

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  DECEMBER 26 2019

Using machine learning to assess short term causal
dependence and infer network links 
Special Collection: When Machine Learning Meets Complex Systems: Networks, Chaos and Nonlinear Dynamics

Amitava Banerjee; Jaideep Pathak; Rajarshi Roy; ... et. al

Chaos 29, 121104 (2019)
https://doi.org/10.1063/1.5134845

 CHORUS

Articles You May Be Interested In

Research on power planning under the green card and carbon trading process

AIP Conference Proceedings (December 2019)

Some aspects of the performance of refrigerating thermojunctions with radial flow of current

Journal of Applied Physics (August 2008)

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/1.5134845/14622049/121104_1_online.pdf

https://pubs.aip.org/aip/cha/article/29/12/121104/322145/Using-machine-learning-to-assess-short-term-causal
https://pubs.aip.org/aip/cha/article/29/12/121104/322145/Using-machine-learning-to-assess-short-term-causal?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/cha/article/29/12/121104/322145/Using-machine-learning-to-assess-short-term-causal?pdfCoverIconEvent=crossmark
https://pubs.aip.org/cha/collection/1205/When-Machine-Learning-Meets-Complex-Systems
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1063/1.5134845
https://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/1.5134845/14622050/121104_1_accepted_manuscript.pdf
https://pubs.aip.org/aip/acp/article/2185/1/020052/757797/Research-on-power-planning-under-the-green-card
https://pubs.aip.org/aip/jap/article/47/5/1846/170349/Some-aspects-of-the-performance-of-refrigerating
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2100974&setID=592934&channelID=0&CID=768787&banID=521069223&PID=0&textadID=0&tc=1&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fcha%22%5D&mt=1685984257092502&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fcha%2Farticle-pdf%2Fdoi%2F10.1063%2F1.5134845%2F14622049%2F121104_1_online.pdf&hc=d9a1a1bb992d8a39a64c940adeb1e36c53ce1868&location=


Chaos ARTICLE scitation.org/journal/cha

Using machine learning to assess short term
causal dependence and infer network links

Cite as: Chaos 29, 121104 (2019); doi: 10.1063/1.5134845

Submitted: 4 November 2019 · Accepted: 5 December 2019 ·

Published Online: 26 December 2019 View Online Export Citation CrossMark

Amitava Banerjee,1 Jaideep Pathak,1 Rajarshi Roy,1,2 Juan G. Restrepo,3 and Edward Ott1,4

AFFILIATIONS

1Department of Physics and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park,

Maryland 20742, USA
2Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
3Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA
4Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA

Note: This paper is part of the Focus Issue, “When Machine Learning Meets Complex Systems: Networks, Chaos and Nonlinear

Dynamics.”

ABSTRACT

We introduce and test a general machine-learning-based technique for the inference of short term causal dependence between state variables of
an unknown dynamical system from time-series measurements of its state variables. Our technique leverages the results of a machine learning
process for short time prediction to achieve our goal. The basic idea is to use the machine learning to estimate the elements of the Jacobian
matrix of the dynamical �ow along an orbit. The type of machine learning that we employ is reservoir computing. We present numerical tests
on link inference of a network of interacting dynamical nodes. It is seen that dynamical noise can greatly enhance the e�ectiveness of our
technique, while observational noise degrades the e�ectiveness. We believe that the competition between these two opposing types of noise
will be the key factor determining the success of causal inference in many of the most important application situations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5134845

The general problem of determining causal dependencies in an
unknown time evolving system from time-series observations is
of great interest in many �elds. Examples include inferring neu-
ronal connections from spiking data, deducing causal dependen-
cies between genes from expression data, discovering long spatial
range in�uences in climate variations, etc. Previousworkhas often
tackled such problems by consideration of correlations, predic-
tion impact, or information transfer metrics. Here, we propose a
new method that leverages the potential ability of machine learn-
ing to perform predictive and interpretive tasks and uses this to
extract information on causal dependence.We test ourmethod on
model complex systems consisting of networks of many intercon-
nected dynamical units. These tests show that machine learning
o�ers a unique and potentially highly e�ective approach to the
general problem of causal inference.

