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ABSTRACT 

Traditional GUI applications provide limited support for 

tangible interaction, as most applications are not 

programmed to support tangible input, and most input 

devices do not provide haptic feedback. To address this 

limitation, we introduce GUI Robots, a software framework 

that enables developers to repurpose off-the-shelf robots as 

tangible input and haptic output devices, and to connect them 

to unmodified desktop applications. We introduce the GUI 

Robots framework and present several proof-of-concept 

applications, including a haptic scroll wheel, force feedback 

game controllers, a 3D mouse, and a self-driving notification 

robot. To evaluate whether GUI Robots can be used to 

prototype tangible interfaces for existing applications, we 

conducted a user study in which developers created 

customized tangible interfaces for two applications. Study 

participants were able to create tangible user interfaces for 

these applications in less than an hour. GUI Robots allows 

developers to easily extend applications with tangible input 

and haptic output. 
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INTRODUCTION 

Modern desktop applications often provide rich visual and 

audio experiences, supported by developments in high-

resolution displays and high quality stereo audio. However, 

existing applications provide little support for tangible 

interaction or haptic feedback. Thus, the advantages of 

tangible interaction [13] remain unavailable in most desktop 

applications.  

The lack of tangible input and haptic feedback in desktop 

GUI applications is due to several factors. First, most 

applications are designed to support traditional input devices 

such as keyboards, mice, and touchpads, and these devices 

typically do not provide haptic feedback. While some input 

devices do provide force feedback, such as the Apple Magic 

Trackpad and some gaming mice, most applications do not 

support the advanced haptic features of these devices. 

Tangible interaction is also supported by some specialty 

input devices such as 3D mice and haptic game controllers, 

but these devices are mostly used by professional 3D 

designers and gamers, respectively, and are not used by most 

mainstream computer users. Second, adding haptic feedback 

to applications typically requires that developers add new 

features to their code, and few developers do so. 

In this work, we explore opportunities for bringing tangible 

input and haptic output to desktop GUI applications by 

addressing these two challenges. First, we address the lack 

of tangible input devices by repurposing an existing 

technology, that of educational and toy robots such as 

Sphero, Wonder Workshop’s Dash, and Parrot’s AR Drone. 

These robots are inexpensive (often less than $100 USD) and 

support connecting to PCs via Bluetooth and Wi-Fi. Most 

importantly, these robots contain sensors such as 
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Figure 1. Using an off-the-shelf robot (Ollie) as a tangible 

input/output device for a 3D modeling application (Blender). 

Our system dynamically pairs the robot with the on-screen 

model: manipulating the robot moves the model; changing the 

model on screen causes mirrored movements in the robot. 
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accelerometers and gyroscopes that enable them to be 

repurposed as input devices, and actuators that can be used 

to provide haptic feedback. Second, we address the lack of 

software support for tangible input and haptic output by 

enabling our tangible input devices to be paired with existing 

applications without changing the underlying code, through 

a combination of input event emulation, GUI automation, 

and custom application APIs. 

Contributions 

In this paper, we introduce the GUI Robots framework, 

which enables developers to add tangible input and haptic 

output to existing applications using off-the-shelf robot 

platforms. We introduce several proof-of-concept 

applications in which desktop GUI applications are 

augmented using robots as tangible input devices. Finally, 

we demonstrate that our framework enables developers to 

add tangible input and haptic output to existing applications 

through a user study in which 12 developers used our 

framework to create a tangible game controller and a tangible 

video editing tool. The contributions of this paper are: 

1. The GUI Robots framework, which enables developers 

to author tangible input and haptic output behaviors 

using robots, and to attach these behaviors to existing 

applications; 

2. Demonstrating the use off-the-shelf robots as an 

affordable and accessible approach to providing tangible 

input and haptic output; 

3. Demonstrating how input event emulation and GUI 

automation can be used add haptic interaction to existing 

applications; 

4. Proof-of-concept applications for extending GUI 

applications with tangible interaction; 

5. Insights from a user study in which 12 developers used 

the GUI Robots framework to create their own tangible 

interactions for an existing video game and video editor. 

RELATED WORK 

Tangible User Interfaces in HCI 

Our work draws inspiration from the visions of tangible 

computing brought forth by Sutherland [27], and by projects 

such as metaDESK [28], MagicDesk [25], and the Actuated 

Workbench [23]. These projects, and those that have 

followed (e.g., [11,29,30]), demonstrate how tangible 

interaction can improve user engagement and can support 

more natural interactions in 3D space. While these projects 

have demonstrated the benefits of tangible interaction, they 

have typically taken the form of self-contained systems. Our 

goal in this work is to extend the benefits of tangible user 

interfaces to a broad range of mainstream PC applications.  

Other research has explored how traditional PC applications 

can be augmented through the use of specialized haptic 

devices. Miller and Zeleznik [20] explored adding haptic 

feedback to GUI applications using the Phantom haptic 

controller. Several projects have explored the creation of 

haptic mice that can provide haptic output while interacting 

with a GUI [1,4]. Bonfire [15] and Portico [3] used computer 

vision to support tangible interactions around a laptop and 

tablet, respectively. TeslaTouch [7] and TPad [21] provided 

haptic feedback for touch screen applications by augmenting 

the touch screen hardware with electrovibration and 

ultrasonic actuators, respectively. Our work extends prior 

work in this area by supporting haptic interactions via novel 

devices (off-the-shelf consumer robots), and by providing 

support for adding tangible input and haptic output to 

existing desktop applications.  

