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Abstract
Version 1, 10/6/2014. The main sources are unpublished notes from László Fejér, 2003. He suggests

the book of Munkres for more details. For a readable introduction to topology, including algebraic topol-
ogy, see Armstrong’s Basic Topology (Springer-Verlag 1983). Many older books, such as Ward’s Topology
(1972) and Kelley’s General Topology (1955) are only point-set topology and are really generalized anal-
ysis; Kelley sub-titles his book “What every young analyst should know.”

1 Description of topology
The idea of topology is to study shapes of things, but it is different from geometry in that there is “no
distance.” In this sense it is more “fundamental”, as the questions seem more basic: do two objects have
the same “basic” properties even if they are not exactly the same size? Could you deform one object into
another in a “continuous” manner?

Some types of problems that topologists ask:

• The two pancake problem: suppose you have two pancakes on a plate. Find a straight cut halving
both.

• The sleeping snake: our snake sleeps in a tubelike bed of the same length as the snake. The snake goes
to sleep straight but has nightmares and wakes up all twisted. Show that there is a point on the snake
which wakes up at the spot it went to sleep.

• A polynomial of odd order has a root.

• Is there a good map of Earth? If it is one piece, then it is extremely distorted at the poles. Otherwise
you need two pieces.

• When can you untie a knot? For a mathematician, a knot has no ends, it is the image of a circle in
space without self-intersections.

• How to distinguish knots?

• Can you brush a hedgehog? Is there a nowhere zero vector field on the sphere? Equivalently, is it
possible that the wind blows at every point on the surface of the Earth at the same time? (The Earth
being a big sphere and the wind always blowing tangentially to the surface)

• The Dirac experiment: if you rotate an object 360◦ then things (or your hands) get twisted, but if you
do it once more the strings get untwisted. See “Dirac scissor experiment” at http://www.youtube.
com/watch?v=17Q0tJZcsnY.

Broadly speaking, topology separates into

• point-set topology, which studies basic properties like continuity, compactness, etc., much like we
covered in chapter 1 on metric spaces, and
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• algebraic topology, which seeks to classify topological structures into algebraic groups. For example,
the famous Poincaré conjecture is of this form. It is: “Every simply connected, closed 3-manifold is
homeomorphic to the 3-sphere.”

2 A little bit of point-set topology
For a set X, we create a set of sets T (the notation U is also common) that define the open sets of a
topology on X, as long as the three following rules are satisfied:

1. ∅ ∈ T and X ∈ T (and if these are the only sets in T , we call it the trivial or indiscrete topology which
is very “coarse”

2. U, V ∈ T implies U ∩ V ∈ T .

3. For any (possibly infinite or even uncountable) index set I, if Ui ∈ T then ∪i∈IUi ∈ T .

The closed sets are those whose complements are open. The smallest closed set containing a set A is the
closure of A, denoted Ā, and the largest open set inside A is the interior of A, denoted int(A). The difference
between the closure and interior is the boundary of the set, denoted ∂A.

Just as we can have different metrics on the same space X, we can have different topologies, hence we
refer to a topological space as the pair (X, T ). If we have a metric d on a space, it induces a topology using
the open balls, and we denote this topology by Td. The “largest” (or “finest”) possible topology on any
space X is the discrete topology, where every element in X is open; this is induced by the discrete metric.
A topology is metrizable if there is some metric that induces it (this means that open sets are defined by
sets U such that for all x ∈ U , there is some ε > 0 such that Bε(x) ⊂ U , where the ball is defined by the
particular metric). The trivial topology is not metrizable whenever X contains more than 2 points.

We define a function as continuous if the inverse image of an open set is open (alternatively, see
Definition 4.6 in the textbook). We say two topological spaces (X, TX) and (Y, TY ) are homeomorphic if
there is a continuous, bijective function f : X → Y such that f−1 is also continuous (and such a function is a
homeomorphism). N.B. do not confuse homeomorphism with the general concept of a homomorphism.

In metric spaces, we can define open sets using open balls, which is more convenient than just listing all
open sets! In general we can find a few sets such that we can manipulate these sets to give us all open sets,
which is what the notion of a base is (N.B. not the same as a basis in linear algebra! In our book, they use
the terminology “base” though other references may call this a “basis”). We say that a set of subsets of X,
called B ⊂ P(X), is a base for a topology T if T = {∪i∈IBi | Bi ∈ B}. For example, in a metric space, the
collection of all open balls (of all radii, around all points) is a base; the collection of all singleton sets is a
base for the discrete topology.