I. INTRODUCTION

The core goal of science is often described to be a generaliza-
tion from observations to understanding,1 commonly embodied in

predictive theories. Related to this is the desire to use measured data
to infer necessary properties and the structure of any description con-
sistent with a given class of observations. On the other hand, it has
recently emerged that machine learning (ML) is capable of e�ectively
performing a wide range of interpretive and predictive tasks on data.2

Thus, it is natural to ask whether machine learning might be useful
for the common scienti�c goal of discovering structural properties of
a system from data generated by this system. In this paper, we con-
sider an important, widely applicable class of such tasks. Speci�cally,
we consider the use of machine learning to address two goals.

Goal (i): Determine whether or not a state variable of a time evolving
system causally in�uences another state variable.

Goal (ii): Determine the “strength” of such causal in�uences.

In the terminology of ML, Goal (i) is referred to as “classi�-
cation ML,” and Goal (ii) is referred to as “regression ML.” These
goals have previously been of great interest inmany applications (e.g.,
economics,3 neuroscience,4 genomics,5 climate,6 etc.). Many past
approaches have, for example, been based upon the concepts of pre-
diction impact,3,4 correlation,7–9 information transfer,10,11 and direct
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physical perturbations.12,13 Other previous works have investigated
the inference of network links from time series of node states assum-
ing some prior knowledge of the form of the network system and
using that knowledge in a �tting procedure to determine links.9,14–17

In addition, some recent papers address network link inference from
data via techniques based on delay coordinate embedding,15 ran-
dom forest methods,18 network embedding algorithms,19 and feature
ranking.20 In this paper, we introduce a technique that makes the
use of anML training process in performing predictive and interpre-
tive tasks and attempts to use it to extract information about causal
dependencies. In particular, here, we use a particular type ofmachine
learning (ML) called reservoir computing, an e�cient method of
time-series analysis, which has previously been successfully used for
di�erent tasks, e.g., prediction of chaotic dynamics21–23 and speech
recognition,24,25 to mention a few. In our case, a “reservoir” dynami-
cal system is trained such that it becomes synchronized to a training
time series data set from the unknown system of interest. The trained
reservoir system is then able to provide an estimation of the response
to perturbations in di�erent parts of the original system, thus yielding
information about causal dependencies in the actual system. We will
show that this ML-based technique o�ers a unique and potentially
highly e�ective approach to determining causal dependencies. Fur-
thermore, the presence of dynamical noise (either naturally present
or intentionally injected) can very greatly improve the ability to
infer causality,14,15 while, in contrast, observational noise degrades
inference.

II. SHORT TERM CAUSAL DEPENDENCE (STCD)

We begin by considering the very general case of an evolv-
ing, deterministic, dynamical system whose state at time t is repre-
sented by theM-dimensional vector z(t) = [z1(t), z2(t), . . . , zM(t)]T ,
where z(t) evolves via a system ofM di�erential equations, dz(t)/dt
= F(z(t)), and has reached a statistically steady dynamical state (per-
haps chaotic). In this context, we frame the issue of causality as
follows: Will a perturbation at time t applied to a component zi of
the state vector z(t) [i.e., zi(t) → zi(t) + δzi(t)] lead to a subsequent
change at a slightly later time, t + τ , of another scalar component
zj [i.e., zj(t + τ) → zj(t + τ) + δzj(t + τ)]; and how can we quan-
tify the strength of this dependence? This formulation might suggest
comparison of the evolutions of z(t) that result from two identical
systems, one with, and the other without, the application of the per-
turbation. However, we will be interested in the typical situation in
which such a comparison is not possible, and one can only passively
observe (measure) the state z(t) of the (single) system of interest.
Aside from knowing that the dynamics of interest evolves according
to a system of the form dz/dt = F(z), we assume little or no addi-
tional knowledge of the system and that the available information is
a limited-duration past time series of the state evolution z(t). Nev-
ertheless, we still desire to deduce causal dependencies, where the
meaning of causal is in terms of responses to perturbations as de�ned
above. Since, as we will see, accomplishment of this task, in principle,
is not always possible, our approachwill be to �rst propose a heuristic
solution and then numerically test its validity. The main message of
this paper is that our proposed procedure can be extremely e�ective
for a very large class of important problems.Wewill also delineate sit-
uations where our procedure is expected to fail. We emphasize that,

as ourmethod is conceptually based on consideration of responses to
perturbations, in our opinion, it provides a more direct test of what is
commonly of interest when determining causality than do tests based
on prediction impact, correlation, or entropy metrics.

