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Abstract
Ambiguous visual images can generate dynamic and stochastic switches in perceptual interpretation known as perceptual
rivalry. Such dynamics have primarily been studied in the context of rivalry between two percepts, but there is growing
interest in the neural mechanisms that drive rivalry between more than two percepts. In recent experiments, we showed
that split images presented to each eye lead to subjects perceiving four stochastically alternating percepts (Jacot-Guillarmod
et al. Vision research, 133, 37–46, 2017): two single eye images and two interocularly grouped images. Here we propose
a hierarchical neural network model that exhibits dynamics consistent with our experimental observations. The model
consists of two levels, with the first representing monocular activity, and the second representing activity in higher visual
areas. The model produces stochastically switching solutions, whose dependence on task parameters is consistent with four
generalized Levelt Propositions, and with experiments. Moreover, dynamics restricted to invariant subspaces of the model
demonstrate simpler forms of bistable rivalry. Thus, our hierarchical model generalizes past, validated models of binocular
rivalry. This neuromechanistic model also allows us to probe the roles of interactions between populations at the network
level. Generalized Levelt’s Propositions hold as long as feedback from the higher to lower visual areas is weak, and the
adaptation and mutual inhibition at the higher level is not too strong. Our results suggest constraints on the architecture
of the visual system and show that complex visual stimuli can be used in perceptual rivalry experiments to develop more
detailed mechanistic models of perceptual processing.
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1 Introduction

When conflicting images are presented to different eyes, our
visual system often fails to produce a stable fused percept.
Instead, perception stochastically alternates between the
presented images (Wheatstone 1838; Levelt 1965; Leopold
and Logothetis 1999; Blake and Logothetis 2002; Blake
2001; Bressler et al. 2013). More generally, multistable
binocular rivalry between more than two percepts can occur
when images presented to each eye can be partitioned and
regrouped into coherent percepts. For example, subjects pre-
sented with the jumbled images in Fig. 1a may alternatively
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Z.P. Kilpatrick, K Josić contributed equally to this work.

� Yunjiao Wang
Yunjiao.Wang@tsu.edu

Extended author information available on the last page of the article.

perceive a monkey face, or the jungle scene shown in
Fig. 1b (Kovacs et al. 1996). In these cases percep-
tion evolves dynamically under constant stimuli, revealing
aspects of the cortical mechanisms underlying visual aware-
ness (Leopold and Logothetis 1999; Tong et al. 2006;
Sterzer et al. 2009; Leopold and Logothetis 1996; Polonsky
et al. 2000).

While the literature on bistable binocular rivalry is exten-
sive, far fewer studies have addressed multistable percepts.
Rivalry between multiple percepts likely involves higher
level image recognition, as well as monocular competition
(Kovacs et al. 1996; Suzuki and Grabowecky 2002; Huguet
et al. 2014; Golubitsky et al. 2019), suggesting a noninva-
sive way to probe perceptual mechanisms across cortical
areas, and offering a broader picture of visual processing.

Here, we build on previous models to provide a
mechanistic account of perceptual multistability due to
interocular grouping effects (Laing and Chow 2002; Wilson
2003; Moreno-Bote et al. 2007; Shpiro et al. 2007; Said
and Heeger 2013; Dayan 1998). We propose a mechanism
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Fig. 1 Multistable perceptual rivalry. The fragmented images pre-
sented to the left and right eyes in a can lead to the coherent percepts
shown in b Kovacs et al. (1996). c An example of the stimuli pre-
sented to the left and right eyes in Jacot-Guillarmod et al. (2017).
Gratings were always split so that halves with the same color and ori-
entation could be matched via interocular grouping, but were otherwise

randomized across trials and blocks (See Jacot-Guillarmod et al.
(2017) for experimental methods). d Subjects typically reported see-
ing one of four percepts – two single-eye and two grouped – at any
given time during a trial. e A typical perceptual time series reported by
a subject, showing the stochasticity in both the dominance times and
the order of transitions between percepts

that involves different levels of visual cortical processing by
building a hierarchical neural network model of binocular
rivalry with interocular grouping. Our model captures
the qualitative dynamics of perceptual switches reported
by human subjects in experiments described by (Jacot-
Guillarmod et al. 2017) involving the visual stimuli shown
in Fig. 1c. When presented with these stimuli, subjects
reported alternations between four percepts, two single-
eye percepts, and two grouped percepts that combined two
halves of each stimulus into a coherent whole (See Fig. 1d).

Levelt’s four propositions (1965) capture the hallmarks
of bistable binocular rivalry by relating stimulus strength
(such as contrast or luminance), dominance duration (the
time interval during which a single percept is reported),
and predominance (the fraction of the time a percept is
reported). Jacot-Guillarmod et al. (2017) have provided
experimental support for a generalized version of Levelt’s
propositions, and our model suggests neural mechanisms
that drive the underlying cortical dynamics encoding
perceptual changes.

Levelt’s propositions describe well–tested statistical
properties of perceptual alternations (Laing and Chow 2002;
Brascamp et al. 2006; Wilson 2007; Moreno-Bote et al.
2010; Klink et al. 2010; Seely and Chow 2011), and pro-
vide constraints on mechanistic models of binocular rivalry.
Successful models broadly explain rivalry in terms of three
interacting neural mechanisms: Mutual inhibition drives
the exclusivity of the perceived patterns; Slow adaptation
drives the transition between the different percepts; Finally,
internally generated noise is necessary to account for the
observed variability in perceptual switching times (Mat-
suoka 1984; Lehky 1988; Arrington 1993; Lumer 1998;
Kalarickal and Marshall 2000; Laing and Chow 2002; Lago-
Fernandez and Deco 2002; Stollenwerk and Bode 2003;

Wilson 2003; Noest et al. 2007; Seely and Chow 2011;
Freeman 2005; Brascamp et al. 2006; Moreno-Bote et al.
2007).

In our model we include these mechanisms, along with
additional, abstracted features of the visual system. The
model contains a lower level associated with early (e.g., eye-
based) neural processes and tuned to geometric stimulus
properties (e.g. orientation), and a higher level which
accounts for complex pattern grouping and is responsible
for the formation of late stage percepts. Our model
thus extends earlier models of bistable binocular rivalry,
and it reduces to simpler rivalry models under bistable
inputs (Wilson 2003; Tong et al. 2006; Diekman et al. 2013).

We hypothesize that pattern grouping effects occur
already at the early stages of the visual system. We thus
assume that the connectivity of the first layer in our network
is modulated by cues – in our case color saturation –
indicating which parts of the percepts belong to the same
group. In most previous models of rivalry the strength
of the stimulus primarily modulated the inputs to various
network modules. In our case, we assume that the input
strength (i.e., color saturation of the oriented grid) changes
the connectivity between the neuronal populations encoding
the two halves of images of the same color and orientation,
consistent with the experimental results of Ramachandran
et al. (1973) and Kim and Blake (2007), which indicate that
color promotes interocular grouping.

