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Abstract. We consider variations of the Adams–Bashforth, backward differentiation, and
Runge–Kutta families of time integrators to solve systems of linear wave equations on uniform,
time-staggered grids. These methods are found to have smaller local truncation errors and to allow
larger stable time steps than traditional nonstaggered versions of equivalent orders. We investigate
the accuracy and stability of these methods analytically, experimentally, and through the use of a
novel root portrait technique.
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1. Introduction. When wave equations are posed as first-order systems and
discretized in space to yield a system of ordinary differential equations (ODEs), the
linearization of the resulting system has a purely imaginary spectrum. This corre-
sponds to the fact that only propagation takes place. Many classical methods for
ODEs have stability regions that include an interval of the form [−iSI , iSI ] on the
imaginary axis. We call the largest such value of SI the imaginary stability boundary
(ISB) of the ODE integrator. In the context of a semidiscrete wave equation, two
features are desired for an ODE integrator:

1. small local truncation error and
2. large imaginary stability boundary.

These two properties are typically in opposition to one another.
In [2, 4] it was shown that staggered or interlaced grids in space can increase the

accuracy of finite difference and pseudospectral differentiation methods. Similarly,
the unknowns of a wave equation can be staggered in time to yield benefits in both
accuracy and stability. In this paper we introduce novel families of multistep and
multistage staggered ODE integrators. We find that for multistep methods of the
same order of accuracy, staggering in time usually improves accuracy by a factor of
about 9 and increases the ISB by a factor of 2.4–7.4, with the factor growing as order
increases. We also present a fourth-order multistage method which, compared to
classical fourth-order Runge–Kutta (RK), has an error constant smaller by a factor
of 16 and an ISB larger by a factor of about 2.

Typically the computational cost of using an implicit method is justified only
in the presence of stiffness (not an issue for linear wave equations) or when there
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is a relatively small number of equations in the system. We envision our methods
being used to solve systems with a very large number of equations, possibly in the
millions (as is the case when two-dimensional or three-dimensional wave equations
are solved with a method of lines approach). For such situations, it is impractical to
generate (and store) an LU decomposition. We thus consider only explicit methods
in this analysis.

Although we focus our discussion on linear wave equations, linearity is not a
requirement in any of our proposed schemes. Additionally, our time integrators are
designed to solve first-order systems. Although systems of wave equations can often
be rewritten as second-order systems, first-order formulations are generally preferred
in the literature (e.g., Maxwell’s equations), partly due to easier implementation of
boundary conditions. (It is known that staggered grids are better for approximating
odd-order derivatives and nonstaggered grids are better for approximating even-order
derivatives [2].)

The rest of the paper is organized as follows:

2. Illustrations of grid staggering for wave equations;
3. Preliminaries;
4. Staggered multistep methods;
5. Theoretical considerations;
6. Staggered RK methods;
7. Root portraits;
8. Numerical experiments;
9. Conclusions.

Because we use a number of acronyms that may be unfamiliar to the reader, a glossary
of these abbreviations is included in the appendix.

2. Illustrations of grid staggering for linear wave equations. Staggered
grid techniques apply to linear hyperbolic equations which have been written as first-
order systems. The variables in the system are staggered in such a way that the
locations of values and their derivatives are interlaced.

We give two examples; other linear wave equations, including problems in three
dimensions, can be treated similarly. Figure 2.1 gives four different ways to lay out
the grid of unknowns u and v for the one-dimensional acoustic wave equation

∂u

∂t
= c

∂v

∂x
,

∂v

∂t
= c

∂u

∂x
.

(2.1)
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Fig. 2.1. Representative samples of various spatial/time grid layouts for the one-dimensional
wave equation (2.1).

One can choose to utilize time staggering, space staggering, both, or neither. In
every case the space-time density of data is exactly the same. Note that if one wants
to incorporate staggering in time, the variables u and v must exist on interlaced time
intervals (e.g., u exists on integer time levels, while v exists on half-integer time levels).

Figure 2.2 shows nonstaggered and staggered space grids for the two-dimensional
elastic wave equation

ρ
∂u

∂t
=

∂f

∂x
+

∂g

∂y
,

ρ
∂v

∂t
=

∂g

∂x
+

∂h

∂y
,

∂f

∂t
= (λ + 2µ)

∂u

∂x
+ λ

∂v

∂y
,

∂g

∂t
= µ

∂v

∂x
+ µ

∂u

∂y
,

∂h

∂t
= λ

∂u

∂x
+ (λ + 2µ)

∂v

∂y
.

(2.2)
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Fig. 2.2. Representative sample spatial grid layouts for the two-dimensional elastic wave equa-
tion (2.2).

The spatial staggering layout given in Figure 2.2 is uniquely determined. For
example, the first equation requires that u be represented halfway between values
of f in the x-direction and halfway between values of g in the y-direction. If ∂g

∂x
also appeared in the first equation, it would not be possible to stagger spatially. We
observe that for a large number of linear wave equations (e.g., Maxwell’s equations
in any number of dimensions), the structure of the governing equations turns out to
be precisely such that a unique and internally conflict-free staggering arrangement
is possible, but we are unaware of any discussion of this in the literature. If one
also wants to incorporate time staggering for this equation (with or without spatial
staggering), we must again split the variables into two groups that exist on interlaced
time intervals (e.g., u and v on integer time levels and f, g, and h on half-integer time
levels). An illustration of this arrangement is given in Figure 2.3.

