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ABSTRACT

We analyze the spatiotemporal dynamics of systems of nonlocal integro–differential

equations, which all represent neuronal networks with synaptic depression and spike fre-

quency adaptation. These networks support a wide range of spatially structured waves,

pulses, and oscillations, which are suggestive of phenomena seen in cortical slice experi-

ments and in vivo. In a one–dimensional network with synaptic depression and adaptation,

we study traveling waves, standing bumps, and synchronous oscillations. We find that

adaptation plays a minor role in determining the speed of waves; the dynamics are domi-

nated by depression. Spatially structured oscillations arise in parameter regimes when the

space–clamped version of the network supports limit cycles. Analyzing standing bumps

in the network with only depression, we find the stability of bumps is determined by the

spectrum of a piecewise smooth operator. We extend these results to a two–dimensional

network with only depression. Here, when the space–clamped network supports limit

cycles, both target wave emitting oscillating cores and spiral waves arise in the spatially

extended network. When additive noise is included, the network supports oscillations for a

wider range of parameters. In the high–gain limit of the firing rate function, single target

waves and standing bumps exist in the network. We then proceed to study binocular

rivalry in a competitive neuronal network with synaptic depression. The network consists

of two separate populations each corresponding to cells receiving input from a single

eye. Different regions in these populations respond preferentially to a particular stimulus

orientation. In a space–clamped version of the model, we identify a binocular rivalry state

with limit cycles, whose period we can compute analytically using a fast–slow analysis.

In the spatially–extended model, we study rivalry as the destabilization of double bumps,

using the piecewise smooth stability analysis we developed for the single population model.

Finally, we study the effect of inhomogeneities in the spatial connectivity of a neuronal

network with linear adaptation. Periodic modulation of synaptic connections leads to an

effective reduction in the speed of traveling pulses and even wave propagation failure when

inhomogeneities have sufficiently large amplitude or period.
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Rn n–dimensional Euclidean space
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CHAPTER 1

INTRODUCTION

The model one should use to describe phenomena of the brain largely depends upon

the question one wishes to answer. There is an enormous wealth of models available for

describing the currents, action potentials, firing rates, local field potentials, and electroen-

cephalogram data one observes in experiment [87, 39]. The Hodgkin–Huxley model has

been a very successful model for quantifying conduction of an action potential of a single

neuron in certain cases [65]. However, there remain myriad other neural phenomena that

have no definitive model attached to them. This is not to say that the many available

models are poor descriptions of the biological situations they wish to mimic, simply that

the appropriateness of each model is largely context dependent. There exist no equations

in neuroscience that have the widespread definitive applicability that the Navier–Stokes

equations do in fluid mechanics.

Often, a neural system can be modeled in a number of ways. For example, when

modeling a very large network of neurons (106 − 1011), one approach is to represent the

detailed properties of every single neuron within the network [74, 112]. These models

consider what kind of ionic currents each neuron possesses, how many synapses a neuron

makes with its neighbors, and the precise temporal profile of the action potential. As

a result, numerical simulations of such a system can be quite impressive, in that they

readout thousands of membrane potential traces and give “data” that looks a great deal

like a biological experiment. Usually such models allow one to manipulate the equations

much faster and easier than one could the true biological system. Also, such methods do

have the advantage of stating that they attempt to remain as true to the details of the

biological system as possible. However, a closer look at such efforts reveals that there is

no way to certainly quantify, in practice, all the specific characteristics of each neuron

within a real network. Even if one could know all of these quantities and reconstruct the

network within the confines of a physically accurate system of equations, simulating such a

network may not inform one anymore than the biological system. The problem has not been
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simplified in any way. An alternative approach is to use techniques of applied mathematics

and informed intuition to distill out the essential properties of the large network of neurons

to yield a simplified system of mean field equations [180, 39]. In essence, one represents

the network as an excitable continuum, rather than a collection of discrete objects (i.e. the

neurons). Rather than keeping track of the entirety of the network’s microstructure, a mean

field approach is concerned only with the coarse–grained structure of the network. The

behavior of these models can then represent the type of activity witnessed on a coarser scale

than the single neuron [25, 136, 67, 141]. Additionally, such models are more amenable to

mathematical analysis and arguably inform the theorist much more than a massive system

that can be simulated only numerically. This is due to the fact that one can often then

find relationships between biologically pertinent parameters and different behaviors of the

model [136, 92, 79].

In this dissertation, we analyze a series of models of the latter, mean field type. In

doing so, we are able to recover many behaviors that have been observed experimentally

in networks of neurons [83, 27, 79, 80, 81, 82].

1.1 Neurons, networks, and negative feedback

Neurons are the fundamental cells of the brain. Many brain functions employ a neuron’s

ability to generate electrical pulses called action potentials or spikes [31]. These action

potentials occur due to rapid changes in their internal concentration of certain ions (i.e.

potassium, sodium, and chloride) [65]. A neuron is activated upon the opening of some of its

ionic channels (i.e. sodium), which leads to a flow of ions into the cell and a displacement

of the membrane potential from its resting value, a depolarization. Quite quickly, the

change in voltage will result in other ion channels opening (i.e. potassium), allowing those

ions to flow out, which will counteract this depolarization and bring the internal ionic

concentrations back to their baseline level. Thus, an action potential is completed.

The complicated signaling in the brain relies on an extensive structure of connections

between individual neurons, called synapses [153]. The average neuron makes synaptic

connections with roughly 7,000 of its neighbors [134]. While there are many different kinds

of synapses, we will be primarily concerned with two categories for this thesis: excitatory

and inhibitory. Neurons with excitatory synapses make their neighbors more likely to fire

action potentials when activated. Neurons with inhibitory synapses make their neighbors

less likely to fire when activated. Many studies have found, in general, the likelihood of
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a neuron being connected to its neighbor often depends on the distance between the two

neurons [181, 105, 153]. Networks of even a few neurons, some excitatory some inhibitory,

can lead to very complicated dynamics when stimulated or allowed to fire spontaneously

[31]. Thus, to understand the brain, it is important to not simply study neurons in isolation,

but within the architecture of intricate network connectivity.

Whether in the brain or isolated in slices, large networks of neurons can support well

structured spatiotemporal activity [51, 126, 32, 182]. In this disseration, we are mainly

concerned with activity that arises in the presence of minimal inhibitory connections.

Therefore, there must be some form of negative feedback other that inhibition that leads

to nonmonotonic spatial structure of activity like traveling pulses and oscillations. We will

discuss two main types of local negative feedback. Mostly, we study the effects of synaptic

depression [169]. In particular, short–term synaptic depression, is the process by which

resources in the synapse are exhausted due to continual usage [113, 189]. These resources

can include neurotransmitter like glutamate, vesicles that hold the neurotransmitter, or

scaffolding proteins which fix vesicles to the active zone of the presynapse. As these

resources are used up, the synapse becomes less effective at transmitting its signal from

the presynaptic to the postsynaptic neuron. Thus synaptic depression is a mechanism for

curtailing the positive feedback of excitatory connections in a network in the absence of

any inhibition [164, 66, 80]. Additionally, spike frequency adaptation acts as a negative

feedback mechanism by reducing the maximal firing rate of a neuron [109, 162]. Essentially,

some hyperpolarizing ionic current is activated due to the repetitive firing of a neuron. For

example, voltage activated calcium channels may bring in calcium which switches on a

shunting potassium current. As a result, the neuron requires more input to fire [9]. Both

synaptic depression and adaptation follow dynamics at least an order of magnitude slower

than the membrane time constant of a neuron (10ms). It has recently been proposed

that in cortical networks with minimal inhibition, depression and adaptation may be ideal

mechanisms for generating different types of spatially structured activity such as traveling

pulses, spiral waves, and self–sustained oscillations [136, 67, 144, 57, 93, 79]. We will now

describe in detail the generation and functional purpose of such phenomena as observed in

experiment.
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1.2 Cortical network dynamics in experiment

The advent of more accurate methods of recording neural activity has allowed the

observation of more intricate spatiotemporal activity in neuronal networks. Since voltage–

sensitive dye imaging was pioneered over forty years ago, experimentalists have begun using

it more frequently for a highly responsive characterization of coarse–grained membrane

potential in large networks of neurons [38, 182]. Additionally, multielectrode techniques

continue to improve to allow many neurons’ membrane potentials to be simultaneously

resolved [139]. A great deal of information concerning working memory, epilepsy, sensory

coding, and motor control has been collected using these ever improving experimental

methods [58, 46, 183, 147, 67, 184]. We review a number of these findings below.

1.2.1 Standing pulses or bumps

Persistent, localized regions of neural activity have been proposed as substrates of

several memory and sensory processes in the brain. Experiments in primate prefrontal

cortex show that sensory cues can often lead to spatially localized groups of neurons

persistently firing during the delay period of an oculomotor–delayed response task [58, 125].

Monkeys are usually trained in such experiments to fixate on a central spot on a display

monitor, on which a peripheral cue is presented in some area of the screen. The stimulus is

then removed and the monkey must wait a second before making a saccadic eye movement

to the position of the target. Electrode recordings of the monkey’s prefrontal cortex suggest

that the position of the peripheral cue is encoded as a “bump” of activity localized to a

specific group of neurons. This bump of activity disappears once the task is complete.

Both experimentalists and theoreticians have been interested in studying this phenomenon

because it is a clear example of neural activity that is not simply representing sensory

stimuli, but remembering it [177, 95, 99, 144, 42].

It has also been suggested that the brain may keep the eyes still by representing eye

position as an activity bump in the medial vestibular nucleus (MVN) and the prepositus

hypoglossi (PH) [152]. Essentially, the MVN and PH maintain a memory of eye position

based on the position of the bump. In order that the eyes be held in place, this memory

is then read out by motor neurons in the abducens and oculomotor nuclei. These nuclei

in turn control the extraocular muscles. Thus, bumps are useful for not only maintaining

positions of visual stimuli, but also for maintaining working motor memory.

Finally, visual stimuli, fed from the retina through the lateral geniculate nucleus, to

the primary visual cortex (V1) are often represented as bumps within local regions of V1.
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Although the stimulus itself may be a bump of activity, due to some preprocessing in early

visual region, the recurrent connections and V1 provide further sharpening of the stimulus

due to the orientation selectivity of recurrent connections [8, 54].

In general, it is presumed that stationary bumps of activity in cortex rely on a lateral

inhibition structure of synaptic connectivity. That is, excitatory neurons in a network

exhibiting bumps have short–range connections and inhibitory neurons have longer range

connections. In addition, Wang has proposed that the excitatory neurons in networks that

support persistent bumps of activity must be dominated by a slow synaptic component

[177]. This is due to the fact that there is interplay between local negative feedback, like

spike frequency adaptation and synaptic depression, and the excitatory synaptic dynamics.

Therefore, Wang suggests that slow NMDA receptors dominate dynamics in these working

memory networks. The verification of the precise mechanisms for bumps is an ongoing

research area.

1.2.2 Self–sustained oscillations

Neuronal oscillations are a ubiquitous feature of many networks of the brain [31]. Their

suggested roles include temporally binding sensory neurons into assemblies [158, 142],

memory consolidation during sleep [70, 114], and epileptic seizures [126]. Spatially localized

oscillations arise both in vivo and in vitro and may be observed experimentally using

multielectrode arrays or voltage–sensitive dye imaging [182].

A variety of sensory stimuli have been linked to oscillations in vivo [51, 100]. For

example, studies of vertebrate and invertebrate olfactory bulbs have shown odor stimuli

can elicit oscillations [101]. Similarly, a small visual stimulus can evoke oscillations in

visual cortex, one way of addressing the problem of binding different pieces of a visual

image together [158, 184]. Populations of neurons that respond to parts of a stimulus

with the same features may oscillate synchronously [142, 10]. Binocular rivalry stimuli

can also generate oscillations in the firing rate of neurons in the visual cortex [13]. When

two different stimuli are presented to either eye, such as differently oriented gratings, the

neurons in V1 corresponding to either eye may switch back and forth between possessing

the dominant firing rate. This is thought to be a measurable substrate of the perceived

phenomenon of either image actually being seen by the subject [103]. In the auditory cortex,

oscillating ensembles are a hallmark of sound response as well [100]. Since oscillations carry

with them a characteristic time–scale, they are a prime code for storage of time–dependent
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signals like sound.

Such organizing activity in the brain has been purported to play a role in both working

and long term memory [86]. Whether or not large–scale brain oscillations are epiphenomena

or the cause of such events remains an open question in many cases. The encoding of

new information as well as the retrieval of long–term memory is reflected by the period

of oscillations [86]. Recall of a previous memory is often accompanied by an increase

in oscillatory power [151]. There must likely be some negative feedback mechanism in

existence to stabilize and generate persistent oscillations over a period of seconds. Both

experiment and modeling continue to devote efforts to understanding the mechanisms that

generate sustained oscillations [32].

Pathological phenomena, like epileptic seizures, have also been linked to self–sustained

oscillations. Electrophysiology has been used to study epilepsy in humans as well as animal

models, and seizures are usually accompanied by measurable structured oscillations in pop-

ulation activity. In fact, the nature of such oscillations as recorded by electroencephalagram

can indicate the nature of the seizure mechanism [102]. As in cortical slice studies, some

seizures have hallmark electrical activity traces consisting of focused localized synchronous

oscillations that emit traveling pulses [126]. Thus, it is useful to understand the mechanisms

behind population oscillations in large scale neuronal networks due to their important

functional and pathological implications.

1.2.3 Traveling waves

Traveling waves of electrical activity have been observed in vivo in a number of sensory

and motor cortical areas [182]. Such waves are often seen during periods without sensory

stimulation; the subsequent presentation of a stimulus then induces a switch to synchronous

oscillatory behavior [51]. Waves can also arise from spatially localized groups of neurons

whose population activity oscillates around 1–10Hz [183, 126]; each oscillation cycle may

emit elevated activity that propagates as a traveling plane wave [183, 37, 67, 182]. A

common experimental paradigm is to record electrical activity in vitro using thin slices of

cortical tissue, in which inhibition has been suppressed by blocking GABAA receptors with

an antagonist such as bicuculline [37, 183, 141, 139]. Synchronized discharges can then be

evoked by a weak electrical stimulus from any site on the cortical slice. Following rapid

vertical propagation, each discharge propagates away from the stimulus in both horizontal

directions at a mean velocity of about 6− 9 cm/s.

A variety of sensorimotor stimuli and tasks have been linked to propagating waves in
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vivo. For example, a number of studies of vertebrate and invertebrate olfactory bulbs have

shown odor stimuli can elicit oscillations and propagating waves [101, 46]. Similarly, a small

visual stimulus can evoke a propagating wave in visual cortex [140, 184, 10, 64], and stimu-

lating a single whisker can trigger a wave in rat barrel cortex [135]. Spatiotemporal activity

is not only a neural correlate of sensory stimuli, but can also precede motor commands.

For example, evoked waves have been found in monkey motor cortex during movement

preparation and execution [145]. Several organizing mechanisms for such spatiotemporal

activity have been suggested, including a single pacemaker oscillator exciting successive

neighbors in an excitable network, or coupled oscillators propagating gradual phase delays

in space [51, 182]. Traveling waves are also a characteristic feature of certain neurological

disorders in humans including epilepsy [118]. Therefore, investigating the mechanisms

underlying wave propagation in neural tissue is important for understanding both normal

and pathological brain states. Although the conditions for wave propagation may differ

from the intact cortex due to the removal of some long–range connections during slice

preparation, the in vitro slice is more amenable to pharmacological manipulation and to

multielectrode recordings.

Kleinfeld and colleagues studied the presence of waves of electrical activity in the

terrestrial mollusk’s procerebral lobe, largely responsible for olfaction [85]. Groups of

neurons oscillate at the same frequency and a phase shift propagates through the network

as a wave. Interestingly, application of an odor stimulus leads to a quick transition from

traveling waves to synchronous activity. Thus, Ermentrout and Kleinfeld hypothesize that

traveling waves may act as a “searchlight” for novel stimuli [51]. When an input arrives,

time and location of the stimulus may be marked by a unique phase in the continuum of

phase–shifts of the wave. Traveling pulses are an ideal construct for scanning cortex since

only a fraction of cortex is rendered inactive at any given time.

The Pinto lab has extensively studied excitable traveling waves, also known as epilep-

tiform events, in rodent cortical slices [136, 139]. Excitable waves occur when activity

spreads across subthreshold neural tissue as a pulse or front. Recently Pinto and colleagues

sought to understand the characteristics of different stages of this epileptiform activity in

thalamocortical slice as pictured in Figure 1.1. They found that initiation of waves is an

all–or–none event with a sharp threshold. Functional architecture of excitatory connections

determines the threshold of activity required for wave onset. When the stimulus is near

threshold, the delay between application of the stimulus and initiation is variable. The
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Figure 1.1. Traveling pulse of activity in local field potential recordings following electrode
stimulation in a slice from rat somatosensory cortex. The slice was bathed in picrotoxin to
block most inhibitory connections. (Left) Raw electrode recordings and (Right) pseudo-
color plot show the data are relatively invariant along a space–time characteristic. Adapted
from [139]. Compare with Figure 2.4, which models this phenomenon in a network with
synaptic depression and spike frequency adaptation.

velocity and amplitude of waves seem to be unaffected by stimulus amplitude, so long as it is

above threshold and the wave is initiated far enough from the recording sites. Termination

of waves is a strong depolarizing shift and recovery of all neurons involved in superthreshold

activity. This may arise from a combination of intrinsic single neuron recovery or excessive

inhibition at the population level. Another possibility is that cortical waves may fail when

entering a region of the neural medium that is sufficiently inhomogeneous in its synaptic

connection architecture [20, 83]. Thus, waves in cortical slice can reveal a great deal about

the physiological basis of epileptiform event phases.

Cortical waves can exhibit more exotic properties than simply initiating, propagating,

and terminating. Recently, Xu and colleagues studied whether cortical waves can cross the

border of the primary (V1) and secondary (V2) areas of visual cortex, using optical imaging

on rats [184]. Drifting gratings visually evoked propagating activity in the monocular area

of V1. When the wave reached V2, it was “compressed,” the pulse width decreased, and

sometimes another wave propagated backwards into V1. This only occurred for visually

evoked waves, not spontaneous waves, which suggests that the mechanism for this activity is

related to visual processing. Studying area–dependent changes to spatiotemporal activity,

such as this, may be another means for revealing how different areas of the brain transfer
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information between one another.

1.2.4 Spiral waves

Huang and colleagues explored the emergence of spiral waves of neural activity in

a recent study in tangentially cut slices of rat neocortex [67]. As discussed in section

1.2.3, experiments employing slices cut normal to the surface of the cortex often produce

unidirectionally propagating waves [37, 33, 183, 139]. Due to the use of a voltage sensitive

dye technique, it was possible for them to recover an accurate spatiotemporal signal of

average membrane potential in two dimensions. As pictured in Figure 1.2, Huang and

colleagues found that 4–15Hz oscillations spontaneously arose within the slice, following

the application of bicuculline and carbachol to block inhibition. Both plane waves, ring

waves, and irregular waves would arise intially due to spatially localized oscillating cores.

However, the interaction of these propagating waves would often eventually lead to spiral

waves that could last for up to 30 cycles.

Spiral waves may be a means to spatially organize extensive episodes of periodic activity.

Recently, Schiff and colleagues showed that the organization of spatiotemporal activity

into a spiral wave effectively reduces the dimensionality of the dynamics [148]. As with

traveling waves, spiral waves may be a mechanism for binding sensory information together

in a spatially connected region of cortex. Such organization may also extend the duration

of the activity and in vivo contribute to seizure generation. Since they arise in networks

without inhibition, some local feedback mechanism, such as synaptic depression or spike

frequency adaptation, must be employed as an alternative to interneurons’ role in curtailing

excitatory activity.

Figure 1.2. Spiral wave of activity in a tangential slice of rat neocortex. Color follows the
linear scale in the top right and represents the amplitude of a voltage sensitive dye signal
read by an array of optical detectors. Adapted from [67]. Compare with Figure 3.8, which
models this phenomenon in a neuronal network with synaptic depression.
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1.3 Cortical network models

There have been many theoretical studies regarding stationary pulses or bumps, travel-

ing waves, spiral waves, self–sustained oscillations, and other spatially structured solutions

using spatially extended firing rate models of cortical tissue [181, 3, 25, 136, 67, 55,

39, 5, 168]. Often, networks are studied on an infinite domain, which is a reasonable

approximation that makes these models amenable to analysis. Despite individual neurons

being discrete objects, the assumption that these networks are continuous is justified when

examining large–scale networks of 106 − 109 neurons containing 105 neurons per 1 mm2.

Ignoring boundary effects is reasonable when the space occupied by the modeled brain

activity is relatively smaller than the entirety of the network. This is indeed the case for

standing bumps, traveling pulses, and localized oscillations. Also, due to the capacitive

nature of individual neurons, one usually assumes activity evolves according to first order

dynamics. Other assumptions are sometimes necessary, in order to study the existence and

stability of standing and traveling waves, which we will discuss as they arise.

Perhaps the most studied equations that describe a spatially extended neuronal network

are those derived by Wilson and Cowan [180, 181]. They represent the time evolution of

synaptic drive to excitatory and inhibitory populations and are coupled nonlocally to one

another in space

τe
∂ue
∂t

= −ue +wee ∗ f(ue)− wei ∗ f(ui), (1.1a)

τi
∂ui
∂t

= −ui + wie ∗ f(ue)− wii ∗ f(ui), (1.1b)

where

(wab ∗ f(ub)) (x) =

∫ ∞

−∞
wab(x, y)f(ub(y, t))dy.

Systems of this type are often referred to as neural fields, since they describe the mean

field or average interactions of a neuronal network.1 The synaptic drive of the excitatory

(inhibitory) population is represented by ue (ui) and evolves with time constant τe (τi).

The weight function wab represents the strength of connection or weight from population

b to population a. Often, but not always, it is taken to be a homogeneous, isotropic,

monotone decreasing function of Euclidean distance so that w(x, y) = w(|x − y|). The

1The systems we study in this dissertation describe the evolution of a neural field, which is a quantity
that informs us of how the neuronal network — the physical system we are modeling — is behaving.
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nonlinearity f denotes an output firing rate function. A typical choice for f is a bounded,

positive monotonic function such as the sigmoid

f(u) =
1

1 + e−η(u−θ)
(1.2)

with gain η and threshold θ. In numerical simulations, Wilson and Cowan found that initial

stimuli can give rise to standing pulses or bumps as well as traveling pulses, depending on

the structure and strength of excitatory and inhibitory connections [181]. Following up on

this, Amari carried out an analytical study of a scalar system with short range excitation

and long–range inhibition, assuming inhibition acts much faster than excitation, so that

the excitatory drive u ≡ ue evolves as [3]

τe
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)f(u(y, t))dy. (1.3)

Most analytical studies of the existence and stability of spatially structured solutions of

equation (1.3) and its generalizations have been obtained by taking the high–gain limit

η → ∞ of the nonlinearity f , such that it becomes a Heaviside function [3, 136, 137, 39]

f(u) = Θ(u− θ) =

{
0 if u < θ
1 if u > θ.

(1.4)

By analyzing stationary bump solutions, Amari found that lateral inhibition was indeed

necessary to stabilize them [3]. In Appendix A, we briefly review the analysis of bumps in

the scalar neural field equation (1.3) with f ≡ Θ.

Studying traveling fronts in a more general form of equation (1.3), Ermentrout and

McLeod derived results for their existence and uniqueness [52]. Therein, they analyze a

purely excitatory scalar firing rate model with smooth activation function f like (1.2) and

also include general temporal dynamics

u(x, t) =

∫ t

−∞
αf (t− τ)

∫ ∞

−∞
w(|x− y|)f(u(y, τ))dydτ, (1.5)

where w is a non–negative, even functions, and αf is a positive, monotonically decreasing

function. When the αf function is a decaying exponential, they found first order temporal

dynamics, as αf represents synaptic time course. f is a monotonically increasing so that

F (v) = −v + f(v) has three roots, u1 < u2 < u3 with F ′(u1), F
′(u3) < 0 and F ′(u2) > 0.

This is essentially a reformulation of equation (1.3). They prove that there exist two stable

states to the system u1 and u3. A unique monotone traveling wave front joins these two



12

stable states, and it approaches u3 at −∞ and u1 at ∞. The speed of the front has the

same sign as

∫ u3

u1

F (u)du.

Wave fronts will travel with a positive (negative) speed when the threshold of f is low

(high), and stationary fronts exist when the negative and positive areas of the cubic–

like function F (v) in the domain [u1, u3] are equal. Fronts form heteroclinic orbits —

trajectories between two different stable states. Although stability of this wave front can

be proved, it is structurally unstable [60]. Therefore, perturbations to the system which

supports this front may lead to large changes in the wave front profile.

The Amari model (1.3) of a neural field can also be extended by considering the effects

of finite signal propagation velocity along axons [71]. As a result, the argument of the

firing rate function f will include a time delay which depends on the distance between two

cortical positions. Incorporating this into the system (1.3) yields [136, 40]

τe
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)f(u(y, t− |x− y|/ν))dy, (1.6)

where ν is the propagation velocity of membrane potentials in the network. As with many

differential equations that include time delay, the model (1.6) can support oscillations.

Depending on the form of the weight function w, this system can support multiple bumps,

bulk oscillations, and propagating patterns [40, 5, 26].

In a purely excitatory network, such as when w is non–negative in (1.3), with no

axonal delays, the only spatially structured solutions that seem to exist are traveling fronts,

that shift the entire medium from an “off” to an “on” state. However, experimental

studies of disinhibited cortical tissue suggest that traveling pulses can arise even with

the inhibition blocked [183, 136, 141]. Pinto and Ermentrout were the first to address

this issue in a mathematical model of cortical tissue with local negative feedback [136].

They considered a network of purely excitatory neurons u with a local negative feedback

variable v, meant to represent either synaptic depression or spike frequency adaptation.

Synaptic depression is a phenomenon by which usage of a particular synapse depletes

the signal it is capable of sending at a later time. Spike frequency adaptation is the

attenuation of a neuron’s firing rate over time due to activation of an ion channel that

shunts current out of the cell. Many recent theoretical studies of spatiotemporal dynamics
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in neuronal networks have employed Pinto and Ermentrout’s model of linear recovery

[136, 137, 67, 55, 57, 56, 39, 93, 168, 83, 155, 167]:

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x, x′)Θ(u(x′, t)− θ)dx′ − v(x, t) + I(x, t), (1.7a)

1

αp

∂v(x, t)

∂t
= βpu(x, t)− v(x, t), (1.7b)

where u is synaptic input current, w represents the synaptic weighting between neurons, Θ

is a Heaviside firing rate function with θ the firing threshold, I(x, t) is an external input, v

is a slow local negative feedback component and αp and βp are the rate and strength of the

feedback, respectively. In essence, this formulation of linear recovery is analogous to that

found in the Fitzhugh–Nagumo equations. Though here, the recovery variable represents

spike frequency adaptation or synaptic depression. Pinto and Ermentrout established that

for zero input and large enough negative feedback, traveling pulses exist. Using a shooting

method, they were able to demonstrate the existence of a pair of traveling pulses by setting

βp = 0 and αp quite small.

Results on traveling pulses were extended to a more general class of weight functions

in a recent paper by Pinto, Jackson, and Wayne [138], in which they make relatively weak

assumptions on the pattern of spatial connectivity defined by w. They found that in the

case where neurons have a single stable state, there are two traveling pulse solutions. When

neurons are bistable, they show the existence of a stationary pulse, and sometimes, a single

traveling pulse solution. They also carried out a linear stability analysis of all of these pulse

solutions by constructing an Evans function — essentially a characteristic equation for the

eigenvalues of perturbations of the pulses. Such Evans function approaches have been used

to study the stability of traveling pulses in neural fields in several other studies [41, 57, 187].

Other recent extensions of this work have explored various scenarios for the occurrence

of spatiotemporal oscillations. For example, Folias and Bressloff have shown that in the

presence of a localized Gaussian input I, standing and traveling pulses of activity can

transition to spatially localized oscillators or breathers, which can then act as wave emitters

[55, 57, 56]. Spiral waves have been studied numerically as a means of explaining data

from voltage sensitive dye experiments in disinhibited cortical slice [67]. Also, Laing has

used numerical continuation methods in order to find how the angular velocity of spiral

waves depends on parameters such as the feedback strength βp. Precise measurements

of quantities relating to self–sustained oscillations are more difficult to find, but initial

efforts have begun to explain them in numerical simulation. Troy and Shusterman [168]
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have shown that for large enough negative feedback βp, the complex eigenvalues of the

homogeneous fixed point lead to multi–pulse solutions. When simulated in two dimensions,

the spatially extended system supports a re–entrant localized rotor that periodically emits

target waves. In a subsequent study, they showed that making βp even larger can lead to

a stable limit cycle about the low activity state [155]. Thus, in one dimension, periodic

oscillations emit a traveling pulse at each cycle, mimicking EEG data of epileptic seizures

[126].

Coombes and Owen have recently introduced a nonlinear model of negative feedback

[42] in which the firing threshold θ is treated as a variable representing spike frequency

adaptation. One way of conceptualizing an adaptation current is that it increases the

synaptic input drive necessary to produce a spike in a single neuron. In order that one

might find interesting dynamics, different thresholds are taken for the nonlinearity of the

neural population input u and the feedback variable h equations

1

αa

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x, x′)Θ(u(x′, t)− h(x′, t))dx′ (1.8a)

∂h(x, t)

∂t
= −(h(x, t) − h0) + κaΘ(u− θa). (1.8b)

The input to the neural population u(x, t) evolves at a rate αa and is superthreshold at a

local point when u(x, t) > h(x, t). In the dynamical equation for the adaptation variable

h(x, t), h0 is the baseline threshold value, which dynamically increases with strength κa

once synaptic drive u rises above θa at a local point in the network. The fact that h0 > θa

leads to many different exotic solutions arising in this seemingly simple model. Standing

bumps as well as traveling pulses can destabilize via a Hopf bifurcation to breathing

solutions. Additionally, a single standing bump can split into two standing bumps via

a destabilization, which continues until the self–replicating process fills the domain with

bumps [42]. We revisit the system (1.8) in Appendix B, bringing out the subtleties of

stability analysis of standing bumps in the network, due to its piecewise smoothness.

While all of these studies use reasonable models to reconstruct spatiotemporal dynamics

observed in vitro and in vivo, they are not necessarily the most physiologically plausible

models of local negative feedback in cortical tissue. Indeed the Wilson–Cowan equations

can be derived from more biophysical models of a neuronal network, but the negative

feedback found in the above equations was inserted heuristically after the fact. However,

there have been recent studies that more systematically derive sets of equations for spike

frequency adaptation [9] and synaptic depression [169] in firing rate models. We are inter-
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ested in the qualitative differences between dynamics observed in the Pinto–Ermentrout

model and those observed in a model with more biophysically suggestive negative feedback.

1.4 Content of the dissertation

Despite the extensive and rigorous work that has been completed thusfar on spatially

structured solutions in neural field equations, there remain many open questions regard-

ing the link between microscopic processes and large scale activity. For example, the

Pinto–Ermentrout equations (1.7) can support spatially localized oscillations that emit

traveling pulses if the parameter βp is above some critical value [155, 167]. A natural

question then is, what does βp represent? Does this quantify the conductance of an

adaptive current? Or does it provide the rate at which neurotransmitter is depleted

from the presynaptic bouton? In the case that we cannot link such parameters to some

physiologically meaningful quantity, then it is hard to say if the model is in a physically

accurate regime. Therefore, it is useful to try to derive models whose parameters are

physiologically meaningful. Thus, for most of this dissertation, we consider alternative

models to those presented in section 1.3, paying particular attention to the forms we take

for local negative feedback. These forms have been derived in previous studies of more

physiologically detailed models of negative feedback in neurons [169, 9].

Motivated by this, in Chapters 2, 3 and 4, we study a neuronal network model which

includes up to two forms of physiologically justified negative feedback. We model synaptic

depression in our system of equations by considering a reduction derived from a biophys-

ically reasonable multiple synaptic resource pool model [169, 7, 116, 164]. Essentially, we

include the effects of synaptic depression by scaling the influence of a particular network

location’s synapses dynamically in time. Additionally, we sometimes include the effects

of spike frequency adaptation. We employ this mechanisms in our model by considering

the rate based description derived from detailed conductance based models of a universal

adaptation current [9, 109, 162]. The result is that the adaptation current appears in

the argument of the firing rate function f . As opposed to the usual Pinto–Ermentrout

formulation of negative feedback in spatially extended neural fields [136, 168, 167], our

negative feedback accounts for two separate physiological mechanisms, both of which

depend on the output firing rate f . Hence, the basic formulation of the Amari neural

field equation (1.3) is modified according to the following system of equations, which now

includes firing rate dependent synaptic depression and spike frequency adaptation:
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τ
∂u(x, t)

∂t
= −u(x, t) +

∫

D

w(x,x′)q(x′, t)f(u(x′, t)− a(x′, t))dx′, (1.9a)

∂q(x, t)

∂t
=

1− q(x, t)

α
− βq(x, t)f(u(x, t)− a(x, t)), (1.9b)

ǫ
∂a(x, t)

∂t
= −a(x, t) + γf(u(x, t)− a(x, t)), (1.9c)

where the spatial domain D may be in either one or two dimensions, and thus x would

be a scalar or two component vector respectively. Equation (1.9a) describes the evolution

of the synaptic current u(x, t) in the presence of synaptic depression and spike frequency

adaptation, which take the form of a synaptic scaling factor q(x, t) evolving according

to equation (1.9b) and an outward hyperpolarizing adaptation current a(x, t) evolving

according to equation (1.9c). The factor q(x, t) can be interpreted as a measure of available

presynaptic resources, which are depleted at a rate βf [169, 7, 164], and are recovered on

a timescale specified by the constant α (experimentally shown to be 200–1500ms [2, 170,

169]). The adaptation current a(x, t) is activated with strength γ and time constant ǫ

(experimentally shown to be 40–120ms [109, 162]). As derived from a universal adaptation

current by Benda and Herz [9], spike frequency adaptation is switched on as a linear

function of a neuron’s firing rate.2

It will be convenient for us to fix parameters so that f is interpreted as the fraction

of the maximum firing rate, that is 0 ≤ f ≤ 1. For a great deal of our analytical results

in the paper, we employ a Heaviside firing rate function for f , which allows us to relate

parameters in the model to quantities like traveling wave speed and bump sizes. From

an experimental perspective, it would at first sight seem inexact to approximate the firing

rate of a volume of neurons as either zero or at its maximum depending of whether the

input drive is sub– or super–threshold. However, it is possible to numerically simulate

neuronal networks with more physiologically accurate smooth firing rate functions and

often these results are qualitatively similar to those found for the Heaviside firing rate.

In fact, a high gain sigmoid is well approximated by a Heaviside firing rate. Additionally,

from a mathematical perspective, very little analytical progress can be made with networks

having smooth sigmoidal firing rates. Nonetheless, some methods have been developed to

derive analytical results for the existence of spatially structured solutions in networks with

smooth firing rate function, such as the sigmoid (1.2) [84, 136, 53, 44]. We are indeed able

2Our model of adaptation differs from Coombes and Owen [42], who take the nonlinear part of equation
(1.9c) to be of the form γf(u(x, t)− κ) for a fixed κ.
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to numerically simulate the system (1.9) in the presence of a continuous firing rate function,

like a sigmoid or piecewise linear function. The dynamics exhibited by the system can in

some case be dependent on the firing rate function, and which we shall discuss further in

this dissertation.

It is important to point out that a convenient feature of the model system (1.9) is

that most of its parameters can be linked to biologically meaningful quantities. Since the

time constant of the fast form of resource dependent synaptic depression has been shown

to be anywhere between 200–1500ms, if we consider fixing the membrane time constant,

experimentally shown to be 10ms, by setting τ = 1, we know that α should range between

20 and 150. Additionally, we know from experimental results that the strength of a synapse

is reduced due to depression by a factor η = 0.05−0.4 of its maximal value [2, 169, 189]. In

response to a sustained input of rate f = 1, a simple steady–state calculation shows that

β ≈ (1−η)/(ηα) ≈ 0.001−0.1 (ms)−1 for the given range of values of α. Experimentalists

have also identified a slower form of synaptic depression that recovers on a timescale of

roughly 5–10s [174, 34], so we would wish to set α to be 500 to 1000 for this phenomenon

and β ≈ 0.0001 − 0.005 correspondingly. Additionally, we know similar quantities for the

adaptation parameters. Since adaptation currents typically have time constants between

40–120ms, then ǫ should lie between 4 and 12 [109, 162]. As for the strength of adaptation

γ, this may be more difficult to link to physiological parameters, since data usually gives

the fraction of the adapted maximum is to the baseline maximum firing rate, which is about

1/3 [109, 162, 9]. However, in the case of a smooth firing rate function, it is possible to

derive appropriate values for γ based on this estimate using a simple steady state analysis,

which links parameters to the equilibrium values of our variables. We are then confident

that we can learn a great deal about how synaptic depression and adaptation affect cortical

network dynamics by analyzing the system (1.9) since we have methodical ways of relating

our results to biological parameters and vice versa.

Thus, in Chapter 2 we proceed by analyzing the full system (1.9) in one–dimension

(so x = x, a scalar) for a number of different spatially structured waves and oscillatory

solutions. We also consider the effects of employing two different types of firing rate

function for f , a Heaviside step function and a piecewise linear function. Our analysis

begins with a treatment of traveling waves in the network (1.9) in the case of a purely

excitatory network, so that the weight function w > 0 everywhere. We derive conditions

for the existence of traveling fronts and pulses in the case of a Heaviside step firing rate,
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and show that adaptation plays a relatively minor role in determining the characteristics of

traveling waves. We then proceed by considering the network with only synaptic depression

and lateral inhibition weight function. We derive conditions for the existence and stability

of stationary pulses or bumps, and show that bumps will destabilize for sufficiently strong

synaptic depression. Interestingly, since we take a Heaviside firing rate function, we must

treat the stability analysis of stationary bumps in an alternate way to the usual linear

stability calculation of spatial structures. Since there arises a jump discontinuity in our

depression variable, we must keep track of the sign of perturbations in our stability analysis

of this piecewise smooth system. This leads to novel stability results for bumps in a

biologically based model. Finally, in the case of a piecewise linear firing rate function, we

complete a phase plane analysis of the space clamped system with both synaptic depression

and adaptation, and show that the network can support self–sustained oscillations for

a physiological range of synaptic depression strengths. We show numerically that the

spatially extended network exhibits self–sustained oscillations between an Up state and a

Down state, in which a spatially localized oscillating core periodically emits pulses each

cycle. All of these results are significant in that they link to experimentally observed

phenomena in vitro and in vivo. We are able to relate the existence of these spatially

structured states to experimentally justified values of the model parameters.

We follow this in Chapter 3 by characterizing the behavior of a two–dimensional

neuronal network (x = r, a two–dimensional vector) with synaptic depression (consider

setting adaptation strength γ = 0). We ignore spike frequency adaptation in this study,

due to the minor role it played in influencing traveling wave and oscillation properties in

Chapter 2. We show that the two–dimensional network supports a wide range of spatially

structured oscillations, which are suggestive of phenomena seen in cortical slice experiments

and in vivo. The particular form of the oscillations depends on initial conditions and the

level of background noise. As shown through phase plane analysis, the space clamped

network with a piecewise linear firing rate can support limit cycles. Additionally, low

levels of additive noise in the activity variable can induce self–sustained oscillations in

parameter regimes where the continuous system does not. We then show the results of a

number of numerical simulations of the spatially extended system in the presence of an

excitatory weight function. An initial, spatially localized stimulus evolves network activity

to a spatially localized oscillating core that periodically emits target waves. Low levels of

noise can spontaneously generate several pockets of oscillatory activity that interact via
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their target patterns. Periodic activity in space can also organize into spiral waves, provided

that there is some source of rotational symmetry breaking due to external stimuli or noise.

In the high gain limit where the firing rate function becomes a Heaviside, no oscillatory

behavior exists, but a transient stimulus can lead to a single, outward propagating target

wave. Additionally, we analyze the existence of standing bumps of activity in the spatially

extended network with lateral inhibition. We find that bumps certainly destabilize due

to radially symmetric perturbations in the two–dimensional network for sufficiently strong

depression. Due to the piecewise smooth nature of the network, as is the case in Chapter

2, we must keep track of the sign of perturbations everywhere along the bump boundary.

However, we leave the analysis of radially nonsymmetric perturbations an open problem,

due to its excessive complexity. Thus, our relatively simple model of a neuronal network

with local negative feedback is able to support a wide variety of spatially structured waves

and oscillations in both one and two dimensions.

In Chapter 4, we analyze a two–population network with synaptic depression modifying

connections within and between populations (again setting adaptation strength γ = 0) and

time–independent inputs to either population. This network is meant to represent two

hypercolumns in primary visual cortex, where each hypercolumn receives input from a

single eye. Neurons within the hypercolumn respond preferentially to a specific orientation

of a visual stimulus. With this model, we can study some of the spatiotemporal dynamics of

neural activity that arise in binocular rivalry, the phenomenon in which perception switches

between two images presented to either eye. Due to cross–inhibition between populations,

the model can support slow oscillations in the activity of either population, usually on a

time–scale of seconds. Using a Heaviside firing rate function, for the space–clamped version

of the model, we are able to compute expressions that determine the amount of time, each

period, either eye’s neural activity spends in dominance. Using these expressions, we can

examine how these dominance times depend on parameters like the strength of input to

either eye’s neural population. In the spatially extended system, we can study the onset of

oscillations using stability analysis of the different stationary bump solutions supported by

the model. First, we analyze the existence and stability of single bump or winner–take–all

solutions, where only one population supports superthreshold activity. Next, we examine

the existence and stability of double bump solutions, where both populations support

superthreshold activity. We find, by employing the piecewise smooth stability analysis we

develop in Chapter 2, that linear stability predicts the onset of a binocular rivalry–type
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solution when a perturbation that expands one bump and contracts the other is unstable.

In Chapter 5, we proceed by returning to the Pinto–Ermentrout model (1.7) with linear

negative feedback and analyze the effects that an inhomogeneous weight function has on

the propagation of traveling pulses. Such an analysis is motivated by the fact that many

regions of the cortex do have an intricate periodic microstructure in their nonlocal synaptic

connectivity, such as the prefrontal cortex [106, 122] and the visual cortex [105, 186]. In

a previous study of the Amari equation with periodic inhomogeneities, it was found that

inhomogeneity could cause reduction in speed and even failure of traveling fronts [20].