We found that over a range of parameters the model
also displays dynamics consistent with the generalized ver-
sion of Levelt’s Propositions proposed by Jacot-Guillarmod
et al. (2017). Our results hold under weak feedback from
the higher to the lower level. However, we observed these
dynamics only with strong mutual inhibition between pop-
ulations representing conflicting stimuli at the lower level
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of the visual hierarchy. Our model thus suggests constraints
on the interactions between neural populations in the visual
system.

Our study thus shows that more complex visual stimuli
can be used in perceptual rivalry experiments to drive
the development of more detailed mechanistic models of
perceptual processing (Wilson 2003; Dayan 1998; Freeman
2005).

2Methods

2.1 Hierarchical model of perceptual multistability
with interocular grouping

Considerable evidence suggests that visual processing
in humans and other mammals is organized hierarchi-
cally (Polonsky et al. 2000; Tong 2001; Leopold and Logo-
thetis 1996; Logothetis and Schall 1989; Sheinberg and
Logothetis 1997; Dayan 1998; Wilson 2003; Freeman 2005;
Tong et al. 2006). The simplest models of such processing
assume that visual areas at the higher level of the hier-
archy pool the activity of lower areas (Riesenhuber and
Poggio 1999). Here we extend previous, non-hierarchical
models of perceptual rivalry (Laing and Chow 2002; Wilson
2009; Moreno-Bote et al. 2007; Huguet et al. 2014; Diek-
man et al. 2013) to a model that spans two levels of the
visual hierarchy, and study grouping in perceptual compe-
tition. A schematic representation of our model is shown
in Fig. 2. The sub-network at the first level of the hierar-
chy consists of four neural populations, each receiving input
from a different hemifield of the two eyes (See also Fig. 6C

of Diekman et al. (2013) and Fig. 2B of Tong et al. (2006)).
The responses of all four possible pairs of populations at the
first level are integrated by distinct populations at the second
level (Laing and Chow 2002; Wilson 2003; Moreno-Bote
et al. 2007). Each of the four populations at the second level
corresponds to one of the four percepts shown in Fig. 1b.

A key feature of our model is the presence of exci-
tatory coupling between populations receiving input from
different hemifields both from the same and from differ-
ent eyes. This is consistent with electrophysiology and
tracing experiments that reveal long-range horizontal con-
nections between neurons in area V1 with non-overlapping
receptive fields, but similar orientation preferences (Stettler
et al. 2002; Sincich and Horton 2005). We also assumed
inhibitory coupling between populations receiving conflict-
ing input from the same hemifield of different eyes, e.g.
the left hemifield of the left and the left hemifield of the
right eye. Experimental literature suggests cells with orthog-
onal orientation preferences can inhibit one another through
multisynaptic pathways involving recurrent and feedback
circuitry (Ringach et al. 1997; Ferster and Miller 2000).
Finally, we assumed that all populations at the second
level inhibit each other, as in previous computational mod-
els (Laing and Chow 2002; Moreno-Bote et al. 2007; Shpiro
et al. 2007; Lankheet 2006; Seely and Chow 2011).

The two levels thus form a processing hierarchy (Wilson
2003; Tong et al. 2006) with the first roughly associated
with monocular neural activity generated in LGN and
V1 (Wilson 2003; Blake 1989; Polonsky et al. 2000; Tong
2001), and the second level associated with the activity
of higher visual areas, such as V4 and MT, that process
objects and patterns (Leopold and Logothetis 1999; Wilson

Fig. 2 A hierarchical model of
interocular grouping. Neural
populations representing stimuli
to the four hemifield-eye
combinations at Level 1 provide
feedforward input to populations
representing integrated percepts
at Level 2, as described by
Eqs. (1) and (4) (See also Fig.
6C of Diekman et al. (2013) and
Fig. 2B of Tong et al. (2006)).
The figure shows recurrent
excitation within Level 1. To
avoid clutter, mutual inhibition
between the same hemifield of
opposite eyes is not shown. All
populations at the second level
of the hierarchy mutually inhibit
one another (Laing and Chow
2002; Wilson 2003;
Moreno-Bote et al. 2007)
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2003; Lamme and Roelfsema 2000). However, each level
could also describe multiple functional layers of the visual
system (Sterzer et al. 2009).

First level of the visual hierarchy The activity of each neural
population receiving input from one of the four hemifield-
eye combinations at Level 1 is described by a firing
rate variable Ei , i = 1, 2, 3, 4 (corresponding to left
hemi/left eye; right hemi/left eye; left hemi/right eye; and
right hemi/right eye, see Fig. 2). To model adaptation, we
included variables describing hyperpolarizing currents acti-
vated at elevated firing rates, Hi , with i = 1, 2, 3, 4 (Benda
and Herz 2003). The firing rates at the lower level of
the visual hierarchy are then governed by the following
equations:

τ Ė1 = −E1+G(I1+αE2+βE4−wE3−gH1 + n1) (1a)

τhḢ1 = E1 − H1, (1b)

τ Ė2 = −E2+G(I2+αE1+βE3−wE4−gH2+n2) (1c)

τhḢ2 = E2 − H2, (1d)

τ Ė3 =−E3+G(I3+αE4+βE2−wE1−gH3+n3) (1e)

τhḢ3 = E3 − H3, (1f)

τ Ė4 = −E4+G(I4+αE3+βE1−wE2−gH4+n4) (1g)

τhḢ4 = E4 − H4, (1h)

with activity time constant τ = 10ms, and adaptation
time constant τh = 1000ms (Häusser and Roth 1997).
The inputs, Ii , model the strength of the stimulus in each
hemifield, and g is the strength of adaptation. We assumed
that all inputs, Ii, all are equal in intensity, so that Ii = I

for i = 1, 2, 3, 4. This is consistent with the experiments
of Jacot-Guillarmod et al. (2017) where stimuli were
calibrated to be equal in intensity.

The strength of within–eye excitatory coupling is deter-
mined by the parameter α, while interocular excitatory
coupling between populations receiving input from com-
plementary hemifields is described by β. The strength of
mutual inhibition due to orientation and color competition
is determined by w.

We used a sigmoidal gain function, G(x), to relate the
total input to the population to the output firing rate,

G(x) = a

1 + e−δ(x−θ)
, (2)

where a = 1, δ = 10 and θ = 0.2. This choice was not
essential, as we could have used other gain nonlinearities,
such as a Heaviside step or a rectified square root, as long as
each individual population, Ei , has a bistable regime (with
a low and high stable firing rate state) for a given input
Ii (Laing and Chow 2002; Moreno-Bote et al. 2007).

