Enhancing the trapezoidal rule in the complex plane and along the real axis

Bengt Fornberg

University of Colorado, Boulder
Department of Applied M athematics

The Trapezoidal Rule (TR)

Function to integrate

Trapezoidal approximation Equivalent approximation

Used by Babylonian astronomers about 50 BC to calculate Jupiter's position from areas in time-velocity graphs

The Euler-M aclaurin formula (1735) for the TR error in semi-infinite case:

$$
\int_{a}^{\infty} f(x) d x-T R \approx\left\{\frac{h^{2}}{12} f^{(1)}(a)-\frac{h^{4}}{720} f^{(3)}(a)+\frac{h^{6}}{30240} f^{(5)}(a)-\frac{h^{8}}{1209600} f^{(7)}(a)+-\ldots\right\}
$$

For finite interval $[\mathrm{a}, \mathrm{b}]$ (instead of $[\mathrm{a}, \infty]$)

$$
\begin{aligned}
\int_{a}^{b} f(x) d x-T R \approx & \left\{\frac{h^{2}}{12} f^{(1)}(a)-\frac{h^{4}}{720} f^{(3)}(a)+\frac{h^{6}}{30240} f^{(5)}(a)-+\ldots\right\} \\
& -\left\{\frac{h^{2}}{12} f^{(1)}(b)-\frac{h^{4}}{720} f^{(3)}(b)+\frac{h^{6}}{30240} f^{(5)}(b)-+\ldots\right\}
\end{aligned}
$$

The ends of the interval is the by far dominant error source (Gregory 1670)

The Euler-M aclaurin formula (for approximating infinite sums)

$\int_{a}^{\infty} f(x) d x-T R \approx \frac{h^{2}}{12} f^{(1)}(a)-\frac{h^{4}}{720} f^{(3)}(a)+\frac{h^{6}}{30240} f^{(5)}(a)-\frac{h^{8}}{1209600} f^{(7)}(a)+-. .=\sum_{k=2}^{\infty} \frac{B_{k}}{k!} h^{k} f^{(k-1)}(a)$

The Bernoulli numbers B_{k} are defined by $\frac{z}{e^{z}-1}=\sum_{k=0}^{\infty} \frac{B_{k}}{k!} z^{k}$
$B_{0}=1, \quad B_{1}=-\frac{1}{2}, \quad B_{2}=\frac{1}{6}, \quad B_{3}=0, \quad B_{4}=-\frac{1}{30}, \quad B_{5}=0, \quad B_{6}=\frac{1}{42}, \quad B_{7}=0, \quad B_{8}=-\frac{1}{30}, \quad B_{9}=0, \quad B_{10}=\frac{5}{66}, \ldots$

James Stirling Colin M aclaurin Leonhard Euler

1707-1783

The Abel-Plana formulas

Euler-Maclaurin (1773): $\quad \int_{a}^{\infty} f(x) d x-T R \approx \sum_{k=2}^{\infty} \frac{B_{k} k}{k!} h^{(u-1)}(a)$
Abel-Plana (1823, 1820): $\quad \int_{a}^{\infty} f(x) d x-T R=-i \int_{0}^{\infty} \frac{f(a+i t)-f(a-i t)}{e^{2 \pi t}-1} d t$

$$
\sum_{k=n}^{\infty}(-1)^{n} f(k)=(-1)^{n}\left\{\frac{1}{2} f(n)+i \int_{0}^{\infty} \frac{f(n+i t)-f(n-i t)}{2 \sinh (\pi t)} d t\right\}
$$

Amedeo Plana 1781-1864

Niels Henrik Abel
1802-1829

Case 1: Numerical contour integration in the complex plane

Magnitude and phase angle

Function illustrated:

$$
f(z)=\frac{2}{z-0.4(1+i)}-\frac{1}{z+0.4(1+i)}+\frac{1}{z+1.2-1.6 i}-\frac{3}{z-1.3-2 i}
$$

Contours can be open or closed Follow either Cartesian or hexagonal grid lines

Using only weights at grid points, one can reach accuracy orders $0\left(h^{50}\right)$ (or even higher).

Grid density shown sufficient for error around 10-40

Two main opportunities:

Can one do better?

Each pair of lines adds as many correct digits as present in regular TR

Trapezoidal rule for

finite interval

Standard version

Can one do better?

