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In the last decade, it has been shown that a large class of phase oscillator models admit low

dimensional descriptions for the macroscopic system dynamics in the limit of an infinite number N
of oscillators. The question of whether the macroscopic dynamics of other similar systems also

have a low dimensional description in the infinite N limit has, however, remained elusive. In this

paper, we show how techniques originally designed to analyze noisy experimental chaotic time

series can be used to identify effective low dimensional macroscopic descriptions from simulations

with a finite number of elements. We illustrate and verify the effectiveness of our approach by

applying it to the dynamics of an ensemble of globally coupled Landau-Stuart oscillators for which

we demonstrate low dimensional macroscopic chaotic behavior with an effective 4-dimensional

description. By using this description, we show that one can calculate dynamical invariants such as

Lyapunov exponents and attractor dimensions. One could also use the reconstruction to generate

short-term predictions of the macroscopic dynamics. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4986957]

The search for emergent low-dimensional behavior in the

macroscopic dynamics of large systems of dynamical

units is an important issue in many scientific and techno-

logical contexts. Explicit analytical low dimensional mac-

roscopic descriptions have been found for certain classes

of phase-oscillator systems with sinusoidal coupling.1,2

However, such analytically derived descriptions remain

elusive for more general cases, and it is probably unreal-

istic to expect that similar analytical methods will be

found for general situations. Here we demonstrate a

method for identifying low dimensional behavior in mac-

roscopic dynamics of large coupled systems exhibiting

complicated dynamics using techniques originally

designed for denoising chaotic time series.
3,4

As an illus-

tration, we study in detail a system of globally-coupled

Landau-Stuart oscillators5 in the chaotic regime for

which we reconstruct the low-dimensional dynamics. The

basic idea is to remove finite-size fluctuations so as to

reveal the underlying low dimensional macroscopic

dynamics, thus allowing for accurate computation of

dynamical invariants.6

I. INTRODUCTION

Large systems of coupled dynamical units serve as

important models for phenomena in a wide range of disci-

plines including physics, engineering, biology, and chemis-

try.7 In a suitable thermodynamic limit (i.e., where the

number N of interacting units goes to infinity in an appropri-

ate limiting process), low dimensional descriptions have

been explicitly found for certain families of sinusoidally-

coupled phase oscillator systems, first in the case of identical

oscillators,1,8–10 and then for heterogeneous oscillators.2,11

These analytical breakthroughs made possible the analysis of

various generalizations of the Kuramoto model of phase

oscillators, including the behavior of systems with time-

delays,12 external forcing,13 communities,14,15 more general

network structures,16,17 and pulse-coupled units.18–22 To

date, no such dimensionality reduction is known for the case

where more general kinds of dynamical units are coupled. In

general, at finite N, guided by the results from Refs. 2 and

11–22, one might expect that, at large, but not too large N,

the behavior would often (not always) resemble an effective

superposition of high dimensional and low amplitude noise-

like dynamics, superposed upon low dimensional macro-

scopic behavior. In many cases, the noise-like component

can obscure the identification of the underlying low dimen-

sional dynamics. Moreover, the lack of a low dimensional

description of the macroscopic dynamics combined with the

presence of finite-size fluctuations often prevents the compu-

tation of important dynamical invariants for the macroscopic

behavior.

In this paper, we show that low dimensional dynamics

in large systems of coupled oscillators can be identified by

reconstructing these dynamics using techniques first devel-

oped for denoising experimental chaotic time series. In gen-

eral, we assume the existence of an observable time series

from which an appropriate time-delay embedding23 can be

generated which in turn can be used to build a discrete map-

ping via an appropriate surface of section.6 As discussed

above, this mapping will be effectively noisy due to finite-

size fluctuations. We then reconstruct the low-dimensional

dynamics using a denoising technique that makes local esti-

mations for the evolution of the state variables by averaginga)Electronic mail: persebastian.skardal@trincoll.edu
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out noise in the original dataset. The reconstructed low

dimensional dynamics can then be used to accurately calcu-

late important dynamical invariants such as fractal dimen-

sions and Lyapunov exponents. As an illustrative example,

we apply this procedure to a system of globally coupled

Landau-Stuart oscillators that appears to exhibit macroscopic

chaos with substantial superposed noise-like finite-size

fluctuations.

The remainder of this paper is organized as follows. In

Sec. II, we describe the system of Landau-Stuart oscillators

and summarize its dynamics and observed finite-size fluctua-

tions. In Sec. III, we describe our method for reconstructing

the low dimensional dynamics. In Sec. IV, we demonstrate

our method’s utility in calculating invariants of the macro-

scopic dynamics of the Landau-Stuart system. In Sec. V, we

conclude with a discussion of our results.

