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ABSTRACT

Networks of excitable systems provide a flexible and tractable model for various phenomena in biology, social sciences, and physics.
A large class of such models undergo a continuous phase transition as the excitability of the nodes is increased. However, mod-
els of excitability that result in this continuous phase transition are based implicitly on the assumption that the probability that a
node gets excited, its transfer function, is linear for small inputs. In this paper, we consider the effect of cooperative excitations, and
more generally the case of a nonlinear transfer function, on the collective dynamics of networks of excitable systems. We find that
the introduction of any amount of nonlinearity changes qualitatively the dynamical properties of the system, inducing a discontinu-
ous phase transition and hysteresis. We develop a mean-field theory that allows us to understand the features of the dynamics with a
one-dimensional map. We also study theoretically and numerically finite-size effects by examining the fate of initial conditions where
only one node is excited in large but finite networks. Our results show that nonlinear transfer functions result in a rich effective
phase diagram for finite networks, and that one should be careful when interpreting predictions of models that assume noncooperative
excitations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0103806

Networks of coupled excitable systems undergo a phase transition

as the excitability of the nodes is increased. Critical behavior at

the tipping point of this phase transition has been associated to

various properties observed in neuronal networks, such as opti-

mized dynamic range and information processing.1–8 Models of

these systems usually assume that one excited node is enough to

produce an excitation in another node. Here, we study the effect of

cooperative excitations by considering a nonlinear transfer func-

tion that interpolates between linear, stochastic excitations, and

a threshold-type deterministic excitation rule. We find that any

amount of nonlinearity qualitatively changes the properties of

the phase transition and produces a rich-phase diagram includ-

ing bistability, hysteresis, and discontinuous transitions. We also

study finite-size networks and find that, even for large network

size, the effective phase diagram can be very different from the

phase diagram predicted for infinite networks.

I. INTRODUCTION

The collective behavior of networks comprised of excitable
nodes has found applications in many systems ranging from
avalanches of neuronal bursting in the mammalian cortex9,10 and
neuroscience as a whole3,4,11–14 to epidemiology15,16 and social
systems.1,15 The dynamics of these systems can be very rich, includ-
ing behaviors such as a second-order non-equilibrium phase transi-
tion separating the absorbing state from the super-critical state,1–3

oscillatory behavior,17,18 and a critical transition line with vary-
ing exponents.19 One of the most important properties of systems
with excitable dynamics is criticality, the state where the strength
of interactions is balanced at the tipping point of a phase tran-
sition. It has been shown that operating in this regime might
offer various functional advantages,5–7,20 including optimal dynamic
range,1,2,4,8,21 synaptic learning,14 optimal control,5 and optimal infor-
mation processing.1 This state can be achieved in a self-organized
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fashion22 (as expected in the brain), which is a source of many theo-
retical studies based on network plasticity (brain plasticity in Ref. 13)
and experimental studies, e.g., by tuning the ratios of excitation
to inhibition for cortex slice cultures grown on planar microelec-
trode arrays.4 The basic assumption in the theoretical studies is
that when the excitation probability of a single node pt is small,
the master equations can be linearized.2 However, this assumption
is violated for systems with cooperative excitation rules and, more
generally, for systems with transfer functions that have nonlinear
leading order terms. An extreme example is that of deterministic
dynamics with a threshold, which applies for sandpile-like dynam-
ics on complex networks23–25 or in social contagion models.26 In this
paper, we uncover a rich phase space by introducing and analyz-
ing a model that interpolates between stochastic and deterministic
dynamics. We find that any amount of nonlinearity qualitatively
changes the properties of phase transition and produces a rich phase
diagram including bistability, hysteresis, and discontinuous transi-
tions. A mean-field analysis allows us to understand the collective
dynamics of the system. In addition to studying the effect of a non-
linear transfer function, we explore the effect of a finite network.
Theoretical analyses are usually carried out in the N → ∞ limit, and
initial conditions are chosen by implicitly assuming that a macro-
scopic fraction of nodes is initially excited. Here, we also consider
the case where N is large but finite, and the system is started with
only one excited node. We show that the effective phase diagram for
this case is qualitatively different from the phase diagram obtained
when a constant positive fraction of the N → ∞ nodes is excited.

