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1. Introduction

Area-preserving mappings give rise to incredibly rich dynamics and mathematics.
They also arise in many applications including mechanics, chemistry, celestial dy-
namics, plasma physics, condensed matter physics, and many other fields.

The ‘standard map’ z → f(z) = z
�, where z = (x, y) ∈ T× R, is defined by

f :
�

x
� = x + y − k

2π sin(2πx) mod 1,

y
� = y − k

2π sin(2πx). (1)

It was proposed by Boris Chirikov as a paradigm for resonance phenomena in
conservative systems; it was also derived independently by Bryan Taylor as a model
for the motion of charged particles in a strong magnetic field. The standard map
is one of a class of maps called ‘area-preserving twist maps’; it also has a number
of symmetries, the most important of which is a time-reversal symmetry (see §6).

The map (1) has a single parameter, k, that represents the strength of the non-
linearity. A number of physical systems can be modeled by this map. One is
the cyclotron particle accelerator as described in my review article [1]; another is
the ‘kicked rotor’, described in [2], and third is the Frenkel–Kontorova model of
condensed matter physics studied extensively by Aubry [3].
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Figure 1. Starting up the application StdMap results in continuous iteration
of (1) for randomly selected initial conditions. The text window provides
information about the speed of your computer, which is used to select the
global variable N , the number of iterates per function call.

The application ‘StdMap’ (available from <http://amath.colorado.edu/
∼jdm/stdmap.html>) allows you to explore the dynamics of a dozen or so
reversible, area-preserving mappings – including the standard map – on a
MacintoshTM computer. It has an advantage over more general computer algebra
tools of being compiled and dedicated to this one task (you can iterate hundreds
of thousands of steps per second on any recent computer) and of being interactive.
In this tutorial, I will describe some of the experiments that can be performed with
StdMap and demonstrate some of the basic phenomena of conservative dynamical
systems.

2. Starting StdMap

StdMap is a Macintosh application and runs under Mac OS X 10.2 or
later. The most recent version is always available from <http://amath.
colorado.edu/∼jdm/stdmap.html>; this tutorial will refer to version 4.5. The file
on the web site is compressed; when you download it, it may automatically decom-
press, or you can double click on the ‘.zip’ file to create the executable applica-
tion [4].

Double-click on the application to launch it. After a slight delay, two windows will
open, as shown in figure 1; the left window contains a plot window and the right is
a text window. By default, the program will start iterating (1) for k = 0.971635406
with random initial conditions [5].

966 Pramana – J. Phys., Vol. 70, No. 6, June 2008



Visual explorations of dynamics

What you see on your screen, and in figure 1, are many orbits, each given a color
from a list of 19 colors. Each orbit consists of a randomly selected initial point
z0 = (x0, y0) and its next N iterates,

(xt, yt) = f(xt−1, yt−1) , 1 ≤ t ≤ N,

where N is selected by the program depending upon the speed of your computer
[6]. Some of the orbits behave ‘regularly’ filling out topological circles or families
of circles and some behave ‘irregularly’ or ‘chaotically’ filling out what seems to be
a region of nonzero area. We will discuss this more in §4.

The natural phase space of the standard map is the cylinder, T × R, with the
angle variable, x, having period-one, and the momentum, y, taking any real value.
To implement this, the ‘mod’ operation for x in (1) is defined in the program as

x mod 1 ≡ x− �x + 1/2�
so that x mod 1 ∈ [− 1

2 ,
1
2 ). However, the standard map is actually periodic in the

momentum direction as well, and the phase space can also be thought of as the
two-dimensional torus if we add a mod 1 operator to the y-equation; indeed, this is
the default setting for StdMap. The reason why this works is that the orbit starting
at (x0, y0) and the orbit starting at (ξ0, η0) = (x0 + m, y0 + n) for any (m,n) ∈ Z2

are related by

ξt = xt,

ηt = yt + n.

Thus the vertical separation by an integer stays constant, and ηt mod1 = yt. You
can turn off the periodic modulus for y by selecting the Change menu (see figure 2)
and from the Clipping submenu, switching to y unbounded.

3. Iterating step-by-step

Iteration of a specific initial condition in the standard map is easy: just click on
the point in the plot window to start there. If you would like to start with a clean
window, select Clear from the Edit menu or type -Y. Now click on a point near
the origin and notice that it almost instantaneously fills in a small ellipse about the
origin. This is because (0, 0) is a stable fixed point for this value of k (see §4) and
Moser’s famous twist theorem, part of KAM theory, implies that the iterates near
an elliptic fixed point will generically lie on invariant circles [1,7,8].

You can also show the number of iterates on an orbit by selecting Change→ Show
# of Iterates, and the position of the cursor in the window with Change→ Show
Position ( -U) (see figure 2). These settings will be remembered the next time
you start StdMap.

Now click on an initial condition near the unstable fixed point at (0.5, 0.0). This
trajectory is chaotic and fills a large region of phase space; what is most surprising,
though, is that this region is highly nonuniform, containing many holes. Numerical
evidence indicates that the invariant set that is densely covered by a chaotic orbit
is a fat fractal (that is a fractal with positive measure), though this has never been
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Figure 2. The Change and Find menus for StdMap. In this tutorial, we
denote a menu selection using the → symbol, thus Change → Show Axes in-
dicates that we are selecting the sixth item in the change menu. This item
is checked since the axes are currently shown. Selecting it will toggle the
display of the axes in the plot window. Your selections in this menu will be
remembered the next time you start StdMap.

