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Volume-preserving maps arise from the study of the flow  Several other examples will also be found in Sec. II, wiere
of incompressible fluids or magnetic fields. If a volume- s rational in trigpnometric or hyperbolic functions. We also
preserving map has a continuous symmetry, such as a construct orientation-reversing examples.

rotational symmetry, then it has an invariant and the or- As we will see, even though each orbit(@j is restricted
bits are confined to surfaces. More generally, the orbits to lie on the two-dimensional level sets,

could densely cover regions with nonzero volume. Here

we construct maps that have an invariant, but no(obvi- M, ={(x,y,2):®(x,y,2) = u}, (5)
ous) symmetry. The dynamics of these maps, while sim-

pler than the general case, can still be chaotic on the they exhibit the full complexity expected for two-
invariant surfaces. Just as integrable systems are often dimensional, area-preserving maps.

used as starting points for perturbation theory, our maps One motivation for the study of these systems is an at-
provide a platform from which more general motion can ot 1o generalize results known for two-dimensional, con-

be studied. servative systems, i.e., area-preserving maps. Such maps
typically exhibit chaos, even if only on small sets in the
| INTRODUCTION phase spackThus the existence of a map with an invariant,

(3), is a notable phenomenon. Notwithstanding their rarity,

In this paper we construct several families of volume-such maps provide valuable examples, especially as a start-
preserving maps oft® that have an invariant. Some of the ing point for perturbation theory. The existence of an invari-

examples that we construct have the form, ant does not necessarily mean the map is globally integrable
in the sense of Liouville—Arnold. In the latter case all of the
f(x,y,2)=(y.zx+F(y,2)). (1)  invariant curves are homotopic—this rules out even the case

) . . . of the pendulum since the invariant curves have two distinct
Maps of this form are volume and orientation-preserving foryo g ngies corresponding to oscillating and rotating motion,

any functionF, and are diffeomorphisms wheneveris  rognectively. Globally integrable maps are conjugate to the
smooth. _For the cases that we primarily stuglys the ratio-  gikhoff normal form £(3,6)=(J,6+Q(J)).2 More gener-
nal function, ally, the invariant will have level curves that are not homo-
(y—2)(a— By2) ftopically equivalent. Birkhoff refers to this case as locally
F(y,2)= : (2)  integrablé®
1+ y(y?+2%) + Byz+ 8y*z* It is easy, in principle, to construct a locally integrable
map onlR?, since any symplectic map obtained from a one
degree-of-freedom Hamiltonian flow has the energy as an
invariant. However, explicit forms for such maps are not so
easily obtained, except for those few cases where Hamilton’s
equations can be explicitly integrated. The first nontrivial

Here there are three free parametatsB, y, and without
loss of generality, one can suppose that the inflean only
have the value$=0, = 1. This family of maps has an invari-
ant, i.e., a functionP such that

Dof=. 3) example, apart from the pendulum, was the elliptical
billiard;® however, the explicit form of this map is not easy to
For Eq.(2), the invariant has the form write down. A more explicit example is the rational family
due to McMillan? A generalization of this family was dis-
D(X,y,2) =X+ y?+2°+ a(Xy+Yyz—ZX) covered by Refs. 5,6; however, these maps are not area-
+y(X2y2+ Y222+ 22X?) preserying except in the McMillan case, though they can be
reversible.
+ B(x2y z+ 22xy—y?zX) + ox%y?Z>. (4) A systematic procedure for constructing locally inte-
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grable, area-preserving maps was devised by Sitis stud-
ied maps of the second difference form,

Xpy1— 2%+ Xe— 1= €F (X, €), (6)

which can be thought of as an area-preserving map upon
defining the variablesx(x’) = (x;_1,X%;). Under the assump-
tions thatF and ® are analytic and the invariant has the
form,

D(x,x",€)=DP(X',X,€)= po(X,X") + epy(x,x"), (7)

Suris showed there are exactly three possible families. For
these cases the correspondiqgs rational inx, in trigono-
metric functions ofx, or in exponentials ok, respectively.
The three examples of the for(t) that we construct in Sec.

Il correspond to these three cases; however unlike Suris we
have not shown that our solutions are exhaustive.

Other examples of integrable symplectic maps have als IG. 1. Some orbits of the cubic trace md). The outermost orbit lies on
been found. Suris’ techniques have been used to find highére tevelu=0.
dimensional, integrable symplectic mdpsAnother tech-
nigue that gives many examples is to find appropriate dis=|.
cretizations of integrable differential equations; these can b

his map has a form similar td) and is volume-preserving,

treated with th thods obtained f . tteri But the change in sign in the last term means the map is
reated wi € methods obtaned irom Inverse sca erln%rientation—reversing. All trace maps that arise from invert-

theory: > F_inally, maps Wit.h integrals_ have_ been oM ihle substitution rules have the function,

structed as integration algorithms for differential equations

with conserved quantitie'. D (x,y,2)=X2+y?+ 2% —2xyz-1, 9
In this paper we will study volume-preserving maps on

