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Abstract—Theories describing the existence, destruction and ultimate fate of invariant tori for 
Hamiltonian systems of 11/2 or 2 degrees of freedom (or equivalently area preserving mappings) 
are well established. Similar results for higher dimensional Hamiltonian systems have proved 
elusive. We discuss several techniques for studying the existence and break-up of invariant tori for 
21/2 degrees of freedom (or 4 dimensional symplectic mappings): the anti-integrable limit, power 
series expansions of the conjugacy to rotation, and an approximate renormalization operator. 

PRELIMINARIES 

 We will either consider Hamiltonian flows with periodically time dependent H(x,y,t) or symplectic 
maps f: (x,y)→(x′,y′). Here we let (x,y) ∈ Td×Rd where x is the configuration, assumed to be periodic 
with period 1, and y is the canonical momentum. A map f is symplectic if it preserves the canonical form 
dy∧dx (for a review see ‹Meiss, 1992 #730›). The map could arise as Poincaré map of the flow or from a 
generating function F defined through  

 dF = y′dx′ – ydx (1) 

A symplectic map f satisfies the twist condition if the matrix ∂x′/∂y is uniformly definite. This implies that 
x′(x,y) can be globally inverted to obtain y(x,x′), and therefore that the transformation (x,y) → (x,x′) is a 
diffeomorphism. Thus if the map has twist, F can be written as a function of (x,x′). Eq. (1) implies that the 
map is given implicitly by 

 
  y′ = ∂F

∂x′ ≡ F2, y = – ∂F
∂x ≡ F1  (2) 

For the generating function, the twist condition is equivalent to F12 = –[∂x′/∂y]–1 being uniformly definite. 
For the case of zero net flux, F(x+m,x′+m) = F(x,x′) for any integer vector m. 
 Maps of the “standard” form are generated by  F(x,x′) = T(x,x′) – V(x). It is worthwhile to think of T 
as the kinetic energy (or coupling energy), and V as the periodic potential. The simplest example, for 
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which T =1/2(x′ –x)2, can be interpreted as the lowest order symplectic discretization of the oscillator εx..  = 
–∇V(x). 

TORI AND FREQUENCIES 

 We study the rotational tori, that is tori homotopic to the trivial torus y = constant. In addition we 
assume that the tori are graphs, y = Y(x), over the configuration variables x; this is guaranteed by Birkhoff 
for d=1, but there is no corresponding result for d>1. The frequency vector ω is the average direction that 
an orbit moves around the torus (assuming that this limit exists). We let ω = (1,ν) ∈ Rn, where n ≡ d+1, 
reserving the first slot for the periodic time dependence, and scaling time so that this component is unity. 
Then ν is the winding ratio. Since we care only about its direction (as defined by ν), ω should be viewed 
as a point in the projective space RPd. A torus is conjugate to rigid rotation if there is a continuous X(θ) 
such that 

 xt = θ + νt + X(θ+νt) (3) 

where X(θ) is periodic, X(θ+m) = X(θ) for all m∈ Zd. There is a similar relation for the flow case. 
 A frequency is commensurate if there is a nonzero integer vector m such that m⋅ω = 0. Such a 
relation is a resonance condition. If there are no resonances for ω then it is incommensurate. If there are 
two independent resonances for ω, then ω = p where p is integral (remember the length of ω is 
unimportant). A frequency ω = (1,ν) is Diophantine if there is a K≠0 and τ ≥ d such that for all nonzero m 
∈ Ζn, |m⋅ω| > Κ|m|–τ. The smallest value of K for which there are infinitely many solutions of |m⋅ω| < Κ|m|–
τ is called the Diophantine constant Cτ(ω); equivalently, 

 
  C τ(ω) = liminf

m →∞
||m|| τ m⋅ω

 (4) 

