Partial Information Breeds Systemic Risk

Yu-Jui Huang University of Colorado Boulder

Joint work with
Li-Hsien Sun
National Central University

SIAG/FME Virtual Seminar December 14, 2023

•0

- ► **Systemic risk** has been studied widely.
 - ► *Homogeneous* inter-bank lending and borrowing
 - ► No control: FOUQUE & SUN (2013)
 - Adding (delayed) controls: CARMONA ET AL. (2015), CARMONA ET AL. (2018)
 - ► More general reserve processes: FOUQUE & ICHIBA (2013), SUN (2018), GARNIER ET AL. (2013, 2013, 2017)
 - ► *Heterogeneity* among banks:
 - ► Reserve dynamics, costs: FANG ET AL. (2017), SUN (2022)
 - ► Capital requirements: CAPPONI ET AL. (2020)
 - ► Network locations: BIAGINI ET AL. (2019), FEINSTEIN & SOIMARK (2019)

The underlying thesis:
Inter-bank transactions trigger systemic risk.

Our Ideas:

- 1) Systemic risk should be more general than this...
- 2) Can other transactions trigger systemic risk?

► In this talk:

- ► Consider an *optimal investment* model for *N* investors.
 - ► No inter-bank activity is involved.
- ► Present a new cause of systemic risk.

▶ $N \in \mathbb{N}$ investors (e.g., fund managers) trading

$$\frac{dS(u)}{S(u)} = \mu du + \sigma dW(u), \quad S(t) = s > 0, \tag{1}$$

on a finite time horizon T > 0.

► Investor *i*'s wealth process:

$$dX_i(u) = rX_i(u) + \pi_i(u)(\mu - r)du + \pi_i(u)\sigma dW(u),$$

$$X_i(t) = x_i \in \mathbb{R}. \quad (2)$$

• Assume: $\sigma, r > 0$ are known; μ is only *partially known*.

THE MODEL

INTRO

- ► Relative performance criterion:
 - ► Investor *i* considers

$$(1 - \frac{\lambda_i}{\lambda_i})X_i(T) + \frac{\lambda_i}{\lambda_i}(X_i(T) - \overline{X}(T)). \tag{3}$$

- $ightharpoonup \overline{X}(T) := \frac{1}{N} \sum_{i=1}^{N} X_i(T).$
- $\lambda_i \in [0,1].$
- ► The resulting mean-variance objective:

$$J_{i}\left(t, \boldsymbol{x}, \{\pi_{j}\}_{j \neq i}, \pi_{i}\right)$$

$$:= \mathbb{E}^{t, \boldsymbol{x}}\left[X_{i}(T) - \boldsymbol{\lambda}_{i}^{M} \overline{X}(T)\right] - \frac{\gamma_{i}}{2} \operatorname{Var}^{t, \boldsymbol{x}}\left[X_{i}(T) - \boldsymbol{\lambda}_{i}^{V} \overline{X}(T)\right], \quad \textbf{(4)}$$

- ► Allow for two λ_i values (i.e., λ_i^M , λ_i^V).
- ► ESPINOSA & TOUZI (2015), LACKER & ZARIPHOPOULOU (2019):
 - ► Consider (3) under utility maximization.
 - ► Obtain a Nash equilibrium for the *N* investors.

THE MODEL

- ► Partial information:
 - (a) Investors observe the evolution of *S*.
 - (b) Don't know μ precisely (\implies can only infer it from (a)).
- ▶ **Assume:** Investors know μ takes either μ_1 or μ_2 ($\mu_1 > \mu_2$).
 - **Scenario 1:** $\mu \in \mathbb{R}$ is a fixed constant
 - Need to infer true value of μ between μ_1 and μ_2 (e.g., a stock with unreported innovation)
 - **Scenario 2:** μ alternates between μ_1 and μ_2
 - $\mu = \mu(M(t))$, where M is a continuous-time Markov chain with the generator

$$G = \begin{pmatrix} -q_1 & q_1 \\ q_2 & -q_2 \end{pmatrix}, \quad q_1, q_2 > 0,$$

- such that $\mu(1) = \mu_1$ and $\mu(2) = \mu_2$.
- Need to infer recurring changes of μ between μ_1 and μ_2 (e.g., changes between a bull and a bear market)

- ► Find a Nash equilibrium $(\pi_1^*, \pi_2^*, ..., \pi_N^*)$ for the *N* investors
 - ▶ under *full* information;
 - ▶ under *partial* information.
- Question:

How do investors' wealth change from *full* to *partial* information?

