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The stability of steady, inviscid vortex pairs in equilibrium with a circular cylinder are

studied by discretizing equations derived from contour dynamics. These flows were found

previously using different methods in Elcrat, Fornberg, Horn & Miller (2000). There are

two families of vortices, one with a pair of counter-rotating vortices standing behind

the cylinder, which may be thought of as desingularizing the Föppl point vortices, and

the other with the vortices standing directly above and below the cylinder. Vortices in

the first family are found to be neutrally stable with respect to symmetric perturbations.

When asymmetric perturbations are included, there is a single unstable mode and a single

asymptotically stable mode. Vortices above and below the cylinder have two modes of

instability, one symmetric and the other asymmetric, and likewise two asymptotically

stable modes.

1. Introduction

In a previous work, Elcrat, Fornberg, Horn & Miller (2000), we have investigated the

variety of possible steady vortex patch equilibria in the symmetric, inviscid flows past
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a circular cylinder. These vortices were organized in terms of families of point vortex

solutions in the same geometry. Starting from any point vortex, a family of vortex patches

with the same circulation and expanding areas was obtained. It is natural to consider

the stability of these vortices with respect to two dimensional perturbations. This work

is concerned with an investigation of this question.

In this previous work we obtained vortices using an iteration for solutions of the partial

differential equation

∆ψ = f(ψ) (1.1)

for the stream function ψ in the special case f = ωF (ψ−α), F = 1−H , H the Heaviside

function, where α and ω > 0 are constants. This corresponds to a constant vorticity −ω

in the region where ψ < α, and irrotational flow elsewhere. The iteration is of the form

∆ψn+1 = ωnF (ψn − α), (1.2)

where ωn is chosen so that the area of the vortex,

A = |{ψn < α}|,

is a fixed prescribed value. The new proposed vortex is then obtained as a level set of

a solution of Poisson’s equation, and beyond that, no a priori restriction is placed on

the vortex boundary. This iterative procedure converges for fairly general initial guesses

(one does not need to start near a solution to obtain convergence), which is part of the

appeal of the method. On the other hand there is a limit on the accuracy which can be

obtained with the discretizations used and it is not obvious how to formulate the stability

problem using this approach. For this reason we have chosen to reformulate the problem

in this paper using a boundary integral method related to contour dynamics as has been

done by many previous workers, e.g. Zabusky, Hughes & Roberts (1979), Pullin (1981),

Wu, Overman & Zabusky (1984) and Baker (1990). Solutions obtained by our previous
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method are used as initial guesses in Newton iterations for these new equations. In this

way we obtain highly accurate solutions and stability can be investigated in terms of the

eigenvalues of the Jacobian matrix evaluated at the converged solution.

The continuous boundary integral equations are given in terms of integrals of the

appropriate Green’s function over the vortex support, and these can be transformed

using Green’s theorem into contour integrals. Steady flow implies no normal component

of velocity and this provides a condition on the contour bounding the vortex which is

the basis for our work.

We have used two discretizations to obtain a finite set of equations to solve using

Newton’s method. In the first, less accurate, discretization we have replaced the contour

by a finite set of points, used interpolation of three neighboring points by a circle to

get normal vectors, used the trapezoid rule for the integrals and computed the Jacobian

using numerical differentiation. This method converges rapidly for a modest number of

points and has the virtue of simplicity. We have used this method to explore various

vortex configurations. Unfortunately, this method has difficulty resolving the spectrum

of the converged Jacobian so we have used a more accurate method for that purpose.

The analysis is more detailed, but allows for analytic computation of the Jacobian. This

method also uses Fourier analysis to interpolate the points on the contour for more

accurate computation of the integrals.

The stability of these vortices has applications to reduced order models for flow control;

see Tang & Aubry (1997) and Protas (2004).