 The theory of simultaneous approximation of frequency vectors is by no means as complete as the 
continued fraction theory for d=1, see e.g. ‹Cassels, 1965 #737›. We adopt a Farey approximation 
technique proposed by Kim and Ostlund ‹Kim, 1986 #593›. Consider d = 2, and begin with the three 
resonances m1 = (1,0,0), m2 = (0,1,0), m3 = (0,0,1). Each resonance corresponds to a plane in R3 or a line 
in RP2; the set of three resonances delineates a cone (the positive octant) or triangle. The intersection of 
each pair of resonances defines rational frequencies p1= [1,0,0], p2 = [0,1,0], p3 = [0,0,1]. The frequencies 
pi also delineate the cone; it is the convex hull of the three vectors. We denote the cone by either of the 
matrices M = (m1,m2,m3)t or P = (p1,p2,p3). We assume ω is inside the cone, i.e. ωi ≥ 0. 
 To construct the Farey sequence for ω, divide the cone using the new frequency p′= p1+p2, and 
corresponding resonance m′ = m1–m2. There is now a right and a left cone PR = (p3,p1,p′) and PL = 
(p2,p3,p′), or MR = (m3,m′,m2)t and ML = (–m′,m3,m1)t. Choose the new cone that contains ω and repeat 
this transformation, dividing this new cone into two. This gives a sequence of cones that each contain 
ω. The operations can be represented by the linear transformations MS = S–1M or PS = PS. Here  
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S = R if (m1–m2)⋅ ω > 0

L if (m1–m2)⋅ ω ≤ 0, R =
0 1 1
0 0 1
1 0 0

, L =
0 0 1
1 0 1
0 1 0  

(5)
 

Note that det(R) = det(L) = 1, MSPS = I, and det(MS) = det(PS) = 1. Repeating this transformation 
provides a unique string of matrices Si ∈ {R,L} for any ω, so that we can think of ω as the sequence 
S1S2S3... It is not difficult to show that if ω is an integer vector (with no common factors) then this 
sequence eventually terminates when p3 = ω ‹Baesens, 1991 #734›. 
 From the Farey point of view, the simplest incommensurate frequency vectors have periodic Farey 
sequences. When the period is q, ω is the eigenvector with largest eigenvalue of the nonnegative matrix 
S1...Sq. This implies that the components of ω are elements of a cubic field: they satisfy ωi = i + jλ + kλ2, 
where (i,j,k) are integers and λ is the eigenvalue—it satisfies a cubic equation with integer coefficients. 
The simplest of these (1,σ2,σ) which is the eigenvector of L, where σ is the spiral mean (coined by 
Cvitanovic). 

 σ3 = σ + 1,   σ ≈ 1.324717957 (6) 

This vector is an integral basis for the cubic field generated by σ. Similarly the eigenvector of R is 
(σ2,1,σ). 
 Another interesting cubic vector is (1,τ,τ2), where τ = 2cos(2π/7), a solution of τ3–τ2–2τ–1=0. This 
vector is an integral basis for the totally real cubic field with minimum discriminant (Δ = 43). It has the 
Farey sequence  L(LRLLRLR)∞. Cusick has conjectured that there are integral bases in the field generated 
by τ whose Diophantine constants limit on C2(ω) = 2/7 ‹Cusick, 1974 #805›. It is known that the largest 
possible Diophantine constant for the three frequency case is at least 2/7, and numerical evidence indicates 
that this is indeed the supremum ‹Szerkeres, 1985 #934›. Thus τ might be the correct generalization of the 
golden mean—giving the most robust tori. 