Figure 3. Chaotic orbits appear to densely cover a fat fractal like this set
generated by iteration of a single initial condition for k = 1.0 (left pane) and
k = 2.0 (right pane).

proven [9,10]. How long do you have to iterate until the trace of the orbit settles
down and no new pixels are filled? If you have a monitor with many pixels, this
time can be very long indeed [11]. If we change the parameter value by selecting
Change → Map Parameters..., and typing the value 2.0 for k in the Parameter
Dialog window, the large chaotic region has the form shown in figure 3.
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Figure 4. Iterating the standard map one step at a time for k = 0.3.

Often iteration in StdMap is too quick to really see what is going on; there are
two ways to slow it down. One is to change the iteration mode in the Find menu.
In particular Find → Single Step (spacebar) stops the iteration and moves the
point forward (now drawn as a small square instead of a pixel) only when you hit the
spacebar, recall figure 2. Let us also change the parameter of the map to something
smaller so that there is less chaos, choose Change→ Map Parameters..., and type
the value 0.3 for k in the Parameter Dialog window. Note that the current value
of k is displayed at the bottom of the plot window. Now when you click on an
initial point, and repeatedly hit the spacebar to iterate step-by-step, you will see a
portrait like that shown in figure 4 [12].

Iterating one step at a time reinforces the fact that maps are dynamical sys-
tems with discrete time. Another key feature of the map (1) is that the horizontal
distance between successive iterations grows with the momentum value. Mathe-
matically this is an example of the twist condition,

τ =
∂x

�

∂y
�= 0. (2)

For the standard map, τ = 1, and so it twists to the right. Perhaps a better way
to visualize twist is to iterate a curve of initial conditions instead of a single point.
You can do this in StdMap by selecting Find → Curve... or typing -J, recall
figure 2. This will open the curve dialog, as shown in figure 5. There are five
types of curves that you can iterate, and you can select one by clicking in one of the
boxes. For this demonstration, click on the middle box, which selects the line type.
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Figure 5. You can iterate a curve by opening the curve dialog from the
Find menu and clicking on one of the five curve types. Click and drag in the
plot window to create the curve, then click on the Iterate button for each
step, and finally Stop to finish. The five curve types are: (1) small boxes, (2)
rectangles, (3) lines, (4) polygons and (5) piecewise linear curves. In the last
case each click forms a vertex; to make the last vertex, double-click. The left
pane shows 9 iterates of the vertical line x = −0.1 when k = 0.3.

Now click and drag a line in the plot window. A small dialog window will open
near the bottom of the plot when you release the mouse. This shows the number of
iterates that you have performed, either by clicking the Iterate button or hitting
the spacebar or the I key. If you start with a vertical line [13], as we did in figure
5, the first iterate will be the line y = x – the vertical line twists to the right and
becomes a graph over x. This is the geometrical meaning of (2). The second iterate
of this line becomes the curve

(x, y) =
�

2s− k

2π
sin(2πs), s− k

2π
sin(2πs)

�

which is still a graph over x for |k| < 2.0. When k = 0.3, the curve is no longer
a graph on the sixth iterate – it is triple-valued for some intervals of x, see figure
5. Nevertheless, this curve still has some aspects of twist: it tilts to the right. The
map f

n is a composition of twist maps, and is called a tilt map [14]. Tilt maps
have many of the properties of twist maps, and it has even been recently shown
that they have variational principles, so that KAM and Aubry–Mather theory can
be applied [15].
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4. The onset of chaos

The standard map is integrable when k = 0. Indeed for this value of k, the mo-
mentum is an invariant, and all the orbits lie on horizontal curves. More generally,
an area-preserving map is integrable [1,16] if there exists a non-constant function
I(x, y) such that

I ◦ f = I.

There are several other integrable maps that can be studied in StdMap; for example,
the McMillan map,

(x�, y�) =
�

x,−y − ax− b− 1
x

�
, (3)

is integrable whenever a = 1 or a = 0, for any b [17]. The second is an example of
a generalized standard map,

(x�, y�) = (x + y + F (x), y + F (x)), (4)

where the forcing function is

F (x) = − 2
π

arctan
�

a sin(2πx)
1 + a cos(2πx)

�
. (5)

This map and generalizations of it were proved to be integrable by Suris [18]. Note
that (5) limits on the standard map as a → 0, indeed when |a| < 1, F has a simple
Fourier series:

F (x) =
2
π

∞�

n=1

(−a)n

n
sin(2πnx)

whose first term is just the standard map with k = 4a. The invariant functions for
these maps are more complicated than that for the standard map; however, in each
case there exists an analytic invariant I(x, y). You can select either of these maps
and study their dynamics using the Mapping menu [19].

Now return to the standard map at k = 0. Since the phase space is periodic in x,
the orbits lie on topological circles, y = c; we call them rotational circles since they
encircle the cylinder, as opposed to the librational circles that lie near the origin for
k > 0, recall figure 1. What happens to the rotational circles as k increases? This is
the subject of KAM theory – the theory proposed by Kolmogorov and developed by
Arnold and Moser. A nice way to visualize this with StdMap is to start a trajectory
and increment the parameter slowly.