In Section 2 we derive the boundary integral formulation of the vortex problem. In

Section 3 we describe the two discretization methods. In Section 4 we give results and

summarize conclusions in Section 5.
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2. Boundary Integral Formulation

In this section we establish notation and derive the equations for vortex equilibrium

that we use. It is convenient to employ complex notation and the complex partial deriva-

tives ∂
∂z = 1

2 ( ∂∂x − i ∂∂y ) and ∂
∂z̄ = 1

2 ( ∂∂x + i ∂∂y ). Some of the calculations that follow are

facilitated by noting that if h is a harmonic function, then ∂h
∂z = 1

2i
dh̃
dz where h̃ is the

complex analytic function such that Im h̃ = h. (We will be dealing with simply connected

domains and the disposable real constant will not play a role.)

If ψ is the stream function of an incompressible flow with velocity v, v = ∂ψ
∂y −i

∂ψ
∂x , then

−∆ψ is the vorticity. The flow domain Ω is the exterior of the unit disk. In our problem

the vorticity will be a constant ω in a simply connected regionD1 in the upper half plane,

−ω in a simply connected region D2 in the lower half plane, and zero elsewhere in Ω. (All

known steady vortex flows past a cylinder are symmetric, i.e. D2 is the reflection of D1

across the real axis. However we include the consideration of asymmetric perturbations,

i.e. perturbations for which D2 is not necessarily the reflection of D1 across the real axis.)

Assuming uniform velocity 1 at infinity, the stream function ψ is given by

ψ(z) = ω

∫ ∫
D1

g(z, w)dw1dw2 − ω

∫ ∫
D2

g(z, w)dw1dw2 + ψ0(z)

where g is the Green’s function for −∆ on Ω, w = w1 + iw2 and ψ0(z) = Im(z + 1/z)

is the stream function for potential flow in Ω, uniform at infinity. For the domain Ω the

Green’s function g is given explicitly by:

2πg(z, w) = log |z − w| − log |z − 1/w̄|.

Since v̄ = 2i∂ψ/∂z it follows that

v̄ =
ω

2πi
(

∫ ∫
D1

(−
1

z − w
+

1

z − 1/w̄
)dw1dw2+

∫ ∫
D2

(
1

z − w
−

1

z − 1/w̄
)dw1dw2)+(1−z−2).
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Using the complex form of Green’s Theorem:

∫ ∫
D

∂F

∂w̄
dw1dw2 = −

i

2

∮
C

F (w)dw,

where C is the boundary of D, and noting that

∂

∂w̄
(
w̄

z
+

1

z2
log(w̄ −

1

z
)) =

1

z − 1/w̄

we obtain

v̄(z) =
ω

4π

∮
∂D

[log(z − w)dw̄ − (
w̄

z
+

1

z2
log(w̄ −

1

z
))dw] + (1 − 1/z2), (2.1)

where ∂D is the union of ∂D1 oriented counter-clockwise and ∂D2 oriented clockwise. If

D2 is the reflection of D1 in the real axis, then this becomes

v̄(z) =
ω

4π
I + (1 − 1/z2), (2.2)

where

I =

∮
C

[log(z − w)dw̄ + log(z − w̄)dw −
1

z2
log(w −

1

z
)dw̄ −

1

z2
log(w̄ −

1

z
)dw]. (2.3)

with C = ∂D1. We will use this latter formula when considering symmetric perturba-

tions of symmetric flows. In both (2.1) and (2.3) the first term is the only term with a

singularity. Following Pullin (1981) we integrate that term by parts

∮
C

log(z − w)dw̄ = −

∮
C

z̄ − w̄

z − w
dw (2.4)

to obtain an integral with a removable singularity. The formula for v̄ resulting from

replacing the first term in (2.1) or (2.3) by the right hand side of (2.4) is what we will

use in our analysis.

The contour dynamics of a vortex patch (or pair of vortex patches) with boundary

C(t) are given by

dz

dt
= v on C
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where z = z(s, t) is a Lagrangian parametrization of C and the velocity v on C is given

by (2.2) when considering only symmetric perturbations or by (2.1) when considering

general perturbations. The flow is stationary if

v · n = 0 on C (2.5)

where n is the unit outward normal to C. We may think of a dynamical system in which

marker points on C are given a velocity equal to (v ·n)n. Stationary flows are equilibrium

solutions of this dynamical system. Note that equation (2.1) gives the velocity field on

the boundary C as a function of the points on the boundary. Discretizing the integral in

(2.1) or (2.3) at N points and imposing (2.5) at the same points gives an autonomous N -

dimensional system. We investigate stability by studying the eigenvalues and eigenvectors

of the Jacobians of such discretized systems. In this way we can determine if normal

perturbations grow. Details of the discretization procedures are given in the next section.

