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Abstract 

For an area preserving map, each chaotic orbit appears numerically to densely cover a region (an irregular 
component) of nonzero area. Surprisingly, the measure approximated by a long segment of such an orbit deviates 
significantly from a constant on the irregular component. Most prominently, there are spikes in the density near the 
boundaries of the irregular component resulting from the stickiness of its bounding invariant circles. We show that 
this phenomena is transient, and therefore numerical ergodicity on the irregular component eventually obtains, 
though the times involved are extremely long-  101° iterates. A Markov model of the transport shows that the 
density spikes cannot be explained by the stickiness of a bounding circle of a single class - for example, a rotational 
circle. However, the density spikes do occur in a Markov tree model that includes the effects of islands-around- 
islands. 

1. Ergodicity and invariant measures 

As is well known [1], typical area preserving 
maps are neither integrable nor ergodic; instead, 
phase space is divided into a complicated mix- 
ture of regular and irregular components.  A 
regular component  is an elliptic periodic orbit or 
an invariant circle. An irregular component is a 
minimal invariant set in the complement of the 
regular components.  It is bounded by invariant 
circles and is composed of hyperbolic periodic 
orbits and "chaot ic"  orbits. By definition an 
irregular component  is ergodic; that is, it can not 
be split into invariant subregions with nonzero 
area. A reasonable conjecture is that an irregular 
component  is the closure of the unstable mani- 
fold of a hyperbolic point [2]. Numerical evi- 
dence supports the general belief that an irregu- 

lar component  has nonzero area [3]; however,  
this remains one of the most intriguing unproven 
conjectures about these mappings. 

In this paper  we study the way in which a 
single "chaotic"  orbit densely covers an irregular 
component  of the standard map. If our  single 
trajectory is not special, it must eventually uni- 
formly cover the component  since Birkhoff 's  
ergodic theorem implies that the time average of 
a function along almost any orbit is equal to its 
spatial average over the measure defined by the 
irregular component .  

Numerical evidence in apparent  opposition to 
this was presented by Smith and Spiegel [4]. In 
their paper  the phase space density of a chaotic 
orbit of the standard and H6non maps exhibited 
concentrations, or spikes, near the boundary of 
chaotic zones. These high densities conform with 
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the notion that the boundary of a chaotic zone 
appears to be sticky: orbits beginning close to 
the boundary will stay close for a long time. 
However,  the orbit studied by Smith and Spiegel 
was not initialized close to the boundary, but in 
the midst of the chaotic sea. Thus the spikes 
appear to violate ergodicity. 

We will repeat the calculations of Smith and 
Spiegel for the standard map. Similar computa- 
tions have been performed countless times by 
untold thousands since the birth of the worksta- 
tion. Our computations differ only in the number 
of iterations being large, and in the analysis that 
we perform. We compare our observations with 
expectations from simple models of transport, 
such as the Markov model [5]. 

The Markov model has been previously used 
to successfully predict the critical exponent for 
escape time through a cantorus [5] as well as the 
algebraic decay of correlation functions in area 
preserving mappings with elliptic regions [6-8]. 
Here we will show that it can also account for 
the existence of the density spikes. 

2. Markov model 

In general, Markovian dynamics is defined on 
a discrete set of states with occupation numbers 
n~(t) at time t. The evolution is given by 

nj(t + 1) = ~ ni(t ) Pij,  (1) 
i 

where P,.j is the transition probability from i to j. 
We assume that the total occupation number 
E,. ni = 1 is conserved and normalized to unity; 
this requires Ej Pij = 1. Furthermore, we assume 
that the Markov chain is irreducible (it is possible 
to move from a state i to any other state, i.e. 
(pn)ij ~ 0 for some n). In this case the Perron- 
Frobenius theorem implies that there is a unique 
equilibrium n~ = A~, and that almost every initial 
condition n i ( t ) - - ~ A  i a s  t----~o0. W e  call A i the 
"area" of the ith state. In equilibrium, we 

assume that the transition probabilities satisfy 
the detailed balance condition 

AiPij = A/Pii -- AWi~ . (2) 

This defines the "flux" AW0, a symmetric matrix. 
Eq. (2) implies that the density Pi = ni/A~ obeys 
the transpose of (1) 

pi(t + 1) = ~ e, jpj(t).  (3) 
J 

In terms of the density, the equilibrium state is 
p / = l .  

To model transport in area preserving maps by 
(3), we interpret the states as pieces of an 
irregular component separated by partial 
barr iers-  either cantori or broken separatrices 
[5]. Then A i is the area of the irregular com- 
ponent contained between the partial barriers 
forming state i and AW~j is the flux of area 
through the partial barrier between state i and 
state j (area preservation implies that AW~j is 
symmetric). Thus P0 is exactly the probability 
that an initial condition placed randomly in the 
ith state escapes to the jth state in one step. The 
major assumption of the model is that Pij cor- 
rectly describes the transition probability for an 
initial condition that is not randomly chosen but 
that corresponds to, say, an iterate of such an 
initial condition. The assumption is that when a 
particle enters a state, memory of its past trajec- 
tory is rapidly lost. This approximation appears 
reasonable if the mixing time (the Lyapunov 
time) in a state is short compared to the resi- 
dence time in the state. 