First set the parameter k to 0 by typing -k and entering 0 in the dialog. Now
click in the plot window to start an orbit (if you are still in single-step mode, type -
G to start continuous iteration). The up-arrow and down-arrow keys can be used to
increment k. The step size, ∆k, is set using Change → Parameter Increment...;
by default it is set to 0.05. Repeatedly hitting the up-arrow key will restart the
orbit at the new parameter value using the current point as the initial condition.
You should see a sequence of pictures like those overlaid in figure 6.
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Figure 6. Overlay showing the evolution of two orbits beginning at k = 0
as k is incremented. In the left pane, an initial circle y ≈ 0.02 evolves to the
chaotic trajectory near a period-4 saddle when k = 2.25. In the right pane, the
initial circle at y ≈ 0.3 evolves to chaotic orbit shown in the inset at k = 0.85.

In the left pane of figure 6, the initial orbit is selected with a small value of y;
when k = 0.1, it is deformed to a rotational invariant circle, but when k = 0.2, it
is trapped into the main resonance about the fixed point at (0, 0). This librational
invariant circle evolves slowly until k = 2.25, when the orbit is trapped in a chaotic
layer about a period-4 saddle. In the right pane, the orbit is started with a larger y

value, and it remains a rotational invariant circle until k = 0.85, when it is trapped
in a chaotic layer surrounding the main resonance. Note that the steps that you will
see in your experiment depend in detail on the initial condition, the step size, and
the current position (xt, yt) when k is incremented. Nevertheless, the phase space
of the standard map consists primarily of regular invariant circles (some rotational
and some librational) when k < 0.5 and primarily of chaotic orbits when k > 3.

It is also possible to increment k with the up-arrow key while you are in random
iteration mode, Find → Random Initial Conditions..., or using - -I, where
the symbol represents the shift key in the menus, recall figure 2.

Where does the chaos come from? A partial answer is: through bifurcations of
periodic orbits. An orbit {(xt, yt) : t ∈ Z} is periodic if there is a q ∈ N such
that (xq, yq) = (x0, y0); the least q for which this is true is the period of the orbit.
For dynamical systems on the cylinder it is convenient to partially classify periodic
orbits by their rotation number, ω = p/q, were p is the number of times the orbit
encircles the cylinder. This can be easily computed by omitting the mod 1 in (1),
so that x ∈ R; the resulting map is a lift of the standard map to R2. For the lift,
an orbit is (p, q)-periodic if (xq, yq) = (x0 + p, y0).

Periodic orbits can be computed in StdMap by specifying the pair (p, q) ∈ N2.
To do this select Find→ Periodic Orbit.... For example selecting (p, q) = (2, 5)
results in the output

(2, 5) at (−0.5, 0.262766939830826), (6)
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when k = 2.0. This particular period-5 orbit is a saddle [21]. We can determine this
by turning on the calculation of the residue from the Change menu. John Greene
introduced the residue as a convenient stability index for area-preserving maps in
1968 [22]. Let Df denote the Jacobian matrix of the map; for (1),

Df(x, y) =
�

1− k cos(2πx) 1
−k cos(2πx) 1

�
. (7)

The linearization of f about a period-n orbit {z0, z1, . . . , zn−1} is the matrix

M =
n−1�

t=0

Df(zt) = Df(zn−1)Df(zn−2) . . .Df(z1)Df(z0),

and the eigenvalues λ± of M are the multipliers that determine the linear stability
of the orbit. Since f is area-preserving, det Df = 1, so that det M = λ+λ− = 1.
Thus the eigenvalues of M are completely determined by its trace, tr M = λ+ +λ−.
Greene defined the residue as

R =
1
4
(2− tr M). (8)

Since the product of the two multipliers is 1, it is easy to see that orbits come in
four classes:

1. hyperbolic saddle when R < 0 with multipliers 0 < λ− < 1 < λ+;
2. elliptic when 0 < R < 1 with multipliers λ± = e±2πiω on the unit circle;
3. reflection-hyperbolic saddle when R > 1 with multipliers λ+ < −1 < λ− < 0;

and
4. parabolic when R = 0 or 1 with a pair of multipliers λ+ = λ− = ±1.

In particular (1) has two fixed points, the origin and (0.5, 0) ≡ (−0.5, 0). From
(7), the residue of a fixed point is simply R = k

4 cos(2πx), and so origin has residue

R(0,0) =
k

4
,

implying that it is elliptic when 0 < k < 4 and reflection-hyperbolic for k > 4.
This can easily be seen in StdMap by incrementing k (using the up-arrow and
down-arrow keys) and studying the orbits near the origin: when k reaches 4 the
origin undergoes a period-doubling bifurcation and becomes unstable. Indeed one
can show that there is an infinite sequence of such period doublings that branch
from this orbit; they accumulate in a universal way that was first discovered by
Feigenbaum for dissipative maps and by Greene and collaborators for the area-
preserving case [23].