Furthermore, although the setting motivating our procedure is
for deterministic systems, dz/dt = F(z), we will also investigate per-
formance of our procedure in the presence of both dynamical noise
[i.e., noise added to the state evolution equation, dz/dt = F(z)] and
observational noise [i.e., noise added to observations of z(t) used as
training data for the machine learning]. Both types of noise are, in
practice, invariably present. An important result from our study is
that the presence of dynamical noise can very greatly enhance the
accuracy and applicability of our method (a similar point has been
made in Refs. 14 and 15), while observational noise degrades the
ability to infer causal dependence.

To more precisely de�ne causal dependence, we consider the
e�ect of a perturbation on one variable on the other variables as
follows. Taking the jth component of dz/dt = F(z), we have

dzj(t)/dt = Fj(z1(t), . . . , z2(t), . . . , zM(t)),

for j = 1, 2, . . . ,M. Perturbing zi(t) by δzi(t), we obtain, for small τ ,
that the component of the orbit perturbation of zj at time (t + τ) due
to δzi is

δzj(t + τ) = τ

{

∂Fj(z)

∂zi
|z=z(t)

}

δzi(t) + O(τ 2).

We de�ne the Short Term Causal Dependence (STCD) metric,
fji, of zj on zi by

fji =

〈

G

(

∂Fj(z)

∂zi

)〉

, (1)

where 〈(. . .)〉 denotes a long time average of the quantity (. . .) over
an orbit and the function G is to be chosen in a situation-dependent
manner. For example, later in this paper, we consider examples
addressing Goal (i) [where we want to distinguish whether or not
∂Fj(z)/∂zi is always zero] for which we use G(q) = |q|, while, when
we consider an example addressing Goal (ii) and are concerned with
the time-averaged signed value of the interaction strength, we then
use G(q) = q. In either case, we view fji as quantifying the causal
dependence of zj on zi, and the key goal of this paper will be to
obtain and test a machine learning procedure for estimating fji from
observations of the state evolution z(t). For future reference, we will

henceforth denote our machine learning estimate of fji by f̂ji. In the
case of our Goal (i) experiments, where G(q) = |q|, we note that fji
de�ned by (1) is an average of a non-negative quantity and thus,

fji ≥ 0, as will be our estimate, f̂ji ≥ 0. Furthermore, for this case,
we will de�ne STCD of zi on zj by the condition, fji > 0, and, when

using ourmachine learning estimate f̂ji, we shall judge STCD to likely

apply when f̂ji > ε where we call ε > 0 the discrimination threshold.

In the ideal case (f̂ji = fji), the discrimination threshold ε can be set
to zero, but, in practice, due to the error in our estimate, we con-
sider ε to be a suitably chosen positive number. We note that, in the
ideal case, ε = 0 can be regarded as a test for whether or not Fj(z) is
independent of zi.

As a demonstration of a situation for which the determination
of STCD from observations of the motion of z(t) on its attractor is

Chaos 29, 121104 (2019); doi: 10.1063/1.5134845 29, 121104-2

Published under license by AIP Publishing.

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/1.5134845/14622049/121104_1_online.pdf

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

not possible, we note the case where the attractor is a �xed point
(a zero-dimensional attractor). Here, the measured available infor-
mation is theM numbers that are the coordinates of the �xed point,
and this information is clearly insu�cient for determining STCD.
As another problematic example, we note that in certain cases, one
is interested in a dynamical system that is a connected network of
identical dynamical subsystems and that such a network system can
exhibit exact synchronization of its component subsystems26 (includ-
ing cases where the subsystem orbits are chaotic). In the case where
such a synchronized state is stable, observations of the individual sub-
systems are indistinguishable, and it is then impossible, in principle,
for one to infer causal relationships between state variables belong-
ing to di�erent subsystems. More generally, in addition to the above
�xed point and synchronization examples, we note that the dimen-
sion of the tangent space at a given point z∗ on the attractor is, at
most, the smallest embedding dimension of the part of the attractor
in a small neighborhood of z∗. Thus, the fullM × M Jacobian of F(z)
at z∗ cannot be precisely determined from data on the attractor when
the local attractor embedding dimension at z∗ is less thanM, which
is commonly the case. Thus, these examples motivate the conjecture
that to e�ciently and accurately infer STCD, the orbital complexity of
the dynamics should be large enough so as to encode the information
that we seek. Note that these considerations of cases where inference
of STCD is problematic do not apply to situations with dynamical
noise, e.g., dz/dt = F(z) + (noise), as the addition of noise may be
roughly thought of as introducing an in�nite amount of orbital com-
plexity. Alternatively, the addition of noise increases the embedding
dimension of the data to that of the full state space, i.e.,M.