Robots as Tangible User Interfaces 

Robotic devices offer great potential for use in tangible 

computing, as they feature an embodied physical form, and 

can support a variety of physical input and output modes. 

Several projects have explored the use of robots to display 

information. Jacobsson et al. [14] created a series of shape-

changing displays using an array of educational robots, 

allowing users to control the display by moving or shaking 

robots. Alonso-Mora et al. [2] created a dynamic display 

made up of a swarm of color changing robots, in which each 

robot could move and change color to represent pixels in a 

source image or animation. Robert et al. [26] developed a 

system that supported interaction with game characters, in 

which robots representing characters could be controlled 

with a joystick. BitDrones [12] used flying quadcopter 

drones with attached LEDs and displays to represent 

information in 3D, and enabled users to physically move the 

drones to interact with the display. These projects used 

mobile robots as physical manifestations of an image, 

animation, or game, and did not fully explore the input 

capabilities of the robots, as we do here. 

Other projects have explored the use of robots to provide 

tangible input for applications on touch screens. TouchBugs 

[22] and Tangible Bots [24] used custom robots to provide 

tangible interaction on touch screen-based tabletops. Users 

could directly interact with the robots, which passed this 

interaction data to the underlying application, and the robots 

could move themselves across the tabletop to present various 

input configurations. Our work extends this general approach 

by using robots to control desktop GUI applications, but 

leverages off-the-shelf robots rather than custom-made 

robots, and instruments existing applications in addition to 

supporting new applications. 

Zooids [17] introduced the concept of swarm user interfaces, 

in which a collection of wheeled robots moved in 

coordination to create a tangible user interface that could be 

manipulated by the user. Zooids can be used to represent data 

on a table surface, or can enable interactive drawing. Both 

Zooids and GUI Robots allow control of applications by 

physically manipulating robots. However, our GUI Robots 

framework complements Zooids by exploring ways to 

instrument existing user interfaces with tangible robots. 

Furthermore, while Zooids make use of custom robots and 

an augmented workspace, our approach focuses on 



leveraging off-the-shelf robots in an uninstrumented 

environment, potentially lowering barriers to use. 

End-User Robot Programming 

Several prior projects have explored end-user-friendly 

approaches to programming robotic behaviors. Phybots [16] 

is a software toolkit that enables users to program robots to 

perform activities around the home. Bartneck et al. [6] 

developed tools to enable users to create shape displays using 

robots. In contrast to these prior toolkits, the GUI Robots API 

allows developers to specify the robot’s behaviors from the 

user’s perspective, enabling developers to easily detect 

gestures performed on and around a robot, and to author 

haptic interactions for handheld robots. By allowing 

developers to specify behaviors from a user-centric 

interaction perspective, rather than a robot-centric 

perspective, the GUI Robots framework may allow 

developers to more easily integrate tangible input and haptic 

output into their applications.  

GUI ROBOTS 

The primary contribution of this work is GUI Robots, a 

software framework that supports pairing off-the-shelf 

robots with PCs, authoring tangible input and haptic output 

behaviors using these robots, and pairing these robots with 

unmodified GUI applications. The following section 

describes the various components of this framework. 

Connecting PC Applications with Robots 

The GUI Robots framework is a Node.js library that can be 

used on all major desktop computing platforms. Connections 

between the PC and robots use the robots’ integrated 

Bluetooth or Wi-Fi connectivity.  

The GUI Robots framework uses a plug-in architecture to 

enable connections to a variety of robot platforms. 

Developers can add support for additional robots by 

connecting to the robot via Cylon, Node.js, or WebSockets, 

and by implementing the core interactions of the GUI Robots 

framework via the robot’s native API. In general, the GUI 

Robots framework should be capable of supporting most 

robots with Bluetooth or Wi-Fi connectivity, as long as the 

robot’s native API offers the ability to track the robot’s 

motion and to control the robot’s movement. A robot’s 

specific capabilities as an input device depend on the size, 

shape, and movement characteristics provided by the robot 

itself, so not all GUI Robots can support all forms of 

interaction. For example, only flying robots such as the AR 

Drone can lift themselves off of the ground, and only robots 

that provide back-drivable motors (i.e., robots in which a 

user can physically manipulate the motor’s position) can 

provide haptic resistance while being moved by the user.  

To date, we have tested our framework with four robot 

platforms: Sphero and Ollie (from Sphero, Inc.), Wonder 

Workshop’s Dash, and Parrot’s AR Drone. The present work 

has primarily used the Sphero and Ollie robots, as these 

robots provide a variety of sensors and actuators in a 

handheld form factor (Figure 2). Sphero is a spherical robot 

containing a self-balancing platform with two independently 

driven wheels, a 3-axis accelerometer, a gyroscope, a 

controllable RGB LED, and a Bluetooth radio. Ollie is a 

cylindrical robot that features a similar self-balancing 

mechanism, but uses wheels placed directly on the surface 

rather than rolling inside a ball. Because Ollie’s wheels 

directly touch the surface, while Sphero’s wheels are encased 

in a ball, Ollie can provide some forms of haptic feedback 

that Sphero cannot., such as pushing against the user’s hand 

to provide friction while the user moves the robot. Both 

Sphero and Ollie were originally intended as educational 

toys, and cost approximately $100 USD each.  

