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We study families of volume preserving diffeomorphism&ihthat have a pair of hyperbolic fixed
points with intersecting codimension one stable and unstable manifolds. Our goal is to elucidate the
topology of the intersections and how it changes with the parameters of the system. We show that
the “primary intersection” of the stable and unstable manifolds is generically a neat submanifold of
a “fundamental domain.” We compute the intersections perturbatively using a codimension one
Melnikov function. Numerical experiments show various bifurcations in the homotopy class of the
primary intersections. €2000 American Institute of Physids$$1054-150(00)01201-5

The theory of transport for area-preserving maps is  of volume-preserving maps is of interest both for fluids and
based on the construction of “partial barriers,” typically magnetic fields. Our primary motivation for studying
from segments of stable and unstable manifolds of fixed volume-preserving maps is to generalize the study of trans-
points, periodic or quasiperiodic orbits. Our ultimate  port, which has been quite successful for two dimensional
goal is the generalization of this theory to higher dimen-  maps!? to higher dimensional cases.

sions. Perhaps the simplest place to start is with volume- Previously, we constructed a normal form for the qua-
preserving maps in three dimensions. A hyperbolic fixed  dratic volume-preserving map i® 3 (and obtained a partial
point of such a map has either a two-dimensional stable classification for higher dimensiohsThis map is the natural

or unstable manifold. Since they are codimension one, generalization of Heon's quadratic area-preserving
these manifolds can separate phase space into regions magy—it gives the simplest volume-preserving systenitth
containing nontrivial invariant sets. The major problem  that has nontrivial dynamics. Moser has similarly obtained
is to choose appropriate domains of these manifolds that  normal forms for quadratic symplectic mahFhese normal
can be used in the construction of partial bariers. To  forms are to be distinguished from formal series expansions
this end we define fundamental domains and their pri-  th4t give normal forms in the neighborhood of a fixed point,
mary intersections by using a partial ordering along the ¢ ,.h as the “Birkhoff’ normal form. Bazzani has con-
manifolds. Primary intersections are typically Curves on  qy;cted such normal forms for volume-preserving maps,
the two-dimensional manifolds. These curves, when re- showing that they are formally integrable to all ordérs.

ks)tnctled t(f) a:jfl;ndt?me?]tal d?mamAbecome I;)ops ?nd €aN" These normal forms are formal series expansions that typi-
€ classitied by their homotopy. AS parameters of a map cally do not converge, and moreover are not volume-

change, these homotopy classes can change as well. To : . L
. : . ) ; preserving when truncated at any given finite order.
investigate this, we start with an integrable map that has . i

The quadratic volume-preserving map has most two

a saddle connection, and use a Melnikov perturbation . . . . .

o ) fixed points, and typically these points are hyperbolic and
method to compute the splitting distance between the have either a two-dimensional stable and a one-dimensional
manifolds. Our numerical computations show the cre- . . .
ation and destruction of intersection loops of various unstable ma_mfolc{j[ype A), or a twq-d|menS|onaI unstable
types. and a qne-FilmenS|onaI stable manifdtype B). Commonly

one point is typeA and the other typeB, and the two-
dimensional stable manifold of the first intersects the two-
|. INTRODUCTION dimensional unstable manifold of the second. In this paper

we investigate the properties of such intersections.

Volume-preserving maps provide an interesting and non-  An understanding of the intersections of codimension

trivial class of dynamical systems that give perhaps the simpne invariant manifolds is important in the development of
plest, natural generalization of the class of area-preservingansport theor§~°For example, supposeandb are saddle
maps to higher dimensions. Moreover, volume-preservingixed points of an area-preserving map, awf(a) and
maps naturally arise in applications as the time one Poincar@r(p) are branches of their stable and unstable manifolds. If
map of incompressible flows—even when the vector field ofihese intersect at a poif thenx is a heteroclinic orbit; that

the flow is nonautonomous. Thus the study of the dynamic%, it is backward asymptotic ta and forward asymptotic to

b. Let W,(a) denote the segment of an invariant manifold
3E|ectronic mail: jdm@boulder.colorado.edu that starts af and extends ta (below we will be careful to
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exclude or include endpoints of these segments as appropsualization of invariant manifolds in higher dimensional
ate). A point x is a primary intersection pointor “pip” in  maps is itself an interesting and difficult problé#t*For the
Wiggins’ terminology) if the closures ofv§(a) andW!(b) case that the magnitude of the multipliers at the fixed point
intersect only at the endpoint restricted to the unstable subspace are equal, we apply a
Primary intersections can be used to foressonance clever, but simple technique due to Tabacrfian.
zones*2—regions of phase space that are bounded by alter-
nating stable and unstable segments joined at primary inteft, VOLUME PRESERVING MAPS
section points. Because the intersection points are primary, a . , on o .
resonance zone is bounded by a Jordan curve, and it has ap A_d|ffeomorph|§mf.R — " is volume-preserving when
exit and an entry sét The images of these sets completely]c Q_'I(I)’ Whgreﬂ ISa vo!gme form, €., a pg‘f?!tlv:form.
define the transport properties of the resonance zone. We wi hrestrlcg OL:; coInS| efrat|on to maps that pre-
In Sec. Il we generalize the notion of primary intersec- serve the standard volume form
tions to R3. A similar theory was developed in Ref. 14 for Q=dxOdyOdz 1)
the case of diffefomorphisms that arise from quasiperiodiq
tlmg-_d_ependent vector fields, see Ref. 2 for a reVIew. out et(f’)=1, i.e., that the Jacobian éfis one. For later refer-
definition depends on the existence of two-dimensiona : 3
. . . ence, we recall that if;,v,,v3€ TR") then
manifolds and our main concern is to understand the topol-
ogy of the one-dimensional intersection as an immersed sub- Q(v1,v5,03)=de{vq,v,,v03)=(v1,02XV3). 2)
manifold. It is possible that the _stable z_ind unstable_m_anlfold§vhere<’> is the standard inner product. We also know that
could be used to construct partial barriers, and their interseg : o
: ) . . he triple product satisfies
tions will bound “lobes” that can be used to compute trans- )
port propertie<® We will see that different homotopy classes ~ Q(v1,02,01Xvp)=[v1Xv,|* 3