3. Preliminaries.

3.1. Definitions. An m-step linear multistep method for solving the ODE

dy

dt
= f(t, y(t))(3.1)

is a difference equation of the form

αmyn+m + αm−1yn+m−1 + · · ·+ α0yn = k(βmfn+m + · · ·+ β0fn),(3.2)

where k is the step size, αi and βi are* real parameters, ti = t0+ik, yi = y(ti), and fi =
f(ti, yi). The coefficients αi and βi can be generated by using a two-line Mathematica
or Maple algorithm based on Padé expansions [3]. Another way of representing the
above general multistep method is through the use of generating polynomials

ρ(z) = αmzm + αm−1z
m−1 + · · ·+ α0,

σ(z) = βmzm + βm−1z
m−1 + · · ·+ β0.

(3.3)
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Fig. 2.3. Representative sample of a spatial-staggered, time-staggered grid for the two-
dimensional elastic wave equation (2.2).

We consider only explicit methods, in which case βm = 0. The local truncation error
of a multistep method of order p is usually defined as

L(y, t, k) = Cp+1k
p+1y(p+1)(t) + O(kp+2),(3.4)

which results from a simple Taylor expansion. The constant Cp+1 is given by

Cp+1 =
1

(p + 1)!

(
m∑
i=0

αii
p+1 − (p + 1)

m∑
i=0

βii
p

)
.(3.5)

However, as noted in [6], this constant does not accurately reflect the global error
to be expected when using a method. The proper error constant is given by

C =
Cp+1

σ(1)
.(3.6)

It is this coefficient C that we use when comparing the accuracy of methods of the
same order.

Similarly, an explicit s-stage RK method can be represented as

yn+1 = yn +
s∑

j=1

bjdj ,(3.7)
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where

d1 = kf(tn, yn),

d2 = kf(tn + c2k, yn + a21d1),

d3 = kf(tn + c3k, yn + a31d1 + a32d2),

...

ds = kf

(
tn + csk, yn +

s−1∑
i=1

asidi

)
.

(3.8)

The (linear) error constant for such a method can be found by considering the
linear problem

y′ = f(t, y) = λy(3.9)

and Taylor expanding (yn+1 − eλkyn) about k = 0 to find C:

k


 s∑

j=1

bjdj


+ (1− eλk)yn = C(λk)p+1 + O((λk)p+2).(3.10)

For multistage methods, it is appropriate to normalize the stability domain by dividing
by the number of stages s and to normalize the error constant by a factor sp, where
p is the order of the method. This ensures that we are comparing all time-stepping
methods on the basis of equal work.

3.2. Maximum imaginary stability boundary. Jeltsch and Nevanlinna [7]
have shown that the normalized ISB for a large class of schemes, including multistep
and RK methods, cannot exceed 1 in the classical (nonstaggered) case. This limit is
achieved by the classical leapfrog scheme

yn+1 = yn−1 + 2kf(tn, yn).(3.11)

This method has a stability domain [−i, i] on the imaginary axis.
Leapfrog can also be used as a time-staggered method, namely

yn+1 = yn + kf

(
tn +

k

2
, yn+ 1

2

)
.(3.12)

In this context the stability domain is [−2i, 2i]; the extra factor of two simply reflects
the fact that the time levels are {n, n + 1

2 , n + 1} rather than {n − 1, n, n + 1}. For
staggered multistep and RK methods that we will consider, this implies a maximum
normalized ISB of 2.

4. Staggered multistep methods. To utilize the methods that follow, we
require only that u and ∂u

∂t are used on interlaced time levels. However, as noted
in section 2, many (if not all) systems of wave equations can be rewritten in the form
ut = f(t, v(t)), vt = g(t, u(t)) (where u and v may be vectors). In this case, by having
u on one time level and v on the other interlaced time level, one is effectively able to
double the ISB. (Section 3.2 demonstrates this for the leapfrog method.) We envision
our methods being used for such systems of wave equations.
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4.1. Staggered Adams–Bashforth and backward differentiation meth-
ods. We first consider staggered versions of the Adams–Bashforth and backward
differentiation time integrators, denoted ABS and BDS, respectively. To illustrate
our notation, we show in Figure 4.1 four different ways of representing the third-order
ABS method (ABS3): a representative stencil, the stencil coefficients, the polynomi-
als ρ(z) and σ(z), and the explicit Taylor formula. Note that all coefficients listed in
this paper can be found via Padé expansions [3]. In Table 4.1 we give for stable BDS
methods the shape and coefficients of the stencil, the error constant, a picture of the
stability domain, and the ISB. (Note that by stable, we mean zero-stable.) Tables 4.2
and 4.3 give the same information for useful ABS and AB methods up to order 8.

u

u

u




1
25/24

−1
−1/12

1/24




ρ(z) =
(
z3 − z2

)
,

σ(z) = 1
24

(
25z2 − 2z + 1

)
z1/2,

y(t + k) = y(t) + k
24

[
25y′

(
t + k

2

)
− 2y′

(
t− k

2

)
+ y′

(
t− 3k

2

)]
+ O(k4).

Fig. 4.1. Four representations of ABS3: stencil shape, coefficients, defining polynomials ρ(z)
and σ(z), and explicit Taylor formula. Here, 2 represents an unknown function value, while �
and• stand for a known function and a known derivative value.