By contrast, the residue of the second fixed point is

R(0.5,0) = −k

4
;

this is always negative for k > 0, so that this point is a saddle with positive
multipliers.
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Turning on the residue calculation for the (2, 5) orbit at k = 2.0 and finding the
orbit again, gives R = −11.88, confirming that this orbit is also a regular saddle.
Indeed, if you start iterating at this orbit, by selecting Find → Continuously
(which automatically fills in the initial condition of the last orbit) you will find that
the instability leads to numerical error: the iteration falls off the periodic orbit and
rapidly covers the chaotic fat fractal shown in figure 3. Another way to see this
is to find the (2, 5) saddle, Find → Periodic Orbit..., and then immediately
select Find → Single Step to start single-step iteration at the point (6). As you
iterate with the spacebar, you will see that the orbit visibly deviates from the
periodic orbit after about 40 steps. For the given residue, the unstable eigenvalue
of M is λ+ = 49.5, so that any error grows by a factor of λ

N/5
+ ≈ 4 × 1013 by

N = 40; thus given the inevitable truncation error of double-precision floating
point computations, it is not surprising that the orbit is lost.

There are better ways of investigating the properties of hyperbolic saddles, as we
describe next.

5. Stable manifolds

The stable and unstable sets, W
s and W

u, of an invariant set Λ are defined as

W
s
Λ ≡ {(x, y) : f

t(x, y) → Λ as t →∞},
W

u
Λ ≡ {(x, y) : f

t(x, y) → Λ as t → −∞}. (9)

If Λ is hyperbolic, then these sets are smooth submanifolds that are tangent to
the eigenspace of the linearization of the map at Λ [24,25]. For example, at the
hyperbolic fixed point (0.5, 0), the linearization (7) has eigenvectors

v± =
�

1
1− λ∓

�

with λ± = 1
2 (2+k±

�
k(k + 4)). When k > 0 the +-eigenvector corresponds to the

unstable direction, and since λ− < 1, it has a positive slope. The stable direction
has negative slope. The stable manifold theorem implies that W

u,s are smooth
curves that start at (0.5, 0) with slopes 1− λ∓.

To find these, StdMap uses an algorithm suggested by Hobson [26]. Selecting the
command Find→ Stable Manifold... ( -H) opens a dialog with three text fields
[27]. The first two, p and q, define the rotation number of the periodic orbit that
will be the invariant set Λ. The third field is a sign, s = ±1, that determines which
branch of the manifold to follow, i.e., one of the directions ±v for eigenvector v. The
default values (p, q) = (0, 1) and s = 1 will plot the upward-going unstable manifold
for the hyperbolic fixed point. After entering the three values, the program first
finds a point z

∗ on the (p, q) orbit and computes its eigenvectors, then it allocates
a large block of memory to store the computed points [28], and finally it selects an
initial point z0 = z

∗ + s�v+ where � is chosen so that the distance λ+�|v+| is about
one pixel. Clicking on the Iterate button or hitting spacebar iterates this point q

steps. The two points {z0, zq} form an approximation to a fundamental segment of
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W
u for the (p, q) orbit. If these points are more than one pixel apart the program

inserts a new point between them using linear interpolation.
Hitting spacebar again causes all of the points on the fundamental segment to

be iterated q more times, and more points to be interpolated as needed. The
result is a growing curve forming the unstable manifold. The color scheme follows
a convention suggested by Bob Easton: red – for unstable – represents the blood
moving away from the heart, and blue – for stable – represents the blood returning.
The fundamental segment is stored in the large array and iteration will stop if this
array fills up. Examples of unstable manifolds for k = 1.0 and 2.0 are shown in
figure 7. Though W

u begins life as a nearly straight line along v+, it rather quickly
develops intricate whorls and tangles, and to the approximation of the computer
screen appears to densely cover regions of phase space.

You will notice that stable manifolds (blue curves) are also computed by StdMap –
these are computed essentially for free using the reversing symmetry (see §6). What
is especially interesting is that the stable and unstable manifolds do not coincide,
and that when they intersect, they usually cross at a nonzero angle; indeed for
the (0, 1) orbit this was proven by [29,30]. Points that are on both the stable
and unstable manifolds of an invariant set Λ, were termed homoclinic points by
Poincaré, who discovered them. By the definition (9), homoclinic points are both
forward and backward asymptotic to Λ. The complexities of this picture were first
envisioned by Poincaré who famously said:

When one tries to depict the figure formed by these two curves and their
infinity of intersections, each of which corresponds to a doubly asymp-
totic solution, these intersections form a kind of net, web or infinitely
tight mesh; neither of the two curves can ever cross itself, but must
fold back on itself in a very complex way in order to cross the links of
the web infinitely many times. One is struck by the complexity of this
figure that I am not even attempting to draw [31].

You should immediately notice that there is a strong correlation between the
chaotic fat fractal and the set covered by the invariant manifolds: compare figure
7 with figure 3. Indeed, one reasonable hypothesis is that the closure of W

u
(0.5,0)

is identical to the connected chaotic, fat fractal containing the saddle fixed point.
The transverse intersection of stable and unstable manifolds gives rise to the fa-
mous horseshoe structure discovered by Stephen Smale in the 1960’s [32], and the
existence of a transverse homoclinic orbit is one of the key features of chaos. As
an exercise, you can also plot the stable and unstable manifolds for the Suris map
( -1) for the integrable case, b = 0, to see that its stable and unstable manifolds
coincide [33].

6. Reversing symmetries

All of the maps in StdMap are reversible: there is a diffeomorphism S that reverses
the map

f ◦ S = S ◦ f
−1

. (10)
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Figure 7. Stable and unstable manifolds for the standard map at k = 1.0
(left pane) and k = 2.0 (right pane). The left pane shows manifolds for the
orbits (1, 2), (2, 5), (3, 8), (1, 3), (2, 7), (0, 1), (−2, 7), (−1, 3), (−3, 8), (−2, 5),
(−1, 2). The right pane shows only the manifolds for (0, 1).