As we will see:
Partial information triggers systemic risk.

- ▶ *Inter-personally,* investor *i* selects π_i in response to $\{\pi_j\}_{j\neq i}$.
- ▶ *Intra-personally,* π_i needs to resolve *time inconsistency* among investor i's current and future selves...

Definition

INTRO

 $\boldsymbol{\pi}^* = (\pi_1^*, ..., \pi_N^*)$ is a Nash equilibrium for (4) if, for any i = 1, ..., N,

$$\liminf_{h \downarrow 0} \frac{J_{i}\left(t, \mathbf{x}, \{\pi_{j}^{*}\}_{j \neq i}, \pi_{i}^{*}\right) - J_{i}\left(t, \mathbf{x}, \{\pi_{j}^{*}\}_{j \neq i}, \pi \otimes_{t+h} \pi_{i}^{*}\right)}{h} \geq 0, \quad (5)$$

for all $(t, \mathbf{x}) \in [0, T) \times \mathbb{R}^N$ and π .

- ► All investors achieve intra-personal equilibrium simultaneously
 - ► —"soft inter-personal equilibrium" (HUANG & ZHOU (2022)).
 - ► "Sharp inter-personal equilibrium" hard to define here...

Scenario 1: Constant μ

$$\kappa_i := \frac{1}{\gamma_i} \left(1 - \frac{\lambda_i^V}{N} \right)^{-1} \left(1 - \frac{\lambda_i^M}{N} \right) > 0 \quad i = 1, \dots, N, \tag{6}$$

$$\overline{\kappa} := \frac{1}{N} \sum_{i=1,\dots,N} \kappa_i \quad \text{and} \quad \overline{\lambda}^V := \frac{1}{N} \sum_{i=1,\dots,N} \lambda_i^V.$$
 (7)

Theorem 1.1 ($\mu \in \mathbb{R}$ is known)

A Nash equilibrium $\pi^* = (\pi_1^*, ..., \pi_N^*)$ for (4) is given by

$$\pi_i^*(t) = e^{-r(T-t)} \left\{ \frac{\mu - r}{\sigma^2} \left(\kappa_i + \frac{\lambda_i^V}{1 - \overline{\lambda}^V} \overline{\kappa} \right) \right\}, \quad \forall i = 1, ..., N. \quad (8)$$

▶ If
$$\lambda_i^M = \lambda_i^V = 0$$
, becomes $\pi_i^*(t) = e^{-r(T-t)} \frac{\mu - r}{\sigma^2 \gamma_i}$.

Theorem 1.1 ($\mu \in \mathbb{R}$ is known)—*continued*

The value function under the Nash equilibrium π^* is

$$V_i(t, \mathbf{x}) = e^{r(T-t)} \left(x_i - \frac{\lambda_i^M}{N} \overline{\mathbf{x}} \right) + (T-t) N_i, \quad \forall i = 1, ..., N. \quad (9)$$

where

$$N_i := \left(\frac{\mu - r}{\sigma}\right)^2 \left\{ \left(\kappa_i + \frac{\lambda_i^V - \lambda_i^M}{1 - \overline{\lambda}^V} \overline{\kappa}\right) - \frac{\gamma_i}{2} \left(\frac{2\lambda_i^V}{1 - \overline{\lambda}^V} \left(1 - \frac{\lambda_i^V}{N}\right) \overline{\kappa} + \left(1 - \frac{2\lambda_i^V}{N}\right) \kappa_i\right)^2 \right\}.$$

$$\widehat{\mathfrak{p}}_j(u) := \mathbb{P}\left(\mu = \mu_j \mid \{S(v)\}_{t \le v \le u}\right), \quad j = 1, 2. \tag{10}$$