Table 4.1
Staggered backward-differentiation time integrators. The normalized local truncation error for

BDSp is Ckp+1f (p+1)(η), where C is the error constant. Only stable methods are shown.

Name Stencil Coefficients Error Stability ISB
constant domain

BDS2
(leapfrog)

l


 1

1
−1


 1

24 -0.1 0.1

-2

-1

1

2

2

BDS3

l




1
24
23

− 21
23

− 3
23

1
23




1
24 -0.2 0.2

-2

-1

1

2

5
3
' 1.667

BDS4

l




1
12
11

− 17
22

− 9
22

5
22

− 1
22




71
1920 -0.03 0.03

-1

1

1
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Table 4.2
Staggered Adams–Bashforth time integrators. The normalized local truncation error for ABSp

is Ckp+1f (p+1)(η), where C is the error constant. Only methods with nonzero ISBs are shown (for
orders p < 10).

Name Stencil Coefficients Error Stability ISB
shape constant domain

ABS2
(leapfrog)

l


 1

1
−1


 1

24 -0.1 0.1

-2

-1

1

2

2

ABS3

l

l

l




1
25/24

−1
−1/12

1/24




1
24 -0.15 0.15

-1.5

1.5

12
7

' 1.714

ABS4

l

l

l

l




1
13/12

−1
−5/24

1/6

−1/24




223
5760 -0.15 0.15

-1

1
4
3

' 1.333

ABS7

l

l

l

l

l

l

l




1
1152511/967680

−1
−7969/10752

134881/107520

−294659/241920

76921/107520

−12629/53760

32119/967680




1111
35840

-6.·10-6 6.·10-6

-0.3

0.3

30240
81469

' 0.371

ABS8

l

l

l

l

l

l

l

l




1
295627/241920

−1
−103021/107520

102437/53760

−2228531/967680

24197/13440

−95251/107520

121049/483840

−1111/35840




13528301
464486400

-2.·10-8 2.·10-8

-0.2

0.2

4320
20209

' 0.214
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Table 4.3
Nonstaggered Adams–Bashforth time integrators. The normalized local truncation error for

ABp is Ckp+1f (p+1)(η), where C is the error constant. Other than AB2, only methods with nonzero
ISBs are shown (for orders p < 10).

Name Stencil Coefficients Error Stability ISB
Shape Constant Domain

AB2

l

l




1

−1 3/2

−1/2


 5

12 -1 -0.5

-0.75

0.75

0

AB3

l

l

l




1

−1 23/12

−4/3

5/12




3
8 -0.5-0.25 0.1

-0.8

-0.4

0.4

0.8

12
5
√

11

' 0.724

AB4

l

l

l

l




1

−1 55/24

−59/24

37/24

−3/8




251
720 -0.3 -0.15

-0.4

-0.2

0.2

0.4

52
15

√
65

' 0.430

AB7

l

l

l

l

l

l

l




1

−1 198721/60480

−18637/2520

235183/20160

−10754/945

135713/20160

−5603/2520

19087/60480




5257
17280 -0.05-0.025

-0.06

-0.03

0.03

0.06

' 0.058

AB8

l

l

l

l

l

l

l

l




1

−1 16083/4480

−1152169/120960

242653/13440

−296053/13440

2102243/120960

−115747/13440

32863/13440

−5257/17280




1070017
3628800 -0.025

-0.03

-0.015

0.015

0.03

' 0.029
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The ABS and BDS methods of order 2 are both equivalent to the leapfrog method.
ABS and BDS methods are both explicit (whereas nonstaggered BD methods are
implicit). AB and ABS methods are always stable; BDS methods are stable for orders
up through 4 (while nonstaggered BD methods are stable for orders up through 6).

Stability domains for staggered methods are symmetric with respect to both coor-
dinate axes; one can see this by noting that there is symmetry across the x-axis (true
of all stability domains) as well as symmetry about the origin (which comes from
the structure of staggered methods). This means that these methods have no real
axis coverage; thus, these methods are appropriate only for propagation problems.
(However, through exponential time-stepping [9], the schemes can also be applied to
problems such as attenuation in Maxwell’s equations for lossy media.)

As will be discussed in section 5.1, AB methods have a nonzero ISB only for
methods of order 3, 4, 7, 8, 11, 12, etc.; ABS methods additionally include order 2.
Note that the error constants for the staggered methods are approximately nine times
smaller than those of the nonstaggered methods of equivalent order. In addition,
staggering increases the ISB by a factor of 2.4–7.4, with the factor growing as order
increases.

We can also compare the staggered methods to Störmer methods [6] in those cases
for which the problem can be reformulated as a second-order system, utt = F (t, u),
vtt = G(t, v). With compatible definitions we find ISBs of around 2, 1.73, 1.41, 1.11,
0.84, 0.62, and 0.46 for orders 2–8. The associated error constants are approximately
0.083, 0.083, 0.079, 0.075, 0.071, 0.068, and 0.066. Thus the ABS methods compare
favorably for orders of accuracy 4 and less and unfavorably thereafter. However,
formulating wave equations using two time derivatives sometimes creates difficulties
with boundary conditions.

To implement one of the time-staggered methods, one needs to obtain starting
values for several time levels after the initial condition. For nonstaggered multistep
methods, this is usually accomplished with an RK method. For staggered time inte-
grators, one should obtain as many (half-integer) levels of u and v as needed using
a nonstaggered RK method and then select out those needed to interlace u and v
appropriately.