In this section we will explain why reversible maps are easier to study numerically
than their irreversible cousins.

Inversion of a map in StdMap is done using (10) rather than writing a separate
subroutine for f

−1. You can iterate backwards in StdMap by selecting Change →
Inverse Iteration. The inverse will not look very different unless you are doing
single steps, using Find → Single Step, - -G, or iterating curves using Find →
Curve..., -J.

For the generalized standard map (4) with an odd force F (−x) = −F (x), one
choice for a reversing symmetry S is

S1(x, y) = (−x, y + F (x)).

Indeed, it is easy to check that the inverse of (4) is

f
−1(x, y) = S1 ◦ f ◦ S1 = (x− y, y − F (x− y)).

Note that S1 ◦ S1 = id, so that S1 is an involution. A consequence is that

S2 = f ◦ S1(x, y) = (y − x, y)

is also a reversor for f , and is an involution as well. Moreover, these reversors are
orientation-reversing, since their Jacobians have a negative determinant. Thus the
generalized standard map has been factored into a composition of two orientation-
reversing involutions, f = S2 ◦ S1.

One of the significant implications of reversibility is that there are many sym-
metric periodic orbits, namely orbits invariant under S. It is not hard to see that
any symmetric orbit must have points on the fixed set Fix(S) ≡ {z : S(z) = z}.
For the reversors of the generalized standard map these are
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Fix(S1) = {(0, y)},
Fix(S2) = {(x, y) : x = y}. (11)

Maps can also have other symmetries that conjugate the map to itself, or commute
with the map:

S ◦ f = f ◦ S.

The collection of all reversors and symmetries of a map form a group, called the
reversing symmetry group [34]. For example, when the force is periodic, F (x+1) =
F (x), then (4) commutes with the integer rotation [35]:

R(x, y) = (x + 1, y).

It is easy to see that the composition of any symmetry with a reversor is itself a
reversor. Thus the maps

S3(x, y) ≡ S1 ◦R(x, y) = (−1− x, y + F (x)),
S4(x, y) ≡ S2 ◦R(x, y) = (y − x− 1, y),

are also reversors; they give another decomposition, f = S4 ◦ S3. The fixed sets of
these reversors are

Fix(S3) =
��

−1
2
, y

��
,

Fix(S4) = {(x, y) : y = 2x + 1},

since when the force is both periodic and odd, then F ( 1
2 ) = F (− 1

2 ) = 0.
The map f is itself a symmetry, since it commutes with itself. This implies

generally that the transformations f
n ◦S, where S is a reversor, are also reversors.

The set of reversors generated by {S1, R, f} form a family.
You can plot the fixed sets of this family in StdMap with the command Find

→ Symmetry Lines..., -L. This command will draw the four fixed sets Fix(Si),
and by clicking the Iterate button you can iterate and generate the fixed sets
Fix(f2k ◦ Si): the image of a fixed set is the fixed set of another member of the
family:

f(Fix(S)) = {z : f
−1(z) = S(f−1(z))} = Fix(f2 ◦ S) .

Inverse images of the symmetry lines can be found by selecting Change→ Inverse
Iteration. Several forward and backward iterates of the symmetry lines for (1)
are shown in figure 8.

The most interesting aspects of the resulting picture are the many intersections of
the symmetry sets. It is not hard to see that fixed sets of reversors in a given family
intersect at symmetric periodic orbits; for example, if z ∈ Fix(S) ∩ Fix(f2k ◦ S),
then

z = S(z) = f
2k(S(z)) = S(f2k(S(z))) = f

−2k(z),

so z has period 2k. Several orbits near such symmetric periodic orbits are shown
in figure 8.

Pramana – J. Phys., Vol. 70, No. 6, June 2008 977

jdm
½

jdm


jdm




J D Meiss

Figure 8. Four forward and four backward iterates of the symmetry lines
for (1) at k = 1.3 and several orbits near some elliptic, symmetric orbits.

The generalized standard map also has the inversion

I(x, y) = (−x,−y)

as a symmetry when F is odd. This symmetry can be used in StdMap to ‘mod’
the dynamics to the upper half-plane, by selecting Change → Clipping → y > 0;
in this case points with y < 0, are reflected to the positive half-plane using I. The
inversion symmetry gives rise to two additional reversors

S5(x, y) = S1 ◦ I(x, y) = (x,−y − F (x)),
S6(x, y) = S2 ◦ I(x, y) = (x− y,−y).

This ‘extra’ symmetry gives rise to some otherwise surprising bifurcations of the
librating periodic orbits [36] and it has also been profitably used in the study of
nontwist maps [37].