3. Discretization

We concentrate first on the symmetric problem. The equations which we solve numeri-

cally are obtained by discretizing the boundary C of the vortex patch and then requiring

v · n = 0 at each of the discretization points. Since v is given by (2.3), this requires

approximation of the integrals in (2.3) and of the normal direction of C.

Our first discretization uses the trapezoid rule for integrating between the discrete

points defining our approximation to C and approximates the normal by the normal

to a circle passing through the point and its adjacent discretization points. We solve

the resulting system of equations using Newton’s method with the partial derivatives in

the Jacobian matrix approximated by first order forward differences. For this discrete

Newton’s method to converge we need to have a good initial guess. Details of how these

initial guesses are obtained will be given in the section on results, but here two important
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points should be made. First, the discrete points on the vortex boundary are merely

marker points and the movement of these points should not be confused with the motion

of fluid particles in the dynamics of the fluid flow for a curve close to an equilibrium

configuration. Second, our iteration does not fix area and, for fixed ω, there is always a

nearby solution with a slightly different area A and circulation κ = ωA. This is reflected

in an eigenvalue of the discrete Jacobian which is very close to zero. We have dealt with

the problem of the zero eigenvalue by projecting out the smallest singular value of the

Jacobian in the initial iterations. More precisely, suppose J is the current Jacobian, and

the singular value decomposition of J is USV ′: U and V are orthogonal matrices and

S is diagonal with the singular values of J , in decreasing order, on the diagonal. The

situation that we must deal with is that in which the last element of S is nearly zero and

the others are orders of magnitude larger. We form the matrix V DU ′ where D is the

diagonal matrix with entries the reciprocals of the singular values of J , except for the

last entry which is 0. We use this matrix in place of the inverse of J in the Newton type

iteration. After reaching a sufficiently small successive iteration change we return to the

full Newton method. In this way, with a good enough initial guess, we are able to obtain

full machine precision in the solution of the discrete equations. We have also used this

procedure in the Newton method for the more refined method described next. Also since

there is one zero eigenvalue and the remaining eigenvalues occur in conjugate pairs, it is

natural to use an odd number N of discretization points.

To obtain greater accuracy in the stability analysis our second procedure uses ana-

lytic expressions for the Jacobian of the discretized system, which we now describe. We

consider normal variations z = z0 + rn0, of a fixed simple closed curve C0 (an initial

guess for the boundary of the desired stationary vortex). Here z0 is a parametrization of

C0 , n0 is the unit outward normal and r = r(s) is a real variable. In the discretization,
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the initial guess C0 is given by finitely many points z0
1 , · · · , z

0
N . (We have used points

which are equally spaced in terms of chordal arc-length. We have not experimented with

adapting the parametrization of the current vortex boundary in terms of its geometry, in

particular using more points in high curvature regions. As noted by one of the referees,

this would certainly lead to greater efficiency in computing solutions.) Numerical differ-

entiation of the curve gives approximate tangent vectors, and normal directions can be

obtained by rotating through 90 degrees; i.e. expressed as complex quantities, the unit

normals can be approximated by

n0 = −iDz0/|Dz0|.

