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A natural generalization of the Hénon map of the plane is a quadratic diffeomorphism that has a quadratic inverse. 
We study the case when these maps are volume preserving, which generalizes the the family of symplectic quadratic 
maps studied by Moser. In this paper we obtain a characterization of tliese maps for dimension four and less. In 
addition, we use Moser's result to construct a subfamily of in n dimensions. 

1. Introduction 

Some of the simplest nonlinear systems are given by quadratic maps: for example the logistic map 
in one dimension and the quadratic map introduced by Hénon [14, 15] in the plane. It is easy to see 
that any quadratic, one dimensional map with a fixed point is affinely conjugate to the logistic map, 
xy-^ rx{\ — x). In a similar way, Hénon showed that a generic quadratic area-preserving mapping of 
the plane can be written in normal form as 

: ) - ( 
k + y + x^ 

-X 

which has a single parameter k. 
Hénon's study can be generalized in several directions. Moser [22] studied a class of quadratic 

symplectic maps, having obtained a useful decomposition and normal form. For example, when the 
map is quadratic and symplectic in M^", Moser [22,19] showed that it can be written as the composition 
of two affine symplectic maps and a map of the form 
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where W is a homogeneous cubic polynomial in p. The map given in (1) is a particular example of 
what we call a quadratic shear. 

Def in i t ion 1. A quadratic shear is a bijective map of the form 

X ^ fix) = X + -Qix), (2) 

where Q{x) is a vector of homogeneous, quadratic polynomials such that f~^ is also a quadratic map. 

In this way Moser's result is basically a characterization of all symplectic quadratic shears. One of 
the remarkable aspects of this is that quadratic symplectic maps necessarily have quadratic inverses. 
In general we can write a quadratic map on E" as the composition of an affine map with a quadratic 
map that is zero at the origin and is the identity at linear order: 

x ^-¥ fix) = xo + L{x +-Q{x)), (3) 

where SQ S M", L is a matrix, and Qix) is a vector of homogeneous, quadratic polynomials. Note 
that if the map / is volume preserving then it is necessary that L satisfies det(L) = 1. Similarly if / 
is symplectic, then L must be a symplectic matrix. Of course, the quadratic terms also can not be 
chosen arbitrarily in these cases. 

Polynomial maps are of interest from a mathematical perspective. Much work has been done 
on the "Cremona maps", that is polynomial maps with constant Jacobians [8]. An interesting 
mathematical problem concerning such maps is the conjecture proposed-by O.T.Keller in 1939; 

C o n j e c t u r e 1 (Rea l J a c o b i a n C o n j e c t u r e ) . Let / : K" -> K" be a Cremona map. Then f is 
bijective and has a polynomial inverse. 

This conjecture is still open. It is known that injective polynomial maps are automatically 
surjective and have polynomial inverses [28, 4], so it would suffice to prove that / is injective. It 
is easy to see (cf. Lemma 1 below) that a quadratic map with constant Jacobian is injective, thus the 
Jacobian conjecture holds for the quadratic case. 

Even if the conjecture is true, the degree of the inverse of a Cremona map could be large. For 
example, the upper bound for the degree of the inverse of a quadratic map on R" is known to be 
2^1-1 [4]. Thus in two dimensions the inverse of a quadratic area-preserving mapping is quadratic, as 
was discussed by Hénon. 

The question of integrability of Cremona maps has been addressed by Moser. In [23], he const­
ructs a family of cubic polynomials that are nonintegrable. This was one of the first at tempts to 
show the possibility of complicated behavior in a simple system, i. e., chaos. Related to this, there 
is an interesting family of Cremona maps that have exactly one integral, the so called trace maps 
(cf. [26]). For instance, if we let p(ii,a;2,2;3) = a + bixi + X2 + X3)+cixiX2 + xiX3 + X2X3) + dixiX2Xz) 
and T : R* -)• R^ be given by 

T 

\X4 J 

( p(a;i,X2,2;3) -Xi.\ 

Xi 

\ ^3 I then T is a cubic Cremona map that has the following integral 

/(a;i,a;2,a;3,rc4) = xf + Xa +13-f-a ; | - a (x i - f 0:2 + 2:3-t-0:4) 

— 6(xiX2 + X1X3 -f X1X4 -f- X2X3 + 3̂ 214 + 3:3X4) 