Random fluctuations due to network effects and synap-
tic noise were modeled by the variables ni , i =

1, 2, 3, 4 (Faisal et al. 2008). Following (Moreno-Bote et al.
2007), we modeled the fluctuations in the total input to each
population as an Ornstein-Uhlenbeck process,

τsṅi = −ni + σ
√

2ξi(t), (3)

where τs = 200ms, σ = 0.03, and ξi(t) is a white-
noise process with zero mean. Changing the timescale and
amplitude of noise does not impact the results significantly.

Second level of the visual hierarchy As shown in Fig. 2,
feedforward connectivity from Level 1 to Level 2 of the
network associates each of four possible combinations of
hemifields with a distinct percept reported by observers, and
a distinct population at the second level of the hierarchy.
The activity of each of these populations is governed by the
firing rate, Pi , and an associated adaptation variable, Ai ,
i = 1, 2, 3, 4,

τ Ṗ1 = −P1 + G(E1E2− νP2− γP3− γP4− κA1 + n5)

τaȦ1 = P1 − A1

τ Ṗ2 = −P2 + G(E4E3− νP1− γP3 − γP4 − κA2 + n6)

τaȦ2 = P2 − A2

τ Ṗ3 = −P3 + G(E1E4− νP4− γP1− γP2− κA3 + n7)

τaȦ3 = P3 − A3

τ Ṗ4 = −P4+G(E2E3− νP3− γP1− γP2− κA4 + n8)

τaȦ4 = P4 − A4 (4)

where ν represents mutual inhibition between percepts of
the same class (single-eye or grouped), γ represents the
mutual inhibition between percepts of different classes, k is
the adaptation rate of a percept, and ni are noise generated
by according to Eq. (3). For simplicity we assumed that the
activation rate, τ , and adaptation rate, τa ≡ τh are equal
between layers.

Feedforward inputs to the second level were modeled
as a product of activities of the associated populations at
the first level. For instance, population activity P1 depends
on the product E1E2 since Percept 1 is composed of
the two stimuli in the same-eye hemifields providing input
to populations 1 and 2 at Level 1 (e.g. the horizontal
green bar, and vertical red bar presented to the left eye in
the example shown in Fig. 2). Experimental and modeling
studies have pointed to such multiplicative combinations
of visual field segments as a potential mechanism for
shape selectivity (Salinas and Abbott 1996; Brincat and
Connor 2006). When we replaced the multiplicative input
to the second level population with additive input from
Level 1, Ej + Ek , our results remained qualitatively
similar.

Feedback from the higher level of the hierarchy Exper-
imental results suggest that top-down processing can
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influence rivalry (Bartels and Logothetis 2010; Klink et al.
2008). We have thus also considered an extension of our
model by that includes feedback from Level 2 to Level 1,

τ Ė1 = −E1 + G(I1 + α(1 + a1P1)E2 + β(1 + b1P3)E4

−wE3 − gH1 + n1)

τ Ė2 = −E2 + G(I2 + α(1 + a1P1)E1 + β(1 + b2P4)E3

−wE4 − gH2 + n2)

τ Ė3 = −E3 + G(I3 + α(1 + a2P2)E4 + β(1 + b2P4)E2

−wE1 − gH3 + n3)

τ Ė4 = −E4 + G(I4 + α(1 + a2P2)E3 + β(1 + b1P3)E1

−wE2 − gH4 + n4) (5)

We compare the dynamics of the networks with and
without feedback, and discuss the impact of feedback in
Results.

2.2 Parameter values

As with many previous models of rivalry, the dynamics
of our model depends on the choice of parameters, but is
relatively robust: We set the time scales, τ , τh and τs , to
values found in earlier computational studies, and suggested
by experimental work neural population activity dynamics,
spike frequency adaptation, and temporal correlations in
population wide fluctuations (Häusser and Roth 1997;
Benda and Herz 2003; Moreno-Bote et al. 2007; Renart
et al. 2010). Other parameters were first chosen so that in
the absence of noise the model displayed periodic solutions
corresponding to alternations of single-eye percepts. We
then included noise, and searched for parameters that
produced dynamics that agreed with experimental results.
For more details, see Appendix A and Fig. 10 therein.

3 Results

We use the hierarchical model described by Eq. (1) and
Eq. (4) to explain the different experimentally observed fea-
tures of multistable binocular rivalry involving interocular
grouping. Moreover, we show that our model can provide
a unifying mathematical framework that accounts for the
generalized Levelt’s propositions, and provides concrete
hypotheses of how different neural mechanisms shape per-
ceptual dominance across levels of the visual hierarchy.
At the same time, our model reduces to previous success-
ful models of binocular rivalry with stimuli that conflict
between the eyes, but do not promote inter-ocular group-
ing. We use numerical experiments and bifurcation theory
to demonstrate the qualitative changes in the dynamics of
the model to support these conclusions.

3.1 Levelt’s Propositions and their generalization

Levelt’s propositions relate stimulus strength to dominance
duration – the time interval during which a single percept is
reported; predominance – the fraction of the time a percept
is reported; and alternation rate – the rate of switching
between percept reports. Since the seminal work of Levelt
(1965), there has been extensive work on extending the four
original propositions (Shiraishi 1977; Bossink et al. 1993;
Moreno-Bote et al. 2010; Platonov and Goossens 2013).
In the context of bistable rivalry, the current version of
Levelt’s propositions have most recently been summarized
in a review paper of Brascamp et al. (2015) as: (I)
Increasing the strength of the stimulus presented to one eye
increases the predominance of that stimulus; (II) Increasing
the difference in stimulus strengths between the two eyes
increases the dominance duration of the stronger stimulus;
(III) Increasing the difference in stimulus strengths between
the two eyes reduces the perceptual alternation rate; (IV)
Increasing stimulus strength in both eyes while keeping it
equal between eyes increases the perceptual alternation rate.
This effect may reverse at near-threshold stimulus strength
(See Fig. 3 in Brascamp et al. (2015) for an illustration).

The strength of a percept has been defined as any
attribute whose increase causes that percept to suppress the
appearance of other percepts (Brascamp et al. 2015). Lev-
elt’s Proposition I thus effectively defines the strength of
a percept attribute according to whether it impacts a per-
cept’s predominance. Jacot-Guillarmod et al. (2017) found
experimental support for some of the following extensions
of Levelt’s proposition using the stimuli and associated
percepts shown in Fig. 1c, d:

I. Increasing percept strength of grouped percepts or
single-eye percepts increases the perceptual predomi-
nance of those percepts. (Jacot-Guillarmod et al. 2017)
showed that increasing color saturation increases
the predominance of grouped percepts. Experimental
results thus support this proposition, with color sat-
uration defining the strength of the grouped percept
class.

