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Heteroclinic primary intersections and codimension one Melnikov method
for volume-preserving maps
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We study families of volume preserving diffeomorphisms inR3 that have a pair of hyperbolic fixed
points with intersecting codimension one stable and unstable manifolds. Our goal is to elucidate the
topology of the intersections and how it changes with the parameters of the system. We show that
the ‘‘primary intersection’’ of the stable and unstable manifolds is generically a neat submanifold of
a ‘‘fundamental domain.’’ We compute the intersections perturbatively using a codimension one
Melnikov function. Numerical experiments show various bifurcations in the homotopy class of the
primary intersections. ©2000 American Institute of Physics.@S1054-1500~00!01201-5#
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The theory of transport for area-preserving maps is
based on the construction of ‘‘partial barriers,’’ typically
from segments of stable and unstable manifolds of fixed
points, periodic or quasiperiodic orbits. Our ultimate
goal is the generalization of this theory to higher dimen-
sions. Perhaps the simplest place to start is with volume
preserving maps in three dimensions. A hyperbolic fixed
point of such a map has either a two-dimensional stable
or unstable manifold. Since they are codimension one
these manifolds can separate phase space into region
containing nontrivial invariant sets. The major problem
is to choose appropriate domains of these manifolds tha
can be used in the construction of partial barriers. To
this end we define fundamental domains and their pri-
mary intersections by using a partial ordering along the
manifolds. Primary intersections are typically curves on
the two-dimensional manifolds. These curves, when re
stricted to a fundamental domain, become loops and can
be classified by their homotopy. As parameters of a map
change, these homotopy classes can change as well.
investigate this, we start with an integrable map that has
a saddle connection, and use a Melnikov perturbation
method to compute the splitting distance between the
manifolds. Our numerical computations show the cre-
ation and destruction of intersection loops of various
types.

I. INTRODUCTION

Volume-preserving maps provide an interesting and n
trivial class of dynamical systems that give perhaps the s
plest, natural generalization of the class of area-preser
maps to higher dimensions. Moreover, volume-preserv
maps naturally arise in applications as the time one Poin´
map of incompressible flows—even when the vector field
the flow is nonautonomous. Thus the study of the dynam

a!Electronic mail: jdm@boulder.colorado.edu
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of volume-preserving maps is of interest both for fluids a
magnetic fields. Our primary motivation for studyin
volume-preserving maps is to generalize the study of tra
port, which has been quite successful for two dimensio
maps,1,2 to higher dimensional cases.

Previously, we constructed a normal form for the qu
dratic volume-preserving map inR3 3 ~and obtained a partia
classification for higher dimensions4!. This map is the natura
generalization of He´non’s quadratic area-preservin
map5—it gives the simplest volume-preserving system inR3

that has nontrivial dynamics. Moser has similarly obtain
normal forms for quadratic symplectic maps.6 These normal
forms are to be distinguished from formal series expansi
that give normal forms in the neighborhood of a fixed poi
such as the ‘‘Birkhoff’’ normal form. Bazzani has con
structed such normal forms for volume-preserving ma
showing that they are formally integrable to all order7

These normal forms are formal series expansions that t
cally do not converge, and moreover are not volum
preserving when truncated at any given finite order.

The quadratic volume-preserving map has most t
fixed points, and typically these points are hyperbolic a
have either a two-dimensional stable and a one-dimensi
unstable manifold~type A!, or a two-dimensional unstabl
and a one-dimensional stable manifold~type B!. Commonly
one point is typeA and the other typeB, and the two-
dimensional stable manifold of the first intersects the tw
dimensional unstable manifold of the second. In this pa
we investigate the properties of such intersections.

An understanding of the intersections of codimens
one invariant manifolds is important in the development
transport theory.8–10For example, supposea andb are saddle
fixed points of an area-preserving map, andWs(a) and
Wu(b) are branches of their stable and unstable manifolds
these intersect at a pointx, thenx is a heteroclinic orbit; that
is, it is backward asymptotic toa and forward asymptotic to
b. Let Wx(a) denote the segment of an invariant manifo
that starts ata and extends tox ~below we will be careful to
© 2000 American Institute of Physics

license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



op

lte
te

ry
s
ly

c
r
d
u

na
po
su
ld
e
s
s
a
ca
n
t

io
o

n
d
v

l
n

rv

ra
e
t

g
ne

y,
ex
er
a

-

a
io
o

o
e
th
vi

al

int
ly a

to

at

ion

tu-
e-

e-
e

of

ters
-

line,
ou-

c-

o
gen-

p at

le
l

pec-

110 Chaos, Vol. 10, No. 1, 2000 H. E. Lomelı́ and J. D. Meiss

Do
exclude or include endpoints of these segments as appr
ate!. A point x is a primary intersection point~or ‘‘pip’’ in
Wiggins’ terminology2! if the closures ofWx

s(a) andWx
u(b)

intersect only at the endpointx.
Primary intersections can be used to formresonance

zones11,12—regions of phase space that are bounded by a
nating stable and unstable segments joined at primary in
section points. Because the intersection points are prima
resonance zone is bounded by a Jordan curve, and it ha
exit and an entry set.13 The images of these sets complete
define the transport properties of the resonance zone.

In Sec. III we generalize the notion of primary interse
tions toR3. A similar theory was developed in Ref. 14 fo
the case of diffeomorphisms that arise from quasiperio
time-dependent vector fields, see Ref. 2 for a review. O
definition depends on the existence of two-dimensio
manifolds and our main concern is to understand the to
ogy of the one-dimensional intersection as an immersed
manifold. It is possible that the stable and unstable manifo
could be used to construct partial barriers, and their inters
tions will bound ‘‘lobes’’ that can be used to compute tran
port properties.15 We will see that different homotopy classe
of primary intersections can exist and that they can bifurc
by changing from one homotopy class to another. Bifur
tions in the intersection manifolds will have immediate co
sequences for transport, since such a bifurcation modifies
lobes, and may even forbid their existence. Our definit
can be generalized to higher dimensions, if the map has c
mension one invariant manifolds.

In order to illustrate how the heteroclinic intersectio
changes, we develop an extension of the Melnikov metho
volume-preserving maps in Sec. IV. Melnikov methods ha
been extensively developed for two dimensional maps,16–18

for higher dimensional maps19,20 and for three-dimensiona
volume-preserving flows.21 In this latter case the perturbatio
may be periodically time dependent, and the Poincare´ map of
the system is assumed to have a hyperbolic invariant cu
with two-dimensional manifolds.