An even smaller set that can still induce the whole topology is known as a sub-base, and we say that a
set S ⊂ P(X) is a sub-base if the set of all possible finite intersections of S forms a base and S covers X.

We may think of something like the intermediate value theorem as inherent to metric spaces, but we
can actually formulate a version on topological spaces. We say a space (X, T ) has the intermediate value
property (IMV) if for any continuous function f : X → R, the image of X is a (possibly infinite) interval,
e.g., [a, b] or (a,∞), etc. We can say more about this. First, declare a space (X, T ) to be connected if
for any nonempty U, V ∈ T such that U ∪ V = X, we have U ∩ V 6= ∅. (Equivalently, we can let U, V be
closed). For example, if X = (−∞, 0) ∪ (1,+∞), with the usual topology (i.e., the topology induced by the
Euclidean norm), then X is not connected, which agrees with our intuition.

Then we have results like (1) (X, T ) is connected iff the only open and closed sets (“clopen” sets) are ∅
and X, and (2) a topological space has the IMV property iff it is connected, and (3) the continuous image of
a connected space is continuous. This reassures us that our formal notions of “connected” and “continuous”
agree with our intuition.

We can even define the notion of convergence if a sequence without using a metric! Let (xn) be a
sequence, then we say that xn → x or (xn) converges to x, if for every open set U containing x, the set
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{xn | xn /∈ U} is finite. Under the trivial topology, you can convince yourself that every sequence converges
to every point! So in this case, the idea of convergence is not so useful. Since we can speak of convergence,
we can define a function to be sequentially continuous if xn → x implies f(xn) → f(x). If a function is
continuous, it is sequentially continuous, but the converse may not be true in a general topological space.

Now, topologies can be quite nasty, and not metrizable. To add some order, we can impose various
separation axioms. We say that a space is T0 if for any two distinct points, there is an open set containing
one of them but not the other, so this precludes the trivial topology. A stronger notion (it implies T0) is the
idea of a T1 space, which means for any two distinct points x and y, there is an open set contain x but not
y, and another open set containing y but not x; a space is T1 iff every point is closed. And finally we say
a space is T2 (or Hausdorff) if for any two distinct points x and y, there are disjoint open sets U, V ∈ T
with x ∈ U and y ∈ V .

The good news is that in a Hausdorff space, a sequence has at most one limit. Also, every metric
space (and its generated topology) is Hausdorff. Non-Hausdorff spaces are rare, but they do occur, as in
algebraic geometry. Let X = Rn and call F ⊂ X closed if there are polynomials {pi | i ∈ I} of n variables
such that F = {x ∈ X | pi(x) = 0 ∀i ∈ I}. These sets F are called algebraic sets, and this topology is
called the Zariski topology.

We can add even more structure by adding in some countability axioms. We say a space is M1 or
first countable if for every x ∈ X there exits open sets {Un | n ∈ N} containing x such that for all open sets
V containing x, there is some n such that Un ⊂ V . These spaces are nice since a function defined on a first
countable space is continuous iff sequentially continuous. It also means that in a first countable space,
closed sets can be defined as sets that include their limit points. Not surprisingly, every metric space
is first countable. We also define a space to be M2 or second countable if it has a countable basis. In Rn,
the usual Euclidean metric induces a M2 topology, but the discrete metric only induces a M1 topology.

Finally, we get around to compactness, where a space is compact if every open cover has a finite sub
cover. In a Hausdorff space, compact subsets are also closed. In general, we still have that if f is continuous,
then it maps compact sets to compact sets, and if f : X → R where X is compact, then f is bounded and
attains its maximum/minimum. If the space is M1, then compact iff sequentially compact. We define
x ∈ X to be an accumulation point of a set A if A ∩ (U \ x) is non-empty for all open sets U containing
x. A set X is compact implies that every infinite set has an accumulation point.

A final result, which uses the axiom of choice in its proof (see the proof of Urysohn’s metrization theorem
for details) is that if X is compact, Hausdorff and M2, then it is metrizable. Of course being compact is not
necessary for being metrizable in general, but being compact lets us know when we can characterize it as
such.