II. Decreasing the difference between the strength of
the grouped percepts and that of single-eye percepts
primarily decreases the average dominance duration
of the stronger percepts. When the single-eye percept
is stronger (weaker), increasing the strength of
grouped percepts decreases (increases) the average
dominance duration of the single-eye (grouped)
percepts. Jacot-Guillarmod et al. (2017) showed
that increasing color saturation primarily decreased
the average dominance duration of the stronger,
single-eye percepts, consistent with Proposition II.
Experimental results did not speak to the validity of
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generalized Proposition II when the grouped percepts
were stronger. When one class of percept is much
stronger (e.g., single-eye percepts), we expect them
to completely suppress percepts of the other class
(e.g., grouped percepts). Percept strengths used in the
experiments of Jacot-Guillarmod et al. (2017) were
not sufficiently high to validate these predictions, but
we test them in our model.

III. Decreasing the difference in strengths between
grouped percepts and single-eye percepts increases
the perceptual alternation rate. Since alternation rate
and average dominance duration are related recipro-
cally, Proposition III follows from Proposition II.

IV. Increasing the strength in both grouped percepts
and single-eye percepts while keeping strength equal
among percepts increases the perceptual alternation
rate. Proposition IV was not tested directly in Jacot-
Guillarmod et al. (2017), as changing color saturation
affected the strengths of each percept differently. We
show below that this Proposition holds in our model.

3.2 The hierarchical model exhibits perceptual
multistabiliy

We first demonstrate how our model captures alternations
between multiple percepts. As in previous studies, we
associated a neural population with each percept: An
elevation in the activity of a population at Level 2 of our
model indicates that the corresponding percept is perceived
and reported (Laing and Chow 2002; Wilson 2003; Moreno-
Bote et al. 2007; Dayan 1998; Freeman 2005; Wilson 2009;
Lehky 1988; Said and Heeger 2013; Lago-Fernandez and
Deco 2002; Lumer 1998).

For a wide range of parameters, a single Level 2 neu-
ral population exhibited elevated activity, and suppressed

the activity of the remaining populations (See Fig. 3a for
a representative simulation). The order and timing of these
periods of elevated firing were stochastic, and the distribu-
tions of the time periods of elevated firings were unimodal
(Fig. 3b). This dynamics corresponded to the reports of
experimental subjects who primarily reported seeing indi-
vidual percepts over intervals of varying durations, and
random alternations between the percepts. Consistent with
previous models (Laing and Chow 2002; Wilson 2003;
Moreno-Bote et al. 2007), stochastic alternations between
percepts emerged due to the mutual suppression between the
four populations at the second level of the hierarchy, while
noise and adaptation drove alternations between the active
populations.

3.3 Changing stimulus strength in themodel yields
experimentally observed dominance duration
changes

In classical models of perceptual rivalry, stimulus and per-
cept strengths are represented by the magnitude of input(s)
to different neural populations. Changes in these input
strengths correspond to changes in stimulus features like
luminosity or contrast (Freeman 2005; Seely and Chow
2011). In the case of rivalry with grouped percepts (Fig. 1d),
we assume that changes in color saturation have little effect
on the strength of the inputs Ii (Jacot-Guillarmod et al.
2017). Rather, we assume that varying color saturation
changes the tendency for interocular grouping between the
two halves of images of the same color and orientation,
consistent with Gestalt principles of similarity (Roelfsema
2006; Kohler 2015). Thus color saturation provides a visual
cue for binding complementary halves of grouped per-
cepts (Wagemans et al. 2012). We therefore modeled the
effects of color saturation as a change in the strength of

Fig. 3 Dynamics of a hierarchical model of interocular grouping. a A
typical time series of the firing rates, Pi, of neural populations at the
second level of the model. Each of these populations is associated with
one of the four percepts: P1 and P2 correspond to single-eye percepts,
and P3 and P4 correspond to grouped percepts. Here we used same-eye
coupling α = 0.3, interocular grouping strength β = 0.26, and input

strength Ii = 1. b Distributions of dominance durations in the model
have a single mode around 1.8s for single-eye percepts, and 1.5s for
grouped percepts. These distributions are consistent with experimen-
tal data. Distributions were obtained from 100 time series, each 100s

in duration. Parameters were set to Ii = 1.2, w = 1, g = 0.5, ci =
1, ν = γ = 0.45, κ = 0.5
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cross-hemispheric excitatory connections, β, between pop-
ulations responding to like stimulus features. We also
assumed that the excitatory coupling, α, between popula-
tions representing same-eye image halves was unaffected by
changes in color saturation.

Jacot-Guillarmod et al. (2017) made several observations
about the impact of color saturation on perceptual alter-
nations recapitulated by our model. First, color saturation
increased subjects’ predominance of grouped percepts (by
6% to 30%, see Fig. 4 of Jacot-Guillarmod et al. (2017)
for more details), i.e. the fraction of the total time sub-
jects reported a grouped percept out of the total time they
reported seeing any percept: Increasing interocular coupling
strength, β, in our model also increased the predominance
of grouped percepts (See Fig. 4a). Thus color saturation,
modeled by connection strength, β, between first level net-
work populations in our model, satisfies the commonly used
definition of stimulus strength (Brascamp et al. 2015).

Second, Jacot-Guillarmod et al. (2017) observed that
increasing color saturation decreased the average domi-
nance duration (the average time the percept is seen before
a switch occurs) of single-eye percepts while the average
dominance duration of grouped percepts remained largely
unchanged: the average dominance of single-eye percepts
decreased by 0.09 to 0.23 and the change of the average
dominance duration of grouped percepts ranged between
−0.04 to 0.04, see Fig. 5 of Jacot-Guillarmod et al. (2017)
for more details. Our model captured this feature over a
range of parameters: For 0.2 < β < 0.3, increasing β

decreased the dominance duration of single-eye percepts,
while changes in dominance of grouped percepts were
smaller and nearly absent as β approached α (See Fig. 4b).

Finally, (Jacot-Guillarmod et al. 2017) showed that
increasing color saturation increased the ratio of visits to
grouped percepts (by 3% to 32%, see Fig. 8 in Jacot-
Guillarmod et al. (2017) for more details). Our model
exhibited this behavior as well: The ratio of visits to grouped

percepts increased with interocular grouping strength, β,

(See Fig. 4c). As shown in Fig. 9 these results also hold in
the presence of feedback.

Note that our model only qualitatively matches the data.
Due to experimental constraints, we obtained data at only
two levels of color saturation. With our computational
model we were able to change saturation over an entire
interval. There is no precise match between the level of
color saturation we used in the experiments, and that in the
computational model. Any such correspondence is likely to
vary between subjects, and possibly even between sessions
with a single subject. We therefore did not attempt to
specify the precise value of β that would correspond to our
experimental data.