For the case of maps, the analogue of Melnikov integ
is an infinite sum whose domain is the unperturbed conn
tion. As usual, a simple zero of this function corresponds
a transverse intersection for the perturbed map.

In Sec. V we introduce a family of volume-preservin
maps that have a completely degenerate heteroclinic con
tion ~i.e., a saddle connection!. This family is obtained from
a family of planar twist maps with saddle connections.22 We
perturb the family by composing it with a near identit
volume-preserving map. In this way, we can produce
amples of volume-preserving maps with transverse het
clinic orbits. To accomplish this construction we will need
pair of adapted vector fieldson the manifold, or alterna
tively, an integral of the unperturbed map.

We compute the Melnikov function in Sec. VI for
particular perturbation and a classify the primary intersect
curves by their homotopy type. We observe a number
bifurcations as the parameters of the map change. To c
pare the Melnikov function with the fully nonlinear map, w
compute its stable and unstable manifolds. In general,
development of computational methods for the effective
wnloaded 10 Nov 2005 to 128.138.249.124. Redistribution subject to AIP 
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sualization of invariant manifolds in higher dimension
maps is itself an interesting and difficult problem.23,24For the
case that the magnitude of the multipliers at the fixed po
restricted to the unstable subspace are equal, we app
clever, but simple technique due to Tabacman.25

II. VOLUME PRESERVING MAPS

A diffeomorphismf :Rn→Rn is volume-preserving when
f * V5V, whereV is a volume form, i.e., a positiven-form.
We will restrict our consideration to maps onR3 that pre-
serve the standard volume form

V5dx∧dy∧dz. ~1!

In this case the volume-preserving condition reduces
det(f8)51, i.e., that the Jacobian off is one. For later refer-
ence, we recall that ifv1 ,v2 ,v3PTj(R

3) then

V~v1 ,v2 ,v3!5det~v1 ,v2 ,v3!5^v1 ,v23v3&. ~2!

where^,& is the standard inner product. We also know th
the triple product satisfies

V~v1 ,v2 ,v13v2!5uv13v2u2. ~3!

Volume preserving maps arise naturally in connect
with divergence free vector fields. IfX is a vector field andV
is a volume form, then the divergence ofX with respect toV
is defined as the unique differentiable function divX such
thatLXV5(div X)V. Thus the timet map of any divergence
free flow is volume-preserving, and such maps arise na
rally from the time one maps of incompressible, tim
dependent fluid or magnetic-field line flows.

For a volume-preserving map, the multipliers of any p
riodic orbit must have a product one. For example, supposp
is a fixed point of the volume-preserving mapf on R3. Then
det(f8(p))51 and, therefore, the characteristic polynomial
the Jacobian matrixf 8(p) is

l32tl21sl2150,

where t is the trace ands is the so-calledsecond traceof
f 8(p).

The dependence of the multipliers on the two parame
t ands is illustrated in Fig. 1. There are two lines in param
eter space where the stability changes: The saddle-node
t5s, corresponds to an eigenvalue 1, and the period d
bling line, t1s522, corresponds to an eigenvalue21. At
the pointt5s521 where they cross the multipliers are ne
essarily ~21, 21, 1!. Note also that when21<t5s<3
there is a pair of multipliers on the unit circle. There are tw
other curves of interest—these correspond to a double ei
valuel15l25r , or

t52r 11/r 2, s5r 212/r .

This gives the two curves shown in Fig. 1. One has a cus
t5s53, corresponding to the triple rootl51. The second
crosses the saddle-node and period doubling lines att5s
521. These are codimension two points.

A hyperbolic fixed point with a two-dimensional stab
manifold is calledtype Aand one with a two dimensiona
unstable manifold is calledtype B.26 These fixed points also
have one-dimensional unstable and stable manifolds, res
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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tively. The saddle-node and period doubling lines divide
~t,s! plane into quadrants which alternate between typeA and
B. The dynamics on the two-dimensional manifolds will d
pend upon whether the pair of multipliers are complex or
real.

If a map has a pair of fixed points, one of typeA and one
of type B and the pair of two-dimensional manifolds~stable
and unstable! intersect, then generically they intersect alo
one-dimensional manifolds. We have observed earl3

changes in the topology of the intersection manifolds as
parameters vary. Elucidating this topology is the primary a
of this paper.

III. PRIMARY INTERSECTIONS

In this section we introduce the concepts of the fun
mental domain of a stable~or unstable! manifold and of pri-
mary heteroclinic intersections between such manifo
These generalize the well known concepts for two dim
sional maps. We, as usual, assume thatf :R3→R3 preserves
the 3-formV, ~1!.

A. Proper loops and fundamental domains

Definition 1 (Proper Loop): Suppose a5 f (a) is hyper-
bolic and of type A, i.e., has a two-dimensional stable ma
fold Ws(a). A proper loopg,Ws(a) is a curve that bounds
a local submanifold that is an isolating neighborhood of
In other wordsg is proper if there is an open local subman
fold Wloc

s (a) such that
~a! ]Wloc

s (a)5g and

~b! f (Wloc
s (a)), int(Wloc

s (a)).
Similarly if b is a type B fixed point, then a loo

s,Wu(b) is proper if it is proper for f21.
If g is proper, we can define the stable manifoldstarting

at g, denoted by byWg
s(a), as the closure inWs(a) of the

local submanifold bounded byg in Defn. 1. Similarly, ifb is

FIG. 1. General stability diagram for a volume-preserving map.
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a type B fixed point with a proper loops, we define the
manifoldup tos, denotedWs

u(b), as the interior of the loca
manifold that corresponds tof 21 in Defn. 1.

Notice that the definition is not symmetric, becau
Wg

s(a) is a closed subset ofWs(a), while Ws
u(b) is open in

Wu(b) ~cf. Fig. 2!. The asymmetry is just a technicality i
order to simplify some proofs.

Definition 2 (Fundamental domain): Let a and b be hy-
perbolic fixed points of type A and B, respectively. An an
lus S is a fundamental domain of Ws(a) if there exists some
proper loopg in Ws(a), such that

S5Wg
s~a!\Wf +g

s ~a!.

Similarly, a fundamental domain in Wu(b) is a manifold
with boundary of the form

U5Ws
u~b!\Wf 21+s

u
~b!,

wheres is a proper loop in Wu(b). In addition, we define
Fu(b) as the set of all fundamental domains in Wu(b), and
Fs(a) as the set of all fundamental domains in Ws(a).