    
Figure 2. Sphero (left) and Ollie (right) robots. 

Our framework uses the Sphero and Cylon.js APIs to control 

the Sphero and Ollie robots. While the Sphero API provides 

limited support for connecting the robot to a PC and reading 

the device sensors, the GUI Robots framework provides 

many additional features, including the ability to track user 

input events, author haptic behaviors, and connect to a 

variety of existing PC applications. 

Recognizing User Input 

GUI Robots facilitate user input by being directly 

manipulated and moved by the user, such as by physically 

moving the robot, rotating the robot, or whacking the robot, 

similar to prior motion-control-based systems. Sensor data is 

streamed from the robot to the PC. Developers can track the 

robot’s raw sensor values, but they can also author 

interactions using event handlers for gestures such as 

onWhack and onMoveLeft.  

The GUI Robots framework uses heuristic gesture 

recognizers to convert the robot’s raw sensor data into input 

events. Many consumer-grade robots, including the robots 

we have tested with our prototype, use a gyroscope to track 

the orientation of the robot, and use an accelerometer to track 

movement through space (Sphero and Ollie also provide 

limited, but relatively inaccurate, odometry through the 

motors’ back-EMF signal).  While a gyroscope can provide 

reasonably accurate data about a robot’s orientation, most 

accelerometers provide much less accurate data about a 

robot’s movement and position. Because most 

accelerometers cannot provide accurate odometry data, the 

current version of our framework does not support directly 

tracking a robot’s position. The accuracy of information 

about a robot’s position is limited by the robot’s sensors, and 

cannot be significantly improved without adding additional 



sensors to a robot or augmenting the workspace with an 

overhead camera. We carefully considered these trade-offs 

during the design of our system, and decided that there was 

value in exploring the possibilities of interacting with 

unaltered off-the-shelf robots in an uninstrumented 

workspace. Thus, the current GUI Robots framework uses 

orientation-based events such as onRotateRight and 

movement-based events such as onMoveLeft, and does not 

fully support tracking a robot’s position.  

User input such as touching, tapping, and picking up a robot 

is currently detected via the gyroscope and accelerometer, as 

none of the robots we investigated supported capacitive 

touch input. However, by combining the limited sensors 

available in these consumer-grade robots, our framework 

allows developers to track a robot’s rotation and movement, 

and to detect touch input from the user. 

Haptic Output 

GUI Robots support a variety of types of haptic feedback. By 

oscillating the motor, a robot can provide traditional force 

feedback methods such as haptic bumps and vibration. 

However, our framework also leverages the robots’ ability to 

move themselves to provide additional forms of haptic 

feedback that are not found in many existing haptic devices. 

Force Feedback 

While our robots did not feature a dedicated vibration motor, 

GUI Robots can provide traditional force feedback by 

pulsing the device’s motor and moving the robot while in the 

user’s grasp. For example, a robot can quickly toggle its 

motors back and forth in each direction to create a haptic 

bump, and can increase the intensity of these motor 

movements to support varying levels of vibration.  

This vibrational feedback, when combined with tracking the 

robot’s movement, provides the additional capability of 

rendering haptic feedback within a specific area. For 

example, a robot might detect that it is being moved forward, 

and render a series of haptic vibrations while being moved, 

creating the sensation of a haptic texture on the surface 

beneath the robot. 

Constrained Movement and Isometric Behavior 

As GUI Robots are able to move themselves on a surface, 

they can provide additional haptic interactions by restricting 

or controlling their own movement. For example, a GUI 

Robot could be programmed such that it could be rotated in 

a clockwise direction, but not counterclockwise. As a user 

attempts to rotate the robot counterclockwise, the robot could 

resist that movement by actuating its motors to rotate 

clockwise. Although the user may be able to overpower the 

robot, the robot could still provide force feedback while 

being turned, and could rotate back to its preferred position 

once the user let go of the robot. Likewise, the robot could 

be programmed to move horizontally relative to the user’s 

workspace, but not vertically, or could provide varying levels 

of resistance based on the direction being moved. 

These haptic behaviors could be used to represent more 

complex tangible interactions. For example, an Ollie robot 

could represent the throttle in a flight simulation game. The 

robot could be programmed to support movement along the 

vertical axis only, matching the affordances of a physical 

throttle control. Additionally, the robot could provide greater 

resistance when being pushed forward than when being 

pushed backward, emulating the throttle’s physical 

resistance while increasing speed. This constrained 

movement behavior is currently best supported by the Ollie 

robot, as it can easily push back against the user. Because the 

Sphero is encased in a ball, it cannot directly push back while 

being moved, although it can vibrate to provide force 

feedback, and can move itself back into its preferred position 

after being released. 

In addition to constraining their own movement, GUI Robots 

can be programmed to represent isometric behavior. For 

example, if the robot detects being moved to the left, it can 

drive itself back toward its original position after it is 

released, emulating an isometric input device. While the 

positioning accuracy of our existing robots makes it difficult 

for the robot to return exactly to its origin, in practice we 

have found that small movements back toward the origin can 

demonstrate isometric behavior when the robot is used in a 

small space, such as on a desk surface. 

