
Week 3: If, For, and While
APPM 2460

1 Introduction

Today we will learn a little more about programming. This time we will learn how to use for-loops,
while-loops and if-statements.

There may be a situation where you need to execute a block of code several time in a row. For
example, suppose we want to print even numbers between 2 and 20. We could write a script as follows:

disp(2)

disp(4)

disp(6)

...

and so on. You now see how tedious this would be. An easier way would be to use something called a
loop, which is a programming tool that allows us to easily repeat commands. We will learn about two
types of loops, for loops and while loops. For-loops are the most commonly used type of loop, so we will
begin with those.

2 The For-loop

A for-loop repeats an operation a set number of times, usually using a variable whose value
changes size each time the loop runs. For the above problem, we would want to loop through a variable
that takes values 2, 4, 6, 8, and so on, up to 20, and display the variable each time we execute the loop.
Let’s see how to do that.

Let’s give it a try. Open a new script, enter the following, and save/run it:

for i = 1:10

disp(2*i)

end

The for-loop works in the following manner:

• We give the loop a variable (in this case i)

• We then tell that variable (1) where to start, (2) what step-size to take between numbers, and (3)
where to end.

– In this case, we start at i = 1 and we take steps of size 1 (by default) until i = 10.

• The inside of the loop tells Matlab to display the value of 2 ∗ i at each iteration of the loop.

Notice the syntax here. The for declaration is followed by a series of statements that Matlab executes
until it reaches the end statement. That is to say, the commands that get repeated by Matlab are those
sandwiched between the “for” and “end” statements. Matlab runs the commands between the for and
end once for each element in the vector i=1:10. We say that we are “looping over” the vector i=1:10.
We could just as well use any vector. For example, enter the following into your script:

1

for i = [1 5 3 26 9]

disp(i)

end

(?) Note (regarding syntax): there is never a semicolon after the for declaration statement.

2.1 Something more complicated

Let’s use a for-loop to make some plots of y = a ∗ sin(x), where a = 0.2 ∗ k, k = 1, 2, 3, 4, 5, and x is in
the interval [0, 1]. Let’s make it so it plots on the same figure each time. Modify your script as follows:

hold on

x = 0:.05:1

for k = 1:1:5

a = 0.2*k;

plot(x,a*sin(x),‘LineWidth’,2)

end

hold off

Any time you need to repeat something a known number of times, consider using a for-loop. It will
save you a great deal of time and effort.

• You can put one for-loop inside another one. Just be sure to use a different counter variable for the
second loop.

3 Logic Operators

Before we move on to while-loops and if-statements, we need to learn about logic operators. We start
with ‘and’ (&) and ‘or’ (|).

&: The logical operator for ‘and’ is &. The & operator simply takes two statements and returns the
value of “true” only if both are true, and returns “false” otherwise.

Statement 1 Statement 2 Statement 1 & Statement 2

true true true

true false false

false true false

false false false

For example, 3 is an integer & 4 is even. This is true because both statements are true. In fact,
the only case where the & operator is true is if both statements are true statements. Otherwise, it
is considered false.

|: The logical operator for ‘or’ is | (| is right above the enter button). This operator is much nicer.
The | operator also takes two statements and returns the value “false” only if both are false, and it
returns “true” otherwise.

Statement 1 Statement 2 Statement 1 | Statement 2

true true true

true false true

false true true

false false false

2

For example, 3 is larger than 4 | 4 is prime. This is false because both statements are false. In fact,
the only case where the | is false is when both statements are false statements. Otherwise, if either
statement is true then the whole ‘or’ statement is true.

4 The If-Statement

Before, we were using a for-loop to repeat a set of instructions a given number of times. An if-statement
will perform a set of instructions once the right conditions are met. The syntax is

if (condition goes here)

action to be performed

end

A useful flow chart to visualize this is

The conditions you can put in are either equal(==), not equal (∼=), less than (<), less
than or equal to (<=), greater than (>), and greater than or equal to (>=).