In each case, the fundamental domain is an annulus w
one open and one closed edge. An immediate consequ
of the definition is that all the forward and backward iter
tions of a fundamental domain are also fundamental. I
easy to see that proper loops always exist, and in fact,
stable~and unstable! manifolds can be decomposed as t
disjoint union of fundamental domains:

Ws~a!5 ø
kPZ

f k~Sg~a!!.

The importance of fundamental domains is that much
the information about the entire manifold can be found
looking only at these annuli. For instance, theprimary het-
eroclinic intersectionbetweenWs(a) andWu(b), which we
define next, is defined using fundamental domains.

B. Primary intersection

Given a fundamental domainS, the pointsjPWs(a) are
given a partial order defined by the integerk such thatj
P f k(S). This partial order provides an index that can
used to study heteroclinic intersections between two s
manifolds:

FIG. 2. Proper loopsg ands and corresponding fundamental domainsSand
U for fixed pointa of type A andb of type B.
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Lemma 1: Suppose Ws(a)ùWu(b)Þ0. Then for all S
PFs(a) and UPFu(b), there exists a unique integerk,
called the intersection index such that

k~U,S![sup$kPZ:Uù f k~S!ÞB%

5sup$kPZ: f 2k~U!ùSÞB%.

Proof: This follows from the facts that each manifold
composed of the union of the fundamental domains, that
closures ofU andS are compact and do not contain the fix
points, and thatf k(S)→a and f 2k(U)→b ask→`. The two
definitions are equivalent, since f 2k(Uù f k(S))
5 f 2k(U)ùS. j

The intersection index is useful because it is invaria
k( f (U), f (S))5k(U,S). More generally, the intersection in
dex of iterates of fundamental domains changes as

k~ f m~U!, f n~S!!5k~U,S!1m2n.

Roughly speaking, a primary intersection is the set
points where the stable and unstable manifolds ‘‘first’’ me
For maps of the plane, one says thatxPWs(a)ùWu(b) is a
primary intersection point if the intersection of the stab
manifold starting atx and the unstable manifold up tox is
empty:Wx

s(a)ùWx
u(b)5B. This means that one can choo

fundamental domainsS and U so that that their boundarie
are ~primary! heteroclinic points. As noted by Easton, th
leads to a classification of heteroclinic orbits by th
‘‘type,’’ 27 and subsequently a classification of the struct
of the ‘‘trellis,’’ the closure of the stable and unstable ma
folds.

To directly generalize the planar definition, we wou
need to find a proper loopg5s that is also heteroclinic, and
such thatWg

s(a)ùWg
u(b)5B. These proper loops would b

the analog of primary intersections. However, such loo
need not exist as we saw in Ref. 3. One consequence is
if one fixes a pair of fundamental domainsU andS, then the
set of points at whichf k(U) first intersectsS is not neces-
sarily a union of submanifolds ofS—in particular the inter-
section curves may end in the middle ofS if U is not chosen
to be properly ‘‘aligned’’ withS.

To alleviate this problem, we use the intersection ind
to define the primary intersection of the stable and unsta
manifolds of a and b, so that the connected intersectio
curves are submanifolds:

Definition 3 (Primary Intersection): Let a and b be hy-
perbolic fixed points of type A and type B, respective
whose two-dimensional manifolds intersect. We define
primary intersection of the stable and unstable manifolds

P~a,b!5ø$UùS: UPFu~b!,SPFs~a!,k~U,S!50%.

We assert thatP is invariant, and is the union of immerse
submanifolds ofWs(a) and ofWu(b). Moreover, the inter-
section ofP with any fundamental domain is generically
neat submanifold. Recall that whenM is a manifold with
boundary, a setA,M is neat inM if

]A5Aù]M ~4!
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~cf. Ref. 28 for the definition!. In other words, the boundar
of the submanifold isnicely placedin the boundary of the
manifold.

For any fixed fundamental domainS, the primary inter-
section does not have to be a neat submanifold ofS. How-
ever, if the intersection of the stable and unstable manifo
in question is transverse, then it always possible to chos
fundamental domain for which the primary intersection is
neat submanifold:

Theorem 2: Supposef, a, and b are chosen as above
and assume that the primary intersectionsP(a,b) are trans-
verse. Then

~a! P(a,b) is the union of immersed one dimension
manifolds, invariant under f and contained in
Ws(a)ùWu(b).

~b! For the genericUPFu(b),ŪùP(a,b) is a neat sub-
manifold of Ū.

~c! For the genericSPFs(a),S̄ùP(a,b) is a neat sub-
manifold of S̄.

Proof: Both stable and unstable manifolds are immers
two-dimensional manifolds. Since they intersect transvers
by assumption, their intersection is the union of on
dimensional immersed manifolds. The primary intersect
is a subset of this immersed manifold. For each pointj in the
primary intersection we can find a pair of fundamental d
mainsU andS such thatjPUùS. Since the intersection is
transverse,j is contained in a one dimensional manifold.

If the intersection ofP with a fundamental domainU is
not neat, then since this intersection consists of a union
one-dimensional manifolds with boundary, the only possib
ity is that there is at least one pointjP]$PùU% that is an
interior point of the fundamental domain. By definition the
is a fundamental domainS0 such thatjPUùS0 . Then j
P]S0 , since otherwise, the intersectionUùS0,PùU
would containj in its interior. However, by continuity, there
is a fundamental domainS1 near S0 , such thatk(UùS1)
50, and such thatS1 containsj in its interior. Thusj cannot
be on the boundary of the intersectionPùU, and so the only
possibility is that the boundary of the intersection is co
tained in the boundary of the fundamental domain. j

Our definition of primary intersection can be easily ge
eralized to higher dimensions.

IV. MELNIKOV METHOD FOR VOLUME PRESERVING
MAPS

We will use Melnikov’s method to show that a pertu
bation of a degenerate heteroclinic connection between c
mension one manifolds typically leads to transverse inters
tions of stable and unstable manifolds. This approach w
help us to study the topology of the primary intersection.

Let F0 :R3→R3 be a diffeomorphism preserving the vo
ume ~1!, such thata and b are hyperbolic fixed points o
typesA andB, respectively. We assume there exists a sad
connection between the fixed points, i.e.,Ws(a)\$a%
5Wu(b)\$b%. An example of such a map is given below
Sec. V.