II. SYSTEM DYNAMICS

In this paper, we use as our primary example a system

of N globally-coupled Landau-Stuart oscillators whose

dynamics are governed by

_zn ¼ zn 1� jznj2 þ ixn

� �
þ K

N

XN

m¼1

zm � znð Þ;

¼ zn 1� jznj2 þ ixn

� �
þ K �z � znð Þ: (1)

The complex variable zn describes the (complex) state of

oscillator n, xn is the natural frequency of oscillator n, K is

the global coupling strength, and �z ¼ ð1=NÞ
PN

m¼1 zm is the

global mean-field. Importantly, a rich set of dynamical

phenomena have been observed and studied in Eq. (1) and

its variations, including what appears to be macroscopic

chaos.24–30 For the purpose of this paper, we restrict our

attention to the dynamics that emerge with a coupling

strength of K¼ 0.885 and natural frequencies that are uni-

formly distributed (and evenly spaced) in [�pD/2, pD/2] for

D¼ 0.64. These choices result in behavior that is suggestive

of chaotic dynamics, as can be seen in the time series of the

order parameter rðtÞ ¼ j�zðtÞj plotted in Fig. 1(a) for a system

of size N¼ 103.

To analyze this chaotic state, we proceed by finding a

suitable time-delay embedding for the variable r(t). The

minimum embedding dimension for the denoised low dimen-

sional dynamics can be found using several methods;31,32

here we use the method of false nearest neighbors33,34 result-

ing in a minimum embedding dimension of dT¼ 4.

Moreover, we find that s¼ 2.8037 is a suitable time delay.

This embedding then yields a dT¼ 4 dimensional state vari-

able yðtÞ ¼ ½rðtÞ; rðtþ sÞ; rðtþ 2sÞ; rðtþ 3sÞ�T . We next

construct a discrete mapping using a surface of section col-

lected at the downward piercings of the hyperplane

r(tþ 3s)¼ 0.2 resulting in a sequence of dT � 1¼ 3 dimen-

sional state variables xn ¼ ½rðtnÞ; rðtn þ sÞ; rðtn þ 2sÞ�T ,

where tn is the time of the nth piercing of the surface. In

Figs. 1(b)–1(d), we plot attractors found using this surface of

section for system sizes N¼ 102, 103, and 104, plotting

r(tþ s) and r(tþ 2s) on the horizontal and vertical axes,

respectively, and denoting the value of r(t) by color.

Comparing the three cases, we observe a strong dependence

of the noise intensity on the system size. In the N¼ 102 case,

the noise level is particularly strong, corrupting virtually all

the detail in the attractor. As the system size increases to

N¼ 103 and 104 more detail can be seen. However, it is clear

that substantial noise persists even for N¼ 104. We note that

while the embedding dimension dT¼ 4 provides an upper

bound for the dimensionality of the macroscopic dynamics

of the system, this embedding dimension is often larger than

the actual dimension of the system.23 Moreover, the complex

behavior and degree of finite-size fluctuations impede any

direct quantification of other properties of the dynamics, e.g.,

dimension of the attractor and stretching and contracting of

trajectories.

III. LOW DIMENSIONAL RECONSTRUCTION

To better quantify the macroscopic system properties

from cases like that illustrated above, we seek to reconstruct

the low dimensional dynamics directly from a dataset. The

method presented here is a variation on existing methods3

developed for denoising experimental chaotic time series

and thus reconstructs a denoised low-dimensional represen-

tation of the dynamics. We describe this method in general,

assuming the existence of an observable noisy time series

r(t) for which a suitable time-delay embedding with embed-

ding dimension dT can be found. Moreover, we assume that a

mapping can be constructed using a general surface of

FIG. 1. (a) Chaotic time series of the order parameter r(t) for the system of size N¼ 103 described in Eq. (1) with a coupling strength K¼ 0.885 and natural fre-

quencies uniformly distributed in [�pD/2, pD/2] for D¼ 0.64. (b)–(d) Surface of sections constructed from the dT¼ 4 dimensional time delay embedding with

a time delay s¼ 2.8037 where the points in panels (b)–(d) are plotted at downward-moving [dr(tþ 3s)/dt< 0] piercings of the hyperplane r(tþ 3s)¼ 0.2 for

systems of size N¼ 102, 103, and 104.
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section resulting in the (dT � 1)-dimensional state vector ~x,