Order of accuracy one more than number of end correction entries

Combine the two ideas for very accurate integration along finite line sections

All required weights can be obtained very easily (5 lines in M athematica)

Periodic function:

Example: $\quad f(z)=e^{\cos z}$
$\int_{-\pi}^{\pi} e^{\cos x} d x=2 \pi I_{0}(1) \approx 7.9549265210$

Fourier series: $\quad f(z)=\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}$

Aliasing: With N nodes in the period, all modes $k+n \cdot N, n$ integer, are identical at the node points

On the grid, these modes cannot be distinguished (in terms of function values).

Illustration of aliasing; $\mathrm{N}=10$; $\quad[-\pi, \pi]$ $\sin (-1 x)$ and $\sin (9 x)$ same at node points

Periodic example continued, and general method:

$$
f(z)=\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}
$$

TR along center line:
$T_{0}=2 \pi\left\{\ldots+c_{-2 N}+c_{-N}+c_{0}+c_{+N}+c_{+2 N}+\ldots\right\}$
$2 \pi c_{0}$ is the exact integral; other terms are aliasing errors.

Coefficients c_{k} decay faster than exponentially

TR along lines below and above:
$T_{-}=2 \pi\left\{\ldots+c_{-2 N} e^{-4 \pi}+c_{-N} e^{-2 \pi}+c_{0}+c_{+N} e^{2 \pi}+c_{+2 N} e^{4 \pi}+\ldots\right\}$
$T_{+}=2 \pi\left\{\ldots+c_{-2 N} e^{4 \pi}+c_{-N} e^{2 \pi}+c_{0}+c_{+N} e^{-2 \pi}+c_{+2 N} e^{-4 \pi}+\ldots\right\}$
These three results can be combined to eliminate the leading errors due to the $\mathrm{C}_{ \pm v}$ terms

Periodic example continued, and general method:

Combination that eliminates the $\mathrm{C}_{ \pm \pm}$terms:

$$
T=\frac{1}{(2 \sinh \pi)^{2}}\left\{-T_{-}+2 \cosh (2 \pi) T_{0}-T_{+}\right\}=2 \pi c_{0}+O\left(c_{ \pm 2 N}\right)
$$

Numerical values for the three coefficients approximately $\{-0.00187,1.00375,-0.00187\}$

If using 5 lines, error $0\left(c_{ \pm 3 N}\right)$, coefficients approximately $\left\{6.5 \cdot 10^{-9},-0.00188,1.00376,-0.00188,6.5 \cdot 10^{-9}\right\}$

Same idea equally available on hexagonal grids
Coefficients to use along three center lines

$$
\{0.00430,0.99141,0.00430\}
$$

Along 5 center lines

$$
\left\{-8.1 \cdot 10^{-8}, 0.00428,0.99144,0.00428,-8.1 \cdot 10^{-8}\right\}
$$

All multi-line TR formulas can alternatively be derived by contour integration in the complex plane, based on the analytic properties of the function $\pi \cot \pi z$.

Periodic example continued, and general method:

Test problem $\Rightarrow \Rightarrow$

$$
f(z)=e^{\cos z}
$$

Log-linear plot - convergence slightly better than spectral.
 Number of correct digits increases as expected with additional TR lines.

Trapezoidal rule for finite interval - End corrections:

Weights in regular (1-line) TR at $\mathrm{z}=\mathrm{a}$ (left end) : $\quad h\left\{\frac{1}{2}, 1,1,1,1,1, \ldots\right\}$
Euler-M aclaurin: Error in regular TR on an infinite interval:

$$
\int_{a}^{b} f(z) d z-T R=\left\{\frac{h^{2}}{12} f^{(1)}(a)-\frac{h^{4}}{720} f^{(3)}(a)+\frac{h^{6}}{30240} f^{(5)}(a)-\frac{h^{8}}{1209600} f^{(7)}(a)+-\ldots\right\}
$$

Euler-M aclaurin counterpart available - again only odd derivatives but different coefficients.

Second key ingredient for end correction: Cauchy's integral formula
$f^{(k)}(z)=\frac{k!}{2 \pi i} \int_{\Gamma} \frac{f(\xi)}{(\xi-z)^{k+1}} d \xi$

- Exact - no need for path to be very close to z
- Instead of finding quadrature weights around a contour for each derivative, whole EM-type expansion can be approximated by single FD stencil in complex plane

Examples of end correction FD stencil in 3-line TR case:

3-line M athematica code give all end correction weights for any combination of multi-line TR and stencil size.