III. USING RESERVOIR COMPUTING TO

DETERMINE STCD

Webase our considerations on a type ofmachine learning called
reservoir computing, originally put forward in Refs. 27 and 28 (for a
review, see Ref. 29). We assume that we can sample the time-series
data z(t) from our system at regular time intervals of length τ so
that we have a discrete set of observations {z(0), z(τ ), z(2τ), . . .}. To
begin, we �rst describe a reservoir-computer-basedmachine learning
procedure in which the reservoir computer is trained to give an out-
put ẑ(t + τ) in response to anM-dimensional input z(t) as illustrated
in Fig. 1.

FIG. 1. Schematic of the reservoir computing architecture used in this work. The
input-to-reservoir coupling matrix Win couples the input time series for the vector
z to the reservoir state vector r. The reservoir-to-output coupling matrixWout gen-
erates the output vector ẑ from the reservoir. ẑ is found to be a good estimate of
z after training.

For our numerical tests, we consider a speci�c reservoir
computer implementation (Fig. 1) in which the reservoir consists of
a network of R � M nodes whose scalar states, r1(nτ), r2(nτ), . . . ,
rR(nτ), are the components of the R-dimensional vector r(nτ).

The nodes interact dynamically with each other through an
R × R network adjacency matrix A, and their evolution is also in�u-
enced by coupling of the M-dimensional input z(nτ) to the indi-
vidual nodes of the reservoir network by the M × R input cou-
pling matrix Win according to the neural-network type of evolution
equation (e.g., Refs. 21–23 and 29–31),

r((n + 1)τ ) = tanh(Ar(nτ) + Winz(nτ)), (2)

where tanh(v) for a vector v = (v1, v2, v3, . . .)
T is de�ned as

(tanh v1, tanh v2, tanh v3, . . .)
T . For proper operation of the reser-

voir computer, it is important that Eq. (2) satis�es the “echo state
property”21,27,29 (in nonlinear dynamics, this condition is also known
as “generalized synchronization”32–34): given two di�erent initial
reservoir states, r1∗ and r2∗, for the same input time series of z, the
di�erence between the two corresponding reservoir states converges
to zero as they evolve in time [that is, |r1(t) − r2(t)| → 0 as t → ∞,
implying that, after a transient initial period, r(t) essentially depends
only on the past history of z, z(t′) for t′ ≤ t, and not on the initial
condition for r].

Using measured input training data over a training interval of
length Tτ , which begins after the initial transient period mentioned
above, we use Eq. (2) to generate r(τ ), r(2τ), . . . , r(Tτ). We also
record and store these determined values r(nτ) along with the corre-
sponding inputs, z(nτ), that created them. The matrices A and Win

are regarded as �xed and are typically chosen randomly. In contrast,
the R × M output coupling matrixWout , shown in Fig. 1, is regarded
as an adjustable linear mapping from the reservoir states r to an
M-dimensional output vector ẑ,

ẑ((n + 1)τ ) = Woutr((n + 1)τ ). (3)

“Training” of the machine learning reservoir computer then
consists of choosing the RM adjustable matrix elements (“weights”)
of Wout so as to make ẑ(nτ) a very good approximation to z(nτ)

over the time duration (τ , 2τ , . . . ,Tτ) of the training data. This
is done by minimization with respect to Wout of the quantity,
{

∑T
n=1 ‖ z(nτ) − Woutr(nτ) ‖2

}

+ β ‖ Wout ‖2. Here, β ‖ Wout ‖2,

with β small, is a “ridge” regularization term35 added to prevent over-
�tting, and (r(nτ), z(nτ)) are the previously recorded and stored
training data. In general,R � M is required in order to obtain a good
�t of ẑ to z(t). For illustrative purposes, we now consider the ideal
case where ẑ = z (i.e., the training perfectly achieves its goal).