Lemma 1

INTRO

Fix $t \ge 0$. Given S in (1), the process $\{\widehat{W}(u)\}_{u>t}$ given by

$$\widehat{\widehat{W}}(\underline{u}) := \frac{1}{\sigma} \left[\log \left(\frac{S(u)}{S(t)} \right) - (\mu_1 - \mu_2) \int_t^u \widehat{\mathfrak{p}}_1(s) ds - \left(\mu_2 - \frac{\sigma^2}{2} \right) (u - t) \right] \tag{11}$$

is a Brownian motion w.r.t. the filtration of *S*. Moreover, $\{\widehat{\mathfrak{p}}_1(u)\}_{u\geq t}$ is the unique strong solution to

$$dP(u) = \frac{\mu_1 - \mu_2}{\sigma} P(u) (1 - P(u)) d\widehat{W}(u), \quad P(t) = \widehat{\mathfrak{p}}_1(t) \in (0, 1), \quad (12)$$

which satisfies $P(u) \in (0,1)$ for all $u \ge t$ a.s.

▶ By Liptser & Shiryaev (2013), Wonham (1965), Feller's test.

► Consequences:

▶ By (11), *S* in (1) can be expressed equivalently as

$$dS(u) = ((\mu_1 - \mu_2)P(u) + \mu_2)S(u)du + \sigma S(u)d\widehat{W}(u), \quad (13)$$

SCENARIO 2

where P is the unique strong solution to (12).

► Wealth process (2) now becomes

$$dX_{i}(u) = rX_{i}(u) + \pi_{i}(u) \Big((\mu_{1} - \mu_{2})P(u) + \mu_{2} - r \Big) du + \pi_{i}(u)\sigma d\widehat{W}(u).$$
(14)

► <u>Note:</u> The dynamics is now observable!

► Mean-variance objective (under *partial* information):

$$J_{i}\left(t, \boldsymbol{x}, p, \{\pi_{j}\}_{j \neq i}, \pi_{i}\right)$$

$$:= \mathbb{E}^{t, \boldsymbol{x}, p}\left[X_{i}(T) - \lambda_{i}^{M} \overline{X}(T)\right] - \frac{\gamma_{i}}{2} \operatorname{Var}^{t, \boldsymbol{x}, p}\left[X_{i}(T) - \lambda_{i}^{V} \overline{X}(T)\right], \quad (15)$$
where X_{i} satisfies (14).

Definition

$$\pi^* = (\pi_1^*, ..., \pi_N^*)$$
 is a Nash equilibrium for (15) if, for any $i = 1, ..., N$,

$$\liminf_{h \downarrow 0} \frac{J_{i}\left(t, x, p, \{\pi_{j}^{*}\}_{j \neq i}, \pi_{i}^{*}\right) - J_{i}\left(t, x, p, \{\pi_{j}^{*}\}_{j \neq i}, \pi \otimes_{t+h} \pi_{i}^{*}\right)}{h} \geq 0,$$
(16)

for all $(t, \mathbf{x}, p) \in [0, T) \times \mathbb{R}^N \times (0, 1)$ and π .

- ▶ Domain $Q := [0, T) \times (0, 1)$.
- ▶ Define $\theta, \beta : [0,1] \to \mathbb{R}$ by

$$\theta(p) := (\mu_1 - \mu_2)p + \mu_2, \quad \beta(p) := \frac{\mu_1 - \mu_2}{\sigma}p(1-p).$$
 (17)

• Given i = 1, ..., N, consider for any $\eta : [0, 1] \to \mathbb{R}$ the Cauchy problem

SCENARIO 1

$$\begin{cases}
\partial_{t}c + \left(\frac{\eta(p)}{\sigma} - \beta(p)\left(\frac{\theta(p) - r}{\sigma}\right)\right) \partial_{p}c \\
+ \frac{\beta(p)^{2}}{2} \partial_{pp}c + \underline{\kappa_{i}} \left(\frac{\theta(p) - r}{\sigma}\right)^{2} = 0 & \text{for } (t, p) \in Q, \\
c(T, p) = 0, & \text{for } p \in (0, 1),
\end{cases}$$
(18)

where $\kappa_i > 0$ is from (6).