For 3-line TR and 5x5 stencil:

$-c_{8}+i c_{9}$	$-c_{10}+i c_{11}$	$\boxed{c_{12}}$	$\boxed{c_{10}+i c_{11}}$	$\boxed{c_{8}+i c_{9}}$
$-c_{6}+i c_{7}$	$-c_{2}+i c_{3}$	$\boxed{c_{4}}$	$\boxed{c_{2}+i c_{3}}$	$\boxed{c_{6}+i c_{7}}$
$-c_{5}$	$\boxed{-c_{1}}$	$\boxed{ }$	$\boxed{c_{1}}$	$\boxed{c_{5}}$
$-c_{6}-i c_{7}$	$-c_{2}-i c_{3}$	$--i c_{4}$	$c_{2}-i c_{3}$	$c_{6}-i c_{7}$
$-c_{8}-i c_{9}$	$-c_{10}-i c_{11}$	$-i c_{12}$	$c_{10}-i c_{11}$	$c_{8}-i c_{9}$

$c_{1} \approx 0.01584538613124865210$,
$c_{2} \approx 0.00196114131223055449$,
$c_{3} \approx-0.00179604028335645052$,
$c_{4} \approx-0.01936320425382213082$,
c_{4},
$c_{5} \approx-0.00001086091533534879$
$c_{5} \approx-0.00006132067581641948$,
$c_{6} \approx 0.00000017592393798095$

All weights are coefficients times h (step length in any direction in the complex plane) Weights that are not part of 1-line TR almost vanishingly small.

Examples of end correction FD stencil in 3-line TR case:

Test problem with closed contours:

Hexagonal grid with $\mathrm{h}=0.1$

Magnitude and phase

Imaginary part

Case 2: Euler-M aclaurin applied to infinite sums; M idpoint Rule

Define $\quad F(x)=-\int_{x}^{\infty} f(t) d t \quad$ The EM 2 formula then becomes
$\sum_{k=0}^{\infty} f\left(k+\frac{1}{2}\right)=-F(0)+\frac{1}{24} F^{(2)}(0)-\frac{7}{5760} F^{(4)}(0)+\frac{31}{96780} F^{(6)}(0)-\frac{127}{154828800} F^{(8)}(0)+\ldots$
Apply regular cantered FD approximations, step $h=1 / 2$. Produces table of weights:

μ	Weights for $F(x)$ at x-locations										
	$-\frac{5}{2}$	-2	$-\frac{3}{2}$	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2	$\frac{5}{2}$
1						-1					
2					$\frac{1}{6}$	$-\frac{4}{3}$	$\frac{1}{6}$				
3				$-\frac{1}{30}$	$\frac{3}{10}$	$-\frac{23}{15}$	$\frac{3}{10}$	$-\frac{1}{30}$			
4			$\frac{1}{140}$	$-\frac{8}{105}$	$\frac{57}{140}$	$-\frac{176}{105}$	$\frac{57}{140}$	$-\frac{8}{105}$	$\frac{1}{140}$		
5		$-\frac{1}{630}$	$\frac{5}{252}$	$-\frac{38}{315}$	$\frac{125}{252}$	$-\frac{563}{315}$	$\frac{125}{252}$	$-\frac{38}{315}$	$\frac{5}{252}$	$-\frac{1}{630}$	
6	$\frac{1}{2772}$	$-\frac{2}{385}$	$\frac{25}{693}$	$-\frac{568}{3465}$	$\frac{1585}{2772}$	$-\frac{6508}{3465}$	$\frac{1585}{2772}$	$-\frac{568}{3465}$	$\frac{25}{693}$	$-\frac{2}{385}$	$\frac{1}{2772}$

Example

Approximate:
where

$$
\begin{aligned}
& \sum_{k=1}^{\infty} f(k) \approx 0.25903856926239039237 \\
& f(x)=\frac{x \operatorname{erfinv}\left(\arctan \frac{1}{\sqrt{1+x^{2}}}\right)}{\left(x^{2}+2\right) \sqrt{1+x^{2}}}, \quad F(x)=\frac{e^{-\left(\operatorname{erfinv}\left(\arctan \frac{1}{\sqrt{1+x^{2}}}\right)\right)^{2}}-1}{\sqrt{\pi}}
\end{aligned}
$$

To reach error around 10^{-16} by direct summation requires approximately $100,000,000$ terms. Instead, sum directly $\sum_{k=1}^{19} f(x)$ and apply EM 2 to $\quad \sum_{k=20}^{\infty} f(x)$.