Movement and Positioning 

GUI Robots can move themselves independently to achieve 

a variety of objectives. For example, a robot can be driven in 

a specific pattern as a form of output, such as by drawing out 

a circle on the desk surface. This feature can be used to 

provide non-visual haptic output on the desktop. GUI Robots 

can also be programmed to move between pre-specified 

locations. For example, a user might store their GUI Robot 

in the corner of their desk. When the user activates a GUI 

Robot-enabled application, the robot could nudge itself from 

the corner toward the center of the desk to indicate that it is 

ready to be used. 

Guiding the User via Dynamic Affordances 

GUI Robots can leverage their movement capabilities to 

physically guide the user. For example, a user could place 

their hand on top of the robot, and the robot could drive itself 

in a specific direction or pattern, providing an additional 

dimension of haptic feedback. This mechanism could also be 

used to inform the user about how a tangible user interface 

works via a dynamic affordance [18]. For example, a map 

application might allow the user to zoom in and out by 

rotating the map, and roll the device forward to adjust the 

angle of the map view. These gestures might be difficult to 

discover for a novice user, but a GUI Robot could teach these 

gestures to a user by rotating slightly while simultaneously 

zooming the map on-screen, demonstrating how the 

movement of the robot maps to an action within the 

application. 



Mirroring Virtual Objects 

GUI Robots can use their ability to position and orient 

themselves in order to “mirror” the status of an on-screen 

object. For example, a GUI Robot could be paired with a 

model in a 3D modeling application such as Blender (Figure 

1). In this scenario, the user can move and rotate the robot to 

move and rotate the on-screen object. These movements 

could also be mirrored back from the on-screen application, 

so that if the on-screen model rotates, the GUI Robot could 

rotate itself to match (where permitted by gravity). This 

capability could be used to monitor information in an 

application, such as by tracking the movement of an 

opponent in an online game, or could be used to support 

collaborative tangible interactions with a remote colleague. 

Connecting GUI Robots to Desktop Applications 

A core feature of the GUI Robots framework is the ability to 

extend existing applications with tangible input and haptic 

output without needing to create a new application or alter a 

program’s code. The GUI Robots framework supports three 

methods for connecting tangible robots to existing 

applications: emulating keyboard and mouse input, tracking 

and controlling UI elements with Sikuli [31], and using 

application APIs. 

Emulating keyboard and mouse input: Many applications 

can be controlled simply by spoofing keyboard and mouse 

events. The GUI Robots framework can control an existing 

application by entering a sequence of keys or controlling the 

mouse cursor. This mouse emulation approach can be used 

to operate UI elements with a fixed location, such as clicking 

the Windows Start Button. More complex mouse interactions 

are possible using Sikuli, as described below. The haptic 

controller for Windows Movie Maker, described in the user 

study section of this paper, relies primarily on sending 

keyboard shortcuts to control the application. 

Tracking UI elements with Sikuli: In many situations, a 

developer might wish to pair a robot with a specific GUI 

control. However, it can be difficult to automate interaction 

with an existing user interface, as many applications do not 

provide scriptable access to their GUI. Our framework 

provides the capability to locate specific UI elements on 

screen using computer vision, and to control them via 

keyboard and mouse events. Our framework uses Sikuli [31], 

which enables developers to capture a screenshot of an on-

screen item, search for that item on screen, and interact with 

that item via emulated keyboard and mouse events.  

This method can be used to instrument a variety of user 

interfaces across OS platforms, on the web, and even in 

games. For example, our Angry Birds controller, described 

in the next section, was created by tracking the on-screen bird 

image. When the user drags the robot backwards to simulate 

pulling back the slingshot, our application finds the bird on 

screen, clicks the mouse button, and drags the mouse down 

and to the left to pull back the slingshot. 

Using application APIs: In some cases, a developer may 

wish to add features beyond what is possible through input 

emulation or Sikuli. If an application provides a public 

automation API, this API can be used to connect the 

application to the GUI Robots framework. For example, our 

3D Mouse application is implemented using Blender’s API, 

which provides precise information about the position and 

orientation of the on-screen 3D model. Similarly, the Haptic 

Web Browser Control uses a Chrome extension to read 

content on the current web page and to provide haptic 

feedback based on the page content. 

GUI Robots Developer API 

All input and output functions are exposed via a JavaScript 

API (Table 1). This API abstracts the connections to each 

robot, and offers a unified set of commands across robots, 

although not every robot supports every command. Where 

possible, commands are presented from the perspective of 

the user, rather than from the perspective of the robot, to 

simplify the development of tangible user interfaces. For 

example, the “move left” event uses the user’s definition of 

left in their workspace, rather than the robot’s left side. The 

API also allows access to a robot’s low-level sensor data, 

enabling developers to create more advanced forms of input 

and output. The GUI Robots API also provides support for 

emulating keyboard and mouse events, and for tracking and 

interacting with GUI controls. A user evaluation of the API 

is presented later in this paper. 

PROOF-OF-CONCEPT APPLICATIONS 

Here we present several example applications, developed by 

our research team, that demonstrate the capabilities of our 

framework to extend existing GUI applications with tangible 

input and actuated haptic output.  