For the purpose of estimating STCD, we now wish to eliminate
the quantity r from the basic reservoir computer system [Eqs. (2)
and (3)] to obtain an evolution equation solely for the state variable
z. To do this, we would like to solve (3) for r in terms of z. However,
sinceR, the dimension of r, ismuch larger thanM, the dimension of z,
there are typically an in�nite number of solutions of (3) for r. To pro-
ceed, we hypothesize that it may be useful to eliminate r by choosing
it to be the solution of (3) with the smallest L2 norm. This condi-
tion de�nes the so-calledMoore-Penrose inverse36 ofWout , which we

denote Ŵ
−1

out ; i.e., the minimum L2 norm solution for r is written as

r = Ŵ
−1

outz. We emphasize that Ŵ
−1

outz is not necessarily expected to
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give the correct r obtained by solving systems (2) and (3). However,
from numerical results to follow, our choice will be supported by the
fact that it often yields very useful estimates of fji.

Now, applying Wout to both sides of Eq. (2) and employing

r = Ŵ
−1

outz to eliminate r(nτ) from the argument of the tanh func-
tion in Eq. (2), we obtain a surrogate time −τ map for the evolution

of z, z((n + 1)τ ) = H[z(nτ)], where H(z) = Wout tanh[(AŴ
−1

out +

Win)z] . Here, we note that we do not claim that this map in itself
can be used for time-series prediction in place of Eqs. (2) and (3),
which were commonly used in previous works (e.g., Refs. 21–23, 30,
and 31). Rather, we use it as a symbolic representation of the result
obtained after eliminating the reservoir state vector r from Eqs. (2)
and (3). In particular, the prediction recipe using Eqs. (2) and (3)
is always unique and well de�ned, in contrast to the above map,
where W−1

out is clearly nonunique. Therefore, we use this map only
for causality estimation purposes, as described below. Di�erentiating
H(z) with respect to zi, we have

∂Fj(z)

∂zi
= τ−1

[

∂Hj(z)

∂zi
− δij

]

, (4)

where δij is the Kronecker delta, and we propose to use Eqs. (1)
and (4) to determine STCD.

In our numerical experiments, the number of training time steps
is T = 6 × 104 for Figs. 2 and 3 and T = 2 × 104 for Fig. 4. In each
case, the actual training data are obtained after discarding a transient
part of 2 × 104 time steps, and the reservoir system sampling time is
τ = 0.02. The elements of the input matrixWin are randomly chosen
in the interval [−0.1, 0.1]. The reservoir is a sparse random network
of R = 5000 nodes for Figs. 2 and 3 and of R = 1000 nodes for Fig. 4.
In each case, the average number of incoming links per node is 3.
Each nonzero element of the reservoir adjacency matric A is ran-
domly chosen from the interval [−a, a], and a > 0 is then adjusted
so that the maximummagnitude eigenvalue of A is 0.9. The regular-
ization parameter is β = 10−4. These parameters are adapted from
Ref. 23. The average indicated in Eq. (1) is over 1000 time steps. The
chosen time step τ is su�ciently small compared to the time scale
over which z(t) evolves that the discrete time series z(nτ) is a good
representation of the continuous variation of z(t).

Although we use a speci�c reservoir computing implementa-
tion, we expect that, with suitable modi�cations, our approach can
be adapted to “deep” types of machine learning,2 as well as to other
implementations of reservoir computing24,25,37,38 [notably, implemen-
tations involving photonics,24 electronics,37 and �eld programable
gate arrays (FPGAs)25].

IV. TESTS OF MACHINE LEARNING INFERENCE OF

STCD

In order to evaluate the e�ectiveness of our proposed method,
we introduce mathematical model test systems that we use as prox-
ies for the unknown system of interest for whose state variables we
wish to determine STCD. We next use the test systems to generate
simulated training data from which we determine STCD by our ML
technique. We then assess the performance of the technique by the
correctness of its results determined from the known properties of
the test systems.

FIG. 2. Results of Experiment 1 (noiseless case). Panels (a) and (b) show the
results of link inferences for two noiseless cases for L = 50 links and L = 100
links. The inference is perfect in (a) but is very bad in (b). (c) FP/ 〈FP〉R vs L
for h = 0, 0.06, and 0.15 averaged over 100 random realizations of the system
and the reservoir adjacency matrix. (d) The orbital complexity as measured by the
attractor information dimension DINFO decreases with increasing L. Note that at
each value of L, we compute the DINFO for 10 random realizations of a network
with L links with h = 0. The Kaplan-Yorke dimension is then averaged over all net-
work realizations, and the resulting plot is further smoothed by applying a moving
average filter.