Motivated by this result and an interest in addressing more intricate activity structure, we

study the propagation of traveling pulses in an inhomogeneous excitatory neuronal network

using averaging and homogenization theory. By employing perturbation theory and the

Fredholm alternative, the equation representing the modified wave speed is essentially

found as a solvability condition for a hierarchy of equations. We show how a spatially

periodic modulation of homogeneous synaptic connections leads to an effective reduction

in the speed of a traveling pulse. Interestingly, when this predicted traveling pulse speed

is compared with pulse speeds for the upper and lower limit of associated homogeneous

systems, the pulse speed tends to the lower limit. In the case of a Heaviside firing rate

function, we are able to derive explicit formulae to approximate how the traveling wave

speed depends on model parameters. In the case of a smooth firing rate function, we are able

to derive a general form for this relation. Finally, we show a series of results from numerical

simulations of our inhomogeneous neuronal network with local negative feedback. The

predictions for the wave speed match reasonably well with these simulations. Interestingly,

in the case of large amplitude modulations, the traveling pulse represents the envelope

of a multibump solution, in which individual bumps are nonpropagating and transient.

Therefore, the pulses can in fact become saltatory in nature composed of a disconnected

active region. The appearance (disappearance) of bumps at the leading (trailing) edge of

the pulse generates the coherent propagation of the pulse. Wave propagation failure occurs

when activity is insufficient to maintain bumps at the leading edge. Such results may be

significant since traveling waves are often associated with brain pathologies like epilepsy,

so inhomogeneity may be a means of preventing such propagation.

Finally, in Chapter 6, we discuss several future research directions of the work presented

in this dissertation. Mainly, this involves exploring the effects of synaptic plasticity in

different models of neuronal networks. First we propose to study synaptic facilitation, a
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dynamic strengthening of synapses, in the context of a spatially extended network. We also

discuss a model of spiking neurons with synaptic plasticity. This contains not only short–

term synaptic plasticity but also spike–timing–dependent plasticity, which is the process

by which the relative timing of two coupled neurons’ spiking determines a strengthening of

weakening of the synapse between them. Finally, we introduce a plan to study a stochastic

neuronal network with synaptic depression. Considering the finite size effects within smaller

networks of neurons may lead to new insights. These could potentially include the role

that noise has in generating oscillations and waves in neuronal networks.



CHAPTER 2

ONE–DIMENSIONAL NEURONAL

NETWORK WITH SYNAPTIC

DEPRESSION AND

ADAPTATION

In this chapter, we analyze the spatiotemporal dynamics of a one–dimensional neural

field model that takes into account two physiologically based forms of nonlinear negative

feedback, namely, synaptic depression [169, 7, 116, 164] and spike frequency adaptation

[9, 109, 162]. The details of both forms of negative feedback, including their associated

time constants, are likely to be important in determining conditions for the existence and

stability of spatially structured activity states such as traveling waves, standing bumps,

or focused oscillations. Thus, as opposed to the usual Pinto–Ermentrout formulation of

negative feedback in spatially extended neural fields [136, 168, 167], our negative feedback

accounts for two separate physiological mechanisms, both of which depend on the output

firing rate f as

τ
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x, x′)q(x′, t)f(u(x′, t)− a(x′, t))dx′, (2.1a)

∂q(x, t)

∂t
=

1− q(x, t)

α
− βq(x, t)f(u(x, t)− a(x, t)), (2.1b)

ǫ
∂a(x, t)

∂t
= −a(x, t) + γf(u(x, t)− a(x, t)). (2.1c)

Equation (2.1a) describes the evolution of the synaptic current u(x, t) in the presence of

synaptic depression and spike frequency adaptation, which take the form of a synaptic

scaling factor q(x, t) evolving according to equation (2.1b) and an outward hyperpolarizing

adaptation current a(x, t) evolving according to equation (2.1c). The factor q(x, t) can be

interpreted as a measure of available presynaptic resources, which are depleted at a rate

βf and are recovered on a timescale specified by the constant α. The adaptation current

a(x, t) is activated with strength γ and time constant ǫ. We fix the temporal scale of the

network by setting τ = 1. The membrane time constant is typically around 10 ms.
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Following Amari’s original work on scalar networks [3], most analytical studies of the

Pinto–Ermentrout model take the nonlinear firing–rate function f to be a Heaviside step

function [136, 137, 155, 55, 57, 56, 168, 167] (although see [53] for a functional analytic

study of neural field models with smooth nonlinearities):

f(J) = Θ(J − θ) =

{
0, J ∈ (−∞, θ),
1, J ∈ (θ,∞).

(2.2)

We will use such a function in order to study the existence and stability of traveling waves

and bumps (see sections 2.1 and 2.2). However, as we show in section 2.3, the network can

only support self–sustained oscillations if we consider a more general firing rate function

such as the piecewise linear function (see Figure 2.1)

f(J) =





0, J ∈ (−∞, θ),
σ(J − θ), J ∈ (θ, θ + σ−1),

1, J ∈ [θ + σ−1,∞).
(2.3)

(One could also consider a firing rate function with a step followed by linear increase

[61, 62]). Here σ specifies the slope or gain of the firing rate function such that in the

limit σ → ∞, we recover the Heaviside function (2.2). Note that taking the firing rate

to be a linear function close to threshold is consistent with the observation that spike

frequency adaptation tends to linearize the firing frequency–input current curve [50, 176].

One important point is that even if the firing threshold θ is the same in equations (2.3)

and (2.2), a more intuitive threshold for the piecewise linear function should match the

half height threshold θS usually defined for the sigmoidal function

fσ(J) =
1

1 + e−σ(J−θS )
(2.4)

as illustrated in Figure 2.1. Treating the Heaviside function as the high–gain limit of a

sigmoid also implies that Θ(0) = 1/2. However, we have found that the qualitative results

on existence and stability of spatially structured solutions are unaffected by the value

taken for Θ(0). In numerical simulations, the single value Θ(0) is very unlikely to ever be

computed.

We consider two different forms for the weight function w. To represent a homogeneous

excitatory network, we take w to be the normalized exponential

w(|x− x′|) =
1

2d
e−|x−x′|/d, (2.5)

where d is the effective range of the excitatory distribution. The use of this weight function

(2.5) is motivated by studies of traveling waves and self–sustained oscillations (sections 2.1
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Figure 2.1. Comparison of the step, piecewise linear, and sigmoid firing rate functions.
Parameter values are θ = 0.05 and σ = 4. The sigmoid function has the same slope
and value as the piecewise linear function at their mean values. When compared to the
sigmoid function, it is apparent that the piecewise linear function’s true threshold is more
accurately given by θs = 0.175, rather than θ, the point at which nonzero firing occurs.

and 2.3) of activity in epileptiform tissue in vivo or cortical slices, where inhibition is

mostly blocked. In our studies employing the excitatory weight function (2.5), we fix the

spatial scale by setting d = 1, noting that length–scale of synaptic connections is typically

1 mm. We represent a homogenous network with lateral inhibition by taking w to be the

difference of exponentials

w(|x − x′|) = e−|x−x′| −Aie
−|x−x′|/σi , (2.6)

where Ai is the relative strength of inhibition, σi is the relative scale of inhibition, and

the spatial scale of excitation is taken to be 1mm. Use of this so called Mexican hat

weight function (2.6) is motivated by experimental studies of standing pulses of activity in

prefrontal cortex where lateral inhibition is present and required for stabilization of pulses

(section 2.2). Since both weight functions are symmetric, depending only on Euclidean

distance, we can write w(x, x′) = w(|x − x′|).
With this model in hand, we carry out a systematic study of the spatiotemporal

dynamics that it supports. We proceed by first deriving conditions for the existence of

traveling fronts and pulses in the case of a Heaviside firing rate function (see section 2.1).

We show that adaptation plays a relatively minor role in determining the characteristics

of the waves. For example, the wavespeed of a propagating front is independent of the
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adaptation parameters, whilst both the width and speed of a traveling pulse are only

weakly dependent on adaptation. As in the case of linear adaptation [136], there coexists

a stable branch of fast/wide pulses and an unstable branch of slow/narrow pulses. The

existence and stability of standing pulses or bumps is analyzed in section 2.2, where we

show that care must be taken in treating the piecewise smoothness that arises in stability

calculations. Finally, in section 2.3, we consider a more realistic piecewise linear firing rate

function for which self–sustained oscillations can occur; these oscillations persist in the

absence of adaptation.

2.1 Traveling waves

Several experimental studies of disinhibited cortical slices and in vivo cortical regions

have exhibited traveling fronts and pulses of superthreshold activity [183, 182, 67, 184]

(see also section 1.2.3 for a discussion of experimentally observed traveling waves). Neural

field models of excitatory networks have sought to give heuristic explanations of such

phenomena from a dynamical systems point of view [136, 55, 57, 39, 168, 155, 167]. In

this section we present to our knowledge the first neural field study of traveling waves in a

spatially extended network that includes physiologically justified terms for both synaptic

depression and spike frequency adaptation. As we are concerned with phenomena that

arise in the absence of inhibition, we take w to be the excitatory weight function (2.5)

in this section. In the case of the Heaviside firing rate function (2.2), we can carry out

the analysis along similar lines to previous modeling studies. We look for solutions to the

system (2.1), u(x, t) = U(ξ), q(x, t) = Q(ξ), a(x, t) = A(ξ), where ξ = x−ct is the traveling
wave coordinate.

2.1.1 Fronts

We specify conditions for a traveling front in our neural field model as follows. The

total current J(ξ) = U(ξ) − A(ξ) must cross the threshold θ of the activation function

at exactly one point. We can conveniently fix this point to be ξ = 0 due to translation

invariance. For concreteness, we consider a right moving front by taking the current J to

be superthreshold (subthreshold) to the left (right) of ξ = 0. We then have

J(ξ) = U(ξ)−A(ξ) = θ, at ξ = 0, (2.7)

J(ξ) = U(ξ)−A(ξ) ≷ θ, for ξ ≶ 0, (2.8)



26

{U(ξ), Q(ξ), A(ξ)} → {0, 1, 0}, as ξ → ∞, (2.9)

c ≥ 0. (2.10)

It follows from our model system (2.1) that such a traveling front will evolve according to

−cU ′(ξ) = −U(ξ) +

∫ 0

−∞
Q(ξ′)w(|ξ − ξ′|)dξ′, (2.11)

−cαQ′(ξ) = 1−Q(ξ)− αβQ(ξ)Θ(−ξ), (2.12)

−cǫA′(ξ) = −A(ξ) + γΘ(−ξ). (2.13)

Equations (2.12) and (2.13) can be solved explicitly to give

Q(ξ) =

{
1, for ξ > 0,

1
1 + αβ

(
1 + αβe(1+αβ)ξ/(cα)

)
, for ξ ≤ 0

(2.14)

and

A(ξ) =

{
0, for ξ > 0,

γ(1− eξ/(cǫ)), for ξ ≤ 0.
(2.15)

Substituting (2.14) back into (2.11), we have

−cU ′(ξ) = −U(ξ) + F (ξ), (2.16)

F (ξ) =
1

1 + αβ

∫ 0

−∞

(
1 + αβe(1+αβ)ξ′/(cα)

)
w(|ξ − ξ′|)dξ′. (2.17)

In the case of the exponential weight function (2.5), we can explicitly evaluate F (ξ) and thus

solve equation (2.16) after imposing the appropriate asymptotic behavior. The threshold

condition J(0) = U(0) − A(0) = θ then leads to the following relationship between front

speed c and the threshold θ:

θ =
(cα+ 1)

2(c+ 1)(cα + (1 + αβ))
. (2.18)

A front solution is shown in Figure 2.2.

We can derive an explicit expression for the wavespeed c in terms of other parameters

from (2.18) by finding the roots of the quadratic

2αθc2 + (2θ(α+ (1 + αβ)) − α)c+ 2θ(1 + αβ)− 1 = 0, (2.19)

which are

c± =
1

4αθ

(
α− 2θ(α+ (1 + αβ))±

√
Df

)
, (2.20)

Df = α2 − 4αθ(α+ (1 + αβ)) + 4θ2(α+ (1 + αβ))2 − 16αθ2(1 + αβ) + 8αθ.

In order for a front to exist with wavespeed c± as we have constructed it, c± must be

real and nonnegative. None of the adaptation parameters ǫ or γ enter into the dispersion
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Figure 2.2. Traveling front solution in neuronal network with synaptic depression and
adaptation. (Left): Profile of analytical front solution J(ξ) = U(ξ) − A(ξ) for parameter
values θ = 0.1, α = 20, β = 0.2, ǫ = 5, and γ = 0.05. Wavespeed c+ is specified by
equation (2.20). Note that, as ξ → −∞, J(ξ) → 1/(1 + αβ) − γ. (Right): Corresponding
space–time plot of a traveling front obtained by solving the system (2.1) numerically with
the analytical front solution taken as the initial condition.

relation for fronts. However, in order for a front to exist, we must also satisfy J(ξ) > θ for

ξ < 0 as given by (2.8) to make sure the trailing edge of the front does not cross back below

threshold as identified in a similar analysis in [168]. Therefore, we impose the necessary

condition

lim
ξ→−∞

[U(ξ)−A(ξ)] =
1

1 + αβ
− γ > θ =⇒ γ <

1

1 + αβ
− θ, β <

1

α(γ + θ)
− 1

α
.

(2.21)

Otherwise, the trailing edge of the front dips below threshold, the superthreshold region

has finite width, and therefore the profile evolves into a pulse. We quantify the dependence

of wavespeed c on synaptic depression parameters in Figure 2.3.

2.1.2 Pulses

For a traveling pulse, the total current J(ξ) = U(ξ) − A(ξ) must cross the threshold

θ of the activation function at exactly two points. Once again, fix these points to be ξ =

−∆, 0. Total current J must be superthreshold between these two points, and subthreshold

otherwise. Imposing this, as well as boundary conditions, we have

J(ξ) = U(ξ)−A(ξ) = θ, at ξ = −∆, 0, (2.22)

J(ξ) = U(ξ)−A(ξ) > θ, for ξ ∈ (−∆, 0), (2.23)
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Figure 2.3. Synaptic depression and adaptation effects on front speeds. (Left): Dispersion
curve of wavespeed c+ (solid) and c− (dashed) versus depression strength β. Numerical
results show the fast front (c+) is stable and the slow front (c−) is unstable. The maximal
value of β for which the superthreshold condition (2.21) is satisfied is given by a dot on each
dispersion curve for a particular value of γ. Parameters are θ = 0.1, α = 20, and ǫ = 5.
(Right): A front that violates the superthreshold condition (2.21), despite its construction
being specified by all other conditions. When the system (2.1) is solved numerically with
such an initial condition, the solution settles into a traveling pulse.

J(ξ) = U(ξ)−A(ξ) < θ for ξ ∈ (−∞,−∆) ∪ (0,∞) (2.24)

U(ξ)−A(ξ) → 0, as ξ → ±∞, (2.25)

Q(ξ) → 1, as ξ → ∞. (2.26)

Thus, it follows from our system (2.1) that a traveling pulse will evolve according to

−cU ′(ξ) = −U(ξ) +

∫ 0

−∆
Q(ξ′)w(|ξ − ξ′|)dξ′, (2.27)

−cαQ′(ξ) = 1−Q(ξ)− αβQ(ξ)(Θ(−ξ) −Θ(−ξ −∆)), (2.28)

−cǫA′(ξ) = −A(ξ) + γ(Θ(−ξ)−Θ(−ξ −∆)), (2.29)

As in the front case, we can solve the system of equations by solving equations (2.28) and

(2.29) individually, and then plugging Q(ξ) back into equation (2.27). Using integrating

factors, we find that

Q(ξ) =





1, ξ > 0,
1

1 + αβ

(
1 + αβe(1+αβ)ξ/(cα)

)
, ξ ∈ (−∆, 0),

1− αβ
1 + αβ

(
e(∆+ξ)/(cα) − e(ξ−∆αβ)/(cα)

)
, ξ < −∆

(2.30)

and
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A(ξ) =





0, ξ > 0

γ
(
1− eξ/(cǫ)

)
, ξ ∈ (−∆, 0),

γ
(
e∆/(cǫ) − 1

)
eξ/(cǫ), ξ < −∆.

(2.31)

Substituting (2.30) back into (2.27),

−cU ′(ξ) = −U(ξ) +G(ξ), (2.32)

G(ξ) =
1

1 + αβ

∫ 0

−∆

(
1 + αβe(1+αβ)ξ/(cα)

)
w(|ξ − ξ′|)dξ′. (2.33)

Notice that in the limit ∆ → ∞, we recover the equations (2.16) and (2.17) for U(ξ) in the

front case. Again we can find the explicit solution for U(ξ) when w(|ξ − ξ′|) is taken to be

the exponential weight function. The threshold conditions J(−∆) = J(0) = θ then lead to

the following pair of equations for the wavespeed c and pulsewidth ∆:

θ = K0 −K1e
−∆ −K2e

−(1+αβ)∆/(cα)e−∆, (2.34)

θ = L0 + L1e
−∆ + L2e

−(1+αβ)∆/(cα) − L3e
−∆/c + γe−∆/(cǫ), (2.35)

where

K0 =
(cα+ 1)

2(c + 1)(cα + (1 + αβ))
, K1 =

1
2(c + 1)(1 + αβ)

,

K2 =
βcα2

2(c + 1)(1 + αβ)(cα + (1 + αβ))
,

L0 =
2c+ 1

2(c+ 1)(1 + αβ)
− γ, L1 =

(cα− 1)
2(c− 1)(cα − (1 + αβ))

,

L2 =
βc2α4

(1 + αβ)(c2α2 − (1 + αβ)2)(α− (1 + αβ))
− βcα2

2(c + 1)(1 + αβ)(cα + (1 + αβ))
,

L3 =
1

1 + αβ

[
1 +

βc2α4

(c2α2 − (1 + αβ)2)(α − (1 + αβ))

]
+

c2α2(1 + β)− (1 + αβ)

(c2 − 1)(c2α2 − (1 + αβ)2)
.

A pulse solution is shown in Figure 2.4.

We cannot derive explicit expressions for (c,∆) from (2.34) and (2.35), but we can

solve them numerically using a root finding algorithm. Notice that adaptation parameters

do enter into this system as they play a role in how quickly activity tails back down to

subthreshold levels. We plot existence curves for traveling pulses as a function of β in

Figure 2.5. Stable traveling pulses exist for small enough depression strength β. As in

the case of linear adaptation [136], there coexists a stable branch of fast/wide pulses and

an unstable branch of slow/narrow pulses. We show similar existence curves as functions

of the time constant α in Figure 2.6. Here, stable traveling pulses exist for slow enough
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Figure 2.4. Traveling pulse solution in neuronal network with synaptic depression and
adaptation. (Left): Profile of a pulse solution J(ξ) = U(ξ)−A(ξ). Note that the solution
remains above threshold within the region ξ ∈ (−∆, 0). (Right) Corresponding space–time
plot of a traveling pulse obtained by numerically solving (2.1) with the analytical solution
as the initial condition. Parameters are α = 20, β = 0.4, ǫ = 5, and γ = 0.1. Compare
with Figure 1.1, which pictures a traveling pulse of neural activity in actual cortical tissue
[139].

Figure 2.5. Bifurcation curves for the existence of traveling pulses for the system (2.1)
in (Left) the (β,c) and (Right) the (β,∆) plane. There exists a stable branch of fast/wide
pulses (solid curves) and an unstable branch of slow/narrow pulses (dashed curves), which
annihilate in a saddle–node bifurcation. Parameter values are θ = 0.1, α = 20, ǫ = 5, and
γ = 0.1.
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Figure 2.6. Corresponding bifurcation curves for the existence of traveling pulses for the
system (2.1) in (Left) the (α,c) and (Right) the (α,∆) plane. Stable (unstable) branches
are indicated by solid (dashed) curves. Parameter values are θ = 0.1, β = 0.9, ǫ = 5, and
γ = 0.1.

synaptic depression. In general, the wavespeed c and pulsewidth ∆ are fairly insensitive to

changes in γ or the time constant of adaptation ǫ despite their appearance in the dispersion

relation. As in the case of traveling fronts (section 2.1.1), it appears that adaptation has

little influence on the character of traveling waves, aside from slightly modifying existence

regions.

2.2 Stationary pulses or bumps

Stationary bumps of persistent neural activity have been implicated as neural substrates

of several memory, sensory, and motor tasks (see section 1.2.1 for a discussion of such

experimental findings). In this section, we analyze the existence and stability of stationary

bumps in a one–dimensional neural field model with only synaptic depression given by

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
q(x′, t)w(x − x′)Θ(u(x′, t)− θ)dx′, (2.36a)

∂q(x, t)

∂t
=

1− q(x, t)

α
− βq(x, t)Θ(u(x, t) − θ), (2.36b)

where we have set f ≡ Θ, the Heaviside activation function. Note that one may reduce

the system (2.1) to the above system (2.36) by merely setting the strength of adaptation

γ = 0. The choice of removing adaptation from the model is motivated by two factors.

First, we found in our study of traveling waves in section 2.1 and will show in our study

on synchronous oscillations in section 2.3 that adaptation has very little effect on the
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qualitative dynamics of the system. Synaptic depression dominates. Second, in studying

bumps we examine stationary solutions that have a countable number of threshold crossing

points. Since adaptation is activated by a discontinuous function, any threshold crossing

would lead to a discontinuous change in the stationary variable a(x, t) = A(x), driving

part of the interior back below threshold. We found that stable stationary bumps are

disrupted in numerical simulations by arbitrarily small amounts of adaptation. In essence,

no stationary solutions can exist in the network with adaptation. This issue is circumvented

in a study of the system (1.8) by Coombes and Owen [42] by taking different thresholds

for the activation of the activity and adaptation variables. We shall revisit their analysis

in Appendix B.

Consistent with previous continuum neural field models, negative feedback in the form

of synaptic depression cannot generate stable stationary pulses or bumps in a homogeneous

excitatory network. Thus some form of lateral inhibition [3, 137, 42] or external input

[55, 57] is required to stabilize the bump. Therefore, we will employ the Mexican hat (2.6)

as our weight function. (Rubin and Bose have shown that for a discrete network of type

I oscillators with synaptic depression, stationary bumps could also be stabilized, but they

did not explore the continuum case [144]).

The essential result of our analysis of bumps in the system (2.36) is that its piecewise

smooth nature no longer allows for stability to be determined by directly linearizing the

equations about a bump solution, as in previous studies [3, 137, 55]. Previous studies have

thus constructed an Evans function for bump stability by linearizing neural field equations

with a smooth sigmoid (2.4) and then taking the high gain limit [42, 43]. However, such an

approach will likely be an incomplete characterization of stability. This is due to the fact

that the effects of a Heaviside function’s discontinuities in nonlinear equations describing a

network are not always captured by taking the high gain limit of the sigmoid. For example,

intersections in the continuous system may vanish in the discontinuous system (see section

2.2.1). Therefore, a more careful approach to studying stability must be taken where one

considers the piecewise smooth nature of the network equations. The operators that result

from studying perturbations to bumps in such networks can be piecewise linear themselves

[27, 81].

We indicate some of the effects piecewise smoothness can have on the stability of

stationary solutions by first examining linear stability of equilibria in the space–clamped

version of (2.36) in section 2.2.1. Following this, we calculate the dependence of a stationary
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bump’s width on the full system’s parameters, when the weight function includes lateral

inhibition in the form of equation (2.6) in section 2.2.2. Then, we analyze the stability of

these bumps. We proceed by first demonstrating that an Evans function approach, where

we take the limit of a steep sigmoid, will break down in the singular limit (section 2.2.3).

Thus, we resort to a more careful treatment of the piecewise smooth nature of the system

(section 2.2.4). We can then calculate sufficient conditions for the instability of bumps, due

to synaptic depression. Our analysis shows that as synaptic depression becomes stronger,

bumps certainly destabilize with respect to perturbations that shift their boundary. We are

able to study all possible perturbations associated with real eigenvalues, due to making a

change of variables in the system describing the evolution of perturbation. We conclude by

presenting examples of the destabilization of bumps by different perturbations as predicted

by our appropriate stability analysis in section 2.2.5.

2.2.1 Phase–plane analysis

Let us first consider the corresponding space–clamped system in which solutions are

restricted to be spatially uniform:

u̇(t) = −u(t) + q(t)Θ(u(t)− θ),

αq̇(t) = 1− q(t)− αβq(t)Θ(u(t)− θ). (2.37)

In order to calculate equilibria of (2.37), we consider the possible solutions on the two

domains of the step function Θ(u− θ). We find that there is always a low activity or Down

state on the lower domain (u < θ) for θ > 0 such that (u, q) = (0, 1). The stability of this

Down state is determined by the eigenvalues of the Jacobian

J (0, 1) =

(
−1 0
0 −1/α

)
(2.38)

and is therefore stable since α > 0. In the upper domain (u > θ), an equilibrium is given

by the system

0 = −u+ q, (2.39)

0 = (1− q)/α − βq, (2.40)

implying a fixed point (u,q) = (1/(1+αβ), 1/(1+αβ)) will exist, provided θ < 1/(1+αβ).

Its stability is determined by the eigenvalues of the Jacobian

J (u, q) =

(
−1 1
0 −(1/α + β)

)
, (2.41)
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which guarantees that such an Up state is always stable. Therefore, we have a bistable

system as long as θ < 1/(1+αβ), as pictured in Figure 2.7. However, if θ > 1/(1+αβ), only

the Down state exists, which physically means that in this case synaptic depression curtails

recurrent excitation to the point that no sustained activity is possible. In the special case

θ = 1/(1 + αβ), an equilibrium exists at u = q = θ, provided that we take Θ(0) = 1.

However, the piecewise smooth nature of the dynamics needs to be taken into account in

order to determine the stability of the fixed point. That is, the fixed point is stable with

respect to perturbations δu > 0 but unstable with respect to perturbations δu < 0. Thus,

there does not exists a unique linear operator whose spectrum determines local stability.

While this special case is nongeneric in the space–clamped system, it foreshadows potential

problems in the study of the stability of spatially structured solutions of the full system

(2.36). This is due to the fact that one has to consider perturbations at threshold crossing

points x where u(x, t) = θ.

2.2.2 Existence

In the case of a stationary (time–independent) bump solution, we look for solutions to

the system (2.36) of the form u(x, t) = U(x) and q(x, t) = Q(x). The activity variable U

crosses threshold θ twice for a single bump solution. We then let R[U ] = {x|U(x) > θ} be

the region over which the network is excited or superthreshold. Exploiting the fact that
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0

0.2
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Figure 2.7. Phase plane plot of the space–clamped system (2.37) in the case θ < 1/(1+αβ)
for which there exist two stable fixed points. Parameters are α = 50, β = 0.05, and θ = 0.1.
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any solution can be arbitrarily translated along the x–axis, we define a stationary bump

solution of half–width a to be one for which R[U ] = (−a, a). Thus, our conditions for a

bump solution are as follows:

U(x) = θ, at x = −a, a,

U(x) > θ, for x ∈ (−a, a),

U(x) < θ, for x ∈ (−∞,−a) ∪ (a,∞)

U(x) → 0, as x→ ±∞,

Q(x) → 1, as x→ ±∞.

The time independent version of system (2.36) then reduces to the pair of equations

U(x) =

∫
a

−a

Q(x′)w(x − x′)dx′, (2.42)

Q(x) = 1− αβ

1 + αβ
Θ(U(x)− θ). (2.43)

Substituting equation (2.43) into (2.42) yields

U(x) =
1

1 + αβ
[W (x+ a) +W (x− a)], W (x) =

∫ x

0
w(y)dy,

which is identical to the scalar case modulo a constant scale factor (see Appendix A).

As lateral inhibition is commonly requisite in neuronal network models to stabilize

bumps we consider the Mexican hat distribution given by the difference–of–exponentials

(2.6). Substituting the specific weight function (2.6) into the steady state solution for U(x)

and evaluating the integral yields

U(x) =
1

(1 + αβ)





2 sinh ae−x − 2Aiσi sinh(a/σi)e
−x/σi , x > a,

2− 2e−a cosh x− 2Aiσi[1− e−a/σi cosh(x/σi)], |x| < a,

2 sinh aex − 2Aiσi sinh(a/σi)e
x/σi , x < −a.

Applying the threshold conditions U(±a) = θ, we arrive at an implicit expression relating

the bump half–width a to all other parameters:1

1

(1 + αβ)

[
1− e−2a −Aiσi(1− e−2a/σi)

]
= θ. (2.44)

The transcendental equation (2.44) can be solved numerically using a root finding algo-

rithm. Since 0 < Ai < 1 and σi > 1, it is straightforward to show that e−2a − Aiσie
−2a/σi

1These threshold–crossing conditions are necessary but not sufficient for existence of a bump. A rigorous
proof of existence, which establishes that activity is superthreshold everywhere within the domain |x| <
a and subthreshold for all |x| > a, has not been obtained except in special cases [3]. However, it is
straightforward to check numerically that these conditions are satisfied.
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is a unimodal function of a and, hence, the maximum number of bump solutions is two.

The variation of the bump half–width a with the parameters θ and β is shown in Figure

2.8; the stability of the bumps is calculated below.

2.2.3 Stability: High gain limit approach

A popular approach to analyzing the stability of standing bumps in neural field models

is to linearize about the bump and derive an Evans function, whose roots represent the

spectrum of the associated linear system [41]. Thus, it is tempting to try to calculate

the Evans function of the bump solutions (2.44), find its roots, and use these to make

statements about the linear stability of the bump. However, the steps necessary to linearize

the system (2.36) are not well defined, due to the exposed Heaviside function in equation

(2.36b). This suggests that one way to proceed is to take f to be the sigmoid function

(2.4) with high gain (σ ≫ 1), formally construct the associated Evans function by Taylor

expanding about the bump solution and then take the high–gain limit σ → ∞ to recover

the Evans function in the case of the Heaviside (One cannot evaluate the Evans function

analytically for a smooth sigmoid, since one does not have an explicit expression for the

bump solution). However, in the high–gain limit, the region of phase space in which the

linear stability theory is valid becomes vanishingly small, due to the ever steepening slope

of the sigmoid right at the threshold crossing points. Thus, it is not clear that the resulting
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Figure 2.8. One–dimensional bumps. (a) Plots relating bump half–width a to amplitude
of synaptic depression β for different values of θ using equation (2.44). Stable (unstable)
bumps lie on the solid (broken) curve. Beyond each curve’s vertical asymptote β value, no
bumps exist for that particular value of θ. Other parameter values are Ai = 0.6, σi = 4,
α = 20. (b) Bump profile when θ = 0.1.
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Evans function will correctly characterize the linear stability of the bump. Nonetheless, it

is useful to present such a construction here and to point out how it breaks down in the

high–gain limit, leading to erroneous stability results.

We begin by letting u(x, t) = Uσ(x) + εψ(x, t) and q(x, t) = Qσ(x) + εϕ(x, t), where

ψ,ϕ are smooth perturbations, ε ≪ 1, and the pair (Uσ, Qσ) denotes a stationary bump

solution of equation (2.36) for a smooth sigmoid function f (2.4) with gain σ. Substituting

into the full system (2.36), expanding to first order in ε, and imposing the stationary bump

solutions yields

∂ψ(x, t)

∂t
= −ψ(x, t) (2.45)

+

∫ ∞

−∞
w(x− x′)

{
Qσ(x

′)f ′(Uσ(x
′)− θ)ψ(x′, t) + ϕ(x′, t)f(Uσ(x

′)− θ)
}
dx′,

∂ϕ(x, t)

∂t
= −ϕ(x, t)

α
− β[Qσ(x)f

′(Uσ(x)− θ)ψ(x, t) + ϕ(x, t)f(Uσ(x)− θ)]. (2.46)

We have used the Taylor series approximation to f(Uσ + ψ − θ), which is

f(Uσ + ψ − θ) = f(Uσ − θ) + f ′(Uσ − θ)ψ + · · · (2.47)

Notice that

f ′(Uσ(x)− θ) =
σ exp(−σ(Uσ(x)− θ))

(1 + exp(−σ(Uσ(x)− θ)))2
. (2.48)

is well defined when Uσ(x) 6= θ as σ → ∞. However, when Uσ(x) = θ, which in fact is where

we define threshold crossings in the high gain limit, (2.48) scales linearly with σ. This will

invalidate any linear approximation to f in the vicinity of a threshold crossing. Along these

lines, as the high gain limit is approached, for steeper and steeper sigmoids, the linear

approximation at the threshold crossing becomes progressively worse. Thus, there is a

vanishingly small region of the phase space (ψ(x, t), ϕ(x, t)) in which this stability analysis

will be valid. Therefore, although one can formally analyze the high–gain limit of the

spectrum of the smooth linear operator defined by the right hand side of equations (2.45)

and (2.46), this does not yield valid conditions for linear stability of a bump in a network

with Heaviside nonlinearities. Nevertheless, it is instructive to carry out the spectral

analysis of equations (2.45) and (2.46). That is, set ψ(x, t) = eλtψ(x) and ϕ(x, t) = eλtϕ(x)
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with (ψ(x), ϕ(x)) bounded continuous functions on R that decay to zero exponentially as

x→ ∞. This gives

(λ+ 1)ψ(x) =

∫ ∞

−∞
w(x− x′)

{
Qσ(x

′)ψ(x′)f ′(Uσ(x
′)− θ) + ϕ(x′)f(Uσ(x

′)− θ)
}
dx′,

(2.49)

(λ+ α−1)ϕ(x) = −β
[
Qσ(x)ψ(x)f

′(Uσ(x)− θ) + ϕ(x)f(Uσ(x)− θ)
]
. (2.50)

The resulting spectral problem is nontrivial since we have a non–compact linear operator

on R, However, we can obtain a simpler spectral problem by formally taking the high–gain

limit σ → ∞. First, solving equation (2.50) for ϕ(x) yields

ϕ(x) = −β(λ+ α−1 + βf(Uσ(x)− θ)))−1Qσ(x)ψ(x)f
′(Uσ(x)− θ). (2.51)

Assuming that ϕ(x) is non–singular, we may substitute back into equation (2.49) to give

a closed equation for the eigenfunction ψ(x)

(λ+ 1)ψ(x) =

∫ ∞

−∞
w(x − x′)Qσ(x

′)ψ(x′)
{
f ′(Uσ(x

′)− θ) (2.52)

−β
(
λ+ α−1 + βf(Uσ(x

′)− θ)
)−1

f(Uσ(x
′)− θ)f ′(Uσ(x

′)− θ)
}
dx′.

We now take the high–gain limit using

lim
σ→∞

f(Uσ(x)− θ) = Θ(Uσ(x)− θ) = Θ(x+ a)−Θ(x− a), (2.53)

lim
σ→∞

f ′(Uσ(x)− θ) = Θ′(Uσ(x)− θ) =
δ(x+ a)

|U ′(a)| +
δ(x − a)

|U ′(a)| , (2.54)

lim
σ→∞

f(0) = 1/2, (2.55)

lim
σ→∞

Qσ(±a) =
1 + αβ/2

1 + αβ
(2.56)

so that equation (2.52) becomes

(
λ+

1

α
+
β

2

)
(λ+ 1)ψ(x) =

(λ+ α−1)(1 + αβ/2)

(1 + αβ)|U ′(a)| [w(x+ a)ψ(−a) + w(x− a)ψ(a)] .

(2.57)

Equation (2.57) may appear to be a perfectly reasonable spectral equation for characterizing

stability of the bump, due to its similarity to previous studies of the scalar equation (1.3),

as shown in Appendix A. Indeed, one can determine λ in terms of the spectrum of the

linear opertator Lψ(x) = w(x+ a)ψ(−a) +w(x− a)ψ(a) acting on the space of continuous

bounded functions on [−a, a]; it can then be shown that the linear operator is compact in
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the case of standard norms such as L1 [62]. It then follows that the essential spectrum is

located at λ = −1 and the discrete spectrum is determined by setting x = ±a in equation

(2.57). This yields two classes of eigenfunctions ψ±(x) = w(x+a)−w(x−a) with associated

characteristic equations
(
λ+ α−1 +

β

2

)
(λ+ 1) = Ω±(λ+ α−1)(1 + αβ/2),

where Ω+ = Ω and Ω− = 1 with

Ω =
w(0) + w(2a)

w(0) − w(2a)
. (2.58)

It is straightforward to show that the characteristic equation for ψ−(x) has a simple root

λ− = 0; one expects a zero eigenvalue, since this is an indication of the full system of

equations (2.36) being invariant with respect to spatial translations. However, although one

can formally take the high–gain limit of the linear equation (2.57), this does not properly

take into account the breakdown in the Taylor expansion of the full equations due to the

singularity arising on the steepest part of the sigmoid. Consequently, the Evans function

approach misses instabilities arising from the piecewise smooth nature of the full system

(2.36). Indeed, the Evans function approach implies that the upper branch of the existence

curve shown in Figure 2.8 is linearly stable. That is, all non–zero solutions of (2.58) have

negative real part along this branch, whereas at least some of this branch is unstable

according to the piecewise smooth approach and according to numerical simulations (see

sections 2.2.4 and 2.2.5).

2.2.4 Stability: Piecewise smooth approach

In the case of the scalar equation (1.3) it is possible to determine the local stability of a

stationary bump by differentiating the Heaviside firing rate function inside the convolution

integral, which is equivalent to differentiating with respect to the locations of the bump

boundary (see Appendix A). This is no longer possible for the neural field system (2.36),

since the steady–state depression variable Q(x) is a discontinuous function of x, reflecting

the piecewise smooth nature of the depression dynamics. Therefore, one has to carry out

the stability analysis more carefully by taking into account the sign of the perturbations

of the bump boundary along analogous lines to the space–clamped system.

Let us set u(x, t) = U(x) + εψ(x, t) and q(x, t) = Q(x) + εϕ(x, t). Substituting into

the full system (2.36) and imposing the stationary bump solutions (2.42) and (2.43), and

dividing through by ε gives
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∂ψ(x, t)

∂t
= −ψ(x, t)

+
1

ε

∫ ∞

−∞
w(x− x′)Q(x′)

[
Θ(U(x′) + εψ(x′, t)− θ)−Θ(U(x′)− θ)

]
dx′

+
1

ε

∫ ∞

−∞
w(x− x′)ϕ(x′, t)Θ(U(x′) + εψ(x′, t)− θ)dx′ (2.59)

∂ϕ(x, t)

∂t
= −ϕ(x, t)

α
− β

ε
Q(x) [Θ(U(x) + εψ(x, t)− θ)−Θ(U(x)− θ)]

−βϕ(x, t)Θ(U(x) + εψ(x, t) − θ). (2.60)

Denote the perturbations of the bump boundary by ε∆±(t) such that

u(a+ ε∆+(t), t) = u(−a+ ε∆−(t), t) = θ

for all t > 0. Therefore, we can relate perturbations ∆±(t) to ψ(±a, t) as

U(±a) + ε∆±(t)U
′(±a) + εψ(±a, t) +O(ε2) = θ

∆±(t) ≈ ±ψ(±a, t)

|U ′(a)| , (2.61)

where we have used U(±a) = θ. We can then smooth out the discontinuities in equation

(2.60) by introducing the modified field

Φ(x, t) =

∫
a+ε∆+(t)

−a+ε∆−(t)
w(x− x′)ϕ(x′, t)dx′. (2.62)

(Such a change of variables cannot always be invoked in the stability analysis of bumps in

piecewise smooth neural fields, as is the case in the network with spike frequency adaptation

(1.8), which we analyze in Appendix B). The motivation for this is that a perturbation

of the bump boundary means that in a small neighborhood of the bump boundary, the

synaptic depression variable will start to switch its steady–state value from q = 1 to

q = (1 + αβ)−1 or vice–versa according to equation (2.37). That is, it will undergo O(1)

changes over a time–scale of α−1. However, this does not necessarily imply that the bump

solution is unstable, since the region over which the growth or decay of q occurs may

shrink to zero. This is captured by the dynamics of the auxiliary field Φ(x, t), which will

remain O(1) even when ϕ(x, t) is O(1/ε) over infinitesimal domains, as in the case of shift

perturbations (see case (iii) of analysis that follows).
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Differentiating equation (2.62) with respect to time shows that

∂Φ(x, t)

∂t
=

∫
a+ε∆+(t)

−a+ε∆−(t)
w(x− x′)

∂ϕ(x′, t)

∂t
dx

+εw(x − a− ε∆+(t))ϕ(a + ε∆+(t), t)∆̇+(t)

−εw(x + a− ε∆−(t))ϕ(−a + ε∆−(t), t)∆̇−(t).

Substituting for ∂ϕ/∂t using equation (2.60) and replacing the second term on the right–

hand side of equation (2.59) by Φ lead to the pair of equations

∂ψ(x, t)

∂t
= −ψ(x, t) + Φ(x, t) (2.63)

+
1

ε

∫
a+ε∆+(t)

−a+ε∆−(t)
w(x− x′)Q(x′)dx′ − 1

ε

∫
a

−a

w(x− x′)Q(x′)dx′

∂Φ(x, t)

∂t
= −

(
α−1 + β

)
Φ(x, t) (2.64)

−β
ε

∫
a+ε∆+(t)

−a+ε∆−(t)
w(x− x′)Q(x′)Θ(U(x′) + εψ(x′, t)− θ)dx′

+
β

ε

∫
a+ε∆+(t)

−a+ε∆−(t)
w(x− x′)Q(x′)Θ(U(x′)− θ)dx′

+εw(x− a− ε∆+(t))ϕ(a + ε∆+(t), t)∆̇+(t)

−εw(x+ a− ε∆−(t))ϕ(−a + ε∆−(t), t)∆̇−(t).

We now “linearize” equations (2.63) and (2.64) by expanding in powers of ε and collecting

all O(1) terms. Note that it is important to keep track of the signs of ∆± when approx-

imating the various integrals, since the stationary solution Q(x) is discontinuous at the

bump boundary. For example,

∫
a+ε∆+

a

w(x− x′)Q(x′)dx′ ≈ ε∆+ lim
ε→0

w(x− a− ε∆+)Q(a+ ε∆+)

= ε∆+ w(x− a)G(∆+) (2.65)

and

∫ −a

−a+ε∆−

w(x− x′)Q(x′)dx′ ≈ −ε∆− lim
ε→0

w(x+ a− ε∆−)Q(−a+ ε∆−)

= −ε∆−w(x + a)G(−∆−), (2.66)

where G is the step function

G(∆) =

{
1 if∆ > 0

(1 + αβ)−1 if∆ < 0
. (2.67)
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Similarly, the integral on the right–hand side of equation (2.64) can be approximated by

the expression

ε∆+(t)w(x− a)G(∆+)Θ(∆+)− ε∆−(t)w(x + a)G(−∆−)Θ(−∆−). (2.68)

Finally, collecting all O(1) terms and using equation (2.61), we obtain the following

piecewise–linear system of equations:

∂ψ(x, t)

∂t
= −ψ(x, t) + Φ(x, t) + γaw(x+ a)ψ(−a, t)G(ψ(−a, t)) (2.69)

+γaw(x− a)ψ(a, t)G(ψ(a, t))

∂Φ(x, t)

∂t
= −

(
α−1 + β

)
Φ(x, t)

−βγaw(x+ a)ψ(−a, t)G(ψ(−a, t))Θ(ψ(−a, t))

−βγaw(x− a)ψ(a, t)G(ψ(a, t))Θ(ψ(a, t)). (2.70)

Here

γ−1
a = U ′(−a) = −U ′(a) =

w(0) − w(2a)

1 + αβ
. (2.71)

Equations (2.69) and (2.70) imply that the local stability of a stationary bump solution

depends on the spectral properties of a piecewise linear operator. However, we can obtain

a simpler eigenvalue problem under the ansatz that the perturbations ψ(±a, t) (or equiva-

lently ∆±(t)) do not switch sign for any time t. In other words, we assume that equations

(2.69) and (2.70) have separable solutions of the form (ψ(x, t),Φ(x, t)) = eλt(ψ(x),Φ(x)),

where λ is real and ψ(x) and Φ(x) are bounded continuous functions on R that decay to

zero exponentially as x → ±∞. Under the assumption that λ is real, the step functions

Θ, G are time–independent so that there is a common factor eλt that cancels everywhere.

