
APPM 2460

SOLVING SYSTEMS OF EQUATIONS

1. Introduction

We know how to use ode45 to solve a single ODE. A few weeks ago, we solved the problem

y′(t) − y(t) cos(t+ y(t)) = 0, y(0) = 1

using this method, which is basically a pumped-up version of Euler’s method.
Now we need to work on more complicated situations. For example, we might have a second-order

ODE:

y′′(t) + sin(y(t)) = 0, y(0) = 1, y′(0) = 1

We might also have a system of first-order ODEs:

x′(t) = y2(t), x(0) = 1

y′(t) = −x(t) − cos(y(t)), y(0) = 2

We can use ode45 in either of these cases; we just need to learn how to adapt ourselves. First let’s review
the relationship between second order ODEs and systems.

2. Solving a Second-Order ODE with ode45

2.1. Second-Order ODEs as Systems. Consider the so-called van der Pol equation,

(1) x′′(t) − x′(t)(1 − x2(t)) + x(t) = 0, x(0) = 2, x′(0) = 0.

This is a second-order ODE, but we will now recast it as a system of first-order ODEs. We’ll use v(t) to
denote x′(t). Then, we can write (1) as

x′(t) = v(t)

v′(t) = v(t)(1 − x2(t)) − x(t)

where x(0) = 2 and v(0) = 0. We thus see that second-order ODEs (and indeed, any order ODE) can be
rewritten as a system of first-order ODEs. This first-order form is what we need in order to use ode45.
Note that we could treat the two elements of our system (x and v) as two elements of a vector, that is to
say our vector y would be

(2) y(t) =

(
x(t)
v(t)

)
So in this case, x = y1 and v = y2. Note that y′(t) = (x′(t), v′(t)). We could then write our ODE as a
vector-valued function, i.e.

(3) y′(t) = f(t, y) where f(t, y) =

(
y2

y2(1 − y21) − y1

)
To summarize: we have rewritten the ODE (1) in the form y′(t) = f(t, y), but now y is a vector, with
y = (x, v). With our ODE in this form, we can put it into MATLAB.

1



2 APPM 2460 SOLVING SYSTEMS OF EQUATIONS

2.2. Inputting the ODE into MATLAB. Now, we must figure out how to input this into Matlab.
Our first task is to write a function f(t,y) that takes in a time t (i.e. a number) and a vector y and
outputs another vector f(t, y). Well, we can do it as follows:

function yout = odefun(t,y)

yout = zeros(2,1); % initialize yout as a column vector of length 2

yout(1) = y(2);

yout(2) = y(2)*(1-y(1)^2) - y(1);

The above function generates an output yout that is a 2 × 1 column vector. We can now call ode45 like
so:

y0 = [2 0]; % since y = (x,v) and x(0)=2, v(0)=0

tspan = [0 20]; % time runs from 0 to 20

[t,y] = ode45(@odefun,tspan,y0);

plot(t,y(:,1),t,y(:,2)); % plot the two columns of the result

We have plotted both y1(t) = x(t) and y2(t) = v(t) against time. Are there other ways to visualize
solutions to systems of ODEs? Next we will look at another way of plotting the result.

Figure 1. Solution to the van der Pol equation, using supplied code.

3. Working in Phase Space

Physicists often like to visualize systems in what they call phase space. Recall that we have a vector
that depends on time, y(t) = (x(t), v(t)). To plot in phase space is simply to plot the parametric curve
given by (x(t), v(t)). We can modify the above code to plot in phase space as follows:

y0 = [2 0]; % since y = (x,v) and x(0)=2, v(0)=0

tspan = [0 20]; % time runs from 0 to 20

[t,y] = ode45(@odefun,tspan,y0);

plot(y(:,1),y(:,2)); % plot the two columns of the result AGAINST ONE ANOTHER

The resulting figure is shown in Figure 2.



APPM 2460 SOLVING SYSTEMS OF EQUATIONS 3

Figure 2. Phase space visualization of van der Pol solution.

4. Homework

Write a script that finds a numerical solution to the second-order IVP

x(t)′′ − µ(1 − x2(t))x′(t) + x(t) −A sin(ωt) = 0

using parameters µ = 8.53, A = 1.2, and ω = 2π/10. Use the initial conditions x(0) = 2 and x′(0) = 0.
(Note that the above equation reduces to the van der Pol equation we solved above if we set µ = 1 and
A = 0. Adding in nonzero A adds forcing to the system, i.e. makes it non-homogeneous.) Plot for times
t = 0 to t = 100. Include both a plot of x and v against time, as well as a phase space plot of your
solutions. Plots should be appropriately labelled and titled.

If you solve the system correctly, you will see some very strange behavior! In particular, there will be
a pattern that almost repeats itself, but not exactly. This is an example of chaotic dynamics, which we
will explore more thoroughly in a few weeks.