We �rst consider examples addressing our Goal (i) [G(q) = |q|
in Eq. (1)], and for our simulation test systems, we consider the case
of a network of N nodes and L links, where each node is a classi-
cal Lorenz system39 with heterogeneity from node to node, additive
dynamical noise, and internode coupling,

dxk/dt = −10

[

xk − yk + c

N
∑

l=1

a
(x,y)

kl (yl − yk)

]

+ σDynnkx(t), (5)

dyk/dt = 28(1 + hk)xk − yk − xkzk + σDynnky(t), (6)

dzk/dt = −(8/3)zk + xkyk + σDynnkz(t). (7)
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FIG. 3. The effect of noise on STCD inference. Panels (a)–(c) show the effect of
increasing the dynamical noise variance σ 2

Dyn to greatly enhance the effectiveness

of link identification even at the rather low noise level of σ 2
Dyn = 10−6. In contrast,

as shown in panels (d)–(f), starting with the situation (c) and increasing the obser-
vational noise variance σ 2

Obs degrades link identification. L = 200, h = 0 for all
the subfigures here.

The state space dimension of this system is M = 3N. The cou-
pling of the N nodes is taken to be only from the y variable of one
node to the x variable of another node with coupling constant c, and

a
(x,y)

kl is either 1 or 0 depending on whether or not there is a link

from l to k. The adjacency matrix a
(x,y)

kl of our Lorenz network (not
to be confused with the adjacency matrix A of the reservoir) is con-
structed by placing directed links between L distinct randomly cho-
sen node pairs. For each node k, hk is randomly chosen in the interval
[−h,+h], and we call h the heterogeneity parameter. Independent
white noise terms of equal variance σ 2

Dyn are added to the left-hand
sides of the equations for dx/dt, dy/dt, and dz/dt, where, for example,
〈nkx(t)nk′x(t

′)〉 = 2δkk′δ(t − t′). For σ = c = h = 0, each node obeys
the classical chaotic Lorenz equationwith the parameter values origi-
nally studied by Lorenz.39 Furthermore, denoting the right-hand side
of Eq. (5) by Fxk, we have ∂Fxk/∂yl = 10c or 0, depending on whether
there is, or is not, a link from yl to xk.

Since in this case, the derivative ∂Fxk/∂yl is time indepen-
dent,

〈∣

∣∂Fxk/∂yl
∣

∣

〉

is also either 10c or 0, and adopting the notation

f
(x,y)

kl =
〈∣

∣∂Fxk/∂yl
∣

∣

〉

, we denote its machine learning estimate by our

FIG. 4. Results of Experiment 3. Panel (a) shows a 100 × 100 pixelated,
shade-coded portrait of Edward N. Lorenz and (b) reconstruction of (a) by our
ML link inference technique. Note that, in (b), we plot all the values greater than
or equal to 10 as black and all the values less than or equal to −5.5 as white.

previously described procedure by f̂
(x,y)

kl . For a reasonably large net-
work, the number N2 − N of ordered node pairs (k, l) of distinct

nodes is large, and we consequently have many values of f̂
(x,y)

kl .
Bayesian techniques (see Ref. 40 and references therein) can be

applied to such data to obtain an estimate L̂ for the total number
of links L, and one can then set the value of ε so that there are L̂
values of f̂

(x,y)

kl that are greater than ε. Less formally, we �nd that

making a histogram of the values of f̂
(x,y)

kl often reveals a peak at zero
and another peak at a higher positive value with a large gap or dis-
cernible minimum in between. One can then estimate ε by a value
in the gap or by the location of the minimum between the peaks,
respectively. For simplicity, in our illustrative numerical simulations
to follow, we assume that L is known [approximately equivalent to the

case that L is unknown, but that a very good estimate (L̂) has been
obtained].

Example 1 (A heterogeneous noiseless case): We consider
the parameter set c = 0.3, h = 0.06, σDyn = σObs = 0, N = 20, and
we vary the number of links L. Figures 2(a) (for L = 50) and 2(b)
(for L = 100) each show an array of 20×20 boxes where each of the
boxes represents an ordered node pair (k, l) of the 20-node network,
and the boxes have been colored (see Table I) according to whether
the results for our procedure predict a link from l to k (“positive”)
or not (“negative”) and whether the prediction is correct (“true”) or
wrong (“false”).

