STANDARD MAP

The standard or Taylor—Chirikov map is a family of
area-preserving maps,= f(z) wherez = (x, y) isthe
original position and’ = (x’, y’) the new position after
application of the map, which is defined by

k
x' =x+y— —sin2rx),
2 (1)

y =y — —sin(2rx).
27

Here x is a periodic configuration variable (usually
computed modulo 1); € R is the momentum variable,
and the parametek represents the strength of a
nonlinear kick. This map was first proposed in 1968 by
Bryan Taylor and then independently obtained by Boris
Chirikov to describe the dynamics of magnetic field

The standard map also describes the relativistic
cyclotron, and is the equilibrium condition for a
chain of masses connected by harmonic springs in
a periodic potential—the Frenkel-Kontorova model
introduced in 1938 (Meiss, 1992). Similar maps include
Chirikov’s separatrix map (valid near the separatrix of
a resonance), the Kepler map (describing the motion
of comets under the influence of Jupiter as well as
a classical hydrogen atom in a microwave field),
and the Fermi map (for a ball bouncing between
oscillating walls) (Lichtenberg & Lieberman, 1992).
The higher-dimensional version is the Froeshlé map
(See Symplectic maps).

Symmetries
The standard map has a number of symmetries that

lines. The standard map and Hénon’s area-preserving'ead to .speciall dynamical behavior. To see these, it is
quadratic map are extensively studied paradigms for convenientto lift the map from the cylinder to the plane

chaotic Hamiltonian dynamics.

The standard map is an “exact symplectic” map of
the cylinder. Because’(x, y) is a monotone func-
tion of y for eachx, it is also an example of
a monotone twist mapSte Aubry—Mather the-
ory). Every twist map has a Lagrangian generat-

by extending the angle variahteto R.

Let 7., (x,y) = (x +m, y+n) be the translation
by an integer vectoin, n). As f is periodic, its lift has
a discrete translation symmetyyo T, 0=Tnoo f.
More unusually, the standard map also has a discrete
vertical translation symmetrjo To, = Ty n © f.

ing function, and the standard map is generated !dentifying orbits equivalent under these symmetries

by F(x,x') = 3(x' — x)? + (k/4n?) cog2r x), SO that
y=—0F/dx andy = 0F/dx’. The map can also be
obtained from a discrete Lagrangian variational princi-
ple as follows. Define the discrete action for any config-
uration sequence.., x;_1, X;, X;+1, . .. as the formal
sum

A[""'xl—l?xt?xt—"l""] = ZF(xlvxl-i-l)- (2)
t

Then an orbit is a sequence that is a critical point pf
this gives the discrete Euler—Lagrange equation

3

k.
Xi+1 — th + X1 = —E S|n(27T)Ct).

This second difference equation is equivalent to (1)
upon definingy; = x; — x;_1.

The standard map is an exact or approximate de-

scription of many physical systems, including the
“kicked rotor.”” Consider a rigid body with mo-
ment of inertia | that is free to rotate in a hor-

implies that standard map can be thought of as acting
onthe torusl ={—3 <x, y <3}.

The standard map also commutes with the reflection
S(x,y)=(—x, —y). This can be used to identify
the lower half plane with the upper one, and
to restrict the map to the spac&={(x,y)
—3<x<3, 0<y<3}identifying(— 3,y =(3,)
and each half of the upper and lower boundaries:
(*x,0=(—x,0), (x, ) =(—=x, ). The map on the
two sphereS is singular at the corners+ % 0) and

11
(£3.9)

The standard map is also reversible: it is conjugate
toitsinverseRfR —1= f —1(Lamb & Roberts, 1998).
Onereversori®i(x, y) =(—x, y — (k/27) sin(2r x));
this generates a family of reversats= f” o R1. These
reversors are involution®2 = i d, thusf can be written
as the composition of two involutions= (f o R) o R.
Finally, the composition of a symmetry and a reversor
is also a reversor, so that, for examplg= SR is also
a reversor.

Symmetric orbits are invariant under a symmetry
or a reversor. This is particularly interesting since

izontal plane about its center of mass. Suppose symmetric orbits must have points on the fixed sets

that an impulsive torqud (9) = — Asin(@) is ap-
plied to the rotor at times7, neZ. Let (6;, L))

of the reversor, FigR) = {z:z= R(z)} or on Fix(f R).
Because these fixed sets are curves, symmetric orbits

be angular position and angular momentum at time are particularly easy to find. Rimmer showed that

jT —e for e —07". At time T later these become
(0j+1, Lj+1)=(0; +(T/DLj+1, Lj +T(0;)). Scal-
ing variables appropriately gives (1).

the bifurcations of symmetric orbits are special; for
example, they undergo pitchfork bifurcationSeé
Bifurcations).
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STANDARD MAP

Dynamics

When k=0, the dynamics of the standard map
are integrable: the momentum is an invariant.