The Markov model is clearly approximate, as 
was reiterated by Rom-Kedar  and Wiggins [9]; 
however, in some cases it can provide an exact 
description [10]. More generally, the model 
captures the qualitative notion of the stickiness 
of the boundary of a chaotic zone, even though it 
is not quantitatively correct. There is, however, 
no replacement model that can be easily applied. 
An exact description, such as that of [9], would 
require following the evolution of the lobes 
forming the turnstiles for all time. 
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In the simplest version of the Markov model 
we assume that each state in the Markov chain 
corresponds to the (p,q)  resonance associated 
with a pair of rotational periodic orbits of fre- 
quency p / q ;  the boundaries of the state are 
either the stable and unstable manifolds forming 
the resonance boundary or the minimum flux 
cantorus between two neighboring resonances. 
In this case only nearest neighbor states are 
connected, and Pij is tridiagonal. Near a critical 
invariant circle with frequency to, a natural 
choice for the states is the set of resonances 
corresponding to the continued fraction 
convergents of to. We will consider the region 
under  the golden circle with frequency 1/y 2= 
( 3 - V ~ ) / 2 .  The sequence of approximating 
frequencies with to < 1/T 2 is {0/1, 1 /3 ,3 /8 ,  
8/21 . . . .  } corresponding to states 0, 1,2 . . . .  
The model becomes especially simple in the case 
of the renormalization fixed point map with a 
critical golden circle [11], when the transition 
probabilities scale as 

Pi,i+, = eoPi- , , i ,  Pi,i+l =/zoP,+,.,, 
- -2  = 

so = 7 ~ 0.381966, I*o (3,/~) 2 ~- 0.139045. 

(4) 

Here e o is the time scaling, the rate at which the 

local frequencies approach the irrational, and/z o 
is the area scaling, the rate at which the area of 

the states approaches zero (~ is the area scaling 

eigenvalue of the renormalization group) [6]. 
What  is of interest here is that the Markov 

chain (3) with nearest neighbor connections will 
never give the observations of Smith and 
Spiegel. In fact, it is not difficult to prove the 
following. 

L e m m a .  Let pj(t) evolve under a nearest neigh- 
bor Markov chain (3) and assume that 

Pj_,,j + Pj,_, -< 1, (5) 

and that pj(O) is a monotone function of j. Then 
pj(t) is monotone for all t. 

Condition (5) is always satisfied for our system 
because the transition probabilities are small. 
Thus if one begins with all particles in state 0, 
corresponding to being far from the invariant 
circle, then pi is nonincreasing as a function of j 
for all time and there can be no density spikes. 

We observe that the lemma is true in a simple 
Monte Carlo numerical simulation of (3). The 
density relaxes to a constant, but is always 
monotone. 

To help resolve the conflict between the model 
and the observations of Smith and Spiegel, we 
turn to numerical experiment. 

3. Numerical experiments 

The simplest numerical attempt to test er- 
godicity is to partition phase space into N 2 boxes 
with sides of size l /N ,  and record the number of 
times a trajectory visits each box during t itera- 
tions. To study a particular irregular component,  
we start our initial condition close to a hyper- 
bolic periodic point; thus it approximately fol- 
lows the unstable manifold of this point. 

As a model, we use the standard mapping 

y'  = y - - ~  sin(2-trx) rood i ,  

x'  = x + y '  rood I .  

We study this system near k = kcr ~ 0.971635406 
where the last rotational invariant circle, the 
golden circle with frequency y - z ,  is destroyed 
(for a review see [12]). 

Numerical iterations using floating point arith- 
metic suffer from the rapid loss of accuracy due 
to the chaotic instability, and are also not one-to- 
one. In fact as was noted in [13], each floating 
point trajectory is eventually periodic. Even 
worse, these trajectories can drift across what 
ought to be invariant circles, becoming trapped 
on low period orbits. One can attempt to circum- 
vent these problems by discretizing the system 
on an integer lattice of L 2 points, letting x = i / L ,  
and y - - j /L ,  giving a one-to-one map that can be 
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computed with no loss of accuracy [14]. Every 
orbit in a discrete mapping is necessarily period- 
ic. Rannou has shown that the average period is 
¢7(L) for a random permutation (with the 
symmetries of the standard map), and numerical 
computations for the standard map on lattices 
with L-< 800 confirmed this dependence. How- 
ever, Percival and Vivaldi no ted  that the dis- 
tribution of orbit periods will vary depending 
upon number theoretic properties of L [15,16]. 
For example choosing L to be a highly com- 
posite number such as the ever popular 2" is 
expected to give anomalous results. We will 
compare several different L in our computa- 
tions. 

If one naively iterates using floating point 
arithmetic, as we do for the most part, it is 
important to note at least one result from above: 
the effective number of lattice points is 
6(precision-2), and if one iterates the map 
longer than ~?(precision -1) a typical orbit would 
be periodic. This has observable effects, for 
example in single precision calculations of the 
diffusion coefficient. We use IEEE double preci- 
sion arithmetic, and therefore require t < 1016 - a 
limit that is well beyond our computational 
resources. 