Orientation and Movement Input Events  Output Commands GUI Automation 

getRotation onWhack doBump findImageOnScreen(imgName) 

constrainRotation(dir) onDoubleWhack doShake startTrackingImage(imgName) 

constrainMovement(dir) onShake showColor(c) stopTrackingImage(imgName) 

onAccelerate(x,y,z) onSpin(dir) drive(dir) onImageFound(imgName, x, y) 

onRotate(roll,pitch,yaw) onMove(direction) constrainRotation(dir) onMouseEvent(event) 

 onPickUp constrainMovement(dir) onKeyEvent(event) 

 onPutDown  doMouseEvent(event) 

   doKeyboardEvent(event) 

Table 1. Overview of GUI Robots API commands. Our API supports tracking orientation and movement events; receiving input 

events on the robot; providing haptic and visual output; and automating interaction with the GUI. 

 



Haptic Web Browser Control 

We developed a plug-in for the Google Chrome browser that 

allows users to navigate web sites using a tangible robot 

controller. This plug-in also provides haptic feedback based 

on page content, demonstrating the capability of GUI Robots 

to provide both tangible input and haptic output (Figure 3). 

 

Figure 3. Haptic Web Browser Control enables the user to 

scroll a web page by rotating or rolling the robot, and provides 

haptic feedback based on the page content. 

Using this application, the user can scroll through the current 

web page by spinning the robot or rolling the robot up and 

down. The robot can also be used as an isometric controller, 

so that moving the robot backwards (i.e., toward the user) 

will cause the web page to scroll downward continuously 

until the user moves it forward once again. Future versions 

of this application could support additional interactions using 

the robot’s additional degrees of freedom. For example, 

rolling the robot forward and back could control scrolling, 

while twisting left and right could zoom in and out. 

This application also supports dynamic haptic output based 

on the web page being viewed. Currently, the plug-in tracks 

top-level headers on the current web page (i.e., h1 tags), and 

causes a haptic bump each time such a header scrolls into the 

current view. This feature allows the user to quickly scroll 

through a web page and to receive some haptic feedback 

about the structure of the page content. A stronger haptic 

bump is provided when the user scrolls past the top or bottom 

of the web page. 

This haptic output capability can also be extended with site-

specific scripts. For example, the current version of this 

application supports contextual feedback in Gmail: rotating 

the robot causes the cursor to step through each message, and 

generates a haptic bump when a starred message is selected 

(similar to the effect shown in [19]). 

Force Feedback Game Controller 

We have developed several prototypes to support tangible 

interaction with video games. These applications can support 

both motion input and haptic output.. 

For example, we have created a custom haptic controller for 

the game Angry Birds. As Angry Birds does not currently 

support desktop OSes, our controller uses a web-based clone 

that functions similarly to the original game. In this game, 

the user aims a slingshot containing a bird, and fires the bird 

toward a tower containing evil pigs. The user wins the game 

by knocking over each one of the pigs. 

We developed a prototype of an Angry Birds controller using 

the GUI Robots framework and the Ollie robot (Figure 4). In 

our adaptation of the game, the user pulls back the slingshot 

by rolling the robot backwards. When this occurs, the GUI 

Robots framework identifies the location of the bird using 

Sikuli, clicks the bird, and drags the mouse cursor down and 

to the left. Once the slingshot has been pulled back, the user 

can rotate the robot to adjust the angle of the slingshot. The 

user can launch the bird by rolling or whacking the robot. 

Once the bird has been launched, the robot rolls forward a 

few inches and shakes back and forth, adding additional 

haptic feedback to the game. After a few seconds, the robot 

rolls back to its original position. This application 

demonstrates tangible input and haptic output, and shows 

that GUI Robots can control an existing game without access 

to the game’s source code. 

 

Figure 4. GUI Robot used as a tangible game controller. The 

user pulls the robot back to arm the slingshot. The robot 

launches itself forward and shakes after the slingshot is fired, 

adding expressive haptic output to the game experience. 

We developed a similar controller for Valve’s Counter-

Strike, in which the user moves their character by rolling the 

robot, turns by rotating the robot, and fires by whacking the 

robot or pressing a mouse button. The robot vibrates when 

the user fires. In the future, this application could be 

extended to provide feedback based on specific in-game 

elements, such as vibrating when the player loses a match. 

More recently, we have created a prototype of a GUI Robot 

Input Manager (Figure 5), which allows the user to map a 

robot’s movement to keyboard and mouse events. This tool 

could be used by non-programmers to create simple input 

mappings between GUI Robots and existing games. 

3D Mouse with Object Mirroring 

Manipulating 3D objects on a 2D screen can be difficult and 

cognitively demanding [10,25]. We developed a plug-in for 



the 3D modeling tool Blender that enables the user to 

manipulate a model in 3D space by manipulating a paired 

GUI Robot (Figure 1). We used the Blender API to track the 

position and orientation of the model being edited. When the 

user wishes to manipulate the model, they may press a key 

to link the model to the GUI Robot. Once linked, moving and 

rotating the robot causes the corresponding 3D model to be 

moved. This pairing between the on-screen model and the 

GUI Robot is bi-directional, such that manipulating the on-

screen model with a keyboard or mouse causes the paired 

robot to move and match the on-screen object (within the 

constraints of the robot’s capabilities). 

 
Figure 5. GUI Robot Input Manager allows end users to map 

interactions with the robot to keyboard and mouse commands. 

Currently, this plug-in enables the user to manipulate the 

orientation and position of the object only; however, future 

versions of our system could enable richer interactions by 

further coupling the physical robot and virtual object. For 

example, tapping the robot’s exterior could select a face of 

the 3D model or could swap between textures on that model. 