The structure of this paper is as follows. In Sec. II, we
review previous results on the Kinouchi–Copelli model and non-
cooperative excitations. In Sec. III, we present a model for excitable
networks that interpolates between linear stochastic dynamics and
deterministic dynamics. In Sec. IV, we study the dynamics of
the generalized model numerically and analytically. In Sec. V, we
consider the effective phase diagram of the model for finite-size
networks, and in Sec. VI, we discuss our results.

II. BACKGROUND

In this section, we review previous results on the Kinouchi–
Copelli model1 and discuss how it can be generalized to account for
cooperative excitation rules.

The Kinouchi–Copelli model consists of a network of N
excitable nodes labeled i = 1, . . . , N that evolve in discrete time steps
t = 0, 1, . . . . A node i can be in the rest state [characterized by a
variable xi(t) = 0], excited [xi(t) = 1], or in m − 1 refractory states
[xi(t) = 2, 3, . . . , m]. If node i is in the rest state, it becomes excited
in the next step by a neighboring excited node j with probability Aij

or independently by an external stimulus with probability η, where
η represents an external stochastic stimulus. The nodes in the refrac-
tory state evolve as xi(t + 1) = xi(t) + 1 if 1 ≤ xi(t) < m − 1 and
xi(t + 1) = 0 if xi(t) = m. It was shown by Larremore et al.2 that the
largest eigenvalue λ of the matrix A with entries Aij and its associ-
ated eigenvector play a prominent role in determining the collective
dynamics of the system. For λ < λc ≡ 1, the system falls into the
absorbing state where no node is excited, while for λ > λc, the activ-
ity of the system saturates eventually to a state where a macroscopic
fraction of the nodes are excited. The inclusion of a refractory period

causes additionally another transition point (λb ≡ 2) at which the
system undergoes bifurcation to an oscillatory regime.17 Therefore,
the phase diagram of these systems is given by











0 ≤ λ < λc subcritical regime,

λc < λ < λb supercritical regime,

λ > λb oscillatory regime.

(1)

The key strategy in this work, which was followed later by many
authors for other dynamical models,3,17,21 was to linearize the gov-
erning master equations with respect to the nodes’ firing probability
being small near the transition point λc. This strategy relies on the
probability of a node being excited in the next time step pt+1

i to have
leading-order linear terms in terms of probabilities that other nodes
are excited at the current time, pt, which we call linear stochasticity.
Many additional effects, like the impact of inhibitory nodes,27 the
effect of short-range sensory nodes (changing continuously λc and
λb),19 and retardation effects18 were based on this analysis and the
inspection of the activity-dependent branching ratio (BR) b(M).28

In the Kinouchi–Copelli model, a single node j can excite node
i with probability Aij. Assuming a locally tree-like network, the
probability that node i is excited at time t + 1 is (more details in
Appendix A)2

pt+1
i = (1 − pt

i)



η + (1 − η)



1 −

N
∏

j=1

(1 − pt
jAij)







 , (2)

which in the absence of external stimulus, η = 0, is to leading order,

pt+1
i =

N
∑

j=1

Aijp
t
j , (3)

satisfying linear stochasticity. In contrast, consider a locally tree net-
work with N excitable nodes in which α excited nodes are required
for exciting a destination node. Then, one can show (details in
Appendix A) that in the leading order,

pt+1
i =

1

α!





N
∑

j=1

Aijp
t
j





α

, (4)

which does not satisfy linear stochasticity. In Sec. III, we general-
ize the Kinouchi–Copelli model to account for violations to linear
stochasticity by postulating that the probability that a node gets

excited is given by a sigmoid function of the input
∑N

j=1 Aijx
t
j , which

interpolates between a piecewise linear function and a threshold-
type function that gives deterministic dynamics.