R3. Such maps are useful in understanding the motion o

passive Fraz&rfs in fluid$ and ~magnetic field line . 1104 a character. In this cag8) arises from the trace of the
configurations™*>They are also of interest since many phe-\, .4 A-1B~1AB. There are also orientation-preserving

nomena in the two-dimensional case are not yet completelyrace maps, though no nontrivial quadratic ones. A simple
understood in higher dimensions. Such phenomena i“dUd&lbic example is

transport®’ the breakup of heteroclinic connectioffs;?®
and the existence of invariant t3fi?* These maps are also f(X,y,2)=(—y+2xzz,—x—2yz+4x2). (10
important as integrators for incompressible flows; in some  \wynile trace maps are polynomial maps that have an in-
cases the maps are constructed to be vqume-pre;éfvﬁf’g, variant, it is interesting to note that there are no nontrivial,
and llg others to preserve the conserved quantities of thﬁolynomial, locally integrable maps in two dimensidns.
flow. _ _ Maps, such ag8) and (10), that preserve the Fricke—
/A prominent class of volume-preserving maps that have/ gt invariant have orbits that are confined to the two-
an invariant are trace mapsPhysically, these are obtained gimensional level setdd , defined in(5), for (9). When is
from the Schrdinger equation with a quasiperiodic i, the range- 1< u<0, M, has a compact component that
potential’” Mathematically, they arise from substitution rules jg topologically a sphere. Orbits on this sphere become in-
; 6,28,29 ; R . K e .
on matrices. As an example, consider matricésB  creasingly chaotic ag increases towards 0, see Fig. 1. At
€SL(2,R), the group of X2 matrices with unit determi- ,_q the compact component becomes a tetrahedeon
nant. A substitution rule acts on a string of matrices antphere with four corneysthat is joined to the unbounded
corresponds to replacements of each occurrencaidB  pieces at the four critical points d. Orbits on the tetrahe-
with strings of these matrices. One of the most studied exgron are still confined, and their dynamics is semiconjugate
amples is the Fibonacci substitution rule which correspondg, the hyperbolic torus mapd(s) — (i, 6+ ).2° Recall that

to A—B andB—AB. The trace map is determined by the 5 semiconjugacy is a many-to-one relationship between two
action of this substitution on the traces of the matrices. Dedynamical systems, while a conjugacy is one-to-one; in this

fining x=3Tr(A), y=3Tr(B), andz=3Tr(AB), then the  case the map is two-to-one.

SUbSt'tUt'lon rule 9'V199<' =3Tr(B)=y, y'=3Tr(AB)=z, The dynamics of the mafi)—(2) is at least as complex.
andz' = ;Tr(BAB) =3 Tr(AB?) = —x+2yz, where we USe \ye yill see in Sec. Ill that the components of the level sets
the Cayley—Hamilton theorem to simplify the last equation. ¢ (4) are topologically points, circles, spheres, tori or un-

as an invariant. Roberts calls this function the Fricke—Vogt
]‘nvariant,28 it is an example of a group theoretic invariant

Thus we obtain the three-dimensional mapping, bounded sets depending upon the values of the parameters
and u. We will use the critical points of4), and their orbits
f(x,y,2)=(y,z,—x+2y2z). (8) to help classify these cases. We also find the low period

Downloaded 24 Jun 2002 to 128.138.249.124. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



Chaos, Vol. 12, No. 2, 2002 Maps with an invariant 291

orbits and their bifurcations. The existence of the invariant  Proposition 1 Let F(y,z,e) be a smooth function de-

implies that these orbits come in one parameter families thdined on some neighborhood ef=0. Suppose that fofe|

are transverse to the level saw,, except at bifurcation <, there exist smooth, real valued functiogg and ¢,

points. We will also show some numerical examples of thesuch thatd, defined by(16) satisfieg14) and (15). Thengy

dynamics. is even, invariant respect to cyclic permutations of the vari-
One reason for studying maps of the fofi is that they — ables and satisfies

are volume-preserving for arbitrafy. Moreover, this form

also arises quite generally for the case of quadratic automor- Feeebo

phisms. According to Ref. 30, any such map that is non-  “¢| 75,6, =0, ¢=xy.z (17
trivial, volume and orientation-preserving is conjugate to the

normal form(1), whereF is replaced by Proof: Setting u,=eF(X,,X,+1,€)+X,_1, We have

=a+ 77— + 2_|_ + 2 Xn+2:6F(Xann+lrE)+un and Xn—lz_EF(Xn:Xn+1:6)
Q(y,z)=a+rz—oy+ay +byztcz, (11) +u,. In that casd13) and (15) imply
a quadratic polynomial.

(DE(Xn!Xn+1!EF(Xn1Xn+116)_un)
=P _(X,,X ,eF(x,,x J€)+Up). 18
Il. CONSTRUCTION OF THE INVARIANT XX 10 €F (X X4 1,€)+ Un) (18
As ¢o=DPy we have ¢o(X,y,—U)=p(X,y,u) and

Motivated by the fact that quadratic case has the norma(lﬁ (x,y.u) = doly.u,x). Therefored, is even and invariant
form (1), we will use the techniques of Suris to construct #01%Y" olY U X). 0

maps of this form that have an invariant. It is convenient torespect to any cyclic permutation of the variables. Now, after

introduce a paramete¢ by scaling the variablesx(y,z) renamingx=>xn, y=Xn. 1 anduzun,_we d|ﬁerent|ate(18)
- . three times with respect te and sete=0 to obtain
—€(X,y,z), and defining a new function FAy,z,e)

=€ 2F(ey, ez) so that(1) becomes

20,¢0(X,Y,U)F[o= p1(X,y,—U) — ¢1(X,y,u), (19
f.(x,y,2)=(y,z,x+2€F(y,z,¢€)). (12
The factor of 2 is added to simplify some of the intermediate 29,¢0(X,Y,U) I F|o=(3,¢1(x,y,— )
results. In the case of quadratic maps, sif@éey,ez) —d,¢1(X,y,u))F|o, (20)