Sometimes one can appeal to shadowing to 
evade the criticism of the loss of accuracy due to 
chaotic instability, i.e. even if one is not iterating 
a true orbit of the map, shadowing would imply 
there is a true orbit nearby [17,18]. However, we 
believe that the very phenomena that make our 
system interesting- long time correlations near 
the boundaries of chaotic zones-invalidates 
employment of such methods; this is similar to 
the glitch discussed in [19]. 
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(-0.5,  0.0) which is within 10 -16 of the unstable 
fixed point or (0,1) orbit. For k = kcr the visited 
area converges a s  t -° '45 to its asymptotic value of 
A~(kcr ) = 0.408. This corresponds to the trajec- 
tory filling the chaotic zone that is bounded by 
the critical invariant circles with rotation num- 
bers -+~/-2_ we expect the covered set to be a 
"fat fractal," a fractal with nonzero area, follow- 
ing [3,20]. The dashed curve shows an orbit 
started at a point on the hyperbolic (377,910) 
orbit slightly below the critical invariant circle 
(i.e. state 7 of the Markov chain). The numerical 
trajectory remains trapped in the neighborhood 
of the periodic orbit, thus visiting only a small 
region of phase space until t---5 x 10 a. At this 
time it escapes and rapidly spreads over the same 
domain as the first orbit. 

For k>kcr,  the accessible area suddenly 
jumps because the golden circles become can- 
tori. For example at k = 0.981 the accessible area 
is Ac(0.981)= 0.534; however, it takes an ex- 
tremely long time for an orbit to escape across 
the golden cantorus. In the figure this escape 
occurs at t = 7 × 107. Using transport theory [5], 
the average transit time for trajectories for initial 
conditions in the irregular component between 
the golden cantori with frequencies to = _+y-2 is 
exactly 

A~ 0.408 = 1.2(10) 7 (6) 
tare 2AW~, 2×  1.66(10) -8 

where AW v is the flux through each of the golden 
cantori. This agrees reasonably well with the 
observed time for this single trial, which after all 
was placed at the "maximum" distance from the 
cantorus. 

3.1. Chaotic area 3.2. Density distribution 

Fig. 1 shows the area ( A - t h e  number of 
visited cells/N 2) visited by a single chaotic tra- 
jectory as a function of time for N = 500 using 
floating point arithmetic. The solid curve corre- 
sponds to a trajectory started at (x,y)= 

Though the chaotic trajectory appears to den- 
sely cover a nonzero area, the coverage is not 
uniform for finite t. This was discussed by Smith 
and Spiegel, who observed that the density 
distribution on phase space exhibits large fluctua- 
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Fig. 1. Occupied area vs. time. Area  is measured by the number  of occupied cells in a 500 × 500 cell grid. Initial conditions are 
labeled by the frequency of the nearby hyperbolic orbit. For the dot-dashed curve, the orbit  remains t rapped between the golden 
cantori  until  t ~ 7 x 107. For  the dotted curve, the trajectory is t rapped in a narrow region around the (377,910) orbit  until  
t ~ 5 x 10 s. The  inset shows A c - A -- t -°'4s for the k = k~, trajectory beginning at (0,1). 

tions [4]. Here we analyze this phenomena in 
more detail. 

The asymptotic, average occupation number is 
expected to be t divided by the number of 
accessible cells N2Ac, so we define the normal- 
ized density 

N2A c 
p = k t (7) 

for occupation number k. Fig. 2 is a color density 
plot of the trajectory beginning at the hyperbolic 
fixed point after 6 x 10  9 iterates. The majority of 
cells, colored red and blue, have 1 < p  < 1.17. A 
few cells have small density (19.9% of the 
occupied cells have p < 1). As indicated by the 
yellow cells in the figure, these tend to be on the 
boundary of i s lands-  they represent boxes that 
intersect the boundary of the chaotic zone and 
are therefore partially filled naturally. In support 
of this interpretation, the percentage of cells 
with p < 1 stays constant at 20 --- 0.5% for t > 2 x 

108. There are also a small number of cells that 
have a density far in excess of the m e a n -  the 
maximum density at t = 6 x 109 is /9 = 5.23. The 
0.57% of the cells that have density larger than 
1.17 are white in the figure; these are also to be 
found on the edges of several island chains, as 
shown in Fig. 3. We postpone discussion of these 
for the moment.  

A plot of the probability distribution of the 
density is shown in Fig. 4. For t = 106 about 14% 
of A~ is not yet explored and the probability 
distribution is very broad. The mode of this 
distribution decreases with time, tending asymp- 
totically to p=1.13---0.005. The decrease is 
caused by the fraction of occupied cells growing 
with time towards A c. The mode is not unity as 
would be expected because of the low density 
tail of partially occupied cells. The mean density 
is unity once all A~ cells are occupied (this is due 
to our normalization). 

For intermediate times the density distribution 
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Fig. 2. Color Density plot of a single trajectory at k = k ,  for t = 6 x 10 9, N =500. The color-density scale is shown at the bottom. 

is narrow and Gaussian-like; however  it has a 
secondary peak  at lower density (e.g. at t = 108, 

this peak  is at p = 0.84). This secondary peak 
slowly moves upwards;  it appears  as a shoulder  
at p = 1 . 0 5  for t - 2 . 5 x 1 0  a (see also Fig. 6 

below) and by 10 9 it has been  virtually absorbed.  
The low density cells corresponding to this peak  
are mostly in the (1,3) resonance zone: they are 
the red cells in Fig. 2. The  existence of  this 
secondary peak  appears  to depend sensitively on 
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Fig.  3.  T h e  ce l l s  f r o m  Fig, 2 that  h a v e  p > 1.17.  

the choice of initial condition (see discussion 
below). 