— c(xiX2X3 + X1X2X4 -f- X1X3X4 ̂ - X2X3X4) — d(XlX2X3X4). 
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We believe that the class of quadratic maps that have quadratic inverses is an interesting one [19]. 
The study of such maps hinges upon the characterization of quadratic shears in R". For instance, it 
is known that a necessary and suffîcient condition for bijective maps of the form (2) to be quadratic 
shears is that DQ{x)Q{x) = 0. However, simpler chïuracterizations are needed; these are known for 
the cases n = 2 and n = 3 [19]. In this paper we extend the results of [19] to higher dimensions, 
in particular to the case n = 4. In addition, we apply Moser's theorem in order to characterize a 
subfamily of quadratic shears. A simplified proof of his result is provided. 

2. Quadratic Shears 

It is convenient to rewrite (2) as 

f{x) = x + -M{x)x, (4) 

where M : R" -» E"^" is a linear function into the set of n x n matrices. Since Q{x) — M{x)x, M 
must satisfy the symmetry property M{x)y = M{y)x so that Dx{M{x)x) = 2M{x). Thus 

Df{x) = I + M{x), 

and so there is a unique M for any quadratic Q. 
In this section we study characterizations of quadratic shears in R". First we show that a necessary 

and sufficient condition for a map of the form (4) to be a quadratic shear is that M{x)'^x = 0. After 
some work, we will see that the matrix must also satisfy M{x)^ = 0. 

In the penultimate section of this paper we will demonstrate that when n ^ 4 the matrix M 
satisfies M{x)'^ = 0. Though we do not know if this is true in general, we have been unable to 
construct an example matrix M(x) such that M{x)'^ ^ 0. Whenever M^ = 0, the matrix M has all 

zero eigenvalues and its largest Jordan blocks are of the form I « p, 11 which implies that M has 

rank at most [n/2]. 
We begin our characterization of quadratic shears by recalling the following lemma that was 

obtained in [19]. 

Lemma 1. Let f{x) = x + ^M{x)x be a quadratic map of R" in standard form. The following 
statements are equivalent 

i) For all xeW, det(£>/(x)) = 1. 
a) f is bijective with polynomial inverse. 
Hi) [M(a;)]" = 0. 

Proof. 
We will show iii)=>ii)^i)=>-iii). 

iii)=j>ii) The condition implies that the matrix I + M{x) is invertible with inverse / — M{x) + 
M{xf ( - l ) " M ( x ) " - ^ We can write 

/ (^) - / ( y ) = (^ + M ( — ^ ) ) (a: - y). 

So the function is injective. Using theorem A in [28], we conclude that / is bijective with a polynomial 
inverse. 
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ii)=>i) By assumption, det(D/(a;)) and det(D/ ^(/(a;))) are polynomials in xi,X2,-.- ,a:„. 
However, differentiation of f~^(f{x)) = x gives 

det{Dr\f{x)))detiDf{x))=^l, 

and therefore, since both are polynomials, det{Df{x)) has to be a constant independent of x. We 
notice that det{Df{x)) = det{D/(0)) = det(/) = 1. 

i)=>iii) Since det( / + M{x)) = 1 and M is linear in x, then for any C 7̂  0 

det{M{x)-CI) = ( - l )"C"det( / + M(-^a;)) = (-1)"C". 

This implies that the characteristic polynomial of M{x) is (—C)" and therefore [M(a;)]" = 0. • 

At this point, we restrict to the case of quadratic maps in standard form whose inverse is also 
quadratic, i. e. quadratic shears. The next lemma was obtained by Lomeli and Meiss [19]: 

Lemma 2. Let f{x) = a: +• ^M{x)x be a quadratic map o/R". Then f is a quadratic shear if and 
only if M{x)^x = 0, for all xeW. 

It is a simple consequence of this lemma and the linearity of M that when / is a quadratic shear, 
then for all i ,y , z G K", the matrix M satisfies the following properties 

MiM{x)x)M{x)x = 0, (5) 

Mix)Miy)z + M{y)M{z)x + Miz)M{x)y = 0. (6) 

Property (5) implies that for each a;, M{x)x is a fixed vector of f{x). Choosing y = a; in 
property (6) gives 

M{z)M{x)x = M{Mix)x)z = -2M^{x)z \/x, z. (7) 

Therefore 

M{M{x)x) = -2M^{x) Vi. (8) 

It follows from property (8) that, if for some x* 6 W M{x*)x* = 0, then M'^{x*) = 0. Also, if 
M{x*^ = 0, then M{M{x*)x*) = 0. Using this, we obtain the following: 

Lemma 3. Let f{x) = x + \M{X)X he a quadratic shear. Then for all x G R", M{x)^ = 0. 