Tangible Music Controller 

Tangible input devices can be especially useful in the context 

of music and creative performance, enabling users to engage 

physically with a creative work. We developed a tangible 

music controller using the Max/MSP electronic music 

package (Figure 6). This application allows the user to 

control a music composition by manipulating the robot. In 

our prototype, rotating the robot, lifting it into the air, and 

whacking the robot each adjusted some parameter of the 

composition, such as the tone or tempo. During playback of 

an existing composition, the robot moves itself around the 

floor and flashes the device’s LED lights in sync with the 

music. A performer or even an audience member could 

manipulate the music playback by blocking the robot’s 

movement, or by moving the robot to a different location. In 

the future, this application could be used to create interactive 

multimedia performances that combine audio, visual, and 

tangible information. 

Rolling Desktop Notification Manager 

While most of our example applications explore how GUI 

Robots can be used as input devices, our framework also 

provides support for producing output via actuated tangible 

objects. To explore the possibilities of using a GUI Robot as 

an output device, we developed a notification manager 

application that allows the user to map specific notifications 

to behaviors from the robot. 

Our Notification Manager prototype uses a Chrome plug-in 

to capture notifications delivered via the HTML Web 

Notification API, although in the future it could be extended 

to support platform-specific notification APIs. The user can 

specify a text pattern to listen for, and a series of robot 

actions to occur if a matching notification is received (Figure 

7). For example, the user can specify that the robot should 

move left and then right if a notification mentioning 

“Facebook” is received. The user can snooze the notification 

by whacking the robot, or can pick up the robot to mute the 

notification. 

EVALUATING THE GUI ROBOTS FRAMEWORK 

The GUI Robots framework is designed to enable the 

creation of tangible user interfaces that extend existing, 

uninstrumented applications. To evaluate the suitability of 

the current system for creating tangible user interfaces, we 

conducted a user study in which developers programmed two 

 
Figure 7. Notification Manager application enables a user to 

enter a notification pattern and specify a corresponding robot 

behavior. When a notification appears that matches the 

specified pattern, the robot performs the specified behaviors. 

 

Figure 6. Ollie Robot paired to Max/MSP using the GUI 

Robots framework. The robot moves and flashes its lights 

based on the music. Manipulating the robot affects music 

playback. 



tangible user interfaces for existing applications. Each 

participant took part in a single 90-minute session located in 

our lab. Participants used the Ollie robot for study tasks, as 

it provides the most flexibility for haptic output. 

Participants 

Twelve developers (9 male, 3 female, aged 22-37) 

participated in the study. Participants were recruited through 

university email lists and fliers placed on the university 

campus. Participants were not expected to have prior 

experience with programming robots, but were required to 

have prior JavaScript programming experience.  

Procedure 

The study comprised 5 phases: (1) introduction and consent; 

(2) GUI Robots framework tutorial; (3) Angry Birds task; (4) 

Movie Maker task; and (5) exit survey and debrief. The entire 

session lasted 90 minutes. 

After completing the consent process, the participant was 

introduced to the goals of the study and the GUI Robots 

framework. Participants used a simplified version of the GUI 

Robots API presented in Table 1. Participants were given a 

copy of the framework source code, and given a cheat sheet 

that briefly described each of the API functions. The 

participant was given a tour of the WebStorm IDE, in which 

they were to write the study code, and given a brief tutorial 

on how to capture and track an image using Sikuli.  

Next, participants were given 30 minutes to develop a haptic 

controller for the online Angry Birds clone. Participants were 

asked to first brainstorm and sketch out their solution, and 

then asked to develop their solution with the remaining time. 

During the programming task, a researcher observed the 

participant and answered questions about JavaScript and the 

APIs. Once the prototype was complete, the participant 

demonstrated the application for the researcher. The 

researcher then asked the participant how satisfied they were 

with their solution, and whether there were any changes or 

additions they would have liked to make to their prototype.  

In the second task, participants were asked to make a tangible 

input device for controlling Windows Movie Maker, a video 

editor. This controller was expected to support the following 

commands: toggling play and pause, navigating to the 

previous and next clip, deleting the current clip, splitting the 

current clip, and undoing the last action. In addition, we 

asked developers to add haptic feedback when the video play 

head reached the 1-minute mark, and when the play head 

reached the end of the video. This activity followed the same 

structure as the previous activity.  

Finally, the participant filled out an exit questionnaire that 

contained questions about each activity, and evaluated their 

experience using the System Usability Scale (SUS) [8]. 

Figure 8 shows a participant creating a prototype that used 

the Ollie robot. 

FINDINGS 

All participants were able to successfully produce working 

versions of the haptic game controller. As we did not specify 

how to design the tangible interactions, participants 

developed a variety of solutions to solve this problem. 

Participants used several methods to aim and fire the bird, 

including rotating, moving, and whacking the robot. Some 

participants added haptic output after the bird was launched. 

Participants also added additional unrequested features, such 

as automatically clicking the on-screen restart button after 

the bird was launched, and using Sikuli to track the pigs’ 

tower, and using the location of the tower to automatically 

aim the bird for maximum damage. Table 2 presents an 

overview of the approaches used to design the haptic game 

controller. 