 COMPLEX ANALYTIC TORI 

 One technique for determining whether a symplectic map has a rotational torus with a given 
frequency is to attempt to obtain the conjugacy function by perturbation series. If the map is analytic, then 
it is reasonable to search for an analytic conjugacy; indeed the analytic KAM theorem implies that the 
conjugacy is analytic for sufficiently small perturbations from integrability providing the winding ratio is 
Diophantine. Thus we assume that there is a convergent Fourier series 

 
  X(θ) = Xne2πin ⋅ θΣ

n ∈Zd  (7) 

Substitution of this series, together with the conjugacy relation (3) into the map gives a set of equations for 
the Fourier coefficients. 
 There are two cases in which these equations can be dealt with relatively easily. In the first, suppose 
that F has the form F(x,x′) =1/2(x′–x)2 – εV(x) where V has only finitely many Fourier components. Then 
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we expand the conjugacy as power series in ε. The number of Fourier components at each order in ε is 
finite ‹Greene, 1981 #187; de la Llave, 1992 #827›. One then finds the values of ε for which this series 
ceases to converge, thus obtaining a lower bound for the domain of existence of the torus. 
 A more specialized case is that of a complex map for which the periodic terms contain only one sign 
of complex exponential—following Percival we use the terminology “semi-” for such maps. As an 
example ‹Bollt, 1993 #795›, consider the “semi-Froeshlé” map generated by the complex generating 
function 

 
  F(x,x′) = 1

2 (x′ – x)2 + 1
4π2 ae2πix1 + be2πix2 + ce2πi(x1 + x2)

 

The major simplification for semi-maps, is that one can find invariant tori that are analytic functions of the 
d complex variables e2πiθκ—no negative Fourier components occur. In fact for the semi-Froeshlé map, 
two of the parameters, a and b, can be absorbed in the definition of a pair of complex variables u 
≡ (ae2πiθ1, be2πiθ2) ∈ C2. Thus we rewrite (7) as 

 
  X(θ) = – i

2π bnunΣ
n = 0

∞

 (8) 

Upon substitution of this expansion into the Lagrangian form of the semi-Froeshlé map we obtain 
recursion relations for each fixed value of k = ε/ab, the coupling coefficient that involve the small 
denominator Dn ≡ sin2(πn⋅ν). For Diophantine frequencies Dn is bounded away from zero as Dn > K|n|–4. 
 Upon solving for bn, we find the domain of convergence of the double series (8). Any power series  

 
  S = bnznΣ

n ∈ Nd  

in d-complex variables has a domain of convergence that is a log-convex, complete Reinhardt domain. A 
Reinhardt domain  D is a set in Cd for which if z ∈ D then so is zeiθ = (z1eiθ1,...) for any real phases θi. 
Thus it is conveniently pictured in terms of the magnitudes |zi|. The domain D is complete if for each z ∈ 
D, we have z′ ∈ D whenever |zj′| ≤ |zj|, and it is log-convex if the set log(|D|) ≡ {(log(|z1|), log(|z2|),...): z ∈ 
D and zj ≠ 0} is a convex subset of Rd. 
 There are several differences with the d = 1 case. In particular the domain of convergence D in C is 
always a disk, and if z∉D

_
  the series diverges. Furthermore a power series in C converges iff it converges 

absolutely. These facts are no longer necessarily true in Cd, as is illustrated by the series 
   

S = (z1+z2)
j∑

j=0

∞
. 

For this particular ordering of the terms we have the sum S = (1–z1–z2)–1 for |z1+z2| < 1. This appears to 
contradict our theorem, since this domain is not a Reinhardt domain. However by formally rearranging 
terms, we obtain 

 

   
S ⇒ S′ = Cn

k+nz1
nz2

k∑
n,k=0

∞

 

where C is the binomial coefficient. The test for S′ to converge absolutely  is 
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S′  ≤ Cnk+nr1

nr2
k∑

n,k=0

∞

 = (r1+r2)j∑
j=0

∞

,     rl+r2 < 1
 

So S′ converges absolutely in a subset of the domain for which the original ordering converges. The 
domain of convergence is |z1|+|z2| < 1, because the double power series only “makes sense” if it converges 
for any ordering of its terms (and then it converges absolutely). As a final example consider the series 