4.2. Free parameter multistep methods. We have developed multistep meth-
ods that allow free parameters due to suboptimization of order. We offer an example of
such a method as an illustration of opportunities available in this area. The following
is a fourth-order staggered multistep scheme with two free parameters, α and β.

ρ(z) = z4 +

(
−17

22
− 577

528
α +

1

24
β

)
z3 +

(
− 9

22
+

201

176
α− 9

8
β

)
z2

+

(
5

22
− 9

176
α +

9

8
β

)
z +

(
− 1

22
+

1

528
α− 1

24
β

)
,

σ(z) =

[(
12

11
− 1

22
α

)
z3 − αz2 − βz

]
z1/2.

The error constant of this scheme is
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Fig. 4.2. Stability domains of the fourth-order staggered free parameter scheme: (a) ISB ≈
1.8822, C ≈ 0.0353. (b) ISB ≈ 1.995, C ≈ 32.34.

C =
(1704 + 127α + 198β)

1920(24− 23α− 22β)
.(4.1)

By choosing various values of the parameters for which the method is stable, we can
change the error constant and the ISB of the method. As the ISB approaches the
theoretical limit of 2, the error constant becomes unbounded. We list three examples
of interest:

• α = 1, β = −1.045, ISB ≈ 1.8822, error constant C ≈ 0.03526. While the er-
ror constant is comparable to that of ABS4, there is a dramatic improvement
in the ISB. We show the stability domain of this method in Figure 4.2(a).
• α = −0.74, β = −1.121, ISB ≈ 1.337, C ≈ 0.0110. This method improves

on the accuracy of ABS4 by about a factor of 3 while maintaining about the
same ISB.
• α = 1.95, β = −1.00155, ISB ≈ 1.995, C ≈ 32.34. This method has an

ISB very close to 2, the theoretical limit. See Figure 4.2(b) for the stability
domain of this method.

Note that these free parameter methods require no more function evaluations
than ABS4; all multistep methods require only one function evaluation per time step.
As we have not yet explored the properties of these free parameter schemes in any
great detail, we exclude them from further analysis.

5. Theoretical considerations.

5.1. ISB of Adams–Bashforth methods. Adams–Bashforth methods have a
nonzero ISB only for orders 3, 4, 7, 8, 11, 12, etc. ABS methods additionally include
order 2 (leapfrog). Because we have been unable to locate a proof of either result in
the literature, we offer here an outline of our proof; details are given in [5].

The edge of the stability domain is described by the root ξ of the equation

ρ(r)− ξσ(r) = 0
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when r travels around the unit circle (r = eiθ). For an exact method, we would get

ξ(θ) = iθ.

A numerical scheme of order p will instead lead to

ξ(θ) = iθ + cp(iθ)
p+1 + dp(iθ)

p+2 + · · · .(5.1)

The sign of the first real term of this expansion will dictate whether the stability
domain boundary near the origin swings to the right or to the left of the imaginary
axis. For AB and ABS methods, we find that cp > 0 and dp < 0. The pattern for
which methods have nonzero ISBs then follows from the powers of the imaginary unit
in (5.1).

To find the values of cp and dp in the case of nonstaggered ABp methods, we note
that these schemes, when applied to y′ = λy (with λ = ξ/k), take the form

y(k)− y(0) =
ξ

k

∫ k

0

(interpolating polynomial of y over [−(p− 1)k, 0]) dt.(5.2)

Substituting y(t) = eiθt/k into (5.2) and solving for ξ(θ) gives (after some algebraic
simplifications)

cp =

∫ 1

0

(
x + p− 1

p

)
dx, dp = −

∫ 1

0

(
x + p− 1

p

)
p2 + 1− 2x

2(p + 1)
dx.(5.3)

The result follows now from the fact that both integrands are nonnegative. In the
staggered case, we find similarly

cp =

∫ 1/2

−1/2

(
x + p− 1

p

)
dx, dp = −

∫ 1/2

−1/2

(
x + p− 1

p

)
p(p− 1)− 2x

2(p + 1)
dx.(5.4)

Although the integrands for both cp and dp are no longer of constant sign, one can
again establish that cp > 0 and dp < 0 (for p > 2) by induction, for example.
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5.2. Staggered analogue of Dahlquist’s first stability barrier. Dahlquist’s
first stability barrier for multistep methods states that the order p of an explicit stable
m-step method must satisfy p ≤ m. The analogue of this theorem for staggered
multistep methods follows.

The order p of an explicit stable m-step staggered method satisfies

p ≤



m, m an even integer,

m + 1
2 , m a half-integer,

m + 1, m an odd integer.

(5.5)

Our proof of this theorem follows those of Jeltsch and Nevanlinna [8] and Dahl-
quist [1] and can be found in [5].

6. Staggered RK methods. Multistage methods can also be put into a stag-
gering framework. We write the ODE in the form

u′ = f(t, v(t)),

v′ = g(t, u(t)).
(6.1)

The splitting into u and v (each could be a vector) is to allow quantities to be given
at offset time levels, as suggested in section 2. The splitting into f and g reflects that
values of u′ (or v′) are given at time levels staggered with respect to u (or v).