We see that for a typical case with L = 50 [Fig. 2(a)], all the
boxes have been correctly labeled, corresponding to all boxes being

TABLE I. Color-coding scheme for Figs. 2 and 3.

TP (true positive) Black square
TN (true negative) White square
FP (false positive) Blue square
FN (false negative) Red square
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either black or white. In contrast to this perfect result at L = 50, at
L = 100 [Fig. 2(b)], the method fails terribly, and the fraction of cor-
rect inferences is small. In fact, we �nd excellent performance for L ≤

50, but that, as L increases past 50, the performance of our method
degrades markedly. This is shown in Fig. 2(c) where we give plots
of the number of false positives (FPs) normalized to the expected
value of FP that would result if L links were randomly assigned to
the N2 − N = 380 node pairs (k, l). [We denote this normalization
〈FP〉R; it is given by 〈FP〉R = L(380 − L)/380.] Note that, with this
normalization, for the di�erent heterogeneities plotted in Fig. 2(c),
the curves are similar and that they all begin increasing at around
L = 60 and FP/ 〈FP〉R becomes nearly 1 (i.e., inference no better than
random) past L ∼ 100. In our earlier discussion, we have conjectured
that, for inference of STCD to be possible, the orbital complexity
should not be too small. To test this conjecture, we have calculated the
information dimension DINFO of the network system attractor cor-
responding to the parameters, c = 0.3, h = 0, σ = 0, N = 20, as a
function of L. We do this by calculating the Lyapunov exponents of
the system [Eqs. (5)–(7)] and then applying the Kaplan-Yorke for-
mula for DINFO in terms of the calculated Lyapunov exponents.41,42

The result is shown in Fig. 2(d), where we see that DINFO decreases
with increasing L. Regarding DINFO as a measure of the orbital com-
plexity, this is consistent with our expectation that the ability to infer
STCD will be lost if the orbital complexity of the dynamics is too
small. As we next show, the above negative result for L increasing past
about 60 does not apply even when small dynamical noise is present.

Example 2 (The e�ects of dynamical and observational
noise): We �rst consider the e�ect of dynamical noise of vari-
ance σ 2

Dyn for the parameters h = 0 (homogeneous), c = 0.3,N = 20,
and L = 200. Results [similar in style to Figs. 2(a) and 2(b)] are
shown in Figs. 3(a)–3(c). For extremely low dynamical noise vari-
ance, σ 2

Dyn = 10−9 [Fig. 3(a)]; the result is essentially the same as for
zero noise, and about one quarter of the boxes are classi�ed as TP, TN,
FP, and FN each (since there are 200 links and 400 boxes, this is no
better than random assignment). As the noise variance is increased
to σ 2

Dyn = 10−7.5 [Fig. 3(b)], the results become better, with a frac-
tion of 0.75 of the boxes either TP or TN [as opposed to 0.52 for
Fig. 3(a)]. Upon further increase of the dynamical noise variance to
the still small value of σ 2

Dyn = 10−6 [Fig. 3(c)], the results typically
become perfect or nearly perfect. Furthermore, excellent results, sim-
ilar to those for σ 2

Dyn = 10−6, continue to apply for larger σ 2
Dyn. This

is shown by the red curve in Fig. 3(f), which shows FP/ 〈FP〉R vs σ 2
Dyn

(N = 20; L = 200). Importantly, we also note that our normalization
of FP by 〈FP〉R essentially makes the red curve L-independent over
the range we have tested, 50 ≤ L ≤ 200. Our interpretation of this
dynamical-noise-mediated strong enhancement of our ability to cor-
rectly infer links is that the dynamical noise allows the orbit to explore
the state space dynamics o� the orbit’s attractor and that themachine
learning is able to make appropriate good use of the information it
thus gains.