 
S =  z1jz2∑

j=0

∞

  = z2
1-z1  

This series converges in G = {z : |z1| <1} ∪ {z : z2 =0}. The domain of convergence is the interior of G, 
which is D ={z : |z1| <1}. Thus S does not automatically diverge on the complement of the closure of D. 
 We do not have a sophisticated technique for determining ∂D. Our simple idea is to reduce the d-
dimensional series to sequence of one dimensional ones. First we use absolute convergence to focus on the 
real series:   S′ = bn rnΣ

n ∈ Nd
. One way to convert this to a single series is to fix all but one of the radii, and 

“do” the interior sums, leaving the one dimensional sum   S′ = B(r2...rd)r1
nΣ

n1= 0

∞
. However, this can not be 

implemented numerically, since the interior sums are infinite. A better idea is to fix a set of slopes si ≡ 
ri/r1, i=2,...d, and reorder the series using these variables. 

 
  S′ = Bm(s2,s3,...sd)r1

mΣ
m= 0

∞
, Bm ≡ s2

n2Σ
n2 = 0

m
s3

n3Σ
n3 = 0

m – n2

... bm – Σnk,n2,...,nd sndΣ
nd = 0

m – n1 – ...nd – 1

 (9) 

Now each of the interior sums is finite and Bm can be computed “exactly”. The radius estimated by the 
asymptotic growth rate 

 
  log r1(s2,...sd) = – limsup

m → ∞

1
mlog Bm(s)  (10) 

Completeness of D implies that r1(s) is a function. In practice we use this definition when the si < 1 so that 
the terms decrease, permuting the definition to retain this in the other wedges. 
 Returning now to the semi-Froeshlé map: the radii (|u1|,|u2|) = (|a|,|b|) in fact represent the parameter 
values at which the analytic torus is destroyed. Thus we obtain, for each k, the graph of the boundary of D 
in (a,b). Therefore the domain of convergence of the series for an analytic torus cannot, for example, have 
holes or disconnected components—like the domain of existence of a invariant circle for the multi-
harmonic standard map ‹Wilbrink, 1990 #725›. Furthermore, for each k, the domain must be convex when 
plotted in the coordinates log(a) vs log(b). When k = ε  = 0, the domain is simply the rectangle |a| < 
ass(ω1), |b| < ass(ω2) where ass(ω) is the critical parameter for the semi-standard map,   δ2x = ia

2πe2πix . 
 In ‹Bollt, 1993 #795› we studied the domain of convergence of the series for several algebraic 
winding ratios, the spiral mean (σ,σ2) and the quartic vectors (γ,√2) and (γ,(3–√2)/7). Subsequently, we 
also computed the domain for the cubic (τ,τ2); it appears very similar to the other cases. What surprised 
me about these calculations is that the domain boundaries appear to be smooth as far as we can tell. I 
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would have expected something like the fractal set of cusps observed for the two-harmonic standard map 
‹Ketoja, 1989 #572›; however, log-convexity would provide a strong constraint on this, so perhaps we 
should expect the cusps to occur only for some derivative of the boundary. There are several interesting 
unexplained phenomena. The domain of convergence is defined to be the intersection of the domains for 
the two components of X(u); these are not the same. Based on what happens for the area preserving case, 
we might expect that there is a remnant cantor set when the series does not converge, and that when only 
one of the two series converges, there is a cantor set of circles. 