III. MODEL

Our model consists of N excitable nodes as described in Sec. II.
The nodes are connected via a random directed graph where each
pair of nodes is connected with probability q, resulting in an average
node in- and out-degree 〈k〉 = q(N − 1). The connection weights
wij for the non-zero matrix entries are randomly and uniformly dis-
tributed in the interval [0, 2σ ], where σ is a tuning parameter. The
leading control parameter is the largest eigenvalue of the network
adjacency matrix A, which is λ ≈ σqN in our case [see Eq. (1)].
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FIG. 1. Transfer function hβ(x) in Eq. (5) interpolating between stochastic
(β = 0) and deterministic (β → ∞) spike dynamics.

The dynamics generalizes the Kinouchi–Copelli model presented in
Sec. II, taking into account that some nodes are in the refractory
period, i.e., a node cannot be excited immediately after being excited
in the previous step. The probability that a node i spikes at time t + 1
is given by

pt+1
i = δxi(t),0hβ





N
∑

j=1

Aijx
t
j



 , (5)

where δxi(t),0 is unity if xi(t) = 0 and zero otherwise, i.e., it is the
effect of the refractory period of one time step. The transfer func-
tion hβ gives the probability that a node becomes active based on

the total input
∑N

j=1 Aijx
t
j . In the rest of the paper, we will use

hβ(x) = G(h0(x, β)), where G(x) is x when 0 ≤ x ≤ 1, 1 if x > 1, and
0 if x < 0, and h0(x, β) is

h0(x, β) =

(

2 −
2

π
tan−1 β

)

xβ

xβ + 1
G(x). (6)

The function hβ(x), as shown in Fig. 1 for different values of β ,
interpolates between linear stochastic (β = 0 where the probability
of spike increases linearly with the input potential17,27) and a step-
like function of input that shows a deterministic dynamics (β → ∞

where a node is excited only when the input potential exceeds a
threshold, arbitrarily set to unity).

When β → 0, it was shown that in the continuum limit
for large network sizes, the model reduces to Wilson–Cowan
equations29 when both inhibitory and excitatory nodes (neurons) are
present.30

In Sec. IV we show numerically and analytically that the addi-
tion of nonlinearity (β > 0) results in rich dynamics with discontin-
uous transitions and bistability.

IV. BIFURCATION DIAGRAM: DISCONTINUOUS

TRANSITIONS AND BISTABILITY

In order to study the effect of nonlinearity on transition from
subcritical to critical behavior, we simulated Eq. (5) numerically for
various values of λ and β and monitored the fraction of excited

FIG. 2. Attractors of st , 〈s∗〉, as a function of λ for various values of β and
N. The black bold squares are MF predictions obtained from the iterating map
[Eq. (11)].

nodes,

st =
1

N

N
∑

n=1

xt
i . (7)

For simulations, we considered N/103 = 2.5, 5, 10, 22, and 40,
with initial states chosen such that each node has xi = 1 with proba-
bility 0.1 and xi = 0 otherwise. 106 samples were generated for each
λ, β , and N, over which ensemble averages were taken.

For a given realization of the dynamics, st either falls into
the absorbing state s = 0 (subcritical regime), approaches a non-
zero stationary state (supercritical regime), or oscillates between two
non-zero values (oscillatory phase). Figure 2 shows the attractors
s∗ of st as a function of λ for various values of β and N. When
β = 0 (top left), the system exhibits a second-order phase transition
from the subcritical to the supercritical state at λ = 1 and a second
transition to oscillations at λ = 2.17 As we will demonstrate with
a mean-field analysis, the behavior of the system in the oscillatory
regime is highly dependent on the initial conditions, and the partic-
ular structure observed in Fig. 2 depends on the choice s0 ≈ 0.1. For
positive values of β , the transition from the subcritical to the super-
critical state becomes of first order, with the system transitioning
from s∗ = 0 to s∗ > 0 in a discontinuous way at a value of λ > 1.

To understand these dynamics, we analyze the evolution of the
system under the update equation (5) using a mean-field approach.
Considering the expected value of st+1, we find using Eqs. (5) and (7)

E
[

st+1
]

=
1

N

N
∑

m=1

E
[

xt+1
m

]

=
1

N

N
∑

m=1

E

[

δxt
m ,0hβ

(

N
∑

n=1

Amnxt
n

)]

. (8)
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FIG. 3. Long-term values of even (circles) and odd (crosses) iterations of st

obtained from the mean-field map [Eq. (11)] as a function of λ for β = 0.5. (a)
The initial condition is random and uniformly chosen in [0, 1] for each λ. (b) The
initial condition is 0.01 for each λ.