Lemma 2

Assume: for any $t \ge 0$ and $p \in (0, 1)$,

$$dP(u) = \eta(P(u))du + \beta(P(u))dW(u), \quad P(t) = p,$$
(19)

has a unique strong solution with $P(u) \in (0,1)$ for all $u \ge t$ a.s.

Consider: Probability \mathbb{Q} on (Ω, \mathcal{F}_T) defined by

$$\mathbb{Q}(A) := \mathbb{E}[1_A Z(T)] \quad \forall A \in \mathcal{F}_T, \tag{20}$$

where

$$Z(u) := \exp\left(-\frac{1}{2} \int_{1}^{u} \left(\frac{\theta(P(s)) - r}{\sigma}\right)^{2} ds + \int_{1}^{u} \frac{\theta(P(s)) - r}{\sigma} dW(s)\right) \tag{21}$$

is a P-martingale. Also consider the Q-Brownian motion

$$W_{\mathbb{Q}}(u) := W(u) - \int_{1}^{u} \frac{\theta(P(s)) - r}{\sigma} ds. \tag{22}$$

Then, for any i = 1, ..., N,

(i) (18) has a unique solution $c \in C^{1,2}([0,T) \times (0,1))$ continuous up to $\{T\} \times (0,1)$. Moreover, c is bounded and satisfies

$$c(t,p) = \kappa_i \mathbb{E}_{\mathbb{Q}}^{t,p} \left[\int_t^T \left(\frac{\theta(P(u)) - r}{\sigma} \right)^2 du \right], \quad \forall (t,p) \in [0,T] \times (0,1),$$
(23)

- ▶ By elliptic regularization and Feynman-Kac-type arguments.
- ▶ **Note:** Under \mathbb{Q} , *P* in (19) becomes

$$dP(u) = \left(\eta(P(u)) - \beta(P(u)) \left(\frac{\theta(P(u)) - r}{\sigma}\right)\right) du + \beta(P(u)) dW_{\mathbb{Q}}(u), \ P(t) = p. \ (24)$$

SCENARIO 2

Lemma 2—continued

(ii) $\partial_n c$ is bounded and satisfies

$$\partial_{p}c(t,p) = \frac{2\kappa_{i}}{\sigma^{2}}(\mu_{1} - \mu_{2})\mathbb{E}_{\mathbb{Q}}^{t,p}\left[\int_{t}^{T} \zeta(u)\Big(\theta\left(P(u)\right) - r\Big)du\right], \quad (25)$$

where ζ is the unique strong solution to

$$d\zeta(u) = \zeta(u)\Gamma(P(u))du + \zeta(u)\Lambda(P(u))dW_{\mathbb{Q}}(u), \quad \zeta(t) = 1, \quad (26)$$

with *P* given by (24) and $\Gamma, \Lambda : (0,1) \to \mathbb{R}$ defined as

$$\Gamma(p) := \frac{d}{dp} \left(\eta(p) - \beta(p) \left(\frac{\theta(p) - r}{\sigma} \right) \right), \quad \Lambda(p) := \frac{d}{dp} \beta(p).$$

$$\zeta(u) = \lim_{h \to 0} \frac{P^{t,p+h}(u) - P^{t,p}(u)}{h} \quad \text{in } L^2(\Omega)$$
 (27)

$$= \lim_{h \to 0} \frac{P^{t,p}(u + \tau(h)) - P^{t,p}(u)}{h} \quad \text{in } L^2(\Omega),$$
 (28)

with $\tau(h) := \inf\{t' \ge 0 : P^{0,p}(t') = p + h\}.$

- \blacksquare "=": by Theorem 5.3 in Friedman (1975).
- \blacksquare "=": by time-homogeneity, strong uniqueness of *P* in (24).

