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A natural generalization of the Hénon map of the plane is a quadratic diffeomorphism that has a quadratic inverse.
We study the case when these maps are volume preserving, which generalizes the the family of symplectic quadratic
maps studied by Moser. In this paper we obtain a characterization of these maps for dimension four and less. In
addition, we use Moser's result to construct a subfamily of in # dimensions.

1. Introduction

Some of the simplest nonlinear systems are given by quadratic maps: for example the logistic map
in one dimension and the quadratic map introduced by Hénon [14, 15] in the plane. It is easy to see
that any quadratic, one dimensional map with a fixed point is affinely conjugate to the logistic map,
z — rz{l — x). In a similar way, Hénon showed that a generic quadratic area-preserving mapping of
the plane can be written in normal form as

( ) ( ) ,
y T

Hénon’s study can be generalized in several directions. Moser {22] studied a class of quadratic
symplectic maps, having obtained a useful decomposition and normal form. For example, when the
map is quadratic and symplectic in R®* | Moser [22, 19] showed that it can be written as the composition
of two affine symplectic maps and a map of the form

()5
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where W is a homogeneous cubic polynomial in p. The map given in (1) is a particular example of
what we call a quadratic shear.

Definition 1. A quadratic shear is a bijective map of the form
1
zw flz)=z+ —2-Q(2:), (2)

where Q(x) is a vector of homogeneous, quadratic polynomials such that f~! is also a quadratic map.

In this way Moser's result is basically a characterization of all symplectic quadratic shears. One of
the remarkable aspects of this is that quadratic symplectic maps necessarily have quadratic inverses,
in general we can write a quadratic map on R” as the composition of an affine map with a quadratic
map that is zero at the origin and is the identity at linear order:

21 f(@) = 20 + Lz + 3Q(a), 3)

where 2o € R?, L is a matrix, and Q(x) is a vector of homogeneous, quadratic polynomials. Note
that if the map f is volume preserving then it is necessary that L satisfies det{L) = 1. Similarly if f
is symplectic, then L must be a symplectic matrix. Of course, the quadratic terms also can not be
chosen arbitrarily in these cases.

Polynomial maps are of interest from a mathematical perspective. Much work has been done
on the “Cremona maps”, that is polynomial maps with constant Jacobians [8]. An interesting
mathematical problem concerning such maps is the conjecture proposed by O.T.Keller in 1939:

Conjecture 1 (Real Jacobian Conjecture). Let f:R* - R® be o Cremona map. Then f is
bijective and has a polynomial inverse.

This conjecture is still open. It is known that injective polynomial maps are automatically
surjective and have polynomial inverses [28, 4], so it would suffice to prove that f is injective. It
is easy to see (cf. Lemma 1 below) that a quadratic map with constant Jacobian is injective, thus the
Jacobian conjecture holds for the quadratic case.

Even if the conjecture is true, the degree of the inverse of a Cremona map could be large. For
example, the upper bound for the degree of the inverse of a quadratic map on R? is known to be
27=1 [4]. Thus in two dimensions the inverse of a quadratic area-preserving mapping is quadratic, as
was discussed by Hénon.

The question of integrability of Cremona maps has been addressed by Moser. In [23], he const-
ructs a family of cubic polynomials that are nonintegrable. This was one of the first attempts to
show the possibility of complicated behavior in a simple system, i. e., chaos. Related to this, there
is an interesting family of Cremona maps that have exactly one integral, the so called trace maps
(cf. [26]). For instance, if we let p(z1,%2,23) = a +b(z1 + 22+ x3) + c(T1T2 + 7123 + T273) + d(T12223)
and T: R — R* be given by

I p($1:x2)m3) — T4
T2 z
T = )
T3 T2
ra I3

then T is a cubic Cremona map that has the following integral
I(z1,33,23,24) = x5 +23+ :r§ + 23 — a(z; + 22 + 23 + 24)
- b(z122 + 123 + X1 T4 + TaT3 + TaTy + T3Ly4)

— ¢(z122%3 + T1X2T4 + T1T5T4 + T2T3%4) — d{T1Z2T324).
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‘We believe that the class of quadratic maps that have quadratic inverses is an interesting one [19).
The study of such maps hinges upon the characterization of quadratic shears in R, For instance, it
is known that a necessary and sufficient condition for bijective maps of the form (2) to be quadratic
shears is that DQ(x)Q(z) = 0. However, simpler characterizations are needed; these are known for
the cases n = 2 and n = 3 [19]. In this paper we extend the results of [19] to higher dimensions,
in particular to the case n = 4. In addition, we apply Moser’s theorem in order to characterize a
subfamily of quadratic shears. A simplified proof of his result is provided.