The sum over N in the previous equation can be interpreted as
an average over nodes, which we will denote with 〈·〉. Assuming

independence of the random variables δxt
m ,0 and hβ

(

∑N
n=1 Amnxt

n)

)

,

we get

E
[

st+1
]

=
〈

δxt
m ,0

〉

〈

hβ

(

N
∑

n=1

Amnxt
n

)〉

. (9)

Now we use the fact that
〈

δxt
m ,0

〉

= 1 − st. Furthermore, for an
Erdős–Rényi network with large mean degree, the distribution of

the random variable
∑N

m=1 Anmxt
m is narrow about its mean, λst, so

we can approximate
〈

hβ

(

∑N
j=1 Aijx

t
j

)〉

' hβ

(

λst
)

to obtain

E [st+1] ' (1 − st)hβ (λst) . (10)

Focusing on the evolution of the expected value, we obtain the
approximate one-dimensional map,

st+1 ≡ f(st) = (1 − st)hβ (λst) . (11)

Iteration of the map [Eq. (11)] with s0 = 0.1 produces the black
squares as shown in Fig. 2, which agree well with the simulations
as N becomes large. Figure 3 shows the result of iterating the map
[Eq. (11)] for β = 0.5 with two different initial conditions for each
value of λ: for panel (a), s0 is randomly and uniformly chosen in
(0, 1), and in panel (b), s0 is always 0.01.

To demonstrate how the map Eq. (11) can shed light into the
dynamics of the system, including its dependence on the initial con-
ditions as shown in Fig. 3, we plot the second iterate of the map,
f(2)(s) vs s in Fig. 4 for β = 0.5 and λ = 1 (top panel), λ = 2 (middle

panel), and λ = 5 (bottom panel). For λ = 1, the only fixed point
is s = 0. As λ increases, a stable positive fixed point is created at
λ = λc, such that for λ = 2, there are two stable fixed points. For
λ = 5, there is a band of marginally stable period-2 orbits around
s = 0.5. This band appears at λ = 4 and grows in size as λ is
increased. Note that even for this high value of λ, the fixed point
s = 0 remains stable, as can be seen in the inset that shows that the
derivative f′(0) is less than one (it is, in fact, 0). The inset also shows
that although the fixed point s = 0 (the absorbing state) is stable, its
basin of attraction is very small. With these observations, one can
explain the qualitative features of Fig. 3 as follows. In panel (a) for
λ > 4, initial conditions that fall inside the band of fixed points alter-
nate between two values, producing the cloud of points that grows
in size as the size of the band grows. For λc < λ < 4, almost all ini-
tial conditions fall within the basin of attraction of the positive stable
fixed point, but a few get attracted to the still stable fixed point s = 0.
For λ < λc, all initial conditions get attracted to the stable fixed point
s = 0. In panel (b), the initial condition s0 = 0.01 belongs to the
basin of attraction of s = 0 up to approximately λ ≈ 3.7. Beyond
that, the orbit gets attracted to the stable fixed point first and to a
period-2 orbit thereafter.

While some specific details about the bifurcation diagram
depend on the shape of the transfer function hβ (such as the contin-
uous band of marginally stable period-2 orbits), the general behavior
of the system is as follows: for β = 0, there is a second-order phase
transition from the subcritical to the supercritical regime, and a sub-
sequent transition to an oscillatory regime. For β > 0, however, the
transition is discontinuous and occurs at a value of λ larger than one.
The absorbing state s∗ = 0 remains stable, but its basin of attrac-
tion is extremely small. The phase diagram of the model is presented
in Fig. 5.

V. HYSTERESIS AND FINITE SIZE EFFECTS

In Sec. IV, we found that for β > 0 the transition from the
subcritical to the supercritical state is discontinuous. However, a
mean-field analysis that assumed N → ∞ revealed that the absorb-
ing state s∗ = 0 remains stable even for λ > λc. Therefore, it is
important to understand how finite-size effects can drive the sys-
tem away from the absorbing state. In this section, we address this
by studying numerically and analytically the behavior of the system
with initial conditions where only one node is excited, i.e., s0 = 1/N.
Note that in the thermodynamic limit, and using the mean field
description derived above, this would yield st = 0 for t > 0 due to
the linear stability of the absorbing state.