One form for a staggered RK (RKS) method is

d1 = kf(tn+1/2, vn+1/2),

d2 = kg(tn + c2k, un + a21d1),

d3 = kf(tn+1/2 + c3k, vn+1/2 + a32d2),

d4 = kg(tn + c4k, un + a41d1 + a43d3),

...

ds = kf(tn+1/2 + csk, vn+1/2 + as2d2 + · · ·+ as,s−1ds−1),

un+1 = un + b1d1 + b3d3 + · · ·+ bsds

(6.2)

if s is odd. If s is even, the first stage should be an evaluation of g at time tn and
the stages used to advance from un to un+1 are the even-numbered ones. The same
formula can be used to advance v, once references to f and g are switched and time
levels are shifted forward by 1

2 . Observe that advancing both u and v by one step
requires s evaluations each of f and g. The form of the governing equations in (6.1)
suggests that an evaluation of both f and g should count as one stage, so (6.2) is an
s-stage method.

The coefficients in such a formula can be derived by a straightforward, if laborious,
Taylor expansion of both the exact difference un+1 − un and the RKS approximation
b1d1 + · · · + bsds. The expansions must be made so that v (and consequently f)
is evaluated only at tn+1/2 and u (hence g) is evaluated at tn. If more than a few
stages are desired, a symbolic computational package is useful both for generating
these expansions and for solving the system of nonlinear equations that results from
equating their coefficients.
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Stability analysis follows the usual pattern. The model problem is linear:

[
u
v

]′
=

[
0 λ
λ 0

] [
u
v

]
.

(Using different scalars in the off-diagonal entries of the matrix does not change any-
thing essential because the eigenvalues depend only on the product of those entries.)
In applying the RKS method, one finds that

un+1 = β(kλ)vn+1/2 + α(kλ)un,

vn+3/2 = β(kλ)un+1 + α(kλ)vn+1/2,

or

[
un+1

vn+3/2

]
=

[
1 0
−β 1

]−1 [
α β
0 α

] [
un

vn+1/2

]
=

[
α β
αβ α + β2

] [
un

vn+1/2

]
= Q(kλ)

[
un

vn+1/2

]
.

The stability region consists of all values of kλ for which both eigenvalues of Q(kλ)
are inside the unit circle or simple and on the unit circle. After a short calculation,
one finds that [1 w]T is an eigenvector if and only if

w2 = β(kλ)w + α(kλ)(6.3)

and the corresponding eigenvalue is w2. (This is the same equation that arises using
the ansatz un = w2n, vn+1/2 = w2n+1.) The two roots of (6.3) thus determine the
stability region. As was mentioned in section 3.1, we normalize the stability region
by the number of stages in order to make a fair comparison to one-stage methods. An
error constant can also be defined by looking at the first error term in the approximate
solution of the linear model problem. This too should be normalized by a factor sp

for a pth-order method.
We recognize leapfrog as a 1-stage RKS method of order 2. Computation of the

expansions for 2-stage and 3-stage methods reveals that neither has enough additional
free parameters to improve upon the order of leapfrog. While 4-stage, third-order
methods do exist, they do not improve on their nonstaggered counterparts. The
first interesting higher-order method is the five-stage RKS method. Here there are
13 constants to be determined in the formula. To achieve fourth-order accuracy, 21
conditions (most of which are nonlinear) must be satisfied. Remarkably, there is a
family of solutions parameterized by b5. With γ = (6b5)

−1/2, the tableau for the
general solution is

0
1
4 (2− γ) 1

4 (2− γ)
− 1

2γ − 1
2γ

1
4 (2 + γ) 1

4 (2 + γ) 0
1
2γ 0 1

2γ .
1− 2b5 b5 b5

(6.4)

(Entries which are blank are zero for structural reasons.) The stability region and
error constant are independent of the choice of the free parameter. The most appealing
member of the family, which we call RKS4, is given with b5 = 1/24 and hence γ = 2:
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Fig. 6.1. Stability domains for RKS methods: (a) order 4 (from (6.5)); (b) order 3 (from (6.6)).

d1 = kf(tn+1/2, vn+1/2),

d2 = kg(tn, un),

d3 = kf(tn+1/2 − k, vn+1/2 − d2),

d4 = kg(tn + k, un + d1),

d5 = kf(tn+1/2 + k, vn+1/2 + d4),

un+1 = un + 11
12d1 + 1

24d3 + 1
24d5.

(6.5)

Observe that while five stages are required, the stage d1 is actually equivalent to the
future stage d2 for the advance of v from time level n + 1

2 to n + 3
2 . Hence only four

evaluations each of f and g are needed to advance both u and v one time step, and
we consider this to be a four-stage method for purposes of normalization of stability
and error constant.

RKS4 has a simple interpretation. Given the original data un and vn+1/2, leapfrog
is used repeatedly to estimate vn−1/2, un+1, and vn+3/2 in succession. The three esti-
mates of v values are then combined according to a finite-difference stencil to relate
un to the new value of un+1. The method is fourth order due to a symmetry which
produces cancellation in the leapfrog errors.

The stability region of RKS4 is a segment of the imaginary axis, and the nor-
malized ISB of this method is about 1.425 (see Figure 6.1). Hence for equivalent
amounts of work per step, time steps about twice as large as those of standard RK4
are possible. The error constant is 1/1920, compared to 1/120 for RK4. (After nor-
malization for comparison to one-stage methods, these constants become 2/15 and
32/15, respectively.) As with multistep methods, the problem may in many cases
be written as a second-order system in time. The three-stage, fourth-order Nyström
method presented in [6] has an equivalent normalized ISB of about 0.86, far less than
that of RKS4.