APPROXIMATE RENORMALIZATION 

 The approximate renormalization theory introduced by Escande and Doveil ‹Escande, 1981 #147› 
has proved extremely useful in understanding the breakup of tori for d = 1. We extend their results by 
studying the natural generalization of their system, a particle in the plane acted on by three travelling 
waves ‹MacKay, 1994 #927›. This Hamiltonian can be rescaled to take the form 

 

  
H = 1

2 (u,v)⋅ α β
β γ

⋅ u
v + V(x,y,z)

V = Acos(2πx) + Bcos(2πky) + Ccos(2π z)
z = t – x – y  (11) 

One unusual aspect of H is the nondiagonal mass matrix—it is important to keep this as it will be 
generated in any case by the Farey approximation.Without loss of generality, the wavenumbers (k,  ) can 
be taken to be positive and the mass matrix has unit determinant, αγ–β2 = 1. Thus this system has seven 
parameters. 
 The Hamiltonian is periodic with periods (1,1/k,1/  ) in the configuration variables (x,y,z)—so the 
configuration space can be taken to be the three torus T3 ={x mod 1, y mod 1/k, z mod 1/  }. When 
A=B=C=0, the momenta (u,v) are constant in time and every orbit lies on a three torus. If ω(u,v) is 
incommensurate, the orbit densely covers the torus. If ω is Diophantine, then the KAM theorem implies 
that there is a torus with this frequency for small values of the amplitudes. We are interested in 
determining the parameters for which such a torus is destroyed. 
  The technique is to perform a succession of canonical transformations to coordinates that are more 
closely aligned with the incommensurate flow. Our renormalization is a coordinate transformation that 
focuses on a region of phase space in which orbits of a given frequency ratio are expected. We can define 
two such transformations corresponding to the L and R Farey steps. We define a canonical transformation 
to eliminate one of the resonances and then transform the new Hamiltonian back to its original form. 
 Suppose formally that each of the parameters A,B,C = O(ε). We begin by eliminating the m2 = (010) 
resonance by a near identity canonical transformation. Then, for the “L” transformation, define the new 
coordinates on T3 
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   x′
k′y′
′z′

= L–1
x

ky
z

+O(ε)

 (12) 

In order to maintain the form z′ = t′–x′–y′ the new wavenumbers must be 

 
  k′ = k, ′ = 1

1+k  (13) 

Upon defining new momenta corresponding to these coordinates, scaling time to t′ = kt and scaling the 
momenta to normalize the mass matrix, the Hamiltonian has the same form as (1) to O(ε3) if we identify 
the new parameters  

 

  α′
β′
γ′

= 1
1+k

1/k –2 k
1 1–k –k
k 2k k

α
β
γ

A′ = (1+k)3β
2k2 AB, B′ = 1+k

k C, C′ = 1+k
k A

 (14) 

This is the approximate renormalization operator. There is a corresponding operator for the right Farey 
step. 
 The simplest frequency vectors under renormalization correspond to the fixed point of L; the 
frequency vector is then the spiral mean (6). The wavenumber renormalization (13) is decoupled from the 
parameters, so we can consider it separately. The wavenumber map is contracting and has the unique real 
fixed point   (k, ) = (σ–1,σ–2) where σ is the spiral mean. The fixed point is a spiral focus. The mass 
renormalization is a linear map, and has been constructed to preserve the subspace αγ –β2 = 1. Since the 
wavenumber map is contracting, we can evaluate the mass map at the fixed point k = σ–1. This gives the 
eigenvalues 

 
  λ1 = 1, λ2,3 = e±iψ

 

where cos(ψ) = 0.5(σ–1). Therefore this map is not contracting— in general the mass matrix rotates with a 
rotation number ψ/2π ≈ 2/9. This violates the notion of “universality”: asymptotics of the the orbit under 
the renormalization depend on the parameters of the initial Hamiltonian. 
 The parameter map depends on the wavenumber k and the mass matrix through β. Consider first the 
case when β = cot(ψ) is fixed. In this case there are two fixed points, A = B = C = 0, the KAM fixed point, 
and the critical fixed point with all three parameters nonzero. The KAM fixed point is stable. The 
linearization about critical point shows that this point is a spiral saddle with characteristic polynomial λ3–
λ2–1 = 0 (interestingly, this polynomial is not related to the spiral mean), so that 