of primary intersections can exist and that they can bifurcate  \/qjume preserving maps arise naturally in connection
by changing from one homotopy class to another. Bifurcayyiih divergence free vector fields. Xis a vector field and2
tions in the intersection manifolds will have immediate con-is 5 volume form, then the divergenceXfvith respect td)
sequences for transport, since such a bifurcation modifies thg gefined as the unique differentiable function ¥iguch
lobes, and may even forbid their existence. Our definitioqhatLXQ:(diV X)Q. Thus the timet map of any divergence
can be generalized to higher dimensions, if the map has codjree flow is volume-preserving, and such maps arise natu-

mension one invariant manifolds. o ~ rally from the time one maps of incompressible, time-
In order to illustrate how the heteroclinic intersection gependent fluid or magnetic-field line flows.

changes, we develop an extension of the Melnikov method to  For a volume-preserving map, the multipliers of any pe-

volume-preserving maps in Sec. IV. Melnikov methods hav&iodic orbit must have a product one. For example, suppose
been extensively developed for two dimensional mépS} s a fixed point of the volume-preserving mapn R3. Then

for higher dimensional map* and for three-dimensional det(’(p))=1 and, therefore, the characteristic polynomial of
volume-preserving flow&! In this latter case the perturbation the Jacobian matrit’ (p) is

may be periodically time dependent, and the Poincaap of 3 ) B
the system is assumed to have a hyperbolic invariant curve, A -t sh—1=0,
with two-dimensional manifolds. wheret is the trace and is the so-calledsecond traceof
For the case of maps, the analogue of Melnikov integraff’ (p).
is an infinite sum whose domain is the unperturbed connec- The dependence of the multipliers on the two parameters
tion. As usual, a simple zero of this function corresponds ta ands is illustrated in Fig. 1. There are two lines in param-
a transverse intersection for the perturbed map. eter space where the stability changes: The saddle-node line,
In Sec. V we introduce a family of volume-preserving t=s, corresponds to an eigenvalue 1, and the period dou-
maps that have a completely degenerate heteroclinic connepling line, t+s= —2, corresponds to an eigenvaluel. At
tion (i.e., a saddle connectignThis family is obtained from the pointt=s= —1 where they cross the multipliers are nec-
a family of planar twist maps with saddle connectiéh®Ve  essarily (—1, —1, 1). Note also that when-1<t=s<3
perturb the family by composing it with a near identity, there is a pair of multipliers on the unit circle. There are two
volume-preserving map. In this way, we can produce exother curves of interest—these correspond to a double eigen-
amples of volume-preserving maps with transverse heterosalue\;=\,=r, or
clinic orbits. To accomplish this construction we will need a
pair of adapted vector field®on the manifold, or alterna-
tively, an integral of the unperturbed map. This gives the two curves shown in Fig. 1. One has a cusp at
We compute the Melnikov function in Sec. VI for a t=s=3, corresponding to the triple roat=1. The second
particular perturbation and a classify the primary intersectiorcrosses the saddle-node and period doubling lines=at
curves by their homotopy type. We observe a number of= —1. These are codimension two points.
bifurcations as the parameters of the map change. To com- A hyperbolic fixed point with a two-dimensional stable
pare the Melnikov function with the fully nonlinear map, we manifold is calledtype Aand one with a two dimensional
compute its stable and unstable manifolds. In general, thanstable manifold is calletype B?® These fixed points also
development of computational methods for the effective vi-have one-dimensional unstable and stable manifolds, respec-

n this case the volume-preserving condition reduces to

t=2r+1/r2, s=r2+2f.
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FIG. 2. Proper loopy ando and corresponding fundamental domagend
U for fixed pointa of type A andb of type B.

a type B fixed point with a proper loopr, we define the

manifold up to o, denotedMN(b), as the interior of the local

manifold that corresponds to ! in Defn. 1.

FIG. 1. General stability diagram for a volume-preserving map. Notice that the definition is not symmetric, because

W:(a) is a closed subset af/(a), while W, (b) is open in
WY(b) (cf. Fig. 2. The asymmetry is just a technicality in

tively. The saddle-node and period doubling lines divide they der to simplify some proofs.

(t,9 plane into quadrants which alternate between #a@d Definition 2 (Fundamental domain).et a and b be hy-

B. The dynamics on the two-dimensional manifolds will de- perbolic fixed points of type A and B, respectively. An annu-

pend upon whether the pair of multipliers are complex or arg;s s is a fundamental domain of &) if there exists some

real. S . proper loopy in W5(a), such that
If a map has a pair of fixed points, one of typend one

of type B and the pair of two-dimensional manifoldstable S=W;(a)\W;, (a).

and unstableintersect, then generically they intersect alongsjmilarly, a fundamental domain in Yb) is a manifold
one-dimensional manifolds. We have observed edrlieryith boundary of the form

changes in the topology of the intersection manifolds as the

parameters vary. Elucidating this topology is the primary aim ~ Y=W4(b)\W;_1, (b),

of this paper.

where o is a proper loop in W(b). In addition, we define
FY(b) as the set of all fundamental domains irt'i), and
Ill. PRIMARY INTERSECTIONS F3(a) as the set of all fundamental domains irf(&).
In thi . introd h t the fund In each case, the fundamental domain is an annulus with
men'?alt dlsrsgi%tlgfnawszgg;r Sﬁst;bga ;Ogri?ggsaon dt o? erjirj one open and one closed edge. An immediate consequence
L . . of the definition is that all the forward and backward itera-
mary heteroclinic intersections between such manifolds

These generalize the well known concents for two dimentions of a fundamental domain are also fundamental. It is
. g P 3 easy to see that proper loops always exist, and in fact, the
sional maps. We, as usual, assume th&f— R* preserves

stable (and unstable manifolds can be decomposed as the
the 3-form(, (1). disjoint union of fundamental domains:

W(a)= U fXS,(a)).