Notice that stages 4 and 5 are independent of stages 2 and 3. The storage re-
quirements can therefore be kept low. In the following procedure, time dependence
and subscripts on u and v are omitted for clarity and z1 is assumed to start with the
value kg(u), obtained from the previous advance of v.
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z1 ← v − z1

z1 ← kf(z1)

z2 ← kf(v)

z3 ← u + z2

z3 ← kg(z3)

z3 ← v + z3

z3 ← kf(z3)

u← u + z1/24 + 11z2/12 + z3/24

At the end of this procedure, z2 holds the value that serves as stage 2 of the next
advance of v. Only three temporary variables are needed. Each needs to have as many
components as the larger of u and v. In the common situation where u and v each
hold half of the variables of the system, the additional storage is equivalent to 3/2
of the total number of unknowns. In standard fourth-order RK, the best temporary
storage is twice the number of unknowns.

The RKS method suggested above evaluates a number of stages to advance u, then
a new set of independent stages to advance v (although RKS4 can reuse one stage).
An alternative is to use a joint set of stages to advance u and v simultaneously. While
still using the same number 2s of individual f and g evaluations per time step as
the other s-stage staggered methods, a potential advantage here is that the number
of free constants grows more quickly with s. As an example, we have a third-order,
three-stage method:

d1 = kf(tn+1/2, vn+1/2),

d2 = kg(tn, un),

d3 = kf(tn+1/2 − 1
2k, vn+1/2 − 1

2d2),

d4 = kg(tn + 13
12k, un + 13

12d1),

d5 = kf(tn+1/2 + 1
2k, vn+1/2 + 7

26d2 + 3
13d4),

d6 = kg(tn + 13
12k, un + ( 91

72 − 2γ)d1 + (− 13
72 + γ)d3 + γd5),

un+1 = un + 2
3d1 + 1

6d3 + 1
6d5,

vn+3/2 = vn+1/2 + 1
13d2 + 6

13d4 + 6
13d6.

(6.6)

Here γ is a constant that affects the accuracy and stability of the method. The ISB
is approximately optimized if γ = 104/181. For this choice, the normalized ISB is
≈ 1.044 and the normalized error constant is 27γ/24 ≈ 0.6464. The stability region
is displayed in Figure 6.1. For comparison, classical RK3 has a normalized ISB of
1/
√

3 ≈ 0.577 and normalized error constant of 9/8 = 1.125.
We have by no means exhausted the possibilities for either type of staggering in

RK methods; our intent has been to demonstrate that such methods do exist and can
improve on their nonstaggered counterparts.

7. Root portraits. Since our goal is to perform time stepping for wave equa-
tions, it is illuminating to compare methods based on their performance on the one-
dimensional scalar wave equation,

ut = vx,

vt = ux.
(7.1)
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We think of the spatial domain as unbounded and spatial derivatives as exact. For a
Fourier mode whose spatial dependence is eiωx, the wave equation becomes the ODE
system [

u
v

]
t

=

[
0 iω
iω 0

] [
u
v

]
.(7.2)

These equations allow leftgoing and rightgoing modes. When a mode is advanced
in time by an amount k, the solution is multiplied by a factor e±ikω with the sign
determining only direction of travel.

For the classical multistep methods, the analysis reduces to the situation familiar
from linear stability. The numerical solution is capable of travel in either direction
and to advance a mode by time k the solution is multiplied by a factor z(ikω). For
linear multistep methods, z is a root of the characteristic polynomial equation

ρ(z)− ikωσ(z) = 0.(7.3)

When kω = 0, a stable method has exactly one root at z = 1. As ikω travels along
the imaginary axis, this root approximates the exact factor eikω (or its conjugate)
but eventually becomes noticeably different. The other roots of the characteristic
polynomial are physically irrelevant. When kω is larger than the ISB of the method,
some root is outside the unit disk and the method becomes unstable.

To visualize this process, we draw a “root portrait” that traces the physically
relevant root as kω takes on all stable values. An example for AB3 is shown in
Figure 7.1. A point ikω on the imaginary axis should ideally map to e±ikω on the
unit circle, as the tick marks outside the unit circle suggest. The physically relevant
root, as determined by the characteristic polynomial, is perfect at the origin and a
good approximation nearby, but eventually the path of the root diverges from the
circle. When ikω encounters the boundary of the stability region, one of the parasitic
roots not shown is just crossing the unit circle on its way to creating time instability.

−1 −0.5 0 0.5
−1

−0.5

0

0.5

1

ikω

−1 0 1
−1

0

1 z

Fig. 7.1. Example of a “root portrait.” The portion of the imaginary axis which lies inside the
stability region of AB3 is mapped to the physically relevant roots inside the unit circle. Ideally, the
evenly spaced tick marks along the unit circle should line up with the tick marks along the root path,
but this is true only near the origin.
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A similar analysis can be made for classical RK methods. Here the characteristic
polynomial is linear in z, but there is a polynomial dependence on ikω. (For orders p
less than five, this polynomial is just the pth-order Taylor polynomial for eikω.) Also,
the stability region must be normalized by the number s of stages in the method, and
the sth root of z must be taken in accordance. Because there is only one root, the
physically relevant root also determines stability.

For staggered multistep schemes, the characteristic equation is again (7.3). This
is now a polynomial in z1/2, and the roots are easily found. Again only one root per
direction of travel is physically relevant. For staggered RK methods, the stability
analysis in section 5 applies; in fact, z1/2 is just the variable w in the characteristic
equation (6.3), and λ is purely imaginary in that formula.

