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Abstract 

Symplectic twist maps are obtained from a Lagrangian variational principle. It is well known that nondegenerate minima 
of the action correspond to hyperbolic orbits of the map when the twist is negative definite and the map is two-dimensional. 
We show that for more than two dimensions, periodic orbits with minimal action in symplectic twist maps with negative 
definite twist are not necessarily hyperbolic. In the proof we show that in the neighborhood of a minimal periodic orbit of 
period n, the nth iterate of the map is again a twist map. This is true even though in general the composition of twist maps 
is not a twist map. @ 1998 Elsevier Science B.V. 
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1. Introduction 

We consider a discrete Lagrangian system on the 
configuration space Q, of dimension d. A discrete La- 
grangian, L( x, x') , x, x’ E Q, is a generating function 
for a symplectic map (x’, y’) = F(x, y) on Q x Wd, 
that is implicitly defined by (for a review, see Ref. 

[lOI) 

y=-Lr(x,x’), y’=Lz(x,x’). (I) 

The subscripts 1 and 2 denote the derivative with re- 
spect to the first or second argument, respectively. We 
assume that the (local) twist condition, det ~512 # 0, 
holds, so that x’ can be determined, at least locally, 
as a function of (x, y ) . The dynamics can also be ob- 
tained from a variational principle: define the periodic 
action by 

* E-mail: hdullin@xlorado.edu. 

n-1 

wntn = c U&3 xi+1 1 lXn=XO+m . (2) 
i=O 

When the configuration space is the torus, Q = P’, we 
can fix the period of the torus to 1 in every dimension 
and choose m E Zd, otherwise we just set m = 0. It is 

easy to see that every critical point of W,, corresponds 
to a periodic orbit of F with period n. 

A minimal periodic orbit is a nondegenerate, local 
minimum of W,, (we do not require it to be glob- 
ally minimizing as in Aubry-Mather’s theory [ IO] ) . 
When the twist is negative definite, minimal orbits are 
expected to be important: for example every orbit on 
an invariant torus (that is a Lagrangian graph) is min- 
imizing [ 91. The purpose of this note is to establish 
the relation - if any - between the fact that the orbit 
is minimal and its stability type. 

Relations between the index of a certain quadratic 
form (which is not the Hessian of the action) and the 
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stability type of fixed points of symplectic mappings 
have been obtained in Ref. [ 11. Similar results spe- 
cialized to natural maps can be found in Ref. [ 51. Our 
approach is different because we specifically look at 
action minimizing orbits, i.e. the index of the Hessian 
of the action is 0 (or maximal). In Ref. [ 21 it was 
shown that there exist LagrangianJIows for which the 
action minimizing equilibrium points or the minimiz- 
ing periodic orbits are not hyperbolic. This is very sim- 
ilar to our results, but we treat the case of maps with 
a completely different method. Although it is known 
that symplectic twist maps have a corresponding time 
one flow [ 111, this requires one to treat time depen- 
dent Lagrangian flows, which was not done in Ref. 

[21. 
Linear stability of a periodic orbit is determined by 

its multipliers. Let {xi, x2, . . . x,} be a periodic orbit 
with period n, and let Xi+1 = Xi. The linearization 
of the map at this orbit gives rise to an eigenvalue 
problem with eigenvalues that we call ,x, multipliers 
for the orbit. We define the residue R associated with 
a multiplier by 

R=;(Z-p-t). (3) 

Since the multipliers for a symplectic map come in 
reciprocal pairs p and l/p, there are d residues in 
dimension d, and their values completely determine 
the stability type of the orbit. A multiplier is elliptic, 
denoted “E” when p = eid or equivalently when 0 < 
R 6 1. It is inverse hyperbolic, denoted “I”, when 
1 < R and hyperbolic, denoted “ET’, when R < 0. 
Finally a multiplier is part of a complex quartet when 
R is complex; we denote this case “CQ”. Of course 
this latter case can occur only when d 2 2. 

