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Stochastic ejection of nanocontact droplet solitons via drift instability
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The magnetic droplet soliton is a large-amplitude, coherently precessing wave state that exists in ferromagnetic
thin films with perpendicular magnetic anisotropy. To effectively sustain a droplet, magnetic damping can
be locally compensated in a nanocontact region that imparts spin-transfer torque; this has been successfully
deployed in experiment to directly image the droplet and probe its dynamics electrically. However, theory
predicts and experiments indicate the existence of a drift instability whereby the droplet is ejected from the
spin-transfer-torque-active region and subsequently decays, an effect that may be enhanced or possibly induced
by thermal fluctuations. Using soliton perturbation theory and large-deviation theory, this work determines
the soliton ejection rate and the most likely path an ejected soliton tracks in the presence of thermal fields.
These results lead to an effective lower bound on the stability of magnetic droplet solitons in spin-transfer-torque
nanocontact devices operating at finite temperature and point to ways in which droplets can be made more robust.
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I. INTRODUCTION

The pursuit of fast, scalable, nonvolatile storage and new
ways to process digital information have motivated much re-
cent study of the formation and control of localized structures
in ferromagnetic materials. These structures are supported
by an energetic balance among contributions from material
anisotropy, exchange energy, dipole or self-induced field en-
ergy, and forcing due to external fields, current-induced spin
torque, and magnetic damping. Some localized structures,
such as skyrmions, are created with a topology that cannot
continuously deform to the trivial state, lending promise for
additional structural stability in the absence of a driving force.
Other structures, such as dissipative solitons, are dynamic
and must be maintained by a balance between driving and
damping terms. In both cases, structures that are stable under
deterministic dynamics are generally only quasistable un-
der the inevitable influence of thermal fluctuations or other
stochastic phenomena.

In this paper, we study the effects of weak thermal fluctua-
tions on the magnetic droplet soliton [1], a large-amplitude,
precessing mode that manifests as a balance between non-
linearity due to uniaxial anisotropy and dispersion due to the
ferromagnetic exchange interaction. Because of the droplet’s
precessional dynamics, its practical realization was predicted
[2] and then observed both indirectly via the giant mag-
netoresistance (GMR) effect [3,4] and directly with x-ray
transmission microscopy [5,6] in a spin-transfer-torque-driven
nanocontact device that imparts a current-induced local torque
to compensate uniform magnetic damping. Additional exper-
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iments [7,8] used the GMR effect to measure the nanocon-
tact device’s frequency characteristics, highlighting a low-
frequency signal that was attributed to a drift instability
whereby the soliton is expelled from the nanocontact and then
decays, after which a new droplet forms under the nanocontact
and the process repeats [2]. This drift instability presents a
significant challenge to the robust control of droplet solitons
and the reliable operation of future spintronic devices. Due
to growing interest in magnetic droplet solitons, experiments
continue in spin torque nanocontacts [6,9–11] and in spin-
Hall-driven nanoconstrictions [12].

The existence and dynamics of droplets in nanocontacts
have been successfully described using soliton perturbation
theory [13,14], which yields a system of ordinary differential
equations (ODEs) for the droplet’s parameters that we call
the modulation equations. The ODEs’ fixed points corre-
spond to sustained droplets, which, for a certain parameter
regime, are unstable and manifest an increase in the droplet’s
speed, i.e., the drift instability [15]. Their stochastic dynamics
under a thermal random field were explored theoretically
in Ref. [15]. The objective of that study was to compute
the approximate variance in droplet parameters, including its
frequency, linewidth, and position relative to the spot of the
nanocontact supporting it. The Ornstein-Uhlenbeck process
derived from linearizing the stochastic model equations about
the dissipative droplet state was shown to provide statistics
that agree well with simulations of the nonlinear stochastic
model and with micromagnetic simulations performed using
the open source code MUMAX3. That study also contained the
description of the aforementioned drift instability occurring at
critical bias current.

An equally important figure of merit for magnetic droplets
in the presence of a thermal field is the probability
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(alternatively, the rate) of ejection, where the droplet escapes
the attractive potential provided by the finite spatial extent
of the nanocontact and then decays due to magnetic damp-
ing. In the physically relevant limit of weak thermal effects,
exits occur rarely, with a probability or rate determined by
large-deviation theory. In this limit, the asymptotic scaling of
exit probabilities and rates with vanishing noise strength is
provided by a rate function related to the exit path or paths
that minimize an action functional. This asymptotic scaling
provides an order-of-magnitude estimate for the ejection rate,
which would otherwise be estimated through sampling using,
for example, a software package such as MUMAX3 [16].
These simulations must resolve dynamics on gyromagnetic
timescales of nanoseconds, while our estimates show that
exits occur on timescales of micro- to milliseconds, depending
on the operating regime. Monte Carlo methods to estimate
ejection rates or ejection probabilities over finite times are
therefore unreasonably expensive.