Finally, the generalized standard map also has a vertical rotation symmetry,
V (x, y) = (x, y + 1), in the sense that

f ◦ V = R ◦ V ◦ f . (12)

This symmetry can be exploited in StdMap to ‘mod’ orbits to the range − 1
2 ≤ y <

1
2

or in conjunction with the inversion I to 0 ≤ y <
1
2 . Both of these settings are

available on Change → Clipping.
Since the fixed sets of the orientation-reversing involutions are one-dimensional, it

is easier to search for symmetric periodic orbits than general orbits. StdMap exploits
this by using a one-dimensional secant method to find symmetric orbits when you
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Table 1. Symmetry lines containing (p, q), symmetric periodic orbits for a
reversible map with reversor S1 and discrete rotation symmetry R. Here
S2 = f ◦S1, S3 = S1◦R and S4 = S2◦R. The initial point z0 on the symmetry
line maps to the point zk on the second symmetry line after l rotations.

(p, q) z0 zk (l, k)

(odd, even) Fix(S1) Fix(S3) ( p+1
2 , q

2 )
Fix(S2) Fix(S4) ( p+1

2 , q
2 )

Fix(S3) Fix(S1) ( p−1
2 , q

2 )
Fix(S4) Fix(S2) ( p−1

2 , q
2 )

(even, odd) Fix(S1) Fix(S2) ( p
2 , q+1

2 )
Fix(S2) Fix(S1) ( p

2 , q−1
2 )

Fix(S3) Fix(S4) ( p
2 , q+1

2 )
Fix(S4) Fix(S3) ( p

2 , q−1
2 )

(odd, odd) Fix(S1) Fix(S4) ( p+1
2 , q+1

2 )
Fix(S2) Fix(S3) ( p+1

2 , q−1
2 )

Fix(S3) Fix(S2) ( p−1
2 , q+1

2 )
Fix(S4) Fix(S1) ( p−1

2 , q−1
2 )

select Find → Periodic Orbit.... To find an S-symmetric period-q orbit one
could look for fixed point of f

q that lies on Fix(S). However, it is a bit better to
halve the work, as follows. Suppose z is a (p, q), orbit, i.e., after q iterates, the orbit
rotates p times so f

q(z) = R
p(z). If, in addition z ∈ Fix(S) and q is even then

f
q/2(z) = f

q/2(S(z)) = S(f−q/2(z)) = S(R−p(fq/2(z)))

which implies that zk ∈ Fix(S ◦ R
−p), where k = q/2. Thus to search for such an

orbit we need to iterate only k times starting on Fix(S) and ending on Fix(S◦R−p).
When q is even p should be odd, since (p, q) should have no common factors.
Moreover, since S1 flips the sign of x, Fix(S1 ◦R

−p) = R
(p+1)/2Fix(S1 ◦R), that is,

the fixed set Fix(S3) is rotated (p + 1)/2 times. The full list of possible symmetric
orbits depending upon whether p and q are odd or even is given in table 1. For
each (p, q) there are two different symmetric orbits, and they each have points on
two of the symmetry sets.

When you select Find → Periodic Orbit..., the dialog box has a symmetry
pop-up menu where you can select the beginning symmetry line for the (p, q) orbit;
this menu has six entries. The last four entries allow you to select one of the four
fixed sets for the initial point of the orbit. A number of symmetric orbits are shown
in figure 9. As table 1 shows, one of the symmetric orbits always has a point on
Fix(S1); it can be shown that this orbit has positive residue when k > 0: Fix(S1)
is called the dominant symmetry line for the standard map [38]. All of the elliptic
islands for the rotational orbits line-up on this fixed set. The second orbit is always
hyperbolic, and either has a point on Fix(S1 ◦ R) = Fix(S3) when q is odd, or
Fix(f ◦ S1) = Fix(S2) when q is even.
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Figure 9. Symmetry lines and some symmetric orbits for the standard map
with k = 1.0.

The first two entries in the symmetry menu, Minimizing and Minimax refer to the
action-minimizing and minimax orbits of Aubry–Mather theory, see [1] for a review.
The minimizing orbit is always hyperbolic [39] and corresponds to the second orbit
above. The minimax orbit has positive residue and, when k is positive and small
enough, it is elliptic. It has a point on the dominant symmetry line.

7. The critical golden circle

The (0, 1) resonance surrounding the elliptic fixed point is enclosed by a con-
nected chaotic region generated by the unstable manifold of the (0, 1) saddle orbit.
Chirikov noticed that this chaotic region appears to be bounded when |k| � 1 and
unbounded for larger values of |k| [40]. One way to see this is to look for climbing
orbits, that is orbits that move from y = a to y = b for a < b. StdMap provides
a convenient way to do this experiment: select Find → Transit Time.... The
program then asks you to drag the mouse over a rectangle, Ri, in which the initial
conditions will be selected – for example, choose a rectangle near the fixed point
(0.5, 0). A dialog window will open that shows the boundaries of the rectangle that
you selected and also has a field labeled N , which will be the maximum length of
any attempted transiting orbits; by default, N = 105. Clicking on the OK button
will accept these values, and you will be asked to drag over a rectangle Rf defining
the final region. Choose a small rectangle near the point on the (1, 2) (minimizing)
saddle orbit [41]. After you accept the values for the final rectangle, StdMap will
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Figure 10. Histogram of transit times for orbits beginning near the (0, 1)
saddle and ending near the (1, 2) saddle for k = 1.5 (black) and k = 1.1 (red).

iterate randomly selected initial conditions in Ri until they happen to fall in Rf ,
or until the number of iterates reaches N .

