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Abstract: There are two main opposing schools of statistical reasoning, frequentist and Bayesian approaches. 
Until recent days, the frequentist or classical approach has dominated the scientific research, but Bayesianism 
has reappeared with a strong impulse that is starting to change the situation. Recently the controversy about the 
primacy of one of the two approaches seems to be unfinished at a philosophical level, but scientific practices are 
giving an increasingly important position to the Bayesian approach. This paper eludes philosophical debate to 
focus on the pragmatic point of view of scientists’ day-to-day practices, in which Bayesian methodology is very 
useful. Several facts and operational values are described as the core-set for understanding the change. 
Keywords: Bayesian, frequentist, statistics, causality, uncertainty. 

1. Introduction. From dice to propensities. 
When I was developing my PhD research trying to design a comprehensive model to 

understand scientific controversies and their closures, I was fascinated by statistical problems 
present in them. The perfect realm of numbers was not able to help to establish clearly causal 
relationships, nor to agree with one unified statistical conception. Two main schools, 
Bayesian and frequentist, were fighting each other to demonstrate their own superiority and 
their own truthful approach. It is an interesting dilemma to analyze. Although I decided then 
to focus on more general epistemic questions I was convinced about the necessity to return to 
the problem in the future with a thorough study.  

Causality has been one of the main topics of the history of philosophical and scientific 
thought, perhaps the main one: Where do we come from? What is the cause of all things? 
What will happen? Cosmogonical answers where the first attempt to explain in a causal way 
the existence of things and beings. The Greek creation myth involved a game of dice between 
Zeus, Poseidon, and Hades. Later, and beyond myths, Aristotle was the strongest defender of 
the causal and empirical approach to reality (Physics, II, 4-6) although he considered the 
possibility of chance, especially the problem of the dice game (On Heavens, II, 292a30) and 
probabilities implied in it. But this had nothing to do with the ideas about atomistic chance of 
Leucippus and Democritus nor Lucrecius’ controversial clinamen’s theory. Hald (1988) 
affirms the existence of probabilistic thought, not mathematical, in Classical Antiquity. We 
can also find traces of it in medieval Talmudic and Rabbinical texts, and we know that in 960, 
the bishop Wibolf of Cambrai calculated 56 diverse ways of playing with 3 dice. De Vetula, a 
Latin poem from XIIIth century, tells us of 216 possibilities. The funny origins of statistical 
thought: religious man reasoning about games. 

                                                            
* This paper is the result of the communication that I presented on XIIth International Congress of Logic, 
Methodology and Philosophy of Science, held in Oviedo, 12th August 2003. 
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In 1494 Luca Paccioli defined the basic principles of algebra and multiplication 
tables up to 60×60 in his book Summa de arithmetica, geometria, proportioni e 
proportionalita. He posed the first serious statistical problem of two men playing a 
game called ‘balla’, which is to end when one of them has won six rounds. However, 
when they stop playing A has only won five rounds and B three. How should they 
divide the wager? It would be another 200 years before this problem was solved.  

In 1545 Girolamo Cardano wrote the books Ars magna (the great art) and Liber 
de ludo aleae (book on games of chance). This was the first attempt to use mathematics 
to describe statistics and probability, and accurately described the probabilities of 
throwing various numbers with dice. Galileo expanded on this by calculating 
probabilities using two dice. 

Blaise Pascal (1660) refined the theories of statistics and, with Pierre de Fermat, 
solved the ‘balla’ problem of Paccioli. These all paved the way for modern statistics, 
which essentially began with the use of actuarial tables to determine insurance for 
merchant ships. In 1662, Antoine Arnauld and Pierre Nicole, publish the influential La 
logique ou l’art de penser, where we can find statistical probabilities. Games and their 
statistical roots worried people like Cardano, Pascal, Fermat or Huygens (Weatherdord, 
1982), although all of them were immersed in a strict mechanistic paradigm. Huygens is 
considered the first scientist interested in scientific probability, and in 1657 he 
published De ratiotiniis in aleae ludo. Later, De Moivre wrote the influential De 
mensura sortis (1711), and seventy eight years later, Laplace published his 
Philosophical Assay About Probability. In the 1730s, Daniel Bernoulli Jacob’s nephew) 
developed the idea of utility as the mathematical combination of the quantity and 
perception of risk. 

In 1763 an influential paper written by Reverend Thomas Bayes was published 
posthumously. Richard Price, who was a friend of his, worked on the results of his 
efforts to find the solution to the problem of computing a distribution for the parameter 
of a binomial distribution: An Essay towards solving a Problem in the Doctrine of 
Chances. Proposition 9 in the essay represented the main result of Bayes. Degrees of 
belief are therein considered as a basis for statistical practice. This classical version of 
Bayesianism had a long history beginning with Bayes and continuing through Laplace 
to Jeffreys, Keynes and Carnap in the twentieth century. Later, in the 1930’s, a new type 
of Bayesianism appeared, the ‘subjective Bayesianism’ of Ramsey and De Finetti1. 

At the end of XIXth century, a lot of things were changing in the scientific and 
philosophical arena. The end of the idea of ‘causality’ and the conflicts about 
observation lied at the heart of the debate. Gödel attacked Hilbert’s axiomatic approach 
to mathematics and Bertrand Russell, as clever as ever, told us: “The law of causality 
(...) is a relic of a bygone age, surviving, like the monarchy, only because it is 
erroneously supposed to do no harm (...) The principle ‘same cause, same effect’, which 
philosophers imagine to be vital to science, is therefore utterly otiose”2.  