In this work, we demonstrate that, even in regimes where
the droplet fixed point is nominally stable under deterministic
dynamics of the modulation ODEs, the proximity of a saddle
point associated with the drift instability provides an impor-
tant mechanism for droplet ejection. We use a combination
of analytical and numerical techniques from large-deviation
theory to compute a quantity called the action. Here, the
action quantifies the rate at which the droplet departs from its
deterministically stable basin of attraction under the influence
of weak thermal fields. Because there are several exit path-
ways, we compute the action associated with exits through all
saddles with a single unstable manifold, including the saddles
with nonzero velocity bifurcating through the drift instability
[15] and those associated with zero velocity originating in a
saddle-node bifurcation in the precessional frequency [13].
Our most important physical result is the determination of
the mean time it takes for a deterministically stable droplet to
be ejected from the nanocontact due to thermal noise. Based
on physical parameters from recent experiments [7,17], we
estimate this time to be approximately 50 ns or a 20-MHz
rate of droplet ejection, which is within an order of magnitude
of low-frequency observations from recent experiments. We
estimate that this rate can be manipulated and, importantly,
significantly decreased by a judicious choice of operating
parameters.

II. MODEL

We study a model for the magnetization M = Msm̂ of
the free layer in a thin magnetic film supported from below
by a thin nonmagnetic conducting layer followed by a fixed
layer with constant magnetization Mp = Mpm̂p, where Ms

and Mp are their respective saturation magnetizations. The
fixed layer plays the role of a current polarizer, enabling both
magnetoresistive detection of the free-layer magnetization and
switching of the free layer through spin-transfer torque (STT).
The current density is approximately restricted in space to
a circular disk nanocontact of radius R∗ situated on top of
the free layer. An external field H0 is applied perpendicular
to the layers in order to provide control over the fixed-layer
magnetization and to stabilize the droplet.

From the Landau-Lifshitz-Slonczewski equations
for the free-layer nondimensionalized magnetization
dynamics defined on the plane, m̂(x, t ) : R2 × R → S2,
we have

∂ m̂
∂t

= −m̂ × heff − αm̂ × (m̂ × heff )

+ iH (ρ∗ − |x|)m̂ × (m̂ × m̂p) − m̂ × h, (1)

where 0 < α � 1 is the damping parameter, H (x) is the
Heaviside function, and i = I/I0 is the STT current nondimen-
sionalized by

I0 = 4μ0Ms(Hk − Ms)eπR2
∗δ

h̄η
, (2)

with Hk being the anisotropy field, δ being the free-layer
thickness, η being the spin torque efficiency, and ρ∗ = R∗/L.
In Eq. (1), time has been nondimensionalized using the pre-
cessional timescale τ = [|γ |μ0(Hk − Ms)]−1, where γ is the
gyromagnetic ratio and μ0 is vacuum permeability. In-plane
lengths are normalized by L = λex

√
Ms/(Hk − Ms), where λex

is the exchange length. The respective influences of the ex-
ternal magnetic field H0 = (HK − Ms)h0, the exchange field,
and perpendicular magnetic anisotropy sufficient to exceed
the local demagnetizing field contribution (HK > Ms) are
included in

heff = h0ẑ + ∇2m̂ + mzẑ. (3)

Finally, thermal effects are modeled using the fluctuation-
dissipation principle [18] and are described by the final term
in Eq. (1), which is taken to be space-time white noise with

E(h(x, t )h†(x′, t ′)) = β2I δ(x − x′)δ(t − t ′), (4)

where I is the 3 × 3 identity matrix, β2 = T/T0, and T is
temperature, with the characteristic temperature

T0 = μ0M2
s λ2

exδ

2αkB
.

It is important to note that the stochastic differential equa-
tion (SDE), Eq. (1), must be interpreted in the sense of
Stratonovich to preserve the unit magnitude of m̂ [|m̂(x, t )| =
1 for all x ∈ R2, t � 0] [19].

Following Refs. [13–15], we express the free-layer
magnetization in spherical coordinates such that m̂ =
(sin � cos 
, sin � sin 
, cos �), with the droplet given ap-
proximately by

cos � = tanh(ρ − 1/ω), (5)


 = h0t − v · ρ̂

ω2
+ φ, (6)

where φ = ωt + φ0. It is assumed that the precessional fre-
quency ω above the field-induced frequency value of h0 is
small, i.e., 0 < ω < 0.25, and that the droplet velocity v is
small, i.e., |v| � ω. The latter assumption requires that, in
one precessional period 2π/ω (where ω is the additional
precession rate beyond the field-induced value of h0), the
droplet moves only a fraction of the rescaled exchange
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FIG. 1. Droplet soliton given by Eqs. (5) and (6). The left image is a centered droplet soliton (ξ = v = 0); the right image is a noncentered
droplet soliton (|ξ|, |v| > 0). False color represents the out-of-plane component m̂ · ẑ. Thus, the magnetization interior to the droplet points
down into the plane, and the magnetization outside the droplet points up out of the plane. The magnetization deforms continuously across the
droplet boundary such that its unit magnitude is maintained. Near the nanocontact boundary (denoted by the red circle), the droplet points
entirely in plane. Arrows represent the magnitude and direction of the in-plane component (mx, my ), which precesses as time t advances.

length L. In this expression, (ρ, ϕ) are polar coordinates
centered at the droplet, related to the laboratory-frame co-
ordinates through x = ξ + ρ(cos ϕ, sin ϕ), where ξ is the
droplet center that moves according to ξt = v. Figure 1 il-
lustrates two examples of droplet solitons with the functional
form given by (5) and (6). These are described later in
the paper as centered (left) and noncentered (right) droplet
solitons.