As an example, let’s write a script that does the following:

• If the value of some number a is greater than or equal to zero, then we’ll print out the value. Type

for a = -3:1:3

if (a >= 0) % Parenthesis are not necessary here but will be needed later

disp(a)

end

end

See how the values of a that were greater than or equal to zero were printed to the command
window? Note that we have nested an if-statement inside the for-loop. You can nest if-statements
and for-loops as many times as needed. We can have more than one condition in our if-statements.
If we want two conditions to hold, we use the ‘and’ operator, &. If we want either one of two
conditions to hold we use the ‘or’ operator, |.

3

• Let’s take the previous example and make it work not only for a greater than or equal to zero, but
also less than 2. Try

for a = -3:1:3

if (a>=0)&(a<2)

disp(a)

end

end

• We can modify the if-statement so that if the condition is not met, the loop does something else. We
use the else-statement for this. Let’s take the previous example, and make it so that if 2 ≤ a ≤ 3,
then we print 4 ∗ a. Type

for a = -3:1:3

if (a>=0)&(a<2)

disp(a)

else

disp(4*a)

end

end

Note: We can include a condition of the else-statement by typing elseif instead of else and then giving
it a condition just like we did before.

- We can have more than one elseif-statement if needed.

So let’s try a couple of examples. In both examples, we will be calculating the factorial of a number.
Create two scripts, ”factorial 1” and ”factorial 2” which take an input value and output the factorial of
that value. We must first make sure that the integer being used is positive. We must also make sure that
if it is zero, we set the value equal to 1. We could do this by (Case 1) nested if-statements or (Case 2) by
using just one if-statement with an elseif.

4

• Case 1: We begin with the nested if-statements.

a = 6; % or whatever number you want to calculate n! of

if (a>=0)

f = 1;

if (a == 0)

return % jump out of the loop and give the answer 0! = 1

end % end if-statement

for i = 1:a

f = f*i;

end % end for-loop

end %end if-statement

disp(f) % the factorial of a

Notice, each if-statement and for-loop needs an end for this to work. This set-up also requires a
return inside the nested if-statement. Otherwise, the program could still run the for-loop and may
give a wrong answer.

• Case 2: We show the same process except with the elseif

a = 6; % or whatever number you want to calculate n! of

if (a<0) % return an error message if a is negative

disp(‘Negative Integer’);

elseif (a == 0)

f = 1;

else

f = 1;

for i = 1:a

f = f*i;

end % end for-loop

end % end if-statement

disp(f) % the factorial of a

Notice, there is only a need for one end on the if-statement. There is also no need for a return call because
the structure of the if-statement only allows for one outcome to occur. We do not have to worry about
the for-loop being executed when a = 0.

5 While-loops

A while-loop is another way of repeating a statement. You use while-loops when you want to repeat a
calculation as long as a certain condition is satisfied and/or you are not sure how many steps
the process will take. The while-loop has a condition statement that it checks each time it repeats. If
the condition is true, it will repeat the body of the loop. If the condition is false, it will go to the next line
after the end of the loop. Note that it is very easy to get stuck in a while-loop if your condition
is always true. When this happens, your code will just run forever. Be careful of this.

A flow diagram to help visualize this type of loop is

5

For example, suppose you want to double the number 2 over and over again until you get to a number
over 1,000,000 and you want to see how many times you must run the loop to obtain this result. We
could write a while-loop that performs that task as follows:

number = 2;

counter = 1;

while number <= 10^6

number = 2*number;

counter = counter + 1;

end

6

APPM 2460 Homework Week 3

Submit a published pdf of your script solving the following problem to Canvas by
Monday, February 4 at 11:59 p.m. See the 2460 webpage for formatting guidelines.

Definition The binomial coefficient

(
n

k

)
(read “n choose k”) is defined as

(
n

k

)
=

n!

(n− k)! k!

where the ! is the factorial symbol (e.g. 5! = 5 * 4 * 3 * 2 * 1 = 120) and n and k are non-negative
integers with n > k.

(a) Write a script that calculates n choose k without using Matlab’s built-in factorial function.
This will involve multiple loops.

- Your script should include if-statements that return an error (for example, disp(’Danger

Will Robinson!’)) if n is less than k OR if either n or k is negative.

(b) Using copy and paste, run your script once in the scenario where everything works, once where
n < k and an error message is returned, and once where one of n or k is negative and an error
message is returned.