In the 1920’s arose from the works of Fischer (1922), Neyman and Pearson (1928) 
the classic statistical paradigm: frequentism. They use the relative frequency concept, 
that is, you must perform one experiment lots of times and measure the proportion 
where you get a positive result. This proportion,, if you perform the experiment enough 
times, is the probability. If Neyman and Pearson wrote their first joint paper and 
presented their approach as one among alternatives, Fisher, with his null hypothesis 

                                                 
1 Ramsey (1931), de Finetti (1937) and Savage (1954). 
2 In 1913. Quoted from Suppes (1970): 5. 



testing3 gave a different message: his statistics was the formal solution of the problem 
of inductive inference (Gigerenzer, 1990: 228).  

Philosophers of science like Karl R. Popper were talking about A World of 
Propensities. Nancy Cartwright defends today a probabilistic theory of causation4. We 
live in a world with plenty of uncertainty and risk, because we think that this is the true 
nature of things. Heisenberg’s indetermination principle and the society of risk are 
different ways by which we understand reality and, at the same time, react to it. 
Statistics is at the root of our thoughts. But are our thoughts by nature frequentist or 
Bayesian? Which of the two schools is the better one for scientific practice? This article 
tries not to address this to philosophers of science but to scientists from diverse 
scientific fields, from High Energy Physics to Medicine. Beyond philosophers’ words, 
scientific activity makes its own rules. Normative philosophy of science should turn into 
a prescriptive discipline, in addition to a clarifying and descriptive activity. 

 These are some of the philosophical and historical5 aspects of causality but, what 
about statistical theory and, most importantly, its practice? 

 
2. What does ‘Bayesian’ or ‘Frequentist’ mean? 
I have omitted in the previous chapter any reference to Bayesian or frequentist 

approaches. General theory of causality is not necessarily proper to statistical practice, 
although we must recognize the existence of theories about statistical practice. In fact, 
two of them are the leading ways to understand several uses of statistics: Bayesian and 
frequentist approaches. 
  

2.1. Bayesian approach. This perspective on probabilities, says that a 
probability is a measure of a person’s degree of belief in an event, given the information 
available. Thus, probabilities refer to a state of knowledge held by an individual, rather 
than to the properties of a sequence of events. The use of subjective probability in 
calculations of the expected value of actions is called subjective expected utility. There 
has been a renewal of interest for Bayesianism since 1954, when L.J. Savage wrote 
Foundations of Statistics. There are a large number of types of Bayesians6, depending 
on their attitude towards subjectivity in postulating priors. Recent Bayesian books: 
Earman (1992), Howson & Urbach (1989), Bernardo & Smith (1996). 
 

2.2. Frequentist approach. They understand probability as a long-run 
frequency of a ‘repeatable’ event and developed a notion of confidence intervals. 
Probability would be a measurable frequency of events determined from repeated 
experiments. Reichenbach, Giere or Mayo have defended that approach from a 

                                                 
3 Nevertheless, this is a controversial concept. See Anderson et al (2000). Note that the authors try to find 
alternatives to null hypothesis testing inside frequentist approach, considering Bayesian methods 
“computationally difficult and there may continue to be objections of a fundamental nature to the use of 
Bayesian methods in strength-of-evidence- assessments and conclusion-oriented, empirical science”, p. 
921. 
4 Cartwright, N. (1979) ‘Causal Laws and Effective Strategies’, Noûs, 13: 419-437. 
5 For a good and curious history of statistics see Stigler, Stephen M. (1999)   Statistics on the Table: The 
History of Statistical Concepts and Methods, USA: Harvard University Press (and his previous works);  
Salsburg, David (2001)   The lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth 
Century, San Francisco: W.H. Freeman and Company; and, finally, two good histories: Hald, A. (1990). 
A History of Probability and Statistics and Their Applications before 1750, NY: Wiley; Hald, A. (1998). 
A History of Mathematical Statistics from 1750 to 1930, NY: Wiley. 
6 Ironically, Good, I., J., (1971) told about “46656 kinds of Bayesians”, Amer. Statist., 25: 62-63. 



philosophical point of view, referred to by Mayo (1997) as the ‘error statistical view” 
(as opposed to the Bayesian or “evidential-relation view”). 
 

3. Scientific Activities and the Conductist Approach. 
One of the recurrent arguments against/in favor of one of the two positions 

(frequentist or Bayesian) consists in saying that a true scientist is always/never 
frequentist/Bayesian (you can choose between the two possibilities)7. It seems to be an 
epistemological law about statistical practices: “A true scientist never belongs to the 
opposite statistical school”. What I can say is that this is a usual metatheoretical thought 
about frequentist/Bayesian approaches and their ontological fitting with reality, which is 
not useful for clarifying the closure of scientific controversies, because they depend on 
another kind of values. We cannot know what happens exactly in scientists’ minds, but 
we can know how they act and, therefore, infer from their actions how they think. 
Obviously, we suppose and accept cognitive activity for scientists. The question is: at 
what cost can we introduce cognitive arguments inside the statistical techniques 
embedded in scientific practices? And when we talk about ‘cognition’ me must include 
not only rational aspects of cognition, but also irrational ones8. 
 As an initial and simple exercise I tried to search on the Internet for quantitative 
information about both schools. I typed ‘Bayesian’ or ‘frequentist’ on several websites’ 
search engines and found these results: on Google, appeared 869.000 results for 
‘Bayesian’ and 18.300 for ‘frequentist’; on Nature’s  journal 109 and 2 results, 
respectively; 82 and 6 on Science; finally, on Medline 3877 and 124. 