Definition 1 (Proper Loop)Suppose & f(a) is hyper- kez
bolic and of type A, i.e., has a two-dimensional stable mani-  The importance of fundamental domains is that much of
fold Wi(a). A proper loopyCW?(a) is a curve that bounds  the information about the entire manifold can be found by
a local submanifold that is an isolating neighborhood of a.|ooking only at these annuli. For instance, tmary het-
In other wordsy is proper if there is an open local submani- groclinic intersectiorbetweenws(a) andW!(b), which we

A. Proper loops and fundamental domains

fold W,o(a) such that define next, is defined using fundamental domains.

(@ 0WISoc(a) =y and

(b) f(M)cint(Wfoc(a)). B. Primary intersection

Similarly if b is a type B fixed point, then a loop Given a fundamental domai#y the pointsé e W5(a) are
oCWY(b) is proper if it is proper for f1. given a partial order defined by the intedersuch thaté

If yis proper, we can define the stable manifstdrting < f(S). This partial order provides an index that can be
at y, denoted by bwv;(a), as the closure iWs(a) of the  used to study heteroclinic intersections between two such
local submanifold bounded byin Defn. 1. Similarly, ifbis  manifolds:
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Lemma 1: Suppose Wa)NW"(b)#0. Then for allS  (cf. Ref. 28 for the definition In other words, the boundary
e F(a) and Ue F(b), there exists a unique integex, of the submanifold isicely placedin the boundary of the

called the intersection index such that manifold.
For any fixed fundamental domai the primary inter-
K(Z/{,S)Esup{kez:ur\fk(S)#@} section does not have to be a neat submanifold.dflow-

ever, if the intersection of the stable and unstable manifolds
in question is transverse, then it always possible to chose a

Proof. This follows from the facts that each manifold is fundamental _dom.am for which the primary intersection is a
neat submanifold:

composed of the union of the fundamental domains, that the
. . Theorem 2 Supposef, a, andb are chosen as above,
closures o/ andS are compact and do not contain the fixed . : .
: K x and assume that the primary intersecti®{s,b) are trans-
points, and that*(S) —a andf ™ “(U/) —b ask—<. The two verse. Then
definiions are  equivalent, since f XUNX(S)) :
=fkuns. ] (@ P(a,b) is the union of immersed one dimensional
The intersection index is useful because it is invariantmanifolds, invariant under f and contained in
x(F(U),F(S)) = k(U,S). More generally, the intersection in- W3(@) NW"(b).

=sugkeZ:f NUNS#T}.

dex of iterates of fundamental domains changes as (b) For the generié/e FU(b),UNP(a,b) is a neat sub-
. . manifold of 4. -
K<(F7(U),£7(S)) = kU, S) + m—n. (c) For the genericSe 7°(a),SNP(a,b) is a neat sub-
Roughly speaking, a primary intersection is the set Ofmamfold of S.

Proof. Both stable and unstable manifolds are immersed
two-dimensional manifolds. Since they intersect transversely
by assumption, their intersection is the union of one-
dimensional immersed manifolds. The primary intersection
is a subset of this immersed manifold. For each pgintthe
primary intersection we can find a pair of fundamental do-
mainsy{ and S such thaté e /N S. Since the intersection is
transverse{ is contained in a one dimensional manifold.

If the intersection ofP with a fundamental domaity is

points where the stable and unstable manifolds “first” meet.
For maps of the plane, one says tkatW3(a) "W"(b) is a
primary intersection point if the intersection of the stable
manifold starting atx and the unstable manifold up tois
empty:W5(a) "Wy (b) =J. This means that one can choose
fundamental domaing§ andi/ so that that their boundaries
are (primary) heteroclinic points. As noted by Easton, this

leads to a classification of heteroclinic orbits by their
” 27

“type, and subsequently a classification of the structure . o : : )
e . not neat, then since this intersection consists of a union of

of the “trellis,” the closure of the stable and unstable mani- . . . . I

folds one-dimensional manifolds with boundary, the only possibil-

To directly generalize the planar definition, we would !ty Is that there is at least one poigie AP/ that is an

need to find a proper loop= o that i also heteroclinic, and interior point of the fundamental domain. By definition there

U is a fundamental domais, such thatéel/NS,. Then ¢
such tham(a)mwy(b). . The;e proper loops would be €dSy, since otherwise, the intersectiotdNSoCPNU
the analog of primary intersections. However, such loops T -

) ) . would containé in its interior. However, by continuity, there
need not exist as we saw in Ref. 3. One consequence is that

if one fixes a pair of fundamental domait¥sand S, then the 'E Oa ;ﬁgdsgﬁrl;a;sd%?r?g;sﬁ?riioi'mse L:ﬁ)hr t?ﬁg;(gzj({:grﬂét
set of points at whict¥(U) first intersectsS is not neces- , ! )

sarily a union of submanifolds &—in particular the inter- be on the boundary of the intersectiBmi/, and so the only

section curves may end in the middle®ff 2/ is not chosen possibility is that the boundary of the intersection is con-
to be properly “aligned” withs tained in the boundary of the fundamental domain. H

To alleviate this problem, we use the intersection index Our definition of primary intersection can be easily gen-

to define the primary intersection of the stable and unstablt(aarallzed to higher dimensions.

manifolds of a and_b, sc? that the connected intersection V. MELNIKOV METHOD FOR VOLUME PRESERVING
curves are submanifolds: MAPS
Definition 3 (Primary Intersection)Let a and b be hy-

perbolic fixed points of type A and type B, respectively, ~We will use Melnikov's method to show that a pertur-

whose two-dimensional manifolds intersect. We define theation of a degenerate heteroclinic connection between codi-

primary intersection of the stable and unstable manifolds agnension one manifolds typically leads to transverse intersec-
tions of stable and unstable manifolds. This approach will

P(a,b)=U{UNS: Ue F(b),Se F(a),x(U,S)=0}. help us to study the topology of the primary intersection.