HereD is anN×N discrete differentiation matrix. We have takenD to be a differentiation

matrix based on either fourth order finite differences or the discrete Fourier transform

(Fornberg (1998), Trefethen (2000)). For r = (r1, · · · , rN )T sufficiently small, z = z0+rn0

will determine a new simple, closed curve C. The unit normals to C will likewise be

approximated by

n = −iDz/|Dz|. (3.1)

We discretize the integrals in (2.3) using the trapezoid rule, parametrizing over the

interval [0, 2π], replacing dw by h dw/ds with h = 2π/N , and approximating dw/ds

by discrete differentiation: dw/ds = D(z0 + rn0). For notational convenience we let

u = Dz = D(z0 + rn0). Discretization of (2.2) and (2.3) can then be written

v̄ =
ω

2N
(Au+Bu+B1ū+B2u) + (1 − z−2), (3.2)

where A,B,B1 and B2 are matrices corresponding to the four terms in the integral in

(2.3), the first term being replaced by the right hand side of (2.4). Note that these matrices

as well as the vectors v̄ = (v̄1, · · · , v̄N )T , u = (u1 · · · , uN )T and z−2 = (z−2
1 , · · · , z−2

N )T all

depend on the independent variable r = (r1, · · · , rN )T .
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We next obtain explicit formulas for the matrix with terms ∂v̄j/∂rk, v̄ given by (3.2).

The term Au will be dealt with last. The matrix B has terms bjk = log(zj − z̄k). Note

that ∂bjk/∂ri = 0 except when i = j or i = k. This implies that

dB

dr
u = B′diag(u) + diag(B′′u)

where diag(u) is the matrix with vector u on the main diagonal, zero elsewhere, B′

is the matrix with terms ∂bjk/∂rk and B′′ is the matrix with terms ∂bjk/∂rj . From

the definition of u, du/dr = Ddiag(n0), so we can obtain the matrix d(Bu)/dr =

(dB/dr)u+Bdu/dr explicitly. The same remarks apply to the determination of d(B1ū)/dr

and d(B2u)/dr. Turning to d(Au)/dr, there is a singularity in the integrand on the right

hand side of (2.4) when w = z, however it is removable with limit (dz̄/ds)/(dz/ds), as w

approaches z. Since in the discretization dz/ds is replaced by the vector u = D(z0+rn0),

we find that the matrix A has terms ajk = −(z̄j − z̄k)/(zj − zk) for j 6= k, ajj = −ūj/uj.

We then obtain d(Au)/dr explicitly by the method described above for B.

We can now obtain the Jacobian of the system (2.5) analytically as a function of r.

Writing F (r) = v · n where v = v(r) = v(z0 + rn0) is given explicitly by (2.2) and n by

(3.1), and viewing v and n as complex quantities, we have F = Re(v̄n). Therefore

∂Fj
∂rk

= Re(nj
∂v̄j
∂rk

) + Re(v̄j
∂nj
∂rk

). (3.3)

The computation of ∂v̄j/∂rk is described in the previous paragraph, and by direct dif-

ferentiation of (3.1)

∂nj
∂rk

= −i
1

|uj|

∂uj
∂rk

+ nj Re(
in̄j
|uj |

∂uj
∂rk

),

where ∂uj/∂rk = djkn
0
k with djk the terms of the differentiation matrix D.

We have found that for accurate calculation of the eigenvalues it is useful to write
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r = r(θ) as a finite Fourier series

r(θ) = a0/2 +

(N−1)/2∑
1

(an cos (nθ) + bn sin(nθ)) (3.4)

where the numberN of discretization points is odd. (Here θ has no direct geometric mean-

ing other than a periodic parametrization of the curve). The vector

c = (a0,a1, · · · , a(N−1)/2, b1, · · · , b(N−1)/2)
T of Fourier coefficients can be obtained from

r = (r1, · · · , rN )T by multiplying r on the left by a fixed square matrix M1. We can use

the finite Fourier series to interpolate r at Q = kN quadrature points for the discretiza-

tion of the integrals in (2.3) and (2.4). Here k is an even number, typically 2 or 4. The

vector r̃ = (r̃1, · · · , r̃Q)T of interpolated quadrature points can be obtained from c by

multiplying c on the left by a fixed Q×N matrix M2. This results in a slight modification

of the previous four paragraphs: D is now a Q×Q differentiation matrix, z = z0 + r̃n0

and u = Dz are length Q vectors, and the matrices A,B,B1 and B2 in (3.2) are N ×Q

matrices. We use the Fourier coefficients c as variables in solving the N equations F = 0

by Newton’s method. The Jacobian matrix needed for Newton’s method can be found

analytically

dF

dc
=
dF

dr̃

dr̃

dc
, where

dr̃

dc
= M2 (3.5)

and dF/dr̃ is the N ×Q matrix with terms given by (3.3) (with rk replaced by r̃k).