= €?Q(y,z), the nonlinear function in the scaled coordinates
does not involvee; however in the general case it does, soand
we allow for this dependence. We will assume th&y,z, €)

depends smoothly oa. 23,5 1b0(X,Y,U) (F|0)3+6d,d0(X,y,U)d.Flo
It is convenient to writg12) as a third difference equa-
tion, by noting thet | = 3(dh1(X,Y, ~U) — dh1 (XY, 1)) (F|o)?
fe(anl1anXn+l):(Xnrxn+lvxn+2)v +6((92¢1(X,y,_U)_ﬂzcﬁl(x,y,U))ﬁeFlo, (21)
wherex, . is given by where F|y, d.Flo, andd.F|, stand forF and its partial

derivatives evaluated atx(y,0). Differentiating(19) twice

w.r.t. u and using(20) and(21) yields
The map is now in a form analogous to that studied by Suris

(6). If @ is an invariant forf ., then for alln, — 43,00y, u)(F|g)®

Xn+2=Xn—1+2€F (X Xn11,€).

(De(xn—lrxnan+1):q)e(Xn,Xn+lan+2)i (13) (§6F|0)2
+6(92¢0(X1y1u) aeeF|0_2 =

0. (22

which in terms ofx, y, andz leads to Flo
DXy, 2)= Dy, zx+2€eF(y.2,€)). (14 SinceF|, is independent ofl, the result then follows fog
Since —X,_1=—Xp1+21+2€F(Xn,Xn11,€), it follows that =z The proof is completed upon noting thag is invariant
&, should also satisfy respect to cyclic permutations of the variables. O
D (—Xpt2:Xn:Xn+1) =P (Xn Xnt1,— Xn—1) A. Rational case
which suggests considering invariants satisfying the symme-  Note that if we assume th&tdoes not depend o then
try ansatz (22) as an equation fop, reduces to
D (X,y,2)=D (Y,2,—X). 15
(Xy,2)=@(y ) (15 Dseso=0, E=X.y,2.
In fact, following (7) our attention will be focussed on in-
variants of the form, Indeed this would be the case if, e.g., we were to consider the
family obtained from rescaling the homogeneous quadratic
D (X,Y,2)= po(X,Y,2) + €h1(X,Y,2), (16) Y J 9 !

case,(11) with a=7=0=0. As this is also a particular so-
satisfying condition(15). With these assumptions we can ob- lution of (17), this may also yield solutions for more general
tain the following proposition. F as well. We now explore precisely thogg satisfying that
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condition. In such casespq is a polynomial of degree at Notice thatF is a polynomial only where=0, thus the
most two in each variable. Sinag, is even and invariant only polynomial case is linear, and therefore dynamically
under cyclic permutation, we have trivial.

Many of the parameters iR are superfluous. As we are
interested in maps that do not have singularities, we can
+bo(X2y2+ Y222+ 22x?) + ¢y x2y%Z%, (23)  assume that the origin is not a singular point. Tlagr- ea
#0, and we can rewrite the above equation so that there are
only four essential parameters, and the map becofhes

¢O(X!ylz) = aO(X2+y2+ 22)

up to additive constants. Fro(0) it follows that

(P1(X,y,u)+ ¢1(X,y,—U))F|q with F given by (2), and invariant given by4). Moreover,
after rescaling we are reduced to three, 3-parameter families
=~ 2¢0(x.Y,W)dFlotk(x.y), corresponding t@=0,* 1.

wherek(x,y) is some function not depending an Taking
into account(19) gives

2¢1(X,Y,U)F|o=—2d,¢0(X,y,u)(F|o)?

—2¢o(X,y,U0)d.F|o+K(X,y), B. Other solutions
thereforeg, is a polynomial of degree at most 2 irand by While we have not investigated all solutions(@f), it is
the symmetry conditiorf15) we obtain possible to find other explicit solutions if we assume that the

b1(Xy,2) = A(C+Y?+22) + b(x2y2+ Y222+ 22x2) first integral of this equation is given by

+¢ X2y2Z2+ d(xy+yz—zX) J
y yry gL(l)ozconst,gzx,y, Z (25
+e(x2yz+ 22Xy —y?zX). (24) d¢bo

Finally, upon usind23) and(24) in Eq. (18), and solving for thus, we assume that the right-hand side is constant instead

F yields of being a function of the remaining two variables. There are

2F(y,z¢€) two possible forms, depending upon the sign of the constant.
When const —w?#0 we obtain a solution that contains

(y—2)(d—ey2 trigonometric functions. Eliminating unnecessary parameters

ag+ea+t (by+eb)(y2+22)+ (cot+ ec)y?Z2+eeyz  we obtain a family of maps of the forifl) with

a(sinz—siny)+ Bsin(z—vy)
x+ y(cosy+cosz)+ B siny sinz+ §cosy cosz/

F(y,z)=2 arctalé

This family has invariants given by
D (X,y,2) = x(cosx+ cosy + cosz) + a(sinx siny + siny sinz—sinz sinx) + B(sinx sin y cosz+ siny sinz cox
—sinzsinxcosy) + y(COSX COoSy + COSy COSZ+ COSZ COSX) + & COSX COSY COSZ. (26)

The case when the constant is positive, censt+ 0, produces a similar family of maps but replaces the trigonometric
functions with hyperbolic ones. Thus becomes

a(sinhy—sinhz) + B sinhy—z)
x+ y(coshy+ coshz) + B sinhy sinhz+ & coshy coshz )’