If the density distribution were obtained from 
a random process (randomly put t balls in A cN 2 
urns) then the distribution of the expected num- 
ber of cells with a given occupation number 
would be binominal. In the limit of large time 
this would become the Gaussian about p = I with 
the variance 

1 !!ii!ii!!!iii!i i!!! ! iiiii ii i 0.1  

~ 

001 

0 . 0 0 1  

0 . 5  1 1 .5  

P 

Fig. 5. C o m p a r i s o n  o f  G a u s s i a n  wi th  c o m p u t a t i o n s  for  t = 
107. S h o w n  are  data  for  k = 10, N = 100 a n d  k = kc, ,  N = 500.  

t r  2 = ( A c N  2 - 1 ) / t .  (8) 

Indeed, computations at large values of k (e.g. 
k = 10, see Fig. 5) where the entire phase space 
appears chaotic, give results for the density 
distribution virtually indistinguishable from the 
Gaussian. As Figs. 5 and 6 show, the agreement 
is not as good for k = kcr. In the first place, the 
mode of the Gaussian is 1.00, while the numeri- 
cal results give a larger value. This is due to the 
20% of the cells that are cut by the boundary of 
the irregular component. In Fig. 6 we shift the 
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Fig.  4. H i s t o g r a m  o f  the  probabi l i ty  d is tr ibut ion o f  the  

d e n s i t y  at k = k . .  
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Fig. 6. Comparison of computations with Gaussian for t = 
2.5 × 10 s, k = kcr, N =  500.  T h e  sol id c u r v e  is a G a u s s i a n  
artif icial ly c e n t e r e d  at p = 1.14,  but  wi th  v a r i a n c e  g i v e n  by  

(8). 
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mode of the Gaussian, to show that its variance 
agrees well with the numerical distribution. For 
other times the numerical or also agrees with the 
Gaussian; for example, from the data at t = 10 9 

we compute o" = 0.01---0.003 in precise agree- 
ment  with (8). The low density shoulder on the 
numerical distribution is quite visible in Fig. 6; it 
is absorbed into the main peak for t > 10 9. Our 
conclusion is that for t > 10 9 the computations 
are consistent with ergodicity on the irregular 
c o m p o n e n t -  with the exception of the ½% of 
high density cells. We discuss this in the next 
section. 

Before leaving this section, we pause to con- 
sider how our results depend upon the choice of 
initial condition and the use of floating point 
arithmetic. We will find that the transient fea- 
tures of the density distribution do vary, how- 
ever, by t =  10  9 most of these transients are 
gone. 

In the previous computations, we used an 
initial condition as close as possible to the 
hyperbolic fixed point, letting (x,y) = 
( -0 .5 ,  0 . 0 ) -  this point is not fixed numerically 
since sin(Tr)~-l.22 x 10 -16 tO double precision 
accuracy. A prominent feature of the distribu- 
tion for this initial condition was the low density 
shoulder caused by sparse occupation of the 
(1,3) resonance. This feature is no longer pres- 
ent in a computation for the nearby initial point 
( - - 0 . 5 - I - 1 0 - 1 2 , 0 . 0 ) ;  this is shown as the solid 
curve in Fig. 7. The distribution now takes the 
Gaussian form much earlier. Never-the-less, by 
t =  10 9 the low density shoulder in the first 
computation is absorbed and the two give com- 
parable results. 

To compare the double precision calculations 
with those of an integer mapping we set x = i~ 
L -  0.5, y = j / L ,  and iterate the bijective map. 

~j',= j + S(i) [ kL  { 2~ri~ ] 
fL: L i = i + j '  ' S(i) = L -COSk-Z-2j, 

where [x] is the largest integer less than x (i.e. 
floor(x)). Using the initial condition (i,j) = (0, 1) 
we obtain results, shown in Fig. 7, that exhibit 

7 . . . .  I . . . .  I . . . .  I . . . . . . . .  I . . . .  I . . . .  I . . . .  

6- I " L ~,0~37418271 "].~'~,': 

. . . . .  L:2~ I ~/'/:t ' • L = 1073741783 I, 
.~ 5- o L=10862184911 1~.: ;~ t. 

......... (-0.5.0.0) I ,4-" ;~ ! 
4 - [  ('0.5+ 10q2,0.0) [ ~ { ~.. ~ 

o ! , i  2- 
"..'l 

1- ..,....~.,..~. ~.;' 

0 
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 
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Fig. 7. Compar i son  of density distr ibutions for k = k , ,  N = 
500 and t = l0 s. The  solid line is a double precision calcula- 
tion for the initial condit ion ( - 0 . 5 +  10-12,0.0).  Integer  
calculations for the initial condit ion (i,j) = (0,1) with various 
pr ime lattices are shown with the  symbols  noted.  The  two 
values of  L > 23o= 1073741824 give almost  identical results 
to the  double precision calculation. However  a double 
precision calculation for (0.5,0.0) (dot ted)  and ones  using 
prime L < 2 3 ° ,  as well as for L = 2 3 °  show low density,  
t ransient  features.  

some sensitivity to the integer L. For our compu- 
tations changing L caused variations in the result 
that were similar to changing the initial condition 
in the floating point calculation; indeed, since we 
fixed ] = 1 we were in fact changing the initial 
condition as we varied L. We were unable to 
determine if the bijective nature of the integer 
map made it superior to the floating point map in 
any way. 