On each invariant circleC? ={(x,y):y=w)}, the
angle after: iterates is given by, = xo + wt mod 1,
thus the dynamids |s that of the constant rotation,
R, (0) =6 + w, on the circle with rotation numbes.
When o is rational, every orbit orC? is periodic;
otherwise, they are quasi-periodic and densely cover
the circle.

When|k| « 1, Moser’s version of the KAM theorem
implies that most of these invariant circles persist;
that is, there is a rotational invariant circlg, on
which the dynamics is conjugate to the rotatifip
(See Hamiltonian dynamics). KAM theory applies
to circles with Diophantine rotation_number, that is,
we{Q:nT—m| > CTnT;Vm,neZ,ny@O} for
somer > 1andc > 0. Thisexcludes, of course, all of the
rational rotation numbers as well as intervals about each
rational, but still leaves a positive measure set. While it
is difficult to obtain reasonable estimates for the interval
of k for which all Diophantine circles (with givesmand
7) persist, in 1985 Herman showed analytically that
there is at least one invariant circle whigmn < 0.029,
and delallave & Rana (1990) used a computer-assiste
proof to extend this result up ta®L.

Some of the periodic orbits on the rational circles
0,91/" also persist for nonzerb. Indeed, the Poincaré—
Birkhoff theorem implies that there are at least two
period n orbits (with positive and negative Poincaré
indices, respectively). Aubry—Mather theory implies
that orbits with rotation numbewr:/n can be found
variationally; one is a global minimum of the action
(2), and the other is a minimax point (a saddle of
A with one downward direction). For example, when
k>0, (%, 0) is a minimizing fixed point, and, 0) is a
minimax fixed point. The reversibility of the standard
map implies that there must be symmetric periodic
orbits for eachw =m /n as well. Indeed, it is observed
that the minimax periodic orbits always have a point on
the line FiXR) ={y =0}, the “dominant” symmetry
line.

The minimax orbits are elliptic wheh is small
enough. A convenient measure of stability of a period-
orbit is Greene’s residue

n—1

1
R=7@-Tr(M), M=[]DfG.
=0

An orbit is elliptic when O< R < 1. For example, the
fixed point(0, 0) has residué& /4. Perturbation theory
shows that the residues of the minimizing and minimax
orbits areO(k").

Each nondegenerate minimum of the action (2)
is a hyperbolic orbit and has unstable and stable

manifolds. For each minimizingn/n orbit, these
intersect and enclose the minimax orbit, forming an
island chain or resonance. The intersection of the
manifolds is transverse, though the angle between them
is exponentially small ink (Gelfreich & Lazutkin,
2001).

A number of island chains are easily visible
in computer simulations. In the color figureseg
Standard map: Figure 1 in color plate section), we
show a number of orbits of the standard mapfer0.6
on the torusy . In the figure, each of the blue curves
is formed from many iterates on a rotational invariant
circle like those predicted by the KAM theorem. The
green orbits are secondary and tertiary circles arising
from resonances.

When stable and unstable manifolds intersect
transversely, some iterate of the map has a Smale
horseshoe. Thisimpliesthatthereis, atleast, a cantor set
of chaotic orbits. Umberger & Farmer (1985) showed
numerically that there is a fat fractal set on which
the dynamics has a positive Lyapunov exponent. The
proof of this statement is still illusive. The regions
occupied by chaotic orbits appear to grow in measure as
k increases. Numerically, it appears that a single initial

dcondition densely covers each “zone of instability”

a chaotic zone bounded by invariant circles. Chaotic
trajectories that were only slightly visible in the
previous color figure (gold orbits near the stable and
unstable manifolds of the resonances) dominate the
dynamics whert = 2.0 (See Standard map: Figure 2

in the color plate section). At this valueothere are no

rotational invariant circles. In the figure, the gold region
is filled by a single trajectory with.5(10)°|iterates. 41 5 \times

appears to densely cover most of phase space, th1046$

there are stilla number of secondary and tertiary islands
visible.

There are also many elliptic periodic orbits that
are created for nonzerb. For example, thg0, 0)
fixed point undergoes a period-doubling bifurcation
at k =4, creating a period two orbit. More generally,
when the eigenvalues of any elliptic periadsrbit are
A1 =eT2T@ then new orbits are born that encircle
the original orbit and have relative rotation number
. Whenw =m’/n’, these correspond to a chain of
nn’ islands. The color figure (Standard Map: Figure
2 in the color plate section) shows red and blue
island chains that encircle the fixed point with rotation
number%; that there are two such chains is due to
the reflection symmetns. As Birkhoff realized, the
newly created elliptic orbit also will undergo similar
bifurcations, so that the phase space shows a structure of
islands-around-islands, ad infinitum. This structure can
even exhibit self-similarity (Meiss, 1992) just like the
Feigenbaum period-doubling sequence for dissipative
systems.
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STANDARD MAP

ThelLast Invariant Circle these island chains as well as tf2 5) and (3, 8)

