
Slide 1 of 22 

Enhancing  the trapezoidal  rule  in  the  
complex  plane  and  along  the  real  axis

Bengt Fornberg

University of Colorado, Boulder
Department of Applied Mathematics



Slide 2 of 22 

The Trapezoidal Rule (TR) Function to integrate
Trapezoidal approximation
Equivalent approximation
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The Euler-Maclaurin formula (1735) for the TR error in semi-infinite case: 

For finite interval [a,b] (instead of [a,ꚙ])
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The ends of the interval is the by far dominant error source (Gregory 1670) 

Used by Babylonian astronomers about 
50 BC to calculate Jupiter’s position 
from areas in time-velocity graphs 
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The Euler-Maclaurin formula (for approximating infinite sums)
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The  Bernoulli numbers Bk are defined by 
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Amedeo Plana Niels Henrik Abel
1781-1864 1802-1829

Abel-Plana (1823, 1820):

0
1 ( ) ( )( 1) ( ) ( 1) ( )
2 2sinh( )

n n
k n

f n it f n itf k f n i dt
t




   
    

 
 

20
( )

1
) (( )

a tf tx d f a i f a itR i dt
e

x T 
    




  

The Abel-Plana formulas
( 1)

2 !
( ) ( )k kk

ka
f fx B h ax TR

k
d  




 Euler-Maclaurin (1735):



Slide 5 of 22 

Case 1: Numerical contour integration in the complex plane

Function illustrated:
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Magnitude and phase angle

Real part Imaginary part

Contours  can be open or closed
Follow either Cartesian or hexagonal grid lines

Using only weights at grid points, one can reach 
accuracy orders O(h50) (or even higher).

Grid density shown sufficient for error around 10 -40
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Two main opportunities:
Trapezoidal rule for
periodic problem
Standard version

Trapezoidal rule for
finite interval
Standard version

Can one do better? Can one do better?

Combine the two ideas for 
very accurate integration 
along finite line sections

All required weights can 
be obtained very easily
(5 lines in Mathematica)

Each pair of lines adds as 
many correct digits as 
present in regular TR

Order of accuracy 
one more than 
number of end 
correction entries
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Periodic function:

Example: cos( ) zf z e

cos
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Fourier series: ( ) i k x
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Aliasing: With N nodes in the period, 
all modes                      integer, are 
identical at the node points

On the grid, these modes cannot be 
distinguished (in terms of function 
values).

,k n N n 

Illustration of aliasing; N = 10; 
sin(-1x) and sin(9x) same at node points

[ , ] 
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Periodic example continued, and general method:

TR along center line:

TR along lines below and above:
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2pc0 is the exact integral; other terms
are aliasing errors.

Coefficients ck decay faster than exponentially
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These three results can be combined to eliminate the leading errors due to the c±N terms 
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Combination that eliminates the  c±N terms: 

 0 0 22

1 2cosh(2 ) 2 ( )
(2sinh ) NT T T T c O c 

        

Numerical values for the three coefficients approximately
{ -0.00187, 1.00375, -0.00187 }

If using 5 lines, error O(c±3N), coefficients approximately
{ 6.5·10-9, -0.00188, 1.00376, -0.00188, 6.5·10-9 }

Same idea equally available on hexagonal grids

Coefficients to use along three center lines
{ 0.00430, 0.99141, 0.00430 }

Along 5 center lines
{ -8.1·10-8,  0.00428,  0.99144,  0.00428, -8.1·10-8}

Periodic example continued, and general method:

All multi-line TR formulas can alternatively be derived by contour integration in the complex plane, 
based on the analytic properties of the function  p cot pz.
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Test problem 

Log-linear plot – convergence slightly better than spectral.
Number of correct digits increases as expected with additional TR lines.

