant used the pick-up and put-

down gestures to split clips in Windows Movie Maker, and

justified his response by saying, “If I pick it up and put it

down it will split the clip, kind of like a cleaver.” When

developing the controller for Angry Birds, P2 stated, “I

would want to think of it as a big lever, whack it to pull it

back, and twist it to change the angle, and whack it again to

release.” When testing different gestures, P6 stated that

“spinning the robot seems to be the functional equivalent of

using left and right the arrow keys”. Participants created

tangible input mappings using a variety of strategies,

including leveraging metaphors to GUIs and physical

controls. Participants were able to prototype and test tangible

UIs even within the short study period.

Several participants noted accuracy issues with the gesture

recognizers, as they experienced false positive and negative

gesture events during the study. These errors are due in part

to the relatively low accuracy of accelerometer-based motion

tracking, and because the current framework uses simple

heuristic methods for detecting motion gestures. In the

future, the system’s gesture recognition accuracy might be

improved by collecting more training data for each gesture,

or by introducing improved gesture recognition algorithms.

Participants also experienced some challenges when

designing sets of multiple gestures, as gesture mappings

sometimes interfered with each other. For example,

performing the shake gesture could also trigger a pick-up

gesture. In the future, the GUI Robots framework could

provide suggestions to help users create non-conflicting

gesture sets, or could adapt its gesture recognition based on

the current gesture set.

Finally, participants experienced some challenges in using

Sikuli to track elements on the screen. For example, in the

Windows Movie Maker task, participants were asked to track

when the play head reached specific points in the video.

Successfully completing this task required participants to

take a screenshot that would correctly identify when the

video was at its end, but that would not cause false positives

at other points during the video. Participants sometimes

experienced false positives when testing this feature because

they took screenshots that were too small or too large. This

problem was exacerbated by Sikuli’s fuzzy matching

framework, which sometimes generated false positives.

These problems could be minimized by providing developers

with control of the detection thresholds, or by providing

more comprehensive documentation on creating screenshots

and using the Sikuli library.

LIMITATIONS AND FUTURE WORK

The present work presents new opportunities for tangible

interaction, enabling developers to create new tangible user

interfaces for existing applications. However, there are

several areas in which this work could be extended.

First, the robots used in this study had limited features, and

were limited in their ability to accurately track movement.

Imprecise tracking caused gesture recognition errors, and

prevented the use of some forms of interaction that would

require precise tracking, such as using a robot as a stylus in

a drawing application. We consider the capability to use

existing off-the-shelf robots as tangible input devices to be a

primary contribution of this work, and felt that the reduced

accuracy was justified by the lower cost and increased

availability of off-the-shelf robots. However, several study

participants requested that we add additional capabilities to

our robots, including more precise control over positioning,

touch sensors, and other physical controls. In the future, we

could extend the GUI Robots framework to cover a wider

range of robots, or even to enable users to construct their own

robots using Arduino or similar toolkits.

A second limitation of the current work is that it currently

supports interaction with only one robot at a time. Future

versions of the framework could support pairing multiple

robots to a single application, enabling bimanual interaction.

Given a set of available robots, a future version of the GUI

Robots framework could suggest the best available robot for

a specific task, for example suggesting a puck-shaped robot

for controlling system volume.

A third limitation of the present work is that our evaluation

targeted novice developers. While we believe that this

population was optimal for evaluating the usability and

versatility of the GUI Robots framework, we could extend

the reach of this framework in both directions. On one hand,

we could develop user-friendly tools that would enable non-

programmers to create their own tangible user interface

mappings. On the other hand, we could explore a more

advanced version of the framework that supported more

precise control over gesture recognition, and provided more

robust features for controlling robots and instrumenting

existing user interfaces.

CONCLUSION

In this paper, we presented GUI Robots, a software

framework that enables the creation of tangible user

interfaces for existing, unmodified GUI applications. Rather

than developing custom robot hardware, GUI Robots

repurposes off-the-shelf consumer robots as versatile and

easily accessible tangible input devices. Our proof-of-

concept applications demonstrate that this approach can be

used to create a variety of tangible user interfaces, and can

be used to enhance a wide range of existing software

applications, including web browsers, 3D modeling tools,

and video games. Our user study demonstrated that

developers can use our framework to quickly prototype

tangible interactions and attach them to existing applications.