We have used analytic Jacobian formulas both to obtain highly accurate stationary

vortices by starting from a fairly good guess C0 and also to do the stability analysis when

C is an accurate solution. We point out that in doing the stability analysis for an accurate

solution C, one cannot use the Jacobian (3.3) from the final step in the Newton iteration

used to obtain C from an initial guess. The reason is that the vectors n0 determining

the coordinate system are not necessarily normal to C. One must recompute using the

above analysis with z0 a discretization of C and r = 0. The matrix dF/dr needed for the
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Figure 1. Detached stationary vortex behind a cylinder and perturbations (dashed curves) of

the vortex boundary in the directions (+ and -) of the eigenvector for eigenvalue 0. Perturbations

in the direction of this eigenvector lead to additional solutions with the same ω – see Figure 10.

stability analysis is then obtained by multiplying dF/dc given by (3.5) on the right by

dc/dr = M1.

To consider asymmetric perturbations we assign separate variables to a discretization

of C and a discretization of its reflection C̄ in the real axis. There is a slight modification

to the above analysis based on using (2.1) rather than (2.2).

4. Results

We first present results for a detached vortex either behind or above a semicircle in

the upper half plane. Stability results for perturbations of the half-plane flow imply

corresponding results for symmetric perturbations of the symmetric flow past a cylinder

obtained by reflection in the x-axis. Near the end of the section we consider asymmetric

perturbations to symmetric flow past the cylinder.

To set the tone for our results we first consider a specific vortex behind the semicircle,

that with circulation κ = 8 and ω = 8, plotted in Figure 1. We have used both methods

described above to compute the vortices, but for detailed results on the spectrum of

the Jacobian we have relied on the more accurate method. The computed eigenvalues

of J = dF/dr for this solution are plotted in Figure 2. The results described here were

obtained with N = 201, but results are persistent when N is changed, as will be discussed

more thoroughly near the end of this section. We note that most of the spectrum is
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Figure 2. Eigenvalues for the vortex in figure 1. The left hand plot shows all the eigenvalues

at a particular level of discretization. The other plots are blow ups of this plot. The middle plot

shows the near equal spacing on the imaginary axis, except for the first conjugate pair which is

closer to 0, as seen in the right hand plot.

concentrated on the imaginary axis. By refinement of the grid, the scatter at the top in

the left hand plot is shown to be spurious, due to discretization. We conclude from this

that the vortex is neutrally stable to two dimensional perturbations. The eigenvalues

are nearly equally spaced on the imaginary axis, except for the gap between the first

imaginary pair and zero, which is smaller.

We get more information by examining the eigenvectors, which may be considered as

functions of the equally spaced discretization points on the boundary of the vortex. As

noted earlier, zero is always an eigenvalue. A perturbation of the vortex boundary by

an eigenvector corresponding to eigenvalue 0 is shown as a dashed curve in Figure 1.

A waterfall plot of the real parts of the eigenvectors corresponding to the first several

eigenvalues with positive imaginary part is shown in Figure 3. It is noted that except

for the first eigenvector the real parts of the eigenvectors are nearly sinusoidal in shape,
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Figure 3. Real parts of the eigenvectors for the first thirteen non-zero eigenvalues for the

vortex in Figure 1. Imaginary parts have similar profiles, but with a “phase shift”.

with n maxima for the nth eigenvector. The frequency content in all the eigenmodes

is exhibited in a waterfall plot of an application of the fast Fourier transform to the

eigenvectors (Figure 4).

In eigenvector plots such as Figures 3 and 5 the eigenvectors have been normalized to

have the same Euclidean norm. Superimposing the eigenvectors on a single plot reveals

that there is a distinct “envelope” of the normalized eigenvectors. Figure 5 shows the real

and imaginary parts of the eigenvectors for the fourth through the twelfth eigenvalues.