We thus obtain an eigenvalue problem specified by the pair of equations

(λ+ 1)ψ(x) −Φ(x) = γaw(x+ a)ψ(−a)G(ψ(−a)) + γaw(x− a)ψ(a)G(ψ(a))

(2.72)

(λ+ α−1 + β)Φ(x) = −βγaw(x+ a)ψ(−a)G(ψ(−a))Θ(ψ(−a))

−βγaw(x− a)ψ(a)G(ψ(a))Θ(ψ(a)). (2.73)

One class of solution to equation (2.73) is given by λ = −(α−1+β) and ψ(a) ≤ 0, ψ(−a) ≤ 0.

The functions ψ(x) and Φ(x) are then related according to equation (2.72). However,

such solutions do not contribute to any instabilities. Therefore, we will assume that λ 6=
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−(α−1 + β). We can then algebraically eliminate Φ(x) to obtain the nonlinear eigenvalue

problem

(λ+ 1)ψ(x) = γaw(x− a)ψ(a)G(ψ(a))

[
1− β

λ+ α−1 + β
Θ(ψ(a))

]
(2.74)

+γaw(x+ a)ψ(−a)G(ψ(−a))

[
1− β

λ+ α−1 + β
Θ(ψ(−a))

]
.

Hence, in the case of a neural field with synaptic depression, the piecewise smooth nature

of the full system persists in the piecewise linear system characterizing the stability of

bumps. This is an indication that the discontinuities arising in the stationary bump solution

are manageable by linear stability analysis under the appropriate change of variables (2.62).

By generalizing the analysis of Guo and Chow [62], it is possible to show how the solutions

for λ can be identified with the spectra of a set of compact linear operators acting in the

space of bounded continuous functions on the interval [−a, a]. However, here it will suffice

to calculate λ directly from equation (2.74). One particular class of solutions to equation

(2.74) consists of functions ψ(x) that vanish on the boundary, ψ(±a) = 0, such that λ = −1.

This determines the essential spectrum, since λ = −1 has infinite multiplicity, and does not

contribute to any instabilities. There are then four other classes of solution to equation

(2.74): (i) ψ(−a) > 0 and ψ(−a) < 0; (ii) ψ(−a) < 0 and ψ(a) > 0; (iii) ψ(−a) > 0

and ψ(a) > 0; (iv) ψ(−a) < 0 and ψ(a) < 0. In the special case |ψ(a)| = |ψ(−a)|, the
four types of perturbation correspond, respectively to a leftward shift, a rightward shift,

an expansion, and a contraction of the stationary bump solution. If |ψ(a)| 6= |ψ(−a)|
then we have a mixture of these basic transformations. For example if |ψ(−a)| > |ψ(a)
in case (i), then the perturbation is a mixture of a leftward shift and a bump expansion.

Figure 2.9 visualizes these cases for ψ(x), along with the piecewise continuous function

Q(x), elucidating why different quantities are considered depending on the shape of the

perturbation.

(i) ψ(±a) > 0 : When we apply this assumption and rearrange equation (2.74), we

have

(
λ+ α−1 + β

)
(λ+ 1)ψ(x) = γaw(x+ a)ψ(−a)

(
λ+ α−1

)

+γaw(x− a)ψ(a)
(
λ+ α−1

)
. (2.75)

Setting x = ±a and noting that ψ(±a) have the same sign, we have ψ(a) = ψ(−a) > 0

with λ satisfying the quadratic equation



44

-8 -6 -4 -2 0 2 4 6 8
-0.2

-0.1

0

0.1

0.2

0.3

0.4

x

U
(x

) ∆ ∆ +-

(a)

 

-8 -6 -4 -2 0 2 4 6 8
-0.2

-0.1

0

0.1

0.2

0.3

0.4

x

U
(x

)

(b)

∆ ∆ +-

 

-8 -6 -4 -2 0 2 4 6 8
-0.2

-0.1

0

0.1

0.2

0.3

0.4

x

U
(x

)

(c)

∆ ∆ +-  

-8 -6 -4 -2 0 2 4 6 8
-0.2

-0.1

0

0.1

0.2

0.3

0.4

x

U
(x

) ∆ ∆ +-

(d)

Figure 2.9. Illustration of different types of perturbation of stationary one–dimensional
bump solution: (a) leftward shift; (b) rightward shift; (c) expansion; (d) contraction.

(
λ+ α−1 + β

)
(λ+ 1) =

(
λ+ α−1

)
(1 + αβ)Ω, (2.76)

where

Ω =
w(0) + w(2a)

w(0)− w(2a)
.

We have substituted for γa using equation (2.71). It follows that λ = λ± with

λ± =
1

2

[
Ω(1 + αβ) −

(
1 + α−1 + β

)]

±1

2

√
[Ω(1 + αβ) − (1 + α−1 + β)]2 + 4(Ω− 1) (α−1 + β). (2.77)

The corresponding eigenfunctions represent expansions of the bump and take the form

(
ψ(x)
Φ(x)

)
= [w(x + a) + w(x− a)]




1

− λ± + 1
λ± + α−1


 . (2.78)
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As we illustrate below, for certain ranges of parameters the eigenvalues λ± form a com-

plex conjugate pair and thus must be excluded from our analysis, since they violate the

separability assumption.

(ii) ψ(±a) < 0 : In this case equation (2.74) becomes

(λ+ 1)ψ(x) = γaw(x+ a)ψ(−a)
1

1 + αβ
+ γaw(x− a)ψ(a)

1

1 + αβ
. (2.79)

Setting x = ±a and noting that ψ(±a) must have the same sign shows that ψ(a) = ψ(−a)

and λ = λ0 with

λ0 = Ω− 1. (2.80)

Hence, there is a single eigenfunction corresponding to a contraction of the bump given by

(
ψ(x)
Φ(x)

)
= −

(
w(x+ a) + w(x− a)

0

)
. (2.81)

(iii) ψ(a) ≤ 0, ψ(−a) ≥ 0 : In this case equation (2.74) becomes

(
λ+ α−1 + β

)
(λ+ 1)ψ(x) = γaw(x+ a)ψ(−a)

(
λ+ α−1

)

+γaw(x− a)ψ(a)
λ + α−1 + β

1 + αβ
. (2.82)

Setting x = ±a then yields the matrix equation

(
Γβ(λ)− γaw(0)

(
λ+ α−1

)
−γa

(
λ+ α−1

)
w(2a)

−γa
(
λ+ α−1

)
w(2a) Γβ(λ)− γw(0)

(
λ+ α−1

)
)(

ψ(−a)
ψ(a)

)

= − γaαβλ

1 + αβ

(
w(2a)ψ(a)
w(0)ψ(a)

)
, (2.83)

where

Γβ(λ) =
(
λ+ α−1 + β

)
(λ+ 1).

This yields a quartic equation for λ. It is straightforward to show that there always exists

a zero eigenvalue λ = 0 with corresponding eigenmode ψ(−a) = −ψ(a). The existence of

a zero eigenvalue reflects the translation invariance of the full system (2.36).2 In order

to calculate the other eigenvalues, we assume that β ≪ 1 ( which is consistent with

2Although a small uniform shift of the bump corresponds to O(1) pointwise changes in the depression
variable q, these occur over an infinitesimal spatial domain so that the auxiliary variable Φ is still small.
Hence, the response to small uniform shifts is covered by our linear stability analysis.
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Figure 2.10. Stability with respect to expansion and contraction perturbations (cases (i)
and (ii)). (a) Eigenvalues of the expansion (solid curves) and contraction (dashed curve)
perturbations when (a) θ = 0.1 and (b) θ = 0.07. In the grey regions, the roots of equation
(2.77) are complex thus violating the ansatz that λ is real. Other parameters are Ai = 0.6,
σi = 4, and α = 20.

physiological values for the depletion rate of synaptic depression [169, 164]) and carry out

a perturbation expansion in β with λ = λ0+βλ1+ · · · (Using the implicit function theorem

it can be shown that λ is a continuous function of β around the origin). First, setting β = 0

in equation (2.83) we find that there are three eigenvalues λ0 = Ω − 1, 0,−α−1. The first

eigenvalue is λ0 = Ω−1, which can be excluded since the corresponding eigenmode violates

the assumption that ψ(±a) have opposite sign. The second eigenvalue is λ0 = 0, which

persists when β > 0. Finally, the third eigenvalue λ0 = −α−1 is doubly degenerate so

that one needs top use degenerate perturbation theory in order to determine the splitting

of the eigenvalue into two branches as β increases from zero. Again, one of the branches

is excluded by requiring that ψ(±a) have opposite sign. We conclude that for sufficiently

small β, shift perturbations do not lead to instabilities.

(iv) ψ(a) ≥ 0, ψ(−a) ≤ 0 : As expected from the reflection symmetry of the original

system (2.36) when w(x) is an even function, the spectrum associated with rightward shifts

is identical to that of leftward shifts.

We illustrate the above analysis by considering stationary bumps in a network with the

Mexican hat weight function (2.6). Specifically, we plot the eigenvalues for each type of

perturbation in the case of the wider bump shown in Figure 2.8, which is stable as β → 0.

In Figure 2.10, we plot the real eigenvalues associated with expansions and contractions

(cases (i) and (ii)) as functions of β. In the case of contractions, there is a single negative
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Figure 2.11. Stability of a stationary bump with respect to shift perturbations (cases (iii)
and (iv)). (a) Nonzero eigenvalue when θ = 0.1 for various β. Bump destabilizes under
shifts for sufficiently large β. (b) Corresponding plot of the ratio Ψ(a) = ψ(a)/ψ(−a)
for a leftward shift and θ = 0.1. As β increases, the ratio approaches zero, implying the
perturbation is a combination of a pure shift and an expansion. (c) Nonzero eigenvalue
when θ = 0.07 for various β. (d) Corresponding plot of the ratio Ψ(a) = ψ(a)/ψ(−a) for a
leftward shift and θ = 0.07. Other parameters are Ai = 0.6, σi = 4, α = 20. Results are
the same for a rightward shift on exchanging x = −a and x = a.
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Figure 2.12. Stability map in (α,β) parameter space. Black denotes nonexistence of
bumps; light grey denotes unstable bumps; dark grey denotes stable bumps. Dashed black
line denotes location of a saddle bifurcation, where stable bumps transition to traveling
pulses. Other parameters are Ai = 0.6, σi = 4, and θ = 0.1.
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branch that approaches zero at a critical value β = βc. Equations (2.80) and (2.77) imply

that the variation in λ is due to the β–dependence of the bump half–width a such that

Ω → 1 as β → βc. Hence a → ac as β → βc where ac is the width at which the upper

and lower existence curves meet in Figure 2.8, that is, w(2ac) = 0 (see also Appendix

A). In the case of expansions, there are two negative branches for sufficiently small β,

which annihilate at the left–hand end of a forbidden region in which the eigenvalues λ±

given by equation (2.77) are complex, so the stability of expanding perturbations cannot be

determined. At the other end of this forbidden region, a pair of positive branches emerges

with λ− → 0 as β → βc. The latter follows from setting Ω = 1 in equation (2.77). When

real roots appear again, there is a jump in their value. In Figure 2.11 we plot the nonzero

eigenvalue λ for shift perturbations; the other two nonzero solutions to the characteristic

equation (2.83) violate the condition that ψ(±a) have opposite sign. As β increases, the

eigenvalue becomes positive, representing destabilization of the bump with respect to shift

perturbations. Moreover, Figure 2.11 shows that beyond the point of instability we have

0 > Ψ(a) ≡ ψ(a)/ψ(−a) > −1, so that the width of the bump also increases. Since the shift

instability occurs at smaller values of β that expansion perturbations, the former dominate

bump instabilities in the case of the given Mexican hat weight function.

We summarize stability results in Figure 2.12, which shows the parameter space (α, β)

divided into separability regions where either: no bumps exist (black); bumps are stable

with respect to perturbations associated with real eigenvalues (dark grey); bumps are

unstable (light grey). Even when the stability analysis of the expansion mode breaks down,

bumps destabilize under shift perturbations. We conclude that strong enough synaptic

depression can destabilize as stationary bump, which would be stable in the absence of

depression.

2.2.5 Numerical simulations

We now study instabilities of bumps in the full system (2.36) using a numerical ap-

proximation scheme. To evolve the system in time, we use a fourth order Runge–Kutta

method with 2000–4000 spatial grid points and a time–step of dt = 0.01. The integral term

in equation (2.36a) is approximated using Simpson’s rule. We systematically examined

whether taking finer grids changed stability results, and it does not. This is important

because too coarse a grid can drastically alter numerical results, since discreteness can

stabilize bumps that are not stable in the continuous system [62]. For all of our numerical



50

simulations, we begin with an initial condition specified by an associated bump solution

(2.44) that lies on the unstable part of the upper branch of the existence curves shown in

Figure 2.8. After a brief period, we stimulate the system by adding an input perturbation

to the variable u(x, t) defined as

ψ±(x, t) = χ(t)(w(x + a)± w(x− a)), (2.84)

which is motivated by eigenmodes of the linearized Amari equation (1.3), which we calculate

in Appendix A. Leftward shifts (rightward shifts) correspond to ψ−(x, t) when χ(t) ≥ 0

(χ(t) ≤ 0), while expansions (contractions) correspond to ψ+(x, t) when χ(t) ≥ 0 (χ(t) ≤
0). The resulting dynamics depends specifically on the type of perturbation applied to the

bump.

When shift perturbations destabilize a bump, the resulting dynamics evolves to a

traveling pulse solution. As we showed in section 2.1.2, synaptic depression is a reliable

mechanism for generating traveling pulses in excitatory neural fields [79, 80]. As illustrated

in Figure 2.13, following a perturbation by a leftward shift, the bump initially expands and

then starts to propagate. Eventually, the traveling pulse’s width stabilizes to a constant

value, larger than the initial bump width. The initial linear growth in the bump’s width

is consistent with our linear stability calculations. In other simulations, we found that as

synaptic depression strength β is increased, the rate of linear growth in the width increases

as well, which is also predicted by our stability analysis. In Figure 2.14, we show an example

of how expansions destabilize the bump to result in two counter–propagating pulses. A

closer look at the solution as a function of time immediately after the perturbation shows

a transient phase, where the superthreshold region is still a connected domain, prior to

the splitting into two pulses. As also predicted by our stability analysis, we found that

contraction perturbations did not drive the system to the homogeneous zero state, unless

their amplitude was large enough to drive the system to the other side of the separatrix

given by the smaller unstable bump (see Figures 2.8 and A.1c). Finally, we found that, as

predicted by our analysis, numerical simulations of bumps in a purely excitatory network

(Ai = 0) always destabilize to two counter–propagating fronts that spread across the

domain (see [79]).

In summary, our mathematical and numerical analysis of stationary bumps in the

one–dimensional piecewise smooth neural field model (2.36) reveals several novel features

compared to previous neural field models [3, 136, 39]. These are a consequence of the

piecewise nature of the linear operator obtained by expanding about the stationary solution.
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Figure 2.13. Numerical simulation of a bump destabilized by a leftward shift perturbation.
(a) Plot of u(x, t) for an initial condition taken to be a stationary bump specified by
equation (2.44). Solution is perturbed at t = 10 by a leftward shift ψ−(x, t), such that
χ(t) = −0.1 for t ∈ [10, 10.1] and zero otherwise. (b) Bump width plotted versus time.
Bump width increases linearly following the perturbation, but eventually relaxes back to
a constant value as the solution evolves to a traveling pulse. Parameters are Ai = 0.3,
σi = 4, α = 50, β = 0.01, θ = 0.1.
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Figure 2.14. Numerical simulation of a bump destabilized by an expanding perturbation.
(a) Plot of u(x, t) for an initial condition taken to be stationary bump specified by (2.44).
Solution is perturbed at t = 10 by an expansion ψ+(x, t), such that χ(t) = 0.1 for
t ∈ [10, 10.1] and zero otherwise. (b) Plot of u(x, t) for t = 0 to t = 25, showing initial
expansion of the bump prior to splitting into two counter–propagating pulses. Parameters
are Ai = 0.3, σi = 4, α = 50, β = 0.05, θ = 0.1.
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First, shift perturbations that destabilize the bump are a combination of a pure shift and an

expansion, rather than a pure shift, leading to an initial increase in the width of the bump

prior to propagation as a traveling pulse. Second, there is an asymmetry between expansion

and contraction modes, which have different spectra. Physically, this can be understood

from the fact that neural populations just outside of the initial bump have maximal synaptic

resources so they can recruit their nearest neighbors to continue spreading activity brought

about by an initial expansion. On the other hand, neural populations within the interior

of the bump do not possess the resources to continue the damping of activity via lateral

inhibition brought about by an initial contraction. Finally, note that analyzing stability by

formally Taylor expanding equation (2.36) about a bump solution for smooth sigmoidal f

(2.4) and then taking the high–gain limit generates stability conditions that underestimate

the effectiveness of synaptic depression in destabilizing the bump (see section 2.2.3), since

they do not take proper account of the piecewise–smooth nature of the dynamics in the

high–gain limit.

In Appendix B, we extend the work in this section to a neuronal network with spike

frequency adaptation. In particular, we analyze the existence and stability of bumps in the

system (1.8), developed by Coombes and Owen [42], noting the piecewise smooth nature

of the system. However, in our stability calculations, we are not able to use the same trick

we use here, of introducing a smoothed auxiliary variable (see equation (2.62)) in place of

the negative feedback variable. We do show that, for a wide class of perturbations, the

activity and adaptation variables decouple in the linear regime, allowing us to calculate

stability in terms of a smooth linear operator. Bumps are always unstable with respect to

this class of perturbations, and destabilization of the bump can result in either a traveling

pulse or a spatially localized breather.

2.3 Synchronous oscillations

Shusterman and Troy [155] have recently shown that rhythmic activity can occur in

the Pinto–Ermentrout model with linear adaptation and a Heaviside firing rate function

provided that the strength of negative feedback βp is sufficiently high, see system (1.7). In

such a parameter regime, the space–clamped version of these equations exhibits bistability

in which a stable rest state coexists with a stable limit cycle. A local stimulation of the

corresponding spatially extended network can then lead to the emergence of synchronous

oscillations that expand outwards, ultimately leading to synchronization of the whole net-
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work. However, since the linear form of adaptation assumed in the Pinto–Ermentrout model

is not directly related to physiological models of adaptation, it is difficult to determine

whether or not a large value of βp is reasonable. Indeed, the analysis of Benda and Herz

[9] suggests that the negative feedback should be proportional to the firing rate which

would be nonlinear in the case of a Heaviside firing rate function. It is also possible to

generate oscillations when nonlinear adaptation is included, although it appears necessary

to introduce different activation thresholds for the adaptation current and spiking [42] (see

also Appendix B). Here we show how synaptic depression with or without spike frequency

adaptation can generate oscillations in the system given by equation (2.1). Such oscillations

arise when the firing rate function is taken to be the piecewise linear activation function

(2.3) rather than a Heaviside function.

2.3.1 Phase space analysis

As a means of determining the oscillatory behavior of the system, we examine the

equilibria of the space–clamped system [164, 7, 175]

u̇(t) = −u(t) + q(t)f(u(t)− a(t)),

αq̇(t) = 1− q(t)− αβq(t)f(u(t)− a(t)), (2.85)

ǫȧ(t) = −a(t) + γf(u(t)− a(t)),

where f is now taken to be the piecewise linear activation function (2.3) shown in Figure 2.1.

To calculate equilibria of (2.85), we consider the possible solutions on the three domains

of the piecewise function f(J). We find that there is a low activity or Down state on the

lower domain (u−a < θ) for θ > 0 such that (u, q, a) = (0, 1, 0). The stability of this Down

state is determined by the eigenvalues of the Jacobian

J (0, 1, 0) =




−1 0 0
0 −1/α 0
0 0 −1/ǫ


 (2.86)

and is therefore stable for all realistic parameters. We find additional equilibria by solving

(2.85) on the middle and upper domains of f . On the middle domain (θ ≤ u−a ≤ θ+σ−1),

where f(J) = σ(J − θ), we have
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u = σ(u− a− θ)q, (2.87)

q = 1/(1 + σαβ(u− a− θ)), (2.88)

a = σγ(u− a− θ), (2.89)

θ ≤ u− a ≤ θ + σ−1, (2.90)

which has solutions

u =
φ− (1 + φ)γ − φθαβ ±

√
Dp

αβ(φ + (1 + φ)γ − φθαβ ±
√
Dp)

(2.91)

q =
2(1 + φ)γ

φ+ (1 + φ)γ − φθαβ ±
√
Dp

(2.92)

a =
φ− (1 + φ)γ − φθαβ ±

√
Dp

2(1 + φ)αβ
(2.93)

Dp = (φ− (1 + φ)γ − φθαβ)2 − 4φγθ(1 + φ)αβ, φ = σγ, (2.94)

provided Dp ≥ 0 and condition (2.90) is satisfied. Stability is determined by the eigenvalues

of the Jacobian

J (u, q, a) =




−1 + σq σ(u− a− θ) −σq
−βσq −(1/α+ βσ(u− a− θ)) βσq
γσ/ǫ 0 −(1 + γσ)/ǫ


 . (2.95)

We find that for a wide range of parameters, the middle domain contains two equilibria,

one of which is a saddle and the other is a stable or unstable spiral. The latter corresponds

to a high activity or Up state. For sufficiently fast depression and/or adaptation, desta-

bilization of the Up state can lead to the formation of a stable limit cycle via a Hopf

bifurcation, see Figures 2.15 and 2.16. In parameter regimes where the spiral equilibrium

does not exist, the Up state occurs on the upper domain (u−a > θ+σ−1), where f(J) = 1,

and is given by

u = 1/(1 + αβ), (2.96)

q = 1/(1 + αβ), (2.97)

a = γ. (2.98)

Its stability is determined by the eigenvalues of the Jacobian

J (u, q, a) =




−1 1 0
0 −(1/α + β) 0
0 0 −1/ǫ


 , (2.99)

which guarantees that such an Up state is always stable.
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Figure 2.15. Equilibria of space–clamped neuronal network with synaptic depression
and adaptation and piecewise–linear firing rate. (Left) Bifurcation diagram showing fixed
points u of the system (2.85) as a function of β for piecewise–linear firing rate (2.3). Other
parameters are γ = 0.05, ǫ = 5, α = 20, θ = 0.01 and σ = 4. Linear stability is determined
using the eigenvalues of the Jacobian given by (2.95). Stable (unstable) branches are shown
as solid (dashed) curves, whereas the stable limit cycle is shown as a thick solid curve.
(Right) Corresponding bifurcation diagram showing u as a function of γ for β = 0.12.

Figure 2.16. Stability maps of space–clamped neuronal network with synaptic depression
and adaptation. (Left) Stability diagram in the (α,β)–plane showing where the Up state
is a stable spiral (black) , an unstable spiral surrounded by a stable limit cycle (grey), or
an unstable spiral without a limit cycle (white). (Right) Corresponding stability diagram
in the (ǫ,γ)–plane. Other parameters are as in Figure 2.15
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In Figure 2.17 we show a simulation of the space–clamped network for a choice of

parameters that supports a limit cycle. The parameter values are consistent with physio-

logical measurements and previous models, for which the synaptic depression time constant

α is in the range 200–800ms [2, 170] and the adaptation time constant ǫ is in the range

20–80ms [9, 109, 162]. Notice that all variables oscillate at a period of roughly 30 time units

or 300ms, which correlates nicely with the timescale of epileptiform events in slice and in

vivo [183, 67, 155, 126] (see section 1.2.2 for a discussion of other experimentally observed

neural activity oscillations). It also indicates that the synaptic depression timescale sets

the period of oscillations in our model. Indeed, spike frequency adaptation as realized in

this model does not play a major role in generating oscillations. The network can also

support self–sustained oscillations in the absence of adaptation (γ = 0), which we will

discuss more in section 3.1. One major difference from the Pinto–Ermentrout model with

large negative feedback is that the equilibrium spiral in our model is associated with an

Up state rather than a Down or rest state [168].
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Figure 2.17. Numerical simulation of the space–clamped system (3.4) using the param-
eters θ = 0.01, σ = 4, α = 50, β = 0.06, ǫ = 4, and γ = 0.05. (Left) Plot of u, q, and
a trajectories in time. As predicted by linear stability analysis, the solution settles into a
limit cycle about the Up state. (Right) A plot in the (q,J) phase plane, where J = u− a
is the total current input to the firing rate function f(J). Notice that at its lowest point,
J dips below the value corresponding to the mean value of f : (J ,f(J))=(0.135,0.5).
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Figure 2.18. Self–sustained oscillations in space. (Left) Numerical simulation of the
system (2.1) when the firing rate is the piecewise linear function (2.3). An initial
Gaussian activity profile evolves into a core of oscillatory activity that emits outward
propagating pulses. These pulses of activity arise due to neighboring cells oscillating with
a spatially–dependent phase shift. Although the baseline current is not subthreshold in the
sense of causing no firing rate, it is relatively small compared to the pulse amplitude. We
plot the evolution of input current J in pseudocolor as a function of space x and time t.
Notice that the oscillating core is relatively confined in this long time interval and hardly
expands outward at all. Parameters are θ = 0.01, α = 50, β = 0.05, ǫ = 4, and γ = 0.05.
(Right) Corresponding trajectories of current J at two spatial locations.
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Figure 2.19. Snapshots of total input current J(x, t) as a function of space x for times
(Top left) t = 0; (Top right) t = 45; (Bottom left) t = 65; and (Bottom right) t = 139.
Oscillating core is centered at x = 0 and periodically emits pulses of activity after an initial
traveling front.
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2.3.2 Spatially extended model

A number of previous studies have shown how a space–clamped system with synaptic

depression can support oscillations in population activity [164, 7]. However, as far as we are

aware, the evolution of self–sustained oscillations in space and time has not been explored

before in such a system. Therefore, we extend the results of section 2.3.1 by examining

the behavior of the full system (2.1) in the case of the piecewise linear activation function

(2.3) and for the same range of parameter values for depression and adaptation as the

space–clamped case. We take an initial condition in the form of a Gaussian

(u(x, 0), q(x, 0), a(x, 0)) = (Ie−x2/ζ2 , 1, 0), (2.100)

where I = 0.5 and ζ = 15 are the amplitude and width of the Gaussian. We numeri-

cally solve (2.1) using fourth–order Runge–Kutta with timestep ∆t = 0.01 and Riemann

integration on 4000 gridpoints for the convolution term, verifying that the time and space

steps were small enough so that they did not to affect the qualitative behavior. Boundary

points evolve freely, and the domain is chosen to be large enough that the oscillating core is

unaffected by boundaries. In Figure 2.18 we show a simulation wherein an oscillating core of

activity generates outward propagating pulses. Note that this self–sustaining activity does

not require continuous input [55] nor does the nondimensionalized synaptic input current

go below zero [155, 168, 167]. As seen in the snapshots of Figure 2.19, the oscillating core

expands extremely slowly, remaining localized to the area of initial input on the timescale

of several seconds. As mentioned above, the network supports similar behavior in the

absence of spike frequency adaptation (γ = 0), as illustrated in Figure 2.20.

Note that the system (2.1) also supports solitary traveling pulses in the case of the

piecewise linear activation function (2.3). However, such pulses do not exist in the same

parameter range as synchronous oscillations. Although we cannot derive rigorous condi-

tions for the existence of traveling pulses, as we did in section 2.1.2 for a Heaviside firing

rate function, we can numerically simulate traveling pulses as illustrated in Figure 2.20 for

a pair of counter–propagating waves. Similar to the traveling pulse shown in Figure 2.4, a

pulse is defined by the region where J(ξ) ≥ θ, and J(ξ) < θ otherwise. Hence, although

the Heaviside firing rate function is very useful for carrying out a detailed analysis of

spatiotemporal dynamics in neural field models, it cannot capture all solutions that arise

when a more realistic firing rate function is considered.
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Figure 2.20. (Left) Self–sustained oscillations with no adaptation. As in Figure 2.18,
we find a pulse–emitting core that oscillates synchronously, and in this case adaptation
is not necessary to sustain these dynamics. We plot the evolution of input current J in
pseudocolor as a function of space x and time t. Parameters are θ = 0.01, α = 50, β = 0.1,
and γ = 0. (Right) Two counter–propagating pulses supported by the system (2.1) in the
case where the activation function f is piecewise linear as defined in (2.3). Initial condition
is taken to be the Gaussian defined in (2.100). Parameters are α = 20, β = 0.2, γ = 0.1,
ǫ = 5, θ = 0.01, and σ = 4.

2.4 Discussion

In this chapter, we analyzed the spatiotemporal dynamics of a neuronal network with

two physiologically based forms of nonlinear negative feedback – synaptic depression and

spike frequency adaptation. Both depression and adaptation were introduced as dynami-

cally evolving variables that depend on the output firing rate. We showed that traveling

fronts and pulses exist over a reasonable range of parameters, and that adaptation plays

little or no role in determining the wavespeed and pulsewidth. Stationary pulses or bumps

also exist if adaptation is removed. In analyzing their stability, we found that we had

to address the piecewise smooth nature of the system by keeping track of the sign of

perturbations. Thus, we find sufficient conditions for the destabilization of bumps for

sufficiently strong depression. Finally, when the firing rate function is taken to be piecewise

linear, self–sustained oscillations exist in the spatially extended network. A localized

region of synchronous activity repetitively emits traveling pulses with each oscillation.

Self–sustained oscillations and stationary superthreshold activity have been observed in

real neural tissue, both in slice [183, 126] and in vivo [126, 155]. While the frequency of

oscillations seems to match nicely with that observed in experiments (1–10 Hz), the spatial
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scale of emitted traveling pulses seems to be much longer. That is, assuming that synaptic

connections have a range of 1mm, the width of pulses ranges between 5–30mm, whereas

those in slice tend to be roughly 1mm [136, 184, 182].

In the next chapter, we will examine the behavior of self–sustained oscillatory solutions

as well as stationary bumps in two dimensions. In previous work, Fourier analysis has been

used to predict how the symmetry of circular bumps is broken when they are perturbed

[56, 133, 98]. Troy and Shusterman have shown that the Pinto–Ermentrout model supports

self–sustained oscillations in two dimensions when the symmetry of a ring wave is broken

[168]. In the space–clamped model with only synaptic depression, noise provides a means

of transitioning between the Up and Down states [7]. Including noise of the appropriate

form in our model will lead to interesting behavior in the spatially extended case.



CHAPTER 3

TWO–DIMENSIONAL NEURONAL

NETWORK WITH SYNAPTIC

DEPRESSION

In this chapter, we show how various forms of spatially structured oscillations, including

spiral waves and pulse emitters, can occur in a two–dimensional neuronal network with a

physiologically based form of nonlinear negative feedback, namely, synaptic depression. In

the previous chapter, we considered the combined effects of synaptic depression and spike

frequency adaptation on the spatiotemporal dynamics of a one–dimensional excitatory

network. We showed that synaptic depression tends to dominate the dynamics, providing

a mechanism for generating spatially localized oscillations. Here we extend our analysis to

two dimensions and to the case of noisy networks. For simplicity, we ignore the effects of

spike frequency adaptation since they tend to be relatively weak.

Thus, we consider a neuronal network model that includes negative feedback only in

the form of synaptic depression [2, 7, 116, 164, 169, 189]

τ
∂u(r, t)

∂t
= −u(r, t) +

∫

R2

w(|r− r′|)q(r′, t)f(u(r′, t))dr′ (3.1a)

∂q(r, t)

∂t
=

1− q(r, t)

α
− βq(r, t)f(u(r, t)), (3.1b)

where r and r′ are spatial positions in the two–dimensional plane R2. Equation (3.1a)

describes the evolution of the synaptic current or drive u(r, t) in the presence of synaptic

depression, which takes the form of a synaptic scaling factor q(r, t) evolving according to

equation (3.1b). The factor q(r, t) can be interpreted as a measure of available presynaptic

resources, which are depleted at a rate βf [169, 7, 164], and are recovered on a timescale

specified by the constant α (experimentally shown to be 200–1500ms [2, 170, 169, 161]).

In the previous chapter, we considered a one–dimensional model with synaptic depression

and adaptation and showed that adaptation has a relatively small effect on the dynamics.

Therefore, we focus on synaptic depression here. It will be convenient in the following to
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fix parameters so that f is interpreted as the fraction of the maximum firing rate, that is

0 ≤ f ≤ 1. We fix the temporal scale of the network by setting τ = 1. The membrane time

constant is typically around 10 ms.

Most of our analysis and numerics are carried out for a general piecewise linear firing

rate function (2.3) that attains saturation. We use this continuous function to study

existence and stability of oscillatory solution in the network with depression (sections 3.1

and 3.2). In the high gain limit (σ → ∞), we recover a Heaviside firing rate function

(2.2). We will use such a function in order to study target waves and stationary bumps

(see section 3.3). We compare the piecewise linear (2.3), sigmoid (2.4), and Heaviside (2.2)

functions in Figure 2.1 (see beginning of Chapter 2).

The homogeneous weight distribution w(|r − r′|) defines the strength of the synaptic

connections between neurons at r and r′, depending only on the distance between two cells.

As in the case of the one–dimensional system in the previous chapter, we consider two

different forms for the weight function w of the two–dimensional network in this chapter.

To represent a homogeneous excitatory network, we will take w to be given by a difference

of modified Bessel functions of the second kind: [55, 93, 133]

w(r) =
2w0

3πd
(K0(r/d) −K0(2r/d)) , (3.2)

where w0 determines the strength of the synaptic connections. The use of the weight

function (3.2) is motivated by studies of traveling waves, oscillations, and spiral waves

(sections 3.1, 3.2, and 3.3.1) of activity in epileptiform tissue or cortical slice, where

inhibition is mostly absent [126, 67]. The factor 2/3π ensures that equation (3.2) is a

very good fit to the exponential weight function

w(r) =
w0

2πd
e−r/d.

The expansion in terms of Bessel functions is particularly convenient because it allows

us to transform the system (3.1) into a fourth order PDE, which is computationally less

expensive to simulate [98, 93, 168, 133] (see section 3.2). In our studies employing the

excitatory weight function (3.2), we fix the spatial scale by setting d = 1, noting the

length scale of synaptic connections within cortex is typically of the order 1mm. We also

fix synaptic strength by setting w0 = 1. The effects of varying w0 are briefly discussed

at the end of section 3.1. We represent a homogeneous network with lateral inhibition
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by taking w to be a Mexican hat weight distribution given by a combination of modified

Bessel functions of the second kind

w(r) =
2

3π
(K0(r)−K0(2r)−Ai(K0(r/σ)−K0(2r/σi))) , (3.3)

where Ai is the relative strength of inhibition, σi is the relative scale of inhibition, and the

spatial scale of excitation is taken to be 1mm. Use of this Mexican hat weight function

(3.3) is motivated by experimental studies of standing pulses (or bumps) of activity in

prefrontal cortex, where lateral inhibition is present and required for stabilization of the

bumps (see sections 3.3.2 and 3.3.3). Such a weight function is qualitatively similar to a

difference of exponential weight functions

w(r) = (2π)−1(e−r −Aie
−r/σi).

With this model of a two–dimensional slice of cortical tissue, we study the spatiotem-

poral dynamics of activity it supports that relate to experiments of tangential slices,

epileptiform tissue, and prefrontal cortex. We begin by analyzing the space–clamped

version of the model, and show that it supports a stable limit cycle in the absence of

noise (section 3.1). However, in the presence of additive white noise, the parameter regime

over which oscillations can occur can be significantly widened. In section 3.2 we present

a number of numerical simulations illustrating various two–dimensional spatiotemporal

activity patterns supported by the full network model. Depending on the initial conditions,

we show that in the absence of noise, network activity can evolve as a pulse–emitting

oscillating core or as a spiral wave. Furthermore, addition of a small amount of spatially

uncorrelated noise to a quiescent network can drive pockets of the system superthreshold

and lead to discrete locations of pulse–emitting cores. On the other hand, large amounts of

noise lead to bulk oscillations which can disrupt any spatially structured activity. We also

show that when a radially symmetric stimulus is applied to the network in the presence of

noise, spiral waves can be generated due to symmetry breaking, similar to the organized

activity found in mammalian cortical slice [67, 148]. Finally, we study the system in the high

gain limit (section 3.3). In this case, oscillations do not exist in the deterministic system,

but depression is a sufficient mechanism for generating outward propagating target waves

following a brief stimulus. We can also extend our piecewise smooth analysis of bumps

to the two–dimensional case for symmetric perturbations, revealing qualitatively similar

results to the one–dimensional case regarding their destabilization.
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3.1 Oscillations in the space–clamped system

Previous modeling studies of space–clamped neuronal networks with synaptic depres-

sion showed the existence of oscillations in the case of excitatory/inhibitory networks [169]

or for a purely excitatory network with noise [7]. Tabak and colleagues showed that an

excitatory network with depression could support regular oscillations and bursting, using

an alternative form for the neural field equation as well as different gains and thresholds

for each variable’s activation function [164]. In our study, we find that saturation of the

activation function is sufficient to stabilize limit cycles using the same activation function

for both the activity and depression variables.

3.1.1 Phase plane for piecewise linear firing rate

As a means of determining the oscillatory behavior of the system, we examine the

equilibria of the space–clamped system [7, 164, 169]

u̇(t) = −u(t) + q(t)f(u(t)),

αq̇(t) = 1− q(t)− αβq(t)f(u(t)), (3.4)

where f is the piecewise linear activation function (2.3) shown in Figure 2.1. We carry out

the stability analysis of phase space using the piecewise linear function because explicit

analytical expressions can be derived for the fixed points. However, these results extend

to the case where there is a smooth transition from the linear to the saturated portion of

the firing rate.

To calculate equilibria of (3.4), we consider the possible solutions on the three domains

of the piecewise function f(u). We find that there is a low activity or Down state on the

lower domain (u < θ) for θ > 0 such that (u, q) = (0, 1). The stability of this Down state

is determined by the eigenvalues of the Jacobian

J (0, 1) =

(
−1 0
0 −1/α

)
(3.5)

and is therefore stable for all realistic parameters. A stable Down state exists in the network

for any f with a hard threshold, that is f(u) = 0 for u < θ. Without this condition, it is

possible that the Down may destabilize or vanish due to a nonzero firing rate existing for

zero synaptic drive.

We find additional equilibria by solving (3.4) on the middle and upper domains of f .

On the middle domain (θ ≤ u ≤ θ + σ−1), where f(u) = σ(u− θ), we have



66

u = σ(u− θ)q, (3.6)

q = 1/(1 + σαβ(u − θ)), (3.7)

θ ≤ u ≤ θ + σ−1, (3.8)

which has solutions

u =
σ + σαβθ − 1±

√
D

2σαβ
(3.9)

q =
2

1 + σ − σαβθ ±
√
D

(3.10)

D = (σ + σαβθ − 1)2 − 4σ2αβθ

provided D ≥ 0 and condition (3.8) is satisfied. Stability is determined by the eigenvalues

of the Jacobian

J (u, q) =

(
−1 + σq σ(u− θ)
−βσq −(1/α + βσ(u− θ))

)
. (3.11)

We find that for a wide range of parameters, the middle domain contains two equilibria,

one of which is a saddle and the other is a stable or unstable focus. The latter corresponds

to a high activity or Up state. For sufficiently fast depression, destabilization of the Up

state can lead to the formation of a stable limit cycle via a subcritical Hopf bifurcation as

pictured in Figure 3.1. In parameter regimes where the focus equilibrium does not exist,

the Up state occurs on the upper domain (u > θ + σ−1), where f(u) = 1, and is given by

u = 1/(1 + αβ), (3.12)

q = 1/(1 + αβ). (3.13)

Its stability is determined by the eigenvalues of the Jacobian

J (u, q, a) =

(
−1 1
0 −(1/α+ β)

)
, (3.14)

which guarantees that such an Up state is always stable.

In Figure 3.2 we show a simulation of the space–clamped network for a choice of

parameters that supports a limit cycle. The parameter value for synaptic depression time

constant α is taken to be within the physiological range 200–1500ms [2, 169]. Notice that

both variables oscillate at a period of roughly 40 time units or 400ms, which correlates well

with the scale of epileptiform events [31, 119, 126, 155]. This also implies that the timescale
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Figure 3.1. Equilibria of space–clamped neuronal network with synaptic depression and
piecewise–linear firing rate. (a) Bifurcation diagram showing fixed points u of the system
(3.4) as a function of β for α = 80. (b) Stability diagram for the space–clamped system
(3.4) showing regions in parameter space where the Up state is a stable focus (black), an
unstable focus surrounded by a stable limit cycle (grey), or an unstable focus without a
limit cycle (white) . Other parameters are θ = 0.01, and σ = 4.
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Figure 3.2. Limit cycles in space–clamped neuronal network with synaptic depression.
(a) Numerical simulation of (3.4) using the parameters θ = 0.01, σ = 4, α = 80, and
β = 0.05 given the initial condition (u,q) = (1,1). The synaptic input u and fraction
of available resources q are plotted as a function of time t. Oscillations lock to a period
roughly determined by the time constant α. (b) Corresponding phase–plane plot of q versus
u (dashed line) showing that the system supports a stable limit cycle.
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of oscillations is roughly set by the time constant of synaptic depression. Notice that as

opposed to self sustained oscillations in the Pinto–Ermentrout model [155], the equilibrium

focus in our model is associated with the Up rather than the Down or rest state. As stated,

these results easily extend to the case where f is a smooth, saturating function above the

threshold value u = θ. In particular, since limit cycles are structurally stable solutions in

continuous systems, oscillations persist when f(u) is modified by smoothing out the corner

at u = θ + 1/σ. However, without a hard threshold at u = θ, we have not witnessed the

same types of dynamics as presented here for the piecewise linear f . If oscillations exist, a

stable Down state does not, which we show in an analysis of the system with a sigmoidal

firing rate function (2.4).