Let Fo:R3—R2 be a diffeomorphism preserving the vol-

We assert thaP is invariant, and is the union of immersed ume (1), such thata and b are hyperbolic fixed points of

submanifolds oW5(a) and of W¥(b). Moreover, the inter- typesA andB, respectively. We assume there exists a saddle

section of P with any fundamental domain is generically a connection between the fixed points, i.eW5(a)\{a}

neat submanifoldRecall that wherM is a manifold with =W"(b)\{b}. An example of such a map is given below in
boundary, a seACM is neat inM if Sec. V.

We would like to show that after a small perturbation,

JA=ANIM (4) the manifolds still intersect, as in the classical Melnikov
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method, but that this intersection is generically transverse Proof The Stable Manifold theorefhimplies that there
and along one dimensional curves. Generally the perturbeexists a diffeomorphismp: R2—Ws(a) such that¢(0)=a
map takes the form and

F.=Fo+ePy, ¢ologp™'=F,,
where L:R>—R? is a linear mapL(x)=Ax and A is the

derivative of F restricted to its stable plane. Thus, by as-

assumption thaP,(a)=P4(b)=0, so thatF, still has hy- onA has tw | : | th |
perbolic fixed points ad andb. However, stated in terms of SUMPLONA has two complex €igenvaiues with equal norm
less than 1. It is enough to show that there are two linearly

P,, it is not so easy to construct volume-preserving pertur- AR 5 ~
bations toF . It is easier to let independent vector field&,W in R“ such thatV(AX)

=AV(x) and W(AX)=AW(x), for all xe R2. We can
chooseV(x)=x and \7V(x)=Ax. Then V= ¢*V/ and W

wherel is the identity map. This can always be done since= ¢, W satisfy the first two conditions of Defn. 4.
P=P,oF, . In these terms it is easier to construct perturba- ~ To show that the last property is satisfied, note that we
tions that do not destroy the volume-preserving property: can construct a similar diffeomorphism for the unstable
Lemma 3 Let Fo:R3—R3 be a volume-preserving dif- manifold: ¢:R?—W"(b). ThenDF, is conjugate to a matrix
feomorphism. Then F=(1+eP)oF, is volume-preserving B which has two complex eigenvalues of equal norm greater
for all € if and only if the Jacobian matrix Pis nilpotent. ~ than 1. The corresponding vector fiekiandBx are linearly
Proof It is enough to show that+eP is volume- independent, and their push forward oltti(b) satisfies the
preserving if and only if P")3=0. This is clear since ddt( first and third conditions of Defn. 4. Moreover, at every point

+¢eP")=1 for all € if and only if the characteristic polynomial €xcept the two fixed points, these vector fields must be a

such that~, is volume-preserving. We make the simplifying

F.=(id+eP)oF,

of P’ is A3, m linear combination oV andW. ThusV andW satisfy con-
The lemma above allows us to easily create examples dfition (c). . "
perturbations, because if we take any functPrsuch that In more general cases, it can also be shown, albeit with

(P")3=0 then the perturbed map is volume-preserving.more effort, that adapted vector fields exist, however, the
Simple examples includeP(x,y,z)=(0,f(x),g(x,y)) for  case covered by lemma 4 is sufficient for the examples that
any smooth function§ andg that vanish at the fixed points. We study in this paper.

B. Melnikov function

A. Adapted tor field . . .
apted vector fields Based on the vector fields found above, we will define a

After perturbationWs(a) andW"(b) will not in general  global Melnikov functionM (&) on the saddle connection
coincide, but will generically intersect transversely. We wantthat is invariant undeF,.
to measure the evolution of this intersectioneaisicreases. Definition 5 (Melnikov function)Let F.=F,+ ePoF,,
To do this we need to define a pair of independent and inbe a volume-preserving map with type A and type B fixed
variant vector fields on the manifolds. We call such vectorpoints at a and b respectively, such that Fhas a two-
fields “f_ad_a}pted:” _ _ dimensional saddle connection between a andShppose
Definition 4 (Adapted vector fieldp vector field V on  that v, W are a pair of adapted vector fields that are lin-
the saddle connection &) "W"(b) is said to be adapted early independent on the saddle connection. For any

to the dynamics of fif e W3(a) NW"(b) the Melnikov function is defined as
@ (Fo), V=V, .
0y lim,_V(8=0, M(&)= 3 detP(£0,V(£0.W(&), ®)

(c) Iim§_>bV(§)=O.
Recall that, ifG:M —N is a diffeomorphism an¥ e TM is  Where&,=F§(£).
a vector field therG, V=G'(G 1(&))V(G1(¢)) is a vec- As we will show below,M measures the distance be-
tor field onTN. Thus the conditionK,), V=V is equivalent tween the perturbed manifolds. In order that it be use¥ll,
to F'(§)V(€)=V(Fy(&)) for all ¢in the saddle connection. should in some sense be independent of the choice of
Also, if V is continuous onWs(a) NW"(b)U{a,b} the first ~adapted vector fields:
condition implies the other two. It is easy to see that adapted  Proposition 5: The set of zeros of M is independent of
vector fields always exist when the multipliers of the fixedthe choice of the vector fields, W and is invariant under
points are complex: Fo. This is also true for the nondegenerate zeros.

Lemma 4: Assume G has a saddle connection as de- Proof Let V, W andV,W be two pairs of independent
fined as above, and that the Jacobian§(& and Fj(b)  adapted vector fields. Lé¥l be the Melnikov function de-

have pairs of complex conjugate multipliers that define theiffined usingv and W and M be the Melnikov function de-

stable and unstable subspaces, respectively. Then there exjgl.q usingv andW. Since each pair is linearly independent,
two adapted vector fields,VW defined on the saddle con- j; ;g possible to find functions, B, y, and & such that

nection that are linearly independent for all points in the N B
saddle connection apart from at a and b V=aV+BW, W=1yV+45W.
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Since both pairs of vector fields are independent, it is clear=spaqVI(£)}. We are interested in finding the projection of

thatd=a6— By#0. In addition, V(&) xW(&)=d(&)(V(§)  G'(§VI(¢) onto the normal  space Tg(M)"
XW(&)). Using Egs.(2) and (3), and the invariance of the =spadVI(G(£))}. In order to do this, it is enough to find