As consumer-oriented, wirelessly-connected robots become

more ubiquitous, we hope this work can enable the creation

of new user experiences, in which traditional GUI

applications are extended by an ecosystem of helpful robots.

ACKNOWLEDGMENTS

We thank Willie Payne, Bryan Bo Cao, and Michael Walker

for their assistance with this project.

REFERENCES

1. Motoyuki Akamatsu, and Sigeru Sato. 1994. A multi-

modal mouse with tactile and force feedback.

International Journal of Human-Computer

Studies, 40(3), 443-453.

2. Javier Alonso-Mora, Andreas Breitenmoser, Martin

Rufli, Roland Siegwart, and Paul Beardsley. 2012.

Image and animation display with multiple mobile

robots. International Journal of Robotics Research,

31(6), 753-773.

3. Daniel Avrahami, Jacob O. Wobbrock, and Shahram

Izadi. 2011. Portico: tangible interaction on and around

a tablet. In Proceedings of the 24th Annual ACM

symposium on User interface software and technology

(UIST '11). ACM, New York, NY, USA, 347-356.

DOI: http://dx.doi.org/10.1145/2047196.2047241

4. Ravin Balakrishnan, Thomas Baudel, Gordon

Kurtenbach, and George Fitzmaurice. 1997. The

Rockin'Mouse: integral 3D manipulation on a plane. In

Proceedings of the ACM SIGCHI Conference on

Human Factors in Computing Systems (CHI '97).

ACM, New York, NY, USA, 311-318. DOI:

http://dx.doi.org/10.1145/258549.258778

5. Aaron Bangor, Philip T. Kortum, and James T. Miller.

2008. An empirical evaluation of the system usability

scale. International Journal of Human–Computer

Interaction, 24(6), 574-594.

6. Christoph Bartneck, Marius Soucy, Kevin Fleuret, and

Eduardo B. Sandoval. 2015. The robot engine—

Making the unity 3D game engine work for HRI. In

Proceedings of the 24th IEEE International Symposium

on Robot and Human Interactive Communication (RO-

MAN), Kobe, 2015, 431-437. DOI:

10.1109/ROMAN.2015.7333561

7. Olivier Bau, Ivan Poupyrev, Ali Israr, and Chris

Harrison. 2010. TeslaTouch: electrovibration for touch

surfaces. In Proceedings of the 23nd Annual ACM

Symposium on User Interface Software and

Technology (UIST '10). ACM, New York, NY, USA,

283-292. DOI:

http://dx.doi.org/10.1145/1866029.1866074

8. John Brooke. 1996. SUS-A quick and dirty usability

scale. Usability Evaluation in Industry, 189(194), 4-7.

9. Morgan Dixon and James Fogarty. 2010. Prefab:

implementing advanced behaviors using pixel-based

reverse engineering of interface structure. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '10). ACM, New

York, NY, USA, 1525-1534. DOI:

http://dx.doi.org/10.1145/1753326.1753554

10. George Fitzmaurice, Justin Matejka, Igor Mordatch,

Azam Khan, and Gordon Kurtenbach. 2008. Safe 3D

navigation. In Proceedings of the 2008 Symposium on

Interactive 3D Graphics and Games (I3D '08). ACM,

New York, NY, USA, 7-15. DOI:

https://doi.org/10.1145/1342250.1342252

11. Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu

Hogge, and Hiroshi Ishii. 2013. inFORM: dynamic

physical affordances and constraints through shape and

object actuation. In Proceedings of the 26th Annual

ACM Symposium on User Interface Software and

Technology (UIST '13). ACM, New York, NY, USA,

417-426. DOI:

http://dx.doi.org/10.1145/2501988.2502032

12. Antonio Gomes, Calvin Rubens, Sean Braley, and Roel

Vertegaal. 2016. BitDrones: towards using 3D

nanocopter displays as interactive self-levitating

programmable matter. In Proceedings of the 2016 CHI

Conference on Human Factors in Computing Systems

(CHI '16). ACM, New York, NY, USA, 770-780. DOI:

https://doi.org/10.1145/2858036.2858519

13. Hiroshi Ishii and Brygg Ullmer. 1997. Tangible bits:

towards seamless interfaces between people, bits and

atoms. In Proceedings of the ACM SIGCHI Conference

on Human Factors in Computing Systems (CHI '97).