We would like to show that after a small perturbatio
the manifolds still intersect, as in the classical Melnik
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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method, but that this intersection is generically transve
and along one dimensional curves. Generally the pertur
map takes the form

Fe5F01eP1 ,

such thatFe is volume-preserving. We make the simplifyin
assumption thatP1(a)5P1(b)50, so thatFe still has hy-
perbolic fixed points ata andb. However, stated in terms o
P1 , it is not so easy to construct volume-preserving pert
bations toF0 . It is easier to let

Fe5~ id1eP!+F0 ,

where I is the identity map. This can always be done sin
P[P1+F0

21. In these terms it is easier to construct perturb
tions that do not destroy the volume-preserving property

Lemma 3: Let F0 :R3→R3 be a volume-preserving dif
feomorphism. Then Fe5(I 1eP)+F0 is volume-preserving
for all e if and only if the Jacobian matrix P8 is nilpotent.

Proof: It is enough to show thatI 1eP is volume-
preserving if and only if (P8)350. This is clear since det(I
1eP8)51 for all e if and only if the characteristic polynomia
of P8 is l3. j

The lemma above allows us to easily create example
perturbations, because if we take any functionP such that
(P8)3[0 then the perturbed map is volume-preservin
Simple examples includeP(x,y,z)5(0,f (x),g(x,y)) for
any smooth functionsf andg that vanish at the fixed points

A. Adapted vector fields

After perturbation,Ws(a) andWu(b) will not in general
coincide, but will generically intersect transversely. We wa
to measure the evolution of this intersection ase increases.
To do this we need to define a pair of independent and
variant vector fields on the manifolds. We call such vec
fields ‘‘adapted:’’

Definition 4 (Adapted vector field): A vector field V on
the saddle connection Ws(a)ùWu(b) is said to be adapted
to the dynamics of F0 if

~a! (F0)* V5V,
~b! l im

j→a
V(j)50,

~c! l im
j→b

V(j)50.

Recall that, ifG:M→N is a diffeomorphism andVPTM is
a vector field thenG* V5G8(G21(j))V(G21(j)) is a vec-
tor field onTN. Thus the condition (F0)* V5V is equivalent
to F8(j)V(j)5V(F0(j)) for all j in the saddle connection
Also, if V is continuous onWs(a)ùWu(b)ø$a,b% the first
condition implies the other two. It is easy to see that adap
vector fields always exist when the multipliers of the fix
points are complex:

Lemma 4: Assume F0 has a saddle connection as d
fined as above, and that the Jacobians F08(a) and F08(b)
have pairs of complex conjugate multipliers that define th
stable and unstable subspaces, respectively. Then there
two adapted vector fields V, W defined on the saddle con
nection that are linearly independent for all points in th
saddle connection apart from at a and b.
wnloaded 10 Nov 2005 to 128.138.249.124. Redistribution subject to AIP 
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Proof: The Stable Manifold theorem29 implies that there
exists a diffeomorphismf:R2→Ws(a) such thatf(0)5a
and

f+L+f215F0 ,

where L:R2→R2 is a linear mapL(x)5Ax and A is the
derivative ofF0 restricted to its stable plane. Thus, by a
sumptionA has two complex eigenvalues with equal nor
less than 1. It is enough to show that there are two linea
independent vector fieldsṼ,W̃ in R2 such that Ṽ(Ax)

5AṼ(x) and W̃(Ax)5AW̃(x), for all xPR2. We can

choose Ṽ(x)5x and W̃(x)5Ax. Then V5f* Ṽ and W

5f* W̃ satisfy the first two conditions of Defn. 4.
To show that the last property is satisfied, note that

can construct a similar diffeomorphism for the unstab
manifold:c:R2→Wu(b). ThenDF0 is conjugate to a matrix
B which has two complex eigenvalues of equal norm grea
than 1. The corresponding vector fieldsx andBx are linearly
independent, and their push forward ontoWu(b) satisfies the
first and third conditions of Defn. 4. Moreover, at every po
except the two fixed points, these vector fields must b
linear combination ofV andW. ThusV andW satisfy con-
dition ~c!. j

In more general cases, it can also be shown, albeit w
more effort, that adapted vector fields exist, however,
case covered by lemma 4 is sufficient for the examples
we study in this paper.

B. Melnikov function

Based on the vector fields found above, we will define
global Melnikov functionM (j) on the saddle connectio
that is invariant underF0 .

Definition 5 (Melnikov function): Let Fe5F01eP+F0 ,
be a volume-preserving map with type A and type B fi
points at a and b, respectively, such that F0 has a two-
dimensional saddle connection between a and b. Suppose
that V, W are a pair of adapted vector fields that are lin
early independent on the saddle connection. For anyj
PWs(a)ùWu(b) the Melnikov function is defined as

M ~j!5 (
k52`

`

det~P~jk!,V~jk!,W~jk!!, ~5!

wherejk5F0
k(j).

As we will show below,M measures the distance b
tween the perturbed manifolds. In order that it be useful,M
should in some sense be independent of the choice
adapted vector fields:

Proposition 5: The set of zeros of M is independent
the choice of the vector fields V, W and is invariant under
F0 . This is also true for the nondegenerate zeros.

Proof: Let V, W and Ṽ,W̃ be two pairs of independen
adapted vector fields. LetM be the Melnikov function de-
fined usingV and W and M̃ be the Melnikov function de-
fined usingṼ andW̃. Since each pair is linearly independen
it is possible to find functionsa, b, g, andd such that

Ṽ5aV1bW, W̃5gV1dW.
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Since both pairs of vector fields are independent, it is cl
that d5ad2bgÞ0. In addition,Ṽ(j)3W̃(j)5d(j)(V(j)
3W(j)). Using Eqs.~2! and ~3!, and the invariance of the
volume form we see that

d~j!25
det~Ṽ~j!,W̃~j!,Ṽ~j!3W̃~j!!

det~V~j!,W~j!,V~j!3W~j!!

5
det~F08~j!Ṽ~j!,F08~j!W̃~j!,F08~j!~Ṽ~j!3W̃~j!!!

det~F08~j!V~j!,F08~j!W~j!,F08~j!~V~j!3W~j!!!

5
det~Ṽ~F0~j!!,W̃~F0~j!!,F08~j!~Ṽ~j!3W̃~j!!!

det~V~F0~j!!,W~F0~j!!,F08~j!~V~j!3W~j!!!

5d~F0~j!!d~j!.

Therefored(F0(j))5d(j) and from this we conclude that

M̃ ~j!5d~j!M ~j!. ~6!