3.4 Neural populationmodel conforms
to the generalized Levelt’s propositions when α > β

We next asked whether the dynamics of our model agrees
with experimentally observed generalizations of Levelt’s
propositions (Jacot-Guillarmod et al. 2017). As shown in
Fig. 4a, Proposition I does hold. In fact, this proposition
holds over a wide range of parameter values, even when
other propositions fail, and in all model versions we have
explored.

We found that Proposition II holds in our model when
β < α. When excitatory coupling between neural pop-
ulations representing different-eye hemispheres is weaker
than coupling between same-eye hemisphere populations,
increasing interocular coupling strength β decreases the
average dominance duration of the two single-eye percepts
but very weakly increases the average dominance duration
of the grouped percepts (See Fig. 4b). Since Proposition
III follows from Proposition II and I, our model supports
Proposition III as well.

To determine whether our model conforms to the predic-
tion of Proposition IV, we varied α and β simultaneously

Fig. 4 Effects of varying the interocular grouping strength, β, at
the first level of the hierarchical model. a Predominance of grouped
percepts increased with β. b The average dominance duration of
single-eye percepts decreased with β, while that of grouped percepts
remained approximately unchanged, particularly in the range 0.27 ≤

β ≤ 0.3. c Furthermore, the frequency of visits to grouped percepts
increased with β. Other parameters were the same as in Fig. 3. Solid
lines represent computationally obtained means, and shaded regions
represent one standard deviation about the means obtained over 100
realizations
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while keeping them equal (See Fig. 5b). When grouping
strength, β, is sufficiently high (β > 0.32), multiple sub-
populations become co-active, indicating fusion. Figure 5b
shows that an increase in β (and α) decreased the aver-
age dominance duration of both grouped and single-eye
percepts, i.e. increasing the strengths of all percepts while
keeping them equal increases the perceptual switching rate,
in accord with Proposition IV. As in existing models for
bistable binocular rivalry, Levelt’s Propositions IV holds
only for parameter values over which the period of the
periodic solutions of the associated deterministic model
decreases as I increases (See Fig. 10 in Appendix for more
details).

3.5 Generalized Levelt’s proposition II does not hold
when α < β

To explore the full range of model behaviors, we also
consider the case α < β representing strong interocular
coupling. In this case, Proposition II fails since increasing
the strength of the grouped percepts by increasing β does
not lead to an increase in their average dominance duration,
despite the grouped percepts being stronger (Fig. 5a).
Such failures are common in other existing models when
percept strengths are close (See Fig. 11c which reproduces
results from Seely and Chow (2011)). Proposition II states
that the average dominance duration of the stronger percept
should change more than that of the weaker percept,
but this effect does not hold when input strengths are
close in mutual inhibitory models of perceptual bistability
(Fig. 11c).

When the percept strength of the grouped percepts
is much stronger than that of the single-eye percepts,
perception is dominated by two rivaling grouped percepts.
According to the original Levelt’s Proposition IV, further
increasing in the strength of the grouped percepts should
increase the switching rate between the two grouped
percepts, reducing their average dominance duration. This
is the case in our model, and is the reason for the decrease in
average dominance duration when β > α shown in Fig. 5a,
in contrast to the increase seen in Fig. 11c.

3.6 Themechanisms of multistable rivalry
in the hierarchical model

We next describe the mechanisms that drive the perceptual
switching dynamics in our model. The neural interactions
implied by these mechanisms may underlie the dynamics
described by the generalized Levelt’s Propositions:

1. Increasing interocular grouping strength, β, promotes
co-activation of populations E1 and E4, as well as E2

and E3 at the first level of the hierarchy. Joint activity
of populations E1 and E4 leads to increased activation
of population P3 at the second level. Similarly, joint
activity of E2 and E3 increases activation of P4. Due
to mutual inhibition between populations at the same
hemifields of opposite eyes, E1 and E3 (E2 and E4)
synchronous activity of the pair E1 and E4 (E2 and E3)
is likely not to be observed together with a coactivation
of E1 and E2, or E3 and E4. Thus, a coactivation
of the input E1E4 to P3 (E2E3 to P4) decreases
the likelihood of elevated inputs E1E2 and E3E4 to
the populations P1 and P2 corresponding to single-
eye percepts. This explains why increasing interocular
grouping strength, β, increases the predominance of
the grouped percepts (P3 and P4), and hence the
mechanism behind Proposition I.

2. As in earlier models of bistable rivalry, our hierarchical
model exhibits perceptual switches either due to (a)
inhibition release, or (b) escape driven by noise or the
relaxation of adaptation (Curtu et al. 2008; Moreno-
Bote et al. 2007). These two mechanisms are not
mutually exclusive, and depend on model parameters.
We chose parameters such that the escape mechanism
dominates.

3. Keeping α = β and increasing their values is
‘equivalent’ to increasing the input, I : When single-
eye percepts dominate, the two terms αE2 + βE4 ≈ α

in the gain of E1 in Eq. (1a). A similar observation
applies to the corresponding two terms determining
the evolution of the firing rates E2, E3 and E4, and
a similar effect occurs when the grouped percepts

Fig. 5 Levelt’s Proposition IV
holds in the hierarchical model.
a Proposition II held when
β < α. Here α = 0.3, with other
parameter values as in Fig. 3. b
Increasing within- and
between-eye grouping strengths
(α and β respectively),
simultaneously while keeping
them equal decreased the
average dominance duration
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dominate. Hence, simultaneously increasing the value
of α and β while keeping them equal, is approximately
equivalent to increasing the input I . Since the period
of the associated deterministic model decreases as input
strength, I, increases in our chosen parameter range, we
concluded that Proposition IV holds.

3.7 Impact of mutual inhibition at different levels
of the hierarchical model

It has been debated at which level of the visual hierarchy
mutually inhibitory interactions lead to rivalry (Carlson and
He 2004; Andrew and Lotto 2004; Wilson 2003). Carlson
and He (2004) showed that incompatibilities (conflicting
interocular information that cannot be fused) at the lower
level are necessary for producing rivalry. In contrast,
Andrew and Lotto (2004) used identical stimuli within
a different chromatic surround to show that the presence
of rivalry can depend on the perceptual meaning of the
visual stimuli, and must thus occur at higher levels of the
visual processing hierarchy. Wilson (2003), on the other
hand, used a two-stage feedforward model to show that the
elimination of mutual inhibition at early stages reveals the
activity at the higher layer, i.e. the activity remains at steady-
state at the first level, and rivalry occurs only at the higher
level.