F(y,z)=2 arctanl(\

and the invariants are given §96) with sin and cos replaced clic permutation invariant but which do not satig®5), as,
by the corresponding hyperbolic functions. In both of thesefor example, ¢o(x,y,z) =cosxyz and ¢o=coshxyz These
cases some restrictions on parameters would be necessarytte particular solutions also give rise to families of maps
avoid singularities. with an invariant®, however these maps have singular
However unlike Ref. 7, our results do not exclude thePOINts. . _ _ _ .
existence of additional families of maps having invariants of _ Finally we investigate the orientation reversing analog of
the type considered in Proposition 1. For example, the mo ),
general first integral of(17) involves arbitrary functions
whose signs could change depending upon position, thus
causing a switch from trigonometric to hyperbolic behavior.Introducing the parameteras before, means that we wish to
Certainly there exist solutions @¢17) that are even and cy- find solutions to

(x,y,2)=(y,z, = x+F(y,2)). (27)
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D (X,Y,2)=D (y,z,— x+2€F(y,z,€)). These conditions lead to the same result as before, namely,
Eqg. (17) in Proposition 1. If, as before, we consider the sim-
Then the symmetry ansatf,5), should be replaced by plest casel,, =0, we still obtaing, of the form(23).
The result for(27), after assuming the origin is not a
D (x,y,2)=D(Y,z,X). singular point and scaling out inessential constants becomes

a+(B+yy2)(y+2z)+ 8y>+ xyz+ nz2+ ky?z?
F(y.2)=— — —. (28)
1+ 9py+6z+ yyz+ Ny +2°)+ kyz(y+2)+ pny<z

This map has the invariant,
D(X,Y,2) =X2+ Y%+ 2%+ (a+ yxy2) (X+y+2) + ( B+ kXy 2 (XY+YzZ+zX) + p(X2y +y?z+ 22X) + S(Xy? + y 22+ 7))

+ xXyz+ N(X2y2+ Y272+ 2°X?) + ux?y?z2. (29

Note that the Fibonacci ma(8) can be recovered from tion of f" to ®(&p)=uo. Moreover, if1 is a multiplier of
this result by settingg= —2 and all of the other parameters multiplicity one, then there is a unique cunéw) of period
to zero. A slightly more general polynomial map can also ben orbits throughé&, .
obtained by lettingr and 8 be nonzero, which gives On the other hand i§, is a critical point of®, so are all

points in the orbit of¢,.

(xy.2)=(y,2,=x—a=Bly+2z)=2y2). Proof: Since®(f(&))=d (&) for any &, we can differ-
This map is not conjugate to the Fibonacci map, as the levaintiate to obtairD ®(f(&))oDf(&)=Dd (&), or in terms of
sets ofd are topologically different from those @9). the gradient,

DF(&)'VO(f(£)=VP(&).

Thus sinceDf is nondegenerate, whenevéy is a critical

In this section we will study the dynamics of the rational POINt s is its image. This proves the last assertion. Wijen
mapf given by(1)—(2). We begin with a brief discussion of is a periodn orbit, this relation applied té" implies
some general p_roperties_ _of volume-preserving maps, then (DF"(&))TVD(£) = V(&)
consider properties specific fo

Recall that this map has three free parameters, y which implies thatV<IJ(§0) is an eigenvector with multiplier
and one indexs=0,+1. The map is defined on all ¢t if 1, as promised.
and only if When ¢, is not a critical point, the se¥, is a smooth
submanifold at¢,. Thus, according to the inverse function

6=1, y=0 and |B[<2(y+1) theorem there exists a linear projectiofit) = ¢ € R4~ * such

or that the maph(&) =(w(£),P(£)) is a diffeomorphism on a
5=0, y>0 and |B|=27. (300  neighborhood of&. Locally, the map hof_“o_h‘l(g,,u)_
=(¢',u) is well defined and has 1 as a multiplier associated

In these casefis a diffeomorphism. Only parameters satis- to the parameteg, so the remaining multipliers are associ-
fying such conditions will be considered in this section. ated with the map;—¢’. Finally, let G:RIXR—RY be

A. Volume-preserving maps with an invariant given by G(&,u)=(m(f"(§) = £),®(§)—w). It is easy to

. . _ i see that the Jacobian
In this section we will discuss some general properties of

volume preserving maps with an invariant. As is well G(E9 10 = ( Tr(Df“(&o)—l))
known?2®?8the dynamics of these maps restricted to a non- g2tso.to DD (&)
critical level setM ,, (5), is equivalent to those of a measure has rankd. Since we know the solutio(&y, 10)=0, the

. . . . . . o-M™0) — Y
plr_esetrr:nr:g rgip.tMc_)relc;ver, the gmstence of thf mfvan_:;nt ImTmplicit function theorem implies that there exists a unique
i Ie?.err?mc;rzl Lsetyfggg\fc?ﬂni: ?;seéﬁl?rrlarg?ﬁzgrigl IEiss;'m solution, ,,, 10 G=0 in a neighborhood ofo. -

q. . . P 9 P Whend=3, the characteristic polynomial for the multi-

on R® with a smooth invariantb.