Proof. 
Suppose that, for some x € R", M{x)x ^ 0. Then, for any z, property (6) implies 

M{M{x)x)M{x)z + M{x)M{z)M{x)x + M{z)M{M[x)x)x = 0. 

Prom this, the symmetry property and (8) we have 

M{xfM{x)z + M{x)M{xfz + M{z)M{xfx = 0. 

Hence, we find that 2M{x)^z = -M{z)M{x)^x. But this is zero by Lemma 1. • 

EXAMPLE 1. A simple family of quadratic shears is determined by any vector u 6 R" and a symmetric 
matrix P such that Pu = 0. For all x,y£W let M{x)y = {x'^Py)u. Then 

M{xfx = {x^ Pu){x^ Px)u = 0. 
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We will see that for the case n = 3 every quadratic shear can be expressed in this form. 

EXAMPLE 2. A more general example of a quadratic shear is 

-M{x)x = - Y^{x'^Pjx)uj, (9) 

where the r matrices Pj are symmetric and for all i,j we have that PiUj = 0. We will see in the 
next sections that this is the most general form when n = 4. More generally, if M satisfies (9), then 
since there is a maximum number of independent quadratic forms, we can use a linear coordinate 
transformation to transform the map to reflect this. 

Proposition 1. Choose M as in (9). Then it is always possible to assume that 

r < n — 
V9 + 8n - 3 

Proof. 
Let k = n — dim(Span{ni,... ,Ur}). 
Since f{uj) = Uj, after a linear change of coordinates, we can assume that the shear is of the 

form (g + V{p),p) where V{p) is a vector of quadratic forms, q € W~'' and p € R*̂ . We know that the 
space of quadratic forms in R'' has dimension k{k + l)/2. If k{k + l)/2 < {n — k) then there are some 
quadratic forms in V that are linearly dependent, and so with a linear transformation in the g—space 
we can reduce them by one. We can continue doing this, until k{k+ l ) /2 > {n — k). This implies that 
k'^ + 3k-2n>0 and therefore k > [VWn-Sj^ QQJ^g back to the original function, we let r = n — k. 

U 

The following table illustrates the maximum number r^, of quadratic forms needed, if the quadratic 
shear is chosen as in (9). In this case, each quadratic form is a function in at least k^ variables, since 

n 1 2 3 4 5 6 7 8 9 10 

rn 0 1 1 2 3 3 4 5 6 6 
kji 1 1 2 2 2 3 3 3 3 4 

Table 1. Maximum number r„ of quadratic forms needed. Each of the r„ quadratic forms will be a function 
of kn variables. 

3. Moser's result and consequences 

In this section we use the characterization of quadratic shears in Lemma 1. to give an alternate 
proof of the result of Moser [22] for quadratic symplectic maps. As a consequence we are able to 
characterize quadratic shears for which M(x)^ = 0. 

The standard symplectic form, w, is defined as u{v, v') = v^Jv' where J is the 2n x 2n matrix, 

-(^o) 
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A map / is symplectic with respect to w if u}{Dfv,Dfv') = u{v,v') for all vectors v,v' G R'̂ ", or 
consequently when 

DfjDf = J. (10) 

The main part of Moser's theorem characterizes quadratic symplectic shears. 

Theorem 1. Let F be a quadratic symplectic map o/(R^", w). Then F can be decomposed as F = ToS 
where T is affine symplectic and S is a symplectic quadratic shear. Furthermore, if S is any symplectic 
quadratic shear, then there is a symplectic linear map A such that Xo So X~^{q,p) = (g + '^W(p),p), 
where W is a homogeneous cubic polynomial in p. 

Proof. 
Let b = F(0) and L = DF{0). Clearly L is a symplectic matrix and if we let T{x) = 6 + Lx, then 

S = T~^ o F is a symplectic quadratic map. We can write S{x) = x + ^M{x)x, where M{x) is linear 
in X and satisfies the symmetry property M{x)y = M{y)x. By (10), S is symplectic provided 

(/ + M{x)fj{I + M{x)) = J. 