whose components we denote as ~x ¼ ½~xð1Þ;…; ~xðdT�1Þ�T . We

will from here onwards denote the original (noisy) and

reconstructed (denoised) state variables as ~x and x, respec-

tively. The surface of section for the noisy data defines a

noisy mapping of the form

~xnþ1 � Fð~xnÞ; (2)

where ~xn represents the nth piercing of the surface of sec-

tions by the noisy data and F : RdT�1 ! RdT�1 is an

unknown mapping function which we assume is continu-

ously differentiable and encodes the hypothesized low

dimensional dynamics of the system, which in the infinite N
limit would follow xnþ1 ¼ FðxnÞ. The noise inherent in the

data corrupts this mapping, and therefore our goal is to use

the dataset to find an approximation Floc to the mapping

function F to enable us to reconstruct the denoised dynamics

via the evolution

xnþ1 ¼ FlocðxnÞ: (3)

Our method for making this forecast using the noisy

data is based on the behavior of nearby noisy points.

Consider a point xn for which we wish to predict xnþ1. We

thus require an accurate estimation of the mapping function

F. At any given iterate, we do not need a global estimation,

but rather a local estimation. To make such a local estima-

tion, we consider those points ~xn in the noisy data that lie

within a small distance � (using the ‘2 norm) of our current

point xn, as well as their forward mappings ~xnþ1. In Fig. 2,

we illustrate a collection of these noisy mappings ~xn 7!~xnþ1

in the example presented above. Note that all pre-mapped

points ~xn lie within a circle, while the post-mapped points

~xnþ1 lie roughly within an ellipse that illustrates the stretch-

ing and contraction of the mapping. To best estimate the

local behavior of F near xn, we note that any one mapping

~xn 7!~xnþ1 is corrupted by noise, but we hypothesize that on

average this noise averages out. Thus, we look for the local

linear representation of F given by

FðxÞ � FlocðxÞ ¼ FðxnÞ þ DFðxnÞx; (4)

where we compute the entries of the vector FðxnÞ and matrix

DFðxnÞ using least squares with the nearby points ~xn and

their forward mappings ~xnþ1.

Our algorithm for reconstructing the low dimensional,

denoised dynamics is then summarized as follows. Given an

initial condition x0, we collect each point ~xn from the noisy

data that lie within a distance of � from x0, as well as their

forward mappings ~xnþ1. Next, using these collected noisy

mappings ~xn 7!~xnþ1, we calculate the entries of the vector

Fðx0Þ and matrix DFðx0Þ given in Eq. (4) that minimizes

k~xnþ1 � Flocð~xnÞk2
averaged over the points, where k � k is

the Euclidean norm. We then determine the image x1 of x0

using the local description, i.e., x1 ¼ Flocðx0Þ. We repeat this

process until we collect as many iterates of the reconstructed

dynamics as we desire.

We illustrate the utility of the method using our example

described above. Specifically, we consider a noisy dataset of

106 points generated by a system of N¼ 103 oscillators. In

Figs. 3(a) and 3(b), we plot, for comparison, the original

noisy data and the reconstructed dynamics, respectively, in

both cases using 104 points. Immediately, we observe a sig-

nificant noise reduction in (b) compared to (a). In Figs. 3(c)

and 3(d), we zoom in on two areas of the reconstructed

dynamics to illustrate the added detail picked up in the

reconstructed dynamics.

The implementation of this method requires a few

important practical considerations. The primary algorithmic

parameter is the distance threshold � we use to collect noisy

points for use in the least squares calculation at each itera-

tion. In principle, � should be small enough so that the

dynamics of all collected points are well approximated by a

linear map, but not so small that the number of points used

in the least squares calculation is too few. Thus, an appropri-

ate choice of � is a trade-off between these two constraints

and will depend on the size of the dataset available. In the

results presented above, we used �¼ 10�3, but we note that

similar results were obtained for other values of � (not

shown). Moreover, we find that it is helpful to set a minimum

on the number of points used in the least squares calculation.

That is, if too few points ~xn are found within a distance � of

xn, we include the next closest points to satisfy this lower

bound. In our results, we require that at least 20 points be

used in the calculations. We emphasize that, although we

used the local least-squares denoising method, other denois-

ing methods could have been used.3 The issues regarding

choices for � and the number of neighbors are well known in

these methods.3

IV. ATTRACTOR INVARIANTS

We now demonstrate that the reconstruction of the low

dimensional dynamics can be used to calculate the dynami-

cal invariants of the attractor in the low dimensional setting.