In general, we have Urysohn’s metrization theorem, which is that every Hausdorff (T1), second-
countable (M2), regular space (T3) is metrizable. A regular space is another separation condition (if Haus-
dorff, know as T3). There are a few other standard conditions, such as T4 (normal Hausdorff), T5 (completely
normal Hausdorff), and T6 (perfectly normal Hausdorff), as well as Tychonoff spaces.

3 A bit of algebraic topology
We want to discuss the topology of the space of continuous functions C(X,Y ). One notion is to say
that two functions are homotopic to each other if there is a “continuous” deformation from one to the
other; we will not make this notion precise in these notes. We write f ∼ g when there is a homotopy
between two functions, and this is an equivalence relation. We will not define here the standard notions of
loops, homotopy equivalence classes of loops (e.g., the first homotopy or fundamental group π1),
concatenations, categories nor functors, but we do mention that a classical result of algebraic topology
is the Brouwer fixed point theorem.

The idea of this machinery is to be able to classify spaces. As all mathematicians quote, a topologist
does not distinguish a coffee mug from his donut. So in R3, just how many possible “unique” shapes are
there? We can get some first answers below.
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First, define an n-dimensional manifold M as a topological space that is M2 and T2 and such that for
all m ∈ M , there is an open set U containing m such that U is homeomorphic to Rn, i.e., a manifold looks
“locally” like Euclidean space. The dimension of a manifold is unique and topologically invariant. Euclidean
space itself is of course a manifold. These structures arise in many fields of applied math, so they are worth
knowing about.

1. 1-dimensional manifolds are called curves and the only connected, compact 1-dimensional manifold
is S1, the sphere S1 = {x ∈ X | ‖x‖ = 1} ⊂ R2 (i.e., the boundary of the unit ball). The only
connected, non-compact curve is R1 itself.

2. 2-dimensional manifolds are called surfaces. Examples of surfaces are R2 itself, and the annulus
(0, 1)× S1 (like the curved part of a cylinder, without the ends, known as the open cylinder; or think
of the punctured plane, or a ring with finite thickness and open boundaries). Compact surfaces are
the sphere S2 ⊂ R3 and the torus (or donut) T2 = S1 × S1. The complete list of connected compact
surfaces is known. For example, here is a theorem from Armstrong:

Theorem 3.1 (Classification theorem). Any closed surface (i.e., 2-manifold) is homeomorphic to
either the sphere, or to the sphere with a finite number of handles added, or to the sphere with a finite
number of discs removed and replaced by Möbius strips (and no two of these aforementioned surfaces
are homeomorphic).

A Möbius strip (this also applies to a cylinder) by itself is not a surface since it has a boundary,
which is homeomorphic to the upper half-plane and not R2. The whole plane itself is not included
since it is not closed; the theorem in essence requires compact and connected surfaces. The example of
a sphere with a disc removed and replaced by a Möbius strip is not possible to imagine in 3D without
self-intersections (so not all 2-manifolds can be easily imaged in 3D!), but you can imagine that this
is possible since the Möbius strip does have a single circle as its boundary. The result is known as the
projective plane denoted P2. If you do this with 2 removed discs, we recover the Klein bottle.
Here are three descriptions of the projective plane:

• Take the unit sphere S2 ⊂ R3 and partition it into subsets which contain exactly two points,
the points being antipodal (at opposite ends of a diameter), and then identifying these antipodal
points with each other (think of this as some weird boundary condition).

• Begin with R3 \ {0} and identify two points iff they lie on the same straight line through the
origin.

• Begin with the unit ball B ⊂ R3 (like the sphere, but including the interior) and identify antipodal
points of its boundary sphere.

3. For higher dimensions, there is no known complete list, and is an active area of research. Some examples
are Sn and Tn, as well as Stiefel manifolds which appear in numerical analysis all the time.

A classic result of topology, much like the Brouwer fixed point theorem in its importance, is the Jordan
Curve Theorem or Jordan Separation Theorem:

Theorem 3.2. Any simple closed curve in the plane divides the plane into two pieces.

The theorem is notorious for being “obvious” but extremely difficult to prove rigorously.
There is much more to algebraic topology (you could say that it is “more interesting” than point-set

topology, or at least that it has more areas for research), but we stop here.
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