3.1.2 Phase plane for sigmoidal firing rate

We use a numerical root finding algorithm to identify the equilibria of the system (3.4)

in the case where f is the sigmoidal function (2.4). It is possible to find parameter regimes

where limit cycles exist, but they do not coincide with a stable Down state, as in the

piecewise linear f case. We show an example of one such limit cycle in Figure 3.3, showing

the limit cycle employs the lower knee of the u–nullcline as a turing point from the Down to

the Up state. There is no such mechanism in the limit cycle present in the piecewise linear

system. This distinction points out that the loss of a hard threshold may in fact change

the overall topology of dynamics within the network. Rather than finding an excitable

regime with limit cycles about the Up state, we find either a purely oscillatory regime, or

an excitable regime with no limit cycles.

3.1.3 Space–clamped system with noise

A previous study of the space–clamped system (3.4) with f given by (2.3) considered

parameter regimes in which the subcritical Hopf bifurcation of the Up state only produced

an unstable limit cycle [7]. In this case the authors showed that oscillations could be

generated in the presence of additive noise, which switched the system between the Up

and Down states (see also [66]). It follows that noise enlarges the parameter regime over

which self–sustained oscillations can occur. We illustrate the effects of additive noise by

simulating the system

u̇(t) = −u(t) + q(t)f(u(t)) + γν(t),

αq̇(t) = 1− q(t)− αβq(t)f(u(t)), (3.15)
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Figure 3.3. Limit cycle in space–clamped neuronal network with synaptic depression and
sigmoid firing rate. (a) Bifurcation diagram showing fixed points u of the system (3.4) as
a function of β for α = 50. (b) Phase–plane plot of q versus u (dashed line) showing the
system supports a limit cycle. Other parameters are θs = 0.15, and σ = 20.

where f is the piecewise linear function (2.3), ν(t) is a Gaussian white noise process such

that 〈ν(t)〉 = 0, and 〈ν(s)ν(t)〉 = 2δ(t−s); γ is the noise strength. We simulated the system

(3.15) using an Euler–Maruyama scheme for stochastic differentiation with a timestep

∆t = 10−6. The nature of the noise–induced oscillations depends upon whether the Up

state is a stable or unstable focus. In the case of a stable focus, even though oscillations are

damped out eventually in the deterministic system, noise is sufficient to repeatedly drive

the system between the Up and Down states, along analogous lines to [7]. However, the

oscillations tend to be rather irregular as illustrated in Figure 3.4.

More regular noise–induced oscillations occur in the case of an unstable focus. Equa-

tions (3.15) now represent an excitable system with only a stable Down state, in which noise

periodically drives the system above threshold, leading to an elevated firing rate that then

relaxes back down as synaptic depression is activated. An example simulation is shown in

Figure 3.5, which neatly illustrates the regularity of the noise–induced oscillations. This

is an example of a well known stochastic property of excitable systems, namely, coherence

resonance [107]. That is, there exists an optimal level of noise with respect to the degree of

regularity of the induced oscillations; if the level of noise is too high then this completely

washes out any oscillations. We conclude that noise extends the parameter range over which

the space–clamped system supports oscillations to include regions where the underlying

deterministic system supports a stable or unstable focus without a stable limit cycle. This
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Figure 3.4. Numerical simulation of the space–clamped system (3.15) in which back-
ground noise drives the system between Up and Down states. The horizontal dashed line
denotes the input current value at which activity is half of its maximal value (θs = 0.135).
Firing rate is taken to be piecewise linear function (2.3). Parameters are α = 60, β = 0.06,
γ = 0.02, θ = 0.01, and σ = 4. In the absence of noise, the Up state is a stable focus.
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Figure 3.5. Numerical simulation of the space–clamped system (3.15) in which noise initi-
ates superthreshold portion of Up and Down state oscillations. The horizontal dashed line
denotes the input current value at which activity is half of its maximal value (θs = 0.135).
Firing rate is taken to be piecewise linear function (2.3). Parameters are α = 80, β = 0.06,
γ = 0.02, θ = 0.01, and σ = 4. In the absence of noise, the Up state is an unstable focus.
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also has important implications for the effects of noise in the spatially extended system

(see section 3.2).

Bart and colleagues [7] showed that changing the synaptic strength w0 can also alter

the stability of the Up state of the system (3.4), whilst keeping all other parameters fixed.

Stronger synapses (higher w0) stabilize the Up state, while weaker synapses (lower w0)

destabilize it. Consistent with these observations, we found that changing w0 alters the

parameter ranges of α and β over which a stable limit cycle exists. That is, increasing

w0 shifts the region in which limit cycles exist to higher values of α. On the other hand,

decreasing w0 allows for limit cycles to exist for lower values of α, but the range of β values

over which they exist is much narrower. Thus, superthreshold activity in a network with

weak synapses is much more easily overridden by synaptic depression. In our simulations

we take w0 = 1.

3.2 Oscillations in the spatially extended model

We now consider the implications of the existence of deterministic and noise–induced

oscillations in the space–clamped model for spatially structured oscillations in the full

model (3.1) with the excitatory weight function (3.2). Using numerical simulations, we

demonstrate that the two–dimensional network supports a spatially localized oscillating

core that emits target waves each cycle, as well as spiral waves. The results presented can

also be generated for a system with smoother forms for f . However, as the simulations

are qualitatively similar, we merely illustrate dynamics in the case of a piecewise linear

f here. As in previous studies of two–dimensional neural field models, we carry out a

transformation of our system for more efficient computation [98, 93, 168, 133]. That is,

we convert the integro–differential equation system (3.1) to a fourth order PDE using

two–dimensional Fourier transforms. This is possible due to the fact that the Fourier

transform of the weight distribution w(r, r′) given by equation (3.2) is a rational function.

Discretizing the resulting differential operators leads to sparse matrices, as opposed to full

matrices arising from an integral operator.

Numerical simulations are thus performed on the following system, which is equivalent

to equations (3.1) and (3.2):

[
∇4 −A∇2 +B

]
(ut + u) = Mqf(u),

qt =
1− q

α
− βqf(u), (3.16)
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over the domain Ω ⊂ R2. Here, the fourth order operator, L = ∇4 − A∇2 + B, arises as

the denominator of the two–dimensional Fourier transform of our modified Bessel weight

function (3.2), which is given by

ŵ(ρ) =
2

3π

(
1

ρ2 + 1
− 1

ρ2 + 22

)

=
2/π

ρ4 + 5ρ2 + 4
, (3.17)

where ·̂ denotes the two–dimensional Fourier transform. In this case, A = 5, B = 4, and

M = 2/π, but we may adjust these parameters by considering a rescaling of w. We solve

the system (3.16) numerically on a Cartesian grid of 1000 × 1000, applying homogeneous

Dirichlet and Neumann boundary conditions. For the fourth order operator, we employed

a second order finite difference method to construct a matrix version of L. The time

derivative was approximated using forward Euler with a timestep of ∆t = 0.01, which was

small enough so that shrinking it further did not change results.

3.2.1 Pulse emitter

Similar to our study of the one–dimensional network in the previous chapter, we find

that in parameter regimes where a stable limit cycle exists in the space–clamped system,

the corresponding two–dimensional network supports a spatially localized oscillating core

that periodically emits traveling pulses. All that is necessary to induce such behavior is an

initial condition of the form

(u(r, 0), q(r, 0)) = (χe−(x2+y2)/ζ2 , 1), (3.18)

where χ and ζ parameterize the amplitude and spatial constant of the initial state. We

seek to characterize the evolving activity in the limit cycle regime, especially the period

of oscillation and the speed of emitted pulses. In Figure 3.6, we show an example of a

pulse–emitting core, which oscillates at a frequency of roughly 3Hz. Pulses are emitted

each cycle, and travel at a speed of roughly 30cm/s, which is determined by the period of

the oscillations; the latter is set by the time constant of synaptic depression. The initial

emission of spreading activity appears as a traveling front which propagates from the region

activated by the input current into the surrounding region of zero activity; it travels at

the same speed as the subsequent target waves. The front converts each region of the

network into an oscillatory state that is phase–shifted relative to the core, resulting in the

appearance of a radially symmetric target pattern. Since our network has solely excitatory
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Figure 3.6. Snapshots of the solution u(x, y, t) to the fourth order PDE (3.16), following
a stimulus specified by equation (3.18) at t = 0, where χ = 1 and ζ = 25. Initially, an
activated state spreads radially outward, across the entire medium as a traveling front.
Then, the localized oscillating core of activity emits a target wave with each oscillation
cycle. Eventually, these target waves fill the domain. Each target wave can be considered
as a phase shift in space of the oscillation throughout the medium; they travel with the
same speed as the initial front. Parameters are α = 80, β = 0.05, σ = 4.

connections, we can consider it to be akin to disinhibited neocortical or hippocampal slices

[37, 183, 182] or regions of cortex or hippocampus where excitatory circuitry dominates

due to some pathology [31, 48]. Interestingly, the speed of the simulated waves matches

the time–scale of fast seizure spread in cortex [126].

3.2.2 Spiral waves

Several experimental and modeling studies of two–dimensional cortex reveal the exis-

tence of spiral waves [67, 93, 126, 149, 148] (see also section 1.2.4 for discussion of spiral

waves in cortical slice). Such self–sustained activity can often be classified by a constant

angular velocity [67, 149]. When identified using voltage sensitive dye, one finds such

activity patterns have true phase singularities about which the spiral organizes. One may

think of such spatially structured activity as a network property manifesting the recovery

period necessary for groups of neurons. Therefore, sections of cortex about the phase
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singularity alternate between Down and Up states, giving ample time for sections to recover

during the Down state.

Spiral waves have been generated in previous studies of neural field models with linear

adaptation, in which the neuronal network acts like an excitable medium [93, 168]. The

oscillations necessary for the generation of spiral waves arise from the Down state of the

network being a stable focus. Laing used the rotational symmetry of the spiral waves to

generate equations for the activity profile and angular velocity of a spiral on a disc domain

[93]. Troy and Shusterman generated spiral waves by continually breaking the symmetry

of target waves in the network [168]. In our model, we find that spiral wave patterns can be

induced by breaking the rotational symmetry of pulse emitter solutions. More specifically,

we chose an initial condition where the target pattern produced by the emitter has the

top and bottom halves of its domain phase shifted. The network then evolves into two

counter–rotating spirals on the left and right halves of the domain as shown in Figure

3.7. Closer inspection of one of these spirals reveals that it has a fixed center about which

activity rotates indefinitely as shown in Figure 3.8.

Huang and colleagues showed that spiral waves generated in cortical slices are a way

for oscillating activity to organize spatially in a smooth and isotropic medium [67]. They

found the waves persisted for up to 30 cycles and rotated at a rate of roughly 10 cycles per

second. Also, the phase singularity at the center of a spiral wave experiences a reduction in
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Figure 3.7. Snapshots of a solution u(x, y, t) to the fourth order PDE (3.16) revealing the
counter–rotation of two spiral waves on either side of the domain. These were generated
with an initial condition where the target pattern of Figure 3.6 had the top and bottom
halves of the domain phase shifted. Parameters are α = 80, β = 0.05, σ = 4, and θ = 0.01.
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Figure 3.8. A zoomed in version of the rotating left spiral wave pictured in Figure 3.7. The
period of the spiral wave oscillation is roughly the same as the period of the oscillation in
the space–clamped system. All patches of neurons are oscillating at the same frequency, but
phase–shifted as coordinates are rotated about the central phase singularity. Parameters
are α = 80, β = 0.05, σ = 4, and θ = 0.01.

oscillation amplitude due to the mixing of all phases in a small region. Certainly, the spiral

waves we have found in our system persist for a long time, but it seems that the rotation

rate is slightly slower at roughly 2Hz. Of course this is due in part to the time constant

of synaptic depression. As we showed in Chapter 2, including spike frequency adaptation

can increase the frequency of oscillations.

3.2.3 Noise–induced oscillations

As in the space–clamped system, it is interesting to consider the effects of noise on

the two–dimensional spatially extended network. In a recent study of the role of additive

Gaussian noise on Turing instabilities in neural field equations, Hutt and colleagues found

that noise delays the onset of pattern formation [72]. Also, Laing and colleagues have

shown that in a neural field model with linear adaptation, moving bumps are slowed by

the introduction of an additive noise term [97]. Here we show that in addition to modulating

spatiotemporal activity patterns that exist in the deterministic system, noise also gives rise
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to new dynamics.

Following a previous neural field studies with additive noise [97], we introduce a Gaus-

sian white noise term to each equation of a discretized version of the fourth order PDE

(3.16):

Lh

(
uk+1
ij − ukij

∆t
+ uij + ηµij(t)

)
= Mqijf(uij),

qk+1
ij − qkij

∆t
=

1− qij
α

− βqijf(uij), (3.19)

where i = 1, ..., Nx and j = 1, ..., Ny , Lh is the finite difference version of the linear operator

given in equation (3.16) , uij and qij are discrete values of u and q at (x, y) = (xi, yj), each

µij evolves independently as 〈µij(t)〉 = 0 and 〈µij(t)µij(s)〉 = δ(t−s), and η is the variance

of our white noise term.

In the case of low levels of spatially incoherent Gaussian noise, we find that small

pockets of the network spontaneously form spatially localized oscillators which then interact

with one another via the target waves that propagate from their cores. We picture this

in Figure 3.9 for η = 0.005. Therefore, as in the space–clamped case, noise provides a

mechanism for generating oscillations in a situation where the deterministic system would

remain quiescent. If the noise level is increased then it tends to disrupt these oscillating

cores, which provides a symmetry breaking mechanism for the generation of spiral waves

as illustrated in Figure 3.10. Following induction of a spatially localized oscillation using a

Gaussian stimulus of the form (3.18), we find that the oscillating core begins to be broken

up by the noise such that the two halves of the core oscillate antisynchronously. A semi–ring

wave then propagates from the bottom to the top of the domain (first three snapshots in

Figure 3.10), and breaks up into two spiral waves as it reaches the boundary of the core

(fourth snapshot). Background oscillations absorb the two spiral waves and the ring–wave

is reinitiated (final two snapshots). At even higher levels of noise any spatially structured

activity in the network is disrupted and the entire network exhibits bulk oscillations. Note

that an alternative mechanism to noise for generating spiral waves is to introduce random

network inhomogeneities (quenched disorder), as shown in the case of a two–dimensional

integrate–and–fire network [127].

3.3 High gain limit

To study the existence and stability of spatially structured solutions in neuronal net-

works, the high gain limit of continuous firing rate functions is often considered [3, 40,
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Figure 3.9. Snapshots of a solution u(x, y, t) to the noisy system (3.19) in the absence of
stimulation. Background noise initiates spatially localized oscillating cores at discrete sites
in the medium. Target waves emitted by the various oscillating regions collide, disrupting
the spatial structure of the oscillations. Parameters are α = 80, β = 0.05, η = 0.005, σ = 4,
and θ = 0.01.
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Figure 3.10. Snapshots of a solution u(x, y, t) to the noisy system (3.19), following a
stimulus specified by equation (3.18) at t = 90, where χ = 1 and ζ = 60. As activity
develops, the background noise starts to break the symmetry of an oscillating central core.
Rather than a contiguous oscillation, two halves of the core oscillate antisynchronously. A
semi–ring wave propagates from the bottom to the top of the medium, and breaks into two
spiral waves as it collides with the boundary of the core. This exemplifies noise induced
spiral waves, which are sustained for relatively long time intervals. Parameters are α = 80,
β = 0.05, η = 0.01, σ = 4, and θ = 0.01.
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55, 168]. Instead of f being a continuous function, it becomes the Heaviside step function

(2.2) with a discontinuity at the threshold u = θ. Oscillatory solutions do not exist for the

neuronal network (3.1) in the high gain limit. However, there are subtle and interesting

consequences of employing a firing rate function with a discontinuity that arise in the

space–clamped system as well as the spatially extended system. In this section, we show

that stable target wave solutions exist, derive equations for the existence of stationary

bumps, and analyze some of the bump instabilities using piecewise smooth analysis.

3.3.1 Target waves

As shown by numerical simulations in the case of a piecewise linear firing rate, spatially

structured oscillations can generate expanding target waves via propagating phase shifts

in an oscillatory medium. Here, we show that in the high gain limit of continuous firing

rate functions, target waves arise in the context of an excitable medium. We studied

the existence of traveling pulses in a one–dimensional excitatory network with synaptic

depression in the previous chapter (see section 2.1.2). Traveling pulses of this type represent

a homoclinic orbit in the projected space of the traveling wave coordinate, rather than

phase shifts of an existing limit cycle, as in an oscillatory medium. Implications of these

two different dynamical systems scenarios may be useful in determining the mechanism that

generates traveling waves in experiment. For example, in studies of disinhibited cortical

slice, localized stimuli may lead to either traveling plane waves, which are transient, or

spiral waves, which are persistent [67].

We found that by simulating the two–dimensional spatially extended system with the

Heaviside step firing rate function, a localized stimulus could lead to outwardly propagating

target waves. In Figure 3.11, we show snapshots of such a simulation where the initial

condition is taken to be a Gaussian stimulus of the synaptic drive, as specified by equation

(3.18). In the case of a piecewise linear firing rate function, symmetric stimuli lead to

an oscillating core that recurrently generated target waves. Here, a single target wave is

generated, after which, the system returns to a quiescent state. The system is radially

symmetric, due to the radially symmetric weight function (3.2), so symmetric stimuli lead

to a symmetric solution. Numerical simulations suggest that these target waves are indeed

stable.
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Figure 3.11. Snapshots of a solution u(x, y, t) to the fourth order PDE (3.16) showing a
single outward propagating target wave, following a stimulus specified by equation (3.18)
at t = 0, where χ = 1 and ζ = 25. The firing rate function f(u) = H(u−θ) is the piecewise
constant Heaviside step function. Parameters are α = 50, β = 0.4, and θ = 0.1.

3.3.2 Existence of standing bumps

We now extend our analysis of stationary bumps in a one–dimensional network, shown

in section 2.2, to derive conditions for the existence and stability of radially symmetric

stationary bump solutions of the corresponding two–dimensional piecewise smooth neural

field model.

Consider a circularly symmetric bump solution of radius a such that u(r, t) = U(r),

q(r, t) = Q(r) with U(a) = θ and

U(r) ≷ θ, for r ≶ a, (3.20)

{U(r), Q(r))} → {0, 1} , as r → ∞. (3.21)

Imposing such constraints on a stationary solution of equation (3.1) gives

U(r) =

∫

U
Q(r′)w(|r − r′|)dr′, (3.22)

Q(r) = (1 + αβΘ(a− r))−1, (3.23)

where U = {r = (r, φ) : r ≤ a} is the domain on which the bump is superthreshold.

Substituting equation (3.23) back into (3.22) yields

(1 + αβ)U(r) = Π(a, r), (3.24)
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where

Π(a, r) =

∫ 2π

0

∫ a

0
w(|r− r′|)r′dr′dφ′. (3.25)

We can calculate the double integral in (3.25) using the Hankel transform and Bessel

function identities, as in [55, 133]. Thus, we find that

Π(a, r) = 2πa

∫ ∞

0
ŵ(ρ)J0(rρ)J1(aρ)dρ, (3.26)

where ŵ(ρ) is the Hankel transform of w.

For the sake of illustration consider the Mexican hat weight distribution (3.3) given by

a combination of modified Bessel functions of the second kind [55, 93, 133]. Using the fact

that the corresponding Hankel transform of K0(sr) is H(ρ, s) = (ρ2 + s2)−1, we have

ŵ(ρ) =
2

3π
(H(ρ, 1) −H(ρ, 2)−Ai(H(ρ, 1/σi)−H(ρ, 2/σi))). (3.27)

Thus, the integral (3.26) can be evaluated explicitly by substituting (3.27) into (3.26), and

using the identity

∫ ∞

0

1

ρ2 + s2
J0(rρ)J1(aρ)dρ ≡ I(a, r, s) =

{
1
s I1(sa)K0(sr), r > a,

1
as2

− 1
sI0(sr)K1(sa), r < a,

where Iν is the modified Bessel function of the first kind of order ν. Thus, the stationary

bump U(r) given by equation (3.24) has the form

U(r) =
4a

3(1 + αβ)
(I(a, r, 1) − I(a, r, 2) −Ai(I(a, r, 1/σi)− I(a, r, 2/σi))) . (3.28)

The bump radius may then be computed by finding the roots a of the equation

(1 + αβ)θ = Π(a), (3.29)

with

Π(a) ≡ Π(a, a) =
4a

3

(
I1(a)K0(a)−

1

2
I1(2a)K0(2a) (3.30)

−Ai(σiI1(a/σi)K0(a/σi)−
σi
2
I1(2a/σi)K0(2a/σi))

)
.

Relations between bump radius a and depression strength β are shown in Figure 3.12 for

different thresholds θ.
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Figure 3.12. Two–dimensional bumps. (a) Plots relating bump radius a to amplitude of
synaptic depression β for various values of threshold θ based on equation (3.29). Solid
(dashed) curves indicate bumps that are unstable with respect to radially symmetric
perturbations. Other parameters are Ai = 0.3, σi = 4, α = 20. (b) Bump profile when
θ = 0.05, α = 20, β = 0.01.

3.3.3 Stability of standing bumps

We now analyze the stability of radially symmetric two–dimensional bump solutions.

As in the case of one–dimensional bumps (see section 2.2.4), we must consider the sign of

the perturbations of the bump boundary. However, there are now an infinite number of

cases to consider with regard to how perturbations subdivide the continuum boundary of

a two–dimensional bump. For this initial exposition, we explicitly compute stability with

respect to radially symmetric perturbations only. We also formulate the spectral problem

associated with radially nonsymmetric perturbations, but due to its complexity, leave its

analysis for future work.

Let us set u(r, t) = U(r)+ εψ(r, t) and q(r, t) = Q(r)+ εϕ(r, t), where ψ, ϕ are smooth

perturbations and ε ≪ 1. Substituting into the full two–dimensional system (3.1) and

imposing the stationary bump solutions (3.22) and (3.23) gives

∂ψ(r, t)

∂t
= −ψ(r, t)

+
1

ε

∫

R2

w(|r− r′|)Q(r′)[Θ(U(r′) + εψ(r′, t)− θ)−Θ(U(r′)− θ)]dr′

+
1

ε

∫

R2

w(|r− r′|)ϕ(r′, t)Θ(U(r′) + εψ(r′, t)− θ)dr′ (3.31)
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∂ϕ(r, t)

∂t
= −ϕ(r, t)

α
− βQ(r)[Θ(U(r) + εψ(r, t) − θ)−Θ(U(r)− θ)]

− βϕ(r, t)H(U(r) + εψ(r, t) − θ). (3.32)

If ε∆(φ, t) denote perturbations to the bump boundary at polar coordinate (a, φ), then the

ensuing threshold equation will be

u(a+ ε∆(φ, t), φ, t) = θ

for φ ∈ [0, 2π) and all t > 0. Following our analysis of the one–dimensional case (section

2.2), we introduce the auxiliary field

Φ(r, t) =

∫ 2π

0

∫ a+ε∆(φ′,t)

0
w(|r − r′|)ϕ(r′, t)dr′dφ′. (3.33)

Differentiating Φ(r, t) with respect to t and combining this with equations (3.31) and (3.32)

leads to the pair of equations

∂ψ(r, t)

∂t
= −ψ(r, t) + Φ(r, t) +

1

ε

∫ 2π

0

∫ a+ε∆(φ′,t)

0
w(|r− r′|)Q(r′)rdr′dφ′

−1

ε

∫ 2π

0

∫ a

0
w(|r− r′|)Q(r′)r′dr′dφ′ (3.34)

∂Φ(r, t)

∂t
= −(α−1 + β)Φ(r, t) − β

ε

∫ 2π

0

∫ a+∆(φ′,t)

0
w(|r − r′|)Q(r′)

×[Θ(U(r′, t) + εφ(r′, t)− θ)−Θ(U(r′, t)− θ)]r′dr′dφ′

+ε

∫ 2π

0
w(|r− r′|)ϕ(r′, t)∆̇(φ′, t)dr′dφ′. (3.35)

We now expand these equations in powers of ε and collect all O(1) terms. It is important

to keep track of the sign of ∆(φ, t) at all values of φ when approximating the integrals,

since Q(r) is discontinuous on the boundary. For example

∫ 2π

0

∫ a+ε∆(φ′,t)

a
w(|r − r′|)Q(r′)r′dr′dφ′ ≈ εa

∫

A+(t)
∆(φ′, t)w(|r − a|)dφ′ (3.36)

+ε
a

1 + αβ

∫

A−(t)
∆(φ′, t)w(|r − a|)dφ′,

where the domain A+(t) (A−(t)) defines the region in φ over which the perturbation

∆(φ, t) > 0 (∆(φ, t) < 0) at time t > 0 and a = (a, φ′). We have used the fact in the region

A+(t) (A−(t)), we approach the stationary bump boundary from the exterior (interior) of
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the bump in the limit ε→ 0+ so that Q = 1 (Q = 1/(1 + αβ)). Likewise, the first integral

on the right hand side of (3.35) can be approximated by

εa

∫

A+(t)
∆(φ′, t)w(|r − a|)dφ′.

Finally, we use the approximation

θ = u(a+ ε∆(φ, t), φ, t) = U(a+ ε∆(φ, t)) + εψ(a+ ε∆(φ, t), φ, t),

≈ U(a) + εU ′(a)∆(φ, t) + εψ(a, φ),

and U(a) = θ so that

∆(φ, t) ≈ ψ(a, φ, t)

|U ′(a)|

to lowest order in ε. This leads to the following set of equations

∂ψ(r, t)

∂t
= −ψ(r, t) + Φ(r, t) + aγ

∫

A+(t)
ψ(a, φ′, t)w(|r − a|)dφ′

+
aγ

1 + αβ

∫

A−(t)
ψ(a, φ′, t)w(|r − a|)dφ′, (3.37)

∂Φ(r, t)

∂t
= −(α−1 + β)Φ(r, t)− aγβ

∫

A+(t)
ψ(a, φ′, t)w(|r − a|)dφ′. (3.38)

Here

γ−1 = |U ′(a)| = 2πa

1 + αβ

∫ ∞

0
ρŵ(ρ)J1(aρ)J1(aρ)dρ, (3.39)

which for the Mexican hat weight function (3.2) can be explicitly computed as

|U ′(a)| =
4a

3(1 + αβ)
(I1(a)K1(a)− I1(2a)K1(2a) (3.40)

−Ai(I1(a/σi)K1(a/σi)− I1(2a/σi)K1(2a/σi))) .

Equations (3.37) and (3.38) imply that the local stability of a stationary bump solution

depends on the spectral properties of a piecewise linear operator. As in the one–dimensional

case (section 2.2.4), we can obtain a simpler spectral problem under the ansatz that

the perturbation ψ(a, φ, t) (equivalently ∆(φ, t)) does not switch sign at each φ for any

time t. Thus, we assume (3.37) and (3.38) have separable solutions (ψ(r, t),Φ(r, t)) =

eλt(ψ(r),Φ(r)), where λ is real and (ψ(r),Φ(r)) are bounded continuous functions that

decay to zero exponentially as |r| → ∞. Under this assumption, the domains A±(t) are

constant in time, so there is a common factor eλt that cancels everywhere. In a similar



85

fashion to the analysis of one–dimensional bumps, one class of solution of the resulting

eigenvalue problem is given by λ = −(α−1 + β) and ψ(a, φ) ≤ 0 for all φ. However, this

does not contribute to any instabilities. Therefore, suppose that λ 6= −(α−1 + β). We can

then eliminate Φ(r) to obtain a nonlinear eigenvalue equation for λ of the form

(λ+ 1)ψ(r) =
aγ(λ+ α−1)

λ+ α−1 + β

∫

A+

ψ(a, φ′)w(|r − a|)dφ′ (3.41)

+
aγ

1 + αβ

∫

A−

ψ(a, φ′)w(|r − a|)dφ′.

Now, it would be possible to formulate the spectral problem in terms of compact linear

operators acting on continuous bounded functions ψ(r, φ) defined on the disc of radius a

centered at the origin with the sign of ψ(a, φ), φ ∈ [0, 2π) prescribed. However, here we

simply summarize the results. First, one class of solution to equation (3.41) consists of

functions ψ(r) that vanish on the boundary, ψ(a, φ) = 0, such that λ = −1. (It also follows

that Φ(r) ≡ 0). This belongs to the essential spectrum, which does not contribute to any

instabilities. The discrete spectrum for given A± is then determined by setting r = a in

equation (3.41):

(λ+ 1)ψ(a, φ) =
aγ(λ+ α−1)

λ+ α−1 + β

∫

A+

ψ(a, φ′)w

(
2a sin

φ− φ′

2

)
dφ′ (3.42)

+
aγ

1 + αβ

∫

A−

ψ(a, φ′)w

(
2a sin

φ− φ′

2

)
dφ′,

where we have simplified the argument of w(r) using

|(a, φ) − (a, φ′)| =
√

(a sinφ− a sinφ′)2 + (a cosφ− a cosφ′)2 = 2a sin
φ− φ′

2
.

There are then three other classes of solution to equation (3.42): (i) radially symmetric ex-

pansions, such that ψ(a, φ) = ψ(a) > 0 for φ ∈ [0, 2π); (ii) radially symmetric contractions,

such that ψ(a, φ) = ψ(a) < 0 for φ ∈ [0, 2π); and (iii) radially nonsymmetric perturbations

for which ψ(a, φ) changes sign as a function of φ. In the limit β → 0, equation (3.42)

reduces to the simpler form

(λ+ 1)ψ(a, φ) = aγ

∫ 2π

0
ψ(a, φ′)w

(
2a sin

φ− φ′

2

)
dφ′. (3.43)

The eigenmodes are then given by pure Fourier modes ψ(a, φ) = ∆n(φ) ≡ cne
inφ + c.c.,

integer n, with corresponding real eigenvalues λn = −1 + γµn,

µn = 2a

∫ 2π

0
w(2a sin φ)e−2inφdφ. (3.44)

Some examples of low–order Fourier eigenmodes ∆n(φ) are shown in Figure 3.13, to-

gether with the associated boundary domains A±. As β is increased from zero only the
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zeroth–order eigenmodes persist (expansions and contractions), whereas the non–radially

symmetric eigenmodes become a mixture of Fourier modes:

ψ(a, φ) =

∞∑

n=−∞

cn(a)e
inφ.

This is analogous to the mixing between shift and expansion perturbations in the one–

dimensional case.

(i) ψ(a, φ) = ψ(a) > 0 : In this case, equation (3.42) becomes

(λ+ 1)ψ(a) =
aγ(λ+ α−1)ψ(a)

λ+ α−1 + β

∫ 2π

0
w

(
2a sin

φ− φ′

2

)
dφ′, (3.45)

where we have used the facts that A+ = [0, 2π), A− is empty, and ψ(a, φ) is constant in φ.

Therefore, equation (3.45) should be equivalent for all φ, so ψ(a) > 0 and λ satisfies the

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1. 5

x

∆ 0A+

y

(a)

-0.8 -0.4 0 0.4 0.8
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

x

A-

(b)

∆ 1(φ)

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

y

y

-1 -0.5 0 0.5 1
x

(c)

-1 -0. 5 0 0.5 1
x

A-

A+

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

y
A+ A+

A-

A-

∆ 2(φ)

(d)

∆ 0

Figure 3.13. Low–order perturbations of a radially symmetric two–dimensional bump:
(a) expansion (∆0 > 0); (b) contraction (∆0 < 0); (c) D1–symmetric shift ∆1(φ); (d)
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quadratic

(λ+ α−1 + β)(λ + 1) = (λ+ α−1)(1 + αβ)Ω0, (3.46)

where

Ω0 =
µ0(a)

(1 + αβ)|U ′(a)| , µ0(a) = 2a

∫ π

0
w(2a sin φ)dφ. (3.47)

For the Mexican hat weight function (3.2), we can use
∫ π

0
K0(2b sin φ)dφ = πI0(b)K0(b)

to calculate

µ0(a) =
4a

3
(I0(a)K0(a)− I0(2a)K0(2a) (3.48)

−Ai(I0(a/σi)K0(a/σi)− I0(2a/σi)K0(2a/σi))).

It follows that λ = λ±0 with

λ±0 =
1

2

[
Ω0(1 + αβ)− (1 + α−1 + β)

]

±1

2

√
[Ω0(1 + αβ)− (1 + α−1 + β)]2 + 4(Ω0 − 1)(α−1 + β). (3.49)

The associated eigenmode corresponds to an expansion of the bump.

(ii) ψ(a, φ) = ψ(a) < 0 : In this case, equation (3.42) becomes

(λ+ 1)ψ(a) =
aγψ(a)

1 + αβ

∫ 2π

0
w

(
2a sin

φ− φ′

2

)
dφ′, (3.50)

where we have used the facts that A+ is empty, A− = [0, 2π), and ψ(a, φ) is constant in

φ. Therefore, equation (3.50) should be equivalent for all φ, so ψ(a) < 0 and λ = λ0 with

λ0 = Ω0 − 1. (3.51)

The associated eigenmode corresponds to a contraction of the bump.

(iii) ψ(a, φ) radially nonsymmetric : In this final case for β > 0, the characteristic

equation (3.42) involves integrals over subdomains of [0, 2π), and is no longer a standard

Fredholm integral equation. Hence, as we have already indicated, eigenmodes will be

more complicated than the pure Fourier modes einφ found in previous studies of bump

instabilities in two–dimensions [98, 55, 56, 133]. This is due to the faster growth of the

lobes of the perturbation ψ(a, φ) that are superthreshold versus those that are subthreshold.

We leave the explicit analysis of general solutions to equation (3.42) to future work.
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We illustrate the stability properties of two–dimensional bumps with respect to radially

symmetric perturbations by plotting the spectrum of expansions and contractions in the

case of the Mexican hat weight function (3.2), see Figure 3.14. We consider the upper

branches of the existence curves shown in Figure 3.12, since these are stable in the limit

β → 0. As in the one–dimensional case (section 2.2.4), the expansion mode dominates over

contraction, due to more resources existing outside of the bump. As β increases, the two

roots of the characteristic equation (3.49) meet and they become complex, violating our

ansatz. When the eigenvalues become real again, they are both greater than zero, implying

the bump will certainly be unstable. Contraction perturbations are always stable. By

analogy with one–dimensional bumps, we expect that bump instabilities in two dimensions

are dominated by higher–order perturbations of the bump boundary that include shifts,

see Figure 3.13.

3.4 Discussion

In this chapter, we analyzed the spatiotemporal dynamics of a two–dimensional excita-

tory neuronal network with synaptic depression. We showed that there is an extensive

parameter range over which spatially structured oscillations are supported. With the

inclusion of noise in the model this range is widened even further. We found that application
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Figure 3.14. Stability of a two–dimensional bump with respect to radially symmetric
perturbations. Eigenvalues of the expansion (solid curves) and contraction (dashed curve)
perturbations are plotted for (a) θ = 0.05 and (b) θ = 0.07. Stability analysis of expansion
perturbations breaks down in the grey region due to the roots (3.49) being complex. Other
parameters are Ai = 0.3, σi = 4, and α = 20.
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of a localized current input as an initial condition to the network leads to a localized region

of synchronous activity repeatedly emitting target waves. This type of activity has been

linked to epileptic seizures [31, 126], memory [86], and sensory input [100, 101, 142, 158].

Additionally, breaking the symmetry of target wave emitting solutions either using external

stimulation or noise generated spiral waves. Disinhibited mammalian cortical slices also

support spiral waves, and it has been postulated that such activity allows periodic activity

to be organized in spatially extended populations of neurons [67, 148]. Finally, we studied

the dynamics that result the high gain limit, where in the case of an excitatory network

the only spatially structured solutions are transient, such single target waves. In the case

of a network with lateral inhibition, we studied existence and some of the instabilities of

standing bump solutions using analysis that accounts for the piecewise smooth nature of

the system.

In the next chapter, we will continue our study of neuronal networks with synaptic

depression by considering its effects in a competitive neuronal network. Rather than only

considering a single neural field, we shall model two populations, where each population

represents a group of cells responding to inputs to either the left or right eye. Both local

and cross connections are modified by synaptic depression. In this way, we can study the

onset of oscillations in the network indicative of binocular rivalry.



CHAPTER 4

DYNAMICS OF BINOCULAR RIVALRY

IN A COMPETITIVE NEURONAL

NETWORK WITH SYNAPTIC

DEPRESSION

In this chapter, we study binocular rivalry in a competitive neuronal network model with

synaptic depression. In particular, we consider two coupled hypercolums within primary

visual cortex (V1), representing orientation selective cells responding either to left or right

eye inputs, respectively. Coupling between hypercolumns is dominated by inhibition, espe-

cially for neurons with dissimilar orientation preferences. Within hypercolumns, recurrent

connectivity is excitatory for similar orientations and inhibitory for different orientations.

All synaptic connections are modifiable by local synaptic depression. In Chapters 2 and 3,

we studied single populations either on the infinite domain, or on a finite domain with

nonperiodic boundary conditions. Here, we study the interaction of two populations,

each with period boundary conditions. This alteration in network topology leads to novel

dynamics thusfar unobserved the previous chapters. When the hypercolumns are driven

by orthogonal oriented stimuli, it is possible to induce oscillations that are representative

of binocular rivalry.

Binocular rivalry concerns the phenomenon whereby perception switches back and forth

between different images presented to either eye. Due to the supposed link to activity in

visual cortex, binocular rivalry continues to be an excellent way to obtain information about

the human visual system. Psychophysical experiments are noninvasive and can provide a

great deal of data about the response of the visual system to different characteristics of

binocular stimuli. Although binocular rivalry has been studied for centuries, only recently

have experimentalists clarified some of its specific statistical properties [13]. In 1965, Levelt

proposed four characteristics of binocular rivalry, which he had ascertained empirically: (i)

increasing the contrast of the stimulus in one eye increases the predominance of the stimulus
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in that eye; (ii) increasing the contrast in one eye does not affect average dominance time of

that eye; (iii) increasing contrast in one eye increases the rivalry alternation rate; and (iv)

increasing the contrast in both eyes increases the rivalry alternation rate [104]. Propositions

(i), (iii), and (iv) have been verified independently by other experimental studies, but

proposition (ii) remains suspect [19].

Physiological recordings from primates as well as psychophysical data suggest that

simple binocular stimuli invoke rivalry in the activity of neurons in the primary visual cortex

(V1) [13]. Thus, it is important to understand some essential features of the functional

architecture of V1 in order to study binocular rivalry. First, each neuron in V1 has a

particular patch of the visual scene to which it responds, known as its receptive field [68, 69].

Stimuli outside a neuron’s receptive field do not directly affect its activity. Second, most

neurons in V1 respond preferentially to stimuli of a particular eye, right or left, which

assigns their ocular dominance [68, 14, 124]. It has been suggested that neurons with

different ocular dominance (one right, one left) may inhibit one another if they have nearby

receptive fields [76]. As signals are relayed to higher areas of visual cortex, these two

pathways are combined to process more complex stimuli. Third, most neurons in V1

are tuned to respond maximally when a stimulus of a particular orientation is in their

receptive field [68, 36, 14]. This is known as a neuron’s orientation preference, and the

neuron will not be directly affected if a stimulus is sufficiently different from its preferred

orientation. Finally, there is a great deal of evidence that suggests that, for a discrete

patch of visual space, there exists a corresponding collection of neurons spanning the entire

spectrum of orientation preferences that are packed together as a unit in V1, known as a

hypercolumn. Within this hypercolumn, neurons with sufficiently similar orientations will

excite each other and those with sufficiently different orientations will inhibit each other,

which serves to sharpen a particular neuron’s orientation preference [8, 54]. Anatomical

evidence suggests that inter–hypercolumn connections excite similar orientations [157, 4].

The combination of these neurons’ stimulus preference and connections suggests that V1

is most likely the seat of many simple examples of binocular rivalry.

With knowledge of the neurophysiology of V1, we can consider the following example of

binocular rivalry. A horizontally oriented grating is presented to the left eye and a vertically

oriented grating is presented to the right eye. This triggers rivalry due to the combination

of orientation specific and ocular dominant cross–inhibition in V1 [8, 157, 13]. During the

dominance of the left eye stimulus, it is proposed that a group of the left eye neurons



92

that respond to horizontal orientations are firing persistently, while right eye neurons are

suppressed by cross–inhibitory connections. During right eye dominance, right eye, vertical

orientation neurons fire persistently, suppressing the left eye neurons (see Figure 4.1). The

process can continue indefinitely. While other types of stimuli may actually employ higher

areas of visual cortex as neural substrates of binocular rivalry, we restrict our attention to

V1 here to study spatiotemporal properties of the oscillations due to grating stimuli.

It remains an open question as to what slow adaptive process is most responsible for

the eventual switching of one stimulus dominance to the other. The mechanism of spike

frequency adaptation has been suggested, since it can curtail excitatory activity in a single

neuron. Spike frequency adaptation is the process by which a hyperpolarizing current

is switched on due to a build–up of a certain ion, like calcium, within the cell due to

repetitive firing [162]. The maximal firing rate of a neuron is lowered as a result. In the

Figure 4.1. Primary visual cortex (V1) response to rival grating stimuli. In V1, neurons
with the orientation preference of the stimulus presented to each eye will fire persistently
in the dominant eye’s ocular dominance (OD) column. Here, we see a snapshot in time,
where the vertical orientation preference neurons fire persistently (polka dots) in the right
OD column, while the horizontal orientation preference neurons of the left OD column are
quiescent, even though they are receiving input. This is due to cross–inhibitory connections
(white diamonds) between the two populations. In a winner–take–all (WTA) scenario, the
picture would remain unchanged as time evolves, but in a binocular rivalry situation, a
slow adaptive process would eventually release the left OD column’s horizontal orientation
preference neurons from suppression.
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case of binocular rivalry, this may cause the dominant population to eventually drop its

firing rate so that cross–inhibition suppressing the other population in then low enough for

the suppressed populations to rekindle its firing rate into dominance. Since the recently

released population is not adapted, it can then remain in dominance and suppress the

other population for a period of time roughly equal to the time constant of spike frequency

adaptation [179, 96, 108]. Another proposed switching mechanism is that the inhibitory

synapses from one eye’s neurons to the other’s undergo synaptic depression.1 This is the

process by which synaptic resources such as neurotransmitters, vesicles, and scaffolding

proteins are exhausted due to their continuous use [174, 34]. If inhibitory synapses remain

repeatedly active, due to one eye’s neurons suppressing the others, eventually most of

those synapses’ resources will be used up, the effect of inhibition will be weakened and the

suppressed population will be released [96, 154].