First, we study numerically the long-term behavior of the sys-
tem under these initial conditions. For a given realization of the
dynamics out of the oscillatory regime, the system either falls into
the absorbing state st → s∗1 = 0 or it reaches a steady state with
st ≈ s∗2 > 0. In Fig. 6(a), we show the probability distribution func-
tion (PDF) of s∗ in terms of β obtained from 106 realizations of the
dynamics. The PDF shows a bimodal structure, i.e., there are two
peaks at s∗1 = 0 and s∗2 > 0. For small values of λ, there is only one
peak at s∗1 = 0, showing that the system falls into the absorbing state
with high probability. When λ is increased, the second peak s∗2 is
born for the first time at a point that we denote by λ(1)

c (β) (see illus-
tration in Fig. 6). As λ is increased further, the position of the first
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FIG. 4. Second iteration f (2)(s) of the mean field map [Eq. (11)] for λ = 1 (top),
λ = 2 (middle), and λ = 5 (bottom). For small λ, the only fixed point is the
absorbing state s∗ = 0. For intermediate λ, a second stable fixed point emerges.
For large λ, a band of marginally stable period-2 orbits is created, while the
absorbing state is still stable but with a very small basin of attraction (inset).

peak is fixed, while the second peak moves to the right, and at the
same time the height of the first (second) peak decreases (increases),
and eventually the first peak dies at a point that we call λ(2)

c (β). This
reveals that the system exhibits a discontinuity at the point where the
second peak is born [λ(1)

c (β)] using which we define a gap parame-
ter as 1(β) ≡ s∗2 − s∗1 . As is shown in the inset of Fig. 6(a), 1(β)

saturates for large enough βs, and also limβ→0 1 = 0, i.e., the gap
closes at β = 0. The presence of two peaks with a gap in between is a
signature of a first-order transition, while the zero gap in β = 0 sug-
gests similarities with a second-order transition as is well-established
in the literature.

As a standard approach for bimodal PDFs,31 we divide the data
at the valley point between s∗1 and s∗2 [with PDFs represented by

FIG. 5. The phase diagram of the model. Note that the supercritical and oscilla-
tory phases coexist with the absorbing state, but the latter has an extremely small
basin of attraction.

P1(s
∗) and P2(s

∗), respectively] and average to find two 〈s∗〉i, i = 1, 2
for two branches. The results are shown in Fig. 7 for various values of
β and N. In these graphs, the upper branch [calculated from P2(s

∗)]
is born for the first time at (λ(1)

c (β), 1(β)) as explained above,
and the lower branch [calculated from P1(s

∗)] dies at the point
[λ(2)

c (β), 0]. As λ increases further, the graph passes a bifurcation
point λb(β) beyond which the upper branch splits into (and oscil-
lates between) two branches, the distance between which increases
by increasing λ (first observed by Moosavi et al.17). From the behav-
ior shown in Fig. 7, one observes hysteresis behavior, i.e., the loops
that are extended from λ(1)

c to λ(2)
c between two branches. The sur-

vival of the lower branch is expected since the dynamics starts from
one excited node, and there is a significant probability that activ-
ity dies out as we will show below. As β increases, the hysteresis
effect magnifies and λ(1,2)

c grow with β and N, as is shown in Fig. 8(a)
(similar results for λ(2)

c are not shown).
As discussed above, the coexistence of the two branches is

caused by the fact that a single excited node can either cause exci-
tations that become self-sustaining (leading to the branch s∗2 > 0) or
fail to propagate its activity (leading to s∗1 = 0). Therefore, an impor-
tant question is to determine when the excitation of a single node
will lead to the absorbing state s∗ = 0. We will approach this prob-
lem by examining the expected evolution of Eq. (5) when only one
node is excited at time t = 0 and calculating the expected number of
nodes that are excited at time t = 1, Ns1. If s1 > s0 = 1/N, we expect
that, on average, activity will grow and the absorbing state will not
be reached. Assuming that node i is initially excited, we have

x1
n =

{

1 with probability hβ

(

∑N
m=1 Anmxt

m

)