Excluding the spurious eigenvalues, eigenvectors corresponding to higher eigenmodes are

also within the same envelope. The similarity in the profile of the eigenvector envelope

and the fluid pressure in Figure 5 indicates that the amplitude of any “oscillations” of a

slight perturbation of the vortex will generally be larger near points where the pressure

is larger. Any small local shape disturbance in the vortex will just travel (dispersion and

dissipation free) around the boundary, with its amplitude varying with the local pressure.
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frequencymode

Figure 4. Frequency plot for all the eigenmodes of the vortex in Figure 1.

xw

pressure

Figure 5. The upper plot is a plot of several eigenvectors r(z) for the vortex in Figure 1 and the

lower plot gives the pressure on the vortex boundary. The horizontal axis gives position along

the vortex boundary measured from some reference point. Points w and x of maximum relative

pressure are indicated on Figure 6.
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w

x

Figure 6. Perturbation of a stationary vortex in the direction of the eigenvector for the first

purely imaginary eigenvalue. Points w and x on the boundary are where the pressure has a

relative maximum. As Figure 5 indicates, other eigenmodes also tend to have higher amplitude

at these points.

w x

Figure 7. A stationary vortex above the cylinder. The graph on the left also shows perturbations

in the direction of the zero eigenvector, leading to nearby steady solutions. The graph on the

right shows a perturbation in the direction of the single unstable eigenmode. Points w and x are

points of maximum pressure, see Figure 9.

Figure 6 shows perturbations of the vortex boundary in the direction of real part of the

eigenvector corresponding to the first eigenvalue with positive imaginary part.

We next consider a stationary vortex standing above the semicircle. An example is

shown in Figure 7. For this vortex there is a single unstable mode with eigenvalue 0.282

as seen in the eigenvalue plot Figure 8. A perturbation in the direction of the unstable

mode is shown in the right hand graph in Figure 7. Figure 9 shows that again for this

vortex, eigenmodes with non-zero imaginary part lie within a distinct envelope and that

this envelope bears a similarity with the pressure profile on the vortex boundary.

In all cases which we have investigated we have found neutral stability for detached

vortices behind the semicircle, and one unstable mode for symmetric vortices above the
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Figure 8. Eigenvalues for the vortex in Figure 7. There is a single positive eigenvalue.

Eigenvalues on the imaginary axis are nearly equally spaced.

w x

pressure

Figure 9. Eigenvectors and pressure for the vortex in Figure 7. Points w and x of maximum

pressure are indicated on the right hand plot in Figure 7.

semicircle. This is consistent with the fact that for point vortices, Föppl vortices are

stable (as a single vortex in the upper half plane–the corresponding vortex pair being

stable with respect to symmetric perturbations), whereas point vortices on the vertical

axis are unstable.

As noted earlier, λ = 0 is always an eigenvalue, due to the fact that each vortex is part
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Figure 10. A sequence of stationary vortices with ω fixed, obtained by perturbing the vortex

in Figure 1.

Figure 11. A sequence of stationary vortices with ω fixed, obtained by perturbing the vortex

in Figure 7.

of a one parameter family of vortex solutions with the same ω. Perturbation of the vortex

boundary in the direction of the eigenfunction corresponding to λ = 0 will lead to other

vortices with the same ω. For the vortex in Figure 1, perturbation in the direction of the

zero eigenvector leads to the family of vortices shown in Figure 10. Figure 11 shows a

similar family beginning with the vortex in Figure 7. To obtain these vortices z + δrn

was taken as a new initial guess for the algorithm, where z is the previous solution, r is
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v
x

w

Figure 12. A sequence of stationary vortices with the same circulation κ = 8, all

desingularizing the same Föppl point vortex.

the zero eigenvector for that solution, n is the unit normal to the curve determined by z

and δ is a perturbation parameter, taken to be ±0.2 in these calculations. Convergence

was obtained in two or three Newton iterations. Every tenth solution has been plotted.