In this chapter, we explore the hypothesis that synaptic depression is responsible for

binocular rivalry in the primary visual cortex. While there has been some previous work

studying depression as the sole mechanism for rivalry [165, 154], none has studied the

onset of rivalry oscillations by analyzing bifurcations of stationary bump solutions in a

spatially extended system. Thus, we consider a competitive neuronal network model of

binocular rivalry in which a pair of hypercolumns for the left and right eyes, respectively,

are coupled together with depressing local and cross–inhibitory synapses [8, 24]. In order

to make the analysis analytically tractable, we take the mean firing rate of the neurons to

be a Heaviside function of local activity, following along similar lines to previous studies

of continuum neural fields [3, 39]. We introduce the model in section 4.1 and analyze a

space clamped version of the model in section 4.2. Similar to a previous study with both

adaptation and depression, we derive explicit formulae for the relation between dominance

times and the parameters of the model [96]. Thus, we are able to compare the results of our

model with the Levelt propositions given above. In section 4.3, we analyze binocular rivalry

in the full spatially extended model by considering dynamical instabilities of stationary

bump solutions. We consider the existence of both winner–take–all (WTA) solutions,

represented by a single bump of activity persisting in a single population, and solutions

where both populations support persistent bumps. We then analyze the linear stability

1More precisely, synaptic depression tends to be associated only with excitatory synapses, so that in our
simplified model depressing inhibitory connections would have to be mediated by excitatory connections
innervating local interneurons, for example.
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of these solutions by taking into account the piecewise smooth nature of the neural field

equations arising from the use of a Heaviside firing rate function. As in sections 2.2.4

and 3.3.3, it is necessary to keep track of the sign of perturbations of the bump boundary

in order to characterize instabilities accurately. Finally, in section 4.4 we simulate the

spatially extended system using a numerical approximation scheme, and compare with the

results of our stability analysis.

4.1 Coupled hypercolumn model

We consider a neuronal network subdivided into two distinct populations (hypercolumns),

one responding to the left eye and the other to the right eye. Each eye’s local and

cross–population synapses experience synaptic depression [174, 169]. This is an extension

of the analysis presented in Chapters 2 and 3, which considered synaptic depression in a

single population. Thus, the network in the most general form is described by the system

of equations

τ
∂uL(θ, t)

∂t
= −uL(θ, t) + wl ∗ (qLf(uL)) +wc ∗ (qRf(uR)) + IL(θ), (4.1a)

τ
∂uR(θ, t)

∂t
= −uR(θ, t) + wl ∗ (qRf(uR)) + wc ∗ (qLf(uL)) + IR(θ), (4.1b)

∂qj(θ, t)

∂t
=

1− qj(θ, t)

α
− βqj(θ, t)f(uj(θ, t)), j = L,R, (4.1c)

where

wi ∗ (qjf(uj)) =

∫ π/2

−π/2
wi(θ, θ

′)qj(θ
′, t)f(uj(θ

′, t))dθ′, j = L,R.

Equations (4.1a) and (4.1b) describe the evolution of the synaptic current or drive uL(θ, t)

and uR(θ, t) of neurons with orientation preference θ ∈ [−π/2, π/2] responding either to

left (L) or right (R) eye inputs Ij(θ), j = L,R.2 The nonlinear function f represents

the mean firing rate of a local population and is usually taken to be a smooth, bounded

monotonic function such as a sigmoid [180, 53]

f(u) =
1

1 + e−η(u−κ)
, (4.2)

2In this chapter, we shall use θ to represent a neuron’s orientation preference. This does not change the
fact that in the previous Chapters 2 and 3, θ represents firing threshold.
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with gain η and threshold κ.3 However, in order to explicitly compute solutions of interest,

it will be convenient to consider the high gain limit η → ∞ of the sigmoid (4.2), such that

f becomes a Heaviside function [3, 39]

f(u) = Θ(u− κ) =

{
0 if u > κ
1 if u < κ.

(4.3)

The strength of connections between neurons within a single eye’s population (local) and

from one population to another (cross) are specified by the weight function wl(θ, θ
′) and

wc(θ, θ
′) respectively. A typical weight distribution within the hypercolumn or “ring” model

is a harmonic function dependent on the difference in orientations [8, 24, 185]. Thus, for

our studies of simple grating based binocular rivalry, we will employ the functions

wj(θ, θ
′) = w(θ − θ′) = wj

0 + wj
2 cos(2(θ − θ′)/d), j = l, c, (4.4)

where wj
0 is the mean strength of connectivity and wj

2 is the orientation specific strength.

Depressing synapses are incorporated into the model in the form of a presynaptic scaling

factor qj(θ, t) evolving according to equation (4.1c). The factor qj(θ, t) can be interpreted as

a measure of available presynaptic resources, which are depleted at a rate βf [169, 164, 7],

and are recovered on a timescale specified by the constant α. Specifically, we will study the

effect of slow short–term synaptic depression (experimentally shown to recover over 5–10s

[174, 34]). Slow short–term synaptic depression has been implicated as a mechanism for

contrast adaptation in V1, due to its comparable recovery timescale of 5–10s [174]. Thus,

there is evidence for participation of this slower depression in processes of V1 in addition to

faster short–term synaptic depression, which recovers on timescales of roughly 200–800ms

[2, 174]. Finally, we fix the temporal and spatial scales of the network by setting τ = 1 and

d = 1. The membrane time constant is typically around 10ms, while the range of synaptic

connections and specifically the size of a hypercolumn within the visual cortex is on the

order of 1mm.

Several previous studies have examined the phenomenon of binocular rivalry in the

presence of adaptation, sometimes paired with synaptic depression [179, 96, 165, 129, 154].

These studies combine numerical simulations of spatially extended networks with numerical

and analytical studies of reduced space–clamped networks. For example, Laing and Chow

3As stated, we use θ in this chapter to represent orientation preference, so we take κ to represent firing
threshold.
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have considered a similar coupled hypercolumn model to ours, which includes both adap-

tation and depression [96]. However, they carry out a rigorous analysis on only a reduced

system with adaptation. More recently, Moreno–Bote and colleagues [129] have studied a

neurally plausible attractor network model, where noise can be instrumental in switching

dominance from one eye to the other. Finally, Shpiro and colleagues [154] have explored the

commonalities and differences of several models of binocular rivalry that lead to oscillations

on the appropriate timescale of physiological observation. In particular, they have looked at

the Laing–Chow model in the case where adaptation–only or depression–only is present, and

find that a space–clamped model with only synaptic depression satisfies Levelt Propositions

(i) and (iii), while a model with only adaptation does not [154]. Rivalry effects in a spatially

extended model with spike frequency adaptation have also been examined in a prior study

by Loxley and Robinson [108].

4.2 Oscillations in the space–clamped system

In this section we analyze oscillations in a space–clamped (θ–independent) version of

our model. That is, we take the inputs IL and IR from both eyes to be homogeneous in

the variable θ. While stimuli used in binocular rivalry experiments often have a preferred

orientation to either eye, it is indeed possible to evoke the rivalry percept without such a

specification [12]. Taking the weight functions to be given by the simple sum of harmonics

(4.4) and specifying that solutions be homogeneous in θ, the system (4.1) becomes

u̇L(t) = −uL(t) + w̄lqL(t)f(uL(t)) + w̄cqR(t)f(uR(t)) + IL,

u̇R(t) = −uR(t) + w̄lqR(t)f(uR(t)) + w̄cqL(t)f(uL(t)) + IR, (4.5)

q̇j(t) = (1− qj(t))/α − βqj(t)f(uj(t)), j = L,R,

where

w̄j =

∫ π/2

−π/2
wj(θ

′)dθ′, j = l, c (4.6)

denotes the average strength of connectivity for either weight function. We will prescribe

that w̄c < 0 so the cross connections are “inhibition–dominated,” as this has been a

suggested mechanism of binocular rivalry [76]. As an extensive numerical study of equilibria

of a system similar to (4.5) has been carried out when f is sigmoidal [154], we will proceed

analytically by examining the behavior of the system (4.5) in the case that f is the Heaviside

function (4.3). In the latter case, we can compute any equilibria explicitly. Moreover, a
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fast–slow analysis can be used to determine the residence times spent with either the

left or right eye being dominant. We will follow along similar lines to Laing and Chow

[96], who used Heaviside functions to analyze binocular rivalry in a coupled hypercolumn

model with spike frequency adaptation rather than synaptic depression. The dynamics

of the system (4.5) can be characterized in terms of some simple parametric inequalities,

specifying whether the system oscillates or settles into a steady state. Of course, we are

interested in the parameter regimes in which the system oscillates, since this is indicative

of binocular rivalry.

There are several different possible steady states, whose existence mainly depends on the

strength of the input to either population. First, the off–state given by (uL, uR, qL, qR) =

(I1, I2, 1, 1) occurs when IL, IR < κ, which implies that the input is not strong enough to

activate either population. Second, the both–on or fusion state

uj =
w̄l + w̄c

1 + αβ
+ Ij , qj =

1

1 + αβ
, j = L,R, (4.7)

occurs when IL, IR > κ − (w̄l + w̄c)/(1 + αβ). This case is more likely for very strong

depression (β large), since cross inhibition will be weak, or when the local connections are

strong and excitation–dominated,. The third type of equilibrium is the winner–take–all

(WTA), where one population dominates the other. For example, if the left eye population

is dominant then

uL = w̄l
1 + αβ

+ IL, uR = w̄c
1 + αβ

+ IR,

qL = 1
1 + αβ

, qR = 1,

(4.8)

which can be transformed to the right eye dominant case by interchanging L and R For

the steady state (4.8) to exist, we require

IL > κ− w̄l

1 + αβ
, IR < κ− w̄c

1 + αβ
,

This will occur in the presence of weak depression (β small) and strong cross–inhibition

such that depression cannot exhaust the dominant hold one population has on the other.

The local stability of each equilibrium can be determined by calculating the general

Jacobian for the system (4.5) in the case that f(u) ≡ Θ(u− κ) and uL, uR 6= κ:

J (uL, uR, qL, qR) =




−1 0 w̄lΘ(uL − κ) w̄cΘ(uR − κ)
0 −1 w̄cΘ(uL − κ) w̄lΘ(uR − κ)
0 0 −(α−1 + βΘ(uL − κ)) 0
0 0 0 −(α−1 + βΘ(uR − κ))


 .

(4.9)
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It is straightforward to show that the eigenvalues of this Jacobian for a general equilibrium

(excluding cases where uL = κ or uR = κ) are

λ = −1, −(α−1 + βΘ(uL − κ)), −(α−1 + βΘ(uR − κ)), (4.10)

which are all negative, regardless of the values uL and uR. Therefore, all steady states

of the system (4.5) are stable. It follows that a limit cycle corresponding to a binocular

rivalry state cannot arise from the destabilization of an equilibrium via a standard Hopf

bifurcation. Indeed, due to the piecewise smooth nature of the dynamics, we find that a

limit cycle corresponding to an oscillating rivalrous state surrounds a stable fusion state

as illustrated in Figure 4.2. In can be seen that as the amplitude of the inputs IL = IR is

varied, the system (4.5) exhibits bistability between fusion/rivalry states, between off/WTA

states, and between WTA/fusion states (when w̄l 6= 0). Such bistability has seldom been

observed in other models of binocular rivalry. However, in [154], it was shown that Wilson’s

model [178] of binocular rivalry supports a WTA/rivalry bistable state. Bifurcation analysis

of the Laing and Chow model in [154] did not exhibit bistability, perhaps owing to the fact

that it included no recurrent excitation. Since the occurrence of oscillations cannot be

studied using standard bifurcation theory, we will follow Laing and Chow [96] by assuming

that we are in a regime where oscillations exist and characterize the dominance times by

Figure 4.2. Equilibria of the left population uL as a function of the input amplitude
IL = IR to both populations . Solid lines represent stable states, whereas stars represent
maximum and minimum of rivalry oscillations. (a) For no local connections, w̄l = 0, we
find a bistable region, where rivalry coexists with a stable fusion state. (b) When local
connections are non–zero, w̄l = 0.4, there are regions of off/WTA bistability, WTA/fusion
bistability, and fusion/rivalry bistability. Other parameters are κ = 0.05, α = 500,
β = 0.01, and w̄c = −1.
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exploiting the separation in timescales between synaptic depression and neural activity,

that is, α≫ 1.

Suppose that the system has settled onto a limit cycle as pictured in Figure 4.3, and

that it is at the point where uL has just been released from suppression by uR. Since both

uL and uR equilibrate quickly compared with qL and qR, it follows that

uL(t) = w̄lqL(t) + IL, uR(t) = w̄cqL(t) + IR. (4.11)

We can also solve explicitly for qL(t) and qR(t) using the equations

q̇L = (1− qL)/α − βqL, q̇R = (1− qR)/α, (4.12)

Assuming the initial conditions qL(0) = qsL and qR(0) = qdR, we have

qL(t) =
1

1 + αβ
+

(
qsL − 1

1 + αβ

)
e−(1+αβ)t/α, (4.13)

qR(t) = 1− (1− qdR)e
−t/α, (4.14)

for t ∈ (0, TL), where TL is the dominance time of the left eye. Therefore, when the left

eye population is suppressing the right eye population, the dynamics of the input currents

Figure 4.3. Oscillatory solutions of the space–clamped system (4.5) for a Heaviside
activation function (4.3). (a) Plot against time of the activities uL (solid black) and
uR (dashed black) with the depression variables qL (solid grey) and qR (dashed grey)
when inputs are the same to both populations so that IL = IR = 0.24. This leads to an
oscillation wherein the dominance times (TL = TR ≈ 210) are equivalent for each percept.
(b) Plot against time of the activities uL, uR and depression variables qL, qR when inputs
are different so that IL = 0.30 and IR = 0.24. This leads to an oscillation wherein the
dominance times (TL ≈ 170, TR ≈ 105) are different for each percept. Other parameters
are w̄l = 0, w̄c = −1, κ = 0.05, α = 500, and β = 0.01.
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is explicitly

uL(t) = w̄l

(
1

1 + αβ
+

(
qsL − 1

1 + αβ

)
e−(1+αβ)t/α

)
+ IL, (4.15)

uR(t) = w̄c

(
1

1 + αβ
+

(
qs1 −

1

1 + αβ

)
e−(1+αβ)t/α

)
+ IR. (4.16)

At the time t = TL, the synaptic drive uR will be released from uL’s dominance by reaching

threshold, that is, uR(TL) = κ. This generates the equation

κ = w̄c

(
1

1 + αβ
+

(
qsL − 1

1 + αβ

)
e−(1+αβ)TL/α

)
+ IR. (4.17)

Note that although uL(TL) > κ, uL will drop below threshold much more rapidly than

the timescale of the qj’s due to cross inhibition. Hence, we can make the approximation

T ∗
L ≈ TL where uL(T

∗
L) = κ. In the next phase of the oscillation

uL(t) = w̄cqR(t) + IL, uR(t) = w̄lqR(t) + IR, (4.18)

with

q̇L = (1− qL)/α, q̇R = (1− qR)/α− βqR. (4.19)

Assuming the new set of initial conditions qL(TL) = qdL and qR(TL) = qsR, we now have

qL(t) = 1− (1− qdL)e
(TL−t)/α, (4.20)

qR(t) =
1

1 + αβ
+

(
qsR − 1

1 + αβ

)
e−(1+αβ)(TL−t)/α, (4.21)

for t ∈ (TL, TL + TR), where TR is the dominance time of the right eye. Therefore, when

the right eye population is suppressing the left eye population, the dynamics of the input

currents is approximately described by

uL(t) = w̄c

(
1

1 + αβ
+

(
qsR − 1

1 + αβ

)
e−(1+αβ)(TL−t)/α

)
+ IL, (4.22)

uR(t) = w̄l

(
1

1 + αβ
+

(
qsR − 1

1 + αβ

)
e−(1+αβ)(TL−t)/α

)
+ IR. (4.23)

Finally, at t = TL+TR, uL will be released from uR’s dominance such that uL(TL+TR) = κ.

This generates the equation

κ = w̄c

(
1

1 + αβ

(
qsR − 1

1 + αβ

)
e−(1+αβ)TR/α

)
+ IL, (4.24)

At this point, uR > κ, but uR will rapidly drop below threshold so that uR(T
∗
R) = κ with

T ∗
R ≈ TR.
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Equations (4.13), (4.14), (4.20) and (4.21) generate four equations for the four unknown

initial conditions of the depression variables:

qsL = 1− (1− qdL)e
−TR/α, (4.25)

qsR = 1− (1− qdR)e
−TL/α, (4.26)

qdL =
1

1 + αβ
+

(
qsL − 1

1 + αβ

)
e−(1+αβ)TL/α, (4.27)

qdR =
1

1 + αβ
+

(
qsR − 1

1 + αβ

)
e−(1+αβ)TR/α. (4.28)

We can solve these explicitly for qsL and qsR in terms of the parameters α, β and the

dominance times TL, TR as

qsL =

(
1− e−TR/α +

1

1 + αβ

(
1− e−(1+αβ)TL/α

)
e−TR/α

)

(
1− e−(1+αβ)TL/αe−TR/α

) (4.29)

qsR =

(
1− e−TL/α +

1

1 + αβ

(
1− e−(1+αβ)TR/α

)
e−TL/α

)

(
1− e−(1+αβ)TR/αe−TL/α

) . (4.30)

Substituting equations (4.29) and (4.30) into equations (4.17) and (4.24) then gives

κ = w̄c

(
1

1 + αβ
+

((
1− e−TR/α +

1

1 + αβ

(
1− e−(1+αβ)TL/α

)
e−TR/α

)
×

(
1− e−(1+αβ)TL/αe−TR/α

)−1
− 1

1 + αβ

)
e−(1+αβ)TL/α

)
+ IR, (4.31)

κ = w̄c

(
1

1 + αβ
+

((
1− e−TL/α +

1

1 + αβ

(
1− e−(1+αβ)TR/α

)
e−TL/α

)
×

(
1− e−(1+αβ)TR/αe−TL/α

)−1
− 1

1 + αβ

)
e−(1+αβ)TR/α

)
+ IL. (4.32)

A numerical root finding algorithm can be used to solve for the dominance times TL

and TR in terms of the parameters α, β, κ, w̄c. We show examples of the dependence

of these dominance times on a common drive strength to both populations IL = IR =

IB and a modulation of input IL, while keeping IR constant in Figure 4.4. Recall that

Levelt proposition (iv) states increasing contrast (stimulus strength) to both eyes increases

alternation rate, which is corroborated by TL = TR = TB being a decreasing function of

IB in Figure 4.4a. Also, both propositions (i) and (iii) are in agreement with Figure 4.4b,

since increasing IL leads to lower values of both TL and TR and the ratio TL/(TL + TR)

increases as well. However, the Levelt proposition (ii) states increasing input to one eye
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Figure 4.4. Dominance times calculated from equations (4.31) and (4.32) plotted against
input amplitude. (a) Effect of changing the amplitude of both inputs IL = IR = I on the
dominance times of both percepts. In this case, dominance times are identical. (b) Effect
of changing input to left eye (IL) on dominance times of left population uL (dashed curve)
and right population (solid curve) when IR = 0.24. Other parameters are as in Figure 4.3.

does not change that eye’s average dominance, but we find in Figure 4.4b that TL decreases

slightly. Indeed, previous experiments have produced results at odds with proposition (ii),

finding the statement may depend on specific contrast ranges of stimuli [19]. Interestingly,

the dominance times do not depend at all on the strength of local connections w̄l. In a

recent study, it was shown that recurrent connections are not needed at all in order to

produce the competition dynamics of rivalry in a network with synaptic depression [154].

4.3 Oscillations and bumps in the
coupled hypercolumn model

Let us now return to the full spatially extended coupled hypercolumn model (4.1). In

section 2.2, we showed that stable stationary bumps of activity can exist in a scalar neural

field model with lateral inhibition for sufficiently weak synaptic depression. Additionally,

it has been shown that a single ring (or hypercolumn) model with synaptic depression can

support stable stationary bumps as well as a rotating bumps [185]. We extend these results

here by considering two coupled rings (hypercolumns) with synaptic depression driven by

stimuli with different orientations. A related study based on networks with spike frequency

adaptation is considered elsewhere [108]. We consider the system (4.1) in the case of the

Heaviside firing rate function (4.3) and inputs IL(θ) and IR(θ) given by functions peaked

at a specific orientation, which are meant to represent stationary grating stimuli [12, 178].

For concreteness, we take
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IL(θ) = I0L cosp(θ − π/4), IR(θ) = I0R cosp(θ + π/4), (4.33)

where π/4 and −π/4 are the stimulus orientations and p is an even integer power that

determines the sharpness of the inputs with respect to orientation. (We set p = 6). As a

simplification, we take the left and right input strengths to be the same, I0L = I0R = I0. The

particular choice of stimulus orientations and strengths simplifies our calculations, since

the associated neural field equations are reflection symmetric. That is they are equivariant

with respect to the transformation L → R and θ → −θ. Note, however, that our analysis
can be extended to take into account more general stimulus orientations and asymmetric

input strengths I0L 6= I0R. Finally, we take both the local and cross populations’ weight

functions wl, wc to be the harmonic weight function (4.4). Our analysis then proceeds by

studying the existence and linear stability of nontrivial stationary solutions corresponding

to either single bump or double bump solutions. A stationary solution (uL, uR, qL, qR) =

(UL(θ), UR(θ), QL(θ), QR(θ)) of equations ((4.1) satisfies the system of equations (for f ≡
Θ)

UL(θ) = wl ∗ (QLΘ(UL − κ)) + wc ∗ (QRΘ(UR − κ))

UR(θ) = wl ∗ (QRΘ(UR − κ)) + wc ∗ (QLΘ(UL − κ)) (4.34)

Qj(θ) = 1− αβ

1 + αβ
Θ(Uj(θ)− κ), j = L,R.

Introduce the excited or superthreshold regions R[Uj ] = {θ|Uj(θ) > θ} of the left (j = L)

and right (j = R) populations. These will vary, depending on whether we study a single or

double bump. A single bump solution is equivalent to a winner–take–all (WTA) scenario

where only a single hypercolumn contains superthreshold bump activity, for example,

R[UL] = (θ1, θ2) and R[UR] = ∅. On the other hand, in the case of a double bump

solution both hypercolumns exhibit superthreshold bump activity. Exploiting the reflection

symmetry, this means that R[UL] = (θ1, θ2) and R[UR] = (−θ1,−θ2).

4.3.1 Existence of single bump

For a single bump or winner–take–all (WTA) solution, only one neural activity variable

will have an associated nonempty excited region, so we pick the left population such that

R[UL] = (θ1, θ2), whereas the right input UR will always remain below threshold so that

R[UR] = ∅. Threshold crossing points are then defined as UL(θ1) = UL(θ2) = κ. We could
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just as easily have picked the right population due to reflection symmetry of the network.

As we have prescribed, the system (4.34) becomes

UL(θ) =

∫ θ2

θ1

wl(θ − θ′)QL(θ
′)dθ′ + IL(θ), (4.35)

UR(θ) =

∫ θ2

θ1

wc(θ − θ′)QL(θ
′)dθ′ + IR(θ), (4.36)

Qj(θ) = 1− αβ

1 + αβ
Θ(Uj(θ)− κ), j = L,R. (4.37)

Substituting equations (4.37) into (4.35) and (4.36) yields

UL(θ) =
1

1 + αβ

∫ θ2

θ1

wl(θ − θ′)QL(θ
′)dθ′ + IL(θ), (4.38)

UR(θ) =
1

1 + αβ

∫ θ2

θ1

wc(θ − θ′)QL(θ
′)dθ′ + IR(θ). (4.39)

Plugging in the sum of harmonics weight function (4.4) for wl and wc, we analytically

calculate the single bump solution

UL(θ) =
1

1 + αβ

[
wl
0(θ2 − θ1) +

wl
2

2
(sin(2(θ − θ1))− sin(2(θ − θ2)))

]
+ IL(θ)

(4.40)

UR(θ) =
1

1 + αβ

[
wc
0(θ2 − θ1) +

wc
2

2
(sin(2(θ − θ1))− sin(2(θ − θ2)))

]
+ IR(θ).

(4.41)

Applying the threshold conditions UL(θ1) = UL(θ2) = κ and noting the symmetry of the

system,

κ =
1

1 + αβ

[
wl
0∆θ +

wl
2

2
sin(2∆θ)

]
+ I0 cos

p(∆θ/2), (4.42)

which provides us with an implicit equation relating the bump width ∆θ = θ2 − θ1 to all

other parameters. One additional constraint on the solution (4.41) is that it always remain

below threshold. For sufficiently strong inputs, the maximum of UR will occur at the peak

of the input IR, so that we need only check if UR(−π/4) < κ which we compute as

UR(−π/4) =
1

1 + αβ

[
wc
0(∆θ) +

wc
2

2
(sin(2θ2 + π/2)− sin(2θ1 + π/2))

]
+ I0

=
1

1 + αβ
[wc

0(∆θ)− wc
2 sin(∆θ)] + I0, (4.43)

where we have used θ1 = π/4−∆θ/2 and θ2 = π/4 + ∆θ/2. This yields

wc
0(∆θ)− wc

2 sin(∆θ) < (1 + αβ)(κ − I0) (4.44)

for the subthreshold condition. Thus, for a single bump solution to exist, the threshold

condition (4.42) and the subthreshold condition (4.44) must be satisfied. Equation (4.42)
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can be solved numerically using a root finding algorithm. Following this, we can find

whether the inequality (4.44) is satisfied by direct computation. The variation of the

width of the bump ∆θ with the input strength I0 and depression strength β is shown in

Figure 4.5; the stability of the bump is calculated below.

4.3.2 Stability of single bump

To study the stability of the single bump solution, we begin by letting uj(θ, t) = Uj(θ)+

εψj(θ, t) and qj(θ, t) = Qj(θ) + εϕj(θ, t) for j = L,R, where ψj and ϕj denote smooth

perturbations and ε ≪ 1. Substituting into the full system (4.1), imposing the single

bump solutions (4.35), (4.36), and (4.37), and dividing through by ε gives

∂ψL(θ, t)

∂t
= −ψL(θ, t) +wl ∗ (QL[Θ(UL + ψL − κ)−Θ(UL − κ)])

+wl ∗ (ϕLΘ(UL + ψL − κ)), (4.45)

∂ψR(θ, t)

∂t
= −ψR(θ, t) + wc ∗ (QL[Θ(UL + ψL − κ)−Θ(UL − κ)])

+wc ∗ (ϕLΘ(UL + ψL − κ)), (4.46)

∂ϕj(θ, t)

∂t
= −ϕj(θ, t)

α
− βQj[Θ(Uj + ψL − κ)−Θ(Uj − κ)] − βϕjΘ(Uj + ψL − κ),

(4.47)
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Figure 4.5. Single bumps in coupled hypercolumns. (Left) Plots relating single bump
width ∆θ to the amplitude of input I0 for different values of κ using equation (4.42) and
constrained by inequality (4.44). Bumps do not exist for a particular value of κ to the
right of the associated curve. Other parameters are wl

0 = 0, wl
2 = 0.4, wc

0 = −1, wc
2 = 0.5,

α = 500, β = 0.01. (Right) Bump profile when κ = 0.05 and I0 = 0.3.
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for j = L,R. Denote the perturbations of the bump boundaries by ε∆L
±(t) such that

uL(θ1 + ε∆L
−(t), t) = uL(θ2 + ε∆L

+(t), t) = κ. (4.48)

Taylor expanding these threshold conditions to first order in perturbations, we find that

∆L
−(t) ≈ −ψL(θ1, t)

|U ′
L(θ1)|

, ∆L
+(t) ≈

ψL(θ2, t)

|U ′
L(θ2)|

. (4.49)

Following our analysis of stationary bumps in sections 2.2.4 and 3.3.3, we can smooth

out discontinuities in equations (4.47) by introducing the infinitesimal fields

ΦLm(θ, t) =

∫ θ2+ε∆L
+

θ1+ε∆L
−

wm(θ − θ′)ϕL(θ
′, t)dθ′, (4.50)

for m = l, c. Differentiating equation (4.50) with respect to t and combining this with

equations (4.45), (4.46), and (4.47) gives

∂ψL(θ, t)

∂t
= −ψL(θ, t) + ΦLl(θ, t) (4.51)

+
1

ε

∫ θ2+ε∆L
+(t)

θ1+ε∆L
−
(t)

wl(θ − θ′)QL(θ
′)dθ′ − 1

ε

∫ θ2

θ1

wl(θ − θ′)QL(θ
′)dθ′,

∂ψR(θ, t)

∂t
= −ψR(θ, t) + ΦLc(θ, t) (4.52)

+
1

ε

∫ θ2+ε∆L
+
(t)

θ1+ε∆L
−
(t)

wc(θ − θ′)QL(θ
′)dθ′ − 1

ε

∫ θ2

θ1

wc(θ − θ′)QL(θ
′)dθ′,

∂ΦLm(θ, t)

∂t
= −(α−1 + β)ΦLm(θ, t) (4.53)

−β
ε

∫ θ2+ε∆L
+(t)

θ1+ε∆L
−
(t)

wm(θ − θ′)QL(θ
′)[Θ(UL + εψL − κ)−Θ(UL − κ)]dθ,

+εwm(θ − θ2 − ε∆L
+(t))ϕLm(θ2 + ε∆L

+(t), t)∆̇
L
+(t)

−εwm(θ − θ1 − ε∆L
−(t))ϕLm(θ1 + ε∆L

−(t), t)∆̇
L
−(t), m = l, c.

We can now linearize the system of equations (4.51), (4.52), and (4.53) by expanding in

powers of ε and collecting all O(1) terms. Note that it is important to keep track of the
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signs of ∆L
± when approximating the various integrals due to the discontinuous nature of

QL(θ). We thus obtain the piecewise linear system of equations:

∂ψL(θ, t)

∂t
= −ψL(θ, t) + ΦLl(θ, t) + γSwl(θ − θ1)ψL(θ1, t)G(ψL(θ1, t))

+γSwl(θ − θ2)ψL(θ2, t)G(ψL(θ2, t)), (4.54)

∂ψR(θ, t)

∂t
= −ψR(θ, t) + ΦLc(θ, t) + γSwc(θ − θ1)ψL(θ1, t)G(ψL(θ1, t)),

+γSwc(θ − θ2)ψL(θ2, t)G(ψL(θ2, t)) (4.55)

∂ΦLm(θ, t)

∂t
= −(α−1 + β)ΦLm(θ, t) (4.56)

−β(γSwm(θ − θ1)ψL(θ1, t)G(ψL(θ1, t))Θ(ψL(θ1, t)),

+γSwm(θ − θ2)ψL(θ2, t)G(ψL(θ2, t))Θ(ψL(θ2, t))), m = l, c,

where G is the step function

G(∆) =

{
1 if ∆ > 0

(1 + αβ)−1 if ∆ < 0
, (4.57)

and

(γS)
−1 = |U ′

L(θk)| =
∣∣∣ 1

1 + αβ

[
wl(θk − θ1)− wl(θk − θ2)

]
+ I ′L(θk)

∣∣∣. (4.58)

Equations (4.54)–(4.56) imply that the local stability of the stationary bump solution

depends upon the spectral properties of a piecewise linear operator. In section 2.2.4, we

solved a similar spectral problem by assuming that solutions were nonoscillatory, which

generated a simpler eigenvalue problem dependent on the sign of perturbations. Here,

we make a similar assumption, namely, that the perturbations ψL(θ1, t) and ψL(θ2, t)

(equivalently ∆L
− and ∆L

+) do not switch sign. In other words, we assume equations

(4.54)–(4.56) have separable solutions of the form

(ψL(θ, t), ψR(θ, t),ΦLl(θ, t),ΦLc(θ, t)) = eλt(ψL(θ), ψR(θ),ΦLl(θ),ΦLc(θ)),

where λ is real.4 The step functions Θ, G are then time–independent so there is a common

factor eλt that cancels everywhere. We thus obtain an eigenvalue problem of the form

4Restricting our stability analysis to real eigenvalues means that we can only derive sufficient conditions
for the instability rather than stability of a single or double bump solution. Moreover, we cannot establish
the existence of limit cycle oscillations in terms of standard Hopf bifurcation theory. Nevertheless, numerical
simulations will establish that destabilization of a (double) bump solution can lead to oscillatory solutions
suggestive of binoculary rivalry, see section 4.4.



108

(λ+ 1)ψL(θ) = γSwl(θ − θ1)ψL(θ1)G(ψL(θ1))

(
1− βΘ(ψL(θ1))

λ+ α−1 + β

)

+γSwl(θ − θ2)ψL(θ2)G(ψL(θ2))

(
1− βΘ(ψL(θ2))

λ+ α−1 + β

)
(4.59)

(λ+ 1)ψR(θ) = γSwc(θ − θ1)ψL(θ1)G(ψL(θ1))

(
1− βΘ(ψL(θ1))

λ+ α−1 + β

)

+γSwc(θ − θ2)ψL(θ2)G(ψL(θ2))

(
1− βΘ(ψL(θ2))

λ+ α−1 + β

)
. (4.60)

Note that we have assumed λ 6= −(α−1 + β) so that we can use equation (4.56) to solve

for ΦLl(θ) and ΦLc(θ) in terms of ψL(θ1) and ψL(θ2); the case λ = −(α−1 + β) does not

contribute to any instabilities.

It is possible to show that the solutions for λ can be identified with the spectra of a

set of compact linear operators acting in the space of bounded continuous functions on

the interval [θ1, θ2], along the lines of Guo and Chow [62]. However, here we will simply

calculate λ directly from the set of equations (4.59) and (4.60). In one class of solutions,

we need only restrict the function ψL(θ) to vanish on the boundary, ψL(θ1) = ψL(θ2) = 0,

so that ψR(θ) is unrestricted and λ = −1. This determines the essential spectrum, since

λ = −1 has infinite multiplicity, and does not contribute to any instabilities. The discrete

spectrum is then obtained by setting θ = θ1 and θ = θ2 in equation (4.59), which determines

both the eigenvalues λ and the pair ψL(θ1), ψL(θ2) (up to a scale factor). Once these are

known, the eigensolutions ψL(θ) and ψR(θ) on θ ∈ [−π/2, π/2) are fully determined by

equations (4.59) and (4.60). Note that the resulting eigenvalue equation is qualitatively

similar to one derived in the linearization of a single bump in a single network with synaptic

depression in section 2.2.4. One major difference here is that the input to the network is

inhomogeneous so that translation invariance is lost. Hence, we no longer expect a zero

eigenvalue associated with uniform shifts. We distinguish four classes of eigensolution to

equations (4.59) and (4.60): (i) ψL(θ1) > 0 and ψL(θ2) < 0; (ii) ψL(θ1) < 0 and ψL(θ2) > 0;

(iii) ψL(θ1) > 0 and ψL(θ2) > 0; (iv) ψL(θ1) < 0 and ψL(θ2) < 0. The four types of

perturbation correspond, respectively, to a leftward shift, a rightward shift, an expansion,

and a contraction of the bump in the left eye hypercolumn. As the eigenvalue problem is

qualitatively similar to our previous work, we merely summarize the stability properties

for each class of perturbation.

(i) ψL(θ1) > 0;ψL(θ2) < 0 : As has been shown in the spatially extended network

with synaptic depression and no input, increasing the strength of synaptic depression β

will lead to a destabilization of standing bumps through the shift perturbation. In fact, in
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all parameter regimes we have studied, this is the particular perturbation that destabilizes

first.5 In the case that the system is driven by an input, we find that inputs serve to

move the onset of destabilization to a higher value of β. As before, we can study stability

merely on the bump boundaries by setting θ = θ1, θ2, along with our perturbation sign

assumptions yields
(

Γβ(λ)− γSwl(0)
(
λ+ α−1

)
−γS

(
λ+ α−1

)
wl(∆θ)

−γS
(
λ+ α−1

)
wl(∆θ) Γβ(λ)− γSwl(0)

(
λ+ α−1

)
)(

ψL(θ1)
ψ(θ2)

)

= −γSαβλ
1 + αβ

(
wl(∆θ)ψL(θ2)
wl(0)ψL(θ2)

)
. (4.61)

As in the case without inputs, we assume β ≪ 1 and carry out a perturbation expansion in

β. First, we set β = 0 in equation (4.61) shows that the lowest order solution is ψ−
0 = −ψ+

0

with λ0 = −α−1 as a degenerate eigenvalue and λ0 = −1+ γS(wl(0)−wl(∆θ)), which will

always be negative, since γ−1
S > wl(0)−wl(∆θ). All eigensolutions pickup O(β) corrections

as β is then increased from zero, but we will show that the valid eigenvalue originating

from −α−1 eventually becomes positive, signifying traveling pulse solutions. See [185] for

a recent study of traveling pulse solutions in a ring model with synaptic depression.

(ii) ψL(θ1) < 0;ψL(θ2) > 0 : Due to reflection symmetry of the original system,

when wl is an even function, the spectrum of rightward shifts is identical to that of leftward

shifts.

(iii) ψL(θ1) > 0;ψL(θ2) > 0 : In this case, if we set θ = θ1, θ2, we have ψL(θ1) =

ψL(θ2) > 0, so equations (4.59) and (4.60) become

(λ+ α−1 + β)(λ+ 1) = (λ+ α−1)(1 + αβ)ΩI , (4.62)

where

ΩI =
wl(0) + wl(∆θ)

wl(0)− wl(∆θ) + (1 + αβ)I ′L(θ1)
(4.63)

and we have substituted for γS using equation (4.58). It then follows that λ = λ± with

λ± =
1

2

[
ΩI(1 + αβ) −

(
1 + α−1 + β

)]

±1

2

√
[ΩI(1 + αβ) − (1 + α−1 + β)]2 + 4(ΩI − 1) (α−1 + β). (4.64)

The associated eigenmode corresponds to a pure expansion of the bump.

5More precisely, shift perturbations are the dominant instability associated with real eigenvalues. Our
analysis cannot determine possible instabilities associated with complex eigenvalues. However, numerical
simulations suggest that single bump solutions are stable for sufficiently small β and destabilize at the point
where an eigenvalue associated with shift perturbations crosses the origin, see section 4.4.
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(iv) ψL(θ1) < 0;ψL(θ2) < 0 : In this final case, if we set θ = θ1, θ2 and note

ψL(θ1) = ψL(θ2) then equations (4.59) and (4.60) implies λ = λ0 with

λ0 = ΩI − 1. (4.65)

The associated eigenmode corresponds to a pure contraction of the bump.

We illustrate the above analysis by considering stationary single bumps in the coupled

hypercolumn network with a harmonic weight function (4.4). In particular, we plot

eigenvalues for the destabilizing perturbations for the stimulus driven bump, which is

stable as β → 0. In Figure 4.6, we plot the maximal real eigenvalue associated with the

shift perturbation (cases (i) and (ii)) as a function of β and as a function of I0. The bump

destabilizes to shift perturbations for sufficiently strong depression β. However, large inputs

I0 can keep the bump stable for larger values of β. In Figure 4.7, we plot the eigenvalues

of the expansion and contraction perturbations as a function of β and I0. In the case of

contractions, there is a single negative branch of eigenvalues. In the case of expansions,

there are two negative branches for fixed I0 and sufficiently small β, which annihilate at the

left edge of a forbidden region in which eigenvalues given by equation (4.64) are complex

so that stability cannot be determined. At the other end of the forbidden region, a pair of

positive branches emerges for sufficiently large β. By fixing β and varying I0, we see that
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Figure 4.6. Eigenvalues associated with shift perturbations of single bump (cases (i) and
(ii)). (a) Maximal nonzero real eigenvalues plotted as a function of β for I0 = 0.24. Bump is
unstable with respect to shifts for sufficiently large β. (b) Maximal nonzero real eigenvalue
plotted as a function of I0 for β = 0.01. Bump is unstable with respect to shifts for an
intermediate range of I0. Other parameters are κ = 0.05, wl

0 = 0, wl
2 = 0.4, wc

0 = −1,
wc
2 = 0.5, α = 500.
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Figure 4.7. Eigenvalues associated with expansion and contraction perturbations (cases
(iii) and (iv)). (a) Eigenvalues of the expansion (solid) and contraction (dashed) perturba-
tions as a function of β when I0 = 0.24. In the grey regions, the roots of equation (4.64)
are complex violating the ansatz that λ is real. (b) Eigenvalues of the expansion (solid)
and contraction (dashed) perturbations as a function of I0 for β = 0.01. Other parameters
are κ = 0.05, wl

0 = 0, wl
2 = 0.4, wc

0 = −1, wc
2 = 0.5, α = 500.

eigenvalues are slightly less sensitive to the input strength and remain the same sign over

wide range. We find that the lower branch of the expansion mode and the branch of the

contraction mode never meet, as opposed to our study of a network without inhomogeneous

input in section 2.2.

4.3.3 Existence of double bump

For a double bump or fusion solution, neural activity variables will both have associated

non–empty excited regions R[UL] = (θ1, θ2) and R[UR] = (−θ2,−θ1) and thus threshold

crossing points UL(θ1) = UR(θ2) = κ and UR(−θ2) = UR(−θ1) = κ. Therefore, by

prescribing the double bump solution in both populations, equations (4.34) become

UL(θ) =

∫ θ2

θ1

wl(θ − θ′)QL(θ
′)dθ′ +

∫ −θ1

−θ2

wc(θ − θ′)QR(θ
′)dθ′ + IL(θ), (4.66)

UR(θ) =

∫ −θ1

−θ2

wl(θ − θ′)QR(θ
′)dθ′ +

∫ θ2

θ1

wc(θ − θ′)QL(θ
′)dθ′ + IR(θ), (4.67)

Qj(θ) = 1− αβ

1 + αβ
Θ(Uj(θ)− κ), j = L,R. (4.68)

Substituting equations (4.68) into (4.66) and (4.67) yields
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UL(θ) =
1

1 + αβ

[∫ θ2

θ1

wl(θ − θ′)dθ′ +

∫ −θ1

−θ2

wc(θ − θ′)dθ′
]
+ IL(θ), (4.69)

UR(θ) =
1

1 + αβ

[∫ −θ1

−θ2

wl(θ − θ′)dθ′ +

∫ θ2

θ1

wc(θ − θ′)dθ′
]
+ IR(θ). (4.70)

Employing the sum of harmonics weight function (4.4), we can analytically calculate the

double bump solutions

UL(θ) =
1

1 + αβ

[
(wl

0 + wc
0)(θ2 − θ1) +

wl
2

2
(sin(2(θ − θ1))− sin(2(θ − θ2)))

+
wc
2

2
(sin(2(θ + θ2))− sin(2(θ + θ1)))

]
+ IL(θ), (4.71)

UR(θ) =
1

1 + αβ

[
(wl

0 + wc
0)(θ2 − θ1) +

wl
2

2
(sin(2(θ + θ2))− sin(2(θ + θ1)))

+
wc
2

2
(sin(2(θ − θ1))− sin(2(θ − θ2)))

]
+ IR(θ). (4.72)

Applying the threshold conditions

κ =
1

1 + αβ

[
(wl

0 + wc
0)(θ2 − θ1) +

wl
2

2
sin(2(θ2 − θ1)) +

wc
2

2
(sin(2(θ2 + θ1))− sin(4θ1))

]

+I0 cos
p(θ1 + θI), (4.73)

κ =
1

1 + αβ

[
(wl

0 + wc
0)(θ2 − θ1) +

wl
2

2
sin(2(θ2 − θ1)) +

wc
2

2
(sin(4θ2)− sin(2(θ2 + θ1)))

]

+I0 cos
p(θ2 + θI), (4.74)

provides us with a system of implicit expressions that relate the threshold crossing points

θ1, θ2 to all other parameters. The system prescribed by (4.73) and (4.74) can be solved

numerically using a root finding algorithm. The variation of the width of each bump

∆θ = θ2 − θ1 with the input strength I0 and depression strength β is shown in Figure 4.8;

the stability of these bumps is calculated below.