► Messages:

• $\zeta(u)$ measures the *rate of change* of $P^{t,p}(\cdot)$ at time u.

$$\Longrightarrow \begin{cases} P^{t,p}(\cdot) \text{ volatile } \Longrightarrow \zeta(\cdot) \text{ large } \Longrightarrow \partial_p c(t,p) \text{ large.} \\ P^{t,p}(\cdot) \text{ stable } \Longrightarrow \zeta(\cdot) \text{ small } \Longrightarrow \partial_p c(t,p) \text{ small.} \end{cases}$$

2ND CAUCHY PROBLEM

► Given solution c_i to (18) for i = 1, ..., N, consider the Cauchy problem

$$\begin{cases}
\partial_{t}C + \eta(p)\partial_{p}C + \frac{\beta(p)^{2}}{2}\partial_{pp}C \\
+R_{i}(t, p, \partial_{p}c_{1}(t, p), \dots, \partial_{p}c_{N}(t, p)) = 0 & \text{for } (t, p) \in Q, \\
C(T, p) = 0, & \text{for } p \in (0, 1),
\end{cases}$$
(29)

where

Where
$$R_{i}(t, p, \partial_{p}c_{1}(t, p), \cdots, \partial_{p}c_{N}(t, p))$$

$$:= (\theta(p) - r) \left\{ \left(\kappa_{i} \frac{\theta(p) - r}{\sigma^{2}} - \frac{\beta(p)}{\sigma} \partial_{p}c_{i} \right) + \frac{\lambda_{i}^{V} - \lambda_{i}^{M}}{1 - \overline{\lambda}^{V}} \left(\overline{\kappa} \frac{\theta(p) - r}{\sigma^{2}} - \frac{\beta(p)}{\sigma} \overline{\partial_{p}c} \right) \right\}$$

$$- \frac{\gamma_{i}\sigma^{2}}{2} \left\{ \frac{2\lambda_{i}^{V}}{1 - \overline{\lambda}^{V}} \left(1 - \frac{\lambda_{i}^{V}}{N} \right) \left(\overline{\kappa} \frac{\theta(p) - r}{\sigma^{2}} - \frac{\beta(p)}{\sigma} \overline{\partial_{p}c} \right) \right.$$

$$+ \left. \left(1 - \frac{2\lambda_{i}^{V}}{N} \right) \left(\kappa_{i} \frac{\theta(p) - r}{\sigma^{2}} - \frac{\beta(p)}{\sigma} \partial_{p}c_{i} \right) \right\}^{2}$$

$$- \frac{\gamma_{i}\beta(p)^{2}}{2} (\partial_{p}c_{i})^{2} - \gamma_{i}\sigma\beta(p)\partial_{p}c_{i} \left(\kappa_{i} \frac{\theta(p) - r}{\sigma^{2}} - \frac{\beta(p)}{\sigma} \partial_{p}c_{i} \right).$$

Let conditions in Lemma 2 hold. Then, (29) has a unique solution $C \in C^{1,2}([0,T)\times(0,1))$ continuous up to $\{T\}\times(0,1)$. Moreover, C is bounded and satisfies

$$C(t,p) = \mathbb{E}^{t,p} \left[\int_t^T R_i (u, P(u), \partial_p c_1(u, P(u)), \cdots, \partial_p c_N(u, P(u))) du \right],$$

where P is the unique strong solution to (19).

Theorem 1.2 ($\mu \in \mathbb{R}$ is unknown)

A Nash equilibrium $\pi^* = (\pi_1^*, ..., \pi_N^*)$ for (15) is given by

$$\pi_{i}^{*}(t,p) = e^{-r(T-t)} \left\{ \frac{\theta(p) - r}{\sigma^{2}} \left(\kappa_{i} + \frac{\lambda_{i}^{V}}{1 - \overline{\lambda}^{V}} \overline{\kappa} \right) - \frac{\beta(p)}{\sigma} \left(\partial_{p} c_{i} + \frac{\lambda_{i}^{V}}{1 - \overline{\lambda}^{V}} \overline{\partial_{p} c} \right) \right\}, \quad i = 1, ..., N, \quad (30)$$

where c_i is the unique solution to 1st Cauchy (18) (with $\eta \equiv 0$) and $\overline{\partial_p c} := \frac{1}{N} \sum_{i=1}^N \partial_p c_i$. Moreover, the value function under π^* is

$$V_i(t, x, p) = e^{r(T-t)} \left(x_i - \frac{\lambda^M}{N} \bar{x} \right) + C_i(t, p), \quad i = 1, ..., N,$$
 (31)

where C_i is the unique solution to 2nd Cauchy (29) (with $\eta \equiv 0$).