We next consider a sequence of vortices all with the same circulation κ = 8, but with

different values of ω, as shown in Figure 12. The smallest of these vortices was obtained

by taking as initial guess a circle with small radius centered at the Föppl point vortex

location. Subsequent solutions were obtained by normal perturbation, i.e. using z + δn

as initial guess. For vortices that are nearly circular, the real and imaginary parts of the

eigenfunctions are nearly sinusoidal. At the other end of the family, the largest vortex

shown in Figure 12 is nearly attached. The eigenvalues for this solution are shown in

Figure 13, and the real parts of the first several eigenvectors are shown in Figure 14.

The envelope of the real and imaginary parts of the eigenvectors and its similarity to

the pressure on the boundary of the vortex are shown in Figure 15. For this vortex

the pressure profile is much less uniform than that for the vortex in Figure 1. Any

small disturbance to the equilibrium state for the vortex boundary will be more strongly

concentrated near the points w, v and x shown if Figure 12.

Ignoring the scatter far from the real axis, the spacing between successive eigenvalues

for a fixed vortex appears to be nearly constant. Except for the distance between 0

and the first eigenvalue λ1i on the positive imaginary axis, the gap between successive

eigenvalues is very close to ω/2 for vortices close to circular in shape and is always less
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Figure 13. Eigenvalues for the nearly attached vortex in figure 12. The right two plots are

blow ups of portions of the full eigenvalue plot shown on the left.

than ω/2. When the vortex is a small area desingularization of a Föppl point vortex,

±λ1i is very close to the purely imaginary eigenvalues for the Föppl point vortex pair

with the same circulation. (An analysis of the eigenvalues and eigenvectors for the Föppl

point vortex can be found in Tang & Aubry (1997).) The value of λ1 decreases rather

slowly as the area of the vortex is increased and circulation is held fixed. Thus the

first imaginary eigenvalue depends primarily on the circulation κ while the gap between

successive eigenvalues is related to the vortex strength ω.

The behavior of attached vortices such as the one being approached in Figure 12 is

an intriguing question. For detached vortices perturbations of shape advect around the

boundary, however there can be no such shape perturbation along the attached part of

the boundary. Moreover the computation of such attached vortices is extremely delicate

using contour dynamics equations. We have attempted to approach this problem by

studying the related problem of translating vortex pairs, also called translating V-states

in Wu, Overman & Zabusky (1984). These have been computed by Saffman & Tanveer
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Figure 14. Eigenvectors for the first thirteen non-zero eigenvalues for the nearly attached

vortex in Figure 12.

(1982) and Wu, Overman & Zabusky (1984). This requires modifications of our programs

which we have carried out for the simpler method. However, this modification was not

adequate for resolving the eigenvalues of the attached pair, and the more accurate method

uses periodicity in an essential way. Dritschel (1995) has studied the stability of rotating

vortex pairs with respect to general perturbations. The special case of equal area and a

translating vortex pair is included in his study, and he has found a rotational instability.

He found no evidence of symmetric instability [Dritschel, personal communication].

We now consider symmetric flow past a cylinder and allow independent perturbations

of the vortex in the upper half plane and its reflection in the lower half plane. For

vortices behind the cylinder there is now one unstable mode and one asymptotically

stable mode. For small area desingularizations of a Föppl point vortex pair, the positive

and negative eigenvalues are very close to the two real eigenvalues of the corresponding

point vortex system. (As shown in Tang & Aubry (1997), the point vortex system has
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Figure 15. Eigenvectors and pressure for the nearly attached vortex in Figure 12. The points

of maximal pressure are also shown in Figure 12.

Figure 16. The unstable mode, on the left, and the asymptotically stable mode, on the right, for

a vortex pair when κ = 8 and the area of each vortex component is 0.5. For sake of comparison,

the eigenvectors for the point vortex system with the same circulation are shown as arrows based

at the point vortex locations. The eigenvalues for the vortex patch solution are ±0.5266 while

the eigenvalues for the point vortex solution are ±0.5251.

four eigenvalues: one positive, one negative and an imaginary pair). Perturbations of the

vortex pair in the direction of these two modes are shown in Figure 16. In addition to

the symmetric neutrally stable modes obtained previously, there are also asymmetric

neutrally stable modes. Denote by λki the kth eigenvalue on the positive imaginary axis

for the symmetric problem. Then for k > 2 there is a λ′k close to λk such that ±λ′ki is
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Figure 17. Symmetric and asymmetric neutrally stable modes for k = 2. Eigenvalues for the

modes are ±λ2i (on the left) and ±λ
′

2i (on the right) where λ2 = 7.9955 and λ
′

2 = 7.6667.