Periodic example continued, and general method:

cos( ) zf z e
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Trapezoidal rule for finite interval – End corrections:
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Euler-Maclaurin: Error in regular TR on an infinite interval:

Second key ingredient for end correction:  Cauchy’s integral formula
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- Exact – no need for path to be very close to z
- Instead of finding quadrature weights around a contour 

for each derivative, whole EM-type expansion can be 
approximated by single FD stencil in complex plane

Weights in regular (1-line)  TR at  z = a (left end) :  1
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Weights in 3-line TR  at z = a :

Euler-Maclaurin counterpart available – again only odd derivatives but different coefficients.
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Examples of end correction FD stencil in 3-line TR case:

Left end:  3-line TR: 
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3-line Mathematica code give all end correction weights for any
combination of multi-line TR and stencil size.

For 3-line TR and 5x5 stencil:

All weights are coefficients times h (step length in any direction in the complex plane)
Weights that are not part of 1-line TR almost vanishingly small.

Accuracy O(hp) where p = (number of nodes in stencil) + 1.
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Examples of end correction FD stencil in 3-line TR case:

5x5 = 25 nodes
O(h26)

0.019

19 nodes
O(h20)

0.012

Number of nodes:
Accuracy order:
Largest magnitude
Off centerline entry:

Cartesian grid Hexagonal grid



Slide 14 of 22 

Test problem with closed contours:

Magnitude and phase Real part Imaginary part

Hexagonal grid with h = 0.1
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Case 2: Euler-Maclaurin applied to infinite sums; Midpoint Rule
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Apply regular cantered FD approximations, step h = ½. Produces table of weights:
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Example

Approximate:

where

To reach error around 10-16 by direct summation requires approximately 100,000,000 terms.

Instead, sum directly                      and apply EM2 to   
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m = 5 terms of EM2 requires a total of  9  function evaluations,  or evaluation of up through 
the  7th  derivative of f(x) (EM2).
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Case 3: Enhancing the Trapezoidal Rule on a finite interval

Simpson’s rule: Fit by succession of quadratics
Simpson (1710-1761); however used by Kepler (1571-1630)

Newton-Cotes idea: Continue by using piecewise cubics, quartics, etc. 
Newton (1642-1726), Cotes (1682-1716)

Concept flawed for several reasons:
- Essentially ALL errors in Trap. Rule comes from the ends; should do corrections there 

and NOT ‘contaminate’ throughout the whole interior. 
- For periodic problem,  Trap error ≈  (Simpson error)2.
- Becomes very unstable for increasing orders.

Gives weights  1 4 2 4 2 4 2 4 1
3
h 

Trapezoidal rule: Fit by piecewise linear functions

Gives weights 1 1

2 2
1 1 1 1 1 1h  
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Comparison of weights, Newton-Cotes’ vs. Gregory’s methods

Extract from a letter by Gregory to
John Collins, November 23, 1670:

Transcribed to print by Oxford Univ.
Press, 1840            →   →   →

First publications on calculus: Leibniz 1684, Newton 1687.

James Gregory (1638-1675)
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Key idea: For a given accuracy order, use somewhat more non-trivial weights than the
minimal number in the Gregory formulas

- Corrections from the two sides can overlap.
- Possible to constrict weight sets that are all ‘nice’ rational numbers (p = 10 case here).

Weight range in Gregory
schemes of matching order p

[-0.14,  2.24]

[-7.8,  10.2]

[-276,  273]
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The five quadrature methods applied to a test function

Test function: ( ) cos(20 )f x x

1

0

1( ) cos(20) 20sin(20) 1
200

( )f x dx   

log-log plot of errors vs. number of subintervals

Test function with N = 68; gives error < 10-16
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Some conclusions

Historical notes:

- The pioneering works by Euler, Maclaurin, Plana, Abel, Poisson, etc. were carried out 
between 200 and 300 years ago.

- Surprisingly little attention has been given in recent years to simplifying and enhancing 
numerical usage of Euler-Maclaurin-type expansions.

Some aspects of the present numerical approach:

- A variety of finite difference (FD) based end corrections are available for improving the 
accuracy of the classical TR, requiring no other data than equispaced function values.

- PART 1: Analytic functions given on a grid in the complex plane
- PART 2: Along the real line: Equispaced data surrounding the end point for an infinite sum
- PART 3: Along the real line: Equispaced data only within interval of integration. 
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