Using Eq.~6!, we conclude thatj* is a zero forM if and
only if it is a zero forM̃ . Moreover, sinced.0 a zero ofM
is nondegenerate if and only if it is nondegenerate forM̃ as
well. j

Therefore, if we are only interested in the set of zeros
M, this proposition allows us to make a local analysis of
Melnikov function in order to find these zeros. Once we ha
the set of zeros for a fundamental domain, we find the res
iteration. In other words, we can restrict our analysis to fu
damental domains. Moreover, the nondegenerate zerosM
define the primary intersections of the manifolds:

Theorem 6: Let M be a Melnikov function as in Eq. (5
~a! If j* is a nondegenerate zero of M, then Wu(b,Fe)

and Ws(a,Fe) intersect transversely nearj* , for e small
enough.

~b! The set of nondegenerate zeros can continued, fe
small enough, to the primary intersection of Wu(b,Fe) and
Ws(a,Fe).

We give the proof in the Appendix.

C. Melnikov function when there is an integral

Computing the Melnikov function defined in Eq.~5!
could be difficult if one needs to construct a pair of adap
vector fields explicitly. However, ifF0 has a first integralI,
then we can use it to simplify the computations. In fact,
only need to assume that there is a local integral forF0 in the
sense that in some neighborhood of the saddle connec
there is an invariant. Restricting the volume form to a surfa
of constantI gives an invariant area:

Lemma 7: Let G:R3→R3 be a volume-preserving dif
feomorphism and M a surface that is given locally as
zero set of a function I. Assume that I is invariant under G
in some neighborhood of M. Then the setH5$j:¹I (j)
Þ0% is invariant and G preserves the 2-form

v~j!~v,w!5detS ¹I ~j!

u¹I ~j!u2 ,v,wD , ~7!

on each level set$I 5k%ùH.
Proof: Since I is an integral ofG nearM, I +G5I , and

therefore, G8(j)T¹I (G(j))5¹I (j). Let Tj(M )'
wnloaded 10 Nov 2005 to 128.138.249.124. Redistribution subject to AIP 
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5span$¹I (j)%. We are interested in finding the projection
G8(j)¹I (j) onto the normal space TG(j)(M )'

5span$¹I (G(j))%. In order to do this, it is enough to find
the dot product betweenG8(j)¹I (j) and¹I (G(j)):

G8~j!¹I ~j!•¹I ~G~j!!5¹I ~j!•G8~j!T¹I ~G~j!!

5u¹I ~j!u2.

The pull back ofv by G is

G* v~j!~v,w![v~G~j!!~G8~j!v,G8~j!w!

5detS ¹I ~G~j!!

u¹I ~G~j!!u2
,G8~j!v,G8~j!wD

5detS G8~j!¹I ~j!

u¹I ~j!u2 ,G8~j!v,G8~j!wD
5detS ¹I ~j!

u¹I ~j!u2 ,v,wD5v~j!~v,w!.

j

If we let G5F0 then the saddle connection that we a
using for the Melnikov method satisfies the conditions
lemma 7. This allows us to rewrite the formula for th
Melnikov function in terms of¹I :

Lemma 8: Let I be an integral for F0 , such that the
surface I5k is a saddle connection. Then it is possible
choose the vector fields V and W in Eq. (5) so that

M ~j!5 (
k52`

`

^P~jk!,¹I ~jk!&, ~8!

wherejk5F0
k(j).

Proof: Let Ṽ andW̃ be any pair of adapted vector field
that are linearly independent on the saddle connection. S
Ṽ,W̃PTjM , then there exists a nonzero functiond such that,
for everyj on the saddle connection

Ṽ~j!3W̃~j!5d~j!¹I ~j!.

We conclude thatd(j)5v(j)(Ṽ(j),W̃(j)), wherev is de-
fined as Eq.~7!. We see thatd is invariant since

d~F0~j!!5v~F0~j!!~Ṽ~F0~j!!,W̃~F0~j!!!

5v~F0~j!!~F08~j!Ṽ~j!,F08~j!W̃~j!!

5F0* v~j!~Ṽ~j!,W̃~j!!

5v~j!~Ṽ~j!,W̃~j!!5d~j!.

If we let V5Ṽ andW5W̃/d, then

det~P~j!,V~j!,W~j!!5^P~j!,¹I ~j!&

and this implies what we want. j

V. EXAMPLES

In this section we construct a family of volume
preserving maps that have a completely degenerate he
clinic intersection~i.e., a saddle connection!. We obtain this
family as a semidirect product of an area-preserving, tw
map and a rotation in three space. The twist map is define
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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such a way that it has two invariant sets which give rise t
saddle connection between two fixed points. Examples s
lar to these were found by Lomelı´22 and are related to the
work of Suris30,31on integrable maps. It is interesting to no
the map need not have an integral, and therefore, apart
the two invariant sets, typically exhibits chaotic behavi
We finally give an example for which the resulting volum
preserving map has a first integral.

A. Explicit heteroclinic connection

We start with the area-preserving map generated by
Lagrangian generating functionL:R2→R,

L~z,Z!52zZ1E
0

z

h~z!dz1E
0

Z

h21~z!dz, ~9!

where h:R→R is any strictly increasing~i.e., h8.0), C2

diffeomorphism. The Lagrangian generates atwist map
f (r ,z)5(R,Z) that is implicitly defined by

dL5RdZ2rdz.

The map is automatically area-preserving since 05d2L
5dR∧dZ2dr∧dz. Explicitly, we obtain

f ~r ,z!5S h21~r 1h~z!!2z
r 1h~z! D . ~10!

It is easy to verify that the map has two invariant manifold
the z axis and the curve

C5$~r ,z!:r 5h21~z!2h~z!%.

If h has a fixed pointz* , then the invariant curves intersect
the point (0,z* ) which is a fixed point off. The linearization
of f at such a fixed point is

f 8~0,z* !5S 1/h8~z* ! 0

1 h8~z* !
D ,

so that the fixed point is hyperbolic wheneverh8(z* )Þ1.
For example, whenh8(z* ).1 the z axis is the unstable
manifold, andC is the stable manifold. The stabilities a
exchanged whenh8(z* ),1. Thus if h has two neighboring
isolated fixed points, the invariant curves provide hete
clinic connections between them; see the sketch in Fig.

We can extend this twist map toR3 by introducing the
cylindrical angleu, and lettingA2r be the cylindrical radius.
Equivalently, the rectangular coordinates

x5A2r cosu,

y5A2r sinu,

are defined so thatdx∧dy5dr∧du. The mapf then extends
to a mapf 0 :R3→R3 defined as

f 0~x,y,z!5S r~r ,z!x
r~r ,z!y
r 1h~z!