In general the real and imaginary parts of the eigenfunctions for both λki and λ
′

ki have k

maxima and k minima on each vortex boundary component. For k = 1 there is no corresponding

asymmetric neutral mode.

a second pair of eigenvalues for the asymmetric problem. Perturbations in the directions

of the eigenvectors for ±λ′ki are not symmetric, see Figure 17. As k increases, λk − λ′k

decreases and the difference becomes smaller than the accuracy of our calculations at

about k = 12 for the example shown. Zero is a double eigenvalue for the asymmetric

problem.

For any flow with vortices directly above and below the cylinder, for example the flow

in Figure 7 together with its reflection, there is an asymmetric unstable mode in addition

to the symmetric unstable mode found earlier. For each of the two positive eigenvalues,

its negative is also an eigenvalue, giving two asymptotically stable modes.

We next provide some data indicating the persistence of the computed eigenvalues

with changes in the number of discretization points N . For the vortex shown in Figure

1, Table 1 shows how many eigenvalues agree to a given accuracy when comparing the

computations with N = N1 and N = N2. For example the last entry in the first row

of the first table indicates that the first 12 eigenvalues on the positive imaginary axis

agree to 3 significant figures. The accuracy decreases monotonically going up the positive

imaginary axis. It appears that doubling the number of discretization points increases
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N1 N2 7 s.f. 6 s.f. 5 s.f. 4 s.f. 3 s.f.

81 161 0 0 2 7 12

161 321 0 4 8 12 21

321 641 3 8 12 21 54

N1 N2 6 s.f. 5 s.f. 4 s.f. 3 s.f.

81 161 0 0 2 5

161 321 0 3 8 18

321 641 3 4 18 31

Table 1. Persistence of the computed eigenvalues with changes in the number N of discretization

points. Entries give the number of eigenvalues with positive imaginary part for which there is

agreement to a given number of significant figures (s.f.), when comparing two solutions with

different values of N . The first table is for the vortex shown in Figure 1–a typical case. The

second table is for the more extreme case of the nearly attached vortex shown in Figure 12.

the accuracy by roughly one order of magnitude. We note that accuracy is diminished

for the vortex that is close to attached.

5. Conclusions

For stationary vortex flows past a cylinder with patches of constant vorticity we have

studied stability with respect to both symmetric and asymmetric perturbations. This has

been done by formulating equations for normal perturbations based on contour dynamics

equations and computing the eigenvalues of Jacobians of discretizations of these equations

at a solution. There are two families of vortices, those desingularizing the family of Föppl

point vortices behind the cylinder and those desingularizing point vortices standing above

and below the cylinder. The vortices behind the cylinder have been found to have purely

imaginary eigenvalues with respect to symmetric perturbations and, like the Föppl point
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vortices, a single mode of instablity with respect to asymmetric perturbations. This

extends up to vortices which are almost attached.

Vortices in the family directly above and below the cylinder have exactly two unstable

modes, one symmetric and one asymmetric. For any fixed vortex, in either family, the

normalized eigenvectors for the imaginary eigenvalues lie in a well-defined envelope which

has a profile similar to that of the fluid pressure on the boundary. For these modes,

perturbations of the vortex shape advect around the boundary with amplitude varying

with the local pressure.

A significant feature of the problems considered is that there is always a nearby solu-

tion and this leads to a zero singular value of the Jacobian. We have dealt with this by

modifying Newton’s method by removing this singular value in a factorization of gen-

eralized inverse of the Jacobian. The techniques used here can be used for other vortex

configurations and may include asymmetric perturbations. It is also possible to generalize

these techniques to axisymmetric problems and we intend to do this in the future and

apply this to the flows found in Elcrat, Fornberg & Miller (2001).
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