With the notation 

(4) 

for the Hessian of L at (xi, Xi+) ) we can express the 
linearized map DF directly in terms of these data as 

141 

DF(xi, Yi> = 
-Bi' Ai -B;’ 

BT - DiB,‘Ai -&By’ (5) 

It is often more convenient to obtain the stability of 
period n orbits directly from the Lagrangian formula- 
tion. Using the abbreviation 

Pi=Ai+Di_t, (6) 

the linearization of the Euler-Lagrange equations 
about the orbit is 

BT_iGxi_i + PiSXi + Bi6Xi+i = 0. (7) 

The multipliers CL are determined by solving this 
system subject to the condition that SXi+n = @xi. 
This gives the characteristic polynomial det M, (p) = 
0 [9,7]. Here the matrix M takes slightly different 
forms for fixed points and period 2 orbits, and we 
distinguish these with a subscript that indicates the 
period 

(8) 

(9) 

M,(P) = 

n>2. 

h Jh 

BT P2 B2 

*. 

B:-2 Pn-1 b-1 
PB” B;_, Pn I 9 

(10) 

The Hessian of the periodic action W,, is given by 
M, ( 1) . the assumption that the periodic orbits under 
consideration be minimal therefore is 

M,(l) >O. (11) 

Note that if a multiplier is on the unit circle p = e’d, 
then the matrix M, (e’4) is Hermitian. 

When d = 1, there is a simple relation between 
the Hessian of the periodic action W,,,, and the 
residue [ 81, 

R = _A det&(l) 

4 ny=, C-b) ’ (12) 

where M,(l) = D’W,,,, is the Hessian and Bi G 
L12 (Xi, xi+1 ) . For d > 1, there is no such simple rela- 
tion, though the product of the residues can be written 
similarly [ 71. Elq. ( 12) implies that when d = 1 and 
the twist is negative definite, nondegenerate minimal 
orbits are hyperbolic. We will show that this is false 
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for d > 1: the multipliers of minimal periodic orbits 
can become elliptic. 

In Section 2 we analyze minimal fixed points and 
establish the fact that they can be nonhyperbolic if 
the twist is either nonsymmetric or indefinite. For 4D 
maps we completely analyze the structure of minimiz- 
ing fixed points in the space of three essential param- 
eters. Then our strategy is to reduce the case of min- 
imal periodic orbits to that of a minimal fixed point. 
Clearly the period n orbits of F are fixed points of the 
iterated map F”. However, it is well known [ lo] that 
the iterate of a twist map is in general not a twist map. 
This does not preclude the possibility that the iterated 
map restricted to the neighborhood of a minimal pe- 
riodic orbit is a twist map, which we will prove to be 
the case in Section 3. Finally we give two examples 
of minimizing periodic orbits which are elliptic. 

2. Fixed points 

The stability of a fixed point is determined by so- 
lutions to det Ml (,u) = 0. For a minimal orbit MI = 
PI + B, + BT > 0. Rewriting Mi (p) to isolate this 
term gives 

MI(P) =MI(~) + ;(P+; -2)(B, +BT) 

-By). (13) 

For the physically interesting case when the twist Bi 
is symmetric, the last term vanishes, and the spectrum 
is determined by the generalized eigenvalue problem 

det(Mi(1) -4RBi) =O. (14) 

Since Mi ( 1) is positive definite, and both matrices 
are symmetric, they can be simultaneously diagonal- 
ized. Thus the residue is obtained as the eigenvalue of 
a symmetric matrix and therefore must be real, ruling 
out complex quadruplets of multipliers. Elliptic multi- 
pliers are possible for arbitrary symmetric B, and oc- 
curwhenO< R< 1. 

However, if in addition B is negative definite, then 
elliptic multipliers cannot occur, because we can write 

Ml(e’$) =Mi(l) +2(1 -cos&)(-Bi). (1% 

This is positive definite since it is the sum of a posi- 
tive definite matrix and a positive semidefinite matrix. 
Therefore, det MI (exp(i4)) Z 0, and there are no 
multipliers on the unit circle. Thus for negative def- 
inite twist a nondegenerate minimizing fixed point is 
hyperbolic in d dimensions. 

If the twist BI is symmetric but indefinite it is cer- 
tainly possible to have elliptic multipliers, e.g., by 
choosing Mt ( 1) and Bi diagonal. 

