Syllabus APPM 5610 Spring Semester 2019

The main topics to be covered include:

Linear Algebra

Eigenvalue Problem

Theoretical Background Numerical Methods

QR method

Newton's method for eigensystem

Singular Value Decomposition (SVD)

Least squares solution of overdetermined linear systems

Algorithms to generate finite difference (FD) formulas

Ordinary Differential Equations (ODEs)

Introduction

Taylor method

Linear multistep methods

Euler's method, Adams' methods, Backward Differentiation formulas

Accuracy, stability, Dahlquist barriers

Predictor-Corrector methods

Runge-Kutta methods

Extrapolation methods

Boundary value problems

Shooting and FD-based linear system methods

Partial Differential Equations (PDEs)

Character of solutions; well posedness

Wave-type (hyperbolic) equations

FD methods

Method of lines

Stability and convergence

CFL condition, von Neumann stability analysis, Lax equivalence theorem

Pseudospectral methods (including brief summary of FFTs)

Radial Basis Function methods

Diffusive (parabolic) equations

Crank-Nicolson and ADI methods

Equilibrium (elliptic) equations

FD schemes

Iterative methods (Jacobi, Gauss-Seidel, Conjugate gradients) Fast Poisson solvers Multi-Grid methods

Chapter 9 in Atkinson describes "The Matrix Eigenvalue Problem" and Chapter 6 describes "Numerical Methods for Ordinary Differential Equations". Much of the course materials for ODEs and mostly all for PDEs will be collected from other sources, primarily those listed as "Good reading" on the class web page.