What does it mean? Is the Bayesian approach the best one? Is it widely used 
inside hypercommunities but not in the ‘common’ world? There is a fact: everyday, 
more and more researchers are using Bayesian methodologies to do their research. 
Meanwhile, the dominating position of frequentism is weaker and weaker, although still 
dominating. 

But we must go to the core set of the question: what are the new values, beyond 
scientific values from Merton9, implied in the choice between the two schools? 

 
3.1. Formational values: we will use the words of Bland & Altman (1998): 

1160, to illustrate these kinds of values: “Most statisticians have become Bayesians or 
                                                 
7 As an example, see the complete ideas of Giere, Ronald (1988) Understanding Scientific Reasoning, 
USA: The University of Chicago, p.189 “Are Scientists Bayesian Agents? (…) The overwhelming 
conclusion is that humans are not bayesian agents”, and of B. Efron (1986), “Why isn’t everyone a 
Bayesian?” American Statistician. 40: 1-5 or R.D. Cousins (1995), “Why isn’t every physicist a 
Bayesian?” Am. J. Phys. 63: 398. The last two do not need to be quoted. 
8 Paul Thagard (1992) made special software, Explanatory Coherence By Harmony Optimization (ECHO) 
to analyze scientific knowledge as a set of hypotheses and the relationships established among them: 

System Coherence = S pij * ai * ajSystem Coherence = S pij * ai * aj

 
‘p’ refers to weight, ‘a’ to acceptation and ‘i/j’ are the acquired values by the values of a system. 
Scientists are exposed to hot cognitive variables (such as emotional or motivational variables). Motivation 
affects the explanatory coherence of scientists. Freedman (1992):332, admits that social processes must 
be included in the computational models. There is a ‘social principle’ in the ECHO model: some evidence 
E, produced by a rival in a specific theoretical field appears to have a reduced evidential value. Cognition 
appeals to something more than mental representations of classic rational values, and must consider the 
existence of an ‘emotional coherence’ (as the expanded model HOTCO, for ‘hot coherence’, Thagard, 
2000: 173). See also Thagard (1988, 1999). 
9 The “values” of academic science, as Robert K. Merton wrote in 1942 are: communalism, universality, 
disinterestedness, originality and skepticism. Merton, R. K. (1942) “The normative structure of science”, 
in The Sociology of Science, N.W. Storer (ed.): 267-278.  



Frequentists as a result of their choice of university10. They did not know that Bayesians 
and Frequentists existed until it was too late and the choice had been made. There have 
been subsequent conversions. Some who were taught the Bayesian way discovered that 
when they had huge quantities of medical data to analyze the frequentist approach was 
much quicker and more practical, although they remain Bayesian at heart. Some 
Frequentists have had Damascus road conversions11 to the Bayesian view. Many 
practicing statisticians, however, are fairly ignorant of the methods used by the rival 
camp and too busy to have time to find out”. As the epidemiologist Berger says (2003): 
“practicing epidemiologists are given little guidance in choosing between these 
approaches apart from the ideological adherence of mentors, colleagues and editors”. 
Giles (2002), talking about members of the Intergovernmental Panel on Climatic 
Change (IPCC), says that those researchers were suspicious of Bayesian statistics 
because “these attitudes also stem from the authors’ backgrounds”, p. 477. 
 So, the arguments go beyond the ethereal philosophical arena and closer to 
practical ones. Better opportunities to find a good job is an important argument, and the 
value of a Bayesian academic training is now accepted: “where once graduate students 
doing Bayesian dissertations were advised to try not to look too Bayesian when they 
went on the job market, now great numbers of graduate students try to include some 
Bayesian flavor in their dissertations to increase their marketability”, Wilson (2003): 
372. 
 
 3.2. Metaphysical values: by their writings, we can extract some information 
about scientist’s thoughts. Knowledge is framed by feelings, emotions, facts and, even, 
faiths. How to consider, then, classical and continuous disputes among the full range of 
possible positions between realists and subjectivists?  
 All scientists believe for different reasons, that the constituents of the world have 
certain dispositions that can be discovered under certain investigative conditions. As 
expressed by Hacking (1972): 133: “Euler at once retorted that this advice is 
metaphysical, not mathematical. Quite so! The choice of primitive concepts for 
inference is a matter of ‘metaphysics’. The orthodox statistician has made one 
metaphysical choice and the Bayesian another”. 
 
 3.3. Philosophical values (from the scientists’ point of view): to be honest, we 
must accept that most scientists are not interested in the philosophy of scientific results. 
But when it an extraordinary fact happens, like a controversy or a paradigm change, 
they accept it and turn to philosophical ideas (if they have been clearly formulated). 
Sternberg (2001), writing about the controversies about how to evaluate a diagnostic 
test, says: “Bayesian methods (…) are all scientifically sound approaches for the 
evaluation of diagnostic tests in the absence of a perfect gold standard12, whereas any 