The droplet is thus characterized by six free scalar param-
eters: azimuthal phase φ0, two-component position vector ξ,
precessional frequency ω > 0, and two-component velocity
vector v. It was demonstrated in Ref. [14] using soliton
perturbation theory in the limit of large nanocontact radius
ρ∗ 	 1, weak damping and STT current i = O(α) � 1, and
low temperature β0 � 1 that the droplet parameters evolve
according to the SDEs,

dφ = ω dt + i

4π

∫
x�ρ∗

sech2(ρ − 1/ω) dx dt + dWφ, (7)

dξ = v dt + iω

2π

∫
x�ρ∗

sech2(ρ − 1/ω)ρ̂ dx dt + dWξ , (8)

dω = αω2(ω + h0) dt − iω3

4π

∫
x�ρ∗

sech2(ρ − 1/ω) dx dt + dWω, (9)

dv = αω(ω + 2h0)v dt − iω2

2π

∫
x�ρ∗

(
3

2
v − (v · ϕ̂)

ρω
ϕ̂

)
sech2(ρ − 1/ω) dx dt + dWv, (10)

where the stochastic process W = (Wφ, Wξ ,Wω, Wv ) is a Brownian motion with covariance

E[W(t )W†(t ′)] = β2
0

2π
min(t, t ′)

⎛
⎜⎜⎝

v2/4ω + ω/2 vT /2
v/2 ωI2×2

03×3

03×3
ω5/2 ω4vT

ω4v σ2
v

⎞
⎟⎟⎠, (11)

E[·] denotes expectation (i.e., mean), and

σ2
v =

(
ω5 + ω3

(
9v2

x + v2
y

)
/4 2ω3vxvy

2ω3vxvy ω5 + ω3
(
v2

x + 9v2
y

)
/4

)
.

(12)

It should be pointed out that in deriving Eq. (10) from
Eq. (1) (i.e., from the general modulation equation (4.4) in
Ref. [14]), the stochastic driving term is not strictly normal-
izable (i.e., does not have bounded variance) due to the 1/ρ

contribution in the integrand near ρ = 0 (the deterministic
term does not suffer this difficulty since 1/ρ is integrable but
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not square integrable). Using the argument that the primary
contribution from thermal fluctuations must come from values
at the perimeter of the droplet ρ ≈ 1/ω 	 1, however, we
disregard the contribution near ρ = 0—where the droplet is
exponentially close to pointing down—to provide a well-
posed diffusion process.

Since no other parameters depend on φ and since spatial
isotropy allows the coordinate frame to be aligned with ξ

with nothing lost but an irrelevant angle, the full dynamics
of Eqs. (7) through (10 are captured by the four-dimensional
system

dξ =
[
v‖ + iω

π
f1(ξ, ω)

]
dt + dWξ , (13)

dω =
[
αω2(ω + h0) − iω3

2π
f2(ξ, ω)

]
dt + dWω, (14)

dv‖ =
[
αω(ω + 2h0) − 3iω2

2π
f2(ξ, ω)

+ iω

π
f3(ξ, ω)

]
v‖ dt + dW‖, (15)

dv⊥ =
[
αω(ω + 2h0) − 3iω2

2π
f2(ξ, ω)

+ iω

π
f4(ξ, ω)

]
v⊥ dt + dW⊥, (16)

with v‖ = v · ξ̂ and v⊥ = v · Jξ̂, where

J =
(

0 −1
1 0

)
.

The associated Brownian motion

W̃ = (Wξ ,Wω,W‖,W⊥)T (17)

satisfies Wξ = Wξ · ξ̂, W‖ = Wv · ξ̂, and W⊥ = Wv · Jξ̂, such
that

E[W̃(t )W̃T (t ′)] = β2
0

2π
min(t, t ′)

⎛
⎝ω 0 0T

0 ω5/2 ω4vT

0 ω4v σ2
v

⎞
⎠,

(18)

where

σ2
v =

(
ω5 + ω3(9v2

‖ + v2
⊥)/4 2ω3v‖v⊥

2ω3v‖v⊥ ω5 + ω3(v2
‖ + 9v2

⊥)/4

)
(19)

and v = (v‖, v⊥).
The nonlocal terms in Eqn. (13) through (16) are given by

integrals over the nanocontact:

f1(ξ, ω) = 1

2

∫
x�ρ∗

cos ϕ sech2(ρ − 1/ω) dx, (20)

f2(ξ, ω) = 1

2

∫
x�ρ∗

sech2(ρ − 1/ω) dx, (21)

f3(ξ, ω) = 1

2

∫
x�ρ∗

sin2 ϕ

ρ
sech2(ρ − 1/ω) dx, (22)

f4(ξ, ω) = 1

2

∫
x�ρ∗

cos2 ϕ

ρ
sech2(ρ − 1/ω) dx. (23)

The terms in (7) through (10), and, consequently, (13) through
(16), proportional to α or i correspond to contributions from
magnetic damping or STT, respectively.