volume form we see that the dot product betweeG'(£§)VI(§) andVI(G(§)):
, detV(&),W(&), V(&) xW(¢)) G'(HVI(E)-VI(G(£)=VI(§)-G"(§TVI(G(£))
Y™ Getvi(e) W(E) V(B X W(£)) =i
 de(Fy(&V(E),Fo(e) W) Fo(&) (V&) xTg))  The pull back ofw by Gis
— delF(E)V(E),FH(E)W(E),FH(E)(V(E)XW(&))) G*w(8)(v,W)=0(G())(G'(§v,G'(§Hw)
_ detV(Fo(£), W(Fo(£)).Fo(&)(V() x W(£)) :de<%,g(§)v,g(§)w>
det(V(Fo(£)),W(Fo(£)),Fo(&)(V(£)XW(§)))
=d(Fo(£))d(§). =de<%16’(§)v,6’(§m>
Therefored(Fq(£))=d(&¢) and from this we conclude that I8
M(o=d@OMm(e). ®) :de<|V|(§)| '”'W) B
Using Eq.(6), we conclude that* is a zero forM if and |
only if it is a zero forM. Moreover, sincal>0 a zero ofM If we let G=F, then the saddle connection that we are
is nondegenerate if and only if it is nondegenerateffoas ~ Using for the Melnikov method satisfies the conditions of
well. m 'emma 7. This allows us to rewrite the formula for the

Therefore, if we are only interested in the set of zeros ofMelnikov function in terms ofv1:
M, this proposition allows us to make a local analysis of the ~Lemma 8 Let | be an integral for 5, such that the
Melnikov function in order to find these zeros. Once we havesurface =k is a saddle connection. Then it is possible to
the set of zeros for a fundamental domain, we find the rest bghoose the vector fields V and W in Eq. (5) so that
iteration. In other words, we can restrict our analysis to fun- o
damental domains. Moreover, the nondegenerate zerbk of M(&)= >, (P(&),VI(&)), 8
define the primary intersections of the manifolds: k==

Theorem 6 Let M be a Melnikov function as in Eq. (5). wheregkng(g).

(@ If £&* is a nondegenerate zero of,Nlhen Wi(b,F.) Proof: Let V andW be any pair of adapted vector fields
and W(a,F,) intersect transversely neaf”, for e small  hat are linearly independent on the saddle connection. Since

eno?g)h_'rhe set of nondedenerate zeros can continuede for V,WeTM, then there exists a nonzero functiésuch that,
9 “ 10 for every ¢ on the saddle connection

small enough, to the primary intersection of'{§,F,) and
W(a,F). _ _ V(&) XW(§)=d(§)VI(E).
We give the proof in the Appendix. - -
_ _ . . We conclude thatl(&) = w(&)(V(&),W(¢)), wherew is de-
C. Melnikov function when there is an integral fined as Eq(7). We see thad is invariant since
Computing the Melnikov function defined in Eg5)

could be difficult if one needs to construct a pair of adapted d(FO(S)):“’(FO(é))(v(FO(é))’W(FO(g)))

vector fields explicitly. However, i, has a first integral, _ XY 10 VR
then we can use it to simplify the computations. In fact, we =w(Fo(£))(Fo(V(£),Fo(§HW(E))
only need to assume that there is a local integraFfpin the =F} w(g)(V( 5)’\7\,( &)

sense that in some neighborhood of the saddle connection

there is an invariant. Restricting the volume form to a surface = w(g)(V(f) ,\7\/( ))=d(&).

of constantl gives an invariant area: - -

Lemma 7: Let G:R3—R® be a volume-preserving dif- If we let V=V andW=W/d, then
feomorphism and M a surface that is given locally as the det( P(&),V(&),W(&))=(P(&),V1(§))
zero set of a function.IAssume that | is invariant under G

in some neighborhood of MThen the set{={&VI(¢  and this implies what we want. L
#0} is invariant and G preserves the 2-form
vI(E) V. EXAMPLES
w(f)(v,w)=de<W,v,w), (7) In this section we construct a family of volume-
preserving maps that have a completely degenerate hetero-
on each level sefl =k} NH. clinic intersection(i.e., a saddle connectipriWe obtain this

Proof: Sincel is an integral ofG nearM, 1-G=1, and family as a semidirect product of an area-preserving, twist
therefore, G'(&)"VI(G(&))=VI(¢&). Let T,E(M)l map and a rotation in three space. The twist map is defined in
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such a way that it has two invariant sets which give rise to a L
saddle connection between two fixed points. Examples simi- ‘
lar to these were found by Lom&iand are related to the

work of Suris®3'on integrable maps. It is interesting to note 5
the map need not have an integral, and therefore, apart from
the two invariant sets, typically exhibits chaotic behavior.
We finally give an example for which the resulting volume-
preserving map has a first integral.
A. Explicit heteroclinic connection z

We start with the area-preserving map generated by the r C
Lagrangian generating functidrt R>— R,

z z
L(z,Z)=—ZZ+f h(Z)d§+f h=*(9d¢, €)
0 0

whereh:R—R is any strictly increasindi.e., h’>0), C? 2
diffeomorphism. The Lagrangian generatestveist map
f(r,z)=(R,Z) that is implicitly defined by X

dL=RdZ-rdz.
The map is automatically area-preserving since dL
=dROdZ—drOdz. Explicitly, we obtain

h™i(r+h(z))-z z

f(r,z)= r+h(z) . (20 ,
It is easy to verify that the map has two invariant manifolds,
the z axis and the curve

C={(r,z2):r= h™Y(z)— h(z)}. FIG. 3. Construction of the invariant curves-0 andC for anh with two

] ] ] . ) fixed points, and the manifol@, for the volume-preserving map.
If h has a fixed point*, then the invariant curves intersect at

the point (0z*) which is a fixed point of. The linearization
of f at such a fixed point is
h™i(r+h(z))—z

(02 (1/h’(z*) 0 ) . . r#0
"(0,2%)= , :

1 h'(z*) p(r,z)= 1 : (1)
so that the fixed point is hyperbolic whenevet(z*)+# 1. m r=0

For example, wherh’(z*)>1 the z axis is the unstable
manifold, andC is the stable manifold. The stabilities are T mapf, is smooth when the diffeomorphishis:
exchanged wheh’(z*)<1. Thus ifh has two neighboring Lemma 9 Assume that b C"+(R) with r>1, and p is
isolated fixed points, the invariant curves provide heteroyefined by Eq. (11). Thepe C'(R%). In addition, if h is
clinic connections between them; see the sketch in Fig. 3. analytic, so isp.