One issue of interest is the possible depen- 
dence of the results on whether L is composite 
or prime [15]. We compared the computation for 
L = 2  30 with several nearby prime numbers. 
Interestingly, for those prime L > 2 30 that we 
checked, the integer calculations are nearly 
Gaussian just like the solid curve in Fig. 7. 
However for L = 2 30 or a prime slightly smaller 
than this, the calculations differed significantly- 
often exhibiting a low density peak showing that 
some region of phase space was under-occupied. 
Some examples are displayed in Fig. 7. 

In all cases, however, these differences appear 
to be transient. The probability distribution 
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becomes increasingly narrow and Gaussian-like 
as t increases, taking into account the fiat tail of 
low density cells caused by the boundary of the 
irregular component .  

3.3. Density spikes 

We have seen that most of the anomalous 
features of the density distribution appear to be 
transient,  implying numerical ergodicity on the 
irregular component .  However ,  the existence of 
a small number  of cells with excess density is still 
troubling. As shown in Fig. 2, at t = 6 × 109 
about  0.57% of the cells have density larger than 
1.17. According to (8), the statistical standard 
deviation at this time is 0.004. Thus, since 1.17 is 
10 standard deviations above 1.13, only ~10 -23 
of the cells should have p > 1.17. Indeed,  such 
an observation led Smith and Spiegel to entitle 
their paper  "Strange A c c u m u l a t o r s " - a s  if the 
islands could act as attracting sets. Of course this 
cannot  happen for a Hamiltonian system (as they 
realized),  so we must look elsewhere for an 
explanation. One might think that a simple 
Markov model  of the process could show strong 
peaks in the density caused by the fact the states 
approaching an invariant circle have escape 
probabilities that tend to zero, and thus a par- 
ticle that lands in such a state will be trapped for 
times that approach infinity. However ,  this must 
be balanced by the fact that it is increasingly 
difficult to enter  these states. As we showed in 
section 2, a nearest  neighbor Markov model will 
never show these spikes. 

In the calculations, the maximum density and 
the location of the over-dense cells in phase 
space depend sensitively on the choice of initial 
condition and, if we discretize, on L. In all cases 
however ,  the observed maximum density de- 
clines toward the mean as t increases, see Fig. 8. 
This decay is punctuated by sudden increases 
when the orbit is t rapped for long segments. 
Following these trapping episodes, /[}max decays 
precisely as  t -1  because the maximum occupa- 
tion number  is constant. The  overall decay is 

100 ~ i  . . . . . . . .  I . . . . . . . .  I . . . . . . . . . . . . . .  

10 ............ ~.~,~.~._ t ' i " V  , i  " , ,  " "  ~ ' ~  ..................... " * ! ,  ........................... ~ .............................. ~ 

11 . . . . . . . .  i . . . . . . . .  i . . . . . . . .  L . . . . . . . .  i . . . . . . . .  
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t 

F i g .  8.  M a x i m u m  d e n s i t y  k = kc , ,  N = 5 0 0 .  T h e  s o l i d  c u r v e  is  

f o r  t h e  i n i t i a l  c o n d i t i o n  ( 0 . 5  + 10 ~ : ,0 ) ,  a n d  t h e  d a s h e d  c u r v e  

f o r  ( 0 . 5 , 0 . 0 ) .  T h e  s t r a i g h t  s e g m e n t s  d e c a y  e x a c t l y  as  t -~ .  T h e  

spikes are due to trapping episodes when the maximum 
occupation number jumps up. 

roughly / -0 .2 ,  though it is difficult to extract a 

rate from the data. The computations of Smith 
and Spiegel were for relatively short times, t 
108, and they observed Praax~20; this is con- 
sistent with our observations. In any case, the 
spikes are a transient phenomena,  and at least 
we can conclude that there are no "ac- 
cumulators"  in our system. 

3.4. Reduction to linear chain 

To further elucidate the occurrence of the 
density spikes we compare the numerical experi- 
ments with a one-dimensional Markov model.  
Thus it is necessary to determine the state 
containing each phase point z~ = (x,, y,). The  
correct way to do this would be to choose a set 
of cantori, discretize the phase space into states 
separated by these cantori, and use these for 
comparison. This would be computationaUy in- 
tensive, however. Instead of this procedure  we 
use the width function introduced in [21]. This 
has the advantage that the algorithm for check- 
ing whether a point is " in"  a particular state is 
trivial; the disadvantage is that we are an addi- 
tional step removed from a direct comparison 
between the Markov model  and the map. 
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Fig .  9. P o i n t s  t h a t  h a v e  w i d t h s  less  t h a n  o n e  f o r  500  i t e r a t e s  

f o r  s e v e r a l  v a l u e s  o f  to a n d  k = k , .  S h o w n  a r e  t he  (0 ,1 ) ,  

( 1 , 3 ) ,  ( 2 , 5 ) ,  ( 3 , 8 )  a n d  3, s ta tes .  