, n 6= i

0 otherwise.
(12)

Chaos 33, 023134 (2023); doi: 10.1063/5.0103806 33, 023134-5

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0103806/16745996/023134_1_online.pdf

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

(a)

(b)

FIG. 6. (a) The distribution function P(s∗) of s∗ for the case s0 = 1/N shown
for various values of λ and N for β = 0.2. The inset shows the gap 1(β) as

a function of β . (b) Schematic illustration of the quantities λ
(1)
c (β), λ

(2
c (β), and

1(β).

The expected network activity st ≡ 1
N

∑N
n=1 xt

n at t = 1 is given by

E [s1] =
1

N

N
∑

n=1

E
[

x1
n

]

=
1

N

N
∑

n6=i

hβ

(

N
∑

m=1

Anmx0
m

)

, (13)

where E [st] is the ensemble average of st. Since x0
n = δn,i, this

simplifies to

E [s1] =
1

N

N
∑

n6=i

hβ (Ani) . (14)

The adjacency matrix is weighted, and we can write
Anm = anmwnm, where anm is 1 (0) if nodes n, m are connected (not
connected). We choose the weights wnm randomly and indepen-
dently from a uniform distribution in [0, 2σ ], where σ is chosen so
that the largest eigenvalue of the matrix A is λ. (However, we note

FIG. 7. Peaks 〈s∗〉 of the distributionP(s∗) (see text) as a function ofλ for various
values of β and N for the case s0 = 1/N. Hysteresis is identified by dashed lines
with arrows.

that the following arguments work with more general weight distri-
butions.) Since the network is Erdős–Rényi with mean degree

〈

k
〉

,

we can approximate
〈

k
〉

σ ≈ λ. Rewriting the right hand side of the
previous equation as an average over nodes,

E [s1] =
1

N

N
∑

n6=i

anihβ (wni) = 〈ahβ (w)〉, (15)

FIG. 8. (a) Values of λ
(1)
c obtained numerically for various values of N and β . (b)

Values of λ
(1)
c obtained from Eq. (21) for the same values of N and β .
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and using independence, we find

E [s1] = 〈a〉〈hβ (w)〉 =
〈k〉

N
〈hβ (w)〉. (16)

Calculating the average over the uniform distribution of weights and
using s0 = 1/N, we obtain

E [s1]

s0

=
〈

k
〉

〈

k
〉

2λ

∫ 2λ/〈k〉

0

hβ (w) dw. (17)

Changing variables, we find that the transition point separating the
regimes where the single node ends in the absorbing or supercritical
state is a solution to

E [s1]

s0

= 1 =
〈

k
〉

∫ 1

0

hβ

(

2uλ
〈

k
〉

)

du. (18)

Equation (18) gives a relation between the mean degree 〈k〉, the
transfer function hβ , and the largest eigenvalue λ determining the
effective boundary between the absorbing state and the supercriti-
cal state for finite networks. To demonstrate its validity, numerical
results and the theoretical prediction from Eq. (18) are shown in
Fig. 9 for (N, q) equal to (5000, 0.01), (500, 0.1), (5000, 0.1), and
(500, 0.01). The red line shows the curve defined by Eq. (18) in the
(β , λ) plane. The blue dots correspond to numerical simulations of
the full system that end up in the absorbing state s∗1 = 0 and the clear
dots to simulations that end up with positive activity s∗2 . The the-
ory predicts well the boundary between the two behaviors. Note that
the boundary depends on 〈k〉 and not on N, which is illustrated in
Figs. 9(a) and 9(b) that have the same value of 〈k〉 but different N.

