
APPM 2460

VECTORS & MATRICES II

1. Introduction

This week we’re going to spend more time working on our ability to slice matrices (to “slice” a matrix or
array means to grab certain portions of the matrix via indexing). In particular, we’ll focus on performing
row exchanges, and on maniuplating and plotting columns of a matrix.

2. Permuting Rows of a Matrix

We’re going to first work on the example of permuting the rows of a matrix. “Permute” is a fancy
word for “rearrange.” We’ll first work on the special case of swapping two rows. Eventually, we’ll learn
how to perform arbitrary permutations (i.e. make a whole bunch of row swaps at once.)

We’ll need some matrices to play with. Let’s use the command magic(4) to build a 4 × 4 matrix:

>> A = magic(4)

A =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

To figure out what a “magic” matrix is, we can use help magic:

>> help magic

magic Magic square.

magic(N) is an N-by-N matrix constructed from the integers

1 through N^2 with equal row, column, and diagonal sums.

Produces valid magic squares for all N > 0 except N = 2.

In our case, it’s just some matrix we’re going to play around with.

2.1. A clunky way. Now, suppose we wanted to interchange the first and third rows of A. There are a
few ways we could do this. An effective but somewhat clunky way is shown in the script below.

A = magic(4);

% make a temporary variable that holds the first row

temp_row = A(1,:);

% replace first row with third row

A(1,:) = A(3,:);

% and put variable holding first row back into the third row

A(3,:) = temp_row;

After running this code, try displaying the matrix A. You will see that we have, in fact, successfully
swapped these two rows. However, this method is slow, because we need to store our first row so that it
doesn’t get lost when we overwrite. It’s also hard to read and make sense of. Overall, not very elegant
coding.

1



2 APPM 2460 VECTORS & MATRICES II

2.2. A more elegant way. Recall that if we have a vector vect, then we can use indexing to reorder
its elements in place, as follows:

>> vect = (1:10).^2

vect =

1 4 9 16 25 36 49 64 81 100

>> vect = vect([3 2 1 4 5 6 7 8 9 10])

vect =

9 4 1 16 25 36 49 64 81 100

I simply input the indices of vect, in order, but with 1 and 3 interchanged. That let Matlab know which
elements I wanted to put in each position. I then set vect to be the permuted version of itself. In this
way, the original vect is replaced by the permuted vect.

We can perform arbitrary permutations in this way. If I wanted to reorder vect so that we saw the
elements in the order (10, 9, 2, 5, 3, 4, 6, 7, 1, 4, 8), I could enter

>> vect = (1:10).^2

vect =

1 4 9 16 25 36 49 64 81 100

>> vect = vect([10 9 2 5 3 4 6 7 1 4 8])

vect =

100 81 4 25 9 16 36 49 1 16 64

Now, let’s extend this to matrices. We can work much the same way we did with vectors, except we’ll
have to be careful about whether we’re indexing the rows or columns. So, for example, we could do:

>> A = magic(4)

A =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

>> A = A([3 1 2 4],:)

A =

9 7 6 12

16 2 3 13

5 11 10 8

4 14 15 1

This efficiently and elegantly (one line!) swaps rows 1 and 3 of the matrix A. We could exchange columns
using the command A = A(:,[3 1 2 4]).



APPM 2460 VECTORS & MATRICES II 3

3. More advanced permutations

The method above is nice, but we wouldn’t want to enter the indices individually for long vectors (i.e.,
if I have 100 elements, I wouldn’t want to enter vect([1 3 2 4 5 6 ...]) because I’d have to type out
all that crap. To make this more efficient, we can use the end command. For example, we can reform the
earlier code that swaps the first and third element of a vector as follows:

>> vect = (1:10).^2

vect =

1 4 9 16 25 36 49 64 81 100

>> vect = vect([3 2 1 4:end])

vect =

9 4 1 16 25 36 49 64 81 100

We can read the last portion of this indexing as “4 through end.” This would work well regardless of how
large the vector vect is.

Now suppose we wanted had a large matrix:

>> A = magic(12)

A =

144 2 3 141 140 6 7 137 136 10 11 133

13 131 130 16 17 127 126 20 21 123 122 24

25 119 118 28 29 115 114 32 33 111 110 36

108 38 39 105 104 42 43 101 100 46 47 97

96 50 51 93 92 54 55 89 88 58 59 85

61 83 82 64 65 79 78 68 69 75 74 72

73 71 70 76 77 67 66 80 81 63 62 84

60 86 87 57 56 90 91 53 52 94 95 49

48 98 99 45 44 102 103 41 40 106 107 37

109 35 34 112 113 31 30 116 117 27 26 120

121 23 22 124 125 19 18 128 129 15 14 132

12 134 135 9 8 138 139 5 4 142 143 1

and we wanted to put the first 4 rows the matrix on the end. We know that we can do this via the
command A = A([5 6 7 8 9 10 11 12 1 2 3 4],:), but we’d like to be a bit slicker. The following
code performs the same permutation but is much easier to read:



4 APPM 2460 VECTORS & MATRICES II

>> A([5:end 1:4], :)

ans =

96 50 51 93 92 54 55 89 88 58 59 85

61 83 82 64 65 79 78 68 69 75 74 72

73 71 70 76 77 67 66 80 81 63 62 84

60 86 87 57 56 90 91 53 52 94 95 49

48 98 99 45 44 102 103 41 40 106 107 37

109 35 34 112 113 31 30 116 117 27 26 120

121 23 22 124 125 19 18 128 129 15 14 132

12 134 135 9 8 138 139 5 4 142 143 1

144 2 3 141 140 6 7 137 136 10 11 133

13 131 130 16 17 127 126 20 21 123 122 24

25 119 118 28 29 115 114 32 33 111 110 36

108 38 39 105 104 42 43 101 100 46 47 97

You can easily and quickly make permutations if you make effective use of the end command.

4. Homework

Perform the following steps in a script (no custom functions are necessary for this assignment):

• Form a 5 × 5 identity matrix using the command eye(5).
• Swap the first and fourth rows of the matrix. Call the result P.
• Form a 5 × 5 magic matrix using magic(5). Call it A.
• Left multiply A by P (that is, form the product P*A). What is the effect on A of this multiplication?

Compare to the original matrix A.
• Right multiply A by P (that is, form the product A*P). What is the effect on A of this multiplication?

Compare to the original matrix A.