The width of a point relative to a given 
frequency to is defined as 

wo~[z0] =sup(xk - tok) - inf (x ;  - toj) ,  (9) 
k 1 

thus it measures the deviation of the orbit from 
rigid rotation with frequency to. All points on 
"o rde r e d"  or "mono tone"  orbits have w~-< 1, 
relative to their rotation frequency, and all 
rotational invariant circles and cantori are mono- 
tone  [12]. Thus it is natural to consider the set of 
points whose orbits have width less than one: 

W~, = {z: w~[z] <-- 1}. (10) 

With several reasonable,  geometric assumptions, 
we can prove that Wp/q is contained in the 
resonance of frequency p/q [21]. We show sever- 
al of the sets Wp/q in Fig. 9. Thus the width 
distinguishes between the states in the Markov 
chain. Fur thermore ,  w,o is easily computed from 
the orbit: no complicated geometrical intersec- 
tions need be computed.  

For  the standard map, we use the reflection 

symmetry about the origin to reduce our  phase 
space to the orbifold { - 0 . 5 - < x < 0 . 5 ,  0 _ < y _  
0.5]. For  k = kcr , we choose the states to be the 
continued fraction convergents of the golden 
mean;  when to < 1/3, 2, the set of states is {0/1, 
1/3, 3/8,  8/21, 21/55, 55/144 . . . .  ) for i =  0, 1, 
2 . . . . .  Note ,  however that the union of these 
states does not cover the phase space below the 
critical circle: one would need to include all 
rationals to do this [22]. 

For  our computations we begin with a point z 0 
close to the hyperbolic point of the p/q orbit and 
assume that it is in fact in this state. We compute  
w~, along this orbit until it first exceeds one, 
declaring that it has now made a transition to a 
neighboring state. If the width exceeds unity 
because the supremum has increased we declare 
the new state to have larger frequency. Con- 
versely if the infinum has decreased the new 
state has a lower frequency. This gives a set of 
nearest neighbor transitions. The occupation 
number  T i is simply the number  of iterates in 
state i and the transition probabilities are the 
fraction of the T i that lead to a transition on the 
next step. 

In Table 1, we show the results of this calcula- 
tion for t to  t = 1 0 1 0  and an orbit started at the 
(0,1) hyperbolic point, state 0. Remarkably  this 
orbit never moves above state 4! On the other  
hand, if we initialize the orbit in a higher state, 
e.g. s o = 4, then it remains t rapped there for a 
long initial segment, as we saw before. However ,  
by t =  10 ~°, the density distribution and the 

T a b l e  1 

O c c u p a t i o n  p r o b a b i l i t i e s  a n d  t r a n s i t i o n  p r o b a b i l i t i e s  u s i n g  t h e  w i d t h  c a l c u l a t i o n  f o r  t =  10 TM u s i n g  f loa t ing  p o i n t  a r i t h m e t i c ,  
c o m p a r e d  w i t h  t h e o r e t i c a l  r e su l t s  b a s e d  o n  t h e  r e s o n a n c e  a r e a s  a n d  tu rns t i l e s  

S t a t e  s o = 0 s o = 4 T h e o r e t i c a l  

TJTto, P,,-I P,,+1 TJT,o, Pi~-i Pi,+1 A~/A,o ' AW~ I/Aj AW,+I/Ag 

0 4 .17  x 10 i 8 .35  × 10 -2 4 .16  × 10 -1 8 .33  :x: 10 -2 8 .02  × 10 -1 2 .85  × 10 -3 

1 5 . 1 1 X 1 0 - '  6 . 8 1 × 1 0  -2 1 . 2 7 x 1 0  -3 5 . 1 1 × 1 0  -1 6 . 7 7 x 1 0  -2 1 . 2 5 x i 0  3 1 , 7 1 x l O  1 8 . 5 0 X 1 0  -4 5 . 4 7 x 1 0  -4 
2 6 . 4 0 x 1 0 - 2  1 - 0 1 × 1 0  -2 1 . 8 2 × 1 0  -4 6 . 1 5 × 1 0  -2 1 . 0 4 × 1 0  -z 1 . 9 0 × 1 0  4 2 , 2 9 x 1 0 - 2  2 . 8 4 x 1 0 - 4  1 . 9 7 x 1 0 - 4  

3 7 . 3 9 x 1 0  -3 1 . 5 8 x 1 0  -3 2 . 1 2 x 1 0  -5 7 . 9 3 x 1 0  -3 1 . 4 7 x 1 0  -3 4 . 2 4 x 1 0  -5 3 . 1 6 x 1 0  3 9 . 9 6 × 1 0  -5 7 . 3 2 x 1 0  - s  

4 3 . 9 2 x 1 0  -4 4 . 0 0 x 1 0  -4 2 . 8 9 × 1 0  -3 1 . 1 7 x 1 0  -4 7 . 7 5 x 1 0  -6 4 . 3 9 x 1 0  4 3 . 8 0 × 1 0  -s  2 . 7 9 x 1 0  -5 

5 4 . 1 0 × 1 0  -4 5 . 4 6 × 1 0  -5 6 . 1 0 × 1 0  5 1 . 4 5 x 1 0  -5 1 . 0 7 × 1 0  -5 
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transition probabilities for this calculation agree 
well with those for the previous one, except for 
the excessive population in states 4 and 5. 