Homogeneity of M{x) impHes that M{x)'^J = J'^M{x), and M{x)'^JM{x) = 0. These conditions 
imply that 

M(x)2 = 0. (11) 

Lemma 2 then implies that •? is a quadratic shear. 
To finish the proof, we follow Moser [22] and define the null space of M in the following way 

J\f = ^f{M) = {ye K^" : M(y) = 0}. Notice that y G A/" if and only if M(x)y = 0, for all x € R^". 
Recall [1] that the w—orthogonal complement of a subspace £ C M "̂ is defined by f-*- = {u G 

R2" : uj{v,v') = 0,Vu' G S}. We will show that N-^ C M. For that purpose, we will use the following 
fact: for any x, y, z G R", 

M{z)M{x)y = M(x - yfz = 0, (12) 

that follows from Lemma 2, linearity, symmetry and equations (6) and (11). 
Let u G TV/*-"- and X G R^". Now for any y G R^", (12) implies that M{x)y G U. Therefore 

u}{y,M{x)u) = y'^JM{x)u = —y'^M{x)'^Ju = —a;(M(x)y,u) = 0. This implies that M{x)u = 0 and 
hence u G TV. Standard theorems in symplectic geometry (cf. [1]) imply that, in this case, it is possible 
to find a Lagrangian space T such that A/"-̂  C T^ = T Q h! and a symplectic linear transformation A 
such that 

A(:F) = {[q,p) G R" X R" : p = 0}. 

Clearly, if S'(x) = X + \M{X)X is a symplectic quadratic shear, then so is 5 = Ao^oA"^. Assume 
that 5(x) = X + \M{x)x. Then \{T) C M{M). This implies that for all (g,p) G R" x R", 

M{q,p){q,p) = M(ç,p)(0,p) = M(0,p)(g,p) = M(0,p)(0,p). 

Since, in general, the matrix M(0,p) can be written in n x n blocks as 

^(O'Î ' )-U(P) Dip) 

then M(0,p)(q',0) = 0 implies Aip) = C{jp) = 0. Moreover, since S is symplectic, we find that 
Dip) = 0 and Bip)'^ = Bip). Thus, finally, we see that M{q,p){q,p) = (B(p)p,0), where Bip)p is a 
gradient vector field. • 

The following corollary will eillow us to simplify a certain class of quadratic shears, as a direct 
application of Moser's theorem. 
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Corollary 1. Let f{x) = a; + ^M{x)x be a quadratic shear in K". If M{x^ = 0 then there exists a 
linear subspace /C C R" such that 

1. Vx G /C, f{x) = X (or Mix)x = 0). 

2. Va; e W, Mix)x € /C. 

5. Furthermore, f is linearly conjugate to a map of the form 

ilH q + V(p) 

P 

where V is quadratic in p,qe M""*, p G M*= and k > [v9+^"-3]. 

Proof 
It is a well know fact that if / : R" -^ R" is a diffeomorphism, then the following map is symplectic 

) "̂  ( o/ixr^y ) 

In our case, Df{x) = I + M{x) and, since M(a;)^ = 0, Df{x)~'^ = I — M{x)'^. Therefore, if we define 
F{x, y) = (x + ^M{x)x, y — M{x)'^y) then F is quadratic and symplectic. 

Moser's theorem implies that it is possible to find a homogeneous cubic potential W, and a 
symplectic matrix A such that F = A~̂  o G o A, where G{x,y) — {x + VW{x),y). Assume that the 
symplectic matrix is 

^-{r.y 
The symplectic condition (10) implies that the inverse of this matrix is 

A-i = 
.1 / D"^ - B ^ 

and since A-'" is also symplectic, then CD'^ = DC^. This implies that F{x,0) = X~^G{Ax,Cx) = 
X-^{Ax + VW{Cx), Ox) = (x + D'^VWiCx), -C^VM^(Cx)). Hence, 

D'^VWiCx) = ^M(x)x, 

and 

C'^'^WiCx) = 0. 

Let K = Ker{C). Notice that K = {0} implies that W = 0, thus we may assume K. -^ {0}. To 
finish the proof, it is enough to notice that for all x € IR", \M{X)X € K since 

CD^S/W{Cx) = DC'^^W{Cx) = 0. 