If the twist Bi is not symmetric the eigenvalue prob- 
lem for R problem cannot be derived in this sim- 
ple way. Introducing the symmetric part of the twist 
S = (Bi + BT)/2 and its antisymmetric part Y = 

(Bi - BT) /2, we can rewrite det( Mi ( ,u) ) = 0 as 

det(Mi(1) -4RS-46Y) =O, (lo) 

where S = ( l/p - ,~)/4 = dm. By simulta- 
neous diagonalization we can again simplify the prob- 
lem in reducing Mi ( 1) to the identity and S to the 
diagonal S. Y denotes the transformed Y which is still 
antisymmetric, such that 

det(l-4RS-4SY) =O. (17) 

We know that this must be a polynomial in R, be- 
cause the reflexivity of the characteristic polynomial 
for the multiplier p [ 31 allows it to be rewritten as a 
polynomial of degree d in p + l/,u, or, equivalently, 
in R. To see this explicitly we employ the “cumulant 
expansion” for an arbitrary n x n ma&x A, 

det(I+eA) =ke’Qi(A), (18) 
i=O 

where the cumulants (or up to a sign the coefficients 
of the characteristic polynomial of A) are recursively 
defined by 

Qo = 1, 

QI =&A, 

Qi = f e(-l)k+‘Qi-k(M) trAk. ( 19) 
k=l 

We apply this formula to det( 1 + l (4RS + 4SY)) 
and eventually set E = - 1. For large dimensions it is 
quite cumbersome to obtain explicit expressions for 
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the “characteristic polynomial” of R because in the 
expansion of trAk we must compute terms of the form 

tr(Rs+~?Y)~= c &s’tr(u(S,j,Y,Z)), 
j+l=k 

(20) 

where a( S, j, Y, 1) stands for the sum of all (noncom- 
mutative!) products with j factors S and 1 factors Y 
in all possible orderings. Since we can cyclically per- 
mute under the trace a lot of terms can be combined. 
Since in general the symmetric and the antisymmetric 
part of the twist do not commute, these expressions 
contain traces of products of S and Y for k > 2. For 
d = 2,3, we obtain 

0 = det(1 - 4RS) - 8R( 1 - R) tr(Y’) , 

0 = det(1 - 4RS) - 8R( 1 - R) 

(21) 

x(tr(Y*)(l-4RtrS)+8Rtr(SY2)) =O. (22) 

Now we argue that all the terms with an odd number 
of Y vanish. Consider an arbitrary term with an odd 
number of Y in the sequence of S and Y. If reading the 
sequence backwards is the same sequence, then this 
term is antisymmetric and its trace vanishes. If read- 
ing the sequence backwards gives another sequence, 
then this sequence is also part of the sum, and their 
sum is antisymmetric, hence vanishes under the trace. 
Therefore Eqs. ( 16) and ( 17) define polynomials in 
R of degree d. 

If p = 1 then S = 0 and R = 0 such that the gen- 
eral determinant ( 17) can never vanish. This means 
that a minimizing orbit cannot undergo a saddle node 
bifurcation (without losing the minimizing property). 
Ifj&= - 1 then again 6 = 0 but now R = 1. Therefore 
det( 1 + 4s) = 0, and since S is diagonal one of its 
eigenvalues must be l/4. Note that this condition for a 
period doubling bifurcation is independent of the anti- 
symmetric part of the twist. In Ref. [ 51 a similar con- 
dition for a period doubling bifurcation of (not only 
minimizing) fixed points of natural maps is obtained. 

For d = 2 we can perform a more detailed analysis 
by determining the residues in the space of three es- 
sential parameters S = diag( dl, d2) and a, the single 
entry of the antisymmetric Y. The polynomial deter- 
mining p is given by ( 17) respectively (21)) or more 
explicitly, 

Fig. I. Stability of minimizing orbit for a 4D map in the space 
of the three essential parameters d1.d~ aad the square of the 
antisymmetry of the hvist (I~. 

0= 16R2detS+4Rtr(SadjM) 

+detM-4R(l - R)tr(%f*) (23) 

=(4dlR-1)(4dzR-1)+16a*R(R-1). 