4.3.4 Stability of the double bump

We begin by letting uj(θ, t) = Uj(θ) + εψj(θ, t) and qj(θ, t) = Qj(θ) + εϕj(θ, t) for

j = L,R, where ψj and ϕj denote smooth perturbations and ε≪ 1. Substituting into the

full system (4.1), imposing the stationary solutions (4.66), (4.67), and (4.68), and dividing

through by ε then gives
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Figure 4.8. Double bumps in coupled hypercolumns. (Left) Plots relating bump width
∆θ to the amplitude of input strength I0 for different values of κ using equations (4.73)
and (4.74). Other parameters are κ = 0.05, α = 500, β = 0.01, p = 6. (Right) Double
bump profile when κ = 0.05 and I0 = 0.4.

∂ψL(θ, t)

∂t
= −ψL(θ, t) +

1

ε
wl ∗ (QL[Θ(UL + εψL − κ)−Θ(UL − κ)])

+wl ∗ (ϕLΘ(UL + εψL − κ)) +wc ∗ (ϕRΘ(UR + εψR − κ))

+
1

ε
wc ∗ (QR[Θ(UR + εψR − κ)−Θ(UR − κ)]), (4.75)

∂ψR(θ, t)

∂t
= −ψR(θ, t) +

1

ε
wl ∗ (QR[Θ(UR + εψR − κ)−Θ(UR − κ)])

+wl ∗ (ϕRΘ(UR + εψR − κ)) + wc ∗ (ϕLΘ(UL + εψL − κ))

+
1

ε
wc ∗ (QL[Θ(UL + εψL − κ)−Θ(UL − κ)]), (4.76)

∂ϕj(θ, t)

∂t
= −ϕj(θ, t)

α
− β

ε
Qj [Θ(Uj + εψj − κ)−Θ(Uj − κ)]− βϕjΘ(Uj + εψj − κ)

(4.77)

for j = L,R. Denote the perturbations of the bump boundaries by ε∆L
±(t) and ε∆

R
± such

that

uL(θ1 + ε∆L
−(t), t) = uL(θ2 + ε∆L

+(t), t) = κ, (4.78)

uR(−θ1 + ε∆R
−(t), t) = uR(−θ2 + ε∆R

+(t), t) = κ, (4.79)

for an initial time interval t ∈ [0, T ). We are especially interested in perturbations that

violate these threshold conditions eventually (after time T ), since this is precisely what

occurs in the case of rivalry oscillations. Taylor expanding these threshold conditions to

first order in perturbations, we find that
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∆L
−(t) ≈ −ψL(θ1, t)

|U ′
L(θ1)|

, ∆L
+(t) ≈

ψL(θ2, t)

|U ′
L(θ2)|

,

∆R
−(t) ≈ ψR(−θ1, t)

|U ′
R(−θ1)|

, ∆R
+(t) ≈ −ψR(−θ2, t)

|U ′
R(−θ2)|

. (4.80)

As in the single bump case, we can smooth out discontinuities in equations (4.77) by

introducing the fields

ΦLm(θ, t) =

∫ θ2+ε∆L
+

θ1+ε∆L
−

wm(θ − θ′)ϕL(θ
′, t)dθ′, (4.81)

ΦRm(θ, t) =

∫ −θ1+ε∆R
−

−θ2+ε∆R
+

wm(θ − θ′)ϕR(θ
′, t)dθ′, (4.82)

for m = l, c. Differentiating equations (4.81) and (4.82) with respect to t and combining

this with equations (4.75), (4.76), and (4.77) gives

∂ψL(θ, t)

∂t
= −ψL(θ, t) + ΦLl(θ, t) + ΦRc(θ, t) (4.83)

+
1

ε

∫ θ2+ε∆L
+
(t)

θ1+ε∆L
−
(t)

wl(θ − θ′)QL(θ
′)dθ′ − 1

ε

∫ θ2

θ1

wl(θ − θ′)QL(θ
′)dθ′

+
1

ε

∫ −θ1+ε∆R
−
(t)

−θ2+ε∆R
+
(t)

wc(θ − θ′)QR(θ
′)dθ′ − 1

ε

∫ −θ1

−θ2

wc(θ − θ′)QR(θ
′)dθ′,

∂ψL(θ, t)

∂t
= −ψR(θ, t) + ΦRl(θ, t) + ΦLc(θ, t) (4.84)

+
1

ε

∫ −θ1+ε∆R
−
(t)

−θ2+ε∆R
+
(t)

wl(θ − θ′)QR(θ
′)dθ′ − 1

ε

∫ −θ1

−θ2

wl(θ − θ′)QR(θ
′)dθ′

+
1

ε

∫ θ2+ε∆L
+(t)

θ1+ε∆L
−
(t)

wc(θ − θ′)QL(θ
′)dθ′ − 1

ε

∫ θ2

θ1

wc(θ − θ′)QL(θ
′)dθ′,

∂ΦLm(θ, t)

∂t
= −(α−1 + β)ΦLm(θ, t) (4.85)

−β
ε

∫ θ2+ε∆L
+(t)

θ1+ε∆L
−
(t)

wm(θ − θ′)QL(θ
′)[Θ(UL + εψL − κ)−Θ(UL − κ)]dθ,

+εwm(θ − θ2 − ε∆L
+(t))ϕLm(θ2 + ε∆L

+(t), t)∆̇
L
+(t)

−εwm(θ − θ1 − ε∆L
−(t))ϕLm(θ1 + ε∆L

−(t), t)∆̇
L
−(t), m = l, c,

∂ΦRm(θ, t)

∂t
= −(α−1 + β)ΦRm(θ, t) (4.86)

−β
ε

∫ −θ1+ε∆R
−
(t)

−θ2+ε∆R
+
(t)

wm(θ − θ′)QR(θ
′)[Θ(UR + εψR − κ)−Θ(UR − κ)]dθ,

−εwm(θ + θ2 − ε∆R
+(t))ϕLm(−θ2 + ε∆R

+(t), t)∆̇
R
+(t)

+εwm(θ + θ1 − ε∆R
−(t))ϕLm(−θ1 + ε∆R

−(t), t)∆̇
R
−(t), m = l, c.
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We can now linearize the system of equations (4.83), (4.84), (4.85), and (4.86) by expanding

in powers of ε and collecting all O(1) terms. Again it is important to keep track of the

signs of ∆L
± and ∆R

± when approximating the various integrals due to the discontinuous

nature of QL(θ) and QR(θ). We thus obtain the following piecewise linear system:

∂ψL(θ, t)

∂t
= −ψL(θ, t) + ΦLl(θ, t) + ΦRc(θ, t) + γDwl(θ − θ1)ψL(θ1, t)GL,1(t)

+γDwl(θ − θ2)ψL(θ2, t)GL,2(t) + γDwc(θ + θ1)ψR(−θ1, t)GR,1(t)

+γDwc(θ + θ2)ψR(−θ2, t)GR,2(t) (4.87)

∂ψR(θ, t)

∂t
= −ψR(θ, t) + ΦRl(θ, t) + ΦLc(θ, t) + γDwl(θ + θ1)ψR(−θ1, t)GR,1(t)

+γDwl(θ + θ2)ψR(−θ2, t)GR,2(t) + γDwc(θ − θ1)ψ1(θ1, t)GL,1(t)

+γDwc(θ − θ2)ψL(θ2, t)GL,2(t) (4.88)

and

∂ΦLm(θ, t)

∂t
= −(α−1 + β)ΦLm(θ, t)

−β(γDwm(θ − θ1)ψL(θ1, t)GL,1(t)Θ(ψL(θ1, t))

+γDwm(θ − θ2)ψL(θ2, t)GL,2(t)Θ(ψL(θ2, t))), (4.89)

∂ΦRm(θ, t)

∂t
= −(α−1 + β)ΦRm(θ, t)

−β(γDwm(θ + θ1)ψR(−θ1, t)GR,1(t)Θ(ψR(−θ1, t))

+γDwm(θ + θ2)ψR(−θ2, t)GR,2(t)Θ(ψR(−θ2, t))), (4.90)

where GL,j(t) = G(ψL(θj , t)), GR,j(t) = G(ψR(−θj, t)) and

(γD)
−1 = |U ′

L(θk)|

=
1

1 + αβ

∣∣∣wl(θk − θ1)− wl(θk − θ2) +wc(θk + θ2)− wc(θk + θ1) + I ′L(θk)
∣∣∣

= |U ′
R(−θk)| (4.91)

=
1

1 + αβ

∣∣∣wl(θk − θ2)− wl(θk − θ1) +wc(θk + θ1)− wc(θk + θ2) + I ′R(−θk)
∣∣∣.

Equations (4.87)–(4.90) imply that the local stability of the stationary bump solution

depends upon the spectral properties of a piecewise–linear operator. As in section 4.3.2,

we assume that equations (4.87)–(4.90) have separable solutions of the form

(ψL, ψR,Φ1l,Φ2l,ΦLc,ΦRc)(θ, t) = eλt(ψL, ψR,ΦLl,ΦRl,ΦLc,ΦRc)(θ),

where λ is real. Under this assumption, the step functions Θ, G are time–independent

so that eλt cancels everywhere. Further simplification can be achieved by assuming that
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λ 6= −(α−1 + β) so that we can eliminate the auxiliary fields ΦLl,ΦRl,ΦLc,ΦRc. The

resulting eigenvalue problem can be analyzed along similar lines to single bumps. That

is, one particular class of solutions consists of functions ψL(θ) and ψR(θ) that vanish

on the bump boundaries so that ψL(θ1) = ψL(θ2) = ψR(−θ2) = ψR(−θ1) = 0 and

λ = −1. This determines the essential spectrum. The discrete spectrum is then found by

setting θ = ±θ1,±θ2, which yields a four–dimensional matrix equation for the quantities

ψL(θj), ψR(−θj), j = 1, 2. Specifying the sign of these quantities thus yields sixteen

classes of perturbation corresponding to all possible combinations of the perturbations

for each individual bump: expansion, contraction, left–shift, and right–shift. However,

there are only in fact seven qualitatively different cases due to symmetry considerations.

We summarize these in Figure 4.9: (i) expand and contract (rivalry); (ii) same–shift; (iii)

different–shift; (iv) expand both; (v) contract both; (vi) expand and shift; (vii) contract

and shift. It is straightforward to numerically compute the eigenvalues associated with

each perturbation after assigning the values for G and Θ due to the signs each of the four

points ψL(θ1), ψL(θ2), ψR(−θ1), and ψR(−θ2). We shall briefly summarize our findings for

the eigenvalues associated with each perturbation followed by some specific examples.

(i) Expand and contract (rivalry): e.g. ψL(θ1,2) > 0 and ψR(−θ1,2) < 0. In

the study of binocular rivalry, we are most interested in this perturbation, which expands

one bump and contracts the other. For sufficiently small inputs I0, we find that the

double bump is unstable with respect to this class of perturbation as β → 0. There are

then three possibilities which we have found numerically: it destabilizes to the winner

take all solution (single bump), which occurs for weak synaptic depression; destabilizes to

damped oscillations which eventually return to the double bump solution; or it destabilizes

to persistent oscillations, which occurs for sufficiently strong depression. Finally, if the

input strength I0 is large enough, we find that this is sufficient to stabilize the double

bump solution with respect to rivalry perturbations, as expected. We have found that,

in the case that the double bump is linearly stable to rivalry perturbations, there can

coexist a state where the system persistently oscillates between either population possessing

superthreshold activity. However, the initial conditions of the system must be sufficiently

far away from the double bump solution.

(ii) Same–shift: e.g. ψL(θ1) < 0, ψL(θ2) > 0, ψR(−θ2) < 0, ψR(−θ1) > 0. We

find that eigenvalues associated with this perturbation are always negative for sufficiently

strong cross inhibition (wc
0 < 0). However, as the amplitudes of the parameters wc

0
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Figure 4.9. Illustration of different types of perturbation of a stationary double–bump
solution: (a) expand and contract; (b) right–shift both; (c) left–shift and right–shift; (d)
expand both; (e) contract both.



118

and wc
2 are reduced, it is possible to destabilize the double bump solution with respect

to this perturbation, which numerically results in traveling pulse–like solutions in both

hypercolumns that eventually settle back into the double bump solution.

(iii) Different–shift: e.g. ψL(θ1) < 0, ψL(θ2) > 0, ψR(−θ2) > 0, ψR(−θ1) < 0. We

find that eigenvalues associated with this perturbation are always negative for sufficiently

strong cross inhibition (wc
0 < 0). However, as with case (ii), when the amplitude of the

parameters wc
0 and wc

2 are reduced, it is possible to destabilize the double bump solution,

resulting in traveling pulse–like solutions in both hypercolumns that eventually settle back

into the double bump solution.

(iv) Expand–both: e.g. ψL(θ1) > 0, ψL(θ2) > 0, ψR(−θ2) > 0, ψR(−θ1) > 0. Similar

to cases (ii) and (iii), we find that this perturbation is stabilized by strong cross-inhibition,

but can lead to instability when wc
0 and wc

2 are sufficiently small in amplitude. However,

due to periodicity, the spread of activity eventually settles back into the double bump

solution.

(v) Contract–both: e.g. ψL(θ1) < 0, ψL(θ2) < 0, ψR(−θ2) < 0, ψR(−θ1) < 0. Due to

the underlying symmetry of the system, we can in fact compute the eigenvalue associated

with this perturbation explicitly. Noting the sign restrictions and the fact that we must

have ψL(θ1) = ψL(θ2) = ψR(−θ2) = ψR(−θ1) < 0 then

λ = −1 +
γD

1 + αβ
(wl(0) + w−

l + wc(2θ1) + w+
c ), (4.92)

which we find to always be negative, so long as wc
0 ≤ 0. Thus, the bump will always be

stable with respect to contractions. In fact, this seems to be what allows the system to

settle back into the double bump solution after a long excursion due to a destabilizing

perturbation, since there are flows that treat the double bump as an attractor.

(vi) Expand–shift: e.g. ψL(θ1) > 0, ψL(θ2) > 0, ψR(−θ2) < 0, ψR(−θ1) > 0. We find

no eigensolutions of this form for any parameters.

(vii) Contract–shift: e.g. ψL(θ1) < 0, ψL(θ2) < 0, ψR(−θ2) < 0, ψR(−θ1) > 0. We

find no eigensolutions of this form for any parameters.

We illustrate the stability analysis of the stationary double bump solution by plotting

eigenvalues calculated for each perturbation to bumps in a network with the harmonic

weight function (4.4). Specifically, we plot the eigenvalues for each perturbation for a

stimulus driven double bump that is unstable to rivalry perturbations as β → 0. In

Figure 4.10, we plot the maximal nonzero real eigenvalue for rivalry perturbation as a

function of β and I0. For fixed I0, as β increases from zero the positive real eigenvalue
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Figure 4.10. Eigenvalues associated with expand and contract (rivalry) perturbation. (a)
Maximal nonzero eigenvalue plotted as a function of β for fixed I0 = 0.45. (b) Maximal
nonzero real eigenvalues plotted as a function of I0 for β = 0.01. Other parameters are
κ = 0.05, wl

0 = 0, wl
2 = 0.4, wc

0 = −1, wc
2 = 0.5, α = 500.

decreases as a function of β. For sufficiently large β, this positive eigenvalue vanishes,

and the double bump solution is predicted to be stable to rivalry perturbations. For fixed

β, double bumps are unstable to rivalry perturbations for sufficiently weak inputs, but

stabilize beyond a critical value of I0. In Figure 4.11, we plot the maximal eigenvalues of

all other perturbations to the bump, showing they are negative for a wide range of input

strengths I0 and depression strengths β. They are all quite insensitive to variations in

these parameters.

4.4 Numerical simulations

We now study the full system (4.1) using a numerical approximation scheme. To evolve

the system in time, we use a fourth order Runge–Kutta method with 1000–2000 spatial grid

points and a time step of dt = 0.01. The integral terms in equations (4.1a) and (4.1b) are

approximated using Simpson’s rule. We systematically checked whether taking finer grids

changed stability results, and it does not. Such checks are essential to studying stability

of bumps as grids that are too coarse can drastically alter stability results [62].

In much of parameter space, we find that our existence and stability analysis charac-

terizes very well the type of solutions that the system (4.1) will relax to over long times

as well as the nature of various local instabilities. Thus, if we take as an initial condition

a stationary bump solution that is stable with respect to perturbations associated with
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Figure 4.11. Eigenvalues associated with nonrivalry perturbations. (a) Maximal real
eigenvalues of the expand–both (solid black), contract–both (dashed black), same–shift
(solid grey), and different–shift (dashed grey) perturbations plotted as a function of β for
fixed I0 = 0.45. (b) Maximal real eigenvalues of each perturbation plotted as a function
of I0 for β = 0.01. Other parameters are κ = 0.05, wl

0 = 0, wl
2 = 0.4, wc

0 = −1, wc
2 = 0.5,

α = 500.

real eigenvalues, and then vary a bifurcation parameter such as β or I0, we find that the

dominant instability, as predicted by our piecewise smooth analysis, corresponds well with

the numerical solution seen initially to evolve away from the stationary solution. However,

one interesting feature we find in numerical simulations of the network is that solutions that

destabilize initially can eventually return to a stationary solution in the absence of noise.

This is due to two features of the underlying system and associated stationary solution.

First, the bump is stable with respect to certain perturbations in our piecewise linear

stability analysis. Therefore, even though the solution may move away from a stationary

bump when one perturbation is applied, it may follow a trajectory in phase space which

is eventually close to the stationary bump solution again. This phenomenon is aided by

the second effect, which is that the variables qj(θ, t) as defined by equation (4.1c) reduce

their value at a location quite quickly when superthreshold activity of uj(θ, t) sweeps over

that location in the network. Thus, qj(θ, t) will be lower than the value prescribed by

the stationary solutions on the regions immediately exterior to the original bump location

following the bump. This effect will last for long periods of time since α is large. Therefore,

in some situations, there will not be enough resources in the regions about the bump’s

original location to reignite the instability once the activity profile returns to the general
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proximity of the bump. We shall witness this phenomenon in both single and double bump

instabilities.

For our first numerical example, we take the initial condition to be a single bump

solution specified by (4.40) which is predicted to be unstable to shift perturbations. After

a brief period, we perturb the system by adding a rightward shift perturbation of uL(θ, t)

defined as

ψshift
L (θ, t) = χ(t)(wl(θ − θ2)−wl(θ − θ1)). (4.93)

As shown in Figure 4.12, the resulting dynamics initially evolves to a propagating solution

similar to a traveling pulse. However, due to the input and periodic boundaries of the

system, the profile does not settle to be invariant as in our studies of traveling pulses in a

network with synaptic depression in sections 2.1.2 and 2.2.5. In fact, activity then changes

direction, sloshing to the other side of the input region. Following its excursion, the activity

profile eventually settles back into the stationary single bump solution. As mentioned, the

trajectory of the variable uL(θ, t) is such that it relaxes back to the bump solution through

a stable flow. Since the piecewise smooth boundary of the variables qj(θ, t) have been

Figure 4.12. Numerical simulation of a single bump destabilized by a rightward shift per-
turbation. Plot of uL(θ, t) for an initial condition taken to be a stationary bump specified

by equation (4.40). Solution is perturbed at t = 5 by a rightward shift ψshift
L (θ, t) such

that χ(t) = 0.02 for t ∈ [5, 5.1) and zero otherwise. Activity initially propagates rightward
and then back leftward until settling back into the single bump profile. Parameters are
κ = 0.05, wl

0 = 0, wl
2 = 0.4, wc

0 = −1, wc
2 = 0.5, α = 500, β = 0.01, I0 = 0.24.
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disrupted by nonlinear effects of the evolving solution, the bump will be an attracting

state for virtually all reasonable flows over long time. Thus, even though the bump is

unstable to shift perturbations, it always restabilizes in the long time limit.

For our next numerical example, we take the initial condition to be a double bump

solution specified by (4.71) and (4.72), which is predicted to be unstable to rivalry pertur-

bations. After a brief period, we perturb the system by adding a rivalry perturbation of

uL(θ, t) and uR(θ, t) defined as

ψriv
L (θ, t) = χ(t)(wl(θ − θ2) + wl(θ − θ1)), (4.94)

ψriv
R (θ, t) = −χ(t)(wl(θ + θ2) + wl(θ + θ1)). (4.95)

As shown in Figure 4.13, the resulting dynamics can evolve to a slow oscillation in the

activity of both populations for sufficiently weak inputs I0. First the right population’s

Figure 4.13. Numerical simulation of a double bump destabilized by a rivalry pertur-
bation. Plot of uL(θ, t) (left) and uR(θ, t) (right) for an initial condition taken to be a
double bump specified by equations (4.71) and (4.72). Solution is perturbed at t = 5 by a
rivalry shift ψriv

L (θ, t) and ψriv
R (θ, t) respectively such that χ(t) = 0.02 for t ∈ [5, 5.1) and

zero otherwise. Activity settles into a slow oscillation where dominance switches between
either population roughly every two seconds. Parameters are κ = 0.05, wl

0 = 0, wl
2 = 0.4,

wc
0 = −1, wc

2 = 0.5, α = 500, β = 0.01, I0 = 0.45.
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activity uR(θ, t) exhibits a relatively invariant bump of activity until synaptic depression

exhausts the inhibitory synapses and the left population’s activity uL(θ, t) is released

from suppression. Then the left population’s activity dominates for a period until the

right population is released. This cycle continues indefinitely. Thus, even though the

linear stability analysis predicts the rivalry perturbation having an associated positive real

eigenvalue (see Figure 4.10), nonlinear effects of the system take over in long time and the

system oscillates. As we alluded to in section 4.3.4, the spatially extended system supports

a fusion/rivalry bistable state, just as the space–clamped system did in section 4.2. Thus,

even in cases where the double bump solution is linearly stable, some initial conditions

evolve to a rivalry solution similar to that pictured in Figure 4.13. Buckthought and

colleagues recently showed that such bistability can exist in psychophysical experiments

[28]. By showing subjects binocular stimuli with increasingly dissimilar orientations, they

found a region of hysteresis, wherein the subject could perceive either rivalry or fusion,

depending on their initial perception. Admittedly, the stimuli used to induce the effect

never differed more than 30 degrees whereas ours differ by 90 degrees, but they observed

bistability nonetheless.

In Figure 4.14, we show an example of a perturbation evolving to a damped oscillation.

Even though our stability analysis predicts the double bump is unstable to the rivalry

oscillation, the solution eventually returns to the stationary double bump. As we have

mentioned double bumps can be stable to all other perturbations aside from the rivalry

perturbation. Therefore, nonlinear effects can dominate the system in the long time limit

and the solution may flow along a trajectory which has the double bump as an attractor. As

mentioned, resources as defined by qj(θ, t) in the periphery of the original bump locations

are exhausted so that there is not sufficient excitation to continue the oscillation. In

addition, we cannot trust the stability analysis we have carried out beyond the point that

the original threshold conditions are violated. To our knowledge, no studies have addressed

these types of nonlinear effects at work in restabilizing bumps in spatially extended systems.

It remains an open problem as to how best to characterize the onset of such an oscillation.

Finally, in Figure 4.15, we show an example of a coupled hypercolumn network driven

by stimuli of two different strengths so that IL 6= IR. We take our initial condition to be

the quiescent state uL(θ, 0) = uR(θ, 0) = 0 and qL(θ, t) = qR(θ, 0) = 1. In this case, we

see that the dominance times are different for the left and right populations, just as we

found in the space–clamped system (see Figures 4.3 and 4.4). Since the right population
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Figure 4.14. Numerical simulation of a double bump destabilized by a rivalry pertur-
bation. Plot of uL(θ, t) (left) and uR(θ, t) (right) for an initial condition taken to be a
double bump specified by equation (4.71) and (4.72). Solution is perturbed at t = 5 by a
rivalry shift ψriv

L (θ, t) and ψriv
R (θ, t) respectively such that χ(t) = 0.02 for t ∈ [5, 5.1) and

zero otherwise. Activity evolves to a damped oscillation temporarily and then settles back
into the stationary double bump. Parameters are κ = 0.05, wl

0 = 0, wl
2 = 0.4, wc

0 = −1,
wc
2 = 0.5, α = 500, β = 0.02, I0 = 0.4.
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Figure 4.15. Numerical simulation of an asymmetric rivalry solution. Plot of uL(θ, t)
(left) and uR(θ, t) (right) for an initial condition taken to be the quiescent state
uL(θ, 0) = uR(θ, 0) = 0 and qL(θ, t) = qR(θ, 0) = 1. Activity evolves to a damped
oscillation temporarily and then settles back into the stationary double bump. Parameters
are κ = 0.05, wl

0 = 0, wl
2 = 0.4, wc

0 = −1, wc
2 = 0.5, α = 500, β = 0.01, I0L = 0.4, I0R = 0.45.

receives a stronger input (IR = 0.45) than the left population (IL = 0.4), superthreshold

bump–like activity exists in the right population for a longer period than the left. Also,

note that the transient bump in the right population is wider than that in the left.

4.5 Discussion

In this chapter, we analyzed the onset of binocular rivalry oscillations in a coupled

hypercolumn model with synaptic depression. In order to facilitate our analysis we took

the firing rate function to be a Heaviside (4.3). However, it was then necessary to take

the piecewise nature of the system into account when analyzing the stability of stationary

solutions. We first calculated the period of rivalry oscillations arising in the space–clamped

version of our model. When the input to the left and right eye populations were varied,

we found that the corresponding changes in dominance times matched very well with
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some of the observations of binocular rivalry made by Levelt [104]. In the spatially

extended version of our model, we analyzed the onset of oscillations in neural activity due

to orientation biased stimuli using local stability determined by the spectrum of a piecewise

linear operator. For winner–take–all or single bump solutions, we found that the dominant

instability was usually a shifting of the bump boundary, which in numerical simulations led

to traveling pulse type solutions. For fusion or double bump solutions, we found that the

dominant instability was an expansion of one bump and a contraction of the other, which

in simulations often led to rivalry type oscillations. In numerical simulations, we found

that the local stability analysis predicted the point at which bump solutions destabilized,

but the long time behavior of the simulation is beyond the scope of our analysis.

In future work, it would be interesting to develop tools to analyze the long time behavior

of oscillations in the spatially extended system so we could compute the dominance times of

each population. In addition, the fact that piecewise smooth analysis predicts that a bump

can be stable to one sign of perturbation and unstable to another sign of perturbation

was borne out in the results of our numerical simulations. It appears this behavior allows

the bump to be a starting and stopping point for homoclinic trajectories in the infinite

dimensional system (4.1). In a sense, the bump is marginally stable. This was not an issue

when we studied instabilities of bumps in a network with synaptic depression without

periodic boundaries in section 2.2. We would like to explore this notion more exactly using

tools developed for the study of piecewise smooth dynamical systems [47].



CHAPTER 5

TRAVELING PULSES AND WAVE

PROPAGATION FAILURE IN AN

INHOMOGENEOUS NEURONAL

NETWORK

Mathematical analyses of cortical wave propagation typically consider reduced one–

dimensional network models. Under the additional assumption that the synaptic interac-

tions are homogeneous, it has been shown that an excitatory neuronal network supports

the propagation of a traveling front [52, 73, 22] or, in the presence of slow adaptation, a

traveling pulse [3, 136, 187, 188, 39, 57, 168] (See section 1.3 for a review of such studies

and section 2.1 for a traveling wave study in a homogeneous network with depression and

adaptation.). However, the patchy nature of long–range horizontal connections in superfi-

cial layers of certain cortical areas suggests that the cortex is more realistically modeled as

an inhomogeneous neural medium. For example, in primary visual cortex the horizontal

connections tend to link cells with similar stimulus feature preferences such as orientation

and ocular dominance [111, 186, 18] (See also Chapter 4 for a description of the architecture

of primary visual cortex.). Moreover, these patchy connections tend to be anisotropic,

with the direction of anisotropy correlated with the underlying orientation preference

map. Hence the anisotropic pattern of connections rotates approximately periodically

across cortex resulting in a periodic inhomogeneous medium [20, 21]. Another example of

inhomogeneous horizontal connections is found in the prefrontal cortex [105, 122], where

pyramidal cells are segregated into stripes that are mutually connected via horizontally

projecting axon collaterals; neurons within the gaps between stripes do not have such

projections.

In this chapter we investigate how a spatially periodic modulation of long–range synap-

tic weights affects the propagation of traveling pulses in a one–dimensional excitatory

neuronal network, extending previous work on traveling fronts in neuronal network models
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[20] and reaction–diffusion systems [77, 78]. Our network contains local linear negative

feedback, developed by Pinto and Ermentrout, meant to heuristically model either spike

frequency adaptation or synaptic depression [136, 137]. We briefly introduced this model

in section 1.3, but here we further modify the equations by considering a periodically

modulated weight function. Our analysis of the model then proceeds by studying how

the periodic modulation in the weight function affects its traveling wave solutions. We

proceed then in section 5.2 by introducing a slowly varying phase into the traveling wave

solution of the unperturbed homogeneous network and then use perturbation theory to

derive a dynamical equation for the phase, from which the mean speed of the wave can

be calculated. When we take our firing rate to be a Heaviside function (1.4), we can

explicitly calculate a first order approximation to the wave speed in section 5.3. We show

that a periodic modulation of the long–range connections slows down the wave and if

the amplitude and wavelength of the periodic modulation is sufficiently large, then wave

propagation failure can occur. We can even derive a formula for the wavespeed in the case

of a smooth firing rate function. A particularly interesting result is that in the case of

large amplitude modulations, the traveling pulse is no longer superthreshold everywhere

within its interior, even though it still propagates as a coherent solitary wave. As verified

by numerical simulations in section 5.4, we find that the pulse now corresponds to the

envelope of a multibump solution, in which individual bumps are nonpropagating and

transient. The appearance (disappearance) of bumps at the leading (trailing) edge of the

pulse generates the propagation of activity; propagation failure occurs when activity is

insufficient to create new bumps at the leading edge.1

5.1 Inhomogeneous network model

Consider a one–dimensional neuronal network model of the form [136]

τm
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x, x′)f(u(x′, t))dx′ − βpv(x, t)

1

αp

∂v(x, t)

∂t
= −v(x, t) + u(x, t) (5.1)

where u(x, t) is the population activity at position x ∈ R, τm is a membrane time constant,

f(u) is the output firing rate function, w(x, x′) is the excitatory connection strength from

1Please note that throughout this chapter, we shall be using variable and parameter names, such as A

and q, which have been used in previous chapters. We shall define what each variable represents in the
confines of this chapter, which does not change what those variables represented in the previous chapters.
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neurons at x′ to neurons at x, and v(x, t) is a local negative feedback mechanism, with

βp and αp determining the relative strength and rate of feedback. This type of feedback,

which could be spike frequency adaptation or synaptic depression, favors traveling waves

[136, 57, 168]. The nonlinearity f is a smooth monotonic increasing function, the sigmoid

(1.2). As the gain η → ∞, f → Θ(u− κ), the Heaviside nonlinearity (1.4).2

The periodic microstructure of the cortex is incorporated by taking the weight distri-

bution to be of the form [20, 21]

w(x, x′) = W (|x− x′|)[1 +D′
c(
x′

ε
)] (5.2)

where Dc is a 2π–periodic function and ε determines the microscopic length–scale. (We

consider the first–order derivative of Dc so that the zeroth order harmonic is explicitly

excluded). It is important to note that equation (5.2) is a one–dimensional abstraction

of the detailed anatomical structure found in the two–dimensional layers of real cortex.

(See [22] for a more detailed discussion of cortical models). However, it captures both the

periodic–like nature of long–range connections and possible inhomogeneities arising from

the fact that this periodicity is correlated with a fixed set of cortical feature maps.

For concreteness, we take the homogeneous weight function W to be an exponential,

W (x) =
W0

2d
e−|x|/d, (5.3)

where d is the effective range of the excitatory weight distribution, and set

Dc (x) = ρ sin (x) , 0 ≤ ρ < 1, (5.4)

where ρ is the amplitude of the periodic modulation. We require 0 ≤ ρ < 1 so that the

weight distribution remains nonnegative everywhere. Example plots of the resulting weight

function w(x, y) of equation (5.2) are shown in Figure 5.1 for fixed x. This illustrates both

the periodic modulation and the associated network inhomogeneity, since the shape of the

weight distribution varies periodically as the location x of the postsynaptic neuron shifts.

Plotting w(x, x′) for fixed x′ simply gives an exponential distribution whose maximum

depends on x′. Finally, the temporal and spatial scales of the network are fixed by

setting τm = 1, d = 1 and the scale of the synaptic weights is fixed by setting W0 = 1.

The membrane time constant is typically around 10 ms and the length scale of synaptic

2As in the previous chapter, we take the liberty of making a change of notation, so that κ corresponds
to the firing threshold here.
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Figure 5.1. Weight kernel with periodic inhomogeneities. (Left): Weight kernel
w(y) = w(x, y) for a neuron centered at x = 0, πε/2, πε when ρ = 0.3, and ε = 0.3.
(Right): Corresponding weight kernel when ρ = 0.8 and ε = 0.3.

connections is typically 1 mm. Thus, in dimensionless units the speed of an experimentally

measured wave will be c = O(1).

5.2 Averaging theory and homogenization

Our goal in this chapter is to determine how the periodic modulation of the weight

function affects properties of traveling pulses in the one–dimensional system obtained by

substituting equation (5.2) into equation (5.1):

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
W (|x− x′|)[1 +D′

c(
x′

ε
)]f(u(x′, t))dx′ − βpv(x, t)

1

αp

∂v(x, t)

∂t
= −v(x, t) + u(x, t). (5.5)

Assuming ε is a small parameter (in units of the space constant d), a zeroth–order ap-

proximation to (5.5) can be generated by performing spatial averaging with respect to

the periodic weight modulation, leading to the homogeneous system given by equation

(5.1) with weight distribution w(x, x′) = W (|x − x′|). Suppose that the homogeneous

network supports the propagation of a traveling pulse of constant speed c. That is,

u(x, t) = U(ξ), v(x, t) = V (ξ), where ξ = x − ct is the traveling wave coordinate, and

U(ξ), V (ξ) → 0 as ξ → ±∞. Substituting such a solution into equation (5.1) with

w(x, x′) =W (|x− x′|) gives
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−cU ′(ξ) = −U(ξ) +

∫ ∞

−∞
W (ξ − ξ′)f(U(ξ′))dξ′ − βV (ξ),

− c

αp
V ′(ξ) = −V (ξ) + U(ξ). (5.6)

Assuming the existence of a solution (U(ξ), V (ξ)) to system (5.6), we would like to de-

termine whether or not a traveling wave persists in the presence of the periodic weight

modulation. A crucial requirement for trajectories of the averaged homogeneous system to

remain sufficiently close to trajectories of the exact inhomogeneous system for sufficiently

small ε is that solutions of the averaged system be structurally stable [60]. However, travel-

ing pulses correspond to homoclinic trajectories within a dynamical systems framework and

are thus not structurally stable. Therefore, one must go beyond lowest order averaging to

resolve differences between the homogeneous and inhomogeneous systems. We will proceed

by carrying out a perturbation expansion in ε, extending previous work on traveling fronts

in reaction diffusion systems [77, 78] and excitable neuronal networks [20].

We begin by performing an integration by parts on the first equation in the system

(5.5) so that

∂u(x, t)

∂t
= −u(x, t)− βpv(x, t) +

∫ ∞

−∞
W (x− x′)f(u(x′, t))dx′

+ε

∫ ∞

−∞
Dc

(
x′

ε

)[
W ′(x− x′)f(u(x′, t))−W (x− x′)

∂f(u(x′, t))

∂x′

]
dx′,

1

αp

∂v(x, t)

∂t
= −v(x, t) + u(x, t). (5.7)

Although the inhomogeneous system is not translationally invariant, we can assume that

perturbations about the homogeneous system will provide us with nearly translationally

invariant solutions [77]. Thus, we perform the change of variables ξ = x− φ(t) and τ = t,

so that equation (5.7) becomes

∂u(ξ, τ)

∂τ
= −u(ξ, τ)− βpv(ξ, τ) +

∫ ∞

−∞
W (ξ − ξ′)f(u(ξ′, τ))dξ′ + φ′

∂u(ξ, τ)

∂ξ

+ ε

∫ ∞

−∞
Dc

(
ξ′ + φ

ε

)[
W ′(ξ − ξ′)f(u(ξ′, τ))−W (ξ − ξ′)

∂f(u(ξ′, τ))

∂ξ′

]
dξ′,

1

αp

∂v(ξ, τ)

∂τ
= −v(ξ, τ) + u(ξ, τ) +

φ′

αp

∂v(ξ, τ)

∂ξ
. (5.8)

Next perform the perturbation expansions

u(ξ, τ) = U(ξ) + εu1(ξ, τ) + ε2u2(ξ, τ) + · · · , (5.9)

v(ξ, τ) = V (ξ) + εv1(ξ, τ) + ε2v2(ξ, τ) + · · · , (5.10)

φ′(τ) = c+ εφ′1(τ) + ε2φ′2(τ) + · · · , (5.11)
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where (U(ξ), V (ξ))T is a traveling pulse solution of the corresponding homogeneous system,

see equation (5.6), and c is the speed of the unperturbed pulse. The first order terms u1, v1

satisfy

− ∂

∂τ

(
u1(ξ, τ)

v1(ξ, τ)/αp

)
+ L

(
u1(ξ, τ)
v1(ξ, τ)

)
= −φ′1(τ)

(
U ′(ξ)

V ′(ξ)/αp

)
+

(
h1

(
ξ,
φ
ε

)

0

)

(5.12)

where

L
(
u
v

)
=




cdu
dξ

− u+
∫∞
−∞W (ξ − ξ′)f ′(U(ξ′))u(ξ′)dξ′ − βpv

c
αp

dv
dξ

− v + u


 , (5.13)

for u, v ∈ C
1(R,C) and

h1

(
ξ,
φ

ε

)
= −

∫ ∞

−∞
D
(
ξ′ + φ

ε

)[
W ′(ξ − ξ′)f(U(ξ′))−W (ξ − ξ′)

df(U(ξ′))

dξ′

]
dξ′.

(5.14)

The linear operator L has a one–dimensional null–space spanned by (U ′(ξ), V ′(ξ))T.

The existence of (U ′(ξ), V ′(ξ))T as a null vector follows immediately from differentiating

the homogeneous equation (5.6), and is a consequence of the translation invariance of

the homogeneous system. Uniqueness can be shown using properties of positive linear

operators. A bounded solution to equation (5.12) then exists if and only if the right hand

side is orthogonal to all elements of the null space of the adjoint operator L∗. The latter

is defined according to the inner product relation

∫ ∞

−∞
(a(ξ) b(ξ))L

(
u(ξ)
v(ξ)

)
dξ =

∫ ∞

−∞
(u(ξ) v(ξ))L∗

(
a(ξ)
b(ξ)

)
(5.15)

where u(ξ), v(ξ), a(ξ), and b(ξ) are arbitrary integrable functions. It follows that

L∗

(
a

b

)
=


 −cda

dξ
− a+ b+ f ′(U(ξ))

∫∞
−∞W (ξ − ξ′)a(ξ′)dξ′

− c
αp

db
dξ − βpa− b


 . (5.16)

The adjoint operator also has a one–dimensional null–space spanned by some vector (A,B)T .

(An explicit construction of this null vector in the case of a Heaviside nonlinearity will be
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presented in section 5.3.1). Therefore, for equation (5.12) to have a solution, it is necessary

that

Kφ′1(τ) =

∫ ∞

−∞
A(ξ)h1

(
ξ,
φ

ε

)
dξ, (5.17)

where

K =

∫ ∞

−∞
[A(ξ)U ′(ξ) + α−1

p B(ξ)V ′(ξ)]dξ. (5.18)

Substituting for h1 using equation (5.14) leads to a first–order differential equation for the

phase φ:

dφ

dτ
= c− εΦ1

(
φ

ε

)
(5.19)

where

Φ1

(
φ

ε

)
=

1

K

∫ ∞

−∞

∫ ∞

−∞
A(ξ)Dc

(
ξ′ + φ

ε

)
(5.20)

×
[
W ′(ξ − ξ′)f(U(ξ′))−W (ξ − ξ′)

df(U(ξ′))

dξ′

]
dξ′dξ.

If the right hand side of equation (5.19) is strictly positive, then there exists a traveling

pulse of the approximate form U(x− φ(t)), and average speed c̄ = 2πε/T with

T =

∫ 2πε

0

dφ

c− εΦ1(φ/ε)
. (5.21)

However, if the right hand side of equation (5.19) vanishes for some φ, then the first–order

analysis predicts wave propagation failure.

5.3 Calculation of average wave speed

In this section we use equation (5.21) to calculate the average wave speed c̄ as a function

of ε in the limiting case of a Heaviside nonlinearity. Note that since derivatives of f always

appear inside integral terms, the high gain limit η → ∞ is well defined. One advantage

of using a Heaviside nonlinearity is that all calculations can be carried out explicitly.

Moreover, as previously shown for traveling fronts [20], in the case of smooth nonlinearities

it is necessary to develop the perturbation analysis to O(ε2) since the O(ε) terms may be

exponentially small, see also section 5.3.3.
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5.3.1 Homogeneous network with Heaviside nonlinearity

The existence (and stability) of single bump traveling pulse solutions in the homoge-

neous network obtained by setting f = H and w(x, x′) =W (|x−x′|) in equation (5.1) has

been studied by a number of authors [136, 138, 187, 41, 57, 168]. A single bump solution

(U(ξ), V (ξ)) is one for which U is above threshold over a domain of length a, corresponding

to the width of the bump, and subthreshold everywhere else. In other words, the activity

U crosses threshold at only two points, which by translation invariance can be taken to be

ξ = −a, 0:

U(−a) = U(0) = κ; U(ξ) −→ 0 as ξ −→ ±∞;

U(ξ) > κ, −a < ξ < 0; U(ξ) < κ, otherwise.

It follows from equation (5.6) with f = Θ that

−cUξ = −U − βpV +

∫ 0

−a
W (ξ − η)dη,

− c

αp
Vξ = −V + U. (5.22)

One way to solve this pair of equations is to use variation of parameters [187, 57]. For

completeness, we present the details of this calculation here, since some of the results will

be used in our subsequent analysis.