D ,

wherer 5 1
2(x

21y2), and
wnloaded 10 Nov 2005 to 128.138.249.124. Redistribution subject to AIP 
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r~r ,z!55A
h21~r 1h~z!!2z

r
, rÞ0

1

Ah8~z!
, r 50

. ~11!

The mapf 0 is smooth when the diffeomorphismh is:
Lemma 9: Assume that hPCr 11(R) with r.1, andr is

defined by Eq. (11). ThenrPCr(R3). In addition, if h is
analytic, so isr.

Proof: Let z(r ,z)5*0
1(h21)8(rs1h(z))ds. It is easy to

see thatzPCr(R3) and thatr(r ,z)5Az(r ,z). In addition
sinceh is assumed to be strictly increasing, thenz.0, which
implies what we want. j

The map becomes fully three-dimensional if we intr
duce dynamics inu. To do this, we compose the map with
rotation about thez axis. Denote such a rotation by anglea
by

Ra5S cosa 2sina 0

sina cosa 0

0 0 1
D . ~12!

Since the mapf 0 is rotationally invariant, it can be compose

FIG. 3. Construction of the invariant curvesr 50 andC for an h with two
fixed points, and the manifoldC0 for the volume-preserving map.
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with a rotation whose anglea52pv(r ,z) depends smoothly
on ~r, z! to define a diffeomorphismF0(x,y,z)5(X,Y,Z) by

F05 f 0+R2pv , ~13!

with the desired properties.
First, F0 preserves the volume form~1! because

F0* V5dX∧dY∧dZ

5dZ∧dR∧dQ

5dz∧dr∧~du12pv rdr12pvzdz!

5dr∧du∧dz5V.

Moreover, thez axis and the surface

C05$ 1
2~x21y2!5h21~z!2h~z!%,

are invariant. These two manifolds intersect at poi
(0,0,z* ) for which h(z* )5z* —these are fixed points fo
F0 . The derivative ofF0 at such a fixed point is

F08~0,0,z* !5S r* cos 2pv* 2r* sin 2pv* 0

r* sin 2pv* r* cos 2pv* 0

0 0 1/r* 2
D ,

~14!

wherer* [r(0,z* )51/Ah8(z* ) andv* 5v(0,z* ). Thus if
h8(z* ).1(,1) the fixed point is typeA(B), with stable
~unstable! manifold given byC0 , and unstable~stable! mani-
fold given by thez axis.

Finally, the manifoldC0 is a two-dimensional hetero
clinic connection for two neighboring fixed points ofh. This
situation is illustrated in Fig. 3. Since the multipliers on t
two-dimensional manifolds are complex, the diffeomorphi
F0 has a pair of adapted vector fields as shown in lemm

Because the mapF0 is a semidirect product of a rotatio
about thez axis with the map~10!, it commutes with rota-
tions about thez axis. That is it has the symmetry

F0+Ra5Ra+F0 , ~15!

where the rotation is given by Eq.~12!.
If we assume thatv is constant, then we can give a

explicit formula for all the iterates ofF0 on the saddle con
nectionC0 , in terms of the iterates ofh:

Lemma 10: Suppose thatv is a constant. Letj
5(x0 ,y0 ,z0)PC0 , and x05A2r 0 cosu0 and y0

5A2r 0 sinu0, where r05h21(z0)2h(z0). Then, for all k
PZ, the kth iterate of F0 is

F0
k~j!5S A2r k cos~u012pkv!

A2r k sin~u012pkv!

h2k~z0!
D ,

wherer k5h2k21(z0)2h2k11(z0).

B. Integrable volume-preserving map

In order to compute the Melnikov functionM of Eq. ~5!,
it is advantageous to chooseh so that its iterates can b
evaluated explicitly. In addition, it is desirable to have a fi
integral for the mapF0 to simplify the Melnikov function, as
in lemma 7. One such choice is~cf. Ref. 30!:
wnloaded 10 Nov 2005 to 128.138.249.124. Redistribution subject to AIP 
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Lemma 11: Let h:R→R be the diffeomorphism

hn~z!5z2
2

p
arctanS ~12n!cospz

~11n!1~12n!sinpzD , ~16!

where 0,n,1. Then
~a! hn

t 5hn t, for all t PZ.
~b! hn(2z)52hn21(z).
~c! On the subinterval(21/2,1/2), the diffeomorphism

hn is conjugate to a Mo¨bius transformation. In other words
we can rewrite

hn~z!5
2

p
arctanS TnS tanS p

2
zD D D ,

where

Tn~w!5
~n11!w1~n21!

~n21!w1~n11!
.

~d! 21/2 is a stable fixed point and1/2 is an unstable fixed
point of hn .

With this choice ofh, the pointa5(0,0,1/2) is a typeA,
andb5(0,0,21/2) is a typeB, fixed point forF0(x,y,z).

In this case the twist map~10! generated by the diffeo
morphism~16! has the first integral

J~r ,z!52n cos~pr !1~12n2!cos~pz!sin~pr !.

Some of the levels sets ofJ are shown in Fig. 4. SinceF0 is
obtained from the area-preserving map by a symplectic r
tion aboutr 50, the function

I ~x,y,z!5J~ 1
2~x21y2!,z!, ~17!

is an invariant forF0 .
The symmetry~b! in Lemma 11 implies that the two

dimensional map is reversible

f +S5S+ f 21, where S~r ,z!5~r ,2z!. ~18!

For the case thatv is constant, this implies thatF0 has the
reversor

S0~x,y,z!5~x,2y,2z!.

To see this, note that both the rotation,S0R2pv5R22pvS0 ,
and f 0 are reversed byS0 . Moreover, the rotation commute
with f 0 whenv is constant; therefore,

F0+S05 f 0+R2pv+S0

5 f 0+S0+R22pv5S0+ f 0
21+R22pv5S0+F0

21.

FIG. 4. Contours ofJ whenn50.5.
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The fixed line of this reversor is thex axis, andS0(a)5b. A
standard argument32 implies that points whereWs(a) crosses
the x-axis are heteroclinic tob.

Lemma 7 implies that the invariantI can be used to
simplify the computation of the Melnikov function. Reca
that the choice of perturbationP should be zero at the fixe
points and be such thatP8 is nilpotent~cf. Lemma 3!. One
such choice is

P~x,y,z!5~0,mx2/2,~12m!~x21y2!/2!. ~19!