$\mu=5$ terms of EM 2 requires a total of 9 function evaluations, or evaluation of up through the $7^{\text {th }}$ derivative of $f(x)$ (EM 2).

Case 3: Enhancing the Trapezoidal Rule on a finite interval

Trapezoidal rule: Fit by piecewise linear functions
Gives weights

$$
h\left[\begin{array}{lllllllll}
\frac{1}{2} & 1 & 1 & 1 & 1 & 1 & 1 & \ldots & 1 \\
2
\end{array}\right]
$$

Simpson's rule: Fit by succession of quadratics Simpson (1710-1761); however used by Kepler (1571-1630)

Newton-Cotes idea: Continue by using piecewise cubics, quartics, etc.
Newton (1642-1726), Cotes (1682-1716)
Concept flawed for several reasons:

- Essentially ALL errors in Trap. Rule comes from the ends; should do corrections there and NOT 'contaminate' throughout the whole interior.
- For periodic problem, Trap error $\approx\left(\right.$ Simpson error) ${ }^{2}$.
- Becomes very unstable for increasing orders.

James Gregory (1638-1675)

Extract from a letter by Gregory to John Collins, November 23, 1670:

Transcribed to print by Oxford Univ.
Press, 1840
primam ex differentiis $\left\{\begin{aligned} \mathrm{AP}=\mathrm{PO} & =c \\ \mathrm{~PB} & =d \\ \text { primis } & =f \\ \text { secundis } & =h \\ \text { tertiis } & =i \\ \text { quartis } & =k \\ \text { quintis } & =l\end{aligned}\right.$
et omnes differentias affici signo + , erit $\mathbf{A B P}=$ $\frac{d c}{2}-\frac{f c}{12}+\frac{h c}{24}-\frac{19 i c}{720}+\frac{8 k c}{164}-\frac{863 l c}{60480}+\& c$. in infinitum

First publications on calculus: Leibniz 1684, Newton 1687.

Comparison of weights, Newton-Cotes' vs. Gregory's methods

Key idea: For a given accuracy order, use somewhat more non-trivial weights than the minimal number in the Gregory formulas

Weight range in Gregory schemes of matching order p
[-0.14, 2.24]
[-7.8, 10.2]

- Corrections from the two sides can overlap.
- Possible to constrict weight sets that are all 'nice' rational numbers ($p=10$ case here).

The five quadrature methods applied to a test function

Test function with $\mathrm{N}=68$; gives error $<10^{-16}$
Test function: $f(x)=\cos (20 \sqrt{x})$
$\int_{0}^{1} f(x) d x=\frac{1}{200}(\cos (20)+20 \sin (20)-1)$

Some conclusions

Historical notes:

- The pioneering works by Euler, M aclaurin, Plana, Abel, Poisson, etc. were carried out between 200 and 300 years ago.
- Surprisingly little attention has been given in recent years to simplifying and enhancing numerical usage of Euler-M aclaurin-type expansions.

Some aspects of the present numerical approach:

- A variety of finite difference (FD) based end corrections are available for improving the accuracy of the classical $T R$, requiring no other data than equispaced function values.
- PART 1: Analytic functions given on a grid in the complex plane
- PART 2: Along the real line: Equispaced data surrounding the end point for an infinite sum
- PART 3: Along the real line: Equispaced data only within interval of integration.

References:

PART 1:

B.F., Generalizing the trapezoidal rule in the complex plane, Num. Alg. doi:10.1007/s11075-020-00963-0 (2020).
B.F., Contour integrals of analytic functions given on a grid in the complex plane, doi:10.1093/imanum/draa024

IM A J. Num. Anal. (2020).

PART 2:

B.F., Euler-M aclaurin expansions without analytic derivatives,

Proc. Royal Soc. A. doi/10.1098/rspa.2020.0441 (2020)
B.F. and J.A. Reeger, An improved Gregory-like method for 1-D quadrature, Numer. M ath. 141 (2019), 1-19.

PART 3:

B.F. Improving the accuracy of the trapezoidal rule, To appear in SIAM Review, Education Section (2021).

GENERAL REFERENCE:
B.F. and C. Piret, Complex Variables and Analytic Functions: An IllustratedIntroduction, SIAM (2020). $\quad \rightarrow \rightarrow \rightarrow$
(with residue calculus derivations of both the EM and the Abel-Plana formulas)