We study the above model using the parameters con-
tained in Refs. [7,17], where R∗ = 75 nm, μ0Ms = 0.95 T,
μ0Hk = 1.2 T, λex = 5.3 nm, μ0H0 ∈ (0.2, 1.4) T, δ = 5 nm,
η = 0.26, τ = 0.13 ns, α = 0.03, and T = 314 K. These
parameters produce dimensionless parameters equal to h0 ∈
(0.8, 5.6), ρ∗ = 7.3, and β2 = 2.6 × 10−3, placing our sys-
tem in the weak-damping, modestly large nanocontact, and
weak-thermal-noise regimes.

III. LARGE-DEVIATION THEORY

Stochastic dynamical systems in the general form

du = f (u) dt + εβ(u) dW, (24)

where W is a Brownian motion, have long been the subject
of study in physical systems where rare events are important
phenomena to understand. It is now well understood [20] that,
in the limit as ε → 0, the probability of paths connecting any
two different states u1 and u2 approaches zero with a scaling
that is exponential in 1/ε2. The rate of this asymptotic decay
is dictated by minimizers of the Wentzell-Freidlin action
functional,

ST [u(t )] =
∫ T

0

1

2
(u̇ − f (u))T (β

(
u)β(u)T

)−1
(u̇ − f (u)) dt,

(25)

where the admissible set includes all absolutely continuous
paths u(t ) connecting u(0) = u1 and u(T ) = u2.

In the case of an exit from the basin of attraction of a
deterministically stable fixed point, the time T over which the
exit can occur clearly plays an important role in determining
the probability of exit. If � is the basin of attraction of a fixed
point u(0) = u0, then

lim
ε→0

ε2 lnP(u(T ) ∈ �) = − min
u(T )∈�∪∂�

ST [u(t )], (26)

lim
ε→0

ε2 lnP(tE � T ) = − min
u(s)/∈�, s�T

ST [u(t )], (27)

where tE = min[t : u(t ) /∈ �] is defined as the first time of
exit and ∂� is the boundary of �. These relations show that, in
the limit of small noise strength ε, the probability with which
the system state is found either inside or outside of a given
domain � is approximated by an exponential function whose
argument is the minimizer of the Wentzell-Freidlin action over
paths satisfying the appropriate initial and final conditions,
as given in Eqs. (26) and (27). Thus, large-deviation theory
recasts probabilistic questions in the limit of small noise as
deterministic optimization problems.

Over arbitrarily long timescales, exits occur with proba-
bility 1. The question is therefore not whether an exit will
occur, but rather how long one should expect to wait before it
does. The mean time to exit (MTE) can be shown to increase
exponentially as ε decreases, with a rate dictated by the
action ST minimized over all possible transit times. With the
action left only as a function of state space, one can define
a “quasipotential” function that quantifies the MTE from u0
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to any other state u, i.e., Q(u) = infT ST , where ST is the
minimizer of ST [u(t )] over continuous paths u(t ) satisfying
u(0) = u0 and u(T ) = u. In particular,

lim
ε→0

ε2 lnE[tE ] = inf
u∈∂�

Q(u). (28)

Under broad conditions, minima of the quasipotential Q(u)
occur at saddles with a one-dimensional unstable manifold,
which represent the most likely points of exit from the basin
of attraction of the stable fixed point. This means that, for
the droplet dynamical system (13)–(16), it will be sufficient
to evaluate Q(u) at a finite number of saddle points and then
identify the smallest value of Q with the exponential scaling
of the MTE. In summary, when the Wentzell-Freidlin action
is minimized not only over space curves but also over time
of flight to provide the quasipotential, the resulting minimum
provides an approximation for the mean exit time.

Gradient flows (24) where f (u) = −∇V (u) for some po-
tential function V (u) represent a special case in the theory
of large deviations. In this case, it can be shown [20] that
the quasipotential between a minimum of V and the nearest
saddle point is simply given by twice the difference in po-
tential between the two points. One-dimensional SDEs are
automatically gradient flows since one can simply define

V (u) = −
∫ u

u0

f (y) dy. (29)

While the above consideration provides the exponential scal-
ing law for transition probabilities and mean times to exit,
a more detailed analysis is required [21–23] to improve on
this estimate by providing the prefactor of the exponential,
for example. In this work we discuss only the rate function,
leaving a more accurate approximation for further study.

IV. FIXED POINTS AND DETERMINISTIC DYNAMICS

In the four-dimensional system described by Eqs. (13)
through (16), the first three parameters depend on only v⊥
through the diffusion tensor. A complete description of the
deterministic dynamics is therefore afforded by the reduced
system

ξ̇ = v‖ + iωπ f1, (30)

ω̇ = αω2(ω + h0) − iω3

2π
f2, (31)

v̇‖ =
[
αω(ω + 2h0) − 3iω2

2π
f2 + iω

π
f3

]
v‖. (32)

The case v‖ = 0 was thoroughly studied in Ref. [13], where
it was shown that multiple fixed points are possible with ξ =
v‖ = 0 depending on the number of roots of

�(ω) := α(ω + h0) − 1

2
iω

[
ρ∗ tanh

(
ρ∗ − 1

ω

)