If the simple Markov chain model were valid, 
the transition probability would be given by Eq. 
(2), where A W / i + I  ( A W / / _ I )  is the area of the 
turnstile in the upper  (lower) separatrix of the 
ith resonance,  and A i is the area of the con- 
nected chaotic component  of the resonance. We 
can compute  AW and the total resonance area 
(including the regular regions) using the action 
function [22]; the results are given in Table 2. We 
use these values in the last three columns of 
Table  1 to obtain the expected equilibrium 

occupation probability A i / A t o t ,  a s  well as the 
expected transition probabilities. While there is 
certainly not quantitative agreement,  there is 
order  of magnitude a g r e e m e n t -  the computa- 
tions tend to be within a factor of 3 of the 
predictions. With the exception of state 0, the 
occupation probabilities of the states tend to be 
larger, and the downward probabilities are al- 
ways larger, than expected. We can estimate the 

state density by Pl = Ti / Trot  X Atot/Ai. The val- 
ues in Table 1 give 

Pi = {0.52, 2.99, 2.79, 2.34, 0.89} 

for the s o = 0  calculation. Thus there are no 
density spikes: the density decreases with state 
with the exception of state 0. For  So = 4, on the 
other  hand /94 = 6.58 and P5 = 6.72, but these 
excesses are due to the initialization of the orbit 
in this state 4. We conclude that the observed 
density spikes would not occur if there were only 

T a b l e  2 

A r e a s  of  r e s o n a n c e s  and  the i r  tu rns t i l e s  for  kcr. T h e  i ta l ic ized  
e n t r i e s  a re  no t  ca l cu la t ed ,  bu t  a re  e s t i m a t e d  accord ing  to  the  
r e n o r m a l i z a t i o n  sca l ing ,  Eq .  (4).  

~o A r e a  AW, ÷ 1 AW/i- 1 

(0 ,1)  1.9654 x 10 -1 5.5950 x 10 -4 
(1 ,3)  4.1981 × 10 -2 2.2945 × 10 -5 3.5690 × 10 -5 
(3 ,8)  5.6110 × 10 _3 1.1059 x 10 -6 1.5913 × 10 6 
(8 ,21)  7.7411 × 10 -4 5.6646 × 10 -8 7.7131 x 10 -8 
(21 ,55)  1.0764 x 10 -4 3 .0085 × 10 9 4.0964 × 10 -9 
(55 ,144)  1 . 4 9 0 1 × 1 0  -5 1 . 5 9 7 8 × 1 0  -1° 2 . 1 7 5 6 × 1 0  -1° 

a single invariant circle bounding the irregular 
component .  

4. Markov tree 

As observed in the numerical experiments,  the 
highest densities occur near the boundary of 
small elliptic islands; for example in Fig. 2 these 
correspond to the island chains of the (3,10) and 
the ( - 3 , 8 )  orbits. The density spikes occur in a 
small region near the outermost  invariant circles 
of these islands; in fact, probably around small 
islands which are themselves encircling these 
islands. 

A similar phenomena was observed by Karney 
[23] in numerical experiments on the first escape 
time distribution for an orbit that began near  an 
island. He found that the longest t rapped seg- 
ments corresponded to the orbit being trapped 
around an island-around-an-island-around- 
an . . . .  

A Markov model can be constructed which 
takes islands-around-islands into account [7]. 
Each state still corresponds to a resonance zone 
whose frequency is a convergent of a boundary 
circle. These we call the levels. Each boundary 
circle gives a new class of states [24]. For  
example the rotational boundary circle with to = 

- 2  3' corresponds to class zero, and its 
convergents give the levels that we treated 
b e f o r e - t h e  Markov chain. Within the (p,q) 
state corresponding to one of these levels is the 
(p,q) rotational elliptic periodic orbit. It is 
surrounded by circles invariant under the qth 
iterate of the m a p - t h e s e  are class 1. The 
outermost  of these forms a boundary circle, and 
its convergents provide a new infinite set of 
levels at class 1. Within each of these levels there 
can be class 2 islands chains, and so forth. 

The resulting set of states has the topology of 
a tree.  Following [7], we denote a state on the 
tree by a symbol sequence S = { a b c . . . w x }  
where the letters denote the sequence of branch- 
es leading to S from the root state R. Each state 
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has several  progeny,  say S a  = { a b c . . . w x a  }, etc. 

but  only a single parent  state, D S  = { a b c . . . w } .  

There  are transition probabilities Ps,s~ to each 

daughter  and PS,DS to the parent .  An example of  
this structure for a single new class at each level 
is shown in Fig. 10. A left transition on the tree 
is designated with "0" ,  and a right transition 
with a "1" .  Left  transitions correspond to ap- 
proaching a particular boundary  circle, while 

right transitions correspond to becoming t rapped 
around a higher class island. In general,  the 
n u m b e r  of  branches coming out of  any junction 
corresponds  to the number  of  distinct elliptic 
orbits within each level. All but a small number  
of  the islands will be too small to be of  any 
practical importance  on realizable t ime scales. 