Our model exhibits behavior similar to that reported
by Wilson (2003): If lower-level mutual inhibition is not
strong enough, activity at the lower level of the hierarchy
approaches steady-state. Multistable rivalry in this situation
requires stronger mutual inhibition at the higher level
of the model. However, if this is the case, changes in
interocular grouping strength have the same effect on all
the percepts. As a consequence Levelt’s propositions do not
hold. We conclude that multistable rivalry is possible with
inhibition only at the higher level of the visual hierarchy.
However, mutual inhibition at the lower level is necessary
for generalized Levelt’s propositions to hold.

Next we asked whether mutual inhibition at the upper
level is necessary for the generalized Levelt’s propositions
to be hold. Our model showed that it was not. The
four propositions hold without mutual inhibition at the
upper level (Fig. 6): The predominance of the (weaker)
grouped percepts increases with β (Fig. 6a), and the average
dominance duration of the (stronger) single-eye percepts
decreases faster than that of the (weaker) grouped percepts
increases (Fig. 6b). The average dominance duration of all
percepts decreases as α = β increases (Fig. 6c).

Weak or mild mutual inhibition at the upper level does help
improve the persistence of dominant percepts by increasing
the difference between the activity levels of the dominant
and suppressed percepts. Nonetheless, dominance switches
still tend to be mainly determined by the activity at the lower
level (See Fig. 7), as the dominance of a percept becomes
increasingly clear as mutual inhibition is increased.

3.8 Impact of adaptation at the different levels

Adaptation plays a central role in most models of rivalry, by
decreasing the stability of the dominant percept, and thus
driving transitions between percepts (Kang and Blake 2010;
Hollins and Hudnell 1980; Roumani and Moutoussis 2012;
Blake and Overton 1979; Blake et al. 1990; van Boxtel et al.
2008; Wade and Weert 1986). We therefore asked at what
level of the visual hierarchy this type of adaptation is needed
to explain experimentally observed switching dynamics.
As with mutual inhibition, we found that the generalized
Levelt’s Propositions did hold when we removed adaptation
(κ = 0) at the second level of the population model (See
Fig. 8). In addition, a change in the strength of adaptation
had little effect on the average dominance of either grouped
percepts or single-eye percepts. See Fig. 11a for example.
However, when we removed adaptation at the lower level,
the activity of lower level populations approached steady
state since adaptation was necessary for switching to occur,
and the generalized propositions did not hold any more.

Fig. 6 Levelt’s propositions hold without mutual inhibition at Level
2 (ν = γ = 0). a Predominance of grouped percepts increased with
interocular grouping strength, β. b The average dominance duration of
single-eye percepts (stronger percepts) decreased much faster than the

average dominance duration of grouped percepts (weak percepts). c
The average dominance duration decreased as α and β were increased
and kept equal. Other parameter values as in Fig. 3
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Fig. 7 Time series with different mutual inhibition at the upper level.
Each upper panel shows the neural activity of percepts (populations at
the higher level of the hierarchy), and lower panels show inputs from
the lower to the higher level of the hierarchical model; e.g., E1E2 is
the input to P 1. a, b Weak or mild mutual inhibition at the higher

level helped disentangle different percepts, i.e. mutual inhibition at the
upper level increased the distance between the activity levels of the
dominating percepts and suppressed percepts; whereas c strong inhibi-
tion at the higher level lead to more frequent percept switching. Other
parameter values as in Fig. 3

3.9 Impact of feedback

Thus far, we assumed an absence of feedback (ai = 0
and bi = 0) from the higher level of the visual hierarchy.
However, numerous studies have found top–down feed-
back pathways from higher areas processing more complex
features to lower areas processing basic geometric fea-
tures (Angelucci et al. 2002; van Ee et al. 2006; Tong et al.
2006). Thus, we next asked whether generalized Levelt’s
propositions still hold when we included feedback in our
model as described in Eq. (5). Our simulations showed that
for weak feedback (ai and bi small), the dynamics of the
hierarchical model described above did not change quali-
tatively (Compare Fig. 9 with feedback, to Fig. 4 with no
feedback). However, the average dominance duration was
larger when we included feedback, consistent with findings
in the bistable case (Wilson 2003).

3.10 The hierarchical model captures bistable
binocular rivalry

As our hierarchical model is an extension of earlier models
of binocular rivalry, we asked whether it also exhibits
dynamics consistent with rivalry between two percepts. To

answer this question we provided coherent “stimuli” to each
pair of populations receiving input from the same eye, but
conflicting stimuli to the two eyes. This would be equivalent
to displaying a monochromatic square composed of vertical
bars to one eye, and a monochromatic square composed of
horizontal bars to the other eye.

Without feedback and inclusion of weak mutual inhibi-
tion and adaptation at the higher level, the dynamics of the
system was mainly driven by the lower–level populations.
Hence the only active populations at the higher level are
therefore those corresponding to single–eye percepts. More
precisely, without noise, and assuming I1 = I2, I3 = I4,
the subsystem at the lower level has a flow-invariant sub-
space, S = {E1 = E2, E3 = E4, H1 = H2, H3 = H4}.
Diekman et al. (2012) proved the subspace S is locally
attracting at every point. When restricted to the subspace S,
Eq. (1) reduces to a classical two population model (Laing
and Chow 2002; Wilson 2003):

τ Ė1 = −E1 + G(I1 + αE1 − wE3 − gH1)

τhḢ1 = E1 − H1

τ Ė3 = −E3 + G(I3 + αE3 − wE1 − gH3)

τhḢ3 = E3 − H3. (6)

Fig. 8 Generalized Levelt’s propositions hold in the absence of adap-
tation at the higher level of the visual hierarchy. a The predominance
of grouped percepts increased with the interocular grouping strength,
β. b The average dominance duration of single-eye percepts (stronger

percepts) decreased much faster than the average dominance duration
of grouped percepts (weak percepts). c The average dominance dura-
tion decreased with α and β when the two were kept equal. Parameter
values as in Fig. 3
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Fig. 9 Simulation results with feedback from the higher to the
lower level of the hierarchy. Simulations indicate that the model
can capture the key experimental results in Jacot-Guillarmod et al.
(2017) even with feedback from the higher level to the lower level:
a Predominance of grouped percepts increased as the interocular
grouping strength increased; b The average dominance duration of

single-eye percepts decreased while the average dominance duration
of grouped percepts remained approximately unchanged (when β < α

but close to the value α); c The ratio of the number of visits to
the grouped percepts increased as the interocular grouping strength
increased. Here ai = bi = 0.1 in Eq. (5), with other parameters as
in Fig. 3

When population E1(= E2) dominates, it leads to the
domination of percept 1 (P1). Similarly, when E3(= E4)

dominates, then so does percept 2 (P2). Alternations in ele-
vated activity between populations E1 and E3 therefore
correspond to rivalry between percepts 1 and 2. Hence,
Eq. (1) generalizes existing models of rivalry, and can cap-
ture features of binocular and multistable rivalry observed
in experiments.