− ln cosh

(
ρ∗ − 1

ω

)
+ ln cosh

1

ω

]
, (33)

where we note that �(0+) = αh0 > 0 and we remind the
reader that ρ∗ = R∗/L is the dimensionless nanocontact ra-
dius. Figure 2 illustrates the zero-level surface of �(ω) for

FIG. 2. Zero-level surface of �(ω; i/α, h0 ) for ρ∗ = 7.3.

different values of the applied field h0 and scaled STT current
i/α for fixed ρ∗ = 7.3. Considering for a moment the two-
dimensional system where we restrict v‖ = 0 and fix a small
applied field h0, a saddle-node bifurcation occurs for i/α ≈
h0, and the saddle approaches infinity as i/α approaches
2/ ln 2. For larger values of applied field, another stable fixed
point bifurcates from infinity either before or after the original
saddle-node bifurcation to collide with and annihilate the
saddle as i/α is increased.

Since sgn ( f1) = −sgn (ξ ), fixed points satisfy v‖ = 0 if
and only if ξ = 0. Centered droplet solitons, depicted in the
left image of Fig. 1, satisfy ξ = v‖ = 0, while noncentered
droplet solitons, depicted in the right image, satisfy ξ �= 0 and
v‖ �= 0.

The full stability of the centered fixed points is dictated by
the Jacobian evaluated at (0, ω∗, 0),

J =
⎛
⎝λ1 0 1

0 λ2 0
0 0 λ3

⎞
⎠, (34)

where

λ1 = − 1
2ρ∗iω sech2(ρ∗ − 1/ω), (35)

λ2 = λ1 − αh0ω + 1
2 iω[tanh(ρ∗ − 1/ω) + tanh(1/ω)],

(36)

λ3 = λ2 − λ1 − 2αω2. (37)

Bifurcation to the drift instability described in Ref. [15] occurs
when i/α is sufficiently large to force λ3 > 0, which occurs
when

i

α
= 2(2ω∗ + h0)

tanh(ρ∗ − 1/ω∗) + tanh(1/ω∗)
. (38)

The tangent direction of this unstable manifold is

ψ3 = (
1 0 1

2ρ∗iω∗sech2(ρ∗ − 1/ω∗)
)
, (39)
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FIG. 3. Phase diagram of noncentered fixed points plotted vs ξ

and ω and color-coded by stability (green is stable; red and ma-
genta correspond to one- and two-dimensional unstable manifolds,
respectively). The white-space region corresponds to unphysical (i.e.,
negative) values of i/α or h0. Slight pixelation for small and large
values of ω reflects the lower resolution of the computational grid in
those regions.

providing an indication of the ejection mechanism associated
with the drift instability. In particular, since ψ3 has positive
first and third components, this unstable direction corresponds
to the acceleration of the droplet away from the nanocontact
center.

Analysis of noncentered fixed points with v‖ �= 0 (ξ �=
0) is greatly simplified by the fact that they satisfy a two-
dimensional algebraic system,

α

i
(ω + h0) − ω

2π
f2(ξ, ω) = 0, (40)

α

i
(2ω + h0) − 1

π
f3(ξ, ω) = 0, (41)

with the velocity then provided by

v‖ = − iω

π
f1(ξ, ω). (42)

Rather than computing fixed points (ξ, ω, v‖) associated with
relevant parameter combinations (α, i, h0), it is convenient to
compute the unique parameter sets (i/α, h0) associated with
each potential fixed point in the (ξ, ω) plane and verify that
the parameters are within the appropriate asymptotic regime
for perturbation theory to be applicable. Thus, the subset of
noncentered fixed points plotted in Fig. 3 versus ξ and ω that
correspond to physically relevant values of i/α and h0 result
in Figs. 4, 5, and 6. Each of these images is, in fact, a surface
resolved through a set of points using the method described
above, where the uniform grid defined in the (ξ, ω) plane
is plainly visible. The color-coded points indicate stability,
with green denoting stable fixed points, red denoting fixed
points with a one-dimensional unstable manifold (referred to
here as 1-saddles), and magenta denoting fixed points with a
two-dimensional unstable manifold. The (i/α, h0)-plane at the
base of each graph illustrates the dotted line i = αh0, which
provides an approximate lower bound for existence of the
centered equilibrium, and the dashed line i = 2αh0. The solid

FIG. 4. Families of noncentered fixed points color-coded by sta-
bility (green is stable; red and magenta correspond to one- and two-
dimensional unstable manifolds, respectively) for ρ∗ = 7.3. Each
bifurcates from the drift instability identified in [15] (solid black)
at ξ = 0 and moves with increasing position ξ to accumulate in
the region (demarcated by dotted and dashed black lines) identified
asymptotically in Eq. (50). Multiple fixed points can exist for each
parameter pair (i/α, h0 ), including in the region where (0, ω∗, 0) is
stable.

line is the drift bifurcation curve, computable using Eq. (38),
from which it can be seen that all noncentered fixed points
emerge. At small values of h0, the bifurcation is supercritical
in i/α such that the centered equilibrium immediately trans-
fers its stability to the new noncentered equilibrium. For larger
values of h0, however, the bifurcation is subcritical in i/α,
with a sheet of saddles having only one unstable direction
in close proximity to the stable centered equilibria. These
present the primary ejection mechanism when thermal effects
are included and will be discussed in the next section.

