
Taylor expansion methods for solving ODEs 
 
 
Inefficient version: Repeated differentiation; described in many text books. However useful in the context of 

deriving Runge-Kutta formulas. 
 
 Given ' ( , )y f t y ;  by repeated differentiation: 
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 ... etc. (a big mess to find many terms in this way) 
 
 Knowing ( )iy t , we can compute  
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and then choose k so that the last used term is safely below the desired local error level; repeat at 1,it   etc., and 
proceed (using variable step size, if needed) from initial to final time. 
 
 
 
Somewhat more efficient version: Recursive calculation of expansion coefficients. 
 
Given a value for y at time t, we choose some desired local order n and then want to generate the coefficients in 
the exact counterpart to (1) 
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As an example, we choose 2 2( , )f t y t y  , i.e. the ODE is  
 
 2 2'y t y   .          (3)  
 
The expansion (2) is now obtained by the Mathematica script 
 
n=8;                              (* Specify number of coefficients *) 
y[k_]:=y+Sum[aiki,{i,1,n}]+O[k]n+1; (* Taylor expansion with unknown coef.*) 
f[t_,y_]:=t2+y2;                   (* Specify the RHS of the ODE *) 
LogicalExpand[y’[k]==f[t+k,y[k]]  (* Create the coefficient relations *) 



 
which produces the output 
 
t2+y2-a1==0&&2t+2y a1-2a2==0&&1+a12+2y a2-3a3==0&& 
2a1a2+2y a3-4a4==0&&a22+2a1a3+2y a4-5a5==0&&2a2a3+2a1a4+2y a5-6a6==0&& 
a32+2a2a4+2a1a5+2y a6-7a7==0&&2a3a4+2a2a5+2a1a6+2y a7-8a8==0 
 
 
A lot more efficient version: 
 
Start by considering the ODE in the form  
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Each time a truncated expansion (2) is substituted into the THS of (4), re-expanded in powers of k and then 
integrated with respect to k, we gain one more correct coefficient in the expansion (2). By starting with our initial 
condition (at t), and truncating so we never include any more terms than what we know to be correct, the algebra 
remains very moderate, and we might not even need any symbolic package (such as Mathematica) to generate a 
sequence of coefficients. 
 
 
An extremely efficient continued fraction (Padé) generalization: 
 
The recursive Taylor series method (described just above) can be improved further by, at each time step, convert 
the generated Taylor expansion to Padé rational form before it is actually numerically evaluated. This makes it 
possible to integrate straight through low order poles (which cause virtually all other ODE solvers to fail) or to 
pass nearby such singularities (which might be located in the complex plane near the path of integration) without 
loss of efficiency.  
 
In the ODE (3) we considered above, with initial condition (0) 0,y   there is an analytic solution available: 
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  , see Figure 1.  
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Figure 2.   Comparison between the original Taylor series method and this Padé enhancement when solving (1), 
expanding to 14 Taylor terms, using steps of size  4 / 27 0.15k    (figure copied from [3]).  
 
 
 
Already the Taylor series method is spectacularly accurate when the pole is approached, given the coarse step size 
that is used. With the Padé enhancement, there is some loss of accuracy very near to a pole, since the calculation 
involves subtractions of large numbers to generate small numbers. With slight precautions, it is possible to 
numerically integrate accurately vast distances through pole fields. 
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