                                                 
10 The same idea is repeated in a different way by a High Energy physicist, D’Agostini (1998:1): “The 
intuitive reasoning of physicists in conditions of uncertainty is closer to the Bayesian approach than to the 
frequentist ideas taught at university and which are considered the reference framework for handling 
statistical problems”. One thing is the theory taught at university, and another one is the true scientific 
practice. 
11 See the curious arguments from a former frequentist: Harrell, Frank E. Jr (2000)   Practical Bayesian 
data Analysis from a Former Frequentist, downloadable PDF document at 
http://hesweb1.ed.virginia.edu/biostat/teaching/bayes.short.course.pdf.  
12 Black & Craig (2002): 2653 define ‘gold standard’ as: “a diagnostic test with 100 per cent sensitivity 
and specificity”. They admit that, frequently, this occurs because of the prohibitive cost or non-existence 
of a gold standard test. In this situation, rather than using a single imperfect test, multiple imperfect tests 
may be used to gain an improved prevalence estimate. In general, the results of these tests are correlated, 



version of discrepant analysis is not”, p. 826. Following the same way of reasoning, the 
National Academy of Sciences (1993) admitted: “Full Bayesian analyses are often 
complicated and time-consuming. Moreover, because the data necessary to estimate the 
component prior probabilities and likelihood ratios may be unavailable, quantitative 
expression of the assessor’s uncertainty is often highly subjective, even if based on 
expert opinion (…) despite the committee’s attempts at objectivity, the interpretation of 
scientific evidence always retains at least some subjective elements. Use of such 
‘objective’ standards as P values, confidence intervals, and relative risks may convey a 
false sense that such judgments are entirely objective. However judgments about 
potential sources of bias, although based on sound scientific principles, cannot usually 
be quantified. This is true even for the scientific ‘gold standard’ in evaluating causal 
relationships: the randomized clinical trial” pp.25, 31. In that case, in spite of all that 
was said, the NAS adopted the Bayesian approach for their analysis. Lilford & 
Braunholtz (1996:604) also argue: “when the situation is less clear cut (…) 
conventional statistics may drive decision makers into a corner and produce sudden, 
large changes in prescribing. The problem does not lie with any of the individual 
decision makers, but with the very philosophical basis of scientific inference. We 
propose that conventional statistics should not be used in such cases and that the 
Bayesian approach is both epistemologically and practically superior”. And 
Spiegelhalter (1999): “There are strong philosophical reasons for using a Bayesian 
approach”. 
 
 3.4. Simplicity13 and cheapness: computerizing statistical thought. One of 
the arguments against Bayesian methods says that the Bayesian approach is too 
complex to apply in day-to-day research. And simplicity is one of the best values for 
scientific activity14. But during the past few years a large amount of Bayesian software 
programs have appeared which have changed the situation: now it is easy, fast and 
cheap to implement the Bayesian approach in experimental practices. Programs like 
BACC, [B/D], BOA, BUGS (Bayesian inference using Gibbs sampling, and 
WinBUGS), MINITAB, EPIDAT, FIRST BAYES, HYDRA, STATA, SAS, S-Plus and 
others, some of them available as freeware, make possible an efficient use of Bayesian 
methods in several scientific fields. Their flexibility helps to incorporate multiple 
sources of data and of uncertainty within a single coherent composite model. Until the 
1980’s, the potential for the application of Bayesian methods was limited by the 
technical demands placed on the investigator. Over the past fifteen years these 
limitations have been substantially reduced by innovations in scientific computing 
(faster computer processors)15 and drastic drops in the cost of computing (Editorial 
BMJ, 1996). These changes and an increase in the number of statisticians trained in 
Bayesian methodology are encouraging the new status of Bayesianism (Tan, 2001).  

Medicine is, perhaps, the scientific field in which Bayesian analysis is being 
more intensively applied (Szolovits, 1995; Grunkemeir & Payne, 2002). Two trends, 
evidence-based medicine and Bayesian statistics are changing the practice of 
                                                                                                                                               
given a subjects’ disease status. Bayesian methods are a better solution for these cases than frequentist 
ones. 
13 See the philosophical reflections about Bayesianism and simplicity of Escoto (2003). 
14 Gigerenzer, Gerd (1989) “We Need Statistical Thinking, Not Statistical Rituals”, Behavioral and Brain 
Sciences, 21, 2 (1998): 199-200 is a very critical of the complexities of frequentist methods. 
Downloadable at http://www.mpib-berlin.mpg.de/dok/full/gg/ggwnsbabs/ggwnsbabs.html. A similarly 
aggressive work: Rindskopf, D. (1998) “Null-hypothesis tests are not completely stupid, but Bayesian 
statistics are better”, Behavioral and Brain Sciences, 21: 215-216. 
15 See NAS (1991). 



contemporary medicine. As Ashby & Smith (2000) tells us: “Typically the analysis 
from such observational studies [those of epidemiology] is complex, largely because of 
the number of covariates. Probably for this reason, Bayesian applications in 
epidemiology had to wait for the recent explosion in computer power, but are now 
appearing in growing numbers”, p. 329916. We must also take into account the expert 
(Bayesian) systems; a topic developed on section 4.2. 
 The development of Markov chain Monte Carlo (MCMC) computation 
algorithms, now permit fitting models with incredible realistic complexity17. The 
Bayesian approach has received a great impulse from MCMC models (Dunson, 2001; 
Carli & Louis, 2000; Gelman et al 1996). MCMC procedures are also extremely 
flexible and constitute the primary factor responsible for the increased use and visibility 
of Bayesian methods in recent years. 
 