2. Quadratic Shears

It is convenient to rewrite (2) as
1
flz) =z + sM(a)z, @

where M : R® - R*™? js a linear function into the set of n X n matrices. Since Q(z) = M(z)z, M
must satisfy the symmetry property M(z)y = M(y)zx so that D (M(z)z} = 2M(z). Thus

Df(z) = I+ M{(z),

and so there is a unique M for any quadratic Q.

In this section we study characterizations of quadratic shears in R?. First we show that a necessary
and sufficient condition for a map of the form (4) to be a quadratic shear is that M(z)%z = 0. After
some work, we will see that the matrix must also satisfy M(z)3 = 0.

In the penultimate section of this paper we will demonstrate that when n € 4 the matrix M
satisfies M(2)2 = 0. Though we do not know if this is true in general, we have been unable to
construct an example matrix M(z) such that M(z)? # 0. Whenever M? = 0, the matrix M has all

zero eigenvalues and its largest Jordan blocks are of the form ( g (1} ), which implies that M has

rank at most [n/2].
We begin our characterization of quadratic shears by recalling the following lemma that was

obtained in [19].

Lemma 1. Let f(z) =z + %M(x)x be a quadratic map of R® in standard form. The following
statements are equivalent

i) Forallz e R*, det(Df(z))=1.

i) f is bijective with polynomial inverse.

iit) [M(z)]" = 0.

Proof.
We will show iil)=>ii)=>i)=iii).

iii)=+ii) The condition implies that the matrix I + M(z) is invertible with inverse I — M(z} +
M(z)?2 — - = (-1)"M(z)""). We can write

f@) =it = (1424 (552)) -

So the function is injective. Using theorem A in [28], we conclude that f is bijective with a polynomial
inverse.
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ii)=>i) By assumption, det(Df{z)) and det(Df-1{(f(z))) are polynomials in z),3,... ,%n.
However, differentiation of f=1(f(z)) = 2 gives

det(Df~(f(z))) det(Df(z)) =1,
and therefore, since both are polynomials, det(D f(z)) has to be a constant independent of . We
notice that det(D f{z)) = det(Df(0)) = det() = 1.
i)=iii) Since det(F + M{(z)) =1 and M is linear in x, then for any { # 0
1
det(M(z) — ¢I) = (-1)"*¢" det(I-l-M(—--C-z)) = (-1)"¢™.

This implies that the characteristic polynomial of M(z) is (—()™ and therefore [M{z)]" = 0. [

At this point, we restrict to the case of quadratic maps in standard form whose inverse is also
quadratic, i. e. quadratic shears. The next lemma was obtained by Lomeli and Meiss {19]:

Lemma 2. Let f(z) = =+ %M(m)x be a quadratic map of R*. Then f is a quadratic shear if and
only if M(z)’z = 0, for all z € R".

It is a simple consequence of this lemma and the linearity of M that when f is a quadratic shear,
then for all z,y, 2z € R®, the matrix M satisfies the following properties

M{M(z)z)M(z)z = 0, (5)
Mz}M(y)z + M{y)M(2)z + M(z}M{(z)y = 0. (6)

Property (5) implies that for each z, M(z}z is a fixed vector of f(z). Choosing ¥ = z in
property (6) gives

M2)M(z)z = M(M(x)z)z = —2M*(z)z Vz,z. {7
Therefore
M(M(z)z) = —2M*(z) Vz. (8)

It follows from property (8) that, if for some z* € R® M(z*)z* = 0, then M2(z*) = 0. Also, if
M({2*)? = 0, then M{M(z*)z*) = 0. Using this, we obtain the following:

Lemma 3. Let f(z) = ¢ + 1 M(z)z be a quadratic shear. Then for allz € R*, M(z)® = 0.

Proof.
Suppose that, for some z € B*, M(z)z # 0. Then, for any z, property (6) implies

M(M(z)z)M(z)z + M(z)M ()M (z)z + M(2})M(M(z)z)x = 0.
From this, the symmetry property and (8) we have
M{z)*M(2)z + M(z)M(z)%z + M(z)M(z)%z = 0.
Hence, we find that 2M(z)%2 = ~M(z)M(z)?z. But this is zero by Lemma 1. |
ExaMpii 1. A simple family of quadratic shears is determined by any vector u € B* and a symmetric
matrix P such that Pu = 0. For all z,y € B® let M(z)y = (z7 Py)u. Then
M(z)*z = (27 Pu)(zT Pr)u = 0.
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We will see that for the case n = 3 every quadratic shear can be expressed in this form.