We can extend this twist map #° by introducing the Proof Let g(r,z)zfé(h‘l)’(rs+h(z))ds. It is easy to

cylindrical angled, and lettingy/2r be the cylindrical radius. see thatl e C'(R®) and thatp(r,z)={(r,2). In addition
Equivalently, the rectangular coordinates sinceh is assumed to be strictly increasing, thern0, which

x= J2r cosé implies what we want. |
’ The map becomes fully three-dimensional if we intro-
y=1/2r siné, duce dynamics irf. To do this, we compose the map with a

rotation about the axis. Denote such a rotation by angte
are defined so thatxUdy=drld6#. The mapf then extends  py

to a mapfy:R3—R3 defined as
cosa —sina O

p(r,z)x ) .
fo(X,y,2)= p(r,2)y R,=[ SIha  CcOsa . (12)
r+h(z) 0 0 1
wherer = 3(x?>+y?), and Since the map is rotationally invariant, it can be composed
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ith a rotation whose angle=2ww(r,z) depends smoothl = >~ N ]
on (r, 2) to dofine & diffeomorphisrﬁo(i,y,z) = (X,Y,Z) by ’ 1 ///@V//@\%\\\
Fo=fo°Rore (13 r :y \@/ \@/ E:

§§§§

with the desired properties. 0.5
First, Fo preserves the volume forfl) because 0 :__/@\ @ /@\_
F* Q=dX0dYOdZ 52 ; ! 2 ’

=dZOdROdO FIG. 4. Contours ofl when »=0.5.

=dzOdrJ(d0+ 27w, dr+27w,d2)

=drOd60dz= ). ) )
) Lemma 11 Let h:R—R be the diffeomorphism

Moreover, thez axis and the surface

P L 2 (1—v)cosmz

Co={3x*+y2)=h" 2)~h(2)}, h(2)=z= Zarcan A sz (19
are invariant. These two manifolds intersect at pointswh o<v<1 Th
(0,0z*) for which h(z*)=z*—these are fixed points for e(rae) ht ih t' foreanl te7
F,. The derivative ofF, at such a fixed point is b) hV(—zV),z _h 71(2)_'
p* cOS2rw* —p* sin2ww* 0 (c) On the subinterval —1/2,1/2), the diffeomorphism

h, is conjugate to a Mbius transformation. In other words,

' *\—| p* sin 2mw* * COS 2mw* 0
Fo(0,02*)=| p TO" P e we can rewrite
o
w37

0 0 1p*?
(14

wherep*=p(0,2*)=1/\/h’'(z*) and w* = w(0,2*). Thus if
h'(z*)>1(<1) the fixed point is typeA(B), with stable

2
h,(z)= p arctaré T,

where
(unstable manifold given byC,, and unstabléstable mani-
fold given by thez axis. T W)= (v+1)w+(v—1)
Finally, the manifoldC, is a two-dimensional hetero- (W)= (v—Dw+(v+1)°

clinic connection for two neighboring fixed points lof This . i . ) i
situation is illustrated in Fig. 3. Since the multipliers on the (@ —1/2is a stable fixed point and/2is an unstable fixed
two-dimensional manifolds are complex, the diffeomorphismPCint of h, . _ _ _

F, has a pair of adapted vector fields as shown in lemma 4. With this choice off, the pointa=(0,0,1/2) is a type?,
Because the maby, is a semidirect product of a rotation andP=(0,0,-1/2) is a typeB, fixed point forFo(x,y,z).
about thez axis with the map(10), it commutes with rota- In this case the twist mafi0) generated by the diffeo-

tions about thez axis. That is it has the symmetry morphism(16) has the first integral

FeeR,=R,°Fy, (15) J(r,z)=2vcog 7t )+ (1— v?)cog wz)sin( 7).

where the rotation is given by E¢L2). Some of the levels sets dfare shown in Fig. 4. SincEg is

If we assume thaw is constant, then we can give an obtained from the area-preserving map by a symplectic rota-
explicit formula for all the iterates df, on the saddle con- tion aboutr =0, the function
nectionCy, in terms of the iterates df.

— 1,2 2
Lemma 10 Suppose thatw is a constant. Leté 1(%,y,2)=J(z(x"+y"),2), (17)
=(X0,Y0,20) €Co,  and R V2rocostp  and Yo s an invariant forF,.
=\2rgsinfy, where p=h""(zo) —h(z,). Then, for all k The symmetry(b) in Lemma 11 implies that the two-
€Z, the kh iterate of F, is dimensional map is reversible
V2ry cog Op+ 2mkw) foS=Sf~ 1, where S(r,z)=(r,—2). (18)
F&(&)=| V2r,sin(6o+27ko) |, , L
h=(zg) For the case thab is constant, this implies thdt, has the
- k0+1 reversor
wherer,=h"""(z5) —h " *(z).
So(X,y,Z):(X,_y,_Z).
B. Integrable volume-preserving map To see this, note that both the rotati®Rs,,=R-270S0:

andf are reversed b$f,. Moreover, the rotation commutes

In order to compute the Melnikov functidv of Eq. (5), . ;
P a.) with fo whenw is constant; therefore,

it is advantageous to choos$eso that its iterates can be
evaluated explicitly. In addition, it is desirable to have a first ~ FyoS)=fR,. °S,