In 1968, John Greene began studying the destruction ofCha'nS'

invariant circles in the standard map. He showed that se-

quences of periodic orbits, namely the minimizing and Transport

minimaxm /n orbits, whose rotation numbers converge ] )

on a given irrational, can be used to determine the exis- 1ransport theory studies the motion of ensembles

tence of a circle with that frequency. Suppose thaas ~ Of trajectories from one region of phase space to
a continued fraction expansiéag, a1, ...] ,a; € Z T, another. When there are invariant circles separating

and letm ; /n; =[ag. a1. .. . . a;] be thejth convergent the regions, then there is no transport. A Birkhoff

of w. Greene conjectured that when the residues of ‘Zone of instability” is an annular region bounded by,
these orbitsk; — 0, adj |-> co then the invariant cir- but otherwise not containing any, rotational invariant
cleC,, exists—JMacKa 992) gave a proof of much of circles. Birkhoff showed there are orbits that traverse

this. each zone of instability, and Mather (1991) extended

For the standard map, it appears that each rotationalthis t0 show that there are orbits future and past
invariant circle exists only up to a critical value, asymptotic to the upper and lower bounding rotational

k = ker(w); this graph was called the “fractal diagram”  invariant circles, respectively. .

by Schmidt and Bialek in 1982. The critical AL_Jbry—Mathertheorymphestha’;fo_reach|rr§1t|onal

vanishes at every rational and appears to have local/0tation number there is a minimizing trajectory

maxima for eachoble irrational w. Percival called ~ that is dense on a circle or a cantor set. Percival
a number noble if its continued fraction expansion propgsed calling the latter sets “cantori.” Thus for
has a tail that is eventually all ones. By this criterion > g, €very rotational invariant circle has become
the “most irrational” number is the golden mean @ cantorus, and vertical transport between any two
v = (1++v5)/2=[1 1 1....].Indeedforthe standard Momentum levels occurs. The color figu 3__ R

map, Greene discovered that the invariant circles with In the color plate section) shows two such cantori
rotation numbersy +m ,meZ appear to be the (Prown) with rotation numbersl+y)/(3+4y) and

last circles destroyed (all such circles are destroyed (1+27)/(2+5y). The rate of transport is locally
simultaneously due the symmetries). Numerically it governed by the flux, the area that crosses a closed loop

is known that the golden circle is destroyed at UPOD iteration. The flux across a cantorus or a separatrix

ker(y) ~0.971635406. is given by MathersAW, the difference in action

This value is most efficiently computed by renor- Petween the corresponding minimax and minimizing
malization theory (MacKay, 1993). At the critical pa- orbits (MacKay et al., 1984). Renormalization theory

9\ rameter for the destruction of a noble invariant cir- SPOWs that the flux through a noble cantorus goes to

301 ¢
cle the phase space exhibits a self-similar strugture, 2670 8%k — ke) > this can be very small well beyond
s kcr. For example in the color figurg (Figurg 3 see co

plate section), the blue chaotic trajectory is bounded
below by a low flux cantorus even for tens of millions

of iterates. Geometrically, the flux is the area contained
in a “lobe” bounded by pieces of stable and unstable
manifolds; all transport occurs through lobes in two-
dimensional maps (Wiggins, 1992); unfortunately, the
higher-dimensional generalization is not clear.

James D. MEiss

AQ:1 |see Figure fig:kcrit. The geometric scaling of this sel
similarity can be used to compukg from the residues
ofthem ;/n ; orbits. This is more accurate than iteration
methods—pioneered by Chirikov—which rely on find-
ing an orbit that crosses the region containing the circle,
and frequency methods—developed by Laskar—which
rely on the irregularity of the numerically computed ro-
tation number. While none of these methods prove that
ker corresponds to the last invariant circle, “converse
KAM theory” leads to a computer proof that there are
no rotational circles fok > &3 (MacKay and Percival, =~ Seealso Aubry-Mather theory; Cat map; Chaotic
1985). This is based on Birkhoff's theorem that every dynamics; Ergodic theory; Fermi acceleration and
rotational invariant circle is a Lipschitz graph (Meiss, Fermi map; Hénon map; Hamiltonian systems;
1992). The color figureSee Standard map: Figure 3 ~ Horseshoesand hyper bolicity in dynamical systems;
in the color plate section) shows the dynamics on the Lyapunov exponents; Maps; Measures; Melnikov
sphereS atke(y). Here the the golden circle (purple) method; Phase space; Symplectic maps

is on the threshold of destruction. Also shown in the

$1.5\times 0| figure arg 15(10)°|iterates of two chaotic trajectories  Eyrther Reading
10"6% (light blue and light green), the stable (blue) and un-

stable (red) manifolds of thén,n)=(0,1) , (1, 2), de la Llave, R. & Rana, D. 1990. Accurate strategies for small

; ; ; divisor problems. Bulletin of the American Mathematical
and (1.3) orbits, and a number of orbits trapped in Society, 22: 85-90.
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