In addition, while the synchrony subspace S is associated
with single-eye percepts (when E1 = E2 > E3 = E4, P1

dominates; when E3 = E4 > E1 = E2, P2 dominates), if
I1 = I4, I2 = I3, then there is another synchrony subspace
W = {E1 = E4, E2 = E3} (when I1 = I4, I2 = I3)
associated to grouped percepts (when E1 = E4 > E3 = E2,
P3 dominates; when E3 = E2 > E1 = E4, P4 dominates).
The model thus also suggests that with sufficiently strong
cues, the dynamics could be restricted to the invariant subset
W, resulting in pure pattern rivalry.

4 Discussion

Multistable perceptual phenomena have long been used
to probe the mechanisms underlying visual process-
ing (Leopold and Logothetis 1999). Among these, binocular
rivalry is perhaps the most robust, and has been studied
most frequently. However, we can obtain different insights
by employing visual inputs that are integrated to produce
interocularly grouped percepts (Kovacs et al. 1996; Suzuki
and Grabowecky 2002). These experiments are particu-
larly informative when guided by Levelt’s Propositions,
which were originally proposed to describe alternations
between two rivaling percepts (Levelt 1965; Brascamp et al.
2015).

We generalized Levelt’s Propositions to perceptual mul-
tistability involving interocular grouping. These extended

propositions are consistent with experimental findings, and
the dynamics of a hierarchical model of visual processing.
Our neural population model thus points to potential mech-
anisms that underlie experimentally reported perceptual
alternations in rivalry with interocular grouping (Jacot-
Guillarmod et al. 2017). In addition, there is no experi-
mental data that we are aware of for the case of dominant
grouped percepts. We found such percepts hard to achieve
experimentally, but this does not mean that it is impossi-
ble to do so. Our computational results therefore offer a
prediction that the proposition does not hold when grouped
percepts are stronger.

Evidence suggests that rivalry exists across a hierarchy of
visual cortical areas (Alias and Blake 2004). Indeed, rivalry
can occur between complex stimulus representations,
requiring higher order processing than typically observed in
early visual areas (Kovacs et al. 1996; Tong et al. 2006).
Physiological and imaging experiments have also shown
that binocular rivalry modulates neural activities in the
primary visual cortex, as well as higher areas including V2
and V4, MT, and inferior temporal cortex (Leopold and
Logothetis 1996; Logothetis and Schall 1989; Sheinberg
and Logothetis 1997; Tong et al. 1998). However, the
way in which activity at these different levels contributes
to binocular rivalry remains unclear. Competition at
the lower or higher levels, or a combination thereof
can all explain different aspects of this phenomenon,
depending on the experiment (Leopold and Logothetis
1999; Pearson et al. 2007). Our model suggests that mutual
inhibition at the early stages of the visual hierarchy is
necessary for dynamics consistent with generalized Levelt’s
Propositions.

Multistable rivalry has been studied previously using
interocular grouping and fusion of coherently moving
gratings. Moving plaid percepts arise when superimpos-
ing two drifting gratings moving at an angle to one

J Comput Neurosci (2020) 48:177–192 187



another (Hupe and Rubin 2004). In these cases subjects
perceive either a grating or a moving plaid in alterna-
tion (three total percepts: moving to the left, moving the
right and moving upward). Mutual inhibitory, adapting neu-
ronal network models display dynamics consistent with
data from such experiments, suggesting the mechanisms
behind such rivalry may be similar to those driving conven-
tional binocular rivalry (Huguet et al. 2014). This provides
further evidence that the classical models of rivalry can
serve as a foundation for models describing more complex
settings.

Comparisons with previous models of perceptual multista-
bility Our computational model is based on the assumption
that perceptual multistability occurs via a winner-take-all
process, with a single percept temporarily excluding all oth-
ers (Wilson 2003; Shpiro et al. 2007). Consequently, some
neural process must allow the system to switch from the
dominant percept to another after a few seconds (Laing and
Chow 2002). The simplest model of this process is a mul-
tistable system with slow adaptation and/or noise–driven
switches between multiple attractors (Moreno-Bote et al.
2007; Braun and Mattia 2010). This framework is com-
mon in models of binocular rivalry (Laing and Chow 2002;
Shpiro et al. 2007), non-eye-based perceptual rivalry (Bras-
camp et al. 2009)), and even perceptual multistability with
more than two percepts (Diekman et al. 2013; Kilpatrick
2013; Huguet et al. 2014). Each percept typically corre-
sponds to a single neural population which mutually inhibits
the other(s). Spike rate adaptation or short term plasticity
then drive the slow switching between network attrac-
tors (Laing and Chow 2002), and noise generates variation
in the dominance times (Moreno-Bote et al. 2007).

Our computational model differs from previous ones in a
few key ways. Excitatory connectivity at the first level facil-
itates both single-eye and grouped binocular percepts. Diek-
man et al. (2013) provided a preliminary account of interoc-
ular grouping, but ignored the effects of noise fluctuations
on switching dynamics, and did not account for the known
hierarchical structure of the visual system (Angelucci
et al. 2002; Tong et al. 2006). In our model the strength
of excitatory connectivity at the first level determines
the input strength to populations at the higher level of the
visual hierarchy, and ultimately each percept’s predomi-
nance. In this way, our model is similar to that of Wilson
(2003) and Brascamp et al. (2013), who used a two level
model to capture the effects of monocular and binocu-
lar neurons. Our model also includes feedback from the
higher to the lower level, which could be due to attentional
modulation. In this way, our model is similar in spirit to
that of Li et al. (2017), who modeled attentional modula-
tion of rivaling behavior. However, while previous models
focused on the case of two possible percepts, our model

accounts for four possible percepts in an interocular group-
ing task, and can be extended to include a larger number of
percepts.

A number of other hierarchical models have also been
proposed: Dayan (1998) developed a top-down statisti-
cal generative model, which places the competition at the
higher level. Freeman (2005) proposed a feedforward mul-
tistage model with all stages possessing the same struc-
ture. These models also focused on conventional bistable
binocular rivalry, and did not address the mechanisms of
multistable rivalry.

Mutual inhibition. Mutual inhibition is believed to
account for the suppression of one percept by another in
binocular rivalry. Most existing models of bistable binocular
rivalry include only cross-eye mutual inhibition, but we
note two exceptions: Brascamp et al. (2013) and Li et al.
(2017) considered both cross-eye and same-eye inhibition
to capture the rivalry emerging under rapid swapping of
stimuli (two rival grating patches presented to alternate eyes
rapidly). Under such rapid stimulus alternation neuronal
populations from the same eye responding to orthogonal
orientations at the same visual location could be active at
the same time. Thus, same-eye inhibition between neuronal
populations of the orthogonal orientations could affect
perception. We note that neuronal populations responding
to input from the same eye but different locations are co-
activated in our model. However, as there are no conflicting
stimuli appearing in rapid succession at the same location
in our experiments, we did not include cross-orientation
inhibition in our model.