(24) 

adj denotes the matrix of cofactors, i.e. the inverse of 
the matrix times its determinant if it is nonsingular. Its 
roots pass through infinity if dld2 + a2 = 0; they are 
complexif 16a4+4a2(2(dl+d2)-l)+(dl-d2)* < 
0. As in the general case R = 0 is impossible and 
R = 1 corresponds to di = l/4. For a = 0 the plane 
(dl , dz) is therefore divided into 9 regions by the 4 
lines di = 0,1/4, see Fig. 1. For negative definite sym- 
metric twist we have di < 0 and the negative quadrant 
corresponds to multipliers of type HH. The transition 
from HH to any region in the adjacent quadrants is 
not a regular bifurcation, because it induces R to pass 
through infinity. In a smooth system this is impossible. 
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Basically it means that the signature of the symmetric 
twist is preserved under smooth parameter variation, 
which is by definition true in the general case. If the 
signature of the twist is mixed, we have HE or HZ, 

and if it is positive, then we have II, IE or EE, the 

transitions taking place at di = l/4. Now making a 
nonzero cannot change EE or ZE, see Fig. 1. Similarly 
we cannot change HE or HI, because this would in- 
volve driving R through infinity, i.e. making the twist 
singular. 

The main change occurs above the HH and II 
region. Increasing a leads to a complex bifurcation 
where four real multipliers collide and turn complex, 
entering the region CQ. Increasing a further leads 
to the inverse complex bifurcation in which four 
complex multipliers collide on the unit circle, hence 
creating four elliptic multipliers. Since these elliptic 
multipliers are created in a complex bifurcation their 
Krein signatures must be different. Note that even 
though it looks like the two EH regions are discon- 
nected, this is due to the ambiguity in the ordering of 
the eigenvalues in S. In the full parameter space they 
are connected and together with ZH form a region 
bounded by det Mi ( 1) = 0. All the other regions are 
smoothly connected; only for symmetric twist the 
HH region is separated from the others. 

The main result for d = 2 therefore is that for neg- 
ative definite twist a sufficiently large antisymmetric 
part can turn the minimizing hyperbolic fixed point 
elliptic via an (inverse) Krein collision. 

3. Periodic orbits 

We now turn to the calculation of stability of pe- 
riodic orbits. For period two we explicitly construct 
Mj2) (p) for the iterated map F* and then make the 
connection with Schur’s complement [ 121 of Mz, in 
order to show that the product can be generated by a 
twist generating function of a minimal fixed point. For 
n > 2 we will directly work with Schur’s complement 
to establish this result. Recall that the Schur comple- 
ment (M 1 D) of M with respect to D is defined by 
the following factorization, 

Mz(; ;)=((‘“d”’ BY’) (:: i)* 
(25) 

231 

such that 

(MjD)=A-BD-‘C. (26) 

A and D are square matrices; if they have different di- 
mensions then B and C are not square matrices. The 
factorization of M gives a factorization of its determi- 
nant, 

detM=det(M)D)detD. (27) 

We will need the fact [ 121 that the Schur complement 
of a symmetric positive definite matrix is symmetric 
and positive definite. This is easily seen because trans- 
forming the quadratic form corresponding to M with 

T= ( _DllBr i) 
gives T’MT = diag( (M 1 D) , D) . (28) 

For a periodic orbit of period n = 2 we could multiply 
DF( x2, ~2) and DF( XI, y1 ), and identify the resulting 
matrix to be of the form (5). It is simpler to consider 
the second difference equation for the period of 2 orbit, 

B;Sxi + P&2 + /LB&, = 0, 

~B;Gx2+P,6x, +B1Sn2=0. 
/J 

(29) 

(30) 

Solving the first equation for 8x2 and eliminating it 
in the second directly gives Ml*‘. The superscript 2 
denotes that the matrix is that of a fixed point corre- 
sponding to a period 2 orbit. By comparison with (8), 
we find 

B(*) = -B,P;iB2, 
1 (31) 

Pi*) = P, - B;P,‘B2 - B,P,‘B;. (32) 

B(*) and P (*) I 1 = A;*’ + D, (*) define a generating func- 

tion by (4) for the iterated map. The splitting of PI*’ 

into Ai*’ and Di” is arbitrary for our purposes; only 

Pi*) enters the stability formulae. 
Our task is to show that the fact that the periodic 

orbit is minimal, M2 ( 1) > 0 im 
! 

lies that the new twist 
Bi*’ is nonsingular and that MI ) ( 1) > 0. det Bi*’ # 
0 because det Bi # 0 by assumption and det P2 # 0 
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is implied by M2( 1) > 0, because P2 is a principal 
subblock= of M2. 