Let s = (U, V )T and rewrite the system as

Ls ≡
(

cU ′(ξ)− U(ξ)− βpV (ξ)
cV ′(ξ) + αpU(ξ)− αpV (ξ)

)
= −

(
Ne(ξ)
0

)
, (5.23)

where

Ne(ξ) = Ωp(ξ + a)− Ωp(ξ), Ωp(ξ) =

∫ ξ

−∞
W (ξ′)dξ′. (5.24)

We solve equation (5.23) using variation of parameters. The homogeneous problem Ls = 0

has two linearly independent solutions,

S+(ξ) =

(
βp

m+ − 1

)
exp (µ+ξ), S−(ξ) =

(
βp

m− − 1

)
exp (µ−ξ),

where

µ± =
m±

c
, m± =

1

2
(1 + αp ±

√
(1− αp)2 − 4αpβp). (5.25)
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We shall work in the parameter regime where µ± are real, though interesting behavior can

arise when µ± is complex [168]. Thus, set

s(ξ) = [S+|S−]

(
a(ξ)
b(ξ)

)
,

where a, b ∈ C
1(R,R) and [A|B] denotes the matrix whose first column is A and whose

second column is B. Since LS± = 0, equation (5.23) becomes

[S+|S−]
∂

∂ξ

(
a(ξ)
b(ξ)

)
= −1

c

(
Ne(ξ)
0

)
. (5.26)

Since [S+|S−] is invertible, we find that

∂

∂ξ

(
a(ξ)
b(ξ)

)
= − 1

cβ(m+ −m−)
[Z+|Z−]

T

(
Ne(ξ)
0

)
,

where

Z+(ξ) =

(
1−m−

β

)
exp (−µ+ξ), Z−(ξ) = −

(
1−m+

βp

)
exp (−µ−ξ).

For c > 0, we can integrate from ξ to ∞ and find
(

a(ξ)
b(ξ)

)
=

(
a∞

b∞

)
+

1

cβp(m+ −m−)

∫ ∞

ξ
[Z+|Z−]

T

(
Ne(ξ

′)
0

)
dξ′,

where a∞, b∞ are the values of a(ξ), b(ξ) as ξ → ∞. Thus

s(ξ) = [S+|S−]

(
a∞

b∞

)
+

1

cβp(m+ −m−)
[S+|S−]

∫ ∞

ξ
[Z+|Z−]

T

(
Ne(ξ

′)
0

)
dξ′.

(5.27)

Using Hölder’s inequality and that Ne ∈ C
0(R,R), we can show that the integral in (5.27)

is bounded for all ξ ∈ R. Thus, a bounded solution s exists if a∞ = b∞ = 0. Our general

traveling pulse solution is given by

s(ξ) =
1

cβp(m+ −m−)
[S+|S−]

∫ ∞

ξ
[Z+|Z−]

T

(
Ne(ξ

′)
0

)
dξ′.

Furthermore, if we define

M±(ξ) =
1

c(m+ −m−)

∫ ∞

ξ
eµ±(ξ−ξ′)Ne(ξ

′)dξ′,

we can express our solution (U, V ) as:

U(ξ) = (1−m−)M+(ξ)− (1−m+)M−(ξ), (5.28)

V (ξ) = β−1
p (m+ − 1)(1 −m−) [M+(ξ)−M−(ξ)] . (5.29)
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Since Ne(ξ) is dependent upon the pulse width a, the threshold conditions U(−a) = U(0) =

κ lead to the following consistency conditions for the existence of a traveling pulse:

κ = (1−m−)M+(−a)− (1−m+)M−(−a), (5.30)

κ = (1−m−)M+(0) − (1−m+)M−(0). (5.31)

This pair of nonlinear equations determines the pulse width a and wave speed c of a

single bump traveling wave solution as a function of the various parameters of the network.

For a given weight distributionW (x), existence of such a solution is established if a solution

for a, c can be found, and provided that U does not cross threshold at any other points

besides ξ = −a, 0. Recently the existence (and stability) of single bump traveling waves

has been examined for quite a general class of weight distributions [139], which includes

both exponential and Gaussian distributions. For concreteness, we consider the exponential

weight function (5.3) with W0 = d = 1. Numerically solving equations (5.30) and (5.31)

for a and c as a function of the adaptation rate αp yields the existence curves shown in

Figure 5.2. This figure illustrates the well known result that for sufficiently slow adaptation

(small αp) there exists a pair of traveling pulses with the fast/wide pulse stable and the

Figure 5.2. Existence curves for a single bump traveling pulse solution of equation (5.1) in
the case of a homogeneous network with an exponential weight distributionW (x) = e−|x|/2.
(Left): Existence curves in the (αp,a) plane. (Right) Existence curves in the (αp,c) plane.
Pulses only exist for small enough αp (sufficiently slow adaptation). For each parameter set,
there exists a stable branch (solid) of wide/fast pulses and an unstable branch (dashed)
of narrow/slow pulses. In the case κ = 0.3 the branches annihilate at a saddle–node
bifurcation at a critical value αc. In the other two cases, the branches end abruptly due to
the fact that the eigenvalues µ± become complex–valued [168].
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slow/narrow pulse unstable [136]. Also shown in the figure is the stability of the various

solution branches, which can be determined analytically using an Evans function approach

[187, 41, 57, 139].

The analysis of existence in a homogeneous network also provides some insights into

what happens when we include a periodic modulation of the weights according to equations

(5.2) and (5.4). Such a modulation induces a periodic variation in the amplitude W0 of

the exponential weight distribution (5.3) between the limiting values W± = (1 ± ρ)W0.

This suggests that the speed of a wave in the inhomogeneous network will be bounded

by the speeds c± of a traveling wave in the corresponding homogeneous network obtained

by taking W0 → W±. Note that rescaling the weight distribution in equations (5.30) and

(5.31) is equivalent to rescaling the threshold according to κ → κ/(1 ± ρ). In Figure 5.3

we plot the speeds c± and the corresponding pulse widths a± as a function of ρ. For

sufficiently small ρ, the wave speed c+ increases with ρ at approximately the same rate as

c− decreases so that their arithmetic mean remains constant. Therefore, one might expect

that a periodic variation in weights would lead to a corresponding periodic variation in wave

speed such that the mean wave speed is approximately independent of ρ. However, when

a pulse enters a region of enhanced synaptic weights, the resulting increase in wave speed
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Figure 5.3. Existence curves for a single bump traveling pulse solution of equation
(5.1) in the case of a homogeneous network with an exponential weight distribution
W (x) = W±e

−|x|/2 with W± = 1 ± ρ. (Left): Plot of wave speed c± as a function of
ρ for weight amplitudes W±. Dashed curve indicates arithmetic mean of pair c±. The
slower branch terminates at around ρ = 0.35 due to a saddle–node bifurcation. The faster
branch terminates due to a blow–up of the pulse width. (Right): Plot of pulse width a±
as a function of ρ for weight amplitudes W±.
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coincides with a rapid increase in pulse width as a function of ρ. Thus, the pulse will tend

to extend into neighboring regions of reduced synaptic weights and the resulting spatial

averaging will counteract the speeding up of the wave. On the other hand, when a pulse

enters a region of reduced synaptic weights, the reduction in wave speed coincides with a

reduction in pulse width so that spatial averaging can no longer be carried out as effectively.

(The effectiveness of spatial averaging will depend on the ratio of the pulse width a to the

periodicity 2πε of the weight modulation). Hence, we expect regions where the weights

are reduced to have more effect on wave propagation than regions where the weights are

enhanced, suggesting that a periodic weight modulation leads to slower, narrower waves.

This is indeed found to be the case, both in our perturbation analysis (see section 5.3.2) and

our numerical simulations (see section 5.4). Interestingly, we also find that traveling waves

persist for larger values of ρ than predicted by our analysis of single bumps in homogeneous

networks, although such waves tend to consist of multiple bumps (see section 5.4).

5.3.2 Inhomogeneous network with Heaviside nonlinearity

Suppose that the homogeneous network with a Heaviside nonlinearity supports a stable

traveling wave solution (U(ξ), V (ξ))T of wave speed c. As shown in section 5.3.1, a

stable/unstable pair of traveling waves exists for sufficiently slow adaptation. In order

to calculate the average wave speed c̄ for nonzero ε and ρ, see equation (5.21), we first need

to compute the null–vector (A(ξ), B(ξ))T of the adjoint operator L∗ defined by equation

(5.16). In the case of a Heaviside nonlinearity,

−cdA(ξ)
dξ

−A(ξ) +B(ξ) +
δ(ξ)

|U ′(0)|

∫ ∞

−∞
W (ξ − ξ′)A(ξ′)dξ′

+
δ(ξ + a)

|U ′(−a)|

∫ ∞

−∞
W (ξ − ξ′)A(ξ′)dξ′ = 0

− c

αp

dB(ξ)

dξ
− βpA(ξ)−B(ξ) = 0. (5.32)

For ξ 6= 0,−a, this has solutions of the form (A(ξ), B(ξ)T ) = ue−λξ with associated

characteristic equation Mu = cλu and

M =

(
1 −1

βpαp αp

)
. (5.33)

The eigenvalues are λ = µ± = m±/c with m± given by equation (5.25). The corresponding

eigenvectors are

u± =

(
1

1−m±

)
. (5.34)
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The presence of the Dirac delta functions at ξ = 0,−a then suggests that we take the null

solution to be of the form

V∗(ξ) = ς+u+

[
e−µ+ξΘ(ξ) + χe−µ+(ξ+a)Θ(ξ + a)

]

+ς−u−

[
e−µ−ξΘ(ξ) + χe−µ−(ξ+a)Θ(ξ + a)

]
(5.35)

with the coefficients ς± chosen such that the Dirac delta function terms that come from

differentiating the null vector only appear in the A(ξ) term,

ς+u+ + ς−u− =

(
Γ
0

)
, (5.36)

and χ is a constant yet to be determined. Taking

ς± = ±(1−m∓) (5.37)

we have Γ = m+ −m−.

In order to determine χ, substitute equation (5.35) into equation (5.32) to obtain the

pair of equations

c(m+ −m−) =
1

|U ′(0)| (Λ(0) + χΛ(−a)) (5.38)

and

χc(m+ −m−) =
1

|U ′(−a)| (Λ(a) + χΛ(0)) (5.39)

with

Λ(ζ) =

∫ ∞

0
[(1−m−)W (ξ + ζ)e−µ+ξ − (1−m+)W (ξ + ζ)e−µ−ξ]dξ. (5.40)

We require that equations (5.38) and (5.39) are consistent with the formula for U ′(ξ)

obtained by differentiating equation (5.28) with respect to ξ:

U ′(ξ) =
1−m−

c(m+ −m−)

∫ ∞

ξ
eµ+(ξ−ξ′)[W (ξ′ + a)−W (ξ′)]dξ′

− 1−m+

c(m+ −m−)

∫ ∞

ξ
eµ−(ξ−ξ′)[W (ξ′ + a)−W (ξ′)]dξ′. (5.41)

It follows that

|U ′(0)| = −U ′(0) =
Λ(0) − Λ(a)

c(m+ −m−)
, |U ′(−a)| = U ′(−a) = Λ(0) − Λ(−a)

c(m+ −m−)
,
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which, together with equations (5.38) and (5.39), implies

Λ(0)− Λ(a) = Λ(0) + χΛ(−a), χ(Λ(0) − Λ(−a)) = Λ(a) + χΛ(0).

Hence, equation (5.35) is a solution provided that

χ = − Λ(a)

Λ(−a) . (5.42)

This is also a constructive proof that the adjoint linear operator L∗ for a Heaviside

nonlinearity has a one–dimensional nullspace spanned by V∗.

Having found the null solution (5.35), we now determine the phase function Φ1 given

by equation (5.20) with f ≡ Θ. First, the constant K of equation (5.18) is evaluated by

substituting for (A(ξ), B(ξ)) using equation (5.35) and substituting for (U(ξ), V (ξ)) using

equations (5.28) and (5.29). The rather lengthy expression for K is given in Appendix C.

Next, we evaluate the double integral on the right–hand side of equation (5.20) by setting

Dc(x) = eix and using Fourier transforms. This gives

KΦ1

(
φ

ε

)
=

i

ε
eiφ/ε

∫ ∞

−∞
W (x)

[∫ ∞

−∞
eiqxÃ∗(q)f̃(U)(q + ε−1)

dq

2π

]
dx, (5.43)

where ∗ denotes complex conjugate and

Ã(q) =

∫ ∞

−∞
eiqxA(x)dx. (5.44)

In the case of a Heaviside nonlinearity and a pulse of width a, f(U(ξ)) = Θ(ξ + a)−Θ(ξ),

and A(x) is given explicitly by the first component of the null vector in equation (5.35).

Taking Fourier transforms of these expressions shows that

Ã(q) = −
(
1 + χe−iqa

) [ ς+
iq − µ+

+
ς−

iq − µ−

]
, f̃(U)(q) =

1− e−iqa

iq − 0+
. (5.45)

If these Fourier transforms are now substituted into equation (5.43), we have

KΦ1

(
φ

ε

)
=

eiφ/ε

ε

∫ ∞

−∞
W (x)

[∫ ∞

−∞

{
ς+(1− e−i(q+ε−1)a + χeiqa − χe−ia/ε)eiqx

(q + ε−1 + i0+)(q − iµ+)

+
ς−(1− e−i(q+ε−1)a + χeiqa − χe−ia/ε)eiqx

(q + ε−1 + i0+)(q − iµ−)

}
dq

2πi

]
dx. (5.46)

The resulting integral over q can be evaluated by closing the contour in the upper half

or lower–half complex q–plane depending on the sign of x, x ± a. We find that there are
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only contributions from the poles at q = iµ± with µ± > 0, whereas there is a removable

singularity at q = −ε−1 − i0+. Thus

KΦ1

(
φ

ε

)
=

ς+e
iφ/ε

ε(ε−1 + iµ+)

[(
1− χe−ia/ε

)
Ω̂+(0) + χΩ̂+(−a)− e−ia/εΩ̂+(a)

]

+
ς−e

iφ/ε

ε(ε−1 + iµ−)

[(
1− χe−ia/ε

)
Ω̂−(0) + χΩ̂−(−a)− e−ia/εΩ̂−(a)

]
,

(5.47)

with

Ω̂±(s) =

∫ ∞

0
W (x+ s)e−µ±xdx. (5.48)

Taking the imaginary part of the above equation then determines the phase function KΦ1

for Dc(x) = ρ sin(x). After a straightforward calculation, we find that

K

ρ
Φ1

(
φ

ε

)
= (Ξ+ + Ξ−) sin

(
φ

ε

)
+ (Π+ +Π−) sin

(
φ− a

ε

)
+

(Υ+ +Υ−) cos

(
φ

ε

)
+ (Ψ+ +Ψ−) cos

(
φ− a

ε

)
(5.49)

where the explicit expressions for Ξ±,Π±,Υ±,Ψ± are given in Appendix C.

Finally, we numerically calculate the average wave speed c̄ by substituting equation

(5.49) into equation (5.21). Note that we use the exact expression for Φ1 that includes all

higher–order terms in ε, rather than keeping only the O(1) term, since this gives a better

estimate of the wave speed. In Figure 5.4 we show some example plots of c̄ as a function of

ε and ρ. It can be seen that for each choice of parameters, c̄ is a monotonically decreasing

function of ε and ρ, with c̄ approaching the speed c of the homogeneous wave in the

limits ε→ 0 and ρ→ 0. Hence, although the periodic modulation enhances the strength of

connections in some regions and reduces them in others compared to the homogeneous case,

see Figure 5.1, the net result is an effective reduction in wave speed. This is consistent with

our discussion of Figure 5.3 in section 5.3.1, where we used a spatial averaging argument

combined with the observation that faster waves are wider to infer that regions of reduced

synaptic weights affect wave propagation more than regions of enhanced weights. Figure

5.4 also suggests that for sufficiently small ε there exists a traveling wave solution for all

ρ, 0 ≤ ρ < 1, whereas for larger values of ε there is a critical value ρc beyond which

propagation failure occurs. That is, c̄ → 0 as ρ → ρc, and this critical value decreases as

the periodicity ε of the inhomogeneity increases. Similarly, for sufficiently large ρ there

exists a critical period εc such that c̄ → 0 as ε → εc. Analogous results were previously
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Figure 5.4. Average wave speed dependence upon modulation amplitude and period.
(Left): Average wave speed c̄ vs. ε for various values of the modulation amplitude ρ.
Critical value of ε for wave propagation failure decreases as ρ increases. (Right): Average
wave speed c̄ vs. ρ for various values of the modulation period ε. For the sake of comparison,
the speed curves previously plotted in Figure 5.3 for a homogeneous network are also shown
(gray curves). Other parameters are κ = 0.2, αp = 0.04 and βp = 2.0.

obtained for traveling fronts in a scalar equation [20]. It is important to bear in mind that

the calculation of c̄ is based on the O(ε) perturbation analysis of section 5.3, although we

do include higher–order terms in the calculation of Φ1. This raises the important question

as to whether or not our analysis correctly predicts wave propagation failure in the full

system, given that c̄ tends to approach zero at relatively large values of ε and ρ. Moreover,

the perturbation analysis does not determine the stability of the wave so that propagation

failure could occur due to destabilization of the wave for ρ < ρc or ε < εc. This will indeed

turn out to be the case as we show in section 5.4, where we present numerical solutions of

equation (5.1) and provide further insights into the mechanism for propagation failure.

5.3.3 Smooth nonlinearities and higher–order corrections

In the case of smooth nonlinearities, the Fourier transforms Ã(q) and f̃(U)(q) appearing

in equation (5.43) no longer have simple poles and in general Φ1 will consist of exponentially

small terms. It follows that Φ1 may be less significant than the O(ε2) terms ignored in the

perturbation expansion of (5.8). Therefore, following the treatment of traveling fronts [20],

we carry out a perturbation expansion of system (5.8) to O(ε2). This yields an equation

for (u2, v2) of the form
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− ∂

∂τ

(
u2(ξ, τ)

v2(ξ, τ)/αp

)
+ L

(
u2(ξ, τ)
v2(ξ, τ)

)
= −φ′2(τ)

(
U ′(ξ)

V ′(ξ)/αp

)
(5.50)

−φ′1(τ)
(

u′1(ξ)
v′1(ξ)/αp

)
+

(
h2(ξ,

φ
ε )

0

)

where L is defined by equation (5.13) and

h2(ξ,
φ

ε
) = −1

2

∫ ∞

−∞
W (ξ − ξ′)f ′′(U(ξ′))[u1(ξ

′)]2dξ′

−
∫ ∞

−∞
Dc

(
[ξ′ + φ]

ε

)
W ′(ξ − ξ′)f ′(U(ξ′))u1(ξ

′)dξ′ (5.51)

+

∫ ∞

−∞
Dc

(
[ξ′ + φ]

ε

)
W (ξ − ξ′)[f ′(U(ξ′))u′1(ξ

′) + f ′′(U(ξ′))U ′(ξ′)u1(ξ)]dξ
′.

The existence of a bounded solution requires the solvability conditions (5.17) and

Kφ′2(τ) + L(τ)φ′1(τ) =

∫ ∞

−∞
A(ξ)h2(ξ,

φ

ε
)dξ, (5.52)

where

L(τ) =

∫ ∞

−∞
[A(ξ)

∂u1(ξ, τ)

∂ξ
+ α−1

p B(ξ)
∂v1(ξ, τ)

∂ξ
]dξ. (5.53)

In order to evaluate the solvability condition (5.52), we must first determine u1(ξ, φ/ε) from

equation (5.12). If we choose Dc(x) to be a sinusoid, then u1(ξ, φ/ε) will include terms

that are proportional to sin(φ/ε) and cos(φ/ε). Thus substituting u1(ξ/φ/ε) into equation

(5.51), will generate terms of the form sin2(φ/ε) and cos2(φ/ε) due to the quadratic term

in u1. Using the identities 2 sin2(x) = 1− cos(2x) and 2 cos2(x) = 1+cos(2x), implies that

there will be an ε–independent contribution to φ′2. Thus for smooth nonlinearities, we find

that

dφ

dτ
= c+ ε2C2(c) +D2

(
c,
φ

ε

)
, (5.54)

where C2 is independent of ε and D2 is exponentially small in ε. Equation (5.54) is the

second–order version of the phase equation (5.19) in cases where the first–order term is

exponentially small. Again the condition for wave propagation failure is that the right–hand

side of equation (5.54) vanishes for some φ.

5.4 Numerical results

Our perturbation analysis suggests that as ρ increases, the mean speed of a traveling

pulse decreases, and, at least for sufficiently large periods ε of the weight modulation,
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wave propagation failure can occur. However, one of the simplifying assumptions of our

analysis is that the perturbed solution is still a traveling pulse, that is, at each time t

there is a single bounded interval over which the solution is above threshold, which is

equal to the pulse width a of the homogeneous pulse in the limit ε → 0. The inclusion

of a periodic modulation of a monotonically decreasing weight function suggests that the

assumption of a single pulse solution may break down as ρ increases towards unity. In

this section we explore this issue by numerically solving the full system of equations (5.1)

in the case of a Heaviside nonlinearity (f = Θ), and show that wave propagation can

persist in the presence of multiple bumps. Numerical simulations of propagating pulses

employ finite difference schemes for calculating the space and time derivatives. Initial

conditions are taken to be solutions to the homogeneous problem given by equations (5.28)

and (5.29). We then apply backward Euler to the linear terms, and forward Euler with a

Riemann sum for the convolution operator. Space and time discretizations are taken to

be ∆t = 0.01 and ∆x = 0.01. The numerical results are stable with respect to reductions

in the mesh size provided that ∆x ≪ 2πε. Finally, boundary points evolve freely, rather

than by prescription, and the domain size is wide enough so that pulses are unaffected by

boundaries.

In Figure 5.5 we show some examples of traveling pulse solutions in an inhomogeneous

network with weight distribution given by equations (5.2), (5.3) and (5.4). The period of

the modulation is taken to be relatively small (ε = 0.1). We take as initial conditions the

invariant profile for the corresponding homogeneous case, obtained by solving in traveling

wave coordinates for the ε = 0 case, which gives (U, V ) in equations (5.28) and (5.29). It

can be seen from Figure 5.5 that as the amplitude ρ of the periodic modulation increases

the wave slows down and narrows, which is consistent with our perturbation analysis.

Moreover, the network activity develops a rippling within the interior of the pulse as can

be seen more clearly in Figure 5.6, where we directly compare the numerical solution of

the homogeneous network with that of a corresponding inhomogeneous network. Super-

imposing the two wave profiles at an early time (t = 10) illustrates the thinning of the

pulse, and shows that the difference of the two wave profiles is an oscillatory component

of approximately zero mean, which would correspond to u1 in our perturbation analysis.

Similarly, comparing the two wave profiles at a later time (t = 200) illustrates the slowing

down of the pulse. As ρ increases the amplitude of the ripples also increases such that

for sufficiently large ρ, activity at any given time t alternates between superthreshold
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Figure 5.5. Traveling pulse dependence upon inhomogeneity modulation amplitude. (Top
Left): Stable traveling pulse for a homogeneous network with exponential weight function
(5.3) and fixed parameters κ = 0.2, βp = 2.0, and αp = 0.04 (for all plots). (Top Right):
Corresponding traveling pulse for an inhomogeneous network with weight distribution (5.2)
and a sinusoidal modulation with ε = 0.1 and ρ = 0.3. We see rippling in the interior of the
pulse. (Bottom Left): Using a more severe inhomogeneity, ρ = 0.8, leads to rippling in the
active region of the pulse such that now the interior crosses below threshold periodically.
(Bottom Right): For ρ = 1, the effect is even more severe.
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Figure 5.6. Comparison of traveling pulses in homogeneous and inhomogeneous network.
(Top Left): Comparison of the wave profiles at time t = 10 for the homogeneous (dashed
line) and the inhomogeneous (solid line) cases. Here, parameters are κ = 0.2, βp = 2.0,
αp = 0.04, ε = 0.3, and ρ = 0.3. Including periodic modulation clearly thins the pulse as
we see its profile fits within that of the homogeneous medium. (Top Right): Subtraction
of the homogeneous solution from the inhomogeneous at time t = 10. We see here an
approximation of u1(x, t), from our perturbation analysis. The dominant detail is the
oscillations with period 2πε. (Bottom Left): Profile comparison at t = 200. Homogeneous
solution has moved well ahead of the inhomogeneous due to speed difference. (Bottom
Right): Pseudocolor plot of u1(x, t), obtained by subtracting the homogeneous solution
from the inhomogeneous. The dark bands delineate the underlying homogeneous solution.
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and subthreshold domains. This is illustrated in Figure 5.7. A closer look at the time

evolution of the wave profile when the rippling is above threshold within the interior of

the pulse shows that individual ripples are nonpropagating and transient, with new ripples

appearing at the leading edge of the wave and subsequently disappearing at the trailing

edge, see Figure 5.7. Interestingly, such behavior persists for large ρ when the ripples cross

below threshold within the interior of the pulse, see Figure 5.8. Now the pulse actually

consists of multiple bumps, each of which is nonpropagating but exists for only a finite

length of time. The sequence of events associated with the emergence and disappearance

of these bumps generates a wave envelope that behaves very much like a single coherent

traveling pulse. Hence, for sufficiently short wavelength oscillatory modulations of the

weight distribution, the transient multiple bump solution can be homogenized and treated

as a single traveling pulse. However, the wave speed of the multiple bump solution differs

from that predicted using perturbation theory. This is shown in Figure 5.9, where we

compare the c̄ vs. ε curves obtained using perturbation theory with data obtained by

directly simulating the full system (5.1). In the case of small ρ, a stable (single bump)

traveling pulse persists for all ε, 0 ≤ ε < 1 and c̄ is a monotonically decreasing function of

ε. Moreover, the numerically calculated value of the average wave speed agrees quite well

with the first–order perturbation analysis. On the other hand, for large values of ρ, such

agreement no longer holds, and we find that the traveling pulse destabilizes at a critical

value of ε that is well below the value predicted from the perturbation analysis.

In Figure 5.11 we compare the behavior of traveling pulses for short wavelength (ε = 0.2)

and long wavelength (ε = 0.9) periodic modulation. The amplitude is taken to be relatively

large, ρ = 0.8, so that multiple bump solutions occur. We see that for long wavelength

modulation, the initial pulse transitions into a nonpropagating multiple bump solution,

with successive bumps disappearing sequentially and no additional bumps being created;

the failure to generate new bumps means that activity cannot propagate. We can see this

more clearly when examining a series of snapshots of the pulse/bump profiles in Figure

5.12. In conclusion, one way to understand wave propagation failure for large ρ is to

note that a large amplitude periodic weight modulation can generate a pinned multiple

bump solution. However, in the absence of any inhibition such a multiple bump solution

is unstable [99, 144]. In the case of small ε, destabilization of the bumps generates new

bumps at the leading edge of the bump such that activity can propagate in a coherent

fashion. Increasing ε prevents the creation of new bumps and propagation failure occurs.
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Figure 5.7. A collection of traveling wave profiles taken at time t = 10 for various
amplitudes ρ and ε = 0.1. Other parameters as in Figure 5.5. (Top Left): ρ = 0.1.
Notice that rippling of the activity does not dip below threshold within the pulse interior.
(Top Right): ρ = 0.3. Rippling crosses below threshold at the edges of the pulse creating
a couple of bumps. (Bottom Left): ρ = 0.7. Rippling now generates a multiple bump
solution. (Bottom Right): ρ = 0.8.
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Figure 5.8. A series of snapshots in time of a traveling pulse for κ = 0.2, βp = 2.0,
αp = 0.04, ρ = 0.3, ε = 0.3. The interior of the pulse consists of nonpropagating, transient
ripples. The disappearance of ripples at one end and the emergence of new ripples at the
other end generates the propagation of activity. Notice that the solitary wave profile is not
invariant, reflecting the underlying inhomogeneity. (Top Left): t = 1 (Top Right): t = 5
(Bottom Left): t = 10. (Bottom Right): t = 20.
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Figure 5.9. A series of snapshots in time of the “pulse” profile for κ = 0.2, βp = 2.0,
αp = 0.04, ρ = 0.8, ε = 0.3. The solitary pulse corresponds to the envelope of a
multiple bump solution, in which individual bumps are nonpropagating and transient.
The disappearance of bumps at one end and the emergence of new bumps at the other end
generates the propagation of activity. Notice that the solitary wave profile is not invariant,
reflecting the underlying inhomogeneity. (Top Left): t = 10 (Top Right): t = 15 (Bottom
Left): t = 20. (Bottom Right): t = 30.
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Figure 5.10. Comparison of perturbation theory with direct numerical simulations.
Continuous curves show average wave speed c̄ as a function of ε obtained using perturbation
theory. Data points are the corresponding wave speeds determined from numerically solving
equation (5.1). In the case of low amplitude modulation (ρ = 0.3, dark curve) a stable
traveling pulse persists for all ε, ε < 1, whereas for large amplitude modulation (ρ = 0.8,
light curve), wave propagation failure occurs as ε increases.

Figure 5.11. Comparison of traveling pulses in the case of short and long wavelength
periodic modulation with ρ = 0.8 and all other parameters as in Figure 5.5. (Left): For
short wavelength modulation (ε = 0.2) the traveling pulse shrinks and slows, but does not
annihilate. (Right): For long wavelength modulation (ε = 0.9) wave propagation failure
occurs. The initial pulse transitions into a collection of multiple equal width stationary
bumps which are unstable.
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Figure 5.12. A series of snapshots in time of the “pulse” profile for the inhomogeneous
network with κ = 0.2, βp = 2.0, αp = 0.04, ρ = 0.8, ε = 0.9. (Top Left): The initial wave
profile, which is taken to be the invariant wave profile U of the homogeneous network. (Top
Right): Shortly after the simulation begins (t = 0.5), the interior of the pulse develops
ripples such that the active region contains a subregion for which activity is subthreshold.
(Bottom Left): At time t = 2 a multiple bump profile has emerged. We can really see
here how a multiple bump solution, as defined by multiple neighboring standing profiles,
emerges from the pulse profile of t = 0. (Bottom Right): Collapse of the pulse interior
occurs due to the disappearance of the unstable bumps. Since no new bumps emerge, there
is no propagating activity.
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The effect of the periodic weight modulation on a different type of solution is illustrated

in Figure 5.13, where, motivated by a prior numerical study of multiple bumps [99], the

initial condition of the network is taken to consist of three bumps,

u(x, 0) =

1∑

j=−1

cos
(x
ε

)
exp

(
−
(
0.1(x − j · 20)

ε

)2
)
. (5.55)

Each initial bump generates a pair of left and right moving fronts. In the homogeneous case,

we see that collision of left and right moving waves results in a bidirectional front. That is,

the region within the interior of the boundary formed by the two outermost fronts becomes

superthreshold. In the inhomogeneous case, the collision of the waves is insufficient to

maintain activity across this region, and one finds a pair of counter–propagating pulses.

5.5 Discussion

In this chapter we analyzed wave propagation in an excitatory neuronal network treated

as a periodic excitable medium. The periodicity was introduced as an inhomogeneous

periodic modulation in the long–range synaptic connections, and was motivated by the

existence of patchy horizontal connections in cerebral cortex. We showed that for small

Figure 5.13. Traveling waves in homogeneous and inhomogeneous networks. (Left):
In the case of a homogeneous network, a three bump initial condition evolves into a
bidirectional front following the collision of left and right traveling waves. Parameters
are κ = 0.2, βp = 2.0, αp = 0.04. (Right): In the corresponding inhomogeneous network
with ε = 0.2 and ρ = 0.8, the collision of left and right traveling waves results in a pair of
counter–propagating pulses. Here the modulated synaptic interactions are insufficient to
maintain activity in the region between the two pulses.
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amplitude, short wavelength periodic modulation the main affect of the inhomogeneity is

to slow down a traveling pulse, and the mean speed of the pulse can be estimated quite well

using perturbation theory. In the case of large amplitude modulation, a stable traveling

pulse still exists for sufficiently small ε, but now the pulse is the envelope of a multiple bump

solution in which individual bumps are unstable and transient. Wave propagation arises

via the appearance (disappearance) of bumps at the leading (trailing) edge of the pulse.

As ε increases wave propagation failure occurs due to the fact that there is insufficient

activity to generate new bumps.

Although the existence of multiple bump traveling “pulses” is interesting from a dy-

namical systems perspective, it is less clear whether such solutions can be observed in real

neural tissue. Further experiments in cortical slice or in vivo as described in section 1.2

may reveal similar phenomena. One of the biological limitations of the integro–differential

equations used in this and other studies is that although these equations support traveling

waves that have speeds consistent with neurophysiology, the pulses tend to be too wide.

That is, taking the range of synaptic connections to be 1mm, the width of a stable pulse

tends to vary between 5–30mm, see Figure 5.2, whereas waves in slices tend to be only

1mm wide [136, 139], see Figure 1.1. More realistic widths and wave speeds could be

generated by taking the effective range of synaptic connections to be a few hundred

µm, that is, by assuming that the predominant contribution to synaptic excitability is

via local circuitry rather than via long–range patchy horizontal connections. However,

inhomogeneities occurring at smaller spatial scales are unlikely to exhibit any periodic

structure.

Irrespective of these particular issues, our analysis raises a more general point that

would be interesting to pursue experimentally, namely, is it possible to detect the effects

of network inhomogeneities by measuring the properties of traveling waves? Signatures

of such inhomogeneities would include time–dependent rippling of the wave profile and

variations in wave speed. However, such features may not be detectable given the current

resolution of microelectrode recordings.



CHAPTER 6

FUTURE DIRECTIONS

Several additional research projects are suggested by the results of this dissertation. In

particular, we have seen short–term synaptic plasticity can be a powerful mechanism for

generating spatially structured activity in networks of neurons. Therefore, it behooves us to

explore other forms of short–term synaptic plasticity (STSP) such as synaptic facilitation,

the process by which synapses become stronger due to recurrent usage [169, 189]. Also,

spike–timing–dependent–plasticity (STDP) is a mechanism of growing interest for both

experimentalists and theoreticians in balancing activity, affecting sensory processes, and

even for its role in pathology. It likely contributes to a great deal of cortical development

and function, so it would also be worthwhile to pursue its study in networks of neurons [1].

Additionally, we could explore the effects of synaptic plasticity within the context of smaller

networks (2− 103) of spiking neurons. Such studies would indeed invite further interesting

mathematical applications, like stochasticity and coupled oscillator theory. Also, with

the use of more biophysically accurate models of neurons, we could address the effects of

plasticity on sensory and motor processes at the single neuron level. Finally, we would like

to study the effects of stochasticity in rate descriptions of large networks of neurons with

synaptic depression. As we have shown, the inclusion of additive noise into the network

can lead to dynamics not well predicted by the deterministic system. We could develop

analytical tools for studying stochastic dynamics in networks with plasticity. We shall now

discuss some of the future direction we plan to pursue.

6.1 Slow Oscillations in a Neuronal Network with Synaptic
Facilitation

In this dissertation, we have studied many different forms of spatiotemporal activity

that can arise within neuronal network models with short–term synaptic depression. Due

to the depletion of resources within pre–synaptic boutons of active populations of neurons,

synapses become less effective and excitatory activity is curtailed over time, resulting in
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nonmonotonic dynamics. Short term synaptic facilitation is another plasticity process

in which synapses become more effective over time. It is thought that this is due to

calcium building up within the presynaptic cell, allowing the activation and release of

more vesicles than the baseline level [189]. Since more neurotransmitter can be released,

synaptic facilitation can lead to postsynaptic potentials tens of times greater than the

original [88, 113]. Facilitation is activated over times roughly equal to the membrane time

constant and has been shown to recover with a time constant 1–3s. With a slightly slower

recovery time constant than synaptic depression, recent theoretical studies have proposed

synaptic facilitation as a candidate mechanism for slow (0.1–1Hz) oscillations [66, 121].

Slow oscillations (0.1–1Hz) in neuronal firing rate arise spontaneously in vivo during

sleep and reduced alertness [160, 117]. During sleep, both excitatory and inhibitory

populations of the sensory, motor, and associational areas of the neocortex exhibit such

slow oscillations. In fact, using electroencephalogram and magnetic resonance imaging,

slow oscillations have been shown to propagate across the cortex as a traveling wave at

about 1.2–7.0m/s [115]. High density EEG has shown that these waves have distinct

cortical origins; they propagate across cortex and involve particular cortical structures

[130]. The purpose of slow oscillations during sleep remains ambiguous, but they appear

to play a role in homeostatically maintaining the balance of ionic currents and maintaining

readiness for transitions to the aroused state [160]. Applying a slowly oscillating (0.75Hz)

potential field to the scalp during slow wave sleep in human has been shown to improve

potentiation of hippocampal declarative memory [114]. Learning tasks can even be invoked

in localized regions of the neocortex, and performance can be improved by increased

slow wave activity [70]. Phase–locking of slow oscillations between the neocortex and

hippocampus is suggestive of its possible role in memory consolidation via plasticity [63].

Recent studies have shown partial or total sleep deprivation leads to increased slow wave

activity in the following night [15]. Evidence suggests slow wave sleep is more than an

epiphenomenon and is actually a sleep–regulating mechanism. Slow oscillations are often

referred to as repetitive transitions between an Up state (where populations have a high

firing rate) and Down state (where populations have a low firing rate) [63, 66, 6].

When neocortical slices are bathed in a medium mimicking extracellular ionic com-

position, slow wave oscillations are evoked both spontaneously and following glutamate

stimuli [147, 146]. Isolated from other areas of the brain, slow oscillations persist due to

bursts of reentrant excitation followed by longer periods of network activity failure. The
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shut off of network excitation is likely due to some upregulation in inhibitory interneuron

influence, since partially blocking slow inhibition with bicuculline increases the amplitude

of the depolarized state. The slow oscillation also propagates horizontally along the slice

at about 6–16mm/s in visual cortical slice and about 114mm/s in piriform cortical slices.

Disparity between in vivo and in vitro wave speeds may result from removal of the slice

from its intralayer connectivity structure.

Such robust oscillations must be sustained by a reliable mechanism that allows the

transition from the Up to the Down state. In recent modeling studies, short–term synaptic

plasticity has been shown to be a reliable mechanism with appropriate time constants

for slow oscillations [169, 66, 121]. In particular, facilitating synapses from excitatory

to inhibitory neurons behave as negative feedback that drives more inhibition when the

firing rate of the excitatory population resides in the Up state. Once increased inhibition

overwhelms excitation, all activity curtails to the Down state until the facilitating synapses

return to their baseline utilization. Finally, low levels of excitation rekindle network activity

to the Up state again [121]. Facilitation appears to be an ideal explanation as its recovery

time constant is measured as 1–3s [166, 113, 156], roughly the inverse of the 0.1–1Hz

frequency of slow oscillations. However, one necessary assumption has been persistent

input to the network [121], whereas the slow oscillations appear to emerge spontaneously

in experiment [147]. Also, as their network does not include space, one cannot observe

whether oscillations generated as such will propagate or not.

Thus, we could consider a two population neuronal network model where synapses from

excitatory to inhibitory populations are facilitating [169, 6, 121, 128]. Such a model allows

us to study the effects of dynamic synapses in an excitatory–inhibitory network. The local

level of facilitation here depends on the local firing rate f(u) of the excitatory population.

We take separate spatially extended excitatory and inhibitory populations, all coupled

nonlocally [181]

τe
∂u(x, t)

∂t
=− u(x, t) + Jee

∫ ∞

−∞
we(x, x

′)f(u(x′, t))dx′

− Jei

∫ ∞

−∞
wi(x, x

′)f(v(x′, t))dx′ + ηe(x, t) (6.1a)

τi
∂v(x, t)

∂t
=− v(x, t) + Jie

∫ ∞

−∞
we(x, x

′)p(x′, t)f(u(x′, t))dx′ + ηi(x, t) (6.1b)

∂p(x, t)

∂t
=
φ− p(x, t)

τf
+ γφ(1− p(x, t))f(u(x, t)) (6.1c)
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Equation (6.1a) describes the evolution of the input u(x, t) to the excitatory (e) evolving

according to the time constant τe in the presence of connections between excitatory pop-

ulations and feedback from the inhibitory population, via presynaptic firing rates f(u)

and f(v). In equation (6.1b), the input v(x, t) inhibitory population’s (i) firing rate

v(x, t) evolves according to the time constant τi and is driven by the excitatory and

inhibitory populations. The parameters Jαγ ≥ 0 denote the strength of connectivity

from the γ–population to the α–population. For our study, we would initially ignore i

to i connections, as they play a secondary role in the dynamics of the network. External

random fluctuations to the input drives u and v are given by the spatially uncorrelated

Gaussian white noise terms ηe(x, t) and ηi(x, t) respectively. Input from the excitatory to

the inhibitory population is facilitating through the dynamic variable p(x, t) that evolves

according to equation (6.1c). The factor p(x, t) can be interpreted as the fraction of synaptic

resources currently being utilized [169], which is increased at a rate γφ(1−p)f and returns

to baseline fraction φ according to the time constant τf (experimentally shown to be 1–3s

[113, 169, 166, 156]).

With such a model in hand, we propose to study a variety of spatiotemporal dynamics in

a network with facilitating synapses from the excitatory to inhibitory populations, paying

particular attention to slow oscillations. As facilitation occurs on a slower timescale than

depression, we ignore effects of a dynamic depression variable in this study, and qualitative

results are essentially unchanged. In the case of a linear threshold firing rate function,

it has been shown the space–clamped version of such a network supports limit cycles as

in [121], in the presence of an input. With this in mind, we may be able to carry out a

phase reduction of the slow oscillation in the space–clamped system to project the system

to a single variable. Thus, we might study the propagation of slow oscillations within a

spatially extended network with synaptic facilitation as a network of coupled oscillators.

In addition, we might use some of the analytical techniques to study the system in the

case of a Heaviside firing rate function (1.4). It is likely that such a system will support

bumps, pulses, and possibly even Turing patterns. We could then use linear stability

analysis to see if any such time invariant states might destabilize to oscillatory solutions.

The piecewise smooth stability analysis of standing bump solutions (section 2.2) would

also be useful because the network with facilitation will have jump discontinuities in the

facilitation variable. Finally, we could corroborate our results with numerical simulations

of the full network for a variety of firing rate functions and parameters.
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6.2 Spiking Networks with Synaptic Plasticity

In this dissertation, we have analyzed many of the effects of including synaptic de-

pression in rate models of neuronal networks. However, many important phenomena of

the brain involve dynamics that occur on finer spatial and temporal scales that cannot

be reached by large scale rate approximations. Thus, we shall discuss ways of including

synaptic plasticity into models of spiking neurons. As opposed to the rate models we

have studied throughout this dissertation, spiking networks can be used to study many

of the short–time, individual neuron dynamics that occur within the brain [89, 1]. Since

these models intend to assign an equation to individual neurons, there is not the loss of

detailed spike timing information that occurs through spatial averaging. There have been

few studies of the role of plasticity in sensory processes of the brain to this point [45, 172].

Some minimal theory has been developed with regard to how plastic synapses may affect

synchrony in spiking networks of neurons [75, 110, 35]. Therefore, we propose to carry

out detailed analyses to derive biophysically appropriate models of spiking neurons with

plasticity, study the various spatiotemporal activity of networks of such neurons, and apply

our findings to some sensorimotor systems within the brain.