- ► 1st term of (30):
 - ► Identical with (8), except that...

$$\mu$$
 is replaced by the estimate $\theta(p) = p\mu_1 + (1-p)\mu_2$ (based on $p = P(t)$)

SCENARIO 2

- ► 2nd term of (30):
 - Adjusts 1st term, based on "reliability" of p = P(t).

$$p = P(t)$$
 is "reliable" (i.e., $P(\cdot)$ stays near p) $\implies \zeta(\cdot)$ small $\implies \partial_p c_i(t,p)$ small \implies 2nd term of (30) small

$$p = P(t)$$
 is "unreliable" (i.e., $P(\cdot)$ oscillates away from p)
$$\implies \zeta(\cdot) \text{ large} \implies \partial_p c_i(t, p) \text{ large}$$

$$\implies 2\text{nd term of (30) large}$$

► The stock:

$$dS(u) = \mu(M(u))S(u)du + \sigma S(u)dW(u), \quad S(t) = s, \quad (32)$$

SCENARIO 2

0000000

► *M* is a two-state continuous-time Markov chain with generator

$$G = \begin{pmatrix} -q_1 & q_1 \\ q_2 & -q_2 \end{pmatrix}, \quad q_1, q_2 > 0.$$

- $\mu(1) = \mu_1 \text{ and } \mu(2) = \mu_2.$
- ► Investor *i*'s wealth process:

$$dX_{i}(u) = rX_{i}(u) + \pi_{i}(u)(\mu(M(u)) - r)du + \pi_{i}(u)\sigma dW(u),$$

$$X_{i}(t) = x_{i} \in \mathbb{R}.$$
(33)

► Mean-variance objective:

$$J_{i}\left(t, \mathbf{x}, m, \{\pi_{j}\}_{j \neq i}, \pi_{i}\right)$$

$$:= \mathbb{E}^{t, \mathbf{x}, m}\left[X_{i}(T) - \lambda_{i}^{M} \overline{X}(T)\right] - \frac{\gamma_{i}}{2} \operatorname{Var}^{t, \mathbf{x}, m}\left[X_{i}(T) - \lambda_{i}^{V} \overline{X}(T)\right], \quad (34)$$

where X_i satisfies (33).

Definition

INTRO

$$\pi^* = (\pi_1^*, ..., \pi_N^*)$$
 is a Nash equilibrium for (34) if, for any $i = 1, ..., N$,

$$\liminf_{h\downarrow 0} \frac{J_i\left(t,\boldsymbol{x},m,\{\pi_j^*\}_{j\neq i},\pi_i^*\right) - J_i\left(t,\boldsymbol{x},m,\{\pi_j^*\}_{j\neq i},\pi\otimes_{t+h}\pi_i^*\right)}{h} \geq 0,$$

for all $(t, x, m) \in [0, T) \times \mathbb{R}^N \times \{1, 2\}$ and π .

A Nash equilibrium $\pi^* = (\pi_1^*, ..., \pi_N^*)$ for (34) is given by

$$\pi_i^*(t,m) = e^{-r(T-t)} \left\{ \frac{\mu(m) - r}{\sigma^2} \left(\kappa_i + \frac{\lambda_i^V}{1 - \sqrt{V}} \overline{\kappa} \right) \right\}, \quad i = 1, ..., N.$$
 (35)