To show that Mi2’ ( 1) > 0, we note that 

MC2’( 1) = PC=) + BC2) + (B2)T 1 1 1 1 

= PI - (Bt + B;)P,‘(B; + B2) 

= (M2(1) I P2). 

(33) 

(34) 

(35) 

Now the desired statement immediately follows be- 
cause the Schur complement of a symmetric positive 
definite matrix is again symmetric positive definite. 

Instead of repeating this calculation for the general 
case of period n we directly use Schur’s complement 
on the matrix M,, ( p) to recursively reduce dimension 
by d in each step. The final result after n - 1 steps is 
Mi”’ (,u) where the superscript is an iteration index. 

From this we can identify the twist Bin’ of the gen- 
erating function for the nth iterate of the map in the 
neighborhood of the minimal period n orbit via (8). 
The proof proceeds by induction. The initial matrix 
gets the iteration index 1, M, (II) E M$‘) (,u) . The 
iteration rule is 

M:‘!+:)(& = (M:“(p) I pik) , 
or more explicitly, 

(36) 

P(i+i) 
1 

= pi’) _ ($))T(P;))-~B;), (37) 

PCi+r) 
k--l 

= p:‘l, - BfJil,(Py))-l(BfL,)T, (38) 

B(‘+i) 
k-l 

= _B;J,(P(‘))-‘B(i) 
k k ’ (39) 

B!‘f’f = B!‘) 
J J ’ 

j= l,...,k-2, (40) 

P{i+i) = p{O 
J J ’ 

j=2,...,k-2. (41) 

The last two lines merely state that these entries do not 
change, while the matrices Pp’ and Bt) are discarded 
in reducing the dimension by d. Note that for k = 2 
these formulas collapse to (3 1) . Parts of this iteration 
formula are identical to those reported in Refs. [9] 
and [ 61. The formulation we have chosen here allows 
us to reduce minimal periodic orbits of twist maps 
to fixed points of twist maps. This fact has not been 
realized before, and we are now going to prove it. 

Since we start a positive definite matrix MA’) ( 1) > 
0, the next iterate constructed by Schur’s complement 

* By principal subblock we mean a block that is centered on the 

diagonal. 

is also positive definite. By induction all My:; ) ( 1) > 

0. By assumption Bi’) and BA’), in Mi’) are nonsin- 

gular, and since Pk’) is a principal subblock of the 
positive definite matrix ML’) it is positive definite, and 
therefore also nonsingular. In the iteration step from i 
to if 1, k = n - i+ 1, one of the relevant twist matrices 
is not changed B”_+” ’ k2 = B:“,, the other one obtained 
from (39) is also nonsingular because by assumption 
( 1) the two matrices on the right-hand side of (39) 
are nonsingular, and (2) the matrix Pi” in the same 
equation is nonsingular because it is a principal sub- 
block of a positive definite matrix. In conclusion we 
have shown that the twist stays nonsingular and that 
the matrices My!:) ( 1) stay positive definite. 

Although in general the composition of twist maps 
does not give a twist map we have shown that in the 
neighborhood of a minimal period IZ orbit there ex- 
ists a local generating function with nonsingular twist 
for the n times iterated map. The essential observa- 
tion concerning stability of minimal periodic orbits is 
that the property of having symmetric negative defi- 
nite twist is not stable under this iteration. The final 
twist is given by 

B;“) = B, fi(Pj”-‘+I’)-‘(-Bi) . 

i=2 

(42) 

So even in the case of higher-dimensional standard 
maps L(x, x’) = (x’ - ~)~/2 - U(X) which have 
constant symmetric negative definite twist Bi = -1, 
for n > 2 we obtain the product of n - 1 symmet- 
ric positive definite matrices which is in general nei- 
ther symmetric nor positive definite. However, if the 
ma&es P!“-i+i) commute with each other then their 
product is‘symmetric and positive definite. This can 
be achieved if the Hessian of the potential U(X) is di- 
agonal for all X; then these matrices are diagonal and 
therefore commute. But this is true only if the poten- 
tial separates, such that we are back to the case d = 1. 