EXAMPLE 2. A more general example of a quadratic shear is
1 1y, 7
EM(.\"’J);‘B = :—Z-Z(a: P;z)uj, (9)
=1 '

where the r matrices P; are symmetric and for all 7,§ we have that Piu; = 0. We will see in the
next sections that this is the most general form when n = 4. More generally, if M satisfies (9), then
since there is 2 maximum number of independent quadratic forms, we can use a linear coordinate
transformation to transform the map to reflect this.

Proposition 1. Choose M as in (9). Then it is always possible to assume that

«,/9+8n-—3}
— |-

rgn—[

Proof.

Let k = n ~ dim (Span{u;,... ,u.}).

Since f{u;) = uy, after a linear change of coordinates, we can assume that the shear is of the
form (g + V(p),p) where V(p) is a vector of quadratic forms, ¢ € R*~* and p € R¥. We know that the
space of quadratic forms in R* has dimension k(k +1)/2. If k(k +1)/2 < {n — k) then there are some
quadratic forms in V that are linearly dependent, and so with a linear transformation in the g—space
we can reduce them by one. We can continue doing this, until k(k+1)/2 > (n ~ k). This implies that
k% + 3k — 2n > 0 and therefore k > [3&—55-‘—3]. Going back to the original function, we let r = n — k.

|

The following table illustrates the maximum number ry, of quadratic forms needed, if the quadratic
shear is chosen as in (9). In this case, each quadratic form is a function in at least &, variables, since
™n + kﬂ_ = n.
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Table 1. Maximum number r, of quadratic forms needed. Each of the r,, quadratic forms will be a function
of k,, variables.

3. Moser’s result and consequences

In this section we use the characterization of quadratic shears in Lemma 1. to give an alternate
proof of the result of Moser [22] for quadratic symplectic maps. As a consequence we are able to
characterize quadratic shears for which M(x)? = 0.

The standard symplectic form, w, is defined as w(v,v’) = vT Jv' where J is the 2n x 2n matrix,

-0 I
=0 1),
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A map f is symplectic with respect to w if w(Dfv, Dfv’) = w(v,v') for all vectors v,v' € R?", or
consequently when

DfTIDf = J. (10)
The main part of Moser’s theorem characterizes quadratic symplectic shears.

Theorem 1. Let F be a quadratic symplectic map of (R**,w). Then F can be decomposed as F = ToS
where T is affine symplectic and § is a symplectic quadratic shear. Furthermore, if S is any symplectic
quadratic shear, then there is a symplectic linear map A such that Ao So X7 (g,p) = (¢ + VW (), p),
where W is @ homogeneous cubic polynomial in p.

Proof,

Let b = F(0) and L = DF(0). Clearly L is a symplectic matrix and if we let T(z) = b+ Lz, then
S = T"106 F is a symplectic quadratic map. We can write S{z) =z + %M (z)z, where M(z) is linear
in z and satisfies the symmetry property M(z)y = M(y)z. By (10), § is symplectic provided

(I + Mz)TI{I + M{z)) = J.

Homogeneity of M(z) implies that M{z)TJ = JTM(z), and M(x)TJM(z) = 0. These conditions
imply that

Mz =o0. (11}

Lemma 2 then implies that S is a quadratic shear.
To finish the proof, we follow Moser [22] and define the null space of M in the following way
N = N(M) = {y € R : M(y) = 0}. Notice that y € A if and only if M(z)y = 0, for all x € B>".
Recall [1] that the w—orthogonal complement of a subspace £ C R?" is defined by £ = {v €
R? : w(v,v') = 0,V € £}. We will show that N* C N. For that purpose, we will use the following
fact: for any z,y,z € R*,

M(z)M(z)y = M(z —y)°z =0, (12)

that follows from Lemma 2, linearity, symmetry and equations (6) and (11).