All participants also created a design for the Windows Movie 

Maker controller, but not all participants were able to 

implement all features in the 30-minute session. This task 

required developers to map six different actions to the 

movement of the robot, and sometimes participants chose 

mappings that conflicted with one another, causing 

slowdowns as they tested their solution. This task also 

required participants to use Sikuli to identify when the video 

play head was at 1 minute left, and at the end of the video, in 

order to provide haptic feedback, and several participants 

encountered difficulties capturing usable screenshots for 

Sikuli. In these situations, participants most often created a 

screenshot that was too small or too large, causing false 

positives in their haptic feedback. All participants except one 

(P9) were able to implement their complete solution; P9 

completed the input methods, but did not finish the haptic 

output features. Participants were occasionally slowed down 

by connectivity errors with the PC’s Bluetooth driver, which 

was corrected by a software update after the study session. 

To get a sense of participants’ experience using the GUI 

Robots framework, we asked participants to fill out the 

System Usability Scale (SUS) at the end of the activity [8]. 

This instrument features a set of 5-point Likert responses; a 

score of 70 is considered to be average [5]. Participant ratings 

 

Figure 8. Study participant testing haptic feedback with the 

Ollie robot. 



ranged from 62.5 to 87.5, with a mean score of 74.1 

(SD=7.76). Three developers rated the system as above 80, 

and only two rated the system below the average, each at 

62.5. While these scores suggest that there is room to 

improve the usability of our framework, it is not surprising 

that some participants found it difficult to learn a new 

technology in a short amount of time. Additionally, since 

participants were testing an early prototype of the system, it 

seems likely that satisfaction will improve with further 

testing and refinement. 

Overall, we found that participants were engaged throughout 

the task, and expressed interest in using this framework in 

the future. Participants suggested a number of improvements 

to the tool, such as providing more granular control over 

gesture recognition (e.g., being able to set gesture thresholds 

or disable certain gestures) and providing more precise 

tracking of the robots. Participants were also interested in 

augmenting the existing robots with additional components, 

such as more precise positioning sensors, touch sensors and 

other buttons, and proximity sensors to detect obstacles and 

prevent the robot from rolling off the table. 

Participants also expressed interest in using the API in their 

own personal projects. When asked about how they might 

use this framework in the future, P3 suggested that 

“controlling web browsers could be neat (moving the robot 

left and right to scroll through links, up and down to scroll 

the page, e.g.)”; P4 expressed interest in using the robot as 

part of Simon Says and other game; and P10 expressed 

interest in using the robot to notify him of events such as the 

end of a TV commercial, or when someone arrives at the 

door. These comments suggest that participants were able to 

consider uses of this framework beyond the study task; 

participants’ suggestions also offer compelling ideas for 

future applications that use the GUI Robots framework. 

DISCUSSION 

The GUI Robots framework enables developers to repurpose 

off-the-shelf robots as tangible input and haptic output 

devices, and to connect these devices to existing applications 

to create new tangible user interfaces. Our framework 

supports connections with a variety of robots, and is easily 

extensible to add new robots. Our proof-of-concept 

applications show that the current framework can be applied 

to a variety of application areas, and can support the creation 

of diverse interactions, including game controllers, musical 

instruments, and ambient notification displays. 

The goals of our user evaluation were to explore whether 

participants were able to create tangible user interfaces using 

our framework, to understand challenges to creating these 

user interfaces, and to explore further applications of this 

approach. By these metrics, our study was successful, in that 

all participants were able to create tangible controllers for 

two applications in a one-hour period, and demonstrated 

diverse approaches to creating tangible user interfaces, even 

for the same task.  

We were pleased to see that participants did not create 

identical solutions, and that they were able to brainstorm and 

implement their own solutions to the problems. Participants 

often displayed creativity when describing the solutions they 

 Angry Birds Movie Maker 

P# Start Distance Angle Fire Play Next/Prev Delete Split Undo Feedback 

1 Whack Move back Rotate Y Move back 
Spin 

right 

Move 

fwd/back 

Double 

whack 
Whack Pick up 

doShake, 

showColor 

2 Accel X Accel X N/A 
Move 

forward 
Whack 

Move 

fwd/back 
Shake 

Double 

whack 

Move 

left 

doShake, 

showColor 

3 
Put 

down 
Move back Spin Pickup Whack Spin right/left 

Double 

whack 

Pickup/ 

Put down 
Shake 

showColor, 

driveLeft 

4 Whack 
Move 

fwd/back 
Spin Whack Whack Spin right/left 

Pickup/ 

put down 

Double 

whack 

Move 

fwd 
showColor 

5 Whack Whack 
Yaw 

rotation 

Double 

whack 
Whack 

Move 

fwd/back 
Spin left 

Double 

whack 

Spin 

right 
showColor 

6 
Move 

back 
Move back 

Pitch 

rotation 
Move fwd 

Move 

fwd 
Yaw rotation Shake 

Double 

whack 

Pitch 

rotate 

doShake, 

doBump 

7 Whack 
Move 

fwd/back 
Spin Whack Pickup 

Move 

right/left 

Double 

whack 
Whack Spin left doShake 

8 Whack Move left Move left 
Double 

whack 
Whack 

Move 

right/left 

Double 

whack 
Pickup Spin left 

doBump, 

driveBack 

9 
Move 

fwd 

Move 

left/back 

Move 

left/back 

Move left/ 

back 
Whack N/A N/A 

Image 

Found 
N/A doShake 

10 Whack 
Move 

left/right 

Move 

fwd/back 

Double 

whack 
Whack 

Move 

right/left 

Double 

whack 
Pickup Shake 

Drive 

forward 

11 
Move 

right 
Shake Shake Shake Whack 

Move 

fwd/back 

Double 

whack 
Pickup 

Put 

down 
showColor 

12 Pick Up Move left Move left Whack Whack Spin right/left 
Double 

whack 
Pickup Shake doShake 

Table 2. Study participants’ input and output mappings for the two study tasks. 