Figure 7.2 displays the root portraits for classical and staggered methods of orders
2, 3, 4, and 7. As the order of a method increases, inner and outer ticks match up
more accurately near z = 1. The stability restriction is made clear by where the tick
marks on the unit circle end. The AB2 and RK2 methods are stable but have zero
ISB. The ABS2, BDS2, and RKS2 methods are all equivalent to leapfrog, which has
the maximum possible ISB of 2. In every case, staggered schemes are seen to have
stability and accuracy properties superior to their nonstaggered counterparts.

Another way to view the root portraits is in terms of numerical dissipation and
dispersion. Because we have eliminated the spatial discretization errors, root portraits
clearly show the errors solely due to the time stepping schemes. The amount of
numerical dissipation in a scheme is shown by how close the path of the root portrait
stays to the unit circle, whereas the amount of dispersion is shown by how well the
inner ticks on the root portrait path match up to the outer ticks on the unit circle.
ABS2/BDS2/RKS2 (leapfrog) and RKS4 have no dissipation because all roots stay
on the unit circle but have significant dispersion near the edge of the stability domain
because the inner and outer ticks do not match well there.

8. Numerical experiments. The root portrait data can be used to experimen-
tally compare AB, ABS, BDS, RK, and RKS time integrators for wave propagation.
As described in the previous section, when solving (7.1), one can model the effect
that a particular numerical time integrator has on a particular Fourier mode eiωx by
solving (7.3) for the physical root z(ikω). We choose the physical root so that the
solution moves strictly to the right. Then the solution at the nth time step is given
by

u(t = kn) = zneiωx,

v(t = kn) = −zneiωx.
(8.1)

We use the initial condition

u(x, 0) =

{(
1 + cos

(
x

0.15

))2
, |x| < 0.15,

0, |x| ≥ 0.15,
(8.2)

and advance the solution to final time T = 6π, so that the exact final solution is the
same as the initial condition. We define N to be the number of function evaluations
used to advance the solution from T = 0 to T = 6π, i.e., the number of time steps
taken multiplied by the number of stages. This provides a legitimate comparison
between one-step methods like AB, ABS, and BDS and multistage methods like RK
and RKS.



736 M. GHRIST, B. FORNBERG, AND T. A. DRISCOLL

unstable

?RKS

BDS

ABS

RK

AB

p=2 p=3 p=4 p=7

Fig. 7.2. Root portraits for classical and staggered methods of different orders. Stability of the
methods for the wave equation is reflected by the length of the arc made by the tick marks on the
unit circle. Accuracy is judged by the matching of inner and outer ticks along the root paths (solid
lines). In the case of RKS4, the root path doubles back on the unit circle in the wrong direction;
those tick marks are omitted for clarity. The existence of an RKS7 formula is unknown, and we do
not yet have a useful RKS3 method for which this analysis is appropriate.
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−π 0 π

−0.085976

Fig. 8.1. Sample run of ABS3 using the physically relevant root and N = 375 function evalua-
tions. (a) Initial condition (and exact final solution). Note that we pick the physical root so that the
hump moves to the right. (b) Numerical solution at final time T = 6π. (c) Error in the numerical

solution. The relative loss (
‖ufinal‖2

‖uinitial‖2
− 1) is shown in the upper right-hand corner of the error

plot.

Figure 8.1 shows a sample run of this method for third-order ABS using N = 375:
the initial condition (and exact solution at time T = 6π), the numerical solution at
T = 6π, and the error in the numerical solution. In our comparison charts, we show
only the error in the numerical solution. In order to address the numerical dissipation
of the schemes, we have included the relative loss of energy in the discrete L2-norm
in the upper-right corner of the error plots.

Table 8.1 shows the error in running the second-order leapfrog (ABS2, BDS2,
RKS2) method for N = 500 and N = 1000. Table 8.2 compares the errors obtained
by running AB3, ABS3, and BDS3 for N = 500 and N = 1000, while Table 8.3 shows
the errors resulting from running AB4, RK4, ABS4, BDS4, and RKS4 for N = 800
and N = 1600. Finally, Table 8.4 compares the errors in AB7 and ABS7 for N = 2000
and N = 4000, while Table 8.5 compares the errors in AB8 and ABS8 for N = 3000
and N = 6000.

In all cases, staggered methods are superior to nonstaggered methods in terms
of accuracy and stability. While the relative accuracy of nonstaggered versus stag-
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Table 8.1
Error when running the second-order leapfrog method using the root portrait technique. Leapfrog

is the only classical second-order multistep method that has a nonzero ISB. Note that vertical scales

differ by 10/3. The relative loss ( ‖ufinal‖2
‖uinitial‖2

−1) is shown in the upper right-hand corner of the error

plots.

Method Error at N = 500 Error at N = 1000

Leapfrog

(ABS2)

(BDS2)

(RKS2)
−1.6

0

1.6

−π 0 π

4.2188e−15

−0.48

0

0.48

−π 0 π

−1.6875e−14

Table 8.2
Error when running third-order methods using the root portrait technique. Observe that the

vertical scales are the same in all cases and that AB3 is not stable until N > 834 for M = 64. The

relative loss ( ‖ufinal‖2
‖uinitial‖2

− 1) is shown in the upper right-hand corner of the error plots.