: o . . . pliers has the formp(A)=N3—tA?+sA—1, where t
Suppose thag, is a noncritical point of® that is peri- n _ 12 m2
odic of period n for f. Then "fis locally equivalent to a (DT, ands=3[t"~Tr((DfF)")]. Therefore, whem

parametrized family of & 1 dimensional maps. The linear ;utelz t:;(\)multmller,s:t and the characteristic equation re-
map D'(&,) " has an eigenvectdv ®(£,), whose multiplier
is 1 and the remaining multipliers correspond to the restric- ~ N3—tA2+th—1=(A—1)(A2—(t—1)A+1)=0,

IIl. DYNAMICS
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so that the remaining multipliers satisfy;+N,=t—1. In these coordinate@®!) becomes

These two multipliers correspond to the map restricted to the

invariant surface when the orbit is not in the critical setof S V2

Thus if we consider the restricted map, the periodic orbitis ~ ®(r,6,{)= arﬁ(sin 360)%+ a(g(ﬁw— 27y)
elliptic if —1<t<3, hyperbolic with reflection ift<—1,

and hyperbolic ift>3. If t=—1, the restricted map has a +68(3r2—2¢?))r3¢sin 30

double multiplier at—1, so that a period-doubling is ex-

pected. In the case=3, A=1 is a double eigenvalue and a 1 _ 4 1 4 } 242
. PR T3(y=B) T+ gyt S Breg

saddle-center bifurcation is expected. More generally sup- 3 4 2

pose that, is not a critical point of® and that at this point

a curve of periodn points, intersects a periokl- n curve. +1+ s r2

Then the linearization of" at &, must have &™ root of 2

unity as eigenvalue so that 1+ 2 cos(27(nmvk)) for some )

integerm. +(1—a)§2+1—08 2(2¢2—3r?)2, (32)
B. Invariant surfaces This is especially simple wheé=0, andB=—2v, be-

cause all of theg-dependent terms vanish, and so the sur-
faces have cylindrical symmetry. We exploit this in some of
D(X,y,2) =X*+y?+ 2%+ a(xy+yz—2zX) the examples below.

The critical points of® can be computed explicitly in a
rather general way usin@2). There are five classes of criti-
—y2zx)+ 6x2y?z?, cal points:

R CO0. The origin is always a fixed critical point.
depends significantly on the parametersB, andvy, as well " . . .
) . C1. There are up to two critical orbits of period 2, which
as the indexs. As we will see, the components of these sets : 4
) . ) correspond to pointsx(—x,X) wherex a real root oféx
can be points, circles, spheres, tori, or noncompact. For somgz(y B)X2+1—a=0
parameter values all of the level sets are compact, while for C2. There are up to three critical orbits of period 6,

others there are compact components for certain ranges of : . .
: corresponding to pointsx(y,x), wherex andy are given by
Of course, when the parameters are fixed the topolody of ;
" X any real solutions of
can change only at critical values @f, i.e., on level sets
containing critical points ofP, so our first task is to find

The topology of the level sets of the invarig#,

+ y(X?y?+y272+ 2°x%) + B(XPy -+ Z°xy

these. 0=28yx%+ (492 B2+ 5(2— a))X*+6yx2+ 2+ a,
The equations for the critical point§,® =0, reduce to (33
2x=—F(y,2), 2y=—F(z,—x), 2z=—F(=Xx,~Yy), y= P+ ax

T4 w21’
whereF is given in(2) and we have assumed—as always in X+ (2y=px°+1
this section—that it is never singular. Thus, on critical points

the mapf acts as X,y,z)—(y,z,—x). This implies that the ~The orbits are generated by the period six symmetrylqf,

critical orbits are at most period 6. so two points from these orbits lie on each of the three planes
The fixed point at the origin is always a critical point. X=2, z=—Yy, andy= —X. _ N _
The origin is local minimum ofP when —2<a<1 so that C3.If a<—2 andy>0 there exists an additional period

the surfaces are locally spheres. It is a saddle when-2 6 critical orbit, generated by x§,X,0), where Xg
or @>1, so that the surfaces are locally a family of hyper-=+—(2+ a)/2y. Such orbits lie on the plang=x+z.
bolic cylinders. C4. Finally in the special case 2+ 8)=26 it is pos-
To obtain more explicit expressions for the remainingsible that there exist curves of critical orbits. When they
critical points, note that the level surfaces have a discretéxist, these curves include the orb{§2) and (C3). The
symmetry, corresponding to the transformatior,y(z) simplest case i$$=0, when the surfaces have cylindrical
—(y,z,—X), which is a=x/3 rotation arounck= —y=z fol- symmetry. Then the circle of radiug—(2+ «)/y in the
lowed by a reflection througlk—y+z=0. To make this planey=x+z is critical providinga<—2, y>0. Every or-
more explicit, it is often convenient to introduce rotated co-bit on the critical circle is period 6, and the circle contains
ordinates so that the vertical axis coincides witk —y  the critical orbit(C3). The casef=1 is more complex. In the
=z. In particular we define cylindrical coordinates ¢,/), coordinate systen1), the critical curves are given by
determined by

2
0 1(+) ing 1( +y+22) 52:2“:”’
I COSO—= —(X , Frsind=—(—X Z),
(3 ,
é“_i(X— +2) sin36—§2+a_27(9+r)
BT 2y

Downloaded 24 Jun 2002 to 128.138.249.124. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



Chaos, Vol. 12, No. 2, 2002 Maps with an invariant 295

Solutions only exist whe<<—2 or a>18y—2. When B
a<-—2, (34) represents one closed curve. kor18y—2,
(34) corresponds to two closed curves lying on each side of(1)
y=X+Z. , Q
For the special casé=0, we can relatively easily clas- O
sify the possible topologies of the séds, . In this case there

)
is at most one critical orbit in each of the classes describec

v

) <
<
»

3

above. We label the critical levels corresponding to (@G ) 21
by u; . When they exist, the critical levels appear in the order

©

Moo= p3= mg<po=0

while w1 may vary in the ordering.
< - i i its. i . .