If E [s1] < s0 (blue regions in Fig. 9), we expect that the activ-
ity will die out in a finite number of time steps (one can think of
activity in this case as a subcritical branching process). The upper
branch, characterized by a nonzero probability that activity becomes
self-sustained, appears when E [s1] > s0 (a supercritical branching
process). Therefore, we identify λ(1)

c as the value of λ that solves Eq.
(18). In the thermodynamic limit N → ∞, one can expand the inte-
grand in Eq. (18) to get an analytic approximation to λ(1)

c . We use
the following expansion for ε � 1:

hβ(ε) = 2

(

1 −
1

π
tan−1 β

)

ε1+β + higher orders of ε, (19)

so that Eq. (18) becomes in the limit N → ∞ (using 〈k〉 = qN),

1 =
22+β

2 + β

(

1 −
1

π
tan−1 β

)(

λ1+β

qβNβ

)

. (20)

Therefore, the critical λ(1)
c is found to be

λ(1)
c =

(

(2 + β) qβ

22+β(1 − 1
π

tan−1 β)

)
1

1+β

N
β

1+β . (21)

This shows that when N → ∞, λ(1)
c diverges for non-zero βs, so that

for finite λ values, the system will always end in the absorbing state.
In Fig. 8(b), we plot the theoretical prediction from Eq. (21). While
the theoretical values do not agree exactly with the numerical obser-
vations shown in Fig. 8(a), the theory predicts well the qualitative
features, including the dependence on β and N.

FIG. 9. Simulation and MF results for the phase diagram of the system for the
case s0 = 1/N with the parameters equal to (a) N = 5000 and q = 0.01, (b)
N = 500 and q = 0.1, (c) N = 5000 and q = 0.1, and (d) N = 500 and
q = 0.01. The blue (clean) areas show systems that end up in the absorbing
(supercritical) state. The red line shows the criterion given by the MF analysis,
i.e., Eq. (18).

In Fig. 10, we show a numerically obtained phase diagram for
the case s0 = 1/N for three values of N. As discussed above, in the
thermodynamic limit, the dominant phase for all λ values and β > 0
is the absorbing state. However, Eq. (21) shows that for low val-
ues of β , the supercritical phase can persist for large values of N,
in agreement with Fig. 10.

VI. DISCUSSION

We investigated a model for networks of an excitable system
that interpolates between linear stochastic and threshold determin-
istic dynamics. We found that the introduction of nonlinearity in the
transfer function for small input values (characterized in our model
by positive values of the parameter β) results in bistability between
the absorbing state s∗ = 0 and a supercritical state with s∗ > 0. For
positive values of β , the supercritical state s∗ appears at a value of
the network eigenvalue λ > 1 and with a positive gap 1 = s∗ > 0,
resulting in hysteretic behavior. In addition, for larger values of λ, an
oscillatory phase appears as has been reported previously for similar
models.17 A mean-field analysis of the dynamics provides insights
into the dynamics of the model and good quantitative agreement
with numerical simulations, including its dependence on initial
conditions, the linear stability and small basin of attraction of the
absorbing state, and the particular nature of the oscillatory phase.
The main insight obtained from the mean-field analysis is that any
amount of nonlinearity creates bistability between the absorbing
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state and the supercritical state, but the basin of attraction of the
absorbing state is typically very small. The phase diagram for the
system is shown in Fig. 5 in the limit N → ∞.

We also studied the behavior of the model for large but finite
networks. As a representative case of initial conditions consisting
of a small number of excited nodes, we studied in detail the case
of a single initially excited node. Using probabilistic arguments, we
derived conditions on the parameters under which we expect such
an initial condition to fall into the absorbing state. Using this con-
dition, we were able to obtain an analytical formula for the value
of λ below which the system is attracted to the absorbing state.
From the theoretical analysis, we found that all initial conditions
with s0 = 1/N fall into the absorbing state for large enough N, in
agreement with our finding that the absorbing state is linearly sta-
ble in the mean-field analysis. However, our theoretical result shows
how the behavior of a finite but large network differs from that of an
idealized infinite network. For example, Fig. 5 shows that the effec-
tive phase diagram for N = 40 000 can be very different from the
N → ∞ phase diagram, and Eq. (21) shows how, for small values
of β , the difference can persist for very large values of N. The phase
diagram for the system is shown in Fig. 10 for finite N.