integral for the ma- to simplify the Melnikov function, as

in lemma 7. One such choice (sf. Ref. 30: =f0°S0°R_ 2, = S0°F g R = Sp°F g -
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The fixed line of this reversor is theaxis, andSy(a)=b. A VI. BIFURCATION OF PRIMARY INTERSECTIONS
standard argumetttimplies that points wher&/5(a) crosses
the x-axis are heteroclinic tb. In this section, we compute the Melnikov function for
Lemma 7 implies that the invariardt can be used to the map(13) with the diffeomorphismh given by(16), and
simplify the computation of the Melnikov function. Recall the perturbation(19). We will see that the topology of the
that the choice of perturbatid® should be zero at the fixed heteroclinic intersection changes as the parameters and
points and be such th&’ is nilpotent(cf. Lemma 3. One o of P andF vary.
such choice is We consider the simplest case wheseis a constant.
. 2 _ 2, .2 This implies that the local motion on the stable and unstable
Py,2) = (0ux2(1 = p)(x*+y)12). (19 manifolds of the fixed points is a spiral with rotation number
Using lemma 10, the corresponding Melnikov function w. Recall that the heteroclinic connection is the topological

M for F. is given by sphere defined b¢,={(r,z):r=h"(z)—h(z)}. Note that
o by (13) thatZ=r +h(z) depends only uponandz, and not
M(&)= 2 A(F(k)(g)), upon .the spherlcal- angke Thus the equator is a proper loop,
k=—o v. Using the notation

WherEA(Xay!Z):<P(levz)lV|(Xayvz)>
For the case thad is constant, we havES(SO§)=SO
oF,%(¢), so that

1-v
1+v

; H(v):—hy(0)=%arctar6
M(Soé)= 2 A(SeeFo(£)).
k=—»

Moreover,A (Syé) = — A(€), for the perturbatioril9). Thus,  then the equator is the circle={(x,y,z):z=0,=2H(»)},
VN and its iterate isFqo(y)={(X,y,2):z=H(v),r=H(»?)}.
Mx, =y, =2) Mxy.2), 20 Thus a fundamental domain &k*(a) is the annulus defined
which implies in particular thai (x,0,0)=0. by the interval G=z<H(v).

| _1 \ (
]
O \I\ -U.nﬁ

0/2x

FIG. 5. (Color) Contours of the Melnikov functions far=0.2, x=0.1, andw=0.2, near the cusp bifurcation in Fig. 6. Hévieranges from—0.12 to 0.12,
and the zero level, shown as the black curves, consists of a pair of curves of homotop$,dasand pair of bubbleghomotopy clas$0, 0] that have nearly
collided with one of thg1, 0) curves.
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1r T ampleF, rigidly rotates the equatorial circle by, so that
we merely undo this rotation to perform the identification

3,1) {60+27w,H(v)}={6,0.

h ¢ Since the zeros oM are neat submanifolds, they become
closed loops with this identification. Thus the zero contours
of M can be classified by their homotopy class, a pair of
integers(m, n that gives the number of times the contour
loops around the torus in tteand 6 directions, respectively.
When the zeros oM are nondegenerate, all of the curves
Y must have either the same homotopy class, or the (lags.
' Each loop has a natural direction, associated with the direc-
tion of the crossing of the manifolds. Thus loops with a
a (0,1 nontrivial homotopy class must appear in pairs.

LD In Fig. 5 there are a pair of loops of homotopy cléass
0.01 - — 0), i.e., curves that extend from=0 to z=H(v) without
0.01 a A encircling longitudinally. By the symmetry20) there are

_ o _ _ always zeros on thg axis, soM(0,0)=M (7,0)=0—in the
FIG..6. Blfurcatlon'dlagram for the M.elnlkov.functlon wher=0.2 asa  55e shown the primary intersection curves through these
function of the rotation numbep of the fixed points and the paramejeof

the perturbatiorP. The points labeleda)—(f) correspond to the parameter points have h0m0t0py c|a$$, 0)' Also shown in the figure
values in Figs. 7 and 8. are a pair of loops of homotopy claés, 0), i.e., loops that
are homotopic to a point. These loops appear in a parameter
region corresponding to small and moderate values qf,

We show an example of the Melnikov function in Fig. 5, and disappear either by colliding with (@, 0 loop, or by
using the coordinatez and 6 on the fundamental domain. shrinking to a point. For example, if we fix=0.2, u
Positive values oM (#6,z) are shown in shades of red, and =0.1, then for the range9»<0.105 the(0, 0) loops exist.
negative in shades of blue, and the zero level is shown as th&t »~0.105 the loops shrink to a point, and for 0.30&
solid black curve. As implied by theorems 6 and 2 the con—<<0.185, there is a single pair ofl, 0 curves. At w
tours of M are neat submanifolds of the fundamental~0.185 a new pair of loops are born, and these are finally
annulus—either closed loops or curves that end on one of théestroyed in a collision with thél, 0) curve just aboves

(1,00+(0,0)

0.1 |

boundaries of the annulus. =0.2.
In general, since the boundaries of the fundamental do- A complete picture of the primary intersections for
main arey andF(y), we may use the map to identify the  =0.2 is shown in the bifurcation diagram Fig. 6. Here we

boundaries the annulus, turning it into a torus. In our ex-can restrict the range ab to the interval[0, 0.5, since a

H(v)

al b [
z
u=0.1 u=0.3 u=0.3
g 0 =0.05 ©=0.25 ©=0.35
HVg e f
Z /\/\/\/
u=0.02 u=0.05 ' u=0.05
i ©=0.05 =0.15 o=0.4
n 0 2n T o 2r LY 2n

FIG. 7. Zero contours of the Melnikov function fer=0.2, and the parameter values—(f) labeled in Fig. 6.
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a) I | b) | |
d) ' C).