Theorem 2.1 (M observable)—continued

Moreover, the value function under the Nash equilibrium π^* is

$$V_i(t, x, m) = e^{r(T-t)} \left(x_i - \frac{\lambda^M}{N} \overline{x} \right) + C_i(t, m), \quad i = 1, ..., N.$$
 (36)

where $C_i(t, m)$, $m \in \{1, 2\}$, is defined as

$$C_{i}(t,1) := \frac{q_{2}\widetilde{Q}_{i}^{1} + q_{1}\widetilde{Q}_{i}^{2}}{q_{1} + q_{2}}(T - t) + \frac{q_{1}}{(q_{1} + q_{2})^{2}} \left(\widetilde{Q}_{i}^{1} - \widetilde{Q}_{i}^{2}\right) \left(1 - e^{(q_{1} + q_{2})(T - t)}\right)$$

$$C_{i}(t,2) := \frac{q_{2}\widetilde{Q}_{i}^{1} + q_{1}\widetilde{Q}_{i}^{2}}{q_{1} + q_{2}}(T - t) - \frac{q_{2}}{(q_{1} + q_{2})^{2}} \left(\widetilde{Q}_{i}^{1} - \widetilde{Q}_{i}^{2}\right) \left(1 - e^{(q_{1} + q_{2})(T - t)}\right)$$

$$\begin{aligned} \mathcal{Q}_i^m &:= \left(\frac{\mu(m) - r}{\sigma}\right)^2 \left\{ \left(\kappa_i - \frac{\lambda_i^V - \lambda_i^M}{1 - \overline{\lambda}^V} \overline{\kappa}\right) \right. \\ &\left. - \frac{\gamma_i}{2} \left(\frac{2\lambda_i^V}{1 - \overline{\lambda}^V} \left(1 - \frac{\lambda_i^V}{N}\right) \overline{\kappa} + \left(1 - \frac{2\lambda_i^V}{N}\right) \kappa_i\right)^2 \right\}. \end{aligned}$$

$$\widetilde{\mathfrak{p}}_i(u) := \mathbb{P}\left(\mu(M(u)) = \mu_i \mid \{S(v)\}_{t < v < u}\right), \quad j = 1, 2. \tag{37}$$

Lemma 3

INTRO

Fix $t \ge 0$. Given *S* in (32), the process $\{\widetilde{W}(u)\}_{u>t}$ given by

$$\widetilde{\widetilde{W}}(\underline{u}) := \frac{1}{\sigma} \left[\log \left(\frac{S(\underline{u})}{S(t)} \right) - (\mu_1 - \mu_2) \int_t^u \widetilde{\mathfrak{p}}_1(s) ds - \left(\mu_2 - \frac{\sigma^2}{2} \right) (\underline{u} - t) \right] \tag{38}$$

is a Brownian motion w.r.t. the filtration of *S*. Moreover, $\{\widetilde{\mathfrak{p}}_1(u)\}_{u\geq t}$ is the unique strong solution to

$$dP(u) = \left(-(q_1 + q_2)P(u) + q_2\right)du + \frac{\mu_1 - \mu_2}{\sigma}P(u)(1 - P(u))d\widetilde{W}(u),$$

$$P(t) = \widetilde{\mathfrak{p}}_1(t) \in (0, 1), (39)$$

which satisfies $P(u) \in (0,1)$ for all $u \ge t$ a.s.

SCENARIO 2

00000000

► Consequences:

▶ By (38), *S* in (32) can be expressed equivalently as

$$dS(u) = \left((\mu_1 - \mu_2)P(u) + \mu_2 \right) S(u)du + \sigma S(u)d\widetilde{W}(u),$$

where *P* is the unique strong solution to (39).

► Wealth process (33) now becomes

$$dX_i(u) = rX_i(u) + \pi_i(u) \Big((\mu_1 - \mu_2)P(u) + \mu_2 - r \Big) du + \pi_i(u)\sigma d\widetilde{W}(u).$$

▶ <u>Note:</u> The dynamics is now observable!

A Nash equilibrium $\pi^* = (\pi_1^*, ..., \pi_N^*)$ for (15) is given by

$$\pi_{i}^{*}(t,p) = e^{-r(T-t)} \left\{ \frac{\theta(p) - r}{\sigma^{2}} \left(\kappa_{i} + \frac{\lambda_{i}^{V}}{1 - \overline{\lambda}^{V}} \overline{\kappa} \right) - \frac{\beta(p)}{\sigma} \left(\partial_{p} c_{i} + \frac{\lambda_{i}^{V}}{1 - \overline{\lambda}^{V}} \overline{\partial_{p} c} \right) \right\}, \quad i = 1, ..., N, \quad (40)$$

where c_i is the unique solution to 1st Cauchy (18) with

$$\eta(p) := -(q_1 + q_2)p + q_2, \quad p \in [0, 1].$$
(41)

Moreover, the value function under π^* is given by (31), where C_i is the unique solution to 2nd Cauchy (29) with η as in (41).