 λ1 = δ ≈ 1.465571232,  |λ2,3| = δ−1/2  (15) 
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Thus there is a one dimensional unstable manifold, and a two dimensional, spiral stable manifold. The 
contraction on the stable manifold is rather slow. 
 For the general case, β is not fixed, and the amplitude map is periodically forced. However, there is 
still a codimension one center-stable manifold which has a one dimensional unstable manifold. On the 
center manifold the parameters converge to a circle on which the dynamics is a simple rotation with 
rotation number ψ/2π. The rotations arise because successive rational approximants of the 
incommensurate vector spiral inwards (the analogous oscillation in 11/2 degrees of freedom is responsible 
for the momentum scaling eigenvalue being negative). 
 Thus, if we take our model at face value, it predicts that a typical one parameter system is not “self-
similar” at criticality. Instead properties of the system such as the stability parameters of periodic orbits 
(i.e. the residues) are predicted to oscillate with rotation number of approximately 2/9. The amplitude of 
the oscillation will depend upon the system studied; in our model it depends upon the off-diagonal 
element in the mass matrix (alternatively one can think of this as coming from the wavevectors not being 
perpendicular). 
 Indeed, previous attempts to find the critical point for a spiral mean torus have seen evidence for 
these oscillations. Artuso et al ‹Artuso, 1991› studied a 3D volume preserving map, and found that the 
residues of periodic approximations to a spiral mean torus oscillated, apparently with period 9. 
 Now the true renormalization dynamics need not look the same as our approximate model, even if it 
is very good approximation. This is because no rotation is stable to perturbation. Arbitrarily small 
perturbations of a rotation can make the fixed point weakly attracting or repelling, and can generate 
weakly attracting or repelling invariant circles around the fixed point, or chains of periodic orbits, or 
Birkhoff attractors or worse! What is stable to perturbation, however, is the fixed point and a 2D normally 
hyperbolic invariant manifold containing it, with 1 unstable normal direction, the remaining normal 
directions being attracting. The stable manifold of this 2D normally hyperbolic manifold has codimension 
1 and can be expected to be the boundary of KAM theory. It would be worth trying to find the fixed point, 
because it would be an important handle on the normally hyperbolic manifold. We call it a codimension-3 
fixed point because in our model it has three eigenvalues which are not strictly inside the unit circle, so it 
has three-dimensional center-unstable manifold, and hence requires three parameters to find it. 

ANTI-INTEGRABILITY 

 A major unresolved question concerns the fate of a torus upon destruction: does it become a 
cantorus as happens for d = 1 according to Aubry-Mather theory? There is no generalization of this result 
to the higher dimensional case. We can show, however that many maps have cantori for every frequency 
when they are sufficiently far from integrability—i.e. near the anti-integrable limit ‹MacKay, 1992 #687›. 
 For a twist map, the action Wj,k[x] of a sequence [x] = {xj,xj+l,...,xk}∈ Rd(k-j+1) is defined as   W j,k[x] = F(xt,xt + 1)Σ

t = j

k – 1
. It is easy to see that a sequence with fixed endpoints is an orbit segment iff it is a 

critical point of W: ∂W/∂xt = 0 for k<t<j. We have no difficulty in extending this notion to infinite 
sequences [x] ∈ RdZ, except that the action itself is formally infinite. The orbit in phase space is 
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completely defined by the configuration through yt= F2(xt-1,xt). A sequence is a periodic orbit with 
frequency vector (p,q) ∈ Zd+1 if xn= x0+p, and it is a stationary point of W0,n for 0≤t<n. 
 Consider a generating function of the form 

 F(x,x′) = εT(x,x′) – V(x) 