An alternative to the strategy above for solving Eqs. (40)
and (41) that provides additional insight is to consider them
asymptotically for large ρ∗ and small ω [i.e., the regime
of validity for Eqs. (30) through (32)]. We observe in that

FIG. 5. Graph of ω values associated with the fixed points de-
picted in Fig. 4, emerging from ω = ω∗ at the drift bifurcation curve
and accumulating in the region identified in Eq. (50). Color coding
is the same as in Figs. 3 and 4.
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FIG. 6. Graph of v‖ values associated with the fixed points
depicted in Fig. 4, emerging from v‖ = 0 at the drift bifurcation curve
and accumulating in the region identified in Eq. (50). Color coding
is the same as in Figs. 3 and 4.

case that the support of each integral lies in the intersection
between the circular disk of radius ρ∗ and a “washer” with
O(1) width and central radius 1/ω, with the disk and washer
centers separated by ξ and depicted in Fig. 7. The two points
of intersection lie at angles ±ϕ∗ satisfying

cos(ϕ∗) = ω

2ξ

(
ρ2

∗ − 1

ω2
− ξ 2

)
,

so that by moving into droplet-centered coordinates, we have∫
x�ρ∗

sech2(ρ − 1/ω) du

≈
∫ 2π−ϕ∗

ϕ∗

∫ ∞

−∞
sech2(ρ − 1/ω)ρ dρ dϕ (43)

≈ 4

ω
(π − ϕ∗), (44)

where 0 � ϕ∗ < π by construction. The implicit assumption
in this construction is that the disk and annulus have nontrivial

FIG. 7. Illustration of the geometry used in the asymptotic ap-
proximation of the noncentered fixed point. Soliton-nanocontact
interaction occurs only in the portion of the annular region (droplet
soliton) that lies inside the zero-centered circle (nanocontact).

intersection, which approximately equates to the condition

|ξ − ρ∗| < 1/ω < ξ + ρ∗. (45)

Treating the remaining integrals similarly, we have that

π
α

i
(ω + h0) ≈ π − ϕ∗, (46)

π
α

i
(2ω + h0) ≈ π − ϕ∗ + 1

2
sin 2ϕ∗. (47)

Equating expressions for ω thus gives

sin 2ϕ∗ = 2(π − ϕ∗ − παh0/i). (48)

From Eq. (46), we require that π − ϕ∗ > παh0/i, so that

0 � ϕ∗ � π/2, (49)

which confines the droplet center to within the nanocontact
(see Fig. 7). Thus,

αh0 < i < 2αh0 (50)

for the existence of this fixed point. Figures 4 through 6
clearly demonstrate that the surface of fixed points emerging
from the drift bifurcation accumulates within this region.
Moreover, it is only within this region that the drift bifurcation
is subcritical, such that the region where a stable fixed point
coexists with a saddle point associated with the drift mode is
the intersection of (50) and the half plane bounded by (38).

The unique solution for ϕ∗ produces noncentered fixed
points with approximate values

ωv ≈ i

α

(
1 − ϕ∗

π

)
− h0, (51)

ξv ≈
√

ρ2∗ − sin2 ϕ∗
ω2

v

− cos ϕ∗
ωv

. (52)

Both of these quantities are positive. The associated parallel
velocity is provided by

vv ≈ 2i

π
sin ϕ∗, (53)

which is well approximated near the critical line i = αh0 by

vv ≈ i

(
i

αh0
− 1

)
. (54)

The perpendicular velocity v⊥ associated with noncentered
fixed points is v⊥ = 0. Hence, for each (ωv, ξv, vv ) fixed
point, there is a corresponding collection of fixed points for
the original six-dimensional dynamical system (7)–(10) with
droplet positions ξ on the circle |ξ| = ξv . Having identified
all centered and noncentered fixed points, we now turn to the
calculation of the action of paths connecting them.

We note that a subset of the noncentered fixed points
depicted in Figs. 3 and 5 has values of frequency that are
above the limit of validity ω < 0.25 computed in Ref. [13].
We first remark that the approximate region of validity found
in that reference may not strictly apply to these noncentered
solutions. We further remark that even if the relative error in
the approximation exceeds 10% (the validity criterion used in
the reference), the use of these noncentered fixed points in the
computation of mean time to exit should still be qualitatively
correct.
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V. ACTION AND OPTIMAL PATHS

In the limit of vanishing noise strength, exits from the basin
of attraction of a stable fixed point collapse at an exponentially
growing probability onto paths that lead to the nearest 1-
saddle, where proximity is defined using a metric weighted by
the diffusion tensor. In the four-dimensional system given by
Eqs. (13) through (16), there are two candidates for the saddle
that represent the most likely exit point, either a decay mode or
a drift mode. We study these in turn to identify their associated
limiting exit rates and thereby determine the droplet’s mean
exit time from the nanocontact.