Wha t  is surprising about  the Markov  dynamics 
on the t ree is that the density does not necessari- 

ly remain monotone  (i.e. with the density of  the 
parent  larger than that of  each of its progeny).  
Fig. 11 displays the result of  a Monte  Carlo 
calculation for which the particle is initially in 
the root  state and is i terated 106 times. We used 
the self-similar transition rates [7], analogous to 
(4): 

Ps  _ ,, ~atsloo[Sl 
,DS --k 'Ot 'O t ' l  , 

PS,SO = g o P s o , s  , 

Pss l  = I'L1Psl,s , (11) 

11 

y)'a (1,3) i~ (0,1) 

Fig. 10. Sketch of the states and transitions for a two branch 
Markov tree. The leftmost path corresponds to the sequence 
of levels in the Markov chain model. Each transition to the 
right corresponds to becoming trapped around an island 
within a level. If the root state corresponds to the (0,1) 
resonance, then the state {1000...} approaches the boundary 
of the island around the (0,1) elliptic point, and {01000 . . . .  } 
approaches the boundary of the (1,3) island. 

100 

00010 'r 

lo ..... '1 ................ i ......................... i .......................... i ......... iiiii ........ 

.i i i1° ' Ps J 00100 i i i 

, .... 

i 

O0 0 O1 R 10 11 
State 

Fig. 11. State density for the Markov tree model at t = 1 0  6 

with parameters from (4) and (12). The abscissa is given by 
the symbol sequence for the state interpreted as a binary 
decimal with an appended "1". States not shown were 
unoccupied. 

where A[S] is the number  of  O's in S, and p[S]  is 
the number  of  l ' s .  Thus there are two t ime 

scaling constants,  e 0 and el, and two area scaling 

constants, go and /.t 1. We require go +/xl  < 1 in 
order  that the total area be finite. Reasonable  
values for the new parameters  are [7] 

el = } , tt I = 0.099105. (12) 

The ordinate in Fig. 11 is the density Ps in each 
state and the abscissa represents  the tree struc- 

ture as in Fig. 10. I f  the density were mono tone  
each of the branches in Fig. 11 would hang 
down, yielding a tree of  the willow variety. 
Nonmonotonic i ty  occurs at a number  of  states. 
As t is increased, the density in most  of  the states 
tends towards unity; however  depending upon 
the seed in the r andom number  generator  a few 
of the states acquire a large density, which then 
slowly relaxes as t-1 similar to the standard map 
data  shown in Fig. 8. 

One might object  that Fig. 11 was obta ined for 
a single realization, and that statistics might wash 
out the effect. However ,  it is easy to show 
analytically that  nonmonotonic i ty  can arise on 
the Markov  tree. Suppose for example  that  the 
density has reached equilibrium along one 
branch of the tree,  i.e. let Ps = 1 for a set of  
states D S ,  S,  SO and S00, but that the density of  
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S1 and S01 is zero. Then,  providing only that 

Ps--,sl > Pso-.sol ,  (which is satisfied by the model 
(11) if e 0 < 1) one iteration of (3) leads to Pso > 

p~ This occurs because it is more likely for 
particles in state S than those in SO to move into 
the branches of the tree,  thus the density in S 
decreases more.  

Of  course, even though the occupation num- 
ber is transiently not monotone,  it asymptotically 
relaxes to the constant density equilibrium, as is 
also consistent of our computations for the 
standard map. 

It would be difficult to provide a more quan- 
titative comparison of the Markov tree model 
with the standard map. This would require 
choosing the appropriate states for the map and 
constructing an algorithm that would decide 
which of state contains the phase point z, .  For 
the "short  t ime" dynamics of t ~< 101°, the effec- 
tive structure of the tree will not be close to the 
self-similar assumption, since as we have seen 
the phase point does not actually get too deeply 
into the tree structure (four or fewer levels as we 
saw for the Markov chain). 

5. Conclusions 

We have seen that a chaotic orbit on an 
irregular component  appears  to be numerically 
ergodic. The measure defined by such an orbit 
limits to the constant, a rea  measure but exhibits 
several anomalies along the way. Most conspicu- 
ous are the density spikes (up to a factor of 100) 
that occur around small elliptic islands embed- 
ded in the irregular component .  Though these 
spikes are transient, they might as well, for all 
practical purposes,  be eternal: even after 101° 
iterates a small fraction of the phase space has 
density up to three times the mean. Since in 
most cases 101° might as well be eternity, it 
would be bet ter  to use a nonuniform transient 
measure in applications, as opposed to the con- 
stant invariant measure. 

The density spikes are inconsistent with a 
nearest  neighbor Markov model of transport.  

For  this model,  if the density begins as a mono- 
tone function of distance from a bounding in- 
variant circle, it must remain monotone.  How- 
ever, a Markov tree model can account for 
nonmonotonici ty of the density. Metaphorically, 

this occurs because the density on a large branch 
of the tree can more easily disperse into small 
branches than can density on the small branches 
disperse into the twigs. 

Finally we mention another  possible explana- 
tion for the density spikes - the presence of local 
"accelerator  modes ."  These could also destroy 
the nearest neighbor connectivity of the trans- 
port model,  allowing large density to be trans- 
ported immediately past intervening low density 
regions. We have not investigated the existence 
of such modes. 

It remains an open problem to provide a 
rigorous theory of these phenomena.  
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