rotation about thez axis by 27w is conjugate to one by same six values ofw, u) in Fig. 7. All of the intersections
2m(1—w) under the coordinate transformatiof— — 6. have the same homotopy types as the predictions with the
There are four distinct regions in Fig. 6, corresponding toexception of panelf(), at (w,u)=(0.4,0.05), for which the
loops with homotopy classé$, 1), (1, 0), (3, 1), and(1, 0 Melnikov function predicts(1, 0), and the actual intersec-
with a pair of trivial loops. The parameters for Fig. 5 are neartions in the numerical picture appear to (@ 1). This is due
the codimension two, cusp point atw{u)=(0.2,0.15), to the fact that the parameters are close to the (/®),1)
which corresponds both to the collision of the trivial loops bifurcation curve, and that is quite large.
with a(1, 0) loop, and their shrinking to a point. Examples of
the zero contours of the Melnikov function are shown in Fig.
7, corresponding to the parameter values labéd(f) in VIl CONCLUSIONS
Fig. 6. Wheng is small, the intersection curves are “equa- We have generalized the definitions of fundamental do-
torial,” of class (0, 1); this corresponds to Fig.(@. For mains and primary intersections #° and provided and
small  and moderate values ofthe primary intersections some tools for their study. In particular, a codimension one
correspond to a pair ofl, 0) curves plus a pair of Melnikov method has been used to identify primary intersec-
“bubbles,” curves with homology clas), 0), as shown of tions between two-dimensional stable and unstable mani-
Fig. 7(a). As w increases these bubbles disappear, leavindolds in a family of volume-preserving maps.
only the (1, 0 curves, shown in Figs.(B), 7(e), and Tf). The heteroclinic intersections, which are generically
These become increasingly elongated as one approaches ttigves, can be labeled by their homotopy class. We have
(3, 1 bifurcation where they reconnect, as shown in Fig.shown that there are bifurcations between these classes, and
7(c), forming a single pair of3, 1) loops. that which occurs will depend, for example, on the complex
To compare the actual behavior of the manifolds for thephase of the multiplier of the associated fixed point. Hetero-
mapF ., we need to choose a reasonably large valuesd  clinic orbits can be found most easily for the reversible case,
that the intersections can be numerically resolved. It is relaas intersections should occur on the fixed set of the reversor.
tively easy to plot the manifoldV°(a) when the pair of In our example the reversor has a fixed line, xhaxis.
stable multipliers at the fixed point have the same  One of our motivations for characterizing volume-
magnitude® this is true for our map byl4). In this case one preserving maps is to study transport. If the two dimensional
can take a regular two dimensional grid whose size is ordemanifolds intersect on an equatorial circle, then transport can
unity, and create a grid adapted to the dynamics by iteratinge localized to lobes similar to the two-dimensional c&se.
the points with the linearization of the map restricted to theHowever, if the primary intersection has a different homo-
stable subspacH times. This “small” grid is now embed- topy class, then the construction of lobes entirely from pieces
ded into the tangent plane ¥f*(a) ata and iterated\ steps  of stable and unstable manifold may be impossible.
with the inverse of the fully nonlinear map. The resulting
grid now approximately falls along the stable manifold, and
is roughly regularly spaced. A similar algorithm can be use
for the unstable manifold db. Useful conversations with R. Easton are gratefully ac-
In Fig. 8 we show three dimensional pictures of theknowledged. J.D.M. was supported in part by NSF Grant No.
manifolds created with this algorithm far=0.75 and the DMS-9971760.

FIG. 8. Stable and unstable manifolds fiey with e
=0.75. Here the parametefs®, w) in each panel are
identical to those in Fig. 7W"(b) is shown as dark
gray, and théNs(a) as light gray.
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APPENDIX: PROOF OF THEOREM 6 We perform a similar computation on the stable mani-
fold, using a functiony: Ny X (— &g, €9) — R with the corre-

For each point ¢ in the saddle connection gn,nding properties. For this functiah we conclude that

Ws(a) NWH(b), there is a neighborhoad/;, contained in a i
fundamental domain of the saddle connection, such that all B
the iterates§(N,) are disjoint. On the other hand, there is (9e4(£,0), V() XW(£)) = _gl detP(£4),V(£0), W(&w),

an €,>0 and a smooth functionp: NpX (— €g,€0) —R3

such that Following a standard Melnikov argumetitye conclude
(@ Vee (—eo,€), d&€)eWi(b,F,), that if £ is a nondegenerate zero of
(b) #(£,0)=¢. M (&)= (0 (£,0)— Aeh( £,0),V(£) X W(£)),

Let V= U F§(N\p). ClearlyV is a immersed manifold. then nearg*, the two manifoldSAV!(F,) and WS(F,) inter-
k=0 sect transversely.
It remains to show that each nondegenerate zero can be
continued to a point in the primary intersection of the two
— T *
B(£,€)=FL(d(F (&), €)), (21)  manifolds. Let¢* be a nondegenerate zero Mf(£). Then,

there is a curve/(¢) such that{(0)=¢* and, for allee
provided ¢ e F'(‘)(NO). It is clear that for eaclk e (— €g, €q) (— €0, €0)

and eV, we have thaip(¢,€) e WY(b,F,).

For eacht, we are interested in estimatirgé, €) to first {(e) € p(No,€)NP(No,e) W@, F)NWH(D,F).
order ine. Using Eq.(21) with k=1, we can take the partial Now, we find fundamental domai§ ¢/ such that
derivative of ¢ with respect toe to obtain the relation W(Ny €)C SCWE(a,F.)

Iep(£0)=F5(Fo(£)3cp(Fo (6,0 +P(E). (22 4pqg

LetV andWis a pair of linearly independent, adapted vector  4(Aje) CUUCWS(a,F,),
fields (cf. Defn. 4. We observe that the property of being
and «(S,U) =0 (cf. Defn. 1.

adapted implies that, for a§j in the saddle connection )" 7 . . .
This implies that{(e) is in the primary intersection of

Moreover, we can extend the domain ¢fto all of V, by
defining

V(&) =F§(Fo (&)V(Fy 1(€)), Ws(a,F,) andW'(b,F,), and in this way, it can be contin-
. . (23 ued with € to the pointé*. Using a similar argument, it is
W(E) =Fo(Fo "(€))W(Fq (). possible to continue points in the primary intersection that
are close td/(e). [ |

The vectorV(£€) X W(§) is normal to the saddle connec-
tion, so
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