CZW'heS @ 2 thek:(_a f?rf? two perlod SI)? orbits . The :IrSt' FIG. 2. Level sets 0f32) for §=0. There are seven categories according to

(C2), _'S _or_n atu, which has _an expressmn—_arlsmg rom the parameter values of and y— 8. Some of the most distinctive level sets

the discriminant of(33)—that is too long to display. The in six of these families are displayed.

second period six orbitC3) is born at

(2+a)? (2) y=pB, —2=<a=<1, excluding the casa=1, y=B: The
M3= " 4y only critical point is the origin that arises g =0. Sub-
sequent level sets are homeomorphic to spheres that en-
close the critical point.
(3) y>pB, a>1: At u=u, the period two(C1) orbit ap-
pears, giving rise to two spherical components. /At
=0 these components become attached by the critical
point (CO).
(4) y<pB, a<—2: In addition to unbounded cones, com-

The critical circle(C4) exists whern3=—2vy anda<—-2. In
this caseu,= u3= u,, and the orbit§C2) and(C3) become
part of the critical curve. Finally the period two critical orbit
arises only when (+ «)/(y— B)<0 at the level

_1)\2
MFM- pact components develops as in case 1. However at
4(B=) = u, the spherical component becomes attached to the
_ _ _ unbounded cones by th€1) orbit originating the un-
In the special casexe=1,y=p all points on the axis X, bounded cylinder.
—Xx,x) are critical of period 2 and they lie on the level (5) y<pg —2<a<1: A sphere develops from the critical
=p1=po=0. point (C0O). This set becomes joined to the unbounded
To complete the classification of the foliatidM , , cones by th€C1) orbit whenu= ;.

e R} for 6=0, we use(32) to describe cross sections on the (6) y<g, a>1: No bounded components exist. The un-
{=const planes, and take into account the critical points. Let  hounded cones meet at ti€0) point whenuy=0 and
Kmin (respectively, uma) the minimum (respectively, the become an unbounded cylinder.
maXimUm of the levels where critical orbits arise. (7) y= B’ a=1:Inthis Specia| case the level sets are empty
Wheny<p all level sets are nonempty and unbounded;  for ;< u,=0. M, is the critical axisx=—y=z. This
however, there can be compact components for some ranges critical set gives rise to unbounded cylinders for positive
of u. In factM , is composed of two unbounded cones lying .
on each side of =x+z for u<<umi, While for > pmnax, the
level sets are unbounded cylinders surrounding the axis
=—y=z
On the other hand ify> 3 the level sets are empty for In this subsection we describe the low period orbits of
~<pmin @nd homeomorphic to spheresuf> umax. 1N the  the map(1)—(2) and their bifurcations.
range umin< 4 <pmax €achM , is composed of one or more Every point on the diagonat=y=z is a fixed point.
closed surfaces. Fixed points onM , correspond to solutions of the equation,
Taking into account the possible transitions we find the 6 4 5
following families of level setgsee the illustrations in Fig. X+ Byt BXH (3 ax=p,

2. so that if u#0 the number of fixed points on any given
(1) y=B, a<—-2: M,= when u<p,. For u,<u  surface is even; whed=1 there are up to 6, and when
<pu3, M, consists of six bubbles that develop from the =0 there are up to 4. The origin, which is a critical fixed
critical orbit (C2). At u=u3 these six components be- point, lies onMg; this corresponds to the collapse of two
come connected at thgC3) orbit, creating a torus. At fixed points into the critical one.
uo=0, the torus changes into a sphere pinched at the The stability of fixed points is determined by
origin when thgCO0) point appears. The cage=—2v is 5
special sinceu,=u3 and the torus develops directly t=Tr(Df)=d,F(x,x)= BX —a _
from the critical circle(C4). 1+ (2y+ B)x2+ ox*

C. Periodic orbits

(39
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FIG. 3. (Color) Structure of level sets ob, (38), when o< —2. Specifi-
cally, y=1, a= —4. Three level sets ob are shown: a torus for. <0, the
critical pinched sphere ai=0 and a sphere for>0. The line labeleg,

is the line of fixed points, and the pair of curves labepads one of three
period three hyperbolas. The vertical axis corresponds=te-y=z.

FIG. 5. (Colon Structure of the level set™, for (32), with («,8,7,6)
=(—4,2,1,0). The vertical axis correspondsxe —y=z. Two level sets
are shown, one fop=—0.5 contains a toroidal component, and a second

Even though the fixed point at the origin is critical, it always ¢, ,— 18 75 contains a spherical component.

has one unit multiplier since it lies on the curve of fixed

points. It is elliptic when—3<a<1.
Period two pOintS have the formX,Ql,X)—>(y,X,y), Wherey andx sat|sfy(36)

wherex andy lie on the curve For a,8#0 period three points lie on the hyperbolas,
Y(X2+y?) +2Bxy+ 6x2y2=a—1. (36) (X, X, al BX)— (X, al BX,X)— (a/ BX,X,X). For a period 3