Using lemma 10, the corresponding Melnikov functio
M for Fe is given by

M ~j!5 (
k52`

`

L~F0
k~j!!,

whereL(x,y,z)5^P(x,y,z),¹I (x,y,z)&.
For the case thatv is constant, we haveF0

k(S0j)5S0

+F0
2k(j), so that

M ~S0j!5 (
k52`

`

L~S0+F0
2k~j!!.

Moreover,L(S0j)52L(j), for the perturbation~19!. Thus,

M ~x,2y,2z!52M ~x,y,z!, ~20!

which implies in particular thatM (x,0,0)50.
wnloaded 10 Nov 2005 to 128.138.249.124. Redistribution subject to AIP 
VI. BIFURCATION OF PRIMARY INTERSECTIONS

In this section, we compute the Melnikov function fo
the map~13! with the diffeomorphism,h given by~16!, and
the perturbation~19!. We will see that the topology of the
heteroclinic intersection changes as the parametersm, n, and
v of P andF0 vary.

We consider the simplest case wherev is a constant.
This implies that the local motion on the stable and unsta
manifolds of the fixed points is a spiral with rotation numb
v. Recall that the heteroclinic connection is the topologi
sphere defined byC05$(r ,z):r 5h21(z)2h(z)%. Note that
by ~13! that Z5r 1h(z) depends only uponr andz, and not
upon the spherical angleu. Thus the equator is a proper loo
g. Using the notation

H~n!52hn~0!5
2

p
arctanS 12n

11n D ,

then the equator is the circleg5$(x,y,z):z50,r 52H(n)%,
and its iterate is F0(g)5$(x,y,z):z5H(n),r 5H(n2)%.
Thus a fundamental domain onWs(a) is the annulus defined
by the interval 0<z,H(n).
FIG. 5. ~Color! Contours of the Melnikov functions forn50.2,m50.1, andv50.2, near the cusp bifurcation in Fig. 6. HereM ranges from20.12 to 0.12,
and the zero level, shown as the black curves, consists of a pair of curves of homotopy class~1, 0!, and pair of bubbles@homotopy class~0, 0!# that have nearly
collided with one of the~1, 0! curves.
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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We show an example of the Melnikov function in Fig.
using the coordinatesz and u on the fundamental domain
Positive values ofM (u,z) are shown in shades of red, an
negative in shades of blue, and the zero level is shown as
solid black curve. As implied by theorems 6 and 2 the co
tours of M are neat submanifolds of the fundamen
annulus—either closed loops or curves that end on one o
boundaries of the annulus.

In general, since the boundaries of the fundamental
main areg andF(g), we may use the mapF to identify the
boundaries the annulus, turning it into a torus. In our

FIG. 6. Bifurcation diagram for the Melnikov function whenn50.2 as a
function of the rotation numberv of the fixed points and the parameterm of
the perturbationP. The points labeled~a!–~f! correspond to the paramete
values in Figs. 7 and 8.
wnloaded 10 Nov 2005 to 128.138.249.124. Redistribution subject to AIP 
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ampleF0 rigidly rotates the equatorial circle by 2pv, so that
we merely undo this rotation to perform the identification

$u12pv,H~n!%[$u,0%.

Since the zeros ofM are neat submanifolds, they becom
closed loops with this identification. Thus the zero conto
of M can be classified by their homotopy class, a pair
integers~m, n! that gives the number of times the conto
loops around the torus in thez andu directions, respectively
When the zeros ofM are nondegenerate, all of the curv
must have either the same homotopy class, or the class~0, 0!.
Each loop has a natural direction, associated with the di
tion of the crossing of the manifolds. Thus loops with
nontrivial homotopy class must appear in pairs.

In Fig. 5 there are a pair of loops of homotopy class~1,
0!, i.e., curves that extend fromz50 to z5H(n) without
encircling longitudinally. By the symmetry~20! there are
always zeros on thex axis, soM (0,0)5M (p,0)50—in the
case shown the primary intersection curves through th
points have homotopy class~1, 0!. Also shown in the figure
are a pair of loops of homotopy class~0, 0!, i.e., loops that
are homotopic to a point. These loops appear in a param
region corresponding to smallv and moderate values ofm,
and disappear either by colliding with a~1, 0! loop, or by
shrinking to a point. For example, if we fixn50.2, m
50.1, then for the range 0<v,0.105 the~0, 0! loops exist.
At v'0.105 the loops shrink to a point, and for 0.105,v
,0.185, there is a single pair of~1, 0! curves. At v
'0.185 a new pair of loops are born, and these are fin
destroyed in a collision with the~1, 0! curve just abovev
50.2.

A complete picture of the primary intersections forn
50.2 is shown in the bifurcation diagram Fig. 6. Here w
can restrict the range ofv to the interval@0, 0.5#, since a
FIG. 7. Zero contours of the Melnikov function forn50.2, and the parameter values~a!–~f! labeled in Fig. 6.
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FIG. 8. Stable and unstable manifolds forFe with e
50.75. Here the parameters~v, m! in each panel are
identical to those in Fig. 7.Wu(b) is shown as dark
gray, and theWs(a) as light gray.
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rotation about thez axis by 2pv is conjugate to one by
2p(12v) under the coordinate transformationu→2u.
There are four distinct regions in Fig. 6, corresponding
loops with homotopy classes~0, 1!, ~1, 0!, ~3, 1!, and~1, 0!
with a pair of trivial loops. The parameters for Fig. 5 are ne
the codimension two, cusp point at (v,m)'(0.2,0.15),
which corresponds both to the collision of the trivial loo
with a ~1, 0! loop, and their shrinking to a point. Examples
the zero contours of the Melnikov function are shown in F
7, corresponding to the parameter values labeled~a!–~f! in
Fig. 6. Whenm is small, the intersection curves are ‘‘equ
torial,’’ of class ~0, 1!; this corresponds to Fig. 7~d!. For
small v and moderate values ofn the primary intersections
correspond to a pair of~1, 0! curves plus a pair of
‘‘bubbles,’’ curves with homology class~0, 0!, as shown of
Fig. 7~a!. As v increases these bubbles disappear, leav
only the ~1, 0! curves, shown in Figs. 7~b!, 7~e!, and 7~f!.
These become increasingly elongated as one approache
~3, 1! bifurcation where they reconnect, as shown in F
7~c!, forming a single pair of~3, 1! loops.