 3.5. Ethical values: we can find an appeal to ethical values as parts of 
arguments about both schools. Wilson (2003) affirms that Bayesian methods are a more 
ethical approach to clinical trials and other problems. On the contrary, Fisher (1996) 
affirms that “Ethical difficulties may arise because of the differing types of belief”, 
especially during Randomized Clinical Trials (the Phase III Trials in the FDA model). 
 From the history of standard literature on ethics in medical research, man can 
infer the great value of prior beliefs in clinical trials. And the key concept is 
‘uncertainty’: “Subjective opinions are typically not included in the background 
material in a clinical trial protocol, but as they are often a driving force behind the 
existence of a protocol, and as uncertainty is deemed to be ethically important, 
documentation will be useful. Without documentation it may be difficult to determine 
whether uncertainty exists. (…) There are compelling ethical reasons that uncertainty 
should be present before a clinical trial is undertaken” (Chaloner & Rhame, 2001: 591 
and 596). When uncertainty is introduced in the reasoning procedures, the quantification 
of prior beliefs and, therefore, the use of Bayesian methodologies, seems to be an 
operationally and ethically better decision. 
 
 
 3.6. Better fitting for results:  Berger (2003), proposes using both models and 
studying case by case their possibilities: “based on the philosophical foundations of the 
approaches, Bayesian models are best suited to addressing hypotheses, conjectures, or 
public-policy goals, while the frequentist approach is best suited to those 
epidemiological studies which can be considered ‘experiments’, i.e. testing constructed 
sets of data”. Usually, we find no such equitable position. 
 But this is not a theoretical question but a practical one: Bayesian methods work 
better than frequentist. Therefore, Bayesian methods are increasing their application 
range, although it does not always mean that there are more ‘true Bayesians’. As Wilson 
(2003) explains:” their methodological successes [from Bayesian] have indeed 
impressed many within the field and without, but those who have adopted the Bayesian 
methods have often done so without adopting the Bayesian philosophy”18.  As Popper 
                                                 
16 See also Breslow (1990) and Ahsby & Hutton (1996). 
17 When we study models for multiple comparisons, we can see that frequentists adjust Multiple 
Comparison Procedures (MCP) considering intersection of multiple null hypotheses. They also advocate 
for a control of the familywise error-rate (FWE). So, “Bayesians will come closer to a frequentist per-
comparison or to a FEW approach depending on the credibility they attach to the family of (null) 
hypotheses being tested (…) the Bayesian is closer to the per-comparisonist”, Berry (1999): 216. 
18 See the Editorial from British Medical Journal (1996), “most people find Bayesian probability much 
more akin to their own thought processes (...) The areas in which there is most resistance to Bayesian 



or Lakatos19 could say: “Bayesian methods solve problems better than frequentist ones”. 
And practical success usually means the theory’s success. Look to the history of 
science: Copernicus astronomical tables were better than those of Ptolomeus and if at 
first, were accepted as an instrument, in a later they were considered as a true 
representation of reality. 
 So, The Scientific Information and Computing Center at CIBA-GEIGY’s Swiss 
headquarters in Basle moved towards the systematic use of Bayesian methods not so 
much as a result of theoretical conviction derived from philosophical debates, but rather 
as a pragmatic response to the often experienced inadequacy of traditional approaches to 
deal with the problems with which CIBA-GEIGY statisticians were routinely 
confronted (Racine et al, 1986). An example: clinical trials made by pharmaceutical 
industries are usually Bayesian (Estey & Thall, 2003) although such methods are not 
easily implemented (Wang et al, 2002). 
 Bayesian methods are ideally suited to dealing with multiples sources of 
uncertainty, and risk assessment must include a lot of them: one experiment can be 
affected by several terms like sex, age, occupation, skill of technician, number of 
specimens, time of sampling, genetic background, source of intake… So, according to 
an epidemiologist, Dunson (1991): 1225: “Bayesian approaches to the analysis of 
epidemiological data represent a powerful tool for interpretation of study results20 and 
evaluation of hypotheses about exposure-disease relations. These tools allow one to 
consider a much broader class of conceptual and mathematical models than would have 
been possible using non-Bayesian approaches”21. Grunkmeier & Payne (2002: 1901), 
talking about surgery enumerate several advantages of Bayesian statistics applied to it: 
“(1) providing direct probability statements – which are what most people wrongly 
assume they are getting from conventional statistics; (2) formally incorporating 
previous information in statistical inference of a data set, a natural approach which 
follows everyday reasoning; and (3) flexible, adaptive research designs allowing 
multiple examination of accumulating study data”. The Bayesian approach is more 
efficient at unifying and calculating multilevel causal relationships22. 
  
 3.7. Diffusion of science: guidelines. At the core of science remains 
information communication. By the process of writing and communicating his/her 
                                                                                                                                               
methods are those were the frequentist paradigm took root in the 1940s to 1960s, namely clinical trials 
and epidemiology. Resistance is less strong in areas where formal inference is not so important, for 
example during phase I and II trials, which are concerned mainly with safety and dose finding”. 
19 Popper, Karl R. (1963). Conjectures and Refutations: The Growth of Scientific Knowledge. London: 
Routledge and Kegan Paul. Popper, Karl R. (1972). Objective Knowledge: An Evolutionary Approach. 
Oxford: Oxford University Press. Popper, Karl R. (1959). The Logic of Scientific Discovery. New York: 
Basic Books, Inc.  Lakatos, I. ‘Falsification and the Methodology of Scientific Research Programmes’, in 
Lakatos, I & Musgrove, A. (eds). Criticism and the Growth of Knowledge. Cambridge University Press, 
Cambridge, 1970; Lakatos, I. The Methodology of Scientific Research Programmes, (ed. J. Worrall & G. 
Currie). Cambridge University Press, 1978; Lakatos, I & Musgrove, A. (eds). Criticism and the Growth 
of Knowledge. Cambridge University Press, Cambridge, 1970.  
20 For experimental Bayesian design see Chaloner & Verdinelli (1995). 
21 Freedman (1996) remarks that epidemiological studies cannot be usually made without external 
information. He also affirms that the choice of a p-value, like P<0.05, implies the inclusion of a 
subjective factor in the evaluation of the experimental results. 
22 Thagard (1999) has offered a very powerful conceptual framework to understand scientific 
explanations of diseases with his idea of “causal network instantiation” (p. 114). According to him: 
“causal networks are not simple schemas that are used to provide single causes for effects, but they 
instead describe complex mechanisms of multiple interacting factors”, p. 115-116. But Thagard is no 
Bayesian: he pursues another line of explanation which he considers better suited to psychological 
reasoning: explanatory coherence. (Ibid. p. 65-66). 