Method Error at N = 500 Error at N = 1000

AB3 Unstable

−0.6

0

0.6

−π 0 π

−0.053874

ABS3

−0.6

0

0.6

−π 0 π

−0.049417

−0.6

0

0.6

−π 0 π

−0.0087588

BDS3

−0.6

0

0.6

−π 0 π

−0.049146

−0.6

0

0.6

−π 0 π

−0.0087353

gered methods does not change with order, the improvement in stability from using
staggered methods continues to improve as order increases. It is also interesting to
note that the RKS4 method is inferior to ABS4 and BDS4 in accuracy but marginally
better in stability, whereas it improves on RK4 in both respects.

Notice that there is a different character to the error than is customary. Typically,
error trains are one sided due to spatial discretization error. However, as noted in
the previous section, we have eliminated spatial discretization errors through the use
of the root portrait technique. Thus, the errors shown in these pictures are solely
time discretization errors. These error trains are almost symmetric rather than one
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Table 8.3
Error when running fourth-order methods using the root portrait technique. Note that the

vertical scales are the same in all cases and that AB4 is not stable until N > 1403 and RK4 is not
stable until N > 854 for M = 64. N is the number of function evaluations used to reach the final

time T = 6π. The relative loss ( ‖ufinal‖2
‖uinitial‖2

− 1) is shown in the upper right-hand corner of the error

plots.

Method Error at N = 800 Error at N = 1600

AB4 Unstable

−0.25

0

0.25

−π 0 π

−0.0004525

RK4 Unstable

−0.25

0

0.25

−π 0 π

−0.0051758

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ABS4

−0.25

0

0.25

−π 0 π

−0.0010809

−0.25

0

0.25

−π 0 π

−3.5431e−05

BDS4

−0.25

0

0.25

−π 0 π

−0.0010738

−0.25

0

0.25

−π 0 π

−3.537e−05

RKS4

−0.25

0

0.25

−π 0 π

4.4409e−16

−0.25

0

0.25

−π 0 π

4.4409e−16

sided since the schemes are almost dispersion-free. The amount of dissipation is on
the order of machine precision for leapfrog and RKS4 and is reasonably small for the
other schemes.

9. Conclusions. We have introduced staggered time integrators for solving sys-
tems of wave equations. We find that the staggered versions of Adams–Bashforth
and backward differentiation methods have significantly smaller local truncation er-
rors and greater ISBs than their nonstaggered counterparts. In addition, staggered
schemes are no more difficult to implement than nonstaggered schemes. We have also
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Table 8.4
Error when running seventh-order methods using the root portrait technique. AB7 is not stable

until N > 10384 for M = 64. Note that vertical scales differ by 100. The relative loss ( ‖ufinal‖2
‖uinitial‖2

−1)

is shown in the upper right-hand corner of the error plots.

Method Error at N = 2000 Error at N = 4000

AB7 Unstable Unstable

ABS7

−7

0

7

−π 0 π

−1.0724e−07
× 10−6

−7

0

7

−π 0 π

−8.7562e−10
× 10−8

Table 8.5
Error given by running eighth-order methods using the root portrait technique. AB8 is not stable

until N > 20455 for M = 64. Note that vertical scales differ by 200. The relative loss ( ‖ufinal‖2
‖uinitial‖2

−1)

is shown in the upper right-hand corner of the error plots.

Method Error at N = 3000 Error at N = 6000

AB8 Unstable Unstable

ABS8

−6

0

6

−π 0 π

−1.3782e−10
× 10−8

−3

0

3

−π 0 π

−4.9727e−13
× 10−10

considered free parameter multistep methods that allow for additional improvement in
the ISB. RKS methods also show promise for treating hyperbolic systems. We have
introduced a low-storage fourth-order method that has twice the ISB and a much
smaller error constant than the classical fourth-order RK method. Table 9.1 sum-
marizes our results concerning staggered fourth-order methods and compares them
to other explicit nonstaggered fourth-order methods. Experimental results verify the
feasibility of these new methods.

Appendix A. Glossary of abbreviations and terms used in this paper.
ABp Adams–Bashforth method of order p
ABSp Staggered Adams–Bashforth method of order p
BDp Backward differentiation method of order p
BDSp Staggered backward differentiation method of order p
RKp Runge–Kutta method of order p
RKSp Staggered Runge–Kutta method of order p
ISB Imaginary stability boundary—The largest value of SI such that the interval

[−iSI , iSI ] is contained in the stability domain of a time-stepping scheme.
(For RK methods, normalized by s, the number of stages.)

error constant Coefficient C that gives an estimate of local trucation error to be expected

from a method; the local truncation error is given by Ckp+1f (p+1)(ξ), where
p is the order of the method. (To obtain an adequate estimate of global error,
normalize by σ(1) for multistep methods. To obtain a valid comparison,
multiply by sp for an s-stage method.)
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Table 9.1
Comparison of fourth-order classical nonstaggered vs. staggered time integrators. The normal-

ized local truncation error is Ck5f (5)(η), where C is the normalized error constant.

Nonstaggered Staggered
Normalized Normalized Normalized Normalized

Name Stencil ISB error Name Stencil ISB error
constant constant

(BD4 implicit) BDS4

l

1.0000 ≈ 0.0370

AB4

l

l

l

l

≈ 0.430 ≈ 0.3486 ABS4

l

l

l

l

≈ 1.3333 ≈ 0.0387

RK4

l

≈ 0.7071 ≈ 2.1333 RKS4
l

≈ 1.425 ≈ 0.1333
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