From the variational point of view, the map generated by F corresponds to a linear chain of particles at 
points xj coupled by harmonic springs in a periodic potential V. We call the case ε=0 the anti-integrable 
limit. This is a singular limit because the generating function no longer satisfies the twist condition, and 
thus does not actually generate a map through (2). However, one can still consider, for a sequence [x], the 
critical points of W. In the anti-integrable limit, these sequences are simply arbitrary sequences of critical 
points of V(x). Suppose that the set of such critical points of V is C = {ci}. Then a valid “orbit” is any 
choice xt ∈ C. The interpretation is that the spring constants are zero, so the particles sit at points of zero 
force, ∇V=0. 
 Continuation from the anti-integrable limit is much easier than from the integrable limit. The 
beautiful result is that every nondegenerate sequence with bounded acceleration can be continued to 
nonzero ε. An anti-integrable configuration is nondegenerate if each of the points xt is a nondegenerate 
critical point of V. The acceleration of a sequence is defined as 

 
 a[x] = sup

t
T2(xt – 1,xt) + T1(xt,xt + 1)  

since for the standard kinetic energy, a[x] is the supremum of the second differences |xt-1 – 2xt + xt+1|, the 
discrete version of acceleration. Orbits with bounded acceleration have momentum changes that are 
bounded. 

Theorem (MacKay and Meiss): Given A > 0, there is εo(A) > 0 such that all nondegenerate 
anti-integrable sequences with a[x] ≤ A persist for ε < εo, and remain nondegenerate. 

This is a simple consequence of the implicit function theorem. 
 As a corollary to the theorem, we can construct cantori for any incommensurate vector v. The anti-
integrable limit of a cantorus is defined through a function X, as in (3), but now we allow X to be 
discontinuous, setting X(θ) = [θ], where [] is the map from Rd to the critical point in the same 
fundamental domain as its argument. These states have bounded acceleration, and it is easy to show that 
they continue to cantor sets. Furthermore, these cantori are hyperbolic. One can continue these orbits until 
they loose hyperbolicity; however, it is not known whether a cantorus becomes a torus at this point. 

CONCLUSIONS 

  We have seen that some of the results from the theory of area preserving twist maps can be 
generalized to higher dimensions. Certainly KAM theory tells us that near enough to the integrable case, 
there are tori with every Diophantine frequency. Similarly the anti-integrable theory implies that there are 
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cantori for every incommensurate frequency near the anti-integrable limit. The converse KAM theory 
‹Mather, 1984 #297; MacKay, 1985 #283› generalizes to a more limited extent. For d = 1, one can show 
that there are parameter domains outside of which there are no rotational invariant circles. This is based on 
a theorem of Birkhoff that every such circle is the graph of a Lipschitz function. For d>1 the analogue of 
this theorem is not known. If one assumes that invariant tori for twist maps are Lagrangian graphs, then 
the converse KAM theory applies ‹MacKay, 1989 #525›. Numerical studies do not contradict this 
assumption. 
 Our approximate renormalization gives a possible description for the boundary of existence of the 
spiral mean torus. The boundary is a codimension one surface in the space of parameters that is the center-
stable manifold of a critical fixed point of the renormalization operator with the single unstable eigenvalue 
δ ≈ 1.4655 and two neutral eigenvalues. All orbits on the center-stable manifold are attracted to the center 
manifold under renormalization. The renormalization dynamics on the center manifold is a rotation with 
irrational winding ratio. 
 One might try to use analogue of Greene’s residue criterion to find this fixed point by studying the 
stability of the periodic orbits making up successive cones in the Farey sequence for ω. Each of the three 
orbits bounding the cone has a pair of residues. One must find a set of parameter values for which the limit 
of all of these residues neither goes to infinity nor zero. This is difficult numerically because long orbits 
must be obtained in order to see if there is any asymptotic behavior at all. 
 We conjecture that the breakup boundary may have various components corresponding to the direct 
formation of full cantorus which we know exists close enough to the anti-integrable limit or of a partial 
cantorus corresponding to a Cantor set cross a circle with various homotopy types. It is also possible that 
some parameter directions correspond to the formation of a Sierpinski set or even a more exotic topology. 
It is reasonable that the codimension three fixed point will form the organizing center for these 
bifurcations. 
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