results, a scientist is at the same time evaluated (through peer review) and judged (by 
his/her colleagues). All the norms implied in the guidelines, define a trend in ‘good’ 
scientific practices23. And those groups who control the communication channels can 
make sure that special kinds of ideas are never allowed. Therefore, design and control of 
communication channels is something crucial for the interest of a community. 
 The frequentist approach has dominated statistics journals all through XXth 
Century but, recently, Bayesians are gaining more and more power. As Wilson (2003): 
372, says: “Bayesians have successfully and extensively published in JASA and other 
prominent journals, bringing their methods into the spotlight where they cannot be 
ignored”. It is not only a question of general perception but also of radical changes in 
the bases of the epistemic frame. The International Committee of Medical Journal 
Editors, wrote the Uniform Requirements for Manuscripts Submitted to Biomedical 
Journals, which you can consult at http://www.icmje.org, where they specified for 
statistical norms: “Avoid relying solely on statistical hypothesis testing, such as the use 
of P values, which fail to convey important quantitative information”24.  
 Spiegelhalter (1999) reflects that: “Current international guidelines for statistical 
submissions to drug regulatory authorities state that ‘the use of Bayesian and other 
approaches may be considered when the reasons for their use are clear and when the 
resulting conclusions are sufficiently robust’”25. 

So, these new trends ‘accepted’ as the new axiological frame for statistical 
research have changed the weight of both schools: while frequentist models are 
decreasing their expansion, Bayesian ones are being employed in an increasing number 
of situations. Basañez (2004) has explained the reasons for this gradual shift: practical, 
theoretical and philosophical. 
 

4. Cognition and statistics: 
4.1.  Looking into the scientist’s (human) mind. If we have looked to 

external activity in the previous chapter, now we must analyze the internal or cognitive 
activity of human beings.  The first and more important sense for humans is the visual 
capacity. The latest studies about human visual processes (Geisler & Kersten, 2002) 
show that Bayesian explanations fit better than frequentist when we must explain how 
we process visual information and react properly to it. The Bayesian approach seems to 
be optimal to explain in the broader biological context, plasticity, learning and natural 
selection26. Perception and inference work in a Bayesian way (Knill et al, 1996). If we 
consider the statistical properties of natural environments and how these interact in the 
process of natural selection to determine the design of perceptual and cognitive systems, 
we must accept that the Bayesian framework captures and generalizes, in a formal way, 
many of the important ideas of other approaches to perception and cognition (Geisler & 
Diehl, 2003). Computational (Marr, 1982) and evolutionary (Pinker, 1997) studies are 
well explained and unified by the Bayesian framework (Liu & Kersten, 1998; Shiffrin 
& Steyvers, 1997; Legge, Klitz & Tjan, 1997; Dosher & Lu, 2000; Stankiewicz, Legge 
& Mansfield, 2000). But human evolution can be employed to demonstrate the opposite 
                                                 
23 We must also include publication bias such as the quicker publishing of papers of studies with positive 
results than those with null or negative findings, (Dickersin et al, 2002). 
24 We must also recognize that the use of statistical methodologies in medical research is highly 
controversial, beyond the Bayesian-frequentist dilemma (Altman et al, 2002). 
25 See http://www.findarticles.com/p/articles/mi_m0999/is_7208_319/ai_55721117  [electronic resource], 
accessed August, 1st 2004. 
26 Nevertheless, we can find completely opposite opinions. As an example, Fisher (1996) says: “Humans 
do not and cannot behave in a Bayesian manner”, p. 424. And he also justifies his ideas appealing to 
human evolution! 



arguments: “in his evaluation of evidence, man is apparently not a conservative 
Bayesian: he is not a Bayesian at all” (Kahneman & Tversky, 1982). 

Neural networks27 are difficult to study because of their complexity and in the 
Bayesian approach these issues can be handled in a natural and consistent way. Several 
problems which appeared in the standard neural network methods can be solved by the 
Bayesian approach. For example, “the unknown degree of complexity and the resulting 
model is handled by defining vague (non-informative) priors for the hyper-parameters 
that determine the model complexity, and the resulting model is averaged over all 
model complexities weighted by their posterior probability giving the data sample. (…) 
The Bayesian analysis yields posterior predictive distributions for any variables of 
interest, making the computation of confidence intervals possible”, Lampinen & Vehtari 
(2001):7. 

