
APPM 2460

SOLVING SYSTEMS OF EQUATIONS

1. Introduction

Today, we will be implementing a “pumped up” version of Euler’s method–Matlab’s built in ode solve
ode45. We can use ode45 in either of these cases; we just need to learn how to adapt ourselves. First
let’s review the relationship between second order ODEs and systems.

2. Solving a Second-Order ODE with ode45

We will now go over how to solve higher order differential equations using Matlab. Let’s consider the
initial value problem for an undamped oscillator

(1) x′′ + x = 0, x(0) = 1, x′(0) = 1.

Some calculations show that the solution to the IVP is

x(t) = sin(t) + cos(t).

In order to solve this system in Matlab, we must first convert the equation to a system of 1st order
equations by the transformation

x1 = x,

x2 = x′,

so that the equation (1) is equivalent to the first order system

x′1 = x2,

x′2 = −x1.

We would like to solve this forward in time. To do this, we must first create a function M-File that
holds the differential equation. It works exactly how the function M-file works for solving a first-order
differential equation, except we must treat our variables (except time) as vectors instead of scalars as we
did before. The function M-File for this differential equation should be saved as system ex.m and looks
like

function xprime = system_ex(t,x)

xprime = zeros(2,1);

xprime(1) = x(2);

xprime(2) = -x(1);

end

See how x is a vector, where x(1) is associated with x1 and x(2) is associated with x2? The same is true
of xprime, where xprime(1) is associated with x1 and xprime(2) is associated with x2. That’s all there
is to it!

Now we’d like to solve the differential equation with initial conditions x1(0) = 1 and x2(0) = 1 for-
ward in time, lets say t ∈ [0, 20]. The command is just the same as we have used before, except we need
to give it a vector of initial conditions instead of just a scalar. In a new script, type:

[t,x] = ode45(@system ex,[0,20],[1,1])
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The system has been numerically solved. Looking in the workspace, you see we now have two variables.
t holds all the time steps while y is a matrix with 2 columns. The first column of the matrix is all the x1
values and the second column is all the x2 values. You can plot these against time to see the solution of
each variable, or plot them against each other to generate solutions in the phase plane:

plot(t,x(:,1))

plot(t,x(:,2))

plot(x(:,1),x(:,2))

which will result in the plots shown in Figure 2 (more code will need to be written to include axis labels)

Figure 1. Plots for the harmonic oscillator example equation (1).

3. A nonlinear example

Consider the so-called van der Pol equation,

(2) x′′(t)− x′(t)(1− x2(t)) + x(t) = 0, x(0) = 2, x′(0) = 0.

This is a second-order ODE, but we will now recast it as a system of first-order ODEs. We’ll use x1 to
denote x and x2 to denote x′(t). Then, we can write (2) as

x′1(t) = x2(t)

x′2(t) = x2(t)(1− x2(t))− x(t)

where x(0) = 2 and x2(0) = 0. We thus see that second-order ODEs (and indeed, any order ODE) can be
rewritten as a system of first-order ODEs. This first-order form is what we need in order to use ode45.
Note that we could treat the two elements of our system (x1 and x2) as two elements of a vector, that is
to say our vector x would be

(3) x(t) =

(
x1(t)
x2(t)

)
So in this case, x = x1 and v = x2. Note that x′(t) = (x′1(t), x

′
2(t)). We could then write our ODE as a

vector-valued function, i.e.

(4) x′(t) = f(t, x) where f(t, x) =

(
x2

x2(1− x21)− x1

)
To summarize: we have rewritten the ODE (2) in the form x′(t) = f(t, x), but now x is a vector, with
x = (x1, x2). With our ODE in this form, we can put it into MATLAB.

3.1. Inputting the ODE into MATLAB. Now, we must figure out how to input this into MATLAB.
Our first task is to write a function f(t,x) that takes in a time t (i.e. a number) and a vector y and
outputs another vector f(t, x). Well, we can do this by modifying the code for the previous example:

function xprime = odefun(t,x)

xprime = zeros(2,1); % initialize xprime as a column vector of length 2

xprime(1) = x(2);

xprime(2) = x(2)*(1-x(1)^2) - x(1);
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The above function generates an output xprime that is a 2 × 1 column vector. We can now call ode45
like so:

x0 = [2 0]; % since y = (x,v) and x(0)=2, x_2(0)=0

tspan = [0 20]; % time runs from 0 to 20

[t,x] = ode45(@odefun,tspan,x0);

plot(t,x(:,1),t,x(:,2)); % plot the two columns of the result

We have plotted both x1(t) = x1(t) and x2(t) = x′(t) against time. Are there other ways to visualize
solutions to systems of ODEs? Next we will look at another way of plotting the result.

Figure 2. Solution to the van der Pol equation, using supplied code.

4. Working in Phase Space

Physicists often like to visualize systems in what they call phase space. Recall that we have a vector
that depends on time, x(t) = (x1(t), x2(t)). To plot in phase space is simply to plot the parametric curve
given by (x(t), x2(t)). We can modify the above code to plot in phase space as follows:

x0 = [2 0]; % since x = (x1,x2) and x1(0)=2, x2(0)=0

tspan = [0 20]; % time runs from 0 to 20

[t,x] = ode45(@odefun,tspan,x0);

plot(x(:,1),x(:,2)); % plot the two columns of the result AGAINST ONE ANOTHER

The resulting figure is shown in Figure 3.
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Figure 3. Phase space visualization of van der Pol solution.

5. Homework

Write a script that finds a numerical solution to the second-order IVP

x(t)′′ − µ(1− x2(t))x′(t) + x(t)−A sin(ωt) = 0

using parameters µ = 8.53, A = 1.2, and ω = 2π/10. Use the initial conditions x(0) = 2 and x′(0) = 0.
(Note that the above equation reduces to the van der Pol equation we solved above if we set µ = 1 and
A = 0. Adding in nonzero A adds forcing to the system, i.e. makes it non-homogeneous.) Plot for times
t = 0 to t = 100. Include both a plot of x and v against time, as well as a phase space plot of your
solutions. Plots should be appropriately labelled and titled.

If you solve the system correctly, you will see some very strange behavior! In particular, there will be
a pattern that almost repeats itself, but not exactly. This is an example of chaotic dynamics, which we
will explore more thoroughly in a few weeks.