The first saddle is that identified at ξ = v = 0 for values
of i/α that lie between the saddle-node bifurcation occurring
at approximately i/α = h0 and the value of i/α where the
saddle either runs off to infinity (for small values of h0) or
is destroyed in a saddle-node bifurcation with another stable
fixed point (for sufficiently large values of h0). Labeling the
centered stable fixed point by (0, ω∗, 0) and the saddle by
(0, ωs, 0), we postulate based on the form of the action (25)
and numerical results that optimal paths connecting these
two fixed points with optimal action S satisfy ξ = |v| = 0.
The dependence of the diffusion tensor on the state variables
precludes a definite statement that this is true, but we have
observed it in all cases we have computed. Since this exit
mechanism occurs strictly via changes in ω, thereby mimick-
ing the impact of damping on solitons [13], we refer to it as a
decay mode of exit.

If we assume this to be true, the action collapses to

S =
∫ ∞

−∞
L dt, L = 2π

ω5
[ω̇ − ω2�(ω)]2, (55)

where, by construction, �(ω) � 0 if ω∗ � ω � ωs and equal-
ity holds only at the end points. As explained in Sec. III,
one-dimensional flows are trivially gradient flows, and it is
immediate that optimal paths satisfy

ω̇ = −ω2�(ω), (56)

which enables us to integrate (55) to give the Wentzell-
Freidlin action

S = Q(ωs) − Q(ω∗), (57)

where Q is the quasipotential defined by

Q(ω) = −8π

∫
�(ω)

ω3
dω

= 4π

{
h0α − i

ω2
+ 2α

ω
+ ρ∗i ln

cosh(ρ∗ − 1/ω)

cosh ρ∗
+ ρ∗i

ω

− i

2

[
Li 2(−e−2(ρ∗−1/ω) ) + Li 2(−e−2/ω )

− Li 2(−e−2ρ∗ ) + π2

12

]}
, (58)

with Li 2(z) being the dilogarithm function defined by

Li 2(z) = −
∫ z

0
ln(1 − t )

dt

t
. (59)

The quasipotential (58) has been defined such that
limω→∞ Q(ω) = 0. As explained earlier, depending on the

FIG. 8. Quasipotential given in Eq. (58) for ρ∗ = 7.3, i/α =
6, h0 = 5.6. Green star and red S denote the stable fixed point and
saddle, respectively. Q blows up as ω → 0+.

parameters h0 and i/α, the saddle point (0, ωs, 0) may not ex-
ist. In these cases, we identify an exit via the decay mode with
ω → ∞, such that the associated Wentzell-Freidlin action
simplifies to S = −Q(ω∗). As illustrated in Fig. 8, expression
(58) for the quasipotential Q blows up as ω → 0. This is
expected since the noise strength goes to zero as ω → 0.

We are now in a position to estimate the droplet’s mean
time to exit via a noise-induced decay mechanism. For this,
consider Fig. 9, which depicts the Wentzell-Freidlin action
(57) for different relative STT currents i/α and different
applied magnetic fields h0. Moving from the dotted line,
which provides a lower bound on values of i/α for which
the centered droplet exists, toward the solid line, at which

FIG. 9. Natural logarithm of MTE (in dimensionless time units)
corresponding to annihilation of the droplet soliton via noise-induced
damping. Except for parameters close to the dotted line approxi-
mating the existence boundary for the stable centered fixed point,
the MTE from this damping mechanism will be shown to be orders
of magnitude larger than the drift exit mechanism. As the current
increases, so does the separation in value of ω between the stable
fixed point and the saddle, thereby increasing the Wentzell-Freidlin
action required to pass from one to the other, effecting an exit.
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FIG. 10. Natural logarithm of MTE (in dimensionless time units) corresponding to annihilation of the droplet soliton via the drift instability.
Left: MTE from stable centered fixed points through noncentered saddle points. Note that the simultaneous existence (i.e., for the same values
of i/α and h0) of these two fixed points dictates the parameters for which this calculation is relevant (see Fig. 4). Right: MTE from stable
noncentered fixed points through centered saddle points. This calculation is relevant for a different region of parameter space. The dotted and
dashed lines correspond to i/α = 2h0 and i/α = h0, respectively. Note that the exit times associated with this droplet annihilation mechanism
are much lower than the exit times shown in Fig. 9, and these events are therefore much more likely to be observed on any finite timescale.

the centered droplet loses stability via the drift bifurcation,
the MTE is observed to increase very quickly, becoming
extremely large for parameters not within a very small margin
of the dotted line.

Now we consider an alternative exit mechanism associ-
ated with the droplet drifting out of the nanocontact and
subsequently decaying. Since this mechanism involves both
decay and motion, we must, in principle, consider the four-
dimensional system given by Eqs. (13) through (16) due to the
dependence of the diffusion tensor given by Eq. (18) on v⊥.
However, the contribution from nonzero v⊥ is expected to be
negligible because v⊥ = 0 at all fixed points. For simplicity,
we therefore compute the minimizers of the action restricted
to three-dimensional dynamics according to Eqs. (13)–(15)
with v⊥ = 0, giving

S =
∫ ∞

−∞

1

2
[u̇ − f (u)]T [β(u)β(u)T ]−1[u̇ − f (u)] dt, (60)

where u = (ξ, ω, v‖),

f =
⎛
⎝ v‖ + iω

π
f1(ξ, ω)

αω2(ω + h0) − iω3

2π
f2(ξ, ω)[

αω(ω + 2h0) − 3iω2

2π
f2(ξ, ω) + iω

π
f3(ξ, ω)

]
v‖

⎞
⎠.