An important moment in the controversies about both schools was the book 
written by Howson and Urbach in 1989 (see also the paper of 1991) about hypothesis 
evaluation and inferences using the Bayesian approach. They affirm that the Bayesian 
view starts off acknowledging that subjective assessment of likelihood is an important 
part of theory selection and construction, and makes it part of the philosophy of science. 
The power of scientific reasoning then, results not from some elusive objective logic of 
discovery, but because our innate inference abilities lead from observation of evidence 
to beliefs that follow probability calculus, and hence our sense of increasing credibility 
tends to reflect greater likelihood of a theory making accurate predictions. It follows 
that, our beliefs can be measured as probabilities, and probabilities can be used to 
confirm theories. In that case, novel observations should have and do have special 
importance in theory construction. The authors introduce probability calculus in simple 
algebraic terms and discuss its application to the philosophy of science. 

 
4.2.  Robot Minds: Expert Systems and the AI. One of the Artificial 

Intelligence trends is the design of expert systems. These are intended to replicate the 
decision making of a human expert within narrowly defined domains28.  Such domains 
are highly specialized: Logic Theorist was the first expert system and was made in 1955 
by Herbert Simon and Allan Newell as a logic theorist. This expert system discovered 
most of the principles written by Russell & Whitehead in Principia Mathematica. We 
also have Heuristic Dendral (mass spectrography, 1967), Macsyma (indefinite integrals 
solver, 1967), Macsyma (mathematics teacher, 1967), Internist (internal medicine, 
1970), Mycin (blood infections specialist, 1974), Prospector (geology, 1978), and so on 
until the present day29. The engineering AI approach to computational philosophy of 
science is allied with “<<android epistemology>>, the epistemology of machines that 
may or may not be built like humans” (Thagard, in Bynum 1998: 52). Most current 
expert systems apply Bayesian probability to their studies. One of them has discovered 
previously unsuspected fine structure in the infrared spectra of stars (Cheeseman, 1990) 

But what is the connection between AI’s expert systems and statistics and why is 
it mostly developed in a Bayesian way? The keystone of all this is the idea of 

                                                 
27 And the “Bayesian Networks”, introduced in the late 1980’s and early 1990’s, representing an 
important advance in probabilistic reasoning for artificial intelligence, as you have seen, and expert 
systems. See Glymour (2003). 
28 And such systems have three primary components: a knowledge base, decision rules, and an inference 
engine (Kurzweil, 1990: 292). 
29 In 1975 Dendral discovered a new rule to identify organic molecules, which no human mind had ever 
thought. Prospector discovered in 1982 a big molybdenum deposit.  



uncertainty30. We humans, must decide a lot of actions without complete data about 
facts we are analyzing, that is, we must take decisions in the light of uncertain 
knowledge about a situation. In 1947, von Neumann and Morgenstern developed an 
axiomatic framework called utility theory, founded on the pre-existing axioms of 
probability theory (Horvitz, 1993). Utility theory provides a formal definition of 
preference and of rational decisions under uncertainty, and its axioms define a measure 
of preference called utility. Then, utility theory affirms that people should make 
decisions that have optimal average, or expected, utility. Those expected values fit with 
the idea of personal or subjective probability. The use of subjective probability in 
calculations of the expected value of actions is called subjective expected utility (SEU). 

 In the mid-1940s, ‘operation analysis’ was developed, matured into the modern 
discipline of operations research (OR), and used after World War II to analyze a broad 
spectrum of civilian problems. 

SEU and OR were developed closely and led to the emergence, in the early 
1950s, of management science and decisions analysis. The 1960s represented the 
creation of the first expert systems, the 1970s were the realm of vision research and, 
finally, the 1980s represented the maturation of rules-based expert systems. Today, we 
must realize that: “subjective probability methodology has proved extremely successful 
for gathering the probabilities needed by an expert system” (Horvitz, 1993:31). 

Machines are certainly not humans, but they work better and in a more similar 
way to humans when they use Bayesian principles (Horvitz et al, 1988). Good results 
with these expert systems (such as AI learning to recognize objects, Viola, 1996) are 
giving powerful reasons in favor of Bayesianism. As an example, the Stanford 
researcher Paté-Cornell, wrote a paper (2002) on fusion intelligence and the Bayesian 
approach, trying to apply that method to the USA Intelligence Services, and avoid 
another attack after the attack suffered on September 11th, 2001. Bayesianism has 
reached new and more influential levels of application and is gaining ground. 
 
 

5. Framing values: conclusions about theories and uses. 
My old Webster’s Dictionary has its own definition of “dilemma”: “1. a situation 

requiring a choice between equally undesirable alternatives. 2. any difficult or 
perplexing situation or problem. 3. Logic. a form of syllogism in which the major 
premise is formed of two or more hypothetical propositions and the minor premise is an 
exhaustive disjunctive proposition, as <<If A, then B; if C then D. Either A or C. 
Therefore, either B or D>>”. 

It seems clear that we have not been talking about logic relationships inside 
statistical controversies. Therefore, the third definition is not of interest. The second one 
seems to be closer to the aims of this paper: the analysis of a complex problem for 
which there is no obvious solution. Finally, the last shall be first, the first definition is 
the core of this paper: Does the Bayesian vs. frequentist dilemma constitute a difficult 
choice ‘between equally undesirable alternatives’? Are we forced to die for our rational 
criteria like Buridan’s donkey? 

At a metatheoretical level, that is philosophy, the debate is still open and more and 
more complex. But that is not the level of analysis we have considered as crucial for the 
solution of the debate. We talk about scientific practices in which are involved both 
statistical approaches. And when scientists work, they take decisions continuously. 