 



came up with. One participant used the pick-up and put-

down gestures to split clips in Windows Movie Maker, and 

justified his response by saying, “If I pick it up and put it 

down it will split the clip, kind of like a cleaver.” When 

developing the controller for Angry Birds, P2 stated, “I 

would want to think of it as a big lever, whack it to pull it 

back, and twist it to change the angle, and whack it again to 

release.” When testing different gestures, P6 stated that 

“spinning the robot seems to be the functional equivalent of 

using left and right the arrow keys”. Participants created 

tangible input mappings using a variety of strategies, 

including leveraging metaphors to GUIs and physical 

controls. Participants were able to prototype and test tangible 

UIs even within the short study period. 

Several participants noted accuracy issues with the gesture 

recognizers, as they experienced false positive and negative 

gesture events during the study. These errors are due in part 

to the relatively low accuracy of accelerometer-based motion 

tracking, and because the current framework uses simple 

heuristic methods for detecting motion gestures. In the 

future, the system’s gesture recognition accuracy might be 

improved by collecting more training data for each gesture, 

or by introducing improved gesture recognition algorithms.  

Participants also experienced some challenges when 

designing sets of multiple gestures, as gesture mappings 

sometimes interfered with each other. For example, 

performing the shake gesture could also trigger a pick-up 

gesture. In the future, the GUI Robots framework could 

provide suggestions to help users create non-conflicting 

gesture sets, or could adapt its gesture recognition based on 

the current gesture set. 

Finally, participants experienced some challenges in using 

Sikuli to track elements on the screen. For example, in the 

Windows Movie Maker task, participants were asked to track 

when the play head reached specific points in the video. 

Successfully completing this task required participants to 

take a screenshot that would correctly identify when the 

video was at its end, but that would not cause false positives 

at other points during the video. Participants sometimes 

experienced false positives when testing this feature because 

they took screenshots that were too small or too large. This 

problem was exacerbated by Sikuli’s fuzzy matching 

framework, which sometimes generated false positives. 

These problems could be minimized by providing developers 

with control of the detection thresholds, or by providing 

more comprehensive documentation on creating screenshots 

and using the Sikuli library. 

LIMITATIONS AND FUTURE WORK 

The present work presents new opportunities for tangible 

interaction, enabling developers to create new tangible user 

interfaces for existing applications. However, there are 

several areas in which this work could be extended. 

First, the robots used in this study had limited features, and 

were limited in their ability to accurately track movement. 

Imprecise tracking caused gesture recognition errors, and 

prevented the use of some forms of interaction that would 

require precise tracking, such as using a robot as a stylus in 

a drawing application. We consider the capability to use 

existing off-the-shelf robots as tangible input devices to be a 

primary contribution of this work, and felt that the reduced 

accuracy was justified by the lower cost and increased 

availability of off-the-shelf robots. However, several study 

participants requested that we add additional capabilities to 

our robots, including more precise control over positioning, 

touch sensors, and other physical controls. In the future, we 

could extend the GUI Robots framework to cover a wider 

range of robots, or even to enable users to construct their own 

robots using Arduino or similar toolkits. 

A second limitation of the current work is that it currently 

supports interaction with only one robot at a time. Future 

versions of the framework could support pairing multiple 

robots to a single application, enabling bimanual interaction. 

Given a set of available robots, a future version of the GUI 

Robots framework could suggest the best available robot for 

a specific task, for example suggesting a puck-shaped robot 

for controlling system volume. 

A third limitation of the present work is that our evaluation 

targeted novice developers. While we believe that this 

population was optimal for evaluating the usability and 

versatility of the GUI Robots framework, we could extend 

the reach of this framework in both directions. On one hand, 

we could develop user-friendly tools that would enable non-

programmers to create their own tangible user interface 

mappings. On the other hand, we could explore a more 

advanced version of the framework that supported more 

precise control over gesture recognition, and provided more 

robust features for controlling robots and instrumenting 

existing user interfaces. 

CONCLUSION 

In this paper, we presented GUI Robots, a software 

framework that enables the creation of tangible user 

interfaces for existing, unmodified GUI applications. Rather 

than developing custom robot hardware, GUI Robots 

repurposes off-the-shelf consumer robots as versatile and 

easily accessible tangible input devices. Our proof-of-

concept applications demonstrate that this approach can be 

used to create a variety of tangible user interfaces, and can 

be used to enhance a wide range of existing software 

applications, including web browsers, 3D modeling tools, 

and video games. Our user study demonstrated that 

developers can use our framework to quickly prototype 

tangible interactions and attach them to existing applications. 

As consumer-oriented, wirelessly-connected robots become 

more ubiquitous, we hope this work can enable the creation 

of new user experiences, in which traditional GUI 

applications are extended by an ecosystem of helpful robots. 
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