. ) ) point (x,y,z) we have
Using our standard assumptiof&0), we see that this curve

is an ellipse whe=0 if y>|p|, and is otherwise a hyper- t=3+0d,F(y,2)92F(z,x) + d1F (X,y) d2F (y,2)
k;ola. ’Z\éhencS:l the curve is bounded unless=0 and« +0,F(2,X) 0,F (X,Y) + JoF (X,Y) 0F (Y, 2) 9,F (2,%).
The period two curves intersect the fixed point curves at (37

the period doubling points, where the tra@) is —1. This  The explicit expression for this is too long to display.
verifies that these points are period doubling bifurcations of  The fixed points undergo a tripling bifurcation when
the fixed points. The period two curves also intersect the=0, or equivalently whem?= «/B. This is exactly when the

critical orbits (C1) when they exist. period three orbits collide with the fixed point line.
The stability of the period two orbits is determined by Next we illustrate the above discussion with some spe-
t=09,F(X,Y) + d1F(Y,X) + ,F(X,Y) d2F(Y,X) cific examples.
)2 (y— B—
:3_4(X y) (y,BIB oxy) D. Examples
a— BXxy
) 5 X Example 3.1:In the particular casé=0, 8= —2v, Eq.
_4(x—y) (yx+ By + Xy ) (BX+ yy+ 6X7y) (32) reduces to

(a—pxy)?

r’+(1—a)?, (39

(r,0,0)= 2 (r2= 2022+ | 1+ =
4 2

so that intersections of the level sets with planes perpendicu-
lar to the ¢ axis are either circles or empty sets and the
topology of M, as u changes is especially easy to under-
stand. In particular eacM , is a closed surface so thét
generates a bounded dynamics. When u . the surface is
topologically a sphere; for larga has an hourglass shape
that corresponds approximately to the dominant hyperbolic
cylinder, r?—2?=const, determined by the first term in
(398).

When a< — 2, the topology corresponds to case 1. The
critical levels are:
(C4) wy=—(2+ a)?/4y, corresponding to a critical circle of
period six orbits in the plang=x+z.
(CO) wp=0, corresponding to the critical point at the origin.
FIG. 4. (Color) Structure of the level setd, for (38), whena>1. Spe- This case is illustrated in Fig. 3. .
cifically, y=1, a=2. p;, p, are the curves of points of period one and two, The casex>1, whose topology corresponds to case 3, is
respectively. The vertical axis correspondscte —y=z. illustrated in Fig. 4. In this case the critical levels are:
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(C1) uy=— (a—1)%4y, corresponding to the critical period Thus if «=—2 there is no period doubling, but the trace

two orbit. asymptotes to—1 as the orbit moves to infinity. Whea

(CO) up=0 corresponding to the critical point at the origin. <—2 the elliptic orbits period double on the surfage
The fixed points lie on the linex(x,x). If a<—3 there =—((2+a)3+2a?)/4y(2+ a).

are no fixed points oM , until u=—[(3+ @)?/4y], when Example 3.2:For the general case, computations are not

the line is tangent to the invariant surface at two pointsyAs so simple. As an additional example we consider the case
increases each of these splits into a pair of fixed points, onéa,B,7y,6) =(—4,2,1,0); this corresponds to the topology in
hyperbolic and the other elliptic; thus, each level set nowcase(4), see Fig. 5. For these parameter values the critical
contains four fixed points. Whep approaches 0 the two levels are:

hyperbolic fixed points move to the origin, collapsing onto (C2) u,=— 33, corresponding to a single period six orbit
the critical fixed point ap.= 0. The remaining elliptic points  generated by /3(1,:2,1).

131

period double at (C3) uz=—1, corresponding to a period six orbit generated
by (1,1,0).

(1-a)(7T+a) (CO) up=0, corresponding to the critical point at the origin.

“:4—7 (39 (C1) wu,=18.75, corresponding to a period two orbit at

x=—y=z=+%.

when the fixed point line meets the period two curve. The evolution of fixed points is similar to the case
For —3<a=<1 the fixed points line does not intersect <—3 of Example 3.1. The fixed point line is tangent to the
M, for negativeu. For positiveu two elliptic fixed points  invariant surface fop.= — 55 and then intersects,, at four
appear on eaciM,. These points period double &89) points. The two orbits closer to the origin are hyperbolic
when the line crosses the period two curve. while the other two are elliptic. The hyperbolic fixed points
Whena> 1 fixed points also first appear on the invariant disappear as they collapse into the originuat 0. However
surfaces aj.=0. Each of the fixed points is hyperbolic and unlike Example 3.1 there is no period doubling and the re-
remain so for allu>0. maining fixed points remain elliptic on all subsequéy, .

Period two orbits X,y,X) lie on the curve36), which in There are up to four period two orbits at the intersection
this case is the hyperbola=z, y(x?+y2—4xy)=a—1.1f  Of the level setsM, with the branches of the hyperbola
a<1 this hyperbola is tangent #d , when the fixed points  (X.¥:X), x2+y2+4x'y= —5. Whenu<—3.95501,... there is
period double(39). This is a supercritical bifurcation, giving & pair of hyperbolic period two orbits on the unbounded
rise to a pair of elliptic period two orbits, and they later COmponents oM, . At this level a period doubling occurs,
become hyperbolic when they period double as well. and the orbits become elliptic. At=18.75 a pair of hyper-

The scenario is modified whea>1, since the period bolic period two orbits emerge from the critical period two
two orbits are not born in a period doubling bifurcation. In- orbit (C1). At =31 the hyperbola is tangent td ,, and
stead they begin at the critical point§1), when u=—(« the hyperbolic and elliptic orbits disappear in a saddle-center
—1)%4y. As u increases, there are two period two orbits onbifurcation.

each level set. When#4 these orbits are initially elliptic, Orbits of period three correspond to points on the hyper-
becoming hyperbolic after a period doubling. ko4 they — bola (x,x,—2/x). Four period three orbits are born at
are always hyperbolic with reflection. ~17.8429 in two simultaneous saddle-center bifurcations.