The third part of the corollary follows from the first two, after a linear change of coordinates and 
proposition [1]. • 
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4. Dimensions Three and Four 

Following Coroliary 1, we would like to establish the stronger result that M(a;)^ = 0 for all x. In 
this section we show that this is true when n = 3,4. 

Lemma 4. 
Let / : E" —)• E" be a quadratic shear where n ^ 4. Then, for all ar, M(x)-^ = 0. 

Proof. 
Recall that by Lemma 3, M{x)^ = 0. When n = 1, this means that M[x) = 0; i. e., the trivial 

result that there are no quadratic diffeomorphisms in one dimension. When n = 2 nilpotency of M 
implies that M{x)^ = 0 directly. Now consider n = 3 or 4. If M{x)x = 0 then (8) implies that 
M{x)^ = 0. Hence assume that there is some x such that M{x)x ^ 0. Suppose that for some z, 
M{x)'^z = u 7̂  0. Then the Jordan form of M{x) has one 3 x 3 block, and forn = 4 an additional 1x1 
block. M{x)'^x = 0 implies that M{x')x is in Ker(M(ar)). Furthermore, Ker(M(a:)) nRange(M(x)) = 
Span{u}. Thus M{x)x = cu for some scalar c^O. Thus, from (7), M{z)M{x)x = —2M{x)'^z = —2u. 
But M{z)cu = —2u is impossible since M{z) is nilpotent. This contradicts M{x)x 7̂  0. • 

Using this lemma for n = 3, we can apply Corollary 1 to directly obtain the following. 

Corollary 2. For n = 3, for all x, M{x)x = {x'^Px)u, where P is symmetric and Pu = 0. 

Finally, Corollary 1 also applies to the case n = 4. 

Corollary 3. For n = 4, for all x there exist vectors ui and U2 and symmetric matrices Pi and P2 
such that PiUj = 0 for i,j = 1,2 and M{x)x — {x'^Pix)u\ + {x^P2x)u2. 

5. Conclusion 

Any quadratic, volume preserving difFeomorphism that has a quadratic inverse can be written in 
the form 

f{x) = a o r ( x ) , 

where a{x) = /(O) + Df{Q)x is an affine volume preserving map, and T(X) = X + ^M{x)x is a 
quadratic shear. When n ^ 4 we showed that M(x)^ = 0. Though we know of no counter-example 
to this condition we have only been able to show that M{x)^ = 0 for n > 4. When M(a:)^ = 0, then 
there is an additional linear transformation A such that 

f{x) = A o r o A~ , 

where the quadratic shear f takes a particularly simple form 

q + V{p) 

P 

for {q,p) Ç.W xMf', and V{p) a homogeneous quadratic function. We have seen that 

il)-i 

r <n — 
V9 + 8 n - 3 

In particular when n = 3, then r < 1 and so there is at most a single quadratic function of two 
variables, and when n = 4, r ^ 2, so there is either pair of quadratic functions in two variables, or a 
single quadatic function of three variables. 

The dynamics of this class of maps is certainly a least as rich as those of the Hénon map, and we 
believe their study will prove equally enlightening. 
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K. E. JIEH^, H. E. JIOMEJIH, RTK. fl. MEftC 

KBAJIPATHqHblE OTOBPAHtEHHH, COXPAHfllOmHE O B t E M b l : FACUIHFE-
HHE PESyJILTATOB M03EPA 

Ilocmynujia e pedaKuuio 11 umjia 1998 z. 

PaccMOTpeHHo ofioSmeKHe oTo6pa»eHHH XenoHa «JIH njiocKOCTH, KOTopbiM HenneTCfl KBaflpaTHiHbifl flH({)(})eoMop-
$H3M, HMeiomHft KBaflpaxHiHLifl o(5paTHJ>ifl. M M HCcneflyeM cjiynaft, Korfla STH flH(J)(t)eoMop({)H3Mbi coxpaHHioT 
oGteM, MTo o6o6maeT ceMeiicTDO CHMMerpH^iecKHX KeaflpaTHiHux OToCpaaîeHHfi HsyieHHtix MoaepoM. B paSoTc 
nonyMena xapaKTepMCTHKa axHX oToOpaweHHft nnn pasMepiiocTH Mexwpe H MeHLuie. B ;ionojiHeHHe MBI HcnoflbsyeM 
pe3y.abTaT Moaepa «JIH KOHCTpyKijHH noflceMeftcTBa B n H3MepenHflX. 
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