Extensions to other computational models We made sev-
eral specific choices in our computational model. First, we
described neural responses to input in each visual hemi-
field by a single variable. We could also have partitioned
population activity based on orientation selectivity or recep-
tive field location (Ferster and Miller 2000). This would
allow us to describe the effects of horizontal connections
that facilitate the representation of collinear orientation seg-
ments in more detail (Bosking et al. 1997; Angelucci et al.
2002). Since there is evidence for chromatically-dependent
collinear facilitation (Beaudot and Mullen 2003), we could
model the effects of image contrast and color saturation
as separate contributions to interocular grouping. However,
these extensions would complicate the model and make it
more difficult to analyze. We therefore chose a reduced
model with the effects of color saturation described by a
single parameter, β.

Neural mechanisms of perceptual multistability Our obser-
vations support the prevailing theory that perceptual multi-
stability is significantly percept-based and involves higher
visual and object-recognition areas (Leopold and Logothetis
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1999). However, a number of issues remain unresolved. The
question of whether and when binocular rivalry is eye-based
or percept-based has not been fully answered (Blake 2001).
Activity predictive of a subject’s dominant percept has been
recorded in lateral geniculate nucleus (LGN) (Haynes and
Rees 2005), primary visual cortex (V1) (Lee and Blake
2002; Polonsky et al. 2000), and higher visual areas (e.g.,
V2, V4, MT, IT) (Logothetis and Schall 1989; Leopold and
Logothetis 1996; Sheinberg and Logothetis 1997). Thus,
rivalry likely results from interactions between networks at
several levels of the visual system (Freeman 2005; Wilson
2003). To understand how these activities collectively deter-
mine perception it is hence important to develop descriptive
models that incorporate multiple levels of the visual pro-
cessing hierarchy.

Collinear facilitation involves both recurrent connectivity
in V1 as well as feedback connections from higher visual
areas like V2 (Angelucci et al. 2002; Gilbert and Sigman
2007), reenforcing the notion that perceptual rivalry engages
a distributed neural architecture. However, a coherent
theory that relates image features to dominance statistics
during perceptual switching is lacking. It is unclear how
neurons that are associated to each subpopulation may
interact due to grouping factors such as collinearity and
color.

Conclusion Our work supports the general notion that per-
ceptual multistability is a distributed process that engages
several layers of the visual system. Interocular group-
ing requires integration in higher visual areas (Leopold
and Logothetis 1996), but orientation processing and com-
petition occurs earlier in the visual stream (Angelucci
et al. 2002; Gilbert and Sigman 2007). Overall, our model
shows that the mechanisms that explain bistable percep-
tual rivalry can indeed be extended to multistable perceptual
rivalry.
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Appendix A: Choice of parameter values

We had to set a number of parameters in our model to
capture the perceptual alternations observed experimentally.
To do so we first let α = β, and chose a set of parameter
values so that the corresponding deterministic model had a
periodic solution with E1(t) = E2(t) and E3(t) = E4(t).
i.e. the periodic solution associated with the alternation of
single-eye percepts. We then used XPPAUT to obtain the
bifurcation diagram shown in Fig. 10, where the green curve
in (A) is a branch of stable periodic solutions and the green
curve in (B) is the corresponding periods of the periodic
solutions in (A). We choose the values of input strength Ii all
to be equal and in the interval (0.8, 1.25) so that the model
displayed decreases in dominance duration with increasing
input strength I .

Changing the values of α and β changes the bifurcation
diagram. However, by continuity, as long as parameter
values are not far from those we used to obtain the
bifurcation diagram, the dynamics of the system remains
similar. In many of our simulations, we fixed the input
values I to 1.2, and other values at α = 0.3, w = 1, g =
0.5, ci = 1, ν = γ = 0.45, κ = 0.5. τ = 10ms, τh = τa =
1000ms, δ = 0.03. The parameter values of w, g, ν, γ and
κ roughly follow the values used in the literature (Seely and

Fig. 10 The hierarchical model captures conventional bistable binoc-
ular rivalry. a The bifurcation diagram with bifurcation parameter I

when α = β = 0.3, and other parameters as in Fig. 3 shows the
emergence and disappearance of periodic solutions. The green curves

represent the branches of a stable periodic solution, the solid red curve
represents a stable equilibrium, and the dashed red curve represents
unstable equilibria; b The period of the corresponding stable periodic
solution peaks around I = 0.6
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Chow 2011; Wilson 2003). We then numerically found the
same qualitative results hold for I ∈ [1, 1.25].

Appendix B: Simulation procedure

To obtain the results shown in the figure, for each given
parameter set we ran 100 realizations of the model for
300 seconds each and computed the dominance durations,
predominance, and visit ratio for each percept. We pooled
all dominance durations of one class of percepts (e.g.,
single-eye percepts or grouped percepts) and computed
its average and standard deviation across occurrences and
realizations.

Fig. 11 Adaptation rate, κ, at the higher level of the hieararchy, and
top-down influence. a The adaptation rate had little or no effect on
the dominance duration of percepts. Parameter values as in Fig. 3.
b Example of top-down influence from only one percept, here P3
(a1 = a2 = b2 = 0 and b1 = 0.5). Top down input from one

percept increased its dominance duration. Parameters not listed were
as in Fig. 3. c Part of Fig. 4C from Seely and Chow (2011): Proposi-
tion IV did not hold when I2 ∈ (0.85, 1) since the increasing rate of
the stronger percepts did not exceed the decreasing rate of the weak
percept.

Appendix C: Simulation results with
feedback from higher to lower level

Our hierarchical model with sufficiently weak feedback
from the higher level to the lower level can also capture
the three main observations reported by Jacot-Guillarmod
et al. (2017) with the minor difference that the average
dominance duration increases (Fig. 9). Increasing the
adaptation rate κ in the top level had little or no effect on
the dominance duration of percepts (Fig. 11a shows single-
eye percepts, but results for grouped percepts were similar)
over a large interval (0, 0.8). The main effect of top down
excitatory feedback from a percept we observed was to
increase that percept’s dominance duration (Fig. 11b).
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Häusser, M., & Roth, A. (1997). Estimating the time course of the
excitatory synaptic conductance in neocortical pyramidal cells
using a novel voltage jump method. The Journal of Neuroscience,
17(20), 7606–7625.

Haynes, J.D., & Rees, G. (2005). Predicting the stream of
consciousness from activity in human visual cortex. Current
Biology, 15(14), 1301–7.

Hollins, M., & Hudnell, K. (1980). Adaptation of the binocular rivalry
mechanism. Investigative Ophthalmology & Visual Science, 19(9),
1117–1120.
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