ACM, New York, NY, USA, 234-241. DOI:

http://dx.doi.org/10.1145/258549.258715

14. Mattias Jacobsson, Ylva Fernaeus, and Lars Erik

Holmquist. 2008. Glowbots: designing and

implementing engaging human-robot interaction.

Journal of Physical Agents, 2(2), pp.51-60.

15. Shaun K. Kane, Daniel Avrahami, Jacob O. Wobbrock,

Beverly Harrison, Adam D. Rea, Matthai Philipose,

and Anthony LaMarca. 2009. Bonfire: a nomadic

system for hybrid laptop-tabletop interaction. In

Proceedings of the 22nd Annual ACM Symposium on

User Interface Software and Technology (UIST '09).

ACM, New York, NY, USA, 129-138. DOI:

http://dx.doi.org/10.1145/1622176.1622202

16. Jun Kato, Daisuke Sakamoto, and Takeo Igarashi.

2012. Phybots: a toolkit for making robotic things. In

Proceedings of the Designing Interactive Systems

Conference (DIS '12). ACM, New York, NY, USA,

248-257. DOI:

http://dx.doi.org/10.1145/2317956.2317996

17. Mathieu Le Goc, Lawrence H. Kim, Ali Parsaei, Jean-

Daniel Fekete, Pierre Dragicevic, and Sean Follmer.

2016. Zooids: building blocks for swarm user

interfaces. In Proceedings of the 29th Annual

Symposium on User Interface Software and

Technology (UIST '16). ACM, New York, NY, USA,

97-109. DOI:

https://doi.org/10.1145/2984511.2984547

18. Pedro Lopes, Patrik Jonell, and Patrick Baudisch. 2015.

Affordance++: allowing objects to communicate

dynamic use. In Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems

http://dx.doi.org/10.1145/2047196.2047241
http://dx.doi.org/10.1145/258549.258778
http://dx.doi.org/10.1145/1866029.1866074
http://dx.doi.org/10.1145/1753326.1753554
https://doi.org/10.1145/1342250.1342252
http://dx.doi.org/10.1145/2501988.2502032
https://doi.org/10.1145/2858036.2858519
http://dx.doi.org/10.1145/258549.258715
http://dx.doi.org/10.1145/1622176.1622202
http://dx.doi.org/10.1145/2317956.2317996
https://doi.org/10.1145/2984511.2984547

(CHI '15). ACM, New York, NY, USA, 2515-2524.

DOI: https://doi.org/10.1145/2702123.2702128

19. Joseph Luk, Jerome Pasquero, Shannon Little, Karon

MacLean, Vincent Levesque, and Vincent Hayward.

2006. A role for haptics in mobile interaction: initial

design using a handheld tactile display prototype. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '06), Rebecca

Grinter, Thomas Rodden, Paul Aoki, Ed Cutrell, Robin

Jeffries, and Gary Olson (Eds.). ACM, New York, NY,

USA, 171-180. DOI:

http://dx.doi.org/10.1145/1124772.1124800

20. Timothy Miller and Robert Zeleznik. 1998. An

insidious haptic invasion: adding force feedback to the

X desktop. In Proceedings of the 11th Annual ACM

Symposium on User Interface Software and

Technology (UIST '98). ACM, New York, NY, USA,

59-64. DOI: http://dx.doi.org/10.1145/288392.288573

21. Joe Mullenbach, Craig Shultz, Anne Marie Piper,

Michael Peshkin, and J. Edward Colgate. 2013. Surface

haptic interactions with a TPad tablet. In Proceedings

of the Adjunct Publication of the 26th Annual ACM

Symposium on User Interface Software and

Technology (UIST '13 Adjunct). ACM, New York,

NY, USA, 7-8. DOI:

http://dx.doi.org/10.1145/2508468.2514929

22. Diana Nowacka, Karim Ladha, Nils Y. Hammerla,

Daniel Jackson, Cassim Ladha, Enrico Rukzio, and

Patrick Olivier. 2013. TouchBugs: actuated tangibles

on multi-touch tables. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(CHI '13). ACM, New York, NY, USA, 759-762. DOI:

https://doi.org/10.1145/2470654.2470761

23. Gian Pangaro, Dan Maynes-Aminzade, and Hiroshi

Ishii. 2002. The Actuated Workbench: computer-

controlled actuation in tabletop tangible interfaces. In

Proceedings of the 15th Annual ACM Symposium on

User interface software and technology (UIST '02).

ACM, New York, NY, USA, 181-190. DOI:

http://dx.doi.org/10.1145/571985.572011

24. Esben W. Pedersen and Kasper Hornbæk. 2011.

Tangible Bots: interaction with active tangibles in

tabletop interfaces. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(CHI '11). ACM, New York, NY, USA, 2975-2984.

DOI: http://dx.doi.org/10.1145/1978942.1979384

25. Holger Regenbrecht, Gregory Baratoff, and Michael

Wagner. 2001. A tangible AR desktop environment.

Computers & Graphics, 25(5), 755-763.

26. David Robert, Ryan Wistorrt, Jesse Gray, and Cynthia

Breazeal. 2010. Exploring mixed reality robot gaming.

In Proceedings of the fifth international conference on

Tangible, embedded, and embodied interaction (TEI

'11). ACM, New York, NY, USA, 125-128. DOI:

http://dx.doi.org/10.1145/1935701.1935726

27. Ivan E. Sutherland. 1965. The ultimate display.

Multimedia: From Wagner to virtual reality.

28. Brygg Ullmer and Hiroshi Ishii. 1997. The metaDESK:

models and prototypes for tangible user interfaces. In

Proceedings of the 10th Annual ACM Symposium on

User Interface Software and Technology (UIST '97).

ACM, New York, NY, USA, 223-232. DOI:

http://dx.doi.org/10.1145/263407.263551

29. Malte Weiss, Julie Wagner, Yvonne Jansen, Roger

Jennings, Ramsin Khoshabeh, James D. Hollan, and

Jan Borchers. 2009. SLAP Widgets: bridging the gap

between virtual and physical controls on tabletops. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '09). ACM, New

York, NY, USA, 481-490. DOI:

http://dx.doi.org/10.1145/1518701.1518779

30. Malte Weiss, Florian Schwarz, Simon Jakubowski, and

Jan Borchers. 2010. Madgets: actuating widgets on

interactive tabletops. In Proceedings of the 23nd

Annual ACM Symposium on User interface Software

and Technology (UIST '10). ACM, New York, NY,

USA, 293-302. DOI:

http://dx.doi.org/10.1145/1866029.1866075

31. Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller.

2009. Sikuli: using GUI screenshots for search and

automation. In Proceedings of the 22nd annual ACM

Symposium on User Interface Software and

Technology (UIST '09). ACM, New York, NY, USA,

183-192. DOI:

http://dx.doi.org/10.1145/1622176.1622213

https://doi.org/10.1145/2702123.2702128
http://dx.doi.org/10.1145/1124772.1124800
http://dx.doi.org/10.1145/288392.288573
http://dx.doi.org/10.1145/2508468.2514929
https://doi.org/10.1145/2470654.2470761
http://dx.doi.org/10.1145/571985.572011
http://dx.doi.org/10.1145/1978942.1979384
http://dx.doi.org/10.1145/1935701.1935726
http://dx.doi.org/10.1145/263407.263551
http://dx.doi.org/10.1145/1518701.1518779
http://dx.doi.org/10.1145/1866029.1866075
http://dx.doi.org/10.1145/1622176.1622213