We first consider the Lyapunov spectrum of the strange

attractor which for a d-dimensional dynamical system con-

sists of the d values k1 � k2 � � � � � kd which measure the

exponential stretching and contraction of perturbations

throughout the attractor and are given by

FIG. 2. Illustration of the noisy forward mappings ~xn 7!~xnþ1 used in the least

squares calculation of Floc from the example presented in Fig. 1.
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k ¼ lim
n!1

1

n
ln
junj
ju0j

; (5)

where un is one of the tangent vectors evolving according to

unþ1 ¼ DFðxnÞun. While our dynamical reconstruction does

not yield a full description of the mapping function, the local

description given in Eq. (4) suffices to compute the spectrum

of Lyapunov exponents for the low dimensional dynamics

using typical numerical methods6 since the Jacobian DF is

estimated. Using 5� 104 iterations, we calculate the full

spectrum of eigenvalues for the reconstructed dynamics

described above and summarize the values in Table I.

We next consider the Lyapunov dimension of the attrac-

tor, which is defined by the Lyapunov spectrum.6,35 The

Lyapunov dimension is defined as

dL ¼ k þ

Pk

j¼1

kj

jkkþ1j
; (6)

where k is the largest integer such that the quantity
Pk

j¼1 kj

� 0. In the case of a system with k1> 0> k2 and jk2j > jk1j,

TABLE I. Strange attractor invariants computed with the reconstructed

dynamics: Lyapunov spectrum and fractal dimensions.

Quantity Notation Value

Maximal Lyapunov exponent k1 0.2146

Second Lyapunov exponent k2 �0.3882

Third Lyapunov exponent k3 �0.9181

Lyapunov dimension dL 1.5528

Information dimension d1 1.5675

Correlation dimension d2 1.4801

FIG. 3. (a) Noisy and (b) reconstructed dynamics found using a distance threshold of �¼ 10�3 for a system of N¼ 103 oscillators. (c) and (d) Zoomed-in views

on the reconstructed dynamics that illustrate greater detail recovered by the reconstruction.
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as ours is, this reduces to dL ¼ 1þ k1=jk2j. Given in Table I,

this is our first fractal dimension for the strange attractor.

We next consider two other fractal dimensions, the

information and correlation dimensions.36,37 Formally, these

dimensions are measured by partitioning the domain of the

attractor into N(�) cubes each of unit size � and calculating

the fraction of time li spent by typical orbits in each box i.
The information and correlation dimensions are defined,

respectively, by

d1 ¼ lim
�!0þ

PN �ð Þ

i¼1

lilnli

ln�
and d2 ¼ lim

�!0þ

PN �ð Þ

i¼1

l2
i

ln�
: (7)

We proceed by calculating these quantities using the meth-

ods outlined in Refs. 38 and 39 with 105 points generated by

the reconstructed dynamics and report them in Table I.

Finally, we comment briefly on the Kaplan-Yorke con-

jecture.35 The Kaplan-Yorke conjecture states that for typical

systems (i.e., systems that are not pathologically engi-

neered), the information dimension is equal to the Lyapunov

dimension, d1¼ dL. In the results obtained for our primary

example, we find that in fact these two quantities are approx-

imately equal, and since the quantities reported in Table I are

subject to typical numerical inaccuracies, we judge our

results to be in agreement with the Kaplan-Yorke conjecture.

Also, as expected, d2< d1.

V. DISCUSSION

In this paper, we have shown the potential of denoising

methods for uncovering low dimensional macroscopic

dynamics that emerge in large systems of coupled dynamical

units. Analytical methods for describing such low dimen-

sional behavior have been found for certain cases of

sinusoidally-coupled phase oscillators,1,2 but in more com-

plicated cases, e.g., most systems of limit cycle oscillators,

such analytical methods are not known. Therefore, the iden-

tification of such low dimensional behavior, particularly in

systems that exhibit rich dynamics and finite-size fluctua-

tions, remains an important task. Our method for uncovering

low dimensional behavior in the macroscopic system dynam-

ics uses techniques originally designed for denoising chaotic

time series to reconstruct the desired low dimensional

dynamics. We have used as our primary example a system of

globally coupled Landau-Stuart oscillators in the chaotic

regime. We have shown that our method not only recon-

structs the low dimensional behavior that describes the mac-

roscopic dynamics of the system, but allows for the accurate

computation of dynamical invariants, e.g., fractal dimensions

and the Lyapunov spectrum.
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