                                                 
30 Understood, basically, as a situation with a lack of information. For more accurate definitions of 
‘uncertainty’ see Zimmermann (2000). 



We have shown a new range of values that constitute part of the statistical axiology. 
These are non-epistemic values, but shape the underlying framework of research 
epistemology. Academic training, ease of use, powerful infrastructures, cognitive 
fitting, ethics, metaphysical options, cheapness, and better results, are the arguments to 
decide in favor of either one of the two approaches. Perhaps these are not the values 
which theoreticians would have chosen, but are the real values which appear when we 
look at scientists’ practices and reflections. 

We don’t know if the prediction made by Bruno de Finetti, that it would take until 
the year 2020 for the Bayesian view of statistics to completely prevail will be accurate. 
This is another question, far from our interests and methodology. I have indicated 
several values that makes it possible to choose between both approaches.  

A clear fact is that Bayesian analysis is widely used in a variety of fields, from the 
pioneering field of medicine to engineering, image processing, expert systems, decision 
analysis, psychological diagnoses (Meehl & Rosen, 1955), criminal investigations 
(Sullivan & Delaney, 1982), for presenting evidence in court (Feinberg & Schervish, 
1986;  Matthew, 1994; Mossman, 2000), gene sequencing, financial predictions, neural 
networks or epidemiological studies. If we return to the classic paper of Winkler (1974)   
“Why are experimental  psychologists (and others) reluctant to use Bayesian inferential 
procedures in practice?”31, we will read: “this state of affairs appears to be due to a  
combination of factors including philosophical conviction, tradition, statistical training, 
lack of ‘availability’, computational difficulties, reporting difficulties, and perceived 
resistance by journal editors”. Well, all these factors (non-epistemic values) are now not 
against but in favor of the Bayesian approach. 

Is the solution to unify as a synthesis both approaches (Berger et al, 1997), like a 
synthesis solution to a dualistic problem? Could a hybrid method of inference satisfy 
both camps?  Is the Likelihood approach a third alternative? (Senn, 2003).  But this is, 
once more, a philosophical question. 
 Finally, we must consider the existence of a really fundamental question: how to 
make decisions based on evidence. And we find a basic problem: there are several 
decision levels with their own individual exigencies regarding what is considered as 
evidence. If we talk about decision making in health controversies, we should consider 
several levels like: decision making for patients (diagnosis), decision making for 
individual patients (interventions), decision making about studies (start from prior 
beliefs and data monitoring), decision making for pharmaceutical companies and public 
policy decision making (Ashby & Smith, 2000). But these multi-criteria analyses can be 
found in other scientific fields, such as forestry (Kangas & Kangas, 2004). And we find 
another set of problems present in both approaches when they are applied to 
controversial scientific practices, such as those of risk assessment: difficulties in 
establishing clear relationships, the significant sample, data interpretation, cognitive 
paradoxes (Simpson, Ellsberg, St. Petersbourg, Base-Rate Fallacy,…), the idea of 
evidence at multiple levels32, use of both models,… 
                                                 
31 Quoted by Lecoutre, Bruno  at http://www.stat.auckland.ac.nz/~iase/publications/5/leco0735.pdf 
[electronic document]. Accessed in July 30th, 2004. 
32 In the herbicide 2,4,5-T controversy we found: "Petitioners demand sole reliance on scientific facts, on 
evidence that reputable scientific techniques certify as certain. Typically, a scientist will not so certify 
evidence, unless the probability of error, by standard statistical measurement, is less than 5%. That is, 
scientific fact is at least 95% certain. (...) Agencies are not limited to scientific fact, to 95% certainties. 
Rather, they have at least the same fact-finding powers as a jury, particularly when, as here, they are 
engaged in rule-making" (Jasanoff, 1994: 51). But, at the same time: “Typically a scientist will 
not...certify evidence unless the probability of error, by standard statistical measurement, is less than 5%. 
That is, scientific fact is at least 95% certain. Such certainty has never characterized the judicial or the 



 Considering the previous arguments, we must admit that the dilemma, 
understood as a choice between equally undesirable alternatives, is a false dilemma. We 
have enough judgment elements to decide rationally33 between one of two approaches, 
and so do scientists from diverse fields, whose words we have reproduced here. To 
understand these decisions better we have enumerated a new set of values that needs to 
be included in a richer and sounder scientific axiology. 
 
  
 
 
 

                                                                                                                                               
administrative process… the standard of ordinary civil litigation, a preponderance of evidence, demands 
only 51% certainty. A jury may weigh conflicting evidence and certify as adjudicative (although not 
scientific) fact that which it believes is more likely than not… Inherently, such a standard is flexible; 
inherently, it allows the fact-finder to assess risks, to measure probabilities, to make subjective 
judgments. Nonetheless, the ultimate finding will be treated, at low as fact… The standard before 
administrative agencies is no less flexible. Agencies are not limited to scientific fact, to 95% 
certainties...we must deal with the terminology of law, not science”, Miller (1980): 75-76 (Miller made 
extracts from trial “Ethyl Corp. V. EPA, 541F .2d 1 (1976), p.28,.58”). 
33 Rationality must be understood as a complex activity well modeled by researchers like Kuhn. See the 
interesting work of Salmon, Wesley C. (1990) Rationality and Objectivity in Science or Tom Kuhn Meets 
Tom Bayes, in Savage, C. (ed.) Minnesota Studies in the Philosophy of Science, Vol. XIV, USA: 
University of Minnesota Press 175-204. 
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