When you click on the Stop button, StdMap will provide you with a binned list
of the transit times. While StdMap does not make a plot of this histogram (file a
bug report!) it is easy to copy the data from the text window (select it and type
-C). It can be imported into another program such as MapleTM or MatlabTM to

make the plot (see figure 10). The average transit time for k = 1.5 is ttrans = 501
steps, at k = 1.1 has grown to ttrans = 3.7× 104, and when k = 1.0 it has become
3.9× 106. In each case the transit-time distribution looks roughly exponential, but
experience shows that the long-time distribution will decay only algebraically with
time [1,42,43]. Since the average transit time grows rapidly as k decreases towards
one [44], this technique is not a good one to determine the critical parameter value,
kcr, at which ttrans first becomes ∞.

A much better way was discovered by John Greene [46–48]. This is to look for the
‘last’ rotational invariant circle that separates the rectangles Ri and Rf . Indeed,
Birkhoff showed that if there is no orbit that reaches Rf then there must indeed
be such an invariant circle [1], and Mather provided a variational construction of
climbing orbits [49].

Greene’s insight was to look at the stability properties of periodic orbits that
approximate an invariant circle. His hypothesis was that when these nearby orbits
were ‘stable’, the circle should exist, and when they were unstable, it should be de-
stroyed. A persistent invariant circle has an irrational rotation number ω and, as we
learn from KAM theory, ω should satisfy a diophantine condition [1]. Greene used
the rotation number to select a family of periodic orbits defined as the convergents
of the continued fraction expansion of ω. That is, suppose that

ω = a0 +
1

a1 + 1
a2+...

= [a0, a1, a2, . . .] ,

where ai ∈ N are the continued fraction elements. Then
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ωi =
pi

qi
= [a0, a1, . . . , ai]

is the ith convergent to ω. Greene computed the residues Ri of these (pi, qi) orbits,
and observed that when k < kcr(ω), Ri → 0, and the invariant circle exists. When
k > kcr(ω), Ri → ∞ and the circle is destroyed. At the critical parameter, Ri

remains bounded and the invariant circle exists but appears to be nonsmooth.
At the time, Greene’s observation seemed quite preposterous to mathemati-

cians familiar with the number theoretic delicacies of KAM theory. Nevertheless,
Greene’s criterion works extremely well and many aspects of his observations were
subsequently proven [50,51].

Greene provided strong numerical evidence that the last rotational invariant circle
for the standard map has ω = γ, where γ = 1+

√
5

2 is the golden mean. The
symmetries of (1), discussed in §6, imply that circles with rotation numbers ±ω+m

for any m ∈ Z are equivalent. This means, for example that the circles γ
−1 = γ−1

and γ
−2 = 2− γ are also destroyed at kcr(γ).

This golden mean is distinguished by its continued fraction expansion γ =
[1, 1, 1, 1, . . .]; it is, in the diophantine sense, the most irrational number. Per-
cival called numbers whose continued fractions have an infinite tail of 1’s, noble
numbers, and it appears that the noble invariant circles are locally the most robust
circles [52–54].

To find a sequence of convergent periodic orbits in StdMap, use the Find→ Farey
Path... command. The dialog window that opens will ask for a pair of numbers
(p0, q0) and (p1, q1) that will form the base of a Farey tree; these numbers must be
neighbors in the sense that

p1q0 − p0q1 = 1.

The default is to choose (0, 1) and (1, 1), which will allow you to construct any
number 0 < ω < 1. We start with the triplet {ωL, ωC, ωR} where ωL = p0/q0 is the
lower neighbor, ωR = p1/q1 is the upper neighbor and

ωC = ωL ⊕ ωR ≡
p0 + p1

q0 + q1
,

where ⊕ is the Farey sum operation.
The Farey path of a number ω ∈ (ωL, ωR) is the unique sequence of left and right

turns that lead to ω using the recursive algorithm:

1. If ω = ωC stop.
2. If ω ∈ (ωL, ωC) then the step is L, the next rotation number is ω

�
C = ωL⊕ωC,

and the triplet becomes {ωL, ω
�
C, ωC}.

3. If ω ∈ (ωC, ωR) then the step is R, ω
�
C = ωC ⊕ ωR, and the triplet is

{ωC, ω
�
C, ωR}.

4. Repeat.

In each case the outer pair of the triplet are Farey neighbors. The path truncates
if and only if ω is rational. It is not hard to see that noble irrationals have a Farey
path that eventually oscillates . . . LRLRLRLR . . ..

Typing a sequence of L’s and R’s (or l’s and r’s or 0’s and 1’s) in the text box for
the Path, instructs StdMap to find each of the orbits with rotation numbers on that
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Table 2. Residues of the convergents of the minimax periodic orbits, with
x0 = 0 on the Farey path for the rotation number γ−2 for three values of k,
including kcr = 0.97163540631.