► Same formula as in Scenario 1, with different Cauchy problems.

Numerical Results & Discussions

Scenario 1: Constant μ

INTRO

$$T=10, N=10, r=0.05, \mu=\mu_1=0.2, \mu_2=0.02, \sigma=0.1,$$

 $\lambda_i^M=\lambda_i^V=0.5 \text{ and } \gamma_i=8+0.1 i \text{ for } i=1,...,10$

- ► Wealth processes $\{X_i(t)\}_{i=1}^{10}$
 - *Left:* induced by $\pi_i^*(t)$ in (30)
 - Middle: induced by 1st term of (30)
 - *Right*: induced by $\pi_i^*(t)$ in (8)

[partial information]

[partial information]

Scenario 1: Constant μ

► Trading strategies $\{\pi_i^*(t)\}_{i=1}^{10}$:

– Left: $\pi_i^*(t)$ in (30)

- Middle: 1st term of (30)

- Right: $\pi_i^*(t)$ in (8) [full information]

INTRO

Scenario 1: Constant μ

- ▶ **Posterior probability** $P(t) = \hat{\mathfrak{p}}_1(t)$ satisfies SDE (12):
 - 1) oscillates forcefully $\implies \partial_p c_i$ large
 - 2) moves in the right direction (i.e., towards 1) quickly $\Rightarrow \theta(P(\cdot))$ moves near $\mu = \mu_1$ quickly

Scenario 1: Constant μ

INTRO

- ▶ Look at π_i^* in (30) more closely:
 - ▶ Behaves most radically in $t \in [1.6, 2.3]$.
 - ▶ This *concurs with* the strong oscillation of P in [0.9, 1].
 - ► Financial interpretation:
 - Over $t \in [0, 1.6]$, investors tend to believe $\mu = \mu_1$.
 - ▶ Over $t \in [1.6, 2.3]$, stronger oscillation of P
 - \implies more likely P will move away from 1
 - \implies more likely $\mu = \mu_1$ is a misbelief
 - ⇒ more severe change from long to short positions (to make up previous misbelief).

DISCUSSION 00000000000

Scenario 1: Constant μ

INTRO

- ► Empirical loss distributions:
 - ► Computed via 100 simulations of wealth processes.

partial information v.s. full information

T = 10, N = 10, r = 0.05, μ alternates between $\mu_1 = 0.2$ and $\mu_2 = 0.02$ with $q_1 = q_2 = 10$, $\sigma = 0.1$, $\lambda_i^M = \lambda_i^V = 0.9$ and $\gamma_i = 0.1i$ for i = 1, ..., 10

► Wealth processes $\{X_i(t)\}_{i=1}^{10}$

- Left: induced by $\pi_i^*(t)$ in (40) [partial information]

- Middle: induced by 1st term of (40)

induced by $\pi_i^*(t)$ in (35) - Right:

300 250

INTRO

[full information]

► Trading strategies $\{\pi_i^*(t)\}_{i=1}^{10}$:

- Left: $\pi_i^*(t)$ in (40)

- *Middle:* 1st term of (40)

- Right: $\pi_i^*(t)$ in (35) [full information]

[partial information]

INTRO

- **Posterior probability** $P(t) = \widetilde{\mathfrak{p}}_1(t)$ satisfies SDE (39):
 - 1) evolves more stably $\implies \partial_p c_i$ smaller
 - 2) never gets close to 1 or 0 $\implies \theta(P(\cdot))$ is never close to $\mu = \mu_1$

INTRO

- ► Empirical loss distributions:
 - ► Computed via 100 simulations of wealth processes.

partial information v.s. full information

SCENARIO 2

Q & A

Preprint available @ arXiv: 2312.04045 "Partial Information Breeds Systemic Risk"