Some features of our analysis depend on specific model choices.
For example, the existence of the band of marginally stable period-2
orbits depends on the choice of the transfer function in Fig. 1. How-
ever, our main results, namely, that (i) the addition of nonlinearity
to the transfer function in (0, 1) causes the appearance of a positive
branch s∗ > 0 with a positive gap as illustrated in Fig. 6(b), (ii) that
a mean-field analysis allows the study of the collective dynamics in
the limit N → ∞, and (iii) that a probabilistic analysis allows the
analysis of the fate of initial conditions with a single excited node in
large but finite networks, are independent of these choices. To see
this, note that both the mean-field analysis leading to Eq. (11) and
the probabilistic analysis leading to Eq. (18) do not depend on the
particular transfer function used.

FIG. 10. Numerically obtained phase diagram for the case s0 = 1/N for three
values of N.

In our model, the dynamics is stochastic for finite β and deter-
ministic for β → ∞. An interesting question is whether the addition
of noise to the deterministic dynamics β → ∞ might effectively be
represented by a finite value of β . We leave this question for future
research.

Our results show that even a small degree of nonlinearity (e.g.,
compare the curves β = 0 and β = 0.2 in Fig. 1) can have dramatic
consequences for the dynamics of large networks of excitable units.
Since it is often assumed that excitation between excitable units
is non-cooperative, which is implemented with a piecewise linear
transfer function, care should be taken when interpreting the results
of models with such assumptions.
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APPENDIX A: KINOUCHI–COPELLI (KC) MODEL AND

GENERALIZATION

In this Appendix, we explain how the Kinouchi–Copelli (KC)
model can be generalized to account for cooperative interactions.

Let us start with the KC model for a system with N excitable
nodes and the variable {xi}

N
i=1, which takes m + 1 values 0, 1, . . . , m

in which 0 is the rest state and 1 is the excited state, and
xi = 2, . . . , m are the refractory states. If node xi(t) = 0, it becomes
excited in the next step [xi(t + 1) = 1] by a neighboring excited
node j with probability Aij or independently by an external stim-
uli with probability η. The nodes in the refractory state evolve as
xi(t + 1) = xi(t) + 1 if 1 ≤ xi(t) < m − 1 and xi(t + 1) = 0 if
xi(t) = m. For m = 1, it is not hard to show2 that (assuming a locally
tree-like network)

pt+1
i = (1 − pt

i)



η + (1 − η)



1 −

N
∏

j

(1 − pt
jAij)







 . (A1)

Note that the first factor guarantees that the site i is in rest at time t.
To understand the second factor, note that if pt

jAij = 0 for all neigh-

bors, then pt+1
i = (1 − pt

i)η (which is due to external stimuli) and
when pt

jAij = 1 for at least one j, then pt+1
i = (1 − pt

i), i.e., it turns

on definitely if pt
i = 0. Then, for testing the stability of the solution

p∗ = 0, one can expand the equation for small pt
i ’s (to the first order)

and in the limit of zero external stimuli, the following equation is
obtained:

pt+1
i = (1 − pt

i)η + (1 − η)

N
∑

j

pt
jAij →

N
∑

j

pt
jAij, (A2)
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which admits the solution pt
i = λtui, where ui and λ are the eigen-

vector and (largest) eigenvalue of the A matrix. Equation (A1) holds
for the case where at least one node can excite another node. Now
let us consider the case where two excited nodes are necessary for
exciting one node. Then this equation changes to

pt+1
i = (1 − pt

i)



η + (1 − η)



1 −

N
∏

j>k

(1 − pt
jp

t
kAijAik)







 , (A3)

which for small p limit and η → 0 casts to

pt+1
i =

∑

j>k

pt
jp

t
kAijAik =

1

2









N
∑

j

pt
jAij





2

−

N
∑

j

(

pt
jAij

)2



 (A4)

for which the first term is the leading term (the first term contains
∼N2 terms, while the second contains ∼N terms). For a general
case where α excited nodes are required for exciting, we obtain for
large N

pt+1
i →

1

α!





N
∑

j=1

pt
jAij





α

, (A5)

which is a generalized version of the KC model. Note that summing

over all possible αs gives exp
[

∑N
j pt

jAij

]

− 1, which is a standard

(exponential) dynamic function (a normalization factor is needed)
used in a large class of excitable networks.
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