(p, q) y0(k = kcr) R(k = 0.971) R(kcr) R(k = 0.972)

(0, 1) 0.0 0.2425 0.24290885 0.243
(1, 1) 1.0 0.2425 0.24290885 0.243
(1, 2) 0.5 0.235225 0.23601884 0.236196
(1, 3) 0.370744011711781 0.25936027 0.26068032 0.26097522
(2, 5) 0.415872871308091 0.23996369 0.24201467 0.24247383
(3, 8) 0.401519832446222 0.25204405 0.25552012 0.25630081
(5, 13) 0.406236169619200 0.24114743 0.24660815 0.24784114
(8, 21) 0.404701675915617 0.24328205 0.25229896 0.25435250
(13, 34) 0.405202192064269 0.23440617 0.24872040 0.25202636
(21, 55) 0.405038969799706 0.22786224 0.25093749 0.25638918
(34, 89) 0.405092179098598 0.21330551 0.24956827 0.25845593
(55, 144) 0.405074826384691 0.19394915 0.25040872 0.26508896
(89, 233) 0.405080483747179 0.16490212 0.24989322 0.27418217
(144, 377) 0.405078638932727 0.12726102 0.25020866 0.29100469
(233, 610) 0.405079240426684 0.08331189 0.25001571 0.31974102
(377, 987) 0.405079044294881 0.04197067 0.25013371 0.37342358
(610, 1597) 0.405079108244936 0.01380301 0.25006166 0.48046976
(987, 2584) 0.405079087392894 0.00228248 0.25010655 0.72560041
(1597, 4181) 0.405079094191927 1.24150225E-4 0.25007802 1.42403113
(2584, 6765) 0.405079091975001 5.08240191E-7 0.25007892 4.31242653
(4181, 10946) 0.405079092697857 6.96835923E-6 0.25014343 26.8778283
(6765, 17711) 0.405086090209096 5.35564322E-6 0.24978752 553.873723
(10946, 28657) 0.405086089756233 -4.87898942E-5 0.24703952 1.12588415E+5

path. If you turn on the computation of the residue, Change → Compute Residue,
then the Residue is calculated as well. The default settings, ωL = 0

1 , ωR = 1
1 and

the path of alternating LR’s gives a sequence that converges to ω = γ
−2; the results

are shown in table 2. Here we have computed the minimax periodic orbits that sit
on the line Fix(S1), recall (11).

The values of yi for kcr appear to converge to 0.40507909 as i → ∞. This
convergence is geometrical and can be understood by a renormalization argument
[50]. The residues for k = 0.971 do appear to converge to 0, though the last value
is not believable; careful computations show that the minimax orbits always have
positive residues. Similarly, the residues for k = 0.972 grow, and those for k = kcr

appear to be bounded, and moreover to converge to 0.25009 [50]: the last couple
of values in table 2 again have numerical convergence problems.

When k > kcr the invariant circle no longer exists, but the beautiful theory of
Aubry and Mather [3,55] implies that there still is an invariant set with the same
rotation number; this set is a Cantor set, and Percival called it a cantorus. Cantori
can be seen in StdMap using the Farey path command as above and setting k > kcr.
Several examples are shown for the rotation number γ

−2 in figure 11. The gaps in
the Cantor set appear to be generated by images of a single gap. The largest gap
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Figure 11. Golden mean invariant circle and approximations to the Cantori
for the standard map at k = kcr, 0.974, 0.977, 0.980, 0.985, 0.990, 1.0 and
1.05. The Cantori have been shifted vertically to avoid overlap.

is centered on the dominant symmetry line, x = 0, where all the elliptic orbits line
up. This perhaps visualizes in the most precise way Chirikov’s concept of resonance
overlap [40]: the islands due to the different periodic orbits that approximate the
irrational rotation number squeeze the invariant circle most strongly where they
line up.

It is also easy to find Cantori for other rotation numbers by changing the path
in the Farey sequence. Since noble numbers are most robust, the Cantori with the
smallest gaps will be found by selecting paths that have a short head sequence,
followed by an alternating LR-tail.

When an invariant circle is destroyed, the resulting Cantorus has a nonzero flux
of crossing orbits. This flux can be computed by taking the difference between the
action of the minimax and minimizing orbits that approximate the invariant Cantor
set (see [1] for a discussion). The action of orbits can be computed in StdMap by
selecting Change → Compute Residue & Action.

8. Exploring other maps

StdMap has thirteen reversible, area-preserving maps in the Mapping menu. If your
favorite system is not included, do let me know and I will consider adding it [56].
Several representative phase portraits are shown in figure 12. The last two dynam-
ical systems in the Mapping menu are actually Poincaré sections of Hamiltonian
flows. For example, the two-wave Hamiltonian is

H(x, y, t) =
1
2
y
2 − 1

2π2
[a cos(2πx) + b cos(2π(kx− t))] ,

where k ∈ Z. This system has one and a half degrees of freedom, and as such is
most properly described in a three-dimensional phase space (x, y, t) ∈ T × R × T.
The Poincaré map (x, y) → (x�, y�) is the time-one map constructed by integrating
the equations of motion for an initial condition (x(0), y(0), 0) to t = 1, and plotting
the resulting values (x(1), y(1)). In StdMap, this integration is done with a sym-
plectic splitting method that is second-order accurate with a time step of 0.1. It
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Figure 12. Four representative phase portraits generated by StdMap. Which
of the thirteen systems do they represent?

gives results that are qualitatively good, but should not be trusted for quantitative
accuracy. I used it to generate the figures in §9.16 of [25].

9. For help

StdMap has many other features that are not documented in this tutorial. In many
cases the menu items should be self-explanatory; if not there are two help facilities.
One is the Help menu which gives access to several files that briefly describe the
features. A second is the Help Tip that pops-up if you let the mouse hover over a
menu or button in the program. In some cases these tips have extended help that
can be accessed by pressing the key.

More discussion of the mathematics behind the standard map can be found in
[1,48,57–59].
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