Let v € NL and z € B®®. Now for any y € R?", (12) implies that M(z)y € N. Therefore
wly, M(z)u) = yTIM(2)u = —yTM(2)TJu = ~w(M(z)y,v) = 0. This implies that M (z)u = 0 and
hence © € N. Standard theorems in symplectic geometry (cf. [1]).imply that, in this case, it is possible
to find 2 Lagrangian space F such that N+ C F* = F C N and a symplectic linear transformation A

such that
MF) ={(g.p) €R* xR* : p=0}.
Clearly, if S(z) = =+ %M(:c)a: is a symplectic quadratic shear, then so is § = Ao SoA~1. Assume
that §(z) = z + 1M(z)z. Then A(F) C N'(M). This implies that for all (g,p) € R* x R",
M(q,p)(g,p) = M{q,p)(0,p) = M(0,p)(g,p) = M (0,p)(0,p)-
Since, in general, the matrix M(0,p) can be written in n x n blocks as

M(0,p) = ( é((g g% ),

then M(0,p)(g,0) = O implies A(p) = C(p) = 0. Moreover, since § is symplectic, we find that
D{p) = 0 and B(p)T = B{p). Thus, finally, we see that M(g,p}(g,p) = (B(p)p,0), where B{p)p is a
gradient vector field. (]

The following corollary will allow us to simplify a certain class of quadratic shears, as a direct
application of Moser’s theorem.
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Corollary 1. Let f(z) = = + jM(z)z be ¢ quadratic shear in R®. If M(z)? = 0 then there ezists o
linear subspace K C R* such that

1. Vz ek, f(z) =z (or M(z)z =0).
2. Ve eR*, M(z)z € K.

8. Furthermore, [ is linearly conjugate to a map of the form
(5)(17)
P p
where V is quadratic in p, ¢ € "%, p € R* and k > [2+2=3 5"‘3]

Proof.
- It is a well know fact that if f : B* — R" is a diffeomorphism, then the following map is symplectic

in R* x R*
(i)”(pf{i%)-

In our case, Df(z) = I + M(z) and, since M(z)? =0, Df(z)~T = I — M(2)T. Therefore, if we define

F(z,y) = (z + §M(z)z,y — M(z)Ty) then F is quadratic and symplectic. ‘
Moser’s theorem implies that it is possible to find & homogeneous cubic potential W, and a

symplectic matrix A such that F = A~ o G o A, where G(z,¥) = (z + VW (x),y). Assume that the

symplectic matrix is
A B
=(42).

The symplectic condition (10) implies that the inverse of this matrix is
o-( 2 F)
- __CT AT '

and since AT is also symplectic, then CDT = DCT. This implies that F(z,0) = A~1G(Azr, Cx) =
A~Y{Az + VW(Cz),Cx) = (z + DTVW(Cx), ~CTVW (Cxz)). Hence,

DTYW(Cz) = %M(a:)x,
and
CTYW(Cz) =0.

Let K = Ker(C). Notice that K = {0} implies that W = 0, thus we may assume K # {0}. To~
finish the proof, it is enough to notice that for all z € R*, %M (z)z € K since

CDTVW(Cz) = DCTYW(Cz) = 0.

The third part of the corollary follows from the first two, after a linear change of coordinates and
proposition {1}. =
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4. Dimensions Three and Four

Following Corollary 1, we would like to establish the stronger result thai M(z)? = 0 for all z. In
this section we show that this is true when n = 3,4.

Lemma 4,
Let f: R* = R® be a quadratic shear where n < 4. Then, for all z, M(z)* = 0.

Praof.

Recall that by Lemma 3, M{z)® == 0. When n = 1, this means that M{z)} = 0; i. e, the trivial
result that there are no quadratic diffeomorphisms in one dimension. When n = 2 nilpotency of M
implies that M(z)? = 0 directly. Now consider n = 3 or 4. ¥ M{z)z = 0 then (8) implics that
M(z)? = 0. Hence assume that there is some z such that M(z)z # 0. Suppose that for some z,
M(z)%z = u % 0. Then the Jordan form of M(z) has one 3 x 3 block, and for n = 4 an additional 1 x 1
block. M(z)*z = 0 implies that M{z)x is in Ker(M(z)). Furthermore, Ker(M(z)) N Range(M(z)) =
Span{u}. Thus M{(z)z = cu for some scalar ¢ # 0. Thus, from (7}, M{z)M{z)z = ~2M (z)?z = —2u.
But M(z)cu = —2u is impossible since M(2) is nilpotent. This contradicts M{z)z # 0. n

Using this lemma for n = 3, we can apply Corollary 1 to directly obtain the following.
Corollary 2. For n =3, for all z, M(x)z = (zT Px)u, where P is symmetric and Pu = 0.

Finally, Corollary 1 also applies to the case n = 4.

Corollary 3. For n =4, for oll z there exist vectors u; and us and symmetric matrices Py and P
such that Pu; =0 fori,j =1,2 and M(z)z = (T Piz)u; + (27 Paz)us.

5. Conclusion

Any quadratic, volume preserving diffeomorphism that has a quadratic inverse can be written in
the form

f(z) = ao1{z),

where a(z) = f(0) + Df(0)z is an affine volume preserving map, and 7(z} = z + IM(2)z is a
quadratic shear. When n < 4 we showed that M(z)? = 0. Though we know of no counter-example
to this condition we have only been able to show that M(z)® = 0 for n > 4. When M(z)? = 0, then
there is an additional linear transformation A such that

F(x) = Aoro A7},

where the guadratic shear 7 takes a particularly simple form

(3)-(1),

for {(g,p) € K" x R*, and V(p) a homogeneous quadratic function. We have seen that

[\/9+8n—3]
rgn— | SR

In particular when n = 3, then » € 1 and so there is at most a single quadratic function of two
variables, and when n = 4, r £ 2, so there is either pair of quadratic functions in two variables, or a

single quadatic function of three variables.
The dynamics of this class of maps is certainly a least as rich as those of the Hénon map, and we

believe their study will prove equally enlightening.

REGULAR AND CHAOTIC DYNAMICS, V.3, Ni3, 1998 129



X.R LENZ, B.E.LOMELL, J.D. MEISS

(]

(2]

Bl

[4]

(5]

t6]

[7

(8]

]

References

Abreham, R. Marsden. Foundations of Meckanics.
Benjamin Cummings. 1985,

Baier, Gerold, Klein, Michael, Ressler, (tto. Higher
tori in volume-preserving maps. Z. Naturforsch. A.
1990. V. 45. \& §. P. 664-668.

A. Bazzoni. Normal form theory for volume perserving
maps. Zeitschrift fur angewandte Mathematik und
Physik. 1993. V. 44. M 1. P. 147.

H.Bass, E.H. Comnell , D.Wright. The Jacobian
Conjecture:  Reduction of Degree and Formal
Expansion of Inverse. Bull. Amer. Math. Soc. 1982.
V. 7. P. 287-330.

8. Cheng, Y.S.Sun. Existence of Imvartant Tori in
Three-dimensionat Measure Preserving Mappings.
Celestial Mech. 1990. V. 47. P. 275-202.

A.J Dragt, D.T.Abell. Symplectic Maps and
Computation of Orbits in Particle Accelerators.
Fields. Inst. Comm. 1996. V. 10. P. 59-85.

Cremona-
1935.

W.Engel. Ein Sats Aber
Transformationen der Eben.
V. 130. P. 11~-19.

ganze
Math. Ann.

W. Engel. Ganze Cremona-Transformationen von
Prinzahlgrad in der Ebene. Math. Ann. 1958. V. 136.
P. 319-325.

M. Feingold, L. P. Kadanoff, O. Piro. Passive Scalars.
3D Volume Preserving Maps and Chaos. J. Stat. Phys.
1988. V. 50. P. 529,

[16]

[17]

28]

[19]

[20]

[21]

[22)

(23]

[24]

(25}

P, Holmes. Some Remarks on Chaotic Particle Paths
in Time-Petiodic, Three-Dimensional Swirling Flows.
Contéemp. Math. 1984, V. 23. P. 393-404.

F.Kang, Z.J. Shang. Volume-preserving algorithms
for source-free dynamical systems. Numer. Math.
1995. V. 71. M 4. P. 451-463,

Y.-T.Law, J.M.Finan. Dynamics of a Three-
Dimensional Incompressible Flow with Stagnation
Points. Physica D. 1992. V. §7. P. 283-310.

H.E. Lomelf , J D Meiss. Quadratic Volume-
Preserving Maps. Nonlinearity. 1998, V. 11.
P. 557-574.

R. 8. MacKay, Transport in 3D Volume-Preserving

Flows. J. Nonlin. Sci. 1994, V, 4. P. 329-354.

R.S5 MacKay, J. D. Meiss, I C. Percival. Transport
in Hamiltonian Systems. Physica D. 1984. V. 13.
P. 55-81.

J. K. Mogser. On Quadratic Symplectic Mappings.
Math. Zeitschrift. 1994, V. 216. P. 417-430.

J. K. Moger. On the integrability of area preserving
Cremona mappings near an elliptic fixed point. Bol.
Soc, Mat. Mexicana (2). 1960. V. 5. P. 176-180.

G.R. W. Quispel.  Volume-preserving  integrators.
Phys. Lett. A, 1995. V. 206. \¢ 1, 2. P. 26-30.

M.-Z. Qin, W.-J. Zhu. Volume-preserving schemes and
numerical experiments. Comput. Math. Appl. 1993.
V.26.08 4. P. 3342,

[10] S. Friedland, J. Milnor. Dynamical Properties of Plane )
Polynomial Automorphisms. Ergod. Th. & Dyn. Sys. {26] J. Roberts, M. Backe. Trace Maps as 3D Reversible
1989, V. 0. P. 67-99. dynamical systems with an invariant. Journal of

statistical physics. 1994, V., 74. N\i 3. P. §29-888.

11] §. Friedlend. Inverse Eigenvalue Problems. Linear Alg.

] Appl. 1977. V. 17. P. 1§_51. : [27] V.Rom-Kedar, L. P. Kadaneff, E. §. Ching, C. Amick.
The break-up of a Heteroclinic Connection in a volume

[12] R. Gillian, S.Ezra. Transport and turnstiles preservingmapping. Physica D. 1993. V. 62. & L.
in multidimensional Hamiltonian mappings for P, 51-85.
unimolecular fragmentation. J. Chem. Phys. 1991. ) o )

V.04 N 1. D 2648-2668. (28] W.Rudin. Injective Polynomial Maps are
. Automorphisms. The American Mathematical
(13] M.J. Greenberg, J.R. Harper. Algebraic Topology. Monthly. 1995. V. 102. P. 540-543.
Addison Wesley. 1981. P. 94-97.
ison Testey {29] Zai-jiuShang. Construction of Volume-Preserving

[14] M. Hénon, Numerical Study of Quadratic Area- Difference Schemes for Source-Free Systems via
Preserving Mappings. Q. J. Appl. Math. 1969. V. 27, Generating Functions. J. Comp, Math. 1994. V, 12.
P, 291-312. N 3. P. 265-272,

(15) M.Hénon. A Two-dimensional Mapping with a [30] Y. S Sun. Invariant Manifolds in the Measure.
Strange Attractor. Comm. Math. Phys. 1976. V. 50. Preserving Mappings with Three Dimensions.
P. 69-77. Celestial Mech. 1984. V. 33. p. 111-125.

130 REGULAR AKD CHAOTIC DYNAMICS, V.3, X3, 1938




QUADRATIC VOLUME PRESERVING MAPS: AN EXTENSION OF A RESULT OF MOSER @

{31} Yu.B.Suris. Partitioned Runge-Kutta methods as [33] Z. Xia. Existence of invariant toti in volume-preserving

[32]

phase volume preserving integrators. Physics Letters diffeomorphisms. Erg. Th. Dyn. Sys. 1992. V. 12. M 3.
A. 1996, V. 220. P. 63. P. 621-631.

A. Thyagarejs, F. A. Haas. Representation of volume- [34] Z. Xie Homoclinic points’in symplectic and volume-
preserving maps induced by solenoidal vector fields. preserving  diffeomorphisms. Comm. Math. Phys.
Phys. Fluids. 1985. V. 28. }¢ 3. P. 1005-1007, 1996. V. 177. N 2. P. 435-449.

K.E.JIEHI, H. E. IOMEJIH, I, 4. MEJC

KBAJAPATHYHBIE OTOBPAMREHUA, COXPAHAIINE OBBEMBI: PACHIHPE-
HUE PE3YJIBTATOB MO3EPA

HMocmynuaa a pedaxyuwie 11 uwan 1998 2.

PaccMoTpenno ofolitense oTobpaieniA Xenola AaA MNOCKOCTH, KOTOPLIM ABAAETCA KBRAPAaTHYHEH Audpeomop-
$M3IM, UMelONINA KBAIDATHYHLIA o6paTHetl. MEl wccmenyem cryyalt, xorae 3T AnddeoMOpPUIME COXPARAIOT
o61eM, Yo 0G00MEeT ceMECTDO CHMMETPHIECKIYX KBARPATHYHLIX oTobpamenutl nayyennsix Mosepom. B patore
HoORYHeHa XapaKTepHCTHRR 3THX oTolpanieHt 1A Pa3MePHOCTH YeThipe i MeHslle. B goRoAHeHHE MLl HCMOABIYEM
pesyaAsTaT Modepa QUA KOHCTPYRUMY NofcemeflcTBa B 1 H3IMePeHHAX.
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