Note that if we apply the determinant formula for 
Schur’s complement (27) to the iteration rule (36)) 
we obtain 

det Mf_f,” ( p) = det( Mz’ (,u) JP:' ) det Py’ . (43) 

In each step the last factor is nonzero, such that we 
can ignore all of them and find 

0 = detMi’)(p) _ 0 = detMi”)(p) , (44) 
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where on the left we have the determinant of an nd x nd we have not been able to find a minimizing period 
matrix, while on the right it is only a d x d matrix. three orbit of the FroeschlC map that shows this phe- 
This therefore gives an efficient way to calculate the nomenon. But obviously one can construct a potential 
multipliers of a minimal periodic orbit from the Hes- of a natural 4D map which supports the above period 
sian of the periodic action. 3 orbit. 

Finally we give two examples of minimizing pe- 
riodic orbits that are not hyperbolic. The first exam- 
ple is a little artificial since it involves a nonconstant 
twist. The second, however, shows that in 4D natural 
maps [ 51 minimizing period three orbits can be el- 
liptic. The first example in d = 2 dimensions and for 
period n = 2 is given by 

4. Discussion 

Pi = diag(5/3,3/4) , P2 = diag(2/3,3/2) (45) 

and 

We have shown that periodic orbits with minimal 
action of a twist map with negative definite twist can 
be elliptic. This result was obtained in three stages. 
First we showed that a nondegenerate fixed point with 
minimal action of a twist map with negative definite 
symmetric twist is hyperbolic in any number of dimen- 
sions. For application to the case of periodic orbits we 
noted that if the twist is not definite or not symmet- 
ric then this is not true. Arnaud [ 1 ] showed that there 
exist twist maps that have no hyperbolic fixed points. 
This implies that there exist maps with minimizing 
fixed points that are not hyperbolic, provided the La- 
grangian is bounded from below. Our main point was 
to show that there exist maps whose minimal fixed 
points are hyperbolic, but nevertheless the minimal 
periodic orbits are not. 

which are symmetric negative definite twist matrices 
as long as lb1 < l/2. The resulting matrix Mz( 1) 
is positive definite. However, the resulting multipliers 
can be either HH, CQ, EE, or EH depending on the 
value of 6. In particular, for b = l/3 the eigenvalues 
of M:! ( 1) are given by 

(9A2-21A+1)(8A2-18A+l)=O, (47) 

which are all positive, while the multipliers are given 

by 

(5,~~+2~+5)(10~~- 17,~+10) =O, (48) 

which all have modulus one. Let us now turn to the 
case of 4D natural maps. Note that by the above we 
have shown that their minimal period 2 orbits are hy- 
perbolic, because in this case (42) contains only one 
term. To construct an example with elliptic eigenval- 
ues for Bi = diag( - 1, - 1) , we have to go to period 
3, e.g. by choosing 

‘3= (‘;2 33 (49) 

Since the eigenvalues of some Pi have to be quite dif- 
ferent in magnitude in order to produce this effect, 

In order to show this, we first derived the interesting 
result that in the neighborhood of a minimal periodic 
orbit the iteration of a twist map is again a twist map, 
which is not always true globally. The key to this ob- 
servation was the use of Schur’s complement to recur- 
sively reduce the dimension of the Hessian of the pe- 
riodic action. Starting with an (nd x nd) -dimensional 
Hessian of a period n orbit of a d-dimensional map the 
final result is a d x d matrix, which can be interpreted 
as the Hessian of the fixed point of a Lagrangian map. 

This reduction in the neighborhood of a minimal 
periodic orbit allowed us to show that these periodic 
orbits can be nonhyperbolic. The main point is that 
in the reduction process the property to have sym- 
metric negative definite twist can be destroyed, and 
therefore the orbit can be nonhyperbolic. Arnaud’s re- 
sults [ 2 ] give a similar statement for flows: there ex- 
ist autonomous Lagrangian flows for which the mini- 
mizing orbits are not hyperbolic. Our result for maps 
complements her result for autonomous flows because 
it amounts to treating Lagrangians with explicit time 
dependence. 
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