Orbits of period three are generated by the intersectiod he two hyperbolic orbits remain hyperbolic for larger
of the hyperbolaX,x,a/8x) with M, . Using (37), we find but the elliptic orbits undergo two period doubling bifurca-
these orbits have=3 at the solutions of tions, becoming hyperbolic at~17.9167, and then elliptic
again whenu=27.4444,

(2yx%+ a)?(8y°x8+ 4v%(2+ a)x*— a?)=0.
E. Numerical examples

The second factor in the equation above corresponds 10 a |n this section we present some numerical investigations
saddle-center bifurcation that creates two pairs of periogf the dynamics of1)—(2).
three orbits on each level surface. fismoves away from In Fig. 6 we show initial conditions on three level sets,

cations. The first factor above corresponds to the collision o§eyeral invariant circles with nontrivial homology, one can
the hyperbolic period three orbits with the fixed points. Thisg|so see a chain of islands around an elliptic period five orbit
only occurs whena<0, on the surfaceu=—[a(a (the blue orbit. For thisu, the fixed points do not yet exist.
+6)/4y]. The hyperbolic orbits pass through the fixed|n the middle panel of Fig. 6, the critical level=0 is
points, emerging again as hyperbolic—this corresponds t@hown. The origin, where the spherical surface is pinched,
the stapdard sqenario for tripling bifurcations in area-appears to be in the middle of a widespread chaotic zone.
preserving mapping¥. The domains covered by the orbits points near the origin
The period three orbits undergo a period doubling whenyith ;>0 (black points and those witht <0 (red point3 are
distinct. Away from the origin they are separated by a family
2yx%>+a+2=0. of invariant circles, two of which are shown in the figure.
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FIG. 6. (Color) Orbits of (1)—(2) for parameters«,3,y,5) =(—4,—2,1,0). Here some orbits on three level sets; —0.69, 0, and 1.0 are shown.

The right panel shows the dynamics far=1.0. Here one that are associated with two elliptic period five orbits. For
can see a prominent islangurple enclosing one of the larger u, as shown across the bottom row in Fig. 8, the
elliptic fixed points. Again the invariant surface is divided islands around the elliptic fixed points remain prominent.
into two large chaotic domains. Fer>1.1 the large invari-  Also visible are two elliptic period four orbitdight blue and

ant circles have been destroyed, and the two chaotic zonegeen in the bottom-middle panel at=5. Apart from these

are joined. There are prominent elliptic regions until after theislands, which persist on the unbounded components.for
fixed point orbit period doubleffrom (39), ©=3.75]. For = >18.75, the dynamics on these sets appears to be largely
larger « the dynamics appears nearly uniformly chaotic; unbounded.

however, amongst the chaotic orbits are the islands surround-

ing the two elliptic period three orbits. These become more

visible for largeu. IV. CONCLUSIONS
The orbits for the case corresponding to Fig. 4 are shown
in Fig. 7. Wheni< <0, the orbits that lie on the pair of We have used the methods of Suris to find several fami-

spheres enclosing the critical period two orbit are predomidies of volume preserving maps @it that have an invariant.
nantly regular, as can be seen in the left panel.tAsp-  Unlike Suris, our solutions do not appear to be exhaustive. It
proaches 0, the chaotic regions grow, and they dominate th@ould be interesting to obtain such a classification. We have
critical surfaceu=0, as seen in the middle panel. There arenot found any polynomial maps that have an invariant be-
also large islands surrounding the elliptic period two orbits atyond the trace map$8)—(10). It may be that there are no
this level. Neamw = 0.42 a family of invariant circles appears polynomial, volume-preserving maps which have an invari-
that divides the chaotic region into two parts, as can be seeant that satisfies the conditioni$5)—(16); our results show
in the right panel. These circles are destroyequbyl1.8, and this is true wher- is a homogeneous quadratic function.
as before, apart from the elliptic period three orbits, the dy-  Both topologically and dynamically our maps are richer
namics is largely chaotic gs becomes large and the invari- than the well-known trace maps. We do not know if there is
ant surface acquires its hourglass shape. a set of parameter values for which our maps are “com-
As a final example, we consider the parameters correpletely chaotic” on an invariant surface; this was one of the
sponding to Fig. 5. For this case, orbits on compact compoprominent features of trace maps, which are semiconjugate
nents of six level sets are shown in Fig. 8. In the top-leftto an Anosov system on the tetrahedral critical level set of
panel,u<—1, and the orbits lie on a family of six spheres the Fricke—Vogt invariant.
enclosing the(C2) orbit. In the next panel, these spheres In the future it would be interesting to investigate the
have joined at th€C3) orbit, and the dynamics appears uni- dynamics of these maps composed with a small perturbation
formly chaotic. In the top-right panelx=0, the torus that destroys the invariance df. Is the transport between
pinches at the origin. The red and black orbits encircle thdevel sets more efficient when the dynamics on the surface is
elliptic fixed points. Also shown are green and yellow orbitschaotic?

FIG. 7. (Color) Orbits of (1)—(2) for
parameters «,,v,6)=(2,—2,1,0).
Here some orbits on three level sets,
pn=-—0.112, 0, and 0.518 are shown.
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FIG. 8. (Color) Orbits of (1)—(2) for parametersd,3,v,5)=(—4,2,1,0). Across the top are shown orbits on the level gets- 1.4,—1.0,0.0, and across the
bottom arex=1.0, 5.0, and 17.6. The figures are not shown to the same scale.
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