Two types of synaptic plasticity have been strongly implicated in the sub–second

dynamics observed in sensory systems: short–term synaptic plasticity and spike–timing–

dependent plasticity. As we have discussed so far in this dissertation, short–term synaptic

plasticity (STSP) modifies the availability of resources in presynaptic cells, resulting in

changes to the strength of synapses that last a few seconds. Specific forms of STSP are

depression (see Chapters 2, 3, and 4), which weakens synaptic coupling, and facilitation (see

section 6.1), which strengthens synaptic coupling [189]. Synchronization of central pattern

generators used in locomotion [131] and the extraction of properties of visual stimuli [34]

are both known experimentally to utilize STSP. Spike–timing–dependent plasticity (STDP)

describes a change to the strength of a synapse that depends on the relative timing of presy-

naptic and postsynaptic spikes. Usually for excitatory synapses, if the presynaptic arrives

before the postsynaptic spike, there is a relative strengthening in the synapse between

the two cells. If the presynaptic arrives after the postsynaptic spike, a relative weakening

in synaptic strength occurs. In some inhibitory cells, strengthening occurs regardless of

the ordering of spikes. Evidence suggests STDP arises mostly from the modification of

ion channels by intracellulular calcium [45]. Due to its submillisecond timescale precision,

STDP is a well utilized mechanism of sensation [59]. Spike–timing–dependent plasticity can
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modify receptive fields in visual cortex [123], resolve fine timing of auditory signals in the

dorsal cochlear nucleus [172], and adapt place cells in the hippocampus [120]. Since synaptic

plasticity can have such a strong influence on the neural processes of sensation, it will be

quite useful to understand the many characteristics of neuronal networks with synaptic

plasticity from a mathematical perspective. Thus we propose to develop mathematical

models of neural oscillations in networks with plastic synapses and apply these models to

sensory processing in the olfactory and auditory systems.

We shall begin by developing a new model that represents the qualitative dynamics

of a network of spiking neurons whose synapses are subject to plasticity. Rather than

modeling the detailed spike generation process of spiking neurons, theoretical studies often

represent them using the integrate–and–fire model, employing the capacitive nature of the

cell membrane. Specifically, the quadratic integrate–and–fire model is convenient as it has

no hard threshold, contains intrinsic dynamics of a spike, and represents the normal form of

any neuron exhibiting a saddle–node on a limit cycle bifurcation [90]. Applying a change of

variables to the quadratic integrate–and–fire model makes its behavior more transparent,

leading to the theta model

dθ

dt
= ω(1− cos(θ)) + η(1 + cos(θ)). (6.2)

Thus, the neuron or oscillator is described in terms of a phase variable that lies between

−π and π. Each time θ = π, the full model fires a spike. The constant η is proportional to

any current, applied or synaptic. Thus, a network of N synaptically coupled neurons can

be modeled using the theta model, where the coupling term η = I + s involves an applied

plus a dynamically changing synaptic component as

dθi
dt

= ωi(1− cos(θi)) + ηi(1 + cos(θi)), (6.3)

dsij
dt

= −τijsij (j 6= i), (6.4)

where i = 1, ..., N ; ηi = I(t)i +
∑

j 6=i αjsij; αj ∈ [−1, 1] determines an excitatory or

inhibitory strength of connection; and sij is reset to kij every time θj reaches π [49, 17].

Thusfar, such models have been used to study traveling waves [132, 143], standing bumps

[144], synchrony [49], and gamma rhythms [17, 16]. A major extension of this model would

be to explore the effects of dynamically varying kij according to various synaptic plasticity

dynamics [169, 159, 75, 110].

A first research direction will be to perform a phase reduction on augmented equations

that include proper forms for synaptic plasticity’s dependence on ionic currents or the
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membrane potential of neurons. This may lead to a phase oscillator that does not represent

the normal form of a saddle–node on a limit cycle bifurcation. Therefore, we may find

bifurcations and dynamics that are novel to reduced models of spiking neurons. There are

a number of descriptive models of the electrophysiology of spikes in a single neuron, and

we will develop conditions on the form of the spiking mechanism and plasticity that lead

to certain bifurcations.

Otherwise, we will heuristically include resource dependent synaptic facilitation and/or

depression in the model by assigning kij = piqi/φ, along the lines of [169, 121], and

introducing the additional equations

dpi
dt

=
φ− pi
τf

+ βφ(1− pi)ψ(θi), (6.5)

dqi
dt

=
1− qi
τd

− γpiψ(θi), (6.6)

where τf and τd represent the time constants of synaptic depression and facilitation re-

spectively; β and γ are the strengths of facilitation and depression; φ is the baseline

utilization of the synapse; and ψ is a non–negative function with a sharp maximum close

to θi = π, normalized to unity. Each spike of the theta model will kick the facilitation

and/or depression variable, effectively scaling the weights between phase oscillators in

the network. Depending on parameters, facilitation and depression may compete or one

mechanism may dominate.

In addition, spike–timing–dependent plasticity (STDP) can be modeled as an abrupt

change to the synaptic weight kij for every single pairing of a presynaptic spike θj = π and

postsynaptic spike θi = π that occur at times tj and ti respectively. Based on previous

experimental studies, the change to the synapse strength depends on the relative spike

timing ∆t = ti − tj according to [11, 159]:

∆kij(∆t) =

{
κ+e

−∆t/τ+ , ∆t ≥ 0,

−κ− + e∆t/τ− , ∆t < 0,
(6.7)

where κ+ (κ−) is the strengthening (weakening) rate for positive (negative) ∆t that

occurs with time constant τ+ (τ−). To analytically study this model, we will use the

assumption that changes to synaptic strength due to plasticity are slow compared to the

spiking dynamics. Thus, they can be approximately calculated using the phase difference,

∆θij = θi − θj, at each spike according to

dkij
dt

= κ(δ(θi − π))

{
(kmax − kij)e

∆θij/τ+ , ∆θij ∈ (−π, 0],
−kije−∆θij/τ− , ∆θij ∈ (0, π],

(6.8)
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where κ scales the strength of STDP. Global synchronization has recently been studied in a

network with STDP, but without short–term synaptic plasticity [75, 110]. Major extensions

would be to study clustered states within the network, spatiotemporal dynamics, and global

synchronization as influenced by either form of plasticity. Utilizing perturbation theory,

phase resetting curves, and other techniques, we will analyze the existence and stability of

the many possible states of the network.

With a well developed model in hand, we could then study the wide range of different

synchronous firing patterns in our spiking network with plasticity. Global synchronization

is a well studied problem in phase models, employing many different analytic techniques

[163]. Adapting previous methods to our model, we will derive an order parameter for

the level of synchronization in the network to give a clear cut bound for parameter values

at which global synchrony is possible [91]. Stability will then be calculated by linearizing

about each predicted state. Certainly, synaptic plasticity could modify conditions under

which networks synchronize to particular frequency rhythms. Following a study of global

synchrony, we will derive conditions on the physiological parameters that would ensure

rotating waves, clustered states, or spiral waves. Since the strength of connections in

our proposed network will be variable, we will use past methods to see how plasticity

may bring the network in and out of coherent firing. We will also employ dimension

reduction techniques to study variations in spatiotemporal dynamics in phase models

with plasticity [94]. Additionally large but finite networks of phase oscillators have been

recently analyzed using kinetic theory, where the states of the network are examined

through a probability distribution [29]. Stochastic methods will be useful in analyzing

the correlation of physiological parameters to the stability of synchronous firing in plastic

networks, considering the small number of quanta involved in synaptic transmission.

Finally, with extensive knowledge of the dynamics supported by plastic networks of

spiking neurons, we could study the importance of plasticity in networks for sensory

processing. Guided by experimental data, we will use our model to study specific sensory

systems. Specifically, we could study how the mitral cells of the olfactory lobe utilize STSP

for proper coding [150]. Also, we could follow up on recent experimental work regarding

STDP’s role in audition. In particular, it would be valuable to study the problem of

tinnitus, a ringing in the ears, that develops, possibly by an excess of STDP [171]. Varying

I(t)i in ways similar to sensory input and studying the various stable solutions that result

in the network will give insight as to the mechanisms for coding and long term changes
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in sensory networks. We may learn more mechanisms that underpin the neural substrates

of human experience. Framing this in a network amenable to mathematical analysis will

allow us to extract general properties regarding how well certain networks handle sensory

coding.

6.3 A Stochastic Neural Field
with Synaptic Depression

Recently, there has been a great deal of interest in developing stochastic descriptions of

neural fields [23, 30]. This allow one to model the higher order statistics of large networks

of neurons such as the correlations between firing rates at different cortical locations. The

models we have presented so far in this dissertation cannot describe the dynamics of these

correlations. A recently proposed method of deriving stochastic neural field models is to

describe the dynamics of a network by a master equation whose mean–field limit is the

deterministic rate model of interest. The equations associated with the higher moments

of the process can then be derived using a path integral approach from statistical physics

[29, 30] or a system–size expansion [173, 23]. The moment hierarchy can then be truncated,

as long as the system is not operating close to criticality. Thusfar, analyses of stochastic

neural field theory have not included any local form of negative feedback but have only

considered equations for the evolution of the firing rate of the neural units themselves.

We plan to study the effects of including synaptic depression in such stochastic models of

neural fields.

Thus, we shall construct a master equation for an appropriate Markov process, which

reduces to a model of a neuronal network with resource dependent synaptic depression, as

described in section 3.1 as well as in [169, 164]. To accomplish this, we will need a way to

appropriately describe the stochastic evolution of such a system in this context. In [23],

the number of neurons in each subpopulation is taken to be large but finite, and thus the

inverse of this can be used to generate a hierarchy of moment equations as in Van Kampen

[173]. In the spirit of this formalism, we shall consider a finite number of vesicles full of

neurotransmitter in each subpopulation. Therefore, we can study stochastic effects within

the resource pool in a similar way to that in the neural activity variable.

Initially, we need not consider the effects of spatial extension in our model. We can

begin by studying stochastic oscillations in an excitatory neuronal network with synaptic

depression. As we found in section 3.1.3, additive noise driving the input current of a

space–clamped model can generate self–sustained oscillations in parameter regimes where
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the deterministic system does not support limit cycles. These oscillations can even be quite

regular, exhibiting coherence resonance [107]. It would be interesting to study the formation

of oscillations in the neuronal network with synaptic depression as described by a Markov

process. Then, using techniques of the system size expansion, we could determine how

higher order statistics like correlations may destablize steady states of the mean field model

to limit cycle oscillations. It would also be interesting to compute, if possible, the optimal

system size for the most regular oscillations. With such information in hand, we could then

move to an analysis of the spatially extended system to examine how noise may generate

spontaneous traveling waves within the network, break the symmetry of deterministic

solution like target waves, and even give rise to spiral waves. In doing such analyses, we

would be able to gain insight about a great deal of noise–induced phenomena in neuronal

networks with synaptic depression that escapes our current deterministic treatment.



APPENDIX A

AMARI’S STANDING BUMP ANALYSIS

In sections 2.2, 3.3, and 4.3 and Appendix B, we examine the existence and stability

of standing bumps in piecewise smooth neural fields with nonlinear adaptation. Therefore,

it is useful for us to review here the analysis of existence and stability of bumps in the

scalar neural field (1.3) with f = Θ, the Heaviside function, as was developed by Amari

[3]. Equilibrium solutions of equation (1.3) satisfy

U(x) =

∫ ∞

−∞
w(x − x′)H[U(x′)− θ]dx′. (A.1)

Let R[U ] = {x|U(x) > θ} be the region over which the field is excited or superthreshold.

Equation (A.1) can then be rewritten as

U(x) =

∫

R[U ]

w(x− x′)dx′. (A.2)

Exploiting the fact that any solution can be arbitrarily translated so that it is centered at

the origin, we define a stationary pulse solution of half–width a to be one that is excited

over the interval (−a, a). Let
W (x) =

∫ x

0
w(y)dy (A.3)

and

Wm = max
x>0

W (x), W∞ = lim
x→∞

W (x) (A.4)

such that W (0) = 0 and W (−x) = −W (x). For a bump of half–width a, equation (A.2)

reduces to the form

U(x) =W (a+ x)−W (x− a). (A.5)

Since U(±a) = θ by definition, we obtain the following necessary condition for the existence

of a bump:

W (2a) = θ. (A.6)

This condition is also sufficient for a Mexican hat weight distribution [3]. It will be

shown below that a bump is stable provided the condition W ′(2a) < 0 is satisfied. The
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existence and stability of activity bumps for a given θ can thus be determined graphically

as illustrated in Figure A.1(b). For a certain range of values of θ > 0 one finds bistability

between a stable bump and a uniform rest state, U(x) = 0 for all x ∈ R, with an unstable

bump acting as a separatrix between these two solutions.

The linear stability of a stationary pulse can be determined by setting u(x, t) = U(x)+

ǫψ(x, t) and expanding to first order in ǫ [137, 55, 41]. This leads to the eigenvalue equation

ψt(x, t) + ψ(x, t) =

∫ ∞

−∞
w(x− x′)δ(U(x′))ψ(x′)dx′, (A.7)

where δ is the Dirac delta distribution. Using the identity in the distribution sense

δ(U(x)) =

(
δ(x− a)

|U ′(a)| +
δ(x+ a)

|U ′(−a)|

)
, (A.8)

and setting |U ′(a)| = U ′(−a) = γ−1, we obtain the linear equation

ψt(x, t) + ψ(x, t) = γ(w(x− a)ψ(a, t) + w(x+ a)ψ(−a, t)). (A.9)

a a a

U(x)

θ

a

U(x)

W∞

U(x)

Figure A.1. Construction of a solitary pulse in the Amari model. (a) A Mexican hat
weight distribution w. (b) Integral W (x) of w(x). Horizontal line shows the threshold
θ whose intersections with W (2a) determine the allowed stationary pulse solutions. If
W∞ < θ < Wm then there exists an unstable bump of half–width a1 and a stable bump
of half–width a2. On the other hand, if 0 < θ < W∞ then there only exists an unstable
bump.(c) Unstable bump (broken) acting as a separatrix between a stable bump and the
uniform rest state. (d) For 0 < θ < W∞ the solitary unstable bump acts as a separatrix
between a wavefront and the rest state. Adapted from [50].
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Consider separable solutions of the form ψ(x, t) = eλtψ(x), where ψ(x) is a bounded and

continuous function on R that decays to zero exponentially as x → ±∞. Substitution of

this solution into the linear equation leads to the eigenvalue problem

(λ+ 1)ψ(x) = γ (w(x− a)ψ(a) + w(x+ a)ψ(−a)) . (A.10)

Following Guo and Chow [62], we define the operator L : C[−a, a] → C[−a, a] according to

Lψ(x) = γ(w(x − a)ψ(a) + w(x+ a)ψ(−a)) (A.11)

so that the eigenvalue problem becomes

(λ+ 1)ψ(x) = Lψ(x) on C[−a, a]. (A.12)

It can then be shown that [62] (i) L is a compact linear operator with respect to standard

norms such as Lp, (ii) the eigenvalues λ are real, and (iii) λ = −1 is the only possible

accumulation point of the eigenvalues. Hence, the only possible essential spectrum of the

operator L is located at λ = −1 (spanned by functions ψ(x) that vanish at all boundary

points ψ(±a) = 0), implying that the discrete spectrum of L determines all of the linear

stability properties of the bump solution. The eigenvalues can be obtained by setting

x = ±a in equation (A.10):

(λ+ 1)ψ(a) = γ (w(0)ψ(a) + w(2a)ψ(−a)) (A.13)

(λ+ 1)ψ(−a) = γ (w(−2a)ψ(a) + w(0)ψ(−a)) . (A.14)

This has the solutions ψ(−a) = ±ψ(a) with corresponding eigenvalues

λ± = −1 + γ(w(0) ± w(2a)). (A.15)

Finally, using the fact that γ−1 = w(0) − w(2a) we deduce that λ− = 0 (reflecting the

translation invariance of the system) and λ+ = 2γw(2a). Thus the bump is stable provided

that w(2a) =W ′(2a) < 0.

Note that once the eigenvalues λ have been found, the corresponding eigenfunctions

ψ(x), x ∈ R are determined completely in terms of the perturbations ψ(±a) and the

weight distribution w(x), see equation (A.10). This explains why it is also possible to

analyze the stability of the bumps by restricting attention to the effects of perturbations

at the boundaries of the activity bump as originally formulated [3]. In particular, if ∆+(t)
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denotes a perturbation in the position of the right–hand edge of the bump so that u(x, t) = θ

at x = x+ a+ ǫ∆+(t), then

θ = U(a+ ǫ∆+(t)) + ǫψ(a+ ǫ∆+(t), t)

= U(a) + ǫU ′(a)∆+(t) + ǫψ(a, t) +O(ǫ2),

that is,

∆+(t) = γψ(a, t) (A.16)

since U(a) = θ and U ′(a) = −γ−1. Similarly, the shift ∆−(t) of the left–hand edge satisfies

∆−(t) = −γψ(−a, t). (A.17)

It follows that the eigenmode ψ(−a, t) = ψ(a, t) generates a uniform expansion or contrac-

tion of the bump (∆− = −∆+) whereas ψ(−a, t) = −ψ(a, t) generates a shift in the center

of the bump (∆− = ∆+).



APPENDIX B

STABILITY OF BUMPS IN A PIECEWISE

SMOOTH NEURONAL NETWORK WITH

ADAPTATION

In this appendix, we analyze the existence and stability of stationary bumps in a

neuronal network with spike frequency adaptation. Spike frequency adaptation is the

process by which a neuron’s firing rate decays to a submaximal level, occurring when a

hyperpolarizing potassium current is activated via intracellular calcium [9, 162]. Since

increases in adaptation current are subtractive terms entering the sum total of all currents

driving a population, they can be equivalently thought of as increases in the threshold

required for a nonzero population firing rate. This phenomenon was recently incorporated

into the scalar neuronal network (1.3) by introducing a dynamic threshold into the firing

rate function, so that on setting f = Θ we have [42, 43]

1

α

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x − x′)Θ(u(x′, t)− h(x′, t))dx′, (B.1a)

∂h(x, t)

∂t
= −(h(x, t) − h0) + κΘ(u(x, t) − θ). (B.1b)

The threshold h(x, t) increases from its baseline value h0 to a maximum of h0+κ, when the

input drive u(x, t) is above θ. In keeping with previous analyses of this model, we require

the threshold parameters satisfy h0 < θ < h0 + κ. However, derivations of firing rate

models with spike frequency adaptation from detailed conductance based models suggest

that taking h0 = θ is more physiologically reasonable [9]. The time constant α quantifies

the ratio between synaptic input dynamics and adaptation dynamics. In order to make a

direct comparison with Coombes and Owen [42, 43], we take a Mexican hat weight function

of the form

w(x) = (1− |x|)e−|x|. (B.2)
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Existence of Bumps

A stationary bump solution (U(x),H(x)) of (B.1) satisfies

U(x) =

∫ ∞

−∞
w(x− x′)Θ(U(x′)−H(x′))dx′, (B.3)

H(x) = h0 + κΘ(U(x) −H(x)). (B.4)

We restrict ourselves to examining single bumps that satisfy the threshold conditions

U(±a) = h0 + κ, U(±b) = θ, U(±c) = h0, (B.5)

where a < b < c. As opposed to bumps in the scalar and depressing networks, the

stationary bump solution here will have a disconnected excited region for U , R[U ] =

(−c,−b) ∪ (−a, a) ∪ (b, c), and a different excited region for H, R[H] = (−b, b) so that

U(x) =

(∫ −b

−c
+

∫ a

−a
+

∫ c

b

)
w(x− x′)dx′. (B.6)

An example of such a bump is shown in Figure B.1. This should be contrasted with

multibump solutions, whose activity in in excess of a homogeneous threshold over several

disconnected subdomains [99, 98, 133]. For the Mexican hat weight function (B.2), we can

explicitly evaluate the integrals in (B.6) to yield

U(x) = g(x+ c)− g(x+ b) + g(x+ a)− g(x− a) + g(x− b)− g(x− c), (B.7)

-8 -6 -4 -2 0 2 4 6 8
-0.4

-0.2

0

0.2

0.4

0.6

0.8

x

U(x)

H(x)

(a)

 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.05

0

0.05

0.1

0.15

0.2

0.25

x

R[U]

U(x)

H(x)

c

b

a−a

−b

−c

(b)

Figure B.1. Stationary bump in a network with spike frequency adaptation.(a) Bump
solution (U(x),H(x)) with h0 = 0.04, θ = 0.1, and κ = 0.16. Here a = 1.48, b = 1.60, and
c = 1.67. (b) Zoomed in version of the excited region R[U ], showing all of the threshold
crossings at x = ±a,±b,±c. Adapted from [42, 43].
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where g(x) = xe−|x|. Also note

H(x) =

{
h0 + κ, |x| > b,
h0, |x| < b,

(B.8)

implying that, as in the case of the network with depression, the negative feedback variable

here will have a jump discontinuity. Applying the bump threshold conditions (B.5) to (B.7),

we arrive at an implicit system relating the bump half–widths a, b, c to all other parameters

g(a+ c)− g(a+ b) + g(2a) + g(a − b)− g(a− c) = h0 + κ,

g(b+ c)− g(2b) + g(b+ a)− g(b − a)− g(b− c) = θ, (B.9)

g(2c) − g(c + b) + g(c + a)− g(c − a) + g(c− b) = h0.

The system of transcendental equations (B.9) can be solved numerically using a root finding

algorithm. The variation of pulse width with the parameters κ and h0 is shown in Figure

B.2. The stability of the bumps is calculated below.

Stability of Bumps

As in the case of networks with synaptic depression such as the system (2.36), the

Evans function approach to analyzing the stability of bumps breaks down in the high–gain

limit due to the vanishing small domain over which linearization is applicable (see section

2.2.3). The construction of the Evans function for traveling pulses can still be carried out,
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Figure B.2. Bump width dependence on strength and baseline of spike frequency
adaptation. (a) Plot of bump half–widths versus κ for θ = 0.1 and h0 = 0.04. The
bump solution exists for κ < κc ≈ 0.32. (b) Plot of bump half–widths versus h0 for θ = 0.1
and κ = 0.16. The bump solution exists for h0 > hc ≈ 0.
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however [42, 43]. Therefore, we will proceed by considering infinitesimal perturbations of

the piecewise smooth system (B.1). As we show below, there are some subtle differences

between the stability analysis of the system (B.1) as compared with the system (2.36), in

section 2.2.4. First, we will not be able to make a change of variables in order to smooth

the dynamics of the perturbation in the h variable, as we were able to do in the case

of the depression variable q. Therefore, the linear stability equations we derive here will

not reflect the underlying translation invariance of the system. Also, as opposed to the

depression network, when bumps are unstable, linear stability of the adapting network

becomes a very poor approximation to the full system’s dynamics soon after perturbations

begin to evolve. This is due in part to the fact that u quickly ceases to intersect h at the

same number of points as the stationary solution (see Figure B.3).

Let us set u(x, t) = U(x) + εψ(x, t) and h(x, t) = H(x) + εϕ(x, t) with ψ,ϕ smooth

perturbations and ε ≪ 1. Substituting into the full system (B.1) and imposing the

stationary bump solutions (B.3) and (B.4) gives
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Figure B.3. Different sized perturbations of a bump. (a) Expanding a side of the
bump. Zoomed–in version of the bump (U(x),H(x)) is shown along with perturbed
solutions u1(x) = U(x) + εψ1(x) and u2(x) = U(x) + εψ2(x) with ψi(x) > 0. While
u1 satisfies the three threshold crossings on this side, u2 does not, due to the condition
u2(a + ε∆a

+) = h0 + κ being violated. (b) Contracting a side of the bump. Here,
u1(x) = U(x) − εψ1(x), (ψ1(x) > 0) still satisfies all three threshold crossings, but
u2 = U − εψ2, (ψ2 > 0) does not, due to u2(c+ ε∆+

c ) = h0 being violated. Parameters are
h0 = 0.04, θ = 0.1, κ = 0.16.
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1

α

∂ψ(x, t)

∂t
= −ψ(x, t) + 1

ε

∫ ∞

−∞
w(x− x′)

[
Θ(U(x′) + εψ(x′, t)−H(x′)− εϕ(x′, t))

−Θ(U(x′)−H(x′))
]
dx′ (B.10)

∂ϕ(x, t)

∂t
= −ϕ(x, t) + κ

ε
[Θ(U(x) + εψ(x, t) − θ)−Θ(U(x)− θ)]. (B.11)

Denote the infinitesimal perturbations of the bump boundary for the u variable by ε∆a
±(t), ε∆

b
±(t), ε∆

c
±(t)

such that

u(±a+ ε∆a
±(t), t) = h(±a+ ε∆a

±(t), t),

u(±b+ ε∆b
±(t), t) = θ, (B.12)

u(±c+ ε∆c
±(t), t) = h(±c+ ε∆c

±(t), t),

for an initial time interval following the perturbation t ∈ (0, T ). The linear theory will

only be valid until the time T that the existence threshold conditions are violated. It is

straightforward to Taylor expand the expressions in (B.12), truncate to first order in ε,

and solve for the terms

∆a
±(t) ≈ ±ψ(±a, t)− ϕ(±a, t)

|U ′(a)| ,

∆b
±(t) ≈ ±ψ(±b, t)|U ′(b)| , (B.13)

∆c
±(t) ≈ ±ψ(±c, t)− ϕ(±c, t)

|U ′(c)| .

It is important to note that an infinitesimal shift of the point at which u crosses θ is not

equivalent to shifting the boundary of the outer region of the excited region of u, due to

the discontinuity in H(x). As shown in Figure B.4, infinitesimal perturbations of the bump

lead to changes in the excited region of u in a neighborhood of x = ±a,±c but not x = ±b.
For the excited region of u, R[u], to change in the vicinity of x = ±b, it would be necessary

to have an O(1) change in the threshold h by, for example, uniformly shifting the full bump

solution. Thus, while the shift of the threshold condition near x = ±b does affect the ϕ

dynamics, it will not affect the ψ dynamics for sufficiently small perturbations. If we now

express the convolution in (B.10) in terms of the bump crossings a, b, c and perturbations

∆a
±,∆

c
±, we have
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Figure B.4. Effects of perturbations on the excited region R[U ]. (a) Zoomed–in version
of the bump (U(x),H(x)) shows the accompanying excited region R[U ] (black bar).
Expanding a side of the bump to the perturbed form u1(x) = U(x) + εψ1(x), (ψ1 > 0)
will widen both subdomains of the excited region R[u1] (grey bars). (b) Contracting a
side of the bump to the perturbed form u1(x) = U(x) − εψ1(x), (ψ1 > 0) shrinks both
subdomains of the excited region R[u1] (grey bars). Parameters are h0 = 0.04, θ = 0.1,
κ = 0.16.

1

α

∂ψ(x, t)

∂t
= −ψ(x, t) + 1

ε

[∫ −b

−c+∆c
−

w(x− x′)dx′ −
∫ −b

−c
w(x− x′)dx′

+

∫ a+∆a
+

−a+∆a
−

w(x− x′)dx′ −
∫ a

−a
w(x− x′)dx′ +

∫ c+∆c
+

b
w(x− x′)dx′

−
∫ c

b
w(x− x′)dx′

]
. (B.14)

Let us now consider an initial perturbation that only changes the activity variable u,

that is, ϕ(x, 0) = 0 for all x. We can now linearize equation (B.14) by expanding in powers

of ε and collecting all O(1) terms, since ϕ(±a, t) = 0 = ϕ(±c, t) within the linear regime,

that is, infinitesimal changes in u will only perturb the threshold in a neighborhood of

x = ±b. Thus,

1

ε

∫ −c

−c+ε∆c
−

w(x− x′)dx′ ≈ −∆c
−w(x+ c) ≈ γcw(x+ c)ψ(−c, t), (B.15)

1

ε

∫ −a

−a+ε∆a
−

w(x− x′)dx′ ≈ −∆a
−w(x+ a) ≈ γaw(x+ a)ψ(−a, t), (B.16)

1

ε

∫ a+ε∆a
+

a
w(x− x′)dx′ ≈ ∆a

+w(x− a) ≈ γaw(x− a)ψ(a, t), (B.17)

1

ε

∫ c+ε∆c
+

c
w(x− x′)dx′ ≈ ∆c

+w(x− c) ≈ γcw(x− c)ψ(c, t), (B.18)
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where γ−1
y = |U ′(y)|. This yields the linear equation

1

α

∂ψ(x, t)

∂t
= −ψ(x, t) + γa(w(x+ a)ψ(−a, t) + w(x− a)ψ(a, t))

+γc(w(x + c)ψ(−c, t) + w(x− c)ψ(c, t)). (B.19)

Assuming separability ψ(x, t) = eλtψ(x), we derive a spectral equation that determines the

linear stability of a bump solution with respect to the given restricted class of perturbations:

(λ+ α)ψ(x) = αγa(w(x + a)ψ(−a) + w(x− a)ψ(a))

+αγc(w(x+ c)ψ(−c) + w(x− c)ψ(c)). (B.20)

Note that equation (B.20) is a modified version of the spectral equation for the scalar

Amari equation [3] (see also analysis in Appendix A). The dynamic threshold introduces

extra threshold crossing points that appear as additional pointwise terms. This is equiv-

alent to the spectral equation one would derive for an Amari network with a spatially

inhomogeneous threshold, specified by H(x). Therefore, the translation invariance of the

bump will no longer be implied by the linear stability equation, since translations of H(x)

would involve O(1) additions, which we must exclude from our analysis, based on our

assumption that ϕ(x) remains small. Setting x = ±a,±c, we may then determine stability

by solving the eigenvalue problem

λψ̄ = α(M− I4)ψ̄,

where

M =




γaw(0) γaw(2a) γcw(c− a) γcw(a+ c)
γaw(2a) γaw(0) γcw(a+ c) γcw(c− a)
γaw(c− a) γaw(a + c) γcw(0) γcw(2c)
γaw(a+ c) γaw(c − a) γcw(2c) γcw(0)


 , (B.21)

ψ̄ = (ψ(−a), ψ(a), ψ(−c), ψ(c))T and In is the n × n identity matrix. Let us define an

even (odd) eigenmode as one for which ψ(x) = ψ(−x) (ψ(x) = −ψ(−x)) at x = a, c.

An even eigenmode corresponds to an expansion/contraction of the bump, whereas an

odd eigenmode corresponds to a shift of the bump. For all parameter values that we

have explored, we find that there are two positive eigenvalues, with the larger (smaller)

positive eigenvalue corresponding to an odd (even) eigenmode, and a degenerate negative

eigenvalue with an even/odd pair of eigenmodes. By applying the ansatz of an eigenmode
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being even or odd, we can compute these eigenvalues analytically by evaluating the roots

of a quadratic. In the case of even eigenmodes, the associated pair of eigenvalues is

λe± =
α

2

(
γaΩ

a
+ + γcΩ

c
+ − 2±

√
(γaΩ

a
+ − γcΩ

c
+)

2 + 4γaγc
(
Ωm
+

)2
)
, (B.22)

and in the case of odd eigenmodes, the associated pair of eigenvalues is

λo± =
α

2

(
γaΩ

a
− + γcΩ

c
− − 2±

√
(γaΩ

a
− − γcΩ

c
−)

2 + 4γaγc
(
Ωm
−

)2
)
, (B.23)

where

Ωa
± = w(0) ±w(2a), Ωc

± = w(0)± w(2c), Ωm
± = w(c − a)± w(c + a). (B.24)

The dependence of the eigenpairs (B.22) and (B.23) on parameters is illustrated in in

Figure B.5. Clearly, varying α will not change the sign of the eigenvalues λ and thus

the qualitative linear stability of bumps. In contrast to our analysis, the Evans function

approach predicts that bumps are stable for sufficiently small α [42, 43] but destabilize

to form a traveling pulse or breather as α increases. However, numerical simulations of

the full system (B.1) confirm that bumps are always unstable once discreteness effects are

taken into account. Moreover, the qualitative behavior of the resulting instabilities are

consistent with our analysis (see next section).
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Figure B.5. Plot of eigenvalues arising from perturbations of a bump solution as a
function of (a) κ with h0 = 0.04, and (b) h0 with κ = 0.16. In both plots, the positive
eigenvalue associated with a shift perturbation is always larger than that associated with
an expansion/contraction. Other parameters are θ = 0.1 and α = 1. Varying α has the
effect of merely scaling the eigenvalues, but not changing their sign.
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Numerical Simulations

We now study the full system (B.1) using a numerical approximation scheme. To

evolve the system in time, we use a fourth order Runge–Kutta method with 2000–4000

spatial grid points and a time–step of dt = 0.01. The integral term in equation (B.1a) is

approximated using Simpson’s rule. For all of our numerical simulations, we begin with an

initial condition (u(x, 0), h(x, 0)) = (U(x),H(x)) given by an exact bump solution specified

by equations (B.7) and (B.8). After a brief period, we perturb the system according to

u(x) → u(x) + ψ±(x) with

ψ±(x) = χ(w(x+ a)± w(x− a) + w(x+ c)± w(x− c)), (B.25)

and observe how the system then evolves. Leftward shifts (rightward shifts) correspond

to ψ−(x, t) when χ ≥ 0 (χ ≤ 0), while expansions (contractions) correspond to ψ+(x, t)

when χ ≥ 0 (χ ≤ 0). Note that the perturbation ψ+(x) (ψ−(x)) is a mixture of even

(odd) eigenmode solutions of equation (B.20). The resulting dynamics depends specifically

on the type of perturbation applied to the bump. For each simulation, we systematically

examined whether or not taking finer grids changed the stability results. We found that as

the grid spacing was decreased the size of perturbation necessary to destabilize the bump

also decreased. This is important because too coarse a grid can drastically alter numerical

results, since discreteness can stabilize bumps that are not stable in the continuous system

[62].

When shift perturbations destabilize the bump, the resulting dynamics evolves to a

traveling pulse solution, as illustrated in Figure B.6(a) for a rightward shift. Coombes and

Owen [42, 43] have shown that spike frequency adaptation can indeed generate stable trav-

eling pulses for a wide range of parameters in the system (B.1). Following a perturbation by

a rightward shift, the nonlinear threshold initially decays at what becomes the trailing edge

of the pulse. As the leading edge moves rightward as well, the structure soon propagates

invariantly, as demonstrated by the time snapshots in Figure B.7. In other simulations,

we found that increasing α leads to faster traveling pulses and therefore a more obvious

initial destabilization, in good agreement with the linear theory. In Figure B.6(b), we

show an example of how an expansion destabilizes a bump leading to the formation of a

breather, the existence of which was previously established by Coombes and Owen [42, 43].

A closer look at the corresponding snapshots in Figure B.8 shows that the breather begins

contracting once the threshold h becomes higher in amplitude than u at the pulse edge.

The oscillation amplitude of the breathing solution decreases as α decreases. Finally, in
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Figure B.6. Instabilities of a stationary bump solution given by equations (B.7) and (B.8).
(a) Space–time plot of a bump destabilizing to form a traveling pulse for α = 1.0, κ = 0.16.
The activity u(x, t) evolves from an initial bump solution that is perturbed by a small
rightward shift at t = 5. (b) Space–time plot of a bump destabilizing to form a spatially
localized breather for α = 1.2, κ = 0.16. The activity u(x, t) evolves from an initial bump
solution that is perturbed by an expansion at t = 5. Other parameters are θ = 0.1,
h0 = 0.04.

Figure B.9 we show an example of a shift perturbation destabilizing a bump in the case

of stronger adaptation (larger κ). In this case the traveling pulse crosses threshold at five

locations, rather than four points as in Figure B.7.

Discussion

In this appendix, we determined the local stability of stationary bumps in a piecewise

smooth neural field model with spike frequency adaptation. We found that bumps are

always unstable, and that destabilization of a bump can result in either a traveling pulse or

a spatially localized breather. In future work, we will continue to explore new bifurcations

and instabilities in piecewise smooth spatially extended networks. Due to the construct

of our linear stability analysis, we could only study instabilities that were associated

with real rather than complex eigenvalues. However, there are well known scenarios in

neural field models with linear adaptation, where Hopf bifurcations can occur leading to

spatially structured oscillations such as breathers and target patterns [137, 55, 57, 168]. In

future work, it would be interesting to analyze generalized Hopf bifurcations in neural field

models with nonlinear forms of adaptation, along the lines of recent studies of nonsmooth
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Figure B.7. Snapshots of a bump destabilizing to a traveling pulse at successive times
t = 5, 5.5, 6, 10 (top to bottom) for α = 1.0, and κ = 0.16. Both u(x, t) (solid black curves)
and h(x, t) (black squares) are shown in full view (center column), at the trailing edge (left
column), and at the leading edge (right column). Also shown are the initial conditions of the
bump for U(x) (solid grey curve) and H(x) (dashed grey curve). Eventually, the threshold
crossings u(a + ε∆a

+, t) = h0 + κ and u(−c + ε∆c
−, t) = h0 vanish. Other parameters are

h0 = 0.04, θ = 0.1.
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Figure B.8. Snapshots of a bump destabilizing to a breather at successive times
t = 5, 6, 10, 20 (top to bottom) for α = 1.2 and κ = 0.16. Both u(x, t) (black curves) and
h(x, t) (solid black squares) are shown in full view (left column), and for the right–hand
side of the bump (right column). Also shown are the initial conditions of the bump
for U(x) (solid grey curve) and H(x) (dashed grey curve). The threshold crossings
u(±a + ε∆a

±, t) = h0 + κ and u(±c + ε∆c
±, t) = h0 periodically vanish. Other parameters

are h0 = 0.04, θ = 0.1.
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Figure B.9. Bump destabilizing to a traveling pulse for α = 2.0, κ = 0.3. (a) Space–time
plot of the activity u(x, t) evolving from an initial bump solution that is perturbed by a
small rightward shift at t = 5. (b) Snapshot of perturbed solution u(x, t) (black solid curve)
and h(x, t) (black squares) at time t = 20, along with initial profiles U(x) (grey curve) and
H(x) (grey dashed curve). Eventually, the threshold crossing u(−c + ε∆c

−, t) = h0 + κ
vanishes. Other parameters are h0 = 0.04, θ = 0.1.

dynamical systems [47]. In the case of spike frequency adaptation, it would be interesting

to develop tools to analyze the nonlinear (order one) instabilities of the adaptive network

(B.1). This would allow us to analytically find the period of oscillation in the breathing

solutions identified using numerics.



APPENDIX C

PHASE FUNCTION PARAMETERS

In this appendix we present the explicit parameter–dependent expressions for the vari-

ous coefficients appearing in the solution of the phase function Φ1, equation (5.49). First,

the constants premultiplying the periodic functions on the righthand side of equation (5.49)

are as follows:

Ξ± =
γ±

1 + µ2±ε
2

[
1

2(1 + µ±)
+
χ

2

(
e−a − e−µ±a

µ± − 1
+

e−µ±a

µ± + 1

)]

Π± =
γ±

1 + µ2±ε
2

[
− χ

2(1 + µ±)
− e−a

2(µ± + 1)

]

Υ± =
γ±

1 + µ2±ε
2

[
− µ±ε

2(1 + µ±)
− χµ±ε

2

(
e−a − e−µ±a

µ± − 1
+

e−µ±a

µ± + 1

)]

Ψ± =
γ±

1 + µ2±ε
2

[
χµ±ε

2(1 + µ±)
+

µ±εe
−a

2(1 + µ±)

]
.

Second, the constant scaling factor K on the left–hand side of equation (5.49) is determined

by substituting equations (5.28), (5.29) and (5.35) into equation (5.18). Using the fact

that the null vector is zero for ξ < −a, we can expand the integral out in terms of definite

integrals of exponential products with the M±(ξ) functions

K = [γ+(1−m−)(1 + χe−µ+a)(1− α−1β−1
p (1−m+)

2)]

∫ ∞

0
e−µ+ξ

M
′
+(ξ)dξ

+[γ−(1−m−)(1 + χe−µ−a)(1 + α−1β−1
p (m+ − 1)(1 −m−))]

∫ ∞

0
e−µ−ξ

M
′
+(ξ)dξ

−[γ+(1−m+)(1 + χe−µ+a)(1 + α−1β−1
p (m− − 1)(1 −m+))]

∫ ∞

0
e−µ+ξ

M
′
−(ξ)dξ

−[γ−(1−m+)(1 + χe−µ−a)(1 − α−1β−1
p (1−m−)

2)]

∫ ∞

0
e−µ−ξ

M
′
−(ξ)dξ

+χ[γ+e
−µ+a(1−m−)(1− α−1β−1

p (1−m+)
2)]

∫ 0

−a
e−µ+ξ

M
′
+(ξ)dξ

+χ[γ−e
−µ−a(1−m−)(1 + α−1β−1

p (m+ − 1)(1 −m−))]

∫ 0

−a
e−µ−ξ

M
′
+(ξ)dξ
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−χ[γ+e−µ+a(1−m+)(1 + α−1β−1
p (m− − 1)(1−m+))]

∫ 0

−a
e−µ+ξ

M
′
−(ξ)dξ

−χ[γ−e−µ−a(1−m+)(1− α−1β−1
p (1−m−)

2)]

∫ 0

−a
e−µ−ξ

M
′
−(ξ)dξ.

The individual integrals can be computed as follows:

∫ ∞

0
e−µ±ξ

M
′
±(ξ)dξ =

e−a − 1

2c(m+ −m−)(µ± + 1)2

∫ ∞

0
e−µ+ξ

M
′
−(ξ)dξ =

e−a − 1

2c(m+ −m−)(µ− + 1)(µ+ + 1)

∫ ∞

0
e−µ−ξ

M
′
+(ξ)dξ =

e−a − 1

2c(m+ −m−)(µ+ + 1)(µ− + 1)

and

∫ 0

−a
e−µ±ξ

M
′
±(ξ)dξ =

1

2c(m+ −m−)

{
a

(µ± − 1)
+

1− e(µ±−1)a

(µ± − 1)2

+
e−a(e(µ±+1)a − 1)

(µ± + 1)2
− a

2(µ± + 1)

}

∫ 0

−a
e−µ+ξ

M
′
−(ξ)dξ =

1

2c(m+ −m−)

{
1− e−(µ−−µ+)a

(µ− − µ+)(µ− − 1)
− e(µ+−1)a − 1

(µ+ − 1)(µ− − 1)

+
eµ+a − e−a

(µ+ + 1)(µ− + 1)
− 1− e−(µ−−µ+)a

(µ− + 1)(µ− − µ+)

}

∫ 0

−a
e−µ−ξ

M
′
+(ξ)dξ =

1

2c(m+ −m−)

{
1− e−(µ+−µ−)a

(µ+ − 1)(µ+ − µ−)
− e(µ−−1)a − 1

(µ+ − 1)(µ− − 1)

+e−a e(µ−+1)a − 1

(µ+ + 1)(µ− + 1)
− 1− e−(µ+−µ−)a

(µ+ + 1)(µ+ − µ−)

}
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