(61)
The diffusion tensor appearing in Eq. (60) is

ββT = 1

2π

⎛
⎝ω 0 0

0 ω5/2 ω4v‖
0 ω4v‖ ω5 + 9

4ω3v2
‖

⎞
⎠. (62)

The drift f (u) is not, in general, either gradient or trivially
nongradient, and the action must therefore be computed nu-
merically. The left image in Fig. 10 depicts the approximate
MTE obtained by using (28) with the action computed using
the generalized minimum action method (see Ref. [24] for
details) at parameter values where the base stationary state is
stable and coexists with the saddle corresponding to the drift

mode. As explained in Sec. IV and observed in Figs. 4 through
6, for a given nanocontact radius ρ∗, this is approximately
the set of current values h0 < i/α < 2h0 that lie to the right
of the drift bifurcation curve. The right image in Fig. 10 is
the approximate MTE associated with leaving the basin of
attraction of stable noncentered fixed points through the now
unstable centered fixed point.

In the parameter regime operable in Fig. 9 and the left
image of Fig. 10, the droplet soliton is potentially destroyed
via two candidate noise-related mechanisms. The first is the
drift mechanism described above, where the position and pre-
cessional frequency are driven by noise to the point where the
droplet loses stability to a transient traveling droplet which is
then ejected from the nanocontact. The MTE associated with
this mechanism is plotted on the left in Fig. 10. The second
is the decay mode described earlier, whereby an improbable
accumulation of fluctuations drives its precessional frequency
sufficiently high to fall into a regime where damping is no
longer counterbalanced by the current passing through the
nanocontact. The stochastic dynamics of this mechanism has
an associated MTE depicted in Fig. 9. It is clear from this
comparison that the action associated with the drift mode
is substantially smaller for all parameters investigated here,
indicating that this is by far the dominant mechanism for the
exit of a centered droplet soliton over the range of values
of magnetic field h0 and rescaled current i/α for which the
original fixed point is stable and the saddle associated with
the drift mode exists and has a one-dimensional unstable
manifold. As discussed earlier, this is true for a subset of
rescaled current values satisfying i/α < 2h0. For large current
but small external field h0, where the noncentered fixed points
are stable, it appears that the only exit mechanism for those
noncentered droplets is through the centered saddle point with
a MTE somewhat higher than the exit times associated with
annihilation of centered droplets; see the right panel of Fig. 10
for the MTE associated with this ejection mechanism.
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VI. CONCLUSIONS

Perturbation theory for a droplet soliton that experiences
uniform magnetic damping, local spin-transfer torque via
a nanocontact, a vertical applied field, and thermal fluc-
tuations results in a six-dimensional system of stochastic
ordinary differential equations. In this paper, we have re-
duced this system to an equivalent (in the deterministic case)
or approximately equivalent (in the stochastic case) three-
dimensional system that is amenable to detailed analysis.
We completely determined the nature of the fixed points for
this dynamical system. One family of fixed points, called
nanocontact centered, exists and is deterministically stable
in a restricted regime of current and applied field. These
fixed points represent dissipative droplet solitons centered
within the nanocontact and precessing at a fixed frequency.
In addition to previously studied nanocontact-centered fixed
points, we also identified a different class of noncentered
fixed points. These latter fixed points correspond to droplet
solitons whose centers are displaced relative to the center
of the nanocontact, with the resulting force balanced by an
anisotropy in the soliton’s in-plane magnetization. Figures 3
through 6 illustrate the dependence of the noncentered droplet
solitons’ parameters on experimental parameters i/α and h0,
as well as their stability characteristics. These noncentered
fixed points are stable in an appropriate parameter regime,
but we have not found any parameters for which the centered
and noncentered droplet solitons are simultaneously stable.
By combining our fixed-point analysis with large-deviation

theory, we identified the mostly likely path through phase
space along which a droplet subject to weak thermal noise
is expected to decay. A direct computation of the Wentzell-
Freidlin action showed that the most likely decay process for
stochastically perturbed, centered droplets is to drift out of the
nanocontact. The computed action also provides an estimate
for the rate of droplet expulsion from the nanocontact, which
sets an effective lower bound for droplet stability in these
devices at finite temperature. Based on the parameter values in
Refs. [7,17], with a timescale τ = 0.13 ns [see the nondimen-
sionalization of Eq. (1)], the left image of Fig. 10 yields an
estimated droplet ejection rate of 1/(τe6) ≈ 19 MHz at room
temperature. This rate is an order of magnitude lower than
the low-frequency observations in experiments, which have
been in the 100–500-MHz range. It is important to note that
estimates obtained by computing just the Wentzell-Freidlin
action (25) provide the scaling law of the MTE in the limit of
small noise strength but neglect prefactors that can be large.
By operating a spin torque nanocontact near the existence of
a nanocontact-centered droplet, i/α ≈ h0, we predict that the
ejection rate can be reduced but not avoided. Consequently,
we have shown that the droplet’s “drift” instability is unavoid-
able in a finite-temperature device.
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