We now turn to the e�ect of observational noise by replac-
ing the machine learning time-series training data formerly
used, [xk(nτ), yk(nτ), zk(nτ)], by [xk(nτ) + σ̂Obsn̂kx(nτ), yk(nτ) +

σ̂Obsn̂ky(nτ), zk(nτ) + σ̂Obsn̂k(nτ)], where the parameter σ 2
Obs is the

observational noise variance and the n̂kx, n̂ky, n̂kz are independent

Gaussian random variables with, e.g.,
〈

n̂kx(nτ)n̂k′x(n
′τ)

〉

= 2δkk′δnn′ .
The blue curve in Fig. 3(f) shows the e�ect of adding observational

noise of variance σ 2
Obs on top of dynamical noise for the situation

σ 2
Dyn = 10−5 of Fig. 3(c). We see from Figs. 3(d)–3(f) that, when σ 2

Obs

is below about 10−5, it is too small to have much e�ect, but, as σ 2
Obs

is increased above 10−5, the observational noise has an increasing
deleterious e�ect on link inference. This negative e�ect of observa-
tional noise is to be expected, since inference of characteristics of the
unknown system is necessarily based on the part of the signal that
is in�uenced by the dynamics of the unknown system, which the
observational noise tends to obscure.

Example 3 (Inferring continuous valued dependence
strengths): We now wish to address Goal (ii) [for which we take
G(q) = q in Eq. (1)], and we, accordingly, consider the case where

f
(x,y)

kl for each (k, l) takes on a value in a continuous range [rather than

the case of Examples 1 and 2 where f
(x,y)

kl is either 10c or zero for all
(k, l)]. For this purpose, we replace Eq. (5) by

dxk/dt = −10(xk − yk) +
∑

l

f
(x,y)

kl yl (8)

and consider Eqs. (6)–(8) as our new test system, with h = 0.9,
σ 2
Dyn = σ 2

Obs = 0, and N = 100 nodes (corresponding to 100 ×

100 = 104 possible connection strength values). We choose the con-
nection strength values as follows. Aphotographic portrait of Edward
N. Lorenz is divided up into 100 × 100 = 104 boxes, and by using
a shading scale from dark (coded as +10) to light (coded as −5),
Fig. 4(a) is obtained, with the shading scale given to the right of

Fig. 4(b). Setting f
(x,y)

kl equal to the color scale value of box (k, l), we
next numerically solve Eqs. (6)–(8). We then use this orbit as the
training data for input to our ML determination of causal strength

dependence, f̂
(x,y)

kl , and employing the same shading scale, we use

the thus determined values of f̂
(x,y)

kl to reconstruct the original por-
trait, as shown in Fig. 4(b). We see that, although the reproduction
is not exact, the overall picture is still clearly recognizable, indicating
the e�ectiveness of the method for Goal (ii). For a more quantita-
tive comparison of the actual and estimated Jacobian elements, we
calculate the normalized Frobenius norm of their di�erence matrix
f (x,y) − f̂ (x,y). We �rst apply upper and lower cuto�s equal to 10 and

−5.5, respectively, to f̂ (x,y), in order to eliminate some extreme values.
Then, we calculate the ratio,

δ =

∣

∣

∣

∣

∣

∣
f (x,y) − f̂ (x,y)

∣

∣

∣

∣

∣

∣

F
〈∣

∣

∣

∣

∣

∣f (x,y) − f̃ (x,y)

∣

∣

∣

∣

∣

∣

F

〉 , (9)

where ||M||F =
√

Trace(M†M) =

√

∑

i,j

∣

∣Mij

∣

∣

2
is the Frobenius norm

of the matrix M. Here, f̃ (x,y) denotes a matrix constructed by ran-
domly permuting the elements of the matrix f (x,y), and the angled
brackets denote an average over such random permutations. There-
fore, this ratio compares the total error in the inferred Jacobian with
the variation in the original matrix elements of f (x,y). For example,
for a perfect estimation of f (x,y), we will have δ = 0. In contrast, δ = 1
means that the prediction error is equal to the average error when the
elements of f (x,y) are randomized. For the example shown in Fig. 4, we
�nd that δ is approximately equal to 0.37.
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V. DISCUSSION

In this paper, we have formulated and tested a new, highly e�ec-
tive, machine-learning-based approach for inferring causal depen-
dencies of state variables of an unknown system from time-series
observations of these state variables. A key �nding is that the e�ec-
tiveness of our approach is greatly enhanced in the presence of
su�cient dynamical noise, provided that the deleterious e�ect of
observational noise is not too great. The competition between the
opposing e�ects of these two types of noise will likely be the essential key
factor determining the success or failure of causality inference in many
of the most important situations of interest (e.g., in neuroscience and
genomics).Much work remains to be done to more fully address the
utility of ourmethod. In particular, further numerical tests on diverse
systems, and, especially, experimental studies in real world applica-
tions, will ultimately determine the circumstances under which the
method developed here will be useful.
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