To compare the actual behavior of the manifolds for
mapFe , we need to choose a reasonably large value ofe so
that the intersections can be numerically resolved. It is re
tively easy to plot the manifoldWs(a) when the pair of
stable multipliers at the fixed point have the sam
magnitude;25 this is true for our map by~14!. In this case one
can take a regular two dimensional grid whose size is or
unity, and create a grid adapted to the dynamics by itera
the points with the linearization of the map restricted to
stable subspaceN times. This ‘‘small’’ grid is now embed-
ded into the tangent plane ofWs(a) at a and iteratedN steps
with the inverse of the fully nonlinear map. The resultin
grid now approximately falls along the stable manifold, a
is roughly regularly spaced. A similar algorithm can be us
for the unstable manifold ofb.

In Fig. 8 we show three dimensional pictures of t
manifolds created with this algorithm fore50.75 and the
wnloaded 10 Nov 2005 to 128.138.249.124. Redistribution subject to AIP 
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same six values of~v, m! in Fig. 7. All of the intersections
have the same homotopy types as the predictions with
exception of panel (f ), at (v,m)5(0.4,0.05), for which the
Melnikov function predicts~1, 0!, and the actual intersec
tions in the numerical picture appear to be~0, 1!. This is due
to the fact that the parameters are close to the (1,0)↔(0,1)
bifurcation curve, and thate is quite large.

VII. CONCLUSIONS

We have generalized the definitions of fundamental
mains and primary intersections toR3 and provided and
some tools for their study. In particular, a codimension o
Melnikov method has been used to identify primary inters
tions between two-dimensional stable and unstable m
folds in a family of volume-preserving maps.

The heteroclinic intersections, which are generica
curves, can be labeled by their homotopy class. We h
shown that there are bifurcations between these classes
that which occurs will depend, for example, on the comp
phase of the multiplier of the associated fixed point. Hete
clinic orbits can be found most easily for the reversible ca
as intersections should occur on the fixed set of the rever
In our example the reversor has a fixed line, thex axis.

One of our motivations for characterizing volum
preserving maps is to study transport. If the two dimensio
manifolds intersect on an equatorial circle, then transport
be localized to lobes similar to the two-dimensional case15

However, if the primary intersection has a different hom
topy class, then the construction of lobes entirely from pie
of stable and unstable manifold may be impossible.
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APPENDIX: PROOF OF THEOREM 6

For each point j in the saddle connection
Ws(a)ùWu(b), there is a neighborhoodN0 contained in a
fundamental domain of the saddle connection, such tha
the iteratesF0

k(N0) are disjoint. On the other hand, there
an e0.0 and a smooth functionf: N03(2e0 ,e0)→R3

such that
~a! ;eP(2e0 ,e0), f(j,e)PWu(b,Fe),
~b! f(j,0)5j.

Let V5 ø
k50

`

F0
k(N0). Clearly V is a immersed manifold

Moreover, we can extend the domain off to all of V, by
defining

f~j,e!5Fe
k~f~F0

2k~j!,e!!, ~21!

providedjPF0
k(N0). It is clear that for eacheP(2e0 ,e0)

andjPV, we have thatf(j,e)PWu(b,Fe).
For eachj, we are interested in estimatingf~j, e! to first

order ine. Using Eq.~21! with k51, we can take the partia
derivative off with respect toe to obtain the relation

]ef~j,0!5F08~F0
21~j!!]ef~F0

21~j!,0!1P~j!. ~22!

Let V andW is a pair of linearly independent, adapted vec
fields ~cf. Defn. 4!. We observe that the property of bein
adapted implies that, for allj in the saddle connection

V~j!5F08~F0
21~j!!V~F0

21~j!!,
~23!

W~j!5F08~F0
21~j!!W~F0

21~j!!.

The vectorV(j)3W(j) is normal to the saddle connec
tion, so

^]ef~j,0!,V~j!3W~j!&5det~]ef~j,0!,V~j!,W~j!!, ~24!

is a measure of the normal deviation of the unstable m
fold, ase varies. Now, using Eqs.~22! and ~23!, we find

^]ef~j,0!,V~j!3W~j!&

5det~]ef~F0
21~j!,0!,V~F0

21~j!!,W~F0
21~j!!!

1det~P~j!,V~j!,W~j!!.

Upon iteration this relation implies that for all integersn
>1,

^]ef~j,0!,V~j!3W~j!&

5det~]ef~F0
2n~j!,0!,V~F0

2n~j!!,W~F0
2n~j!!!

1 (
k50

n21

det~P~F0
2k~j!!,V~F0

2k~j!!,W~F0
2k~j!!!.

Notice that]ef(j,0) is bounded nearj5b and since the
vector fields are adapted, lim

j→b
V(j)50 and lim

j→b
W(j)50.

Therefore,

^]ef~j,0!,V~j!3W~j!&5 (
k52`

0

det~P~jk!,V~jk!,W~jk!!,

wherejk5F0
k(j).
wnloaded 10 Nov 2005 to 128.138.249.124. Redistribution subject to AIP 
ll

r

i-

We perform a similar computation on the stable ma
fold, using a functionc:N03(2e0 ,e0)→R3 with the corre-
sponding properties. For this functionc, we conclude that

^]ec~j,0!,V~j!3W~j!&52 (
k51

`

det~P~jk!,V~jk!,W~jk!!,

Following a standard Melnikov argument,33 we conclude
that if j* is a nondegenerate zero of

M ~j!5^]ef~j,0!2]ec~j,0!,V~j!3W~j!&,

then nearj* , the two manifoldsWu(Fe) andWs(Fe) inter-
sect transversely.

It remains to show that each nondegenerate zero ca
continued to a point in the primary intersection of the tw
manifolds. Letj* be a nondegenerate zero ofM (j). Then,
there is a curvez~j! such thatz(0)5j* and, for all eP
(2e0 ,e0)

z~e!Pf~N0 ,e!ùc~N0 ,e!,Ws~a,Fe!ùWu~b,Fe!.

Now, we find fundamental domainsS, U such that

c~N0 ,e!,S,Ws~a,Fe!

and

f~N0e!,U,Ws~a,Fe!,

andk(S,U)50 ~cf. Defn. 1!.
This implies thatz~e! is in the primary intersection o

Ws(a,Fe) andWu(b,Fe), and in this way, it can be contin
ued with e to the pointj* . Using a similar argument, it is
possible